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Abstract

Recent work has shown that different steady retroflection regimes, a viscous

and an inertial regime, exist for the Agulhas Current system in an idealized ge-

ometry. In this paper, instabilities of these steady flows are considered by solving

the linear stability problem numerically. Barotropic instabilities occur as so-called

Hopf bifurcations in the viscous regime, with corresponding patterns related to

Rossby basin modes. Depending on the value of the reduced gravity parameter,

these instabilities may introduce intermonthly to interannual variability into the

retroflection region. Finite amplitude development of these instabilities display

’ring-like’ localized anomaly patterns which travel around the tip of the continent.

The results demonstrate that (i) the origin of the frequency of the ring formation

is set by the physics of the large scale barotropic instabilities and (ii) the rectifi-

cation processes due to these instabilities decrease the degree of retroflection of

the mean state. The latter result suggests that the dominant mechanism of the

retroflection is captured within the steady balances.
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1 Introduction

Roughly once every two months, a large ring is shed from the Agulhas Current and

propagates westward into the South Atlantic (Gordon and Haxby, 1990; Feron et al.,

1992; Schouten et al., 2000). The Agulhas Current itself turns eastward in an impressive

retroflection, leaving the rings as main process of interbasin exchange. As the rings

transport heat and salt from the Indian to the Atlantic Ocean, they are potentially

important for the global thermohaline circulation (Gordon, 1985; De Ruijter et al.,

1999). Estimates on the amount of mass, heat and salt involved in the exchange differ

widely, both from observations and from different general circulation models (De Ruijter

et al., 1999).

In a detailed numerical model study (Chassignet and Boudra, 1988), ring formation

is considered in an isopycnic (and in most cases two-layer) model for an idealized domain

under a wide range of conditions. In the relatively viscous regime (the low Rossby

number case E1), 4 rings per year are found on average. The frequency of ring cut-off was

shown to be related to the interaction of the top-layer flow dynamics and ocean basin-

mode patterns propagating in the bottom layer. Energy transformations in the flow were

monitored but did not give any conclusive evidence whether a type of instability plays

a primary role in the ring formation and shedding process. In the more inertial regime

(the large Rossby number case E10), the frequency decreases to 4 rings in 10 years.

In this case, a strong coupling exists between the ring shedding and the retroflecting

and meandering mean current. During a ring shedding event, the bottom layer kinetic

energy triples in magnitude and a mixed barotropic-baroclinic instability was suggested

to be involved. Processes setting the frequency of the ring shedding events were in this

case difficult to identify.

A pure inertial mechanism of ring formation has been proposed recently in the

context of a reduced gravity model (Nof and Pichevin, 1996; Pichevin et al., 1999).
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When a current retroflects, a momentum imbalance exists under a rather restricting

set of conditions. Development of rings can solve this so-called ”retroflection paradox”

and the theory developed provides estimates of spatial scales of the rings and their

propagation speed. Numerical results show reasonable agreement with the theoretically

provided bounds on length scale and mass flux of the rings. Only the period of ring

shedding appears slightly more sensitive to parameter changes and varies within a range

of 80 - 160 days. The existence of these different views of ring formation is intriguing

and their connection is not easily established; model formulations and corresponding

dynamics are very different.

In an earlier study (Dijkstra and De Ruijter, 2000), we reconsidered the small basin

configuration (De Ruijter and Boudra, 1985; Chassignet and Boudra, 1988) and analysed

the steady states within a barotropic shallow water model as a function of the lateral

friction coefficient (horizontal Ekman number E). Using modern tools of numerical

bifurcation theory, also unstable steady states could be determined and two regimes of

steady retroflection were shown to exist, a viscous and an inertial one. In the viscous

regime, retroflection occurs through viscous choking; the viscous boundary layer is thick

enough to allow the current to bridge the gap from the southern tip of the continent to

the latitude of zero wind stress curl. In the inertial regime, inertial effects are strong

enough to bridge this gap (De Ruijter and Boudra, 1985). Most important result in

Dijkstra and De Ruijter (2000) is that retroflection characteristics are already present

in the steady balances and that rectification processes due to barotropic/baroclinic

instabilities are not essential for retroflection to occur.

In this paper, we consider the stability of these steady solutions by solving the linear

stability problem numerically within an (equivalent) barotropic shallow water model.

The different unstable modes are identified and their characteristics are studied when

varying the Rossby deformation radius. For the barotropic case, transient flows in the

unstable regime are computed and the physics of the dominant time scale of variability
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and the changes in the time mean state are investigated.

2 Model and methods

The model used (Dijkstra and De Ruijter, 2000) is a (equivalent) barotropic shallow

water model in spherical coordinates, modelling the zonal velocity u, meridional velocity

v and sea surface height anomaly h (with respect to some equilibrium depth H) of the

wind-driven flow in the upper layer having density ρ. Below this layer is a motionless

layer with density ∆ρ + ρ, such that the reduced gravity g′ = g∆ρ/ρ. In this paper,

we will use only the idealized basin geometry as in De Ruijter and Boudra (1985).

The domain chosen is φW = 10◦E, φE = 32◦E, θS = 42◦S and θN = 30◦S, and the

basin has a flat bottom. The zonal size of the domain varies with latitude (from about

2100 km at the northern boundary to about 1800 km at the southern boundary) and

has about the same dimensions as in De Ruijter and Boudra (1985), with a meridional

extent of 1300 km. A ’rectangular’ continent is present over the domain φW = 19.5◦E,

φE = 20.5◦E, θS = 35◦S and θN = 30◦S.

The wind stress forcing is prescribed as an analytical profile of the form

τφ(θ) = cos π(6.37(θ − θ∗)) ; τ θ = 0 (1)

and τφ(θ) is plotted in Fig. 1 for θ∗ = −39.5. The amplitude τ0 was chosen similar to

that in De Ruijter and Boudra (1985), i.e. τ0 = 0.2 Pa. In this way, the maximum

westerly wind stress is located at θ = −39.5, i.e. about 400 km south of the tip of the

continent. Although the wind stress curl is not exactly zero at this location (because

of the spherical coordinates), the deviation is small because of the small basin size.

With r0 denoting the radius of the earth, the governing shallow water equations are

non-dimensionalized using scales r0, H , U , r0/U and τ0 for length, layer depth, velocity,
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time and wind stress, respectively. These become
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In the dimensionless equations, the following parameters appear, i.e. the Rossby

number ε, the rotational Froude number F , the Ekman number E, and the wind stress

coefficient α. Expressions for these parameters are

ε =
U

2Ωr0

; F =
g′H
U2

; E =
AH

2Ωr2
0

; α =
τ0

2ΩρHU
(3)

where Ω is the angular velocity of the earth. Standard values of both dimensional and

non-dimensional parameters are given in Table 1 and are similar as in Dijkstra and

De Ruijter (2000). The only difference is the value of F , which in the barotropic limit

is equal to 106, the value in the limit g′ → g.

Branches of the steady states are followed in parameter space, mainly in the control

parameter E, using continuation techniques. For each solution, the retroflection index

R, as defined in Dijkstra and De Ruijter (2000), is plotted. This retroflection index

is the ratio of the maximum westward volume transport (Φw(20)) at the tip of the

continent (20◦E) and the maximum southward volume transport (Φs(−35)) at 35◦S. In

the results below, R is computed as

R = 1 − Φw(20)

Φs(−35)
(4)

If there is no westward transport (Φw(20) = 0), then there is complete retroflection and

R = 1. On the other hand, if all the incoming southward flow from the Agulhas Current
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is transported westward, then there is no retroflection at all and R = 0. The results

in Dijkstra and De Ruijter (2000) indicate that for solutions computed on 1/4◦ (as is

the resolution for most results in De Ruijter and Boudra (1985)), the Ekman number

should be larger than about E = 2 × 10−7.

The equations (2) can be written in operator form as

M∂u

∂t
+ Lu + N (u) = F (5)

where L, M are linear operators, N is a nonlinear operator, u is the vector of dependent

quantities and F contains the forcing of the system and appropriate boundary conditions

are taken into account. To determine the steady states ū of the system of equations

when parameters are changed, the problem

Lū + N (ū) = F (6)

has to be solved. This set of partial differential equations is discretized by a central

volume finite difference method on a 88×48 grid, having a horizontal resolution of 1/4◦,

and a system of nonlinear algebraic equations of the form

G(x, µ) = 0 (7)

emerges. Here x is a d = 3 × 88 × 48 = 12, 672-dimensional vector consisting of the

unknowns at the gridpoints, µ is the control parameter, for example µ = E, and G is a

nonlinear mapping from Rd×R → Rd. To determine branches of steady solutions of (7)

as µ is varied, the pseudo-arclength method is used (Keller, 1977; Seydel, 1994). The

branches (x(s), µ(s)) are parametrized by an ’arclength’ parameter s and an additional

equation is obtained by an approximation of the normalization condition of the tangent,

i.e.

ẋT
0 (x − x0) + µ̇0(µ − µ0) − ∆s = 0 (8)

where (x0, µ0) is a known starting solution or a previously computed point on a partic-

ular branch, ∆s is the steplength and the dot indicates differentiation to s. To follow
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steady solutions along branches in parameter space, an Euler-Newton scheme is used

(Seydel, 1994).

To determine the linear stability of a steady state, perturbations ũ are considered.

With u = ū + ũ, linearizing (5) around ū and separating ũ = û eσt gives an eigenvalue

problem of the form

(L + Nu)û = −σMû (9)

where Nu is the derivative of the operator N with respect to u. Discretization of this

eigenvalue problem leads to a generalized algebraic eigenvalue problem of the form

Ax̂ = σBx̂ (10)

where A is a non-singular, non-symmetric d × d matrix and σ = σr + iσi is the eigen-

value. The problem (10) is solved by the Jacobi-Davidson QZ-method (JDQZ). With

this method, one can compute several eigenvalues and optionally eigenvectors near a

specified target. Details of the method are described in Sleijpen and Van der Vorst

(1996) and the implementation of JDQZ in an earlier version of our continuation code

in Van Dorsselaer (1997).

3 Results: Stability bounds

In this section, first the linear stability of the barotropic steady states computed in

Dijkstra and De Ruijter (2000) is discussed and subsequently effects of changes in the

Rossby deformation radius are studied.

As mentioned above, the barotropic (flat bottom) case can be obtained in the limit

g′ → g giving the value F = 106. Two bifurcation diagrams are combined in Fig. 2

for two values of the layer thickness H . The curves are similar to Fig. 5 in Dijkstra

and De Ruijter (2000), except that now the stability of the steady flows is indicated. A

solid (dotted) curve indicates a stable (unstable) flow, while the stability boundaries are
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marked by the solid triangles. Here, the steady states becomes unstable to oscillatory

instabilities; such a transition is called a Hopf bifurcation (Seydel, 1994). For H =

1000m, this stability boundary is located at Ec = 2.6 × 10−7 whereas for H = 250m,

it is found at Ec = 8.2 × 10−7. As could be expected, the case with higher inertially

controlled flow is more unstable, because of the larger horizontal shear.

At the Hopf bifurcation on the curve for H = 1000m in Fig. 2, the steady state

flow pattern, shown as a contour plot of the layer thickness anomaly h, is plotted in

Fig. 3a. A strong Agulhas Current is present near the eastern side of the continent but

it has almost no retroflection. The pattern of the oscillatory mode which destabilizes

the steady state can be determined from the solution of the linear stability problem (10)

with eigenvalue σ. The corresponding complex eigenfunction x̂ = x̂R + ix̂I provides the

time periodic disturbance structure P(t) with angular frequency σi and growth rate σr

to which the steady state becomes unstable, i.e.

P(t) = eσrt [x̂R cos(σit) − x̂I sin(σit)] (11)

Propagation features of a neutral mode (σr = 0.0) can be determined by first looking at

P(−π/(2σi)) = x̂I and then at P(0) = x̂R. The dimensional period P of the oscillation

is given by P = 2r0π/(Uσi).

The patterns of the real and imaginary part of the eigenvector, destabilizing the

steady state in Fig. 3a are shown in Fig. 3b-c. The dimensionless angular frequency of

the mode (σi = 1.12× 102) corresponds to a dimensional period P = 1.35 months. The

perturbation patterns are basin wide and have strong similarities to inviscid Rossby

basin modes (Pedlosky, 1987), which can be labelled (n, m) according to the number

of zeroes of the streamfunction in zonal and meridional direction. The patterns here

would be ’guessed’ as the (2, 1) mode which in the inviscid case has an oscillation period

of about a month (Chassignet and Boudra, 1988; Dijkstra and Katsman, 1997). Hence,

the pattern in Fig. 3b-c can be identified as a destabilized Rossby basin mode. In this
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case, the presence of the continent deforms the basin mode as it propagates westwards.

The steady flow with smaller layer thickness (H = 250m) destabilizes already at

larger values of the lateral friction. The steady state (Fig. 4a) at criticality (Ec =

8.2 × 10−7) shows already some more tendency to retroflection, although from Fig. 2,

it can be seen that steady retroflection becomes only pronounced at smaller values of

E. The patterns of the most unstable mode at Hopf bifurcation (Fig. 4b-c) resemble

again a westward propagating Rossby basin mode (’guessed’ as the pattern coming from

the inviscid (4, 1) Rossby basin-mode) and its oscillating period is about 1.4 months

(σi = 1.09 × 102). The main difference between this mode and the mode in Fig. 3 (in

the case H = 1000m) is that the pattern is more localized within the high shear region

of the steady state and has a smaller zonal scale.

For the case H = 1000m, the values of the lateral Ekman number E at which the

Hopf bifurcation occurs (and the corresponding angular frequency of oscillation at criti-

cality) are plotted in Fig. 5 for several values of F . The frequency of oscillation (dashed

curve) is increasing monotonically with g′ as is expected from elementary Rossby wave

theory. For F = 1000, the value of σi has decreased to σi = 7.8 which corresponds

to an oscillation period of about 1.6 years. The critical value Ec has no monotonic

behavior and there seem to be optimal values of instability (around F = 2 × 104) and

stability (around F = 104). The steady state at F = 104 (Fig. 6a), plotted at criticality

(Ec = 1.2 × 10−7) shows much more recirculation in the return flow compared to that

in Fig. 3a. This is due to the much smaller Ekman number of the flow which makes it

more inertially controlled. Although the pattern of the mode destabilizing this steady

state derives (Fig. 6b-c) again from a westward propagating basin mode, its spatial scale

has decreased substantially. It would be ’guessed’ now to derive from the (5,2) inviscid

basin mode. Note that the critical Ekman number considered in the latter case is in

the regime where numerical resolution was considered just sufficient to resolve steady

states (Dijkstra and De Ruijter, 2000); these critical values may shift slightly when
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higher resolution is used.

4 Results: Transient supercritical flows

To investigate how the instabilities turn the steady states into transient flows as critical

conditions are exceeded (i.e. values of E smaller than those at the Hopf bifurcation),

several transient flow computations are performed. The issues which are addressed

in this section are the rectification of the mean flow due to the instabilities and the

dominant frequency of variability in the nonlinear regime. Starting condition for all

computations is an unstable steady state at the particular supercritical values of E

considered. Only the barotropic case is considered (F = 106).

For E = 2.0 × 10−7 and H = 1000m, the deviation from the perturbed steady

state and the approach to the limit cycle can be seen in the retroflection index and,

in equilibrium, regular periodic behavior results (Fig. 7). The period of the finite

amplitude oscillation is slightly larger than one month and hence corresponds well to

that of the eigenmode at the Hopf bifurcation in Fig. 2. When the flow patterns over

one period of oscillation are considered and the difference of the instantaneous state

and the unstable steady state (at E = 2.0 × 10−7) is plotted, one actually sees the

anomalies propagating as is suggested by the unstable mode at criticality (Fig. 3b-c).

The time-averaged flow over exactly one oscillation period is shown in Fig. 7b together

with the unstable steady state (Fig. 7c) at the same value of E. The differences between

both flows are due to nonlinear rectification processes. The latter are small in this case,

because the system is still not far above criticality (E near Ec). The retroflection index

of the time mean state is Rm = −0.094, whereas the steady state value is Rs = −0.014

(Fig. 2). Hence, this indicates that the rectification due to barotropic instabilities

decreases the degree of retroflection.

For the more inertially controlled case of H = 250 m, the retroflection index varies
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so strongly that, at times, there is complete retroflection R = 1. The oscillations are

irregular (Fig. 8) which indicates that several modes are involved in the dynamical

behavior of the flow. Although the integration period is only two year, it is clear that

the dominant frequency of the variability remains intermonthly, indicating that the first

mode which is destabilized is still controlling the dynamics. The time mean state over

the last year of the simulation for E = 2 × 10−7 is shown in Fig. 8b, with the unstable

steady state for the same value of E shown in Fig. 8c. As can be seen, the steady state

is substantially rectified, but the time-mean state still shares the same retroflection

properties. The retroflection index of the time mean state is Rm = 0.236, whereas that

of the steady state value is Rs = 0.336 (Fig. 2). Again, this indeed shows that the

strongly time-dependent features of the flow due to barotropic instabilities decrease the

degree of retroflection.

5 Summary and Discussion

In this paper, the stability of the steady flow states computed in a barotropic and

reduced gravity shallow water model of the Agulhas Current system (Dijkstra and

De Ruijter, 2000) for the idealized geometry of De Ruijter and Boudra (1985) was

considered. All steady states destabilize at some critical value of the lateral friction

(i.e. horizontal Ekman number Ec), which depends on the layer depth and the reduced

gravity. In each case, the first mode which is destabilized has a pattern which is strongly

related to a Rossby basin mode. Its period is not very dependent on the layer depth H

(and thus on inertia), but strongly dependent on the value of the reduced gravity and

varies from intermonthly in the barotropic case to interannual for the standard value of

g′ (i.e. F = 104 in Fig. 5).

For E slightly smaller than Ec, periodic behavior appears. The destabilized basin

modes are the origin of the variability on the steady state which consists of ‘ring like’
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localized patterns propagating westwards around the continent. The frequency is de-

termined by that of the first mode which destabilizes at criticality. Under slightly

supercritical conditions, the time mean state of the time-dependent flow is different

than the unstable steady state at the same values of the parameters through rectifica-

tion processes. The retroflection of this time-mean state is, for the cases considered,

smaller than that for the unstable steady state. This is an important result since it

means that the actual retroflection in the time-mean state is inherited from the steady

balances. Whether baroclinic instabilities and their rectification promote retroflection

needs further study. For smaller values of H , the instabilities occur already on steady

states with a weak retroflection. The transient flow is therefore more complicated at

strong supercritical conditions, due to the destabilization of more modes (with respect

to situations at larger H). However, the dominant period of the transient flow still

appears to be in the intermonthly range and the time-mean state again shows a lower

degree of retroflection than the steady state.

The results here indicate that the origin of the frequency of ‘ring formation’ is set by

the physics of the large scale barotropic instabilities and hence provide a deeper level of

understanding of those in Chassignet and Boudra (1988). One can now conclude that,

in their case E1, the period of ring shedding indeed derives from a barotropic instability

of a Rossby basin mode. This is fully consistent with the time scale found and the

patterns of anomalies in the lower layer. In their upper layer, the Rossby basin mode

signal is not so clear, likely because of strong interactions of the unstable mode with

the upper layer flow. The barotropic instability mechanism here cannot explain the

decrease in frequency in the inertial regime. Indeed, as Chassignet and Boudra (1988)

mention, baroclinic processes are likely important for this to occur.

When the Rossby deformation radius is decreased (smaller F ), or the wind stress

increased at constant F , at some point the upper layer thickness will become zero

somewhere in the domain. This limit may actually be interesting, since it probably
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forms the connection between results in Chassignet and Boudra (1988) and those in

Pichevin et al. (1999). In Pichevin et al. (1999), the background flow structure is

prescribed, through inflow/outflow conditions, without considering its origin in the wind

and/or buoyancy forcing. In a near inertial flow in this configuration, retroflection

is guaranteed to occur (Ou and De Ruijter, 1986) even with slip conditions at the

continental boundaries. However, the coupling of the mean retroflecting current to the

large scale wind forcing, and consequently to the far field flow, is important. Hence,

central question becomes whether these types of background flows can be generated by

a reasonable forcing.

Retroflection, and consequently ring formation, only exists under no-slip conditions

in the set-up of Chassignet and Boudra (1988) as their model configuration does not

allow upper interface outcrop. All flows are forced under a given wind stress, but one

can argue that these flows may be are still too viscous to realize a near inertial current.

Moreover, the effect of the lateral boundaries (in particular the closed western boundary)

maybe too strong. Hence, here the question is whether a momentum imbalance is

approached within a more global domain in the limit of very small lateral friction. If

one can set-up the forcing of the wind and the basin geometry such that a type of

retroflecting flow appears as in Pichevin et al. (1999), then the occurrence of a saddle

node bifurcation would be the signature of the ’retroflection paradox’ in the language

of dynamical systems; work on this connection is currently is progress.
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Captions to the figures

Fig. 1

Profile of the wind stress shape function τφ in (1).

Fig. 2

Bifurcation diagrams for two barotropic cases with different layer depths H computed

with 1/4◦ resolution. The first Hopf bifurcations, where the steady states become

unstable to oscillatory instabilities, are marked on both branches with a black triangle.

A drawn (dotted) linestyle indicates a stable (unstable) steady state.

Fig. 3

(a) Steady state at the Hopf bifurcation (Ec = 2.6× 10−7) on the curve for H = 1000m

in Fig. 2, shown as a contour plot of the layer thickness anomaly h. (b) Real part of

the eigenvector (x̂R) at the Hopf bifurcation. (c) Imaginary part of the eigenvector

(x̂I) at the Hopf bifurcation. These patterns can be identified as a destabilized Rossby

basin mode. In this case, the presence of the continent deforms the basin mode as it

propagates westwards.

Fig. 4

(a) Steady state at the Hopf bifurcation Ec = 8.2×10−7 for H = 250m in Fig. 2, shown

as a contour plot of the layer thickness anomaly h. (b) Real part of the eigenvector

(x̂R) at the Hopf bifurcation. (c) Imaginary part of the eigenvector (x̂I) at the Hopf

bifurcation. Together, x̂R and x̂I provide a picture of the propagating mode, according

to (11).

Fig. 5

Dependence of the critical Ekman number Ec (drawn) at which the steady state becomes

unstable to an oscillatory mode and the angular frequency (σi) at criticality (dashed)

on the Froude number F . The markers correspond to the actually computed points,

which are connected by straight lines.
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Fig. 6

(a) Steady state at the Hopf bifurcation for F = 104, Ec = 1.2 × 10−7 and H = 1000

m. (b) Real part of the eigenvector (x̂I) at the Hopf bifurcation. (c) Imaginary part of

the eigenvector (x̂R) at the Hopf bifurcation.

Fig. 7

(a) Time series of the retroflection index for the barotropic case with H = 1000m,

E = 2.0 × 10−7. Starting point is the unstable steady state which is slightly perturbed

into the direction of the mode destabilizing at the Hopf bifurcation. (b) Time mean

state averaged over exactly one oscillation period in Fig. 7a. (c) The unstable steady

state calculated at the same value of the Ekman number (H = 1000m, E = 2 × 10−7).

Fig. 8

(a) Time series of the retroflection index for the barotropic case with H = 250 m,

E = 2.0 × 10−7. (b) Time mean state computed over one year (over the interval as

indicated by the dash-dotted line in Fig. 8a). (c) The unstable steady state at the same

value of the Ekman number.
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Dimensional parameters

Parameter Value Parameter Value

r0 6.4 × 107 m τ0 2.0 × 10−1 Pa

H 1.0 × 103 m AH 3.3 × 102 m2s−1

g′ 0.1 ms−2 U 1.0 × 10−1 ms−1

ρ0 1.0 × 103 kgm−3 Ω 7.5 × 10−5s−1

Dimensionless parameters

Parameter Value Parameter Value

α 1.4 × 10−3 E 5.0 × 10−8

ε 1.0 × 10−4 F 1.0 × 104

Table 1: Standard values of parameters in the (equivalent) barotropic model for the

idealized small basin. The value of AH (and consequently E) is the reference value and

E will be used here as control parameter.
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Figure 1: Profile of the wind stress shape function τφ in (1).
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Figure 2: Bifurcation diagrams for two barotropic cases with different layer depths H computed

with 1/4◦ resolution. The first Hopf bifurcations, where the steady states become unstable to

oscillatory instabilities, are marked on both branches with a black triangle. A drawn (dotted)

linestyle indicates a stable (unstable) steady state.
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(a)

(b) (c)

Figure 3: (a) Steady state at the Hopf bifurcation (Ec = 2.6 × 10−7) on the curve for H =

1000m in Fig. 2, shown as a contour plot of the layer thickness anomaly h. (b) Real part of

the eigenvector (x̂R) at the Hopf bifurcation. (c) Imaginary part of the eigenvector (x̂I) at

the Hopf bifurcation. These patterns can be identified as a destabilized Rossby basin mode. In

this case, the presence of the continent deforms the basin mode as it propagates westwards.
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(a)

(b) (c)

Figure 4: (a) Steady state at the Hopf bifurcation Ec = 8.2 × 10−7 for H = 250m in Fig. 2,

shown as a contour plot of the layer thickness anomaly h. (b) Real part of the eigenvector (x̂R)

at the Hopf bifurcation. (c) Imaginary part of the eigenvector (x̂I) at the Hopf bifurcation.

Together, x̂R and x̂I provide a picture of the propagating mode, according to (11).
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Figure 5: Dependence of the critical Ekman number Ec (drawn) at which the steady state

becomes unstable to an oscillatory mode and the angular frequency (σi) at criticality (dashed)

on the Froude number F . The markers correspond to the actually computed points, which are

connected by straight lines.
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(a)

(b) (c)

Figure 6: (a) Steady state at the Hopf bifurcation for F = 104, Ec = 1.2×10−7 and H = 1000

m. (b) Real part of the eigenvector (x̂I) at the Hopf bifurcation. (c) Imaginary part of the

eigenvector (x̂R) at the Hopf bifurcation.
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Figure 7: (a) Time series of the retroflection index for the barotropic case with H = 1000m,

E = 2.0× 10−7. Starting point is the unstable steady state which is slightly perturbed into the

direction of the mode destabilizing at the Hopf bifurcation. (b) Time mean state averaged over

exactly one oscillation period in Fig. 7a. (c) The unstable steady state calculated at the same

value of the Ekman number (H = 1000m, E = 2 × 10−7).
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Figure 8: (a) Time series of the retroflection index for the barotropic case with H = 250 m,

E = 2.0 × 10−7. (b) Time mean state computed over one year (over the interval as indicated

by the dash-dotted line in Fig. 8a). (c) The unstable steady state at the same value of the

Ekman number.
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