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Abstract

The concepts of uncertainty in prediction and inference are introduced
and illustrated using the diffraction of light as an example. The close re-
lationship between the concepts of uncertainty in inference and resolving
power is noted. A general quantitative measure of uncertainty in infer-
ence can be obtained by means of the so-called statistical distance between
probability distributions. When applied to quantum mechanics, this dis-
tance leads to a measure of the distinguishability of quantum states, which
essentially is the absolute value of the matrix element between the states.
The importance of this result to the quantum mechanical uncertainty prin-
ciple is noted. The second part of the paper provides a derivation of the
statistical distance on basis of the so-called method of support.

One summer night, under Sicilian skies, we discussed Fisher’s concept of

likelihood with John Bell. He didn’t like it! To him, the words likelihood and

probability meant just the same thing. We argued that Fisher had used the term

likelihood to indicate something fundamentally different from probability. But

John was not impressed; he proposed that we use the word Fisherhood, if we

really had to.

In this article we will discuss the concept Fisher had in mind when he used the

word likelihood, and try to show its relevance to physics and to the uncertainty

principle in particular. And although there is no immediate connection with the

problems relating to Bell’s theorem, we want to dedicate this article to John Bell

for his sixtieth birthday, because his work, more than anything else, has brought
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about the renaissance of the interest in the conceptual problems of quantum

mechanics that we witness today.

1. Introduction and summary

Consider the following problem in probability theory: an urn is filled with black

and white stones in some definite proportion and is well-shaken. Now a single

stone is drawn. How well can one predict the colour of this stone? The standard

answer is that this depends on the proportion of black and white stones. If nearly

all the stones are of the same colour one feels almost certain about the outcome

of this experiment. If, on the other hand, the proportions are equal one feels

completely uncertain about the outcome.

In problems of this kind we are dealing with uncertainty about the result of

an experiment, based on a given description of the experimental arrangement.

There is, however, also a second kind of question. Suppose that some information

about the experimental arrangement is missing. For example, the proportion of

black and white stones in an urn is unknown. Yet a number of outcomes of the

experiment have been observed. For example, a number of stones have been

drawn from the urn (with replacement and reshaking) and we have found in 10

draws 7 black and 3 white stones. What can be inferred about the contents of

the urn, and with what (un)certainty?

The above illustrates two kinds of problems that typically arise in probability

theory and statistics, the problem of prediction and the problem of inference.

The uncertainties which are connected with these problems are conceptually

quite distinct. The first is an uncertainty about an outcome when a probability

distribution is given; the second is an uncertainty about a probability distribution

given an outcome. We shall refer to these uncertainties as uncertainties of the

first and second kind.

The distinction we encounter here is by no means confined to problems re-

lating to urns and the like, as can be seen from the following example. Consider

a plane light wave which is diffracted by a slit in a screen. We assume that the

direction of incidence is given. The solid curve in fig. 1 shows the diffraction

pattern which is observed on a photographic plate behind the slit. (If l is the
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distance between the screen and the plate, a the width of the slit, and λ the

wavelength of the light, we assume l � a � λ.) If the intensity of the light is

very low, the diffraction pattern is seen to build up gradually as a result of the

impact of many individual photons, each producing a small black dot. The curve

in fig. 1 can be taken to represent the probability for photons to arrive at dif-

ferent points on the photographic plate. Given this probability distribution one

may ask: with what uncertainty can one predict the place where the next photon

will arrive? It is usual to express this uncertainty by means of some measure of

the width or spread of the probability distribution. Forgoing for the moment a

precise definition of this measure, its numerical value, in the present example, is

evidently of the order of magnitude of the width of the central diffraction peak,

i.e. ≈ lλ
a .

Now, suppose that the direction of the incoming plane wave is unknown,

and that a photon has been detected on the photographic plate, what can then

be said about the direction of the incoming beam? This question arises in the

theory of image formation if the slit is part of an optical instrument. Light

beams from different directions form diffraction patterns which are shifted with

respect to each other on the photographic plate. Hence, our problem is to assign

the detected photon to one of a set of shifted diffraction patterns, i.e. we must

make an inference about probability distributions from a given outcome. In

the present case, the most reasonable candidate is the pattern which has its

maximum at the point where the photon has been detected. But this assignment

is not completely certain; slightly shifted patterns cannot be ruled out, i.e. light

beams from slightly different directions could also have produced this particular

impact. Forgoing again a precise definition of the uncertainty involved in this

problem, it is evident that the numerical value of this uncertainty is again of the

order of magnitude of the width of the central diffraction peak.

There is a close relation between the second kind of uncertainty, in this ex-

ample, and the resolving power of an optical instrument. In a microscope or a

telescope, the aperture of the instrument acts as a slit, and the image of a point

source is a diffraction pattern of essentially the same shape as the one in fig. 1,

the width of the central peak being determined by the size of the aperture. Dis-
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tinguishing different point sources therefore amounts to distinguishing between

shifted diffraction patterns, and the limited resolving power of the instrument re-

sults from an uncertainty in assigning detected photons to a diffraction pattern.

According to Rayleigh’s criterion two diffraction patterns, as in fig. 1, are said to

be just distinguishable if the shift between them is so large that the maximum

of the one coincides with the first minimum of the other. This gives a resolution

distance of the order of magnitude of the width of the central peak.

The example of diffraction of light at a slit shows that the two kinds of uncer-

tainty introduced at the beginning of this article have clear physical meanings.

The example is a less clear illustration of the fundamental difference between

these uncertainties in that their magnitudes happen to be about equal. How-

ever, consider a grating consisting of N identical slits of width a, separated by

a center-to-center distance b. The diffraction pattern formed by such a grating

is roughly indicated in fig. 2. The envelope of the pattern (broken line) is, apart

from a normalization factor, the diffraction pattern of a single slit of width a; the

width of its central peak is ≈ lλ
a . The pattern itself consists of narrow peaks, the

principal maxima, separated by N − 2 subsidiary maxima. The width of these

peaks is ≈ lλ
Nb . If one now asks the same two questions as before, the correspond-

ing uncertainties turn out to be very different. The uncertainty in the prediction

of the point where the next photon will land depends on the bulk of the prob-

ability distribution. If 90% of the total probability is concentrated on a small

subset of the possible outcomes, the uncertainty in the prediction of the outcome

is small; if 90% of the total probability is distributed more or less evenly over a

large subset of possible outcomes, the uncertainty in predicting the outcome is

large. In the present example, the bulk of the probability lies within the central

peak of the envelope of the diffraction pattern. If we choose to measure the un-

certainty by the length of a connected interval on which this bulk is located, the

uncertainty is ≈ lλ
a . If we allow the interval to be disconnected, its total length

is equal to the number of peaks within the central peak of the envelope (which

is ≈ b
a) times the width of these peaks. The resulting uncertainty now is ≈ lλ

Na .

Measures of bulk-width of either type can be taken, but whatever measure one

chooses, the uncertainty in prediction depends on the bulk of the probability
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distribution. If, on the other hand, we are to infer the direction of the incoming

beam from the observation of a photon, we must ask how well mutually shifted

diffraction patterns can be distinguished. If we apply the Rayleigh criterion, the

corresponding uncertainty is determined by the width of the principal maxima,

and its value, therefore, is ≈ lλ
Nb . Thus, the two uncertainties, in this example,

differ numerically. The uncertainty of the second kind is much smaller than that

of the first kind. This explains why a grating is regarded to be such an accurate

instrument: not because it allows one to make better predictions about the loca-

tion of the impact of a photon, but because it allows one to make much sharper

inferences about parameters of the incoming beam than would be possible with a

single slit. More importantly, however, the two kinds of uncertainty are found to

depend on different features of the diffraction pattern and, indeed, on different

parameters of the experimental set-up.

Considering the above examples, it will not come as a surprise that uncer-

tainties of the first and second kind are relevant to the quantum mechanical

uncertainty principle. In his famous microscope experiment, Heisenberg used

the resolving power to quantify the uncertainty in the position of the object.

We have shown elsewhere (1) how his argument can be construed as relating an

uncertainty of the second kind to one of the first kind. Likewise, the uncer-

tainties occurring in many other applications of the uncertainty principle can be

interpreted in this way. In the standard literature on the uncertainty principle,

starting with the work of Heisenberg himself, no sharp distinction is made be-

tween the two kinds of uncertainty; both are taken to represent the spread of

the bulk of a given probability distribution. This may be a consequence of the

fact that most authors, when discussing the uncertainty principle, have in mind

simple probability distributions, like the one in fig. 1, with only one main peak.

When the distinction, both conceptually and numerically, between uncertain-

ties in prediction and inference has been recognized, the next important point

is to look for general quantitative measures of these uncertainties, especially of

those of the second kind. Quantitative measures for the bulk-width of a given

distribution are well-known; most of the measures of uncertainty that have been

used to express the uncertainty principle are of this kind. Such measures are
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discussed systematically in ref. 2. In the rest of this article we shall deal with

measures of uncertainty of the second kind only.

Measures of uncertainty of the second kind seem to be pretty well unex-

plored in physics, the exception being the resolving power. Indeed, the notion

of such an uncertainty does not seem to appear in quantum mechanics texts at

all, although, as we have seen, the concept is thoroughly physical. On the other

hand, the corresponding problem in statistics, i.e. the problem of distinguishing

between probability distributions on the basis of given evidence, has been in-

tensively studied by statisticians. The purpose of this article is to communicate

some of this work and to show how it applies to quantum mechanics. The result,

which is both simple and remarkable, will be summarized below.

Let p(1)
i and p

(2)
i , (i = 1, . . . ,m), be two probability distributions, for simplicity

taken to be discrete. These distributions are possible descriptions of an experi-

ment. How well can they be distinguished, given an outcome of the experiment,

and with what (un)certainty can this be done? The answer to this question de-

pends on the outcome. If the two probability distributions assign very different

probabilities to this particular outcome, they are well distinguished and the un-

certainty involved in choosing between them is small. If, on the other hand, they

assign almost equal probabilities to the outcome, they are not well distinguished

and the uncertainty is large. One may, however, also look for criteria for the

distinguishability of two probability distributions which are independent of a

particular outcome. We shall use the term ‘uncertainty of the second kind’ to

cover both cases. The ‘second-kindness’ refers primarily to the fact that criteria

of this sort involve a comparison between probability distributions instead of

characterizing a single distribution.

In particular, W.K. Wootters (3) has defined, on the basis of purely statistical

considerations, the concept of a statistical distance between two probability dis-

tributions. The larger (smaller) the statistical distance between two probability

distributions, the easier (harder) it is to distinguish between them. This distance
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is found to be

d(p(1), p(2)) = arccos
∑

i

√
p
(1)
i p

(2)
i , (1)

which may be regarded as the angle between two unit vectors with components√
p
(1)
i and

√
p
(2)
i . This distance vanishes when the two probability distributions

coincide, and it attains its maximum value π/2 when the two vectors are or-

thogonal, i.e. when each outcome which has a positive probability according to

one distribution has zero probability according to the other. Note the occur-

rence of the square roots of the probabilities, suggesting quantum mechanics,

but appearing in a purely classical context. Following Wootters, let us apply

this result to quantum mechanics. In quantum mechanics the problem takes the

following form. Let ψ(1) and ψ(2) be two quantum states we want to distinguish

on basis of the results of measurements. If A is a non-degenerate observable with

a complete orthonormal set of eigenstates φi, the probability distributions over

the eigenvalues of A in the states ψ(1) and ψ(2) are |〈φi|ψ(1)〉|2 and |〈φi|ψ(2)〉|2

respectively. The corresponding statistical distance (1) is

arccos
∑

i

|〈φi|ψ(1)〉〈φi|ψ(2)〉|

which is the statistical distance between ψ(1) and ψ(2) relative to the measure-

ment of A. However, other measurements are in principle possible; so we may

ask for the most discriminating measurement, i.e. the one producing the largest

statistical distance between ψ(1) and ψ(2). It is easily seen that the most dis-

criminating observables are the ones that have either ψ(1) or ψ(2) among their

eigenstates. The resulting largest distance is

d(ψ(1), ψ(2)) = arccos |〈ψ(1)|ψ(2)〉|. (2)

This is called the absolute statistical distance between the quantum states ψ(1)

and ψ(2). This simple result is completely in harmony with what a quan-

tum physicist would intuitively expect. According to the usual interpretation

|〈ψ(1)|ψ(2)〉|2 is the probability of finding the system in the state ψ(2) when it

was prepared in the state ψ(1). We now find the same quantity appearing in a

purely statistical criterion for the distinguishability of the two quantum states.
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Crucial to this result is the occurrence of the square roots of p(1) and p(2) in the

classical expression (1).

The distance (2) provides a natural measure of uncertainty of the second kind.

Applying it, for example, to our shifted diffraction patterns, we can define this

uncertainty as the smallest shift producing a fixed statistical distance between

the original and the shifted pattern. Obviously, we have here a generalization of

Rayleigh’s criterion. Applying it in a similar way to an unstable state (the shift

now being a shift in time!) we get a generalization of the concept of the half-life

of a state. It is a remarkable fact that an uncertainty relation exists between

uncertainties of the second kind, defined on basis of (2), and uncertainties of

the first kind (1,4). This relation provides a satisfactory mathematical basis for

Heisenberg’s microscope argument. It also leads to a completely general uncer-

tainty relation for the lifetime and line width of a decaying state (1). The next

section will be devoted to a more elaborate analysis of the statistical distance,

using a somewhat different approach from the one taken by Wootters.

2. Statistical distance

2.1 The method of support

The problem of statistical inference can be formulated as follows. Consider an

experiment with a specified set X of possible outcomes. We shall assume in our

notation that X is a continuum, although this is not essential to the argument,

and denote its elements as x ∈ X. A class of probability distributions over X,

representing candidate descriptions of the preparation of the experiment, is also

assumed to be given. We assume that these distributions are labeled (uniquely)

by a parameter θ ∈ Θ, where Θ is some arbitrary parameter space, which may

be discrete, continuous, multi-dimensional or whatever.

Thus, each parameter value θ specifies a probability distribution pθ(x). We

assume that one of these distributions provides the actual or true description

of the experiment, but that we don’t know which one. The question is then:

suppose we have observed an outcome x, or a set of outcomes x = (x1, . . . , xn)

in n independent repetitions of the experiment, what can we say about the
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unknown parameter θ?

Intuitively, one would feel that some sort of judgement should be possible on

the basis of the observed data, especially when n is large. But it is also clear

that in general this judgement cannot take the form of a definite conclusion or

deduction which rules out certain values of θ as being inconsistent with the data.

How then should we proceed in formulating such a judgement? This problem

is fraught with difficulties and controversies, and no generally accepted answer

is available. Instead, the several procedures which have been proposed have led

to the development of different schools which are still engaged in heated debate.

On one side there are those who follow the Bayesian method. Here, one starts

from the basic principle that in a case where the actual probability distribution

is unknown it is always legitimate to assign ‘prior’ probabilities to the various

probability distributions. On the other side are the orthodox methods which

start by constructing certain functions from the data (test functions, estimators,

etc.) of which certain ‘nice properties’ are demanded to hold in the long run, i.e.

upon repeated application of the procedure.

This is not the place to go into the controversies surrounding these methods.

(Cf. V. Barnett (5).) Both schools have found eminent supporters as well as

eloquent critics. It is sufficient for our purpose to note that any statistical method

must somehow appeal to some non-trivial basic principles, or achieve nothing.

There is also a third method of statistical inference which is called ‘likelihood

inference’ or the ‘method of support’ and has been expounded by I. Hacking (6)

and A.W.F. Edwards (7) . We shall adopt this method in the sequel. The basic

principles of this method are:

a. All the information provided by the data x about the value of θ is contained

in the function

Lx(θ) ≡ pθ(x)

b. The ratio Lx(θ0)/Lx(θ1) can be interpreted as a degree of relative support,

in the sense that the data provide stronger support for θ0 than for θ1 if,

and in so far as, this ratio exceeds unity.
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The function Lx(θ) was introduced and named the ‘likelihood of θ’ by R.A.

Fisher in 1922. Fisher wanted to discriminate between the study of pθ(x) as a

distribution of x for given θ and as a function of θ for given x. The latter stand-

point is of course the most important for statistical inference. But pθ(x) is not

a probability distribution over θ, so that a different name seemed appropriate.

However, Fisher also wanted to convey a certain meaning to the concept of like-

lihood, as opposed to probability. Yet the fact that these terms are synonymous

in everyday speech has not helped to clarify the distinction. Terms like ‘support’

(Jeffreys (8), Hacking, Edwards), ‘decisiveness of evidence’ (Jeffreys (9)) ‘weight

of evidence’ (Good (10)) or perhaps ‘information for discrimination in favor of

θ0 against θ1’ (Kullback (11)) seem to be more apt to express the purported

meaning.

Indeed, if one finds data x such that pθ0(x) is close to unity, whereas pθ1(x) is

close to zero, one cannot conclude that these data make θ0 ‘more likely’ or ‘more

probable’ than θ1, without making an assumption about the prior probability of

these parameters. But it does not seem unreasonable to state that these data

by themselves provide more support or stronger evidence for θ0 than for θ1,

quite irrespective of the question what their prior probabilities were, or indeed,

whether such probabilities were defined at all.

The method of support is of course no less controversial than any other

method of statistical inference. But it has some intuitive appeal and the fact

that writers holding very different viewpoints on the nature of probability have

embraced this method may lend some respectability to it.

It should be noted that ‘support’, as it is used above, is only a relative

concept. It defines an ordering relation on the parameter space. Any strictly

monotonous function of the likelihood ratio would render the same service and

would therefore also be acceptable as a measure of support. It is customary and

convenient to take the logarithm of the likelihood function as a mathematical

measure of support. Thus,

Sx(θ) = logLx(θ)

is taken as a definition of the support function. Although this choice is somewhat
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arbitrary it has the important advantage that support becomes additive under

independent repetitions of the experiment. Note also that the support function

may change under coordinate transformations on X. Indeed, if y(x) is some

bijective transformation, the support function transforms into

Ŝy(θ) = log p̂θ(y) = log
(
pθ(x)|

dx

dy
|
)

= Sx(θ) + log |dx
dy
|

But differences in support for various parameter values, which are the only quan-

tities of interest for our purpose, are in fact invariant under such coordinate

transformations.

The method described above thus works in practice by attaching relative

degrees of support to all candidate parameter values θ. In particular, the value

θmax for which Sx(θ) is maximal is the best supported or maximum likelihood

estimate. But we can read off more from the support function than just its

maximum. This is of particular importance when one asks how certain we are

of this estimate.

Let us illustrate this by a simple example. Imagine stones are drawn from

an urn containing black and white stones in a proportion θ/(1− θ). (0 ≤ θ ≤ 1.)

Suppose we have made 10 draws (with replacement) and found 7 black and 3

white stones. The best supported value of θ is then 0.7. Now suppose we have

made 100 draws and found 70 black, 30 white. The best supported value is

still 0.7, but now one would feel much more certain about this guess since the

amount of data is so much larger. It is easy to see this difference reflected in

the shape of the support or likelihood functions. In the case of 100 draws the

support function drops of much more rapidly around its maximum than in the

case of 10 draws.

It seems natural then to consider some measure of the width of the support

function as an indication of the uncertainty in our guess. This width simply

represents the size of a region of θ values which are nearly as well supported as

the best supported value. A particularly simple expression which may serve as

an inverse measure of this width is the curvature of the support function at its
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maximum value, i.e.

Ix = − d2

dθ2
Sx(θ)

∣∣∣∣∣
θ=θmax

Edwards has called this the ‘observed information in the data’. The motiva-

tion for this choice is simply that if the support function is smooth, it may be

approximated in the neighbourhood of its maximum by the parabola:

Sx(θ) ≈ Sx(θmax)− 1
2
Ix (θ − θmax)2 (3)

The quantity 1√
Ix

measures the width of this parabola.

The above expression gives reasonable values in the example considered

above, as well as in many other examples, including the shifted diffraction pat-

terns of the previous section, but it is clear that it can only serve as a rather

provisional and tentative element in our discussion. In general, support functions

may take arbitrary forms. They need not have a unique maximum. They need

not be continuous or differentiable, or the approximation (3) may be bad. More-

over, this choice makes ‘information’ dependent on the parametrization of the

distributions. For example, Pitman (12) has noted that if we put φ = (θ−θmax)3

any ‘information’ one might have about θ will transform into zero ‘information’

about φ. This behavior is quite undesirable, because an inference about the

unknown value of θ is equivalent to an inference about the unknown value of

φ. Furthermore, the above choice only works as long as θ is a continuous one-

dimensional parameter. However, we shall see that all these obstacles can be

overcome.

2.2 Expected support

The support function depends, of course, on the actual data x obtained from

the experiment. In a theoretical study we can only compare the various support

functions associated with each possible set of data that might be produced by the

experiment. However, since the number of possible sets of data is often enormous,

such a study would not be feasible in general. Therefore, we shall approach the

subject from a slightly different angle. Suppose that the experiment is described
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by the distribution pθ0(x). What form of the support function would we then

expect? The expected support function can be written as

〈S(θ)〉θ0 =
∫
pθ0(x)Sx(θ) dx =

∫
pθ0(x) log pθ(x) dx (4)

Note that the expected support no longer depends on observed data but on the

(hypothetically) true value θ0. Note also that due to the lucky choice of the

logarithm in the measure of support, the expected support is proportional to the

actual support one would obtain in n independent repetitions of the experiment

if the various possible outcomes occurred in relative frequencies equal to the

probabilities pθ0(x).

Expressions of the form (4) have been extensively studied in information

theory, and are well-known for their remarkable properties (11). To mention only

one of them: 〈S(θ)〉θ0 attains its maximum value for θ = θ0, and this maximum

is unique. Thus, the true value has maximum expected support. This indicates

that although support functions can behave wildly, expected support functions

are better-behaved.

Let us now return to the notion of uncertainty of the second kind. According

to our previous choice we may take

I(θ0) = − d2

dθ2
〈S(θ)〉θ0

∣∣∣∣∣
θ=θ0

(5)

as an inverse measure of the uncertainty to be expected in our inference. Fisher

called this ‘ the amount of information to be anticipated from our observation’

or also the ‘intrinsic accuracy of the distribution’. Today it is commonly called

‘Fisher information’. The meaning of this quantity is of course similar to that of

Ix in the sense that 1√
I(θ0)

gives a rough measure of the width of the expected

support function around its maximum.

Note that I(θ0) is additive under repetitions of the experiment, so that the

amount of information to be anticipated in an n-fold repetition of the experiment

is just n times the information of a single performance. Equivalently, the size of

the uncertainty region decreases by a factor 1√
n
. Also, I(θ0) is invariant under

coordinate transformations on X, but not under parameter transformations on

13



Θ. Under fairly general regularity conditions I(θ0) can also be written as

I(θ0) =
∫ 1
pθ

(
dpθ

dθ

)2

dx

∣∣∣∣∣
θ=θ0

= 4
∫ (

d
√
pθ

dθ

)2

dx

∣∣∣∣∣
θ=θ0

showing more explicitly that the quantity is always non-negative. The Fisher

information is particularly well-known for its appearance in the famous Cramér-

Rao inequality (13,14), by which 1√
I(θ0)

puts a lower bound to the standard devi-

ation of all unbiassed estimators for θ. This explains in what sense it represents

the ‘intrinsic accuracy’ with which θ can be estimated.

The Fisher information is a concept which may fruitfully be compared to

that of the resolving power of an optical instrument. Indeed, when the problem

is to distinguish between a set of shifted probability distributions, i.e. when

pθ(x) = p(x − θ), the Fisher information becomes a constant, independent of

the hypothetically true value θ0. Likewise, as long as the assumption can be

made that the diffraction patterns differ only by a shift, the resolving power

is also a constant, characterizing the optical instrument. If one calculates the

Fisher information for the patterns discussed in the previous section one obtains

I = 4
3( a

`λ)2 in the case of a single slit, and I ≈ 4
3(Nb

`λ )2 for the grating, so that 1√
I

indeed gives a reasonable size for the resolving distance for those distributions.

But the Fisher information is obviously much more generally defined than a

resolving power based on the Rayleigh, or some similar, criterion, and it can also

be applied to distributions of arbitrary shape (Gaussians, Cauchy distributions,

etc.).

However, the most important point of similarity between the Fisher informa-

tion and the resolving power is that both expressions are intended to represent

uncertainty in an inference problem. This is reflected by the fact that they do

not look at the spread of a single probability distribution over the set of possible

outcomes (as would be the case for measures of uncertainty of the first kind),

but rather at the sensitivity of the probability distributions to changes of θ.

Still, however useful and important the Fisher information may be in statis-

tical theory, it cannot be the end of the story. As noted before, a conventional

change of the parametrization may change the value of I. Also, the expression
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is entirely useless for distributions failing to meet the regularity conditions, such

as

pθ(x) =

{
1 1

2 − θ ≤ x ≤ 1
2 + θ

0 elsewhere
(6)

2.3 Statistical distance

It has been observed by several authors (Rao (14) , Jeffreys (15)) that the Fisher

information provides a geometry on the parameter space Θ. To introduce this

point of view, it may be useful to consider first the case where pθ(x) = p(x− θ),
for some regular distribution p. In this case 1√

I
represents a region of uncertainty,

the size of which is independent of the true value θ0. Notice also that when θ has

a physical dimension, 1√
I

has the same dimension. It then becomes attractive

to regard 1√
I

as a natural unit of uncertainty, which may be used to ‘normalize’

the parametrization. That is, we replace θ by the dimensionless parameter s =
1
2

√
I θ. The meaning of such a normalized parameter is not difficult to see: If

for two parameter values s1 and s2 we have |s1 − s2| � 1 then, even if one

of these parameters should happen to be the true one, we may not expect to

obtain decisive support for this value against the other from the outcome of the

experiment. The distributions characterized by these parameter values are then

hard to distinguish experimentally. Thus, normalizing the parameter provides a

way of expressing how far apart two distributions are in a statistical sense.

If the Fisher information is not independent of θ0, this idea becomes some-

what more involved. One may however still perform this normalization locally

to obtain an infinitesimal distance element between θ0 and θ0 + dθ:

ds =
1
2

√
I(θ0) dθ

This can be integrated to obtain a total distance between the distributions pθ0

and pθ1 :

s(pθ0 , pθ1) =
1
2

∫ θ1

θ0

√
I(θ) dθ (7)

This normalized parameter defines a distance between the two probability dis-

tributions. This distance is invariant under parameter transformations on Θ;

15



it depends only on the set of distributions {pθ} with which we started. This

step thus removes one more obstacle we encountered in the use of the Fisher

information. But there are still several left. In the first place, it should be noted

that while a small distance between two distributions implies that they are hard

to distinguish, it is not necessarily true that they are easy to distinguish if the

distance (7) is large. The distribution displayed in fig. 2 provides an example

of this phenomenon. Here, 1√
I

is of the order of magnitude of the width of the

principal maxima, so that any two distributions which are shifted by this or a

larger amount will differ by a statistical distance greater than unity. However,

if we consider a shift of the order of the distance between the principal maxima,

the two distributions will no longer be so easy to distinguish because of the re-

curring overlap of the different maxima. A large value of the statistical distance

(7) between two probability distributions generally implies only that there are

many distinguishable pairs between them, it does not imply that these distri-

butions are themselves easily distinguishable. Moreover, this distance function

is still useless for distributions like (6), which have an infinite distance between

any two different values of θ. But these obstacles can also be removed as we will

now show.

The geometrical meaning of the Fisher information becomes perhaps even

more evident if we pass to a case where θ is a multi-dimensional parameter,
~θ = (θ1, . . . , θk). In this case the natural analogue of (5) is

Iij(~θ0) = − ∂2

∂θi∂θj
〈S(~θ)〉~θ0

∣∣∣∣∣
~θ=~θ0

=
∫ 1
p~θ

∂p~θ

∂θi

∂p~θ

∂θj
dx

∣∣∣∣∣
~θ=~θ0

= 4
∫ ∂

√
p~θ

∂θi

∂
√
p~θ

∂θj
dx

∣∣∣∣∣
~θ=~θ0

i, j = 1 . . . k

Fisher’s ‘amount of information’ is now not a quantity but a matrix. This positive

definite and symmetrical matrix endows the parameter space with a metric which

is invariant under parameter transformations. Indeed, if we define a general
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infinitesimal element of distance in parameter space by

ds2 =
1
4

∑
ij

Iij(~θ)dθidθj ,

this distance is manifestly invariant under any regular parameter transformation.

From this geometrical point of view it is natural to regard the previous case

of the one-dimensional parameter as a one-dimensional subset, i.e. as a curve

in a metrical space of higher dimension. The distance (7) then measures the

statistical length along this curve. But in this higher dimensional space one can

make a distinction that would not be possible in a one-dimensional space, namely

between length and distance. The distance between two points is defined as the

length of the shortest curve that connects them in parameter space.

This idea becomes particularly fruitful if we take the parameter space Θ to

map the set of all probability distributions over X. In that case Θ generally

becomes a space of infinite dimension. For simplicity, let us first consider the

case where X contains a finite number of possible outcomes, X = {x1, . . . , xm}.
In this case m − 1 independent parameters suffice to map the totality of all

probability distributions over X. The parameter space Θ is then a Riemannian

space of dimension m− 1, endowed with the metrical tensor:

Iij = 4
m∑

α=1

∂
√
p~θ

(xα)

∂θi

∂
√
p~θ

(xα)

∂θj
i, j = 1 . . . ,m− 1.

By choosing an appropriate system of coordinates, such a Riemannian space can

always be represented as a curved subspace immersed in a Euclidean space of

higher dimension. For the present case such a representation is obtained if we

choose as coordinates yα(~θ) =
√
p~θ

(xα). The distance element then takes the

simple form:

ds2 =
1
4

m−1∑
i,j=1

Iijdθidθj =
m∑

α=1

(dyα)2

which is the usual distance element in m-dimensional Euclidean space. The pa-

rameter space Θ can thus be represented as an m− 1-dimensional hypersurface

in this space. This hypersurface is determined by the condition that the proba-

bility distributions be normalized, i.e.
∑

α(yα)2 = 1, and it is thus seen to be the
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surface of a unit hypersphere. The condition yα(~θ) ≥ 0, for all α, further restricts

this surface to a convex segment of the hypersphere. Thus, quite remarkably,

the metric defined by the Fisher information gives Θ the geometry of the surface

of a sphere.

Now consider a regular one-dimensional curve {pθ} on the surface of this

sphere connecting the points representing the probability distributions pθ0 and

pθ1 . The shortest such curve is, of course, a piece of a great circle and the length

of this curve is just the arc length between these points. The statistical distance

between two probability distributions, therefore, is given by:

d(pθ0 , pθ1) = arccos
∑√

pθ0pθ1 .

In the case where X is a continuum, the above argument becomes more technical.

The conclusion, however, is quite analogous, namely that the statistical distance

is now given by

d(pθ0 , pθ1) = arccos
∫ √

pθ0pθ1 dx. (8)

This expression, finally, represents a generally useful measure of the distin-

guishability of two distributions. The distance (8), of course, is always finite. It

is invariant under parameter tranformations on Θ as well as coordinate trans-

formations on X. It is also independent of the original curve {pθ} from which

pθ0 and pθ1 where taken. It depends merely on the overlap integral of the two

probability distributions.

Returning once more to the diffraction pattern of fig. 2 we see that the

distance (8) as a function of the shift first increases rapidly to attain roughly its

maximum value when the principal peaks no longer overlap, but decreases again

when different principal maxima start to overlap, etc. This behavior is just what

one would expect from a distance that is supposed to measure distinguishability.

It also shows that the curve in parameter space that corresponds to shifting the

pattern is not a geodesic curve.

For the family of distributions (6) we see that the distance between two

adjacent points on the curve is finite and of the order

d(pθ, pθ+dθ) =
√

2dθ,
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whereas the distance between these points taken along the curve corresponding

to shifting the distributions is infinite. The fact that the distance element is here

proportional to
√
dθ, instead of dθ itself, reflects the irregularity of this curve.

That the distinguishability should increase so rapidly for small shifts is not
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Uncertainty in prediction and in inference

Figure Captions

Fig. 1 Diffraction patterns of a slit.

Fig. 2 Diffraction pattern of a grating.
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