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Abstract

Coupled processes between the equatorial ocean and atmosphere control the spatial

structure of the annual mean state in the Pacific region, in particular the warm-pool/cold-

tongue structure. At the same time, coupled processes are known to be responsible for

the variability about this mean state, in particular the El-Niño/Southern-Oscillation phe-

nomenon. In this paper, we consider the connection between both effects of coupling by

investigating the linear stability of fully coupled climatologies in an intermediate coupled

model. The new element here is that when parameters—such as the coupling strength—are

changed, the potential amplification of disturbances can be greatly influenced by a simul-

taneous modification of the mean state. This alters the stability properties of the coupled

climatology, relative to the flux-corrected cases that have been previously studied. It ap-

pears possible to identify a regime in parameter space where ENSO-like unstable modes

coincide with a reasonable warm-pool/cold-tongue structure. These unstable modes are

mixed SST/ocean-dynamics modes, that is, they arise through an interaction of oscillatory

modes originating from ocean dynamics and oscillatory SST-modes. These effects are qual-

itatively similar in this fully coupled problem compared to the flux-corrected problem, but

the sensitivity of the ENSO mode to parameters and external variations is larger due to

feedbacks in the climatology.
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1 Introduction

Interaction of the tropical atmosphere and the Pacific Ocean causes one of the dominant sources

of interannual variability in the climate system, the El-Niño/Southern Oscillation phenomenon

(see Philander, 1990). In current theory, ENSO arises as a self-sustained cycle in which anomalies

of SST cause the trade winds to strengthen and weaken. This drives changes in ocean circulation

that produce anomalous SST; the memory of this cycle is provided by adjustment processes in

the ocean (see, e.g., Schopf and Suarez, 1988, 1990; Battisti and Hirst, 1989; Philander, 1990;

Neelin et al., 1994 and references therein).

Linear stability analyses of idealized annual mean states in intermediate coupled models

have provided much of our understanding of how large-scale coupled feedbacks give rise to an

oscillatory unstable ENSO mode. One of the models which is believed to capture much of the

essential physics of the coupled system, is that of Zebiak and Cane (1987), referred to below as

the ZC-model. For a spatially constant climatology, the most unstable modes were determined

by Hirst (1986) in a simplified ZC-like model with periodic conditions at the east-west ocean

boundaries. Hirst (1986) focuses on coupled long wavelength traveling waves, which can become

unstable at strong enough coupling, that are related to oceanic long Rossby and Kelvin waves.

Hirst (1986) mentions that a third class of traveling waves—related to the evolution of the sea

surface temperature (SST)—is possible. Neelin (1991) termed these SST modes, and discussed

the strong role of coupling in creating them.

The same stability problem has been considered within ZC-type models within a finite

ocean basin in a number of studies (Hirst, 1988; Wakata and Sarachik, 1991; Jin and Neelin,

1993a,1993b, Neelin and Jin; 1993). In all of these, the mean state has been constructed by us-

ing observed (or idealized prescribed) surface winds to compute the mean response of the ocean,
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within a procedure known as “flux-correction”. In these models, the atmosphere response is only

considered on the perturbations of this mean state. For these flux-corrected mean states, a uni-

fied view of all the relevant modes was presented in a three part study by Jin and Neelin (1993a,

1993b) and Neelin and Jin (1993) (collectively JN hereafter). For the “stripped down” version of

the ZC-model used by JN, two classes of oscillatory coupled modes appear. The first class of os-

cillatory instabilities originates from ocean wave dynamics and is the counterpart of the traveling

wave modes in the periodic basin. The spectrum of the ocean dynamics modes is complicated

because it is basically continuous and discretization of the operator leaves a resolution-dependent

spectrum, the “scattering spectrum”. The second class of oscillatory modes are SST-modes and

these modes may become stationary in some parameter regimes. In the fast wave limit, these

stationary instabilities were shown to be related to transcritical bifurcations leading to multiple

stable equilibria (Hao et al, 1993; Dijkstra and Neelin, 1995a). In certain limits (for example

the fast-wave and fast-SST limits) these modes are separated but in the realistic area in pa-

rameter space, the eigenmodes are of mixed SST/ocean-dynamics type. Jin and Neelin (1993a)

showed that eigensurfaces spanned by both type of modes are continuously connected in param-

eter space. In the realistic regime, the climatology is unstable to oscillatory modes of which the

spatial structure is set by an SST mode, while the internal frequency is determined largely by

subsurface memory through ocean adjustment.

The mixed SST/ocean-dynamics mode interpretation of the ENSO mode incorporates the

subsurface memory paradigm known as the SSBH delayed oscillator model (Schopf and Suarez,

1988; Suarez and Schopf, 1988; Battisti and Hirst, 1989). JN showed how the SSBH delayed

oscillator model captures a particular regime of the mixed SST/ocean-dynamics modes, while

the Cane et al. (1990) and Münnich et al. (1991) mode captures a related regime. Jin (1997a,b)

proposed an even simpler model, termed a “recharge oscillator”, that captures in the fewest
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possible degrees of freedom the mixed nature of the ENSO mode. In all these models, the

subsurface heat content carries the oscillation through a transition phase where the SST anomaly

in the eastern Pacific is nearly zero. The disequilibrium between thermocline anomalies and wind

stress anomalies drives the cycle. On the equator the symptom of this is that western Pacific

heat content leads eastern Pacific heat content by between 90◦ and 180◦ of temporal phase.

The picture which has emerged from the previous studies is that some mean state becomes

unstable at sufficiently large coupling strength. Oscillatory disturbances are amplified through

coupled feedbacks and give way to a sustained oscillation. In mathematical terms, the dynamical

system becomes unstable through a forward Hopf bifurcation and a limit cycle emerges with an

internal frequency set by the eigenvalues at the bifurcation. It is this internal frequency which

lies at the heart of the ENSO cycle, since it also determines to a large extent the phase locking to

the annual cycle and the overlapping resonances that can lead to ENSO chaos (Jin et al., 1994,

1996; Tziperman et al., 1994, 1995; Chang et al., 1994, 1995).

Strong support for the conjecture that coupled processes also substantially determine the cli-

matology in the tropical Pacific was given in the first two parts of this paper (Neelin and Dijkstra,

1995; Dijkstra and Neelin, 1995b), referred to below as ND and DN, respectively. An external

wind stress, arising by factors outside the Pacific basin, causes a small zonal SST gradient, and

which is amplified and modified by coupled feedbacks. In ND, it was shown that stationary

instabilities from a flux-corrected climatology are not robust as the flux correction is relaxed to

a fully coupled case. An imperfection of the system occurs, whereby a topological change in the

branches of steady states occurs; the transcritical bifurcation is broken and two separate branches

of steady states appear. One branch is continuously “deformed” to the climatology of the fully

coupled case; the other branch disappears. Multiple equilibria that occur in the flux-corrected

case are spurious by-products of the flux-correction affecting physical feedbacks. This justifies
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the focus on oscillatory instabilities, rather than on stationary ones, of the flux-corrected mean

states although the latter can be useful in understanding the origin of these oscillatory modes.

It was further shown in Dijkstra and Neelin (1995b) that a reasonable warm-pool/cold-tongue

climatology can be obtained through coupled feedbacks acting on a “seed” SST field generated

by the external wind stress, provided the magnitude of the latter is not too small. The size of

the external wind stress must give sufficient external upwelling for the ensuing coupled feedbacks

to create the correct spatial pattern and to set the amplitude of the cold tongue. Because of

the importance of coupled feedbacks, the mean state itself will change as the parameters are

changed that control the feedbacks. Sun and Liu (1996), Jin (1996), Liu (1997) and Liu and

Huang (1997) further explored the role of coupling in the Walker circulation and associated SST

gradients. Cane et al. (1997) examined such feedbacks applied to a global warming scenario.

Examination of a related role of coupling in latitudinal asymmetries about the equator has been

carried out by Xie (1994, 1996), Xie and Philander (1994), and Philander et al. (1996).

To unify the origin of the spatial structure of the mean state with the origin of its inter-

annual oscillatory instabilities, both determined by coupled feedbacks, is one of the challenges

in understanding the tropical climate system. Jin (1996) considered these issues using a simple

box model of the coupled system and found ENSO-like instabilities on a simple mean state with

reasonable east-west SST difference. The same problem is considered in this paper, but using the

intermediate model considered in DN. This captures much more of the spatio-temporal structure

than the box model of Jin (1996).

Again, continuation methods appear to be a very efficient tool for following branches of

fully coupled climatologies in parameter space, together with an eigenvalue curve of the linear

stability problem. It will be shown that there exists at least one parameter regime where unstable

ENSO-like modes coincide with a correct spatial structure of the mean state. The mean state
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is generated by the coupled processes as explained in DN. Connections of the coupled modes

are followed through various parameter regimes to compare their origin to results known from

previous studies of the flux-corrected case. Simultaneous sensitivity of the ENSO mode and the

coupled climatology is then examined.

2 Formulation

2.1 Model

Following our earlier work, we consider an intermediate coupled equatorial ocean/atmosphere

model consisting of a shallow water layer of mean depth H with an embedded mixed layer of

fixed depth H1 in an ocean basin of length L. This ocean model is coupled to a Gill (Gill, 1980)

atmosphere model; we keep the notation as in earlier papers (e.g. DN) unless otherwise specified.

The temperature, horizontal and vertical velocities, time and thermocline depth are scaled with

a characteristic temperature difference ∆T , the oceanic Kelvin wave speed c0, c0H/L, L/c0 and

H , respectively. The non-dimensional SST equation of the coupled model is then given by

∂T

∂t
+ u1

∂T

∂x
+ H(w1) w1(T − Ts(h))

−H(−vN ) vN(T − TN) + εT (T − T0) = 0 (1)

where u1 is the zonal velocity in the mixed layer, w1 the vertical velocity just below the mixed

layer, T0 the radiation equilibrium temperature and TN is a fixed off-equatorial temperature.

Moreover, εT is a constant representing Newtonian cooling by surface fluxes and H is the Heav-

iside function. The off-equatorial meridional velocity vN follows from a discretization of the

continuity equation (Neelin, 1991). The subsurface temperature Ts(h) depends on h according
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to

Ts(h) = Tso + (T0 − Tso) tanh(η1h + η2) (2)

with η1 = H/H∗, η2 = h0/H∗ and where h0 and H∗ control the steepness and the offset of the Ts

profile and Tso is the characteristic temperature being upwelled in to the surface layer.

The mean horizontal velocities u, v and the thermocline depth h satisfy long-wave shallow

water dynamics, which, in dimensionless variables, become

δut + ru − yv + hx = τx

yu + hy = 0

δht + rh + ux + vy = 0

(3)

In these equations, r is the oceanic damping (Rayleigh friction) coefficient. The parameter δ

measures the ratio of the time scale of adjustment by oceanic dynamics to the time scale of SST

change. Furthermore, τx is the zonal wind stress and the meridional windstress is negelcted. The

zonal velocity vanishes at the eastern boundary and a zero mass flux condition is applied at the

western boundary; all quantities are bounded far from the equator.

As in DN, the zonal wind stress forcing τx is decomposed into

τx = (τext + µ A(T − T0)) e−
1
2
αy2

(4a)

The wind stress part indicated by τext is considered to originate from factors outside of the basin

as thoroughly discussed in ND. The quantity µ is the coupling strength and the parameter α is

the ratio of Rossby deformation radii in ocean and atmosphere. The atmosphere model operator

A from the Gill model, representing the equatorial surface zonal wind, is given by
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A(T ; x, t) =
3

2
exp[3εax]

∫ 1

x
exp[−3εas]T (s, t)ds−

−1

2
exp[−εax]

∫ x

0
exp[εas]T (s, t)ds (4b)

where εa is the dimensionless damping coefficient. The mixed layer velocities u1 and w1 follow

from

u1 = us + u ; w1 = ws + w (5a)

where the subscript s indicates the surface layer velocities induced by Ekman dynamics. These

are parameterized as in Neelin (1991), and in DN, for example, the vertical equatorial surface

velocity is given by

ws = −(δF τext + µδsA(T − T0)) (5b)

where δF measures the strength of the external upwelling and δs measures the strength of the

surface layer feedback. This model set-up is very similar to that used in Jin and Neelin (1993a)

which considered the stability of flux-corrected climatologies.

2.2 Steady states and linear stability

In order to be compatible with the steady states computed in part I and II , zonal advection,

oceanic damping and the meridional extension of the windfield are neglected in the computation

of the steady state climatology, although they are included for the calculation of the time depen-

dent modes. This has little impact on the steady state and speeds up the computation. More

explicitly, the basic states T̄ , h̄ and Ā are determined from
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H(w̄1) w̄1(T̄ − Ts(h̄)) −H(−v̄N ) v̄N (T̄ − TN ) + εT (T̄ − T0) = 0 (6)

The steady thermocline field h̄ is determined from the steady shallow water equations (3) with

zero damping (r = 0) and with α = 0 in (4a). For these steady states the mean vertical velocity

w is zero and hence w̄1 = w̄s.

As in DN, τext = τ̄z is taken to be zonally constant with small amplitude such that a weak zonal

SST gradient appears for µ = 0. As µ is increased, realistic cold-tongue/warm-pool configurations

are obtained in some areas of parameter space. Note that the climatology thus obtained varies

with control parameters, for example the coupling strength µ, contrary to the flux-corrected case

considered in JN, where the climatology is a solution for all values of µ. This implies that the

calculation of the linear stability cannot be separated from that of its basic state.

In the linear stability problem for a particular steady state (A, T , h) the evolution of infinites-

imally small perturbations (Â, T̂ , ĥ) is considered. Linearization of the full SST-equation around

this steady state leads to

∂T̂

∂t
+ aT T̂ − ahĥ + awŵ1 + avv̂N + auû = 0 (7)

where the coefficients a. (for expressions, see Appendix A) are all spatially varying and ŵ1, v̂N

can both be expressed into ĥ and Â. In a normal mode analysis, solutions of the form

T̂ (x, t) = eσtT̃ (x) (8)

are sought, with similar dependencies for the other dependent quantities. In (8), σ = λ + iν and

λ and ν are the complex growth factor and angular frequency, respectively. The thermocline

perturbation h̃ and the zonal velocity perturbation ũ are determined from the time-dependent
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shallow water equations with non-zero damping and forced by the perturbation wind stress

τ̃x = µÃ(T̃ )e−
1
2
αy2

(9)

in which the meridional extension of the perturbations is taken into account for nonzero α. By

the use of Green’s functions, similar to those used in Neelin and Jin (1993), both h̃ and ũ can

be expressed through integral operators into T̃ . For δ = 0 (the fast wave limit), α = 0, r = 0

and au = 0 the Jacobian matrix associated with the steady equations (6) is equivalent with the

right hand side of (7). Changing each of these conditions broadens the class of perturbations

that are considered about the particular steady state. The problem of finding branches of steady

states and simultaneously one of the eigenmodes T̃ is implemented numerically as follows. The

equations for the steady state (5) as well as the real and imaginary parts of the eigenvalue

problem (7) are both enforced on an equidistant grid of M +1 points giving 3(M +1) equations.

Together with two equations, normalizing the real and imaginary part of the eigenmode, the

resulting algebraic equations are written as a bifurcation problem for the (3(M + 1) + 2) vector

of unknowns x defined as

x = (T̄0, . . . , T̄M , T̃R
0 , . . . , T̃R

M , T̃ I
0 , . . . , T̃ I

M , λ, ν) (10)

This system of equations is solved by using standard path-following software, in this case the

AUTO code (Doedel, 1980). In this set-up, it is easy to start from an already computed steady

state in part II, and determine the eigenmode by homotopy parameters to get a starting point

x0 for the full vector x. Once this is known, both steady state and eigenmode can be followed

through parameter space. In all computations below, we take M = 20, which gives sufficient

accuracy in both the steady states and eigenmodes.
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3 Results

3.1 The ENSO mode and the warm-pool/cold-tongue climatology

In this section, our aim is to demonstrate that it is possible within this model to obtain ENSO-like

unstable modes within a climatology which has a reasonable warm-pool/cold-tongue structure.

This result was obtained for different values of the parameters as those in DN and these values

are therefore shown in Table 1. As can be seen from these values, it required some level of tuning,

mainly to get the period of the linear oscillation in the correct regime.

In Fig. 1, the real part λ and the imaginary part ν of the growth factor of the most unstable

mode, giving growth rate and frequency respectively, are shown as a function of the coupling

strength µ for τz = −0.125. Note that time is scaled by L/c0 and with c0 = 2.0 m/s and

L = 1.5 107m its value is about 0.24 yr. Hence, the period p∗ of a particular mode with

frequency ν is calculated from p∗ = 0.48π/ν yr. Dimensional growth rates λ∗ are calculated

from λ through λ∗ = λ/0.24 yr−1. In Fig. 1, the mode becomes unstable near µ = 1, while its

frequency decreases with increasing µ. Near µ = 1, the steady state fields Ā, T̄ and h̄ (along

the equator) are plotted in Fig. 2. Although the spatial structure of the cold-tongue/warm-pool

configuration is reasonable, the cold tongue is a bit too warm due to the relatively small coupling

strength.

Time-longitude diagrams of the least stable mode at this point (Fig. 3) show that this mode

has the features of an ocean basin mode, its period is about 1.1 year, with slight westward

propagation of SST anomalies. In these and the following figures, two periods of the mode

are plotted. The time t along the axis is related through the dimensional time t∗ through

t = t∗/(2p∗). As coupling increases, the cold tongue becomes stronger and the oscillatory mode

becomes unstable (Fig. 1). At µ = 2, the cold tongue obtained (Fig. 4) has about the right
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amplitude with respect to that observed, although the transition occurs a bit too rapidly between

warm SST in the west and cold SST in the central and eastern Pacific. The unstable mode (Fig.

5) has a spatial structure that resembles an ENSO-mode, for example as shown in Neelin et al.

(1994). The SST-anomaly is nearly stationary and has its largest amplitude in the cold tongue

region. The thermocline anomaly is nearly stationary with slight eastward propagation near the

center of the basin associated with the western Pacific tending to lead the eastern Pacific slightly.

The period of oscillation for the mode in Fig. 5 is about 3.5 years but, as can be seen in

Fig. 1, this period changes significantly with coupling strength. In addition, it is sensitive to

other parameters in the system, as is the spatial structure of the climatology. If either δs or εa is

changed too much, the climatology becomes unrealistic. In short, the simultaneous occurrence

of desirable characteristics of the ENSO mode in Fig. 5, with the right period, and a coupled

climatology that has an adequate cold tongue structure is not found over a large volume in

parameter space. Starting from the earlier results ND, a number of simultaneous adjustments

were necessary to obtain this state.

3.2 Externally imposed versus internally generated wind stress

One of the important hypotheses underlying the coupled model is that wind stress due to factors

outside the basin, the external wind stress, generates a zonal SST-gradient in the absence of

coupling which is then magnified and modified by the coupled feedbacks. The sensitivity of the

climatology to the magnitude of this external wind stress component was studied in DN, where it

was shown that having sufficient magnitude of τz had an important impact on whether a correct

cold tongue could be generated. The standard case discussed above is for τz = −0.125. In Fig.

6, the leading mode is plotted for the case τz = −0.15 and although the mode still becomes

unstable at sufficiently large coupling, the frequency remains quite large. The patterns of the
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climatological SST and the time-longitude diagrams of the most unstable mode for µ = 1.7 (Fig.

7) seem qualitatively correct, but the period of the oscillation never increases above one year.

When τz is changed to −0.1, it is found (Fig. 8) that the frequency decreases to zero and

the oscillatory mode bifurcates into two stationary modes. In this case, the stationary modes

merge again at larger µ to give another oscillatory mode. As noted in DN, non-oscillatory modes

can only pass through zero eigenvalue under very particular circumstances (which almost never

happen) when the climatology is also coupled. However, nothing disallows growing stationary

modes if they arise from an oscillatory mode that has already gone unstable, as in Fig. 8. The

splitting of the oscillatory, ENSO-like mode into growing stationary modes as coupling increases

in Fig. 8, is very much like the situations found in JN. Essentially, for strong coupling, local

growth processes occur so fast that effects of wave dynamics are no longer sufficient to give

oscillation. The pattern at µ = 1.8 in Fig. 8, shown in Fig. 9, has a nice SST climatology and

indicates that the oscillatory mode has a nearly stationary oscillation in SST. The temperature

difference between warm pool and cold tongue is smaller in Fig. 9 than in Fig. 7 or Fig. 5. This is

expected since the feedbacks within the basin do depend on the size of the “seed” provided by τz,

and this is smaller in the case of Fig. 9. Climatological upwelling is thus less intense in Fig. 9, so

why do the feedbacks in the ENSO mode appear stronger? The answer lies in the climatological

thermocline depth and how shallow it becomes in the east. The Ts parameterization (shown

in Fig. 12) saturates if thermocline becomes very shallow, since upwelled temperatures cannot

get much colder. This results in dTs

dh
becoming small in the east, so that small thermocline

perturbations do not change the SST tendency as strongly. There is thus a trade-off affecting

the ENSO mode as coupling becomes stronger. The direct effect of larger coupling on the modes

tends to create a stronger feedback via winds and thermocline dynamics upon SST. However, if

the effect of larger coupling on the climatology is to shoal the thermocline strongly in the east,
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it actually reduces the thermocline feedback effects for perturbations.

As parameters are changed they affect the coupled mode directly, as in the flux-corrected

problem, but they also affect the mode via the changes in climatology. The climatological

upwelling rate w̄, T̄sub and the climatological SST pattern determine the extent of the SST

anomaly, and experience from the flux-corrected problem suggests that w̄ and T̄sub strongly

affect the period. However, a comparison of the patterns in both Fig. 5 and Fig. 7 indicates

that the interplay of parameters and climatology in determining properties of the mode can be

subtle. The mode in Fig. 7, has a consistently smaller period than the mode in Fig. 5 even

though the spatial characteristics do not appear very different. The reason is that the spatial

form is dominated by near-stationary balances, and the signature on the equator of the memory

of the mode is relatively small. The mode in Fig. 5 has more of an SST mode character and

thus larger period, but both are mixed SST/ocean-dynamics modes. Some paths characterizing

this mixing are discussed below.

3.2.1 Connection between the SST and ocean dynamics modes

As is known from stability analyses of flux-corrected climatologies in JN, ENSO-like unstable

modes have mixed properties of stationary SST modes—which could be studied in the fast wave

limit—and oscillatory modes resulting from the spectrum of the shallow water equations. In the

coupled case, the latter set of modes consists of two subsets: discrete modes of the equations in the

long wave approximation in the ocean basin modes (Cane and Moore, 1980); and a set of modes

that arises from a discretized continuous spectrum, called the “scattering spectrum”. Simple

cases of merging of the two different type of modes were found to be related to the connection

of the eigensurfaces of a stationary SST mode and a particular scattering mode at low δ and

with a particular ocean basin mode at larger δ. In the model used here, the scattering modes are
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essentially filtered at low coupling through the exact summation of the Green’s function. Hence,

when we consider the low coupling limit in this model, connections of the mixed SST/ocean-

dynamics mode to the ocean dynamics spectrum will appear to be always to the ocean basin

mode, rather than to the continuum spectrum. From the results of JN, we know there is a region

at small coupling where both subsets of the ocean dynamics spectrum become rapidly mixed.

Thus we interpret the low coupling connections to the ocean basin modes as connections to the

ocean dynamics spectrum in general.

To demonstrate in a simple way that the unstable mode in Fig. 1 originates from mixed

properties of SST-modes and ocean dynamics modes, we follow the eigenvalue curves as a function

of the parameter δ that does not affect the climatology. For example, in the case τz = −0.1 and

α = 0, three slices for different δ (Fig. 10) show the connection between both classes of modes.

It turns out that some of these branches are difficult to compute numerically over the whole µ-

interval due to the occurrence of 2-degeneracies (here a bifurcation of two oscillatory branches).

With increasing δ, the ocean dynamics mode approaches the SST mode and for δ = 3 both

branches have connected. For this value of δ, the spatio-temporal patterns of the most unstable

mode are plotted for two values of µ (Fig. 11) to show the smooth transition of the patterns

of both classes of modes. At µ = 1.5, the climatology (Fig. 11a) has a cold tongue which is

shifted too much to the west. Consequently, the temperature signal of the mode, which still has a

pattern corresponding to the ocean dynamics mode, is also shifted to the west. For µ = 1.8 (Fig.

11b) westward propagating tendencies associated with the SST mode can be noticed, showing

the mixing of properties between the two classes of modes. For even larger µ, eastern warming

occurs and the modes begin to have an unrealistic spatial pattern.
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3.2.2 The impact of the subsurface temperature parameterization

Both the climatology and the character of the modes can be very sensitive to the shape of the

Ts function in equation (2). Several shapes have been used in the past, and in addition to that

taken from Neelin and Jin (1993) as a standard case in ND, in this paper the one used by Jin

(1996) was considered (Table 1). For this parameterization, the values of the offset, steepness

as well as the bounding temperatures are slightly changed. Both functions Ts are displayed in

Fig. 12, where the one in ND will be indicated by T o
s (solid curve in Fig. 12) and the one by Jin

(1996) by T n
s (dash-dotted curve in Fig. 12). The main difference between both curves is that

saturation at the cold end is at higher temperatures and the gradient is smaller.

Using the shape of T o
s , it turns out that the optimum climatology of DN is completely stable

and that the eigensurfaces associated with the ocean basin mode and SST modes are for the

most part unconnected. Figure 13a shows the bifurcation diagram for the climatology for both

of the Ts functions in Fig. 12. On the y-axis, the deviation of the temperature in the cold tongue

with respect to the externally induced temperature (by τext) is plotted, i.e. TEC = T̄EC − T̄ ext
EC ,

similar to Fig. 3 in ND. In both cases, the cold tongue temperature becomes colder as coupling

increases by the mechanisms discussed in DN. At the same value of µ, the new parameterization

produces a warmer cold tongue because the temperature of the subsurface water is warmer (Fig.

12). Hence for T n
s , thermocline deviations sufficiently strong such that the cold tongue is as cold

as observed occur at larger µ.

For the eigenmodes, we consider the simplest case with au = 0, r = 0, α = 0, δ = 1 and also

neglect the effect of the mean vertical velocity perturbation in the SST equation. In this case,

the growth factor λ and angular frequency ν are plotted in Fig. 13b and Fig. 13c, respectively.

Note that for µ ↓ 0, all SST modes approach λ ↓ −(εT − δF τz) and ν = 0, whereas the ocean
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dynamics mode approaches λ = 0, ν = π/2. The SST-climatology and the time-longitude plot

of the SST perturbation corresponding to the ocean dynamics mode at µ = 0.7 is shown in Fig.

14a. The climatological SST distribution shows a pronounced cold-tongue/warm-pool structure

(Fig. 14a) of which the physics was discussed at length in DN. For large µ, the growth rate of

this mode becomes very small negative (i.e., weak decay), but it does not become positive. The

SST modes are all stable and stationary up to µ ∼= 0.7. At larger µ, two stationary modes merge

to generate a westward propagating oscillatory mode, but this mode is not the most unstable

SST mode until µ > 0.95. For larger µ, the upwelling feedback introduces an eastern warming

shifting the cold tongue to the west and the SST pattern becomes very unrealistic (shown for

µ = 1.0 in Fig. 14b).

Thus with the T o
s parameterization we found no regions with unstable, realistic ENSO modes

and realistic climatology. The modest change in Ts parameterization of Fig. 12 makes an

enormous difference in this respect. As discussed at the beginning of this section, this is due to

the tendency to nonlinear saturation of the Tsub parameterization for shallow thermocline depths

in the eastern basin. In the climatology of Fig. 4, the values of h in the east may be seen to

lie on the part of the old parameterization (solid curve) in Fig. 12 that is almost saturated,

while the new parameterization (dash-dotted curve) still has an appreciable dTs

dh
. While the new

parameterization is more realistic, deficiencies in the old parameterization were less apparent

when used either to study variability alone in the flux corrected case or to study the coupled

climatology alone without considering variability.

One caveat should, however, be noted in discussing this sensitivity. Linear period tends

to be more sensitive than nonlinear period in these models. If El Niño can be maintained

by weather noise (Eckert and Latif, 1997; Blanke et al., 1997), finite amplitude noise-induced

perturbations would be able to depress the thermocline sufficiently to cause Ts variations even

18



for very shallow climatological thermocline. Thus the El Niño in a full model might be less

sensitive than indicated by these linear mode studies. However, the qualitative point remains

that obtaining both climatology and interannual variability simultaneously is a significantly more

demanding problem than simulating only one.

4 Discussion and conclusions

The spatial pattern of the annual mean state is central to the shape and frequency of its oscillatory

instabilities and both depend strongly on coupled ocean atmosphere feedbacks. In this third part

of a series of papers, the relationship between these two features of the tropical climate system

are investigated. We use an intermediate coupled ocean-atmosphere model—a stripped-down

version of the Zebiak-Cane model—to examine the linear stability of fully coupled, nonlinear

climatologies. An approximation is used that filters out the scattering spectrum of the uncoupled

ocean, which may over-simplify the analysis of instabilities at low coupling, but we believe we

understand these effects from previous analysis in the flux-corrected case (Jin and Neelin, 1993a,

Neelin and Jin 1993). Using techniques of bifurcation theory, we are able to follow both mean

state and one of the eigenvalue branches simultaneously in parameter space.

At small coupling, the structure of the mean state is to a large extent determined by the

zonally constant external wind stress τext. This mean state is stable to both SST-modes, which

might be oscillatory or stationary (i.e., non-oscillatory), and oscillatory ocean basin modes. The

latter are the only ocean modes in the filtered ocean model from the shallow water spectrum

on the equatorial β-plane. As coupling increases, the coupled feedbacks within the Pacific basin

modify this externally imposed mean state to a fully developed cold-tongue/warm-pool structure.

The externally induced zonal SST-gradient causes an increase of the easterlies which in turn cause
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the thermocline to steepen. In the presence of sufficient upwelling, the thermocline anomalies

affect the SST field. Surface-layer processes may modify the actual shape of the SST modification

relative to that externally induced by affecting the upwelling structure directly. These processes

are similar to those described in more detail in DN.

Simultaneously, with increasing coupling, the structures of the uncoupled ocean basin modes

and SST modes are substantially modified and take on properties of mixed SST/ocean-dynamics

modes. These modes tend to be destabilized by coupling and in some parameter regions, the

leading mode becomes unstable. Systematic searches of the reasonable parameter range led to a

parameter regime where both the spatial structure of the mean state has the correct east-west

contrast and the unstable mode has ENSO-like characteristics. This mode has mixed SST/ocean-

dynamics mode properties. The “mixed mode” terminology was suggested by JN because in the

flux-corrected case, eigensurfaces of the realistic ENSO mode are connected both to the ocean

dynamics spectrum and the SST modes. A similar connection of the eigensurfaces of both the

ocean basin mode and SST modes was demonstrated here by varying parameters not affecting

the climatology, for example, the ratio (δ) of ocean adjustment processes versus adjustment of

SST. At small δ, SST modes and ocean dynamics modes do not join as coupling is increased.

For larger δ, modes that begin at zero coupling as an ocean basin mode and an SST mode,

respectively, merge as coupling increases. Mergers with the ocean scattering spectrum noted in

JN are filtered out here by the approximation used, but presumably would occur similarly.

The connections of eigensurfaces are thus qualitatively similar in many respects to the flux-

corrected case of JN. However, a significant difference in this coupled climatology case is that

stationary (non-oscillatory) modes cannot have zero eigenvalue, i.e., cannot go from stable to

unstable, because transcritical bifurcations from the mean state no longer occur in the coupled

case as they do in the flux-corrected case (ND). We have noted some cases where the climatology

20



develops a limit point (as a coupling strength is varied) which allows neutral stationary modes,

but this occurs for very unrealistic climatologies and is therefore considered to be irrelevant.

Unstable stationary modes can occur but it is always oscillatory modes that cross the stability

boundary.

We find that the period of the oscillation has a complicated dependence on parameters because

the climatology changes simultaneously, as do the balances between coupled feedbacks that

generate this climatology. We show an example (Fig. 5 and Fig. 7) where the climatologies do

not differ very much and the shape of the unstable modes also corresponds well, and yet in one

case the mode has a significantly larger period. This difference is caused by a slight increase of the

amplitude of the external wind stress τext. Coupled feedbacks within the climatology amplify this

external increase in upwelling and thermocline tilt. Although the climatology changes are very

modest, further nonlinear saturation of the thermocline feedback in the modified climatology

tends to decrease the effect of this feedback for perturbations. This modifies the character

of the unstable mode. In DN, we have provided scenarios for how errors in climatologies in

coupled GCM’s can be understood as exacerbations of errors in parameters or in the uncoupled

components. The results here provide an example of how a change or error in the mean state can

impact the variability in the coupled system, via feedbacks that make the original error difficult

to trace.

In summary, we underline these main points.

(i) It is possible to obtain a reasonable simulation of the warm-pool/cold tongue climatology

simultaneously with an unstable interannual ENSO mode. The climatology depends significantly

on coupled feedbacks akin to those at work in the ENSO mode, as found in DN.

(ii) The ENSO mode is a mixed SST/ocean-dynamics mode that arises by connections of

modes in parameter space similar to those found in the flux-corrected case in JN. The ENSO
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mode combines properties from the ocean-dynamics spectrum and strongly coupled SST modes.

The main modification is that when the climatology is coupled, only oscillatory modes can cross

the boundary from stability to instability. Stationary (i.e., nonoscillatory) modes cannot (nor-

mally) because the coupled feedbacks modify the climatology rather than produce a bifurcating

stationary solution.

(iii) However, at least in this model, there is only a restricted range of parameters where

one simultaneously finds a coupled climatology similar to observed, an ENSO mode of observed

spatial form and period, and instability of the ENSO mode. In the flux-corrected problem, a

slight inaccuracy in a parameterization does not strongly affect the shape of the climatologi-

cal cold tongue and thermocline tilt, and these in turn strongly constrain the spatial form of

the ENSO mode. In the fully coupled problem, inaccuracies in a parameterization affect the

spatial shape of the coupled climatology, and this can adversely affect simulation of the ENSO

mode. However, even when the parameterizations provide a balance of mechanisms that give

a reasonable climatology, this does not necessarily lead to an unstable ENSO mode of correct

period. For instance, in this model, as in ZC and JN, the dependence of upwelled subsurface

temperature on thermocline depth has a nonlinear saturation when thermocline depth becomes

very shallow, since upwelled water can become no colder. If this saturation effect occurs too

sharply in the parameterization, then when the climatology is reasonably simulated, the ther-

mocline feedback in the eastern basin is too weak to produce a low-frequency, unstable ENSO

mode. In a flux-corrected model, increased coupling could be used to compensate for this in

the ENSO mode, but in the fully coupled case this adversely impacts climatology. This strong

impact of an apparently small change in the subsurface temperature parameterization illustrates

that tuning model parameters to improve aspects of the climatology does not necessarily simul-

taneously improve the variability. This may be relevant to coupled GCM simulations, where it is
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commonly found that a reasonable simulation of climatology is not necessarily associated with a

good ENSO simulation, and vice versa (Mechoso et al., 1996). The results here suggest that the

fully coupled problem is much more demanding than the flux-corrected problem in terms of the

required accuracy of model parameterizations. They also suggest that some of the interdecadal

longer-term variability of ENSO period and amplitude may be due to relatively small external

influences being amplified in the Pacific coupled climatology by feedbacks similar to those at

work in ENSO itself.
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Table 1. Standard values of dimensionless parameters.

εa 2.36 εT 0.694

α 0.05 Tso 24.0

η1 4.0 TN 30.0

η2 0.5 T0 30.0

r 0.1 δs 0.20

αs 4.0 τz −0.125

δ 1.0 δF 4.104
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Appendix A: Coefficients in (7)

The basic state vertical velocity w̄1 and the meridional velocity v̄N can be written as

w̄1 = −(δF τext + µδsA(T̄ − T0))

v̄N = −w̄1

(A1)

Let f(x) = 1
2
(1 + tanh(x

ε
)) be the approximation of the Heaviside function for small ε. Then the

coefficients aT (x), ah(x), aw(x), av(x) and au(x) in the equation (7) are given by

aT = εT + v̄Nf(v̄N) + w̄1f(w̄1)

aw = (f(w̄1) + w̄1f
′(w̄1))(T̄ − Ts(h̄))

av = f(v̄N) + v̄Nf ′(v̄N)(T̄ − TN)

au = ∂T̄
∂x

ah = w̄1f(w̄1)
∂T̄s

∂h
(h̄)

(A2)

In (7), the perturbation quantities for the vertical and meridional velocity are expressed as

ŵ1 = −µδsA(T̂ ) + αsŵ

v̂N = −ŵ1

(A3)

with αs = H/H1. The expressions for û, ĥ and ŵ in terms of T̂ are obtained using the appropriate

Green’s functions (Neelin and Jin, 1993).
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Appendix B. Green’s function correction in case α � 1.

The problem at hand is to find a closed form expression for solutions to the equations

δσu + ru − yv + hx = τ(x)e−
α
2

y2

yu + hy = 0

δσh + rh + ux + vy = 0

(B1)

with the boundary conditions u(1, y) = 0,
∫∞
−∞ u(0, y)dy = 0 and all quantities bounded as

y → ±∞. For α = 0, a closed form solution was given in Neelin and Jin (1993). It seems that

no closed form solution can be given for general α, hence we turn to an asymptotic correction in

case α � 1. The procedure followed is similar to that in Neelin and Jin (1993) and only details

involving the correction are given.

For general α, the solution to the problem (B1) is given by

u(x, y, t) =
∫ 1

0
G(x, y; x0)τ(x0)dx0 (B2a)

with u = (u, h) and G = (Gu, Gh) the Green’s function associated with the problem (B1). This

vector function is given by

G(x, y; x0) = bNKN(φ(x−1), y)+H(x0 −x)

[
N∑

n=0

(2n + 1)rnRneiφ(x−x0)(2n+1) − dKMKe−iφ(x−x0)

]

(B2b)

In this equation φ = −i(δσ + r), the MK and Rn are the normalized Kelvin and Rossby vector

functions given for example in Appendix B of Neelin and Jin (1993) and the vector function KN

is defined as

KN(p, y) = MKe−ip +
(N−1)/2∑

n=0

2γ2n+1R2n+1e
ip(4n+3) (B2c)
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The coefficients dK , rn and γ2n+1 are given by

dK =
π

1
4√

(1 + α)
; γ2n+1 = (2nn!)−1[(2n + 1)!]

1
2

r2n+1 = −2γ2n+1
π

1
4√

(1 + α)

(1 − α)n

(1 + α)n+1 (α +
1

4n + 3
) ; r2n = 0 ; (B2d)

Finally, the coefficient bN in (B2b) is determined by the zero mass flux condition on the western

boundary and the limit N → ∞ is taken.

To obtain a correction in α, first the coefficients in (B2d) are expanded in α to get

dK = π
1
4 (1 − α

2
+ O(α2)) ; r2n+1 = −2γ2n+1π

1
4 (

1

4n + 3
+

α

2
+ O(α2))) (B3)

When the expansions for dK and r2n+1 are substituted into the Green’s function expression, one

obtains

G(x, y; x0) = bNKN(φ(x − 1), y)−

π
1
4H(x0 − x)

[
KN(φ(x − x0), y)− i

α

2

∂KN

∂p
(φ(x − x0), y)

]
(B4)

where ∂KN

∂p
denotes differentiation with respect to the first argument. To obtain a closed form

solution of the right hand side of (B4) in the limit N → ∞, with K = limN→∞ KN we make use

of the identity

K(p, y) = π− 1
4 (cos2p)−

1
2 e

y2

2
i tan 2p(−i sin 2p, cos 2p) =

MKe−ip +
∞∑

n=0

2γ2n+1R2n+1e
ip(4n+3) (B5a)

When (B5a) is differentiated with respect to the argument p we obtain another identity
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i
∂K

∂p
= MKe−ip −

∞∑
n=0

2γ2n+1(4n + 3)R2n+1e
ip(4n+3) =

π− 1
4

e
y2

2
itan 2p

(cos 2p)
3
2

(1 + cos2 2p + iy2tan 2p,−y2 − i sin 2p cos 2p) (B5b)

Hence, up to O(α) a closed form solution can be obtained for the Green’s function. The coefficient

b = limN→∞ bN is given by

b = π
1
4

(
sin 2φx0

sin 2φ

) 1
2
[
1 − α

2
(
2 + cos2 2φx0

cos 2φx0
)

]
(B6)

Once b is determined, the solutions u and h can be obtained through (B4) and the original

equation (B2a).
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Captions to the Figures

Figure 1.

The dimensionless growth rate λ (solid curve) and the frequency ν (dash-dotted) as a function of

coupling strength µ for the leading eigenmode. Standard values of the parameters are as in Table

1. Time is scaled by L/c0 and with c0 = 2.0 m/s and L = 1.5 107m this factor is about 0.24 yr.

Hence, the period p∗ of a particular mode with frequency ν is calculated from p∗ = 0.48π/ν yr.

Dimensional growth rates λ∗ are calculated from λ through λ∗ = λ/0.24 yr−1.

Figure 2.

Spatial structure along the equator of the mean state of the sea surface temperature T̄ , the wind

stress Ā and the thermocline h̄ at the point labeled A (µ = 0.90) in Fig. 1. SST is in K, shown

relative to the surface flux equilibrium value T0. Ā and h̄ are nondimensional and are relative to

the external wind stress (see text) and resting ocean state, respectively.

Figure 3.

Structure along the equator of the mean state of the sea surface temperature T̄ − T0 in K (top

left panel). Time-longitude diagrams along the equator of the most unstable mode perturbation

for SST (top right panel), thermocline depth (bottom left panel) and the wind stress anomalies

(bottom left panel) at the point labeled A in Fig. 1. The period p∗ of the mode is 1.1 year. In

these and the similar figures below, two periods of the mode are plotted. The time t along the

axis is related through the dimensional time t∗ through t = t∗/(2p∗). The contour plots have

been scaled with the maximum values of the field, and contour values are with respect to this

value.
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Figure 4.

Spatial structure along the equator of the mean state of SST, T̄ , wind stress Ā and thermocline

h̄ at the point labeled B (µ = 2.06) in Fig. 1. Format as in Fig. 2.

Figure 5.

As in Fig. 3, mean state of SST, T̄ − T0 ; and most unstable mode SST anomaly, thermocline

depth anomaly; and wind stress anomaly at the point labeled B in Fig. 1. The period of the

mode is 3.5 year.

Figure 5.

As Fig. 1, but for a different value of the external wind stress τz = −0.15.

Figure 7.

As in Fig. 3, mean state of SST, T̄ − T0 ; and most unstable mode SST anomaly, thermocline

depth anomaly; and wind stress anomaly at the point labeled A (µ = 1.74) in Fig. 6. The period

of the mode is 1.6 year.

Figure 8.

As Fig. 1, but for a different value of the external wind stress τz = −0.1.

Figure 9.

As in Fig. 3, mean state of SST, T̄ − T0; and most unstable mode SST anomaly, thermocline

depth anomaly; and wind stress anomaly at the point labeled A (µ = 1.81) in Fig. 8. The period

of the mode is 10.1 year.
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Figure 10.

Growth factor (a) and frequency (b) as a function of coupling strength for three values of δ. In

both panels, ODM and SST indicate ocean dynamics and SST modes, respectively.

Figure 11.

Structure along the equator of the mean SST, T̄ − T0 (top left panel), and time–longitude dia-

grams for the eigenmode SST perturbation (top right panel), thermocline perturbation (bottom

left panel) and wind stress perturbation (bottom right panel). In Fig. 11a, the mode at the

points labeled A (µ = 1.54) in Fig. 10 is shown and in Fig 11b, the mode at the points labeled

B (µ = 1.78) in Fig. 10 is shown.

Figure 12.

The distribution of the subsurface temperature Ts as a function of thermocline depth h, as used

in this paper, T n
s , (dash-dotted curve ) and that used in DN, T o

s , (solid curve ).

Figure 13.

(a) Value of the climatological SST at x = 0.7 with respect to the externally induced temperature

(TEC = T̄EC − T̄ ext
EC) as a function of coupling strength for the optimal values of the parameters

as in DN and two different shapes of Ts as in Fig. 12. (b) Growth rate of the most unstable

modes as a function of µ. (c) frequency of the most unstable modes as a function of µ. Fewer

curves are seen in panel c because more than one mode has zero frequency.

Figure 14.
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Structure along the equator of the mean SST, T̄ − T0 (top left panel), and time–longitude

diagrams for the eigenmode SST perturbation (top right panel), thermocline perturbation (lower

left panel) and wind stress perturbation (lower right panel). In Fig. 14a, the mode at the points

labeled A (µ = 0.68, period 1 year) in Fig. 13b,c is shown and in Fig 14b, the mode at the points

labeled B (µ = 1.0, period 10 year) in Fig. 13b,c is shown.
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