View metadata, citation and similar papers at core.ac.uk brought to szO@RE

provided by Utrecht University Rep

Remote Participation Services

Report Il

Werkgroep Fysische Informatica, faculty Physics
and Astronomy, Utrecht University

https://core.ac.uk/display/39698898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E.A. van der Meer,
Armin Gerritsen,
B. Niderost,

A. Taal,

H Blom,

H.M.A. Andree,
W.Lourens

Utrecht, 15-9-2000

Measurement Database DiStributionccooveieerienieeneenee e 5
INEFOTUCTION ...ttt bbb s sree 5
Why dISEDULIONT ... 5
What is diStriDULIONTcoviiiiiii e 5
TWO-tIEr VErSUS thre@-TIercueiieiiie e 5
Drawbacks of a middIe-tierccocevviiiiiiine e 7
A POSSIDIE SCENAIO ..ottt 8
Distribution of the middIe-tier ..., 8
Distribution on database level............ccooeiiiiieine e 13
Technical detallS.........cooeiiiiiiiiie s 15
Performance MeasureMenNtS.........cccveieereereere e e 17
Distribution over multiple SUN-Ultra-10 COMPULerscccceveeieenenne 17
FULUre MEASUIEMENTSc.eeeiiiieiiee et 19
REFEIENCES ...ttt 19

Network performance measurements IPP - FOM - UU..........ccccocovvvieennnen, 21
INEFOTUCHION ...t 21
(= F SRR TRPRRRRRRN 21
Time throughpUL QVEIagES..........coveiiiiiiirieree s 21
Throughput hiStOgrams...........cooeiiiiiiiie e 24
Overview time throughput aVErages..........cooceeveereenieeneeneesee e 27
Bad performance VENTS ... e 30
OVverall CONCIUSIONS.cciuiiitieiieiie ettt s seee 31

VidE0 CONFEIENCING ...oviiiieitieitee et 32
INEFOTUCHION ...ttt e 32
VCON MeetingPoint 4.01 with the RadVision MCU-323..............ccc...... 32
VRVS, VIC aNd RATovieieese st sieeee e sie et ste s sne s snenens 33
INEFOTUCHION ...ttt 33

APPENAICES ...ttt bbb 34

Guidelines for using VCON MeetingPoint 4.01 with the RadVision MCU-323 35

INEFOTUCHION ...ttt e 35
Configuring MeetingPOINTccoveiiiiieiie e 35
Setting UP @ Call......ocueeiiieiiiiie e 37
Starting the WWW INterfacCecooeeiieieeiieneenee s 38
Setting up data Sharing.........ccooeeveeniiiien e 40
IDL Interface Description ObjectManager...........cccocvvvuervenienieniesieenns 41
IDL Interface Description DataObJECtcocvrieriirienieie e 43

IDL Interface Description DataManageroccoveverierienienieeieseeenns 47

M easur ement Database Digtribution

I ntroduction
Why digribution?

Expanding on the track of the DY NACORE project” the aim is at a centralized database to store
all the measurement data. Data that is generated during various plasma physics experiments at the
Textor '94 tokamak. As will be shown in the sequd, it seems not feasible to implement such a
database on one single computer for a number of reasons.

One reason is the performance when accessing the database to store new measurement data. This
performance is very important, as it determines the delay from the end of a tokamak shot up till
the researchers have full accessto their data

Another reason is the trandtion from legacy software, where data is stored in a format that is
gpecific for a certain diagnostic or research indtitute, to a flexible standard format, where al data
is accessible to all participants via one (generic) interface. This transition cannot be made in one
giant step. It is possible, however, to make the transition step by step, by constructing adaptors for
existing data formats. These adaptors make measurement data that is stored in traditional formats
available viathe new, generic interface. A scientist using new (object oriented, C++ or Java) client
programs, designed for usage with the standard database, can send a request for specific data to
such an adaptor, which will retrieve the data and transform it, where necessary, to fit the new
standard format. It smultaneoudy offers the scientist the opportunity to access the traditionaly
formatted datawith old (e.g. FORTRAN, C) (analysis) programs.

Redundancy is a next reason for database distribution. If a scientist or computer program can
access the measurement data via a number of paths, the data can <till be accessed (for the greater
part) if, for any reason, one of the computersfails. Having aways two copies of the measurement
data (by means of data replication, which is a feature of many modern database systems), stored
on different computers, could further increase the reliability. When one computer fails, the datais
gtill available from the second computer.

For the reasons mentioned above, distribution of the database over multiple computers is
necessary. In the following sections will be described in detail what distribution means, and how
it can be implemented. A possible distributed database scenario, which allows system operatorsto
incorporate existing data sources and replicate data as necessary, will be presented.

What isdigribution?
Two-tier verusthreatier

In atwo-tier scenario, a database system consists of two entities. One entity is the database, which
contains al the data. The second entity is the database client. This is a computer program that
needs access to some of the data in the database. Important in a two-tier scenario isthat the client
must know how the datais stored in the database, since it has to access the data directly from it.

An example of atwo-tier scenario is a payroll database running in Microsoft Access. Here, the
payroll data is stored in a payroll.mdb database file, and the Microsoft Access graphical user

! Former EU project in Telematics Application Programme (TAP-RE4005) aimed at remote control of large scientific instruments.

interface (GUI) is the database client, which retrieves data from the payroll.mdb file, whenever
thisis necessary to complete a user request.

In a three-tier scenario, there exists a third entity between the database and the database client.
This entity separates the database client from the database, in the sense that it hides dl the
knowledge about how to store and retrieve data in the database from the client. The client smply
knows how to make database requests to this middle layer. The middle layer in its turn knows
how to access the database.

Figure 1 illusgtrates the difference between the two-tier and the three-tier scenario.

Advantages of amiddle-tier
Database Database
li li o :
C'fm C'me b The extra layer of abgtraction in the three-tier
atabase .
| Requests scenario has a number of advantages.
rect Middie For one thing, it allows system administratorsto plug
Direct in any database they want below the middle-tier,
Access without having to change the database client. The
s = database client typically is a widespread application,
under the control of end-users. Therefore, it is costly
to update. The middie-tier, on the other hand, is

- Figure 1 Two-tier (left) versus three-tier (right) Situated at the server S'de{ under the_contml OT the
database scenario. In the two-tier scenario, a SysStem administrators. If, in a three-tier scenario, a
database client accesses the database directly. New database requires changes to the middle-tier,
In the three-tier scenario, a database client these changes can be rolled out into the operational
issues a request o the middle-tier, which will - system rather quickly.
access the database directly as necessary.

This “database-plug-in” feature can be considered as
very important dternative for solving the issue of the future data acquisition a Textor ‘94. It
makes smooth, gradua migration from legacy systems to the new system possible. A system
administrator can write a middle-tier adaptor to an existing measurement database, and make the
database available to dl existing database clients. If the system administrator decides later on that
the measurement data should be moved to another database (for example, a centrally managed
standard measurement database), a smple change in the middle-tier suffices to accomplish this.

Another advantage is the possibility to implement extra functiondity into the middle-tier. An
example of such functiondity is a set of specid middle-tier routines that alow the client to
retrieve pre-processed data. A typical pre-processing function is the sub-sampling of signal datato
match the resolution a GUI-client that needs to present a graph to the scientist. If the pre-
processing is done at the client, al the raw signa datais needed. But the amount of pre-processed
data often is smaller than the corresponding raw data. This means that, when the pre-processing is
done in the middle-tier instead, the data transfer from middle-tier to client - often a bottleneck,
gnce it happens over a dow Internet connection - becomes faster. The connection between
middle-tier and database should be direct and fast to prevent it from becoming an additional
bottleneck. A GUI-client might retrieve multi-megabyte signals over the Internet, only to display
eight hundred data points on a computer screen. In such a case, usage of specia routines in a
middle-tier could achieve atremendous performance increase.

A further advantage is that a database client does not need to know the location of the database. It
only needs to know where to access the middle-tier. The middle-tier knows the location of al

databases. This not only makes the “database-plug-in” feature possible, but it aso allows a system
administrator to move databases from one computer to another without having to notice the client
of the change. This is useful for system maintenance, for example when replacing defective
computers.

Finally, the middle-tier layer also makes load balancing over a number of server computers
possible. A system administrator can spread the measurement database over any number of server
computers. Every computer then only has to handle a part of the total load. If a computer or
network connection is getting overloaded, the load can be diverted to other computers, usualy
dynamically!

Drawbacks of amiddle-tier

The largest disadvantage of an extra middle-tier between database and client is the extra
overhead. In fact it is the price to pay for utmost flexibility. Severa factors contribute to the
overhead. One factor is the extra method invocation that is needed with a middle-tier: instead of
one invocation, when the client accesses the database, there are two invocations needed, one
when the client makes a request to the middle-tier, and one when the middle-tier accesses the
database.

Another factor that causes overhead is data conversion. The datain the database can be stored in a
format that is not appropriate to transmit from middle-tier to client. The middle-tier might have to
convert the raw data that it retrieved from the database, before it can transmit it to the client. The
same holds for datathat it received from the client to be stored in the database.

Finally, locating the data can cause some overhead. The middle-tier has to consult |ook-up tables
in order to know where data resides or should be stored. Especially when the middle-tier servesa
large number of different databases, this overhead can become quite large.

Except for overhead, there is another drawback to having a middle-tier. All requests from
database clients have to pass through the middle-tier. When the middle-tier is a single process on
one computer, and the middie-tier must do considerable preprocessing, it can become a
performance bottleneck.

Load baancing in the database layer does not solve this problem. The only solution is to add
another level of load distribution: multiple active middle-tier objects. The middle-tier objects can
be implemented as separate threads in a single server process, multiple processes on one
computer, multiple processes running on different computers, or a combination of these options.
A client firgt locates a suitable middlie-tier object, and then makesiits request on that object.

The remaining question is how a client finds a suitable middle-tier object. There are two
possibilities: the client can have a reference to a default middle-tier object hard-coded into its
program, or he can contact a specia management object and ask it for a suitable reference.

Once aclient has found amiddle-tier object, it is bound to it. Thisis a problem when amiddle-tier
object is unable to fulfil its requests, for example because of an increase in the load on the object,
or because the object does not have access to the necessary database. In this casg, it is possible to
implement a hand-over mechanism. Such a mechanism provides away for one middle-tier object
to tell the client to connect to another middle-tier object. The first middle-tier object isresponsible
for initialising the second one, before it provides the client with the reference of the second object.

A PossbleScenario

This chapter describes the three-tier scenario that has been built for the Dynacore demonstrator
(named DynaDemo), which is considered as a promising basis of a future Textor’ 94 data storage
and retrieva system. The demonsrator can be accessed from the Dynacore webste at
http://hst3731.phys.uu.nl/dynademo. Documentation about Dynacore and the demondtrator is
available from the same website, here one will find aso al recent sources of the software’. The
DynaDemo has been demonstrated at the SOFT21 conference in Madrid.

In the next sections indications will be given how the existing middie-tier design can be
augmented in order to serve a highly demanding environment.

Digribution of themiddle-tier
DataManager objects

The DynaDemo middletier is based on DataManager objects. There exist different
implementations of DataManager objects. Every implementation provides access to a different
kind of database. At the moment, DynaDemo uses three different implementations. One
implementation supports an object database, as
described in the next section. Another
implementation provides access to data in
exising DOM4 files. DOM4 is the file format
. that is used traditionaly by the FOM Indtitute in
Qg Rijnhuizen. The third implementation links to
owaverise | RT2 data. This is the data that Textor’ 94 uses to
store general measurement data, which must be
availableto al scientists.

4: Get
Launcher

\OReference to IOR{/
= ObjectManager
Type”

‘ AN
1: Bind
‘ Reference to

lol

S
2 Resolve‘ l‘ v 3 Get

Name ‘ DataManageV’ .

| Type,/ ¥ Reference to

‘ DataManager

“ Reference to

DataManagerf

| 6: Start
7: Use

CORBA naming service

—
| Request o—

Dﬁw‘ < o Answer
Client
A database client must have a reference to a
D RBA ject- |[launcher.li Launcher|| Data- . .
e oot co s, | [auncherlist Launher| Bae | DyapaManager in order to access data in the

! / Bind
| Resolve

measurement database. To get such a reference,
the client must traverse the path in the

D collaboration and sequence diagram shown in
cotpataepager | Lasaaher Figure 2. It must first contact a CORBA naming
LN sarvice. The reference to the naming service,
Start DataManager | gy | which is a CORBA server object itsdlf, is stored

in afile that the database client can read.
D = The naming service maintains a list of references
to active CORBA server objects, mapped onto
unigue, meaningful names. This ligt is updated

congantly, as new CORBA sarver objects

- Figure 2 Collaboration (above) and sequence diagram . . .
(below) showing how a database client can contact a register themselves at the naming service when
DataManager. they are started. A client asks for the reference to

2 Please contact Beat Nideroest to obtain download permissions
% A software Architecture for remote participation at the TEXTOR '94 Experiment, B.U. Niderost et .al. Soft21, Madrid, Sept.
2000

a specia server object, named ObjectManager. Only one such object exists in the whole middle-
tier.

The ObjectManager and Launcher objects

The ObjectManager (,see aso the appendix for details) is responsible for managing al active
DataManager objects in the middle-tier. A database client can ask the ObjectManager for a
DataManager. It includes the name of the desired DataManager implementation in the request.
The ObjectManager answers to the request by returning a reference to an available DataM anager
object of the specified implementation. In case no idle DataManager object is available, a new
one can be created.

The ObjectManager delegates the creation and management of DataManager objects to special
Launcher objects. These CORBA server objects are specidized in starting and managing one
specific kind of DataManager implementation. They give a reference to a DataManager object
back to the ObjectManager, which in turn sends the reference to the database client that placed the
request in originally.

The delegation mechanism makes two important features possible. It alows the ObjectManager,
running on one particular computer, to start and manage DataM anager server objects on different
computers, provided there is a Launcher running on these (remote) computer. If the
ObjectManager would start and manage DataManager objects directly, these could only be
running on the computer on which the ObjectManager is running itself, Since there are no generic,
cross-platform mechanisms to start and manage processes on remote computers.

The second important feature of the delegation mechanism is that knowledge of different
DataManager implementations is taken from the ObjectManager implementation. The
ObjectManager can delegate the start-up and management of any new DataManager (type)
implementation just as it delegates these for aready existing implementations. It only needs to
have a reference to a Launcher object that accepts the delegation to start and manage an object
with the new implementation. How the ObjectManager gets these referencesis treated in the next
section.

Launcher references

In DynaDemo, the ObjectManager retrieves alist of references to available Launcher objects (,see
aso the appendix for details,) from afile named launcher.list. Every launcher is mapped onto a
unique name that is aso stored in the file. This name is the same name that a database client uses
to indicate which DataManager implementation it desires. So a database client actualy chooses a
desired Launcher, which in turn provides areference to an object of the desired implementation.

There is currently no mechanism for a Launcher to automatically register itsdf a the
ObjectManager. This means that a system administrator has to add or change an entry in the
launcher.list file manually whenever a Launcher is (re) started, moved to another compuiter, etc.
The Launcher can not do this for the administrator, as it most likely neither does know the
location of the launcher list, nor have accessto it.

A solution to this problem would be to have Launcher objects register themselves at a naming
service in a specid naming context [1]. The ObjectManager could then scan this naming context
instead of the launcher.list file when it is looking for a reference to a specific Launcher. The
naming context could itsalf contain other naming contexts. If a client refers to such a child

context, the ObjectManager can choose any Launcher that is registered in the child context,
thereby distributing the system load over multiple computers. A client can of course so name a
sngle Launcher from the child context, in which case it chooses the desired Launcher itsdlf.

Load balancing

If necessary, the ObjectManager would be the correct place to put load-baancing functiondity for
the middle-tier. In DynaDemo, however, such functiondity is not present, as there is no need for
it yet. The performance bottlenecks are located el sewhere.

For the same reason a possible other friction point has not yet been removed: the DOM4 and the
object database Launcher objects till start anew DataManager object every time a database client
requests one. To increase performance, these Launchers could be changed so they maintain a pool
of referencesto idle DataManager objects. These could be returned to the ObjectManager as soon
as requests come in. A pool of idle DataManager objects could decrease the client response time
considerably, as the client does not have to wait for the time-consuming start-up of a new
DataManager object.

If load bal ancing becomes necessary in the future, it could be implemented as follows. In addition
to the name of the desired DataManager implementation, the ObjectManager could use the
client's properties like its username or physical location to select the name of the Launcher to
which to delegate the request. It could use child naming contexts as described above to sdlect dl
Launchers that can provide the desired DataManager implementation on suitably located
computers. Then it would ask each of these Launchers what its load is, and sdlect the least
occupied.

Reusing DataManager objects

In the object-database and DOM4 implementation of the DataManager, there is a one-to-one
relationship between a DataManager object and a database client. The client opens a transaction
on the DataManager, after which it can perform any database request it needs. When the client
(findly) closes the transaction, the DataManager is left waiting, in case the client might want to
open another transaction. After having been idle for a predefined time, the DataManager shuts
itself completely, thereby freeing any resources it might have allocated. If the client wants to
access the database again, it must go back to the ObjectManager and apply for a new
DataManager, as the old reference is no longer valid.

Starting DataManager objects and shutting them down can be very time-consuming. Recycling
them could therefore enhance the performance of the whole system. If DataManager pools are
implemented in the future, the Launcher that started a DataManager could implement this
recycling by returning a DataManager object to its DataManager pool after the DataManager has
been idle for a predetermined time. Thiswould permit an additiona increase in performance.

Multiple clients per DataManager

In contrast to the object-database and the DOM4 implementation, the RT2 implementation does
not cover transactions. Since database clients are not aware of this, they will still try to open and
close transactions. They don't notice that nothing actualy happens at the server side.

The absence of transactions (- a guarded, critical section in the code, not be re-entered -), in the
DataManager object implies that now one object can smultaneoudly serve multiple clients. To
exploit this feature, a speciad Launcher object has been constructed. It does not start a new

10

DataManager every time it receives a request from the ObjectManager, but, instead, aways
returns the same reference to a single DataManager object, which was origindly started by the
system administrator. This improves performance, as it circumvents the time- and memory-
consuming overhead of darting a new process for every single database client. However,
performance might improve even more having the Launcher dso spawn new DataManager
objects into separate processes, when the existing process is extremely busy. This feature could
easly be added in the future if necessary.

DataManager implementation listing

In the scenario described above, a client has to select a DataManager implementation before he
can access the database. However, a specific implementation might only provide access to asmall
part of the whole data collection. Which part that is depends on the implementation. A DOM4
DataManager, for example, does not provide access to RT2 data. A client must therefore know
the location of the data, he requires. He must explicitly know a certain DataManager
implementation by name. To access data subsequently that isin different parts of the database, he
must even know the names of several implementations.

This stuation is not preferred. Whenever a new DataM anager implementation is added or datais
moved from one part of the database to another, al clients must be informed, otherwise, they will
not be ableto locate al the data correctly.

In DynaDemo, the ObjectManager has a specid list function, which will return the name of dl
available DataManager implementations. This partly solves the problem mentioned above. Every
DataManager implementation aready organizes dl its data in a tree-formed database graph. A
database client can trest the list that is returned by the ObjectManager as an additiond layer on
top of thisgraph. Thisway he can organize his accesses to the whole database.

There are still problems with this solution. In the first place, the solution is not transparent to the
client. The client must be aware of the specid list function, and actively use it to compose its own,
virtual database graph. Secondly, the solution does not allow a system administrator to organize
the database graph logicaly. The administrator can only choose the name of the DataManager
implementation, as it will appear in the top level of the database graph. She cannot “mount” a
DataManager implementation in alower level, under a specific node.

DataManager handover mechanism

A better solution would be to implement a handover mechanism. DynaDemo does not use the
handover mechanism yet. However, the necessary provisons are adready present in the
DataManager interface definitions.

A client that uses the handover mechanism would aways request the ObjectManager to provide
him with a reference to a specia Root DataManager. This Root DataManager is indicated by a
unique name, the only one a client has to be aware of. The Root DataManager knows where to
find the other DataManager implementations.

A system administrator configures the Root DataManager, so it knows the location of al other
DataManager implementations. Furthermore, the syssem administrator can impose any logical
database graph on top of the physica structure she finds suitable. It is even possible to mount a
part of the database under multiple nodes in the database graph. This way, a system administrator

11

can, as an example, make the same data available organized both by shot number and by research
ingtitute.

A client might ask the Root DataManager for information about one of the nodes in the database
graph that the Root DataManager cannot provide itsalf. In that case, the Root DataManager will
raise a CannotProceed exception. This exception contains a reference to another DataM anager
implementation. The client can contact that DataM anager to investigate further. The combination
of exception raising and contacting another DataM anager is the actual handover.

It is imaginable that the new DataManager implementation ill cannot answer the client. Or it
might be too busy to handle the request. In such a case, it can raise another CannotProceed
exception, and s0 on. This makes the handover mechanism a very powerful tool. A system
administrator can use it to construct database graphs of arbitrary complexity, and it can even help
balancing the system load.

Database wide object names

Data in the measurement database may contain references to other data Since the data is
organized in objects, ordered in the database graph, references only need to specify the absolute
path to the object in the graph. This works fine as long as the graph is predefined and fixed, so
that al DataManager implementations are aware of it, and can organize their object names
accordingly.

However, in DynaDemo, the graph is not predefined, but creasted dynamically by the clients. A
DataManager implementation has therefore no way to resolve the absolute path of its data objects.
It will return arelative path instead.

A DataManager can construct references to data that is made available by other DataManager
implementations only if the handover mechanism is implemented. In that case, the system
adminigtration should congtruct the database graph in such a way that al DataManager
implementations have a reference back to the Root DataM anager, mounted as a node in their own
sub-graph. A client might then ask a DataManager implementation to resolve a relative path that
gtarts with the path to such a node. The DataManager will answer by raising a CannotProceed
exception, containing the reference to the Root DataM anager, and the relative path with the path
to the node dstripped off. The client finaly will continue to resolve the path at the Root
DataManager, which has access to dl data in the database. If a data object wants to reference
another data object, elsawhere in the measurement database, it only needs to append the absolute
path to that object to the relative path to the Root reference node in the current DataManager
implementation, and a database client will be able to resolve the compound path.

I mplementing ObjectManager and DataManager objects as naming contexts

There isalarge overlap in the listing functionaity between the ObjectManager, the DataM anager
objects and CORBA naming context objects. Once the handover mechanism is implemented, this
overlap will even be larger. While the interface definitions for the listing functionality differ
considerable between the mentioned naming mechanisms, the handover-mechanism related part
of the DataManager definition has been designed to reflect the overlap. In the future, it might be
useful to adapt the ObjectManager and DataManager interfaces, to make them implement the
naming context interface. This would standardize their interfaces, making them esser to
understand (as CORBA developers might aready be familiar with naming contexts), and
available to existing CORBA tools, for example a naming service browser.

12

Digribution on databaselevd

This paragraph describes the distribution mechanism of the object database that is used by one of
the most eaborate DynaDemo DataManager implementations. The object database could
supposedly be the aternative amongst the TEC collaboration to store future measurement data. It
isimplemented using the Objectivity/DB database product [2].

Problem and solution

As data volumes are increasing, high performance is very important. The user requirement
gpecification in the plasma physics community at TEC-IPP states that the system must be able to
store 500 MB of measurement data within one minute. Previous performance measurements have
shown that a single DataManager server running on a SUN Ultra-10 computer cannot meet this
requirement. Distribution at the middle-tier, using more than one DataM anager object, running on
different computers, distributes the system load. However, in principle there ill is only one
database, on a single computer, where al the measurement data is stored. All DataManager
objects have to access this database, which is becoming a new bottleneck.

All objects in an Objectivity/DB single database are physicaly stored in the same file, on
computer. However there exists ahigher level of aggregation, the so-called federation. It provides
a unique naming and access scheme for al objects stored in any database that is part of the
federation. The database files themselves can be distributed over many different computers, but
sgnce Objectivity/DB provides the mechanism to access objects transparently, a database
application is not aware of this.

Clearly, distributing the measurement data over multiple computers will reduce the load on any
single computer. The data should be distributed such that all computers receive approximately the
same load. If the load on one computer becomes too heavy, for example because its database
volume is growing very rapidly, it is possible to move part of the data to another database on
another computer. To accommodate this Objectivity/DB provides an optiona mechanism to
replicate the database, named Objectivity/DRO. In that case, there are two databases, located on
different computers that contain exactly the same data. The databases are kept synchronized al
the time. Objectivity/DRO can digtribute the load of requests to read data aready in the access
phase. The load of requests to store data, however, will not be distributed, as both databases must
incorporate any change to the data they contain. Objectivity/DRO is licensed separately from
Objectivity/DB.

Distribution of database-tier and middle-tier

Digtributing the measurement database using the federation mechanism does not make the
middle-tier redundant. The advantages of having a middle-tier, as given in the previous chapter,
gtill stand. Specificaly for DynaDemo, removing the middle-tier would make al clients aware of
the database implementation. In case of Objectivity/DB clients, they would need a valid software
licenseto useit. Thisis very costly. They would aso lack a security mechanism, which cannot be
tolerated for a system that will be used over the Internet, and moving data transparently from one
database to another is no longer possible, as this would change the references to the moved
objects.

The middle tier should ill be distributed. Otherwise, the high-performance bottom layer will
only be accessible via a dow middle-tier that becomes the bottleneck of the whole system. The

13

ided picture is shown in Figure 3. Clients connect to one of a whole pool of DataManager
objects. The DataManager objects in turn access one of the database files.

- Figure 3 Distribution of both the middle-tier and the database-tier of a measurement database. Any client can use any
DataManager to contact any database. So whatever DataManager it is assigned, it can always access all data.

14

Technical details

1: Access

boot fl\e/
7,

Middle tier —
object L

Container list

Data to

N

4: Access federated
database

=5 Database list

\ 7: Access database
>

store 10: Access container

2: Access boot file
—

<O Lock server host address
———=—0 Federated database name

T |Boot
file
Federated database name

Lock server host address

5: Access federated database

Federated
database file

AMS <—0 Database list

3: Lock federated
__database
Y
—

6: Lock

database
= 9: Lock

container
el 12: Release

- all locks

—
—
—— Lock
server

11: Access container
and objects

—

and objects

Retrieved
data

8: Access

—
database Data to store o—>

<—0 Container <—ORetrieved
list data

Database
file

Middle tier
object

Lock server

Boot file Federated

database file

‘ AMS ‘ ‘

Database file ‘

Access boof file | |
L Access boot file |
lLock federated database T
Access federated database
Access database
Lock database
Access database
Access database
Lock container
Access container dnd objects
Access container and objects
Release all locks

- Figure 4 Collaboration (above) and sequence diagram (below)
showing how a middle tier object can perform operations on an
Objectivity/DB database system. Observe that the middle-tier object
access the boot file, federated database file and the database files
using AMS servers. Therefore, there must be an AMS server
running on every computer that contains one (or more) of these files.
If there are multiple files on a computer, they can be accessed using
a single AMS server. Files on the computer where the middle-tier
object is running, can be accessed directly, without using an AMS

Server.

There ae four Objectivity/DB
components that work together to
make distributed database federations
possble. Figure 4 shows how a
middle-tier object interacts with these
components in order to peform
database operations. The following
paragraphs describe the componentsin
more detail.

Federated database

The first component is the federated
database file. It contains information
on which databases together form the
federation, and where these databases
arelocated.

Lock server

The second component is the lock
server. It isasingle process running on
one computer. Before a middle-tier
object performs any operation on a
database or object in a database, it
must retrieve a lock for that operaion
from the lock server. A lock is only
granted when the requested operation
is safe. For example, when one
middle-tier object has obtained a lock
for reading a database, another middle-
tier object that applies for a read lock

on the same database will aso obtain
one. However, amiddle-tier object that
applies for a write lock on the same
database will have to wait until the all
reed locks have been released.
Otherwise, it might change data while
other middle-tier objects are reading it,
leaving them with inconsistent data. As
there is only one lock server, it is a
sngle point of falure of the whole

system, and a potentia performance bottleneck. The latter is most likely not a problem, since the
lock requests are not very computation- or |/O-intensve. Access times, however, are of
importance. If amiddle-tier object must obtain many locks in sequence, the access times can add
up to form a considerable delay. To make access times as small as possible, the middle-tier should
be physicaly located close to the lock server, preferentialy on the same computer platform. Also,

15

if a middle-tier object knows in advance that it will access a number of database objects in
sequence, it can consider locking them simultaneoudly.

The lock server problems could be solved by another Objectivity product, named
Objectivity/FTO. It dlows system administrators to creste so-caled autonomous partitions,
which replicate all the functionality of a federated database, including lock servers. If, for any
reason, amiddle-tier object cannot use one autonomous partition, it will automatically try another
one. Like Objectivity/DRO, Objectivity/FTO islicensed separately from Objectivity/DB.

Boot file

The third component is the boot-file. It contains general information, for example on the physica
location of the federated database file and the hosthame of the lock server.

AMS server

The last component is the Advanced Multithreaded Server (AMS). This server makes
Objectivity/DB files, located on one computer, accessble to middle-tier objects on other
computers. Middle-tier objects need access to these files, because the Objectivity/DB program
code, which uses these files, is hard-linked into the middle-tier objects own program code. The
files can also be made accessible via Network File System (NFS) mounts, but the AMS is
preferred for severd reasons|[3].

16

Per for mance measur ements

There are many tests possible that measure the performance of the demonstrator described above.
How useful they are depends mainly on for what purpose they are done. The measurements
described in this chapter are meant to show if the distribution mechanisms work. Results of other
measurements, which show the performance of a single DataManager object usng a single
database, have been published before [4]. At the end of this chapter, some other measurements
are described, which have not been performed yet, but might be useful.

Didribution over multiple SUN-Ultra-10 computers

The following measurements have been performed on four computers that are part of the
GigaClugter [5]. The GigaCluster consists of
SSES eight SUN-Ultra-10 computers, running the
Solaris 7 operating system, Objectivity/DB
Database 4 : H
‘DMM ‘DMM ‘DMM = verson and the SUN workshop compiler
version The same computers have been used
under the smilar conditions for previous
measurements, mentioned above. The

computers are interconnected using a 10
Mbit/s Ethernet network.

| 10 Mbit's Ethernet network |

_ — Figure 5 shows the measurement set-up. The
- Figure 5 Set-up for the distributed datgbase performance measurement database is distributed over four
measurements on the SUN-Ultra-10 GigaCluster. computers. Every computer has one datal
file, one AMS server, a DataManager, and a
database (DB) client that stores data in the database. The database client uses the DataM anager
that is running on the same computer, and stores data in the local database file. This is the most
optimal situation, as it does use neither the AM S servers nor the network to store data. However,
the DataM anager objects till need the network to connect to the lock server, and to resolve the
references to the databases. Initialy the DataManager objects only know the location of the
federated database.

Using this set-up, the time a database client needs to store 500 MB of raw signa data has been
measured. The measurement has been repested four times, first with only one database client,
running on computer “hst3733”, then with two clients, three clients, and finaly with four clients.
The results are shown in Figure 6.

As can be seen from the figure, the pardldisation of the data storage works very well. The graph
showing the total processor time indicates that there is only a few seconds overhead associated
with the database digtribution over two or three computers. Didributing the database over four
computers yields alarger overhead and a much larger uncertainty in the total processor time. The
exact reason for this effect is unclear, but it seems plausible that the (shared) network reaches a
limit. For example, it might become overloaded and drop packets. This would result in TCP/IP
time-outs, which in turn cause alot of overhead and uncertainty in the total processor time.

17

In the present set-up the average computer time shows that three computersin paralld are able to
meet the performance requirement of storing 500 MB of measurement data within 1 minute. Four

250

Time (s)

1

al
o

100

4 = == Average Storage'rﬁi

Total processor time

50 +

Number of parallel computers

1 2 3 4

- Figure 6 The average time it takes to store 500
MB of raw data, using 1, 2, 3 respectively 4
computers in parallel. The total processing time of
all participating computers together is also shown.
Every point has been measured multiple times.
The error bars show the standard deviation in the
results of the repeated measurements. Only the
one for 4 computer-case stands out, the others
are too small to be visible in the graph.

computers in paralel should further reduce the
time, but the uncertainty in the storage time will
become larger. The figure indicates that the
requirement of storing 500 MB within 1 minute on
4 computersis not met aways. In thistest Situation
digribution of the data storage over three
computers seems to be optimal, but would not be
exemplary for other configurations.

Performance of a 700 MHz Athlon computer
running Windows NT 4

The computer industry increases the performance
of their architectures at an incredible pace. The
tests of the previous paragraph were performed on
computers that are over ayear old. To have aview
of what a single commodity computer can achieve
nowadays, another test has been done. It was
caried out on a computer with an Asus K7M
motherboard [6] running the Microsoft Windows
NT Server 4.0 [7]. The CPU was a 700 MHz
Athlon-processor [8]. The measurement database
was stored on an 18.2 GB Quantum Atlas 10K
SCSI hard disk [9]. The test repeated the onein the
previous paragraph, but now only for a single
DataManager using a single computer. The time

necessary to store 500 MB of raw signd was 99 £ 6 secondsin this case.

This measurement indicates that today, two commodity computers working in parale can
achieve the performance goal of storing 500 MB of measurement data within one minute. If the
machines would work completely in paralld, it would take them approximately 100 / 2 = 50
seconds to store 500 MB of measurement data. The locking mechanism will increase this time
dightly, but, looking at the distribution overhead on the SUN clugter, this overhead would not
amount to more than 10 seconds. It is aso to be expect ed that in the near future, one single
commodity computer will be able to achieve the performance goal all by itsdlf.

18

Future measurements

Many more tests can be thought of. It is questionable however how much useful information they
would yield. Here a set of measurements is listed together with the reasons why the individual
measurements might be useful:

1

2)

3)

4)

5)

Repeat the measurements on the SUN-Ultra-10 cluster with the newest versions of
the Solaris operating system, the SUN C++ compiler and Objectivity/DB. This
would enable the 64-bits capabilities of the SUN-Ultra-10 architecture. It removes
the 2 GB database file size limit [10] that is currently experienced, and might
improve the performance. The number of computers can also be increased from
four to eight in total, just to see how this scales.

Repeat the measurements on other computer architectures or operating systems.
This might yield information on how the performance test results of commodity
computer architectures compare to each other. However, since the performance of
commodity computers constantly increases, these tests are only useful to make a
short term buying decison. Comparing a state-of-the art Athlon system to a one-
year-old SUN-Ultra-10 system yields only a distorted view, as there are much
faster SUN systems available today. Useful other platforms to test would be the
Compag platform, or an Intel system running the Linux operating System.

Mesasure the performance of a mixed-platform distribution. It is easy to imagine
that the computer system on which the measurement database is installed will need
to be expanded in the future. At that time, the computer platform for the expansion
computers should be reconsdered. Smple performance tests, for example using
the Athlon/Windows 2000 platform together with the SUN-Ultra-10 platform, can
show now if there will be negative issues to mixing them in the future.

Analysing the bottlenecks of the architecture is also very useful. As an example, it
can yield numbers on how many DataManager objects should smultaneousy
access a single database. Thisis useful information when deciding to distribute the
load of one busy computer over multiple computers. Should the database be split,
or isit sufficient to move the DataManager objects to the new computers? It isaso
interesting to analyse when the network connection becomes a bottleneck, and if
Quiality of Service protocols can help resolve network-related problems.

A last test could focus on the usage of CORBA components [11] within the
demongtrator. CORBA components are middle-tier objects that are controlled by
automatic ORB functiondlity instead of by ObjectManager objects. They form an
industry-standard that provides its own middle-tier distribution functionality. Many
component-enabled ORBs include state of the art load-balancing functionality,
which cannot be implemented using the limited resources available to the
Demongtrator development community. It is therefore interesting to compare the
performance of a demondtraior using these systems to the performance of the
current demonstrator implementation.

19

References

[1] OMG group, “CORBAservices specification”, chapter 3. Available on the Internet via
http://mww.omg.org/cgi-bin/doc?formal/97-12-10

[2] Objectivity Inc., http://mww.objectivity.com

[3] Objectivity Inc., “Objectivity/DB Administration”, chapter 8. Available to Objectivity customers with Info
Center access on the Internet via http://info.objy.com/$webfile.send. MANUALS./ADMIN52.PDF

[4] B. U. Niderést, L. Gommans, G. Kemmerling, M. Korten, C. T. A. M. de Laat, W. Lourens and E. A. van
der Meer, "Obijectivity / Corba Distributed Database Performance on a Gigabit Sun-ultra-10 Cluster,"
Real-Time 1999 conference issue of the IEEE Transactions on Nuclear Science. Available from:
http://www.phys.uu.nl/~niderost/papers

[5] See Internet, http://Mww.phys.uu.nl/~wwwfi/gigacluster

[6] Asus K7M motherboard product description:
http://mww.asus.com/Products/Motherboard/slota/k7m/index.html

[7] Microsoft Windows NT server 4.0 product description available on the Internet:
http://mww.microsoft.com/ntserver/default.asp

[8] AMD Athlon processor product description available on the Internet:
http://krypton.amd.com/products/cpa/athlon/

[9] Quantum Atlas 10K product description available on the Internet:
http://mww.quantum.com/products/hdd/atlas_10k/atlas_10k_overview.htm

[10] Objectivity Inc., “Objectivity/DB Administration”, chapter 3. Available to Objectivity customers with
Info Center access on the Internet via http://info.objy.com/$webfile.send. MANUALS /ADMIN52.PDF

[11] ORBOS, “CORBA Component Imperatives”, May 25th, 1997, available on the Internet:
http://mww.omg.org/news/610pos.html

20

Network performance measurements| PP - FOM - UU

I ntroduction

In this chapter the results of the network performance monitor between IPP - FOM and Utrecht
will be discussed more extensively than in the previous report*. The attention will be focussed on
the resultsin the first thirteen weeks of the year 2000. However, aso the improvements during the
complete observation period (22-8-1999 until 2-4-2000) are discussed. Because bandwidth, and
not so much availability, is the limiting factor in these connections, mainly throughput results are
presented here.

Stes

The results of the throughput measurements between the following siteswill be compared:

Connect i on BW [Mi t/s] Weeks

ZANK=>UJ 36 100 34 (99) - 14 (00) 34

| PP<=>FQM 10 (99) - 05 (00)
TEN- DE<=>TEN- NL 100 37 (99) - 49 (99)

The participating sites where placed at the following locations:

Site Locati on

ZAM ZAM Departrent, Julich, Cermany.

| PP | PP Departnent, Julich, Germany.

TEN- NL Dut ch PoP TEN 155 network, Amst er dam
Net her | ands.

TEN- DE Cerman PoP TEN 155 network, Frankfurt,
Ger many.

FQM FOM Institute R jnhuizen, N euwegein,
Net her | ands.

WJ 36 Conmput ati onal Physics Uni. Wrecht,

U recht, Netherl ands.

For the connections between these sites the results concerning performance and availability are
presented in the following.

Timethroughput averages

In this section the throughput average values, calculated at the hours of the days for the bi-
directiona connections ZAM <=> UU-36 and IPP <=> FOM will be compared. There are mean
values calculated for working days (Mon - Fri) and for in the weekend (Sat - Sun). The resultsare
obtained for the first thirteen weeks of 2000. This implies that the mean value of a workday
(weekend day) is the result of averaging 65 (26) throughput values. Figure 7 presents the hourly
throughput values during working days and Figure 8 shows the corresponding values in the
weekend.

* Remote Participation, Report |, Jan 2000

21

T

ZAH => UU-36 ——

UU-36 => ZAH ——
IPP => FOH —5—

18 | -1 FOH =» IPP ——

Throughput [Hbitsf=]

3 1 1 1 1

a 5 18 15 28
Hour of Day

- Figure 7 Mean workday throughput in the network between IPP and FOM

12 T T

T
ZAH => UU-36 —6—
UU-36 => ZAH ——
IPP => FOH —E—
FOH => IPP —s—

Throughput [Hbitsf=]

4 1 1 1 1

a 5 18 15 28
Hour of Day

- Figure 8 Mean weekend throughput in the network between IPP and FOM

22

From both figures the following conclusions can be drawn:

The striking behaviour is the clear performance decrease at working days between
08h - 18h. This is especialy true for the connections between the sites with 100
Mbit/s interfaces (ZAM <=> UU-36), but also the connections between the sites
with 10 Mbit/s interfaces show performance diminution. During the weekend the
performance difference between day and night is not so very significant.

We compute the ratio between the minimum throughput during daytime and the
maximum throughput at nightfor working days. The table below contains this ratio
for the various connections (in the values the non-typical performance decreases
for IPP=>FOM at 00h and for ZAM <=> UU-36 around 20h have been ignored)

Connecti on M n- Tput / Max- Tput
ZAM => W36 0. 60
W 36 => ZAM 0.64
IPP => FQM 0. 67
FOM => |PP 0.79

With the exception of FOM => |IPP dl ratios are about the same vaue. The
explanation for this may be that with congestion at a router, the queuing protocols,
diding window adjustment, etc. are responsible that a proportiona part of the
received packages will send to the next hop. Thisimplies that the bandwidth to the
next hop will be related to the incoming bandwidth. This mechanism breaks down
when packets are lost due to heavily congestion at the router. Therefore, these
results were less clear found in earlier throughput measurements where the
performance of the network was worse.

The performance decrease at 00h for the |PP => FOM connection is typical for this
connection. The result is unknown, but probably loca to the IPP. May be backup
activity or other regular service jobs, generating local traffic may be the cause. The
load of the IPP host at that moment is not larger than otherwise, so it is not a
performance feature. The reason that we do not find it in the reverse situation,
FOM => PP, may be due to the overd| lower bandwidth of that connection.

The performance decrease around 20h for the connection ZAM <=> UU-36 is not
clear. However, other results show that the cause is probably situated in the Utrecht
University network. The performance diminution isfound for al days of the week.

23

Throughput hisograms

In this paragraph histograms from throughput counting are presented for the connections ZAM
<=> UU-36. The bin counts are given as percentage from the total # of observations. The results
are obtained for the first thirteen weeks of the year 2000, but only at working days (Mon - Fri)

The following histograms are presented: Figure 9 and Figure 10 show the histograms for
connection ZAM => UU-36 and v.v. UU-36 => ZAM during working hours (08h - 18h);

Figure 11 and Figure 12 display the histograms for connection ZAM => UU-36 and the
reverse, UU-36 => ZAM, during the evening and night (18h - 24h; 00h - 08h).

The results lead to the following conclusions:

m In the evening and night the higher throughput bins are more frequently
represented than during workday, as may be expected.

= Asexpected, during workday the lower bins (Tput U5 Mbit/s) are more filled, due
to congestion, than during the evening and night.

= For the connection, UU-36 => ZAM there exists more heavily congestion (Tput U
1Mbit/s) than for the ZAM => UU-36 connection.

= With the exception of ZAM => UU-36 at nighttimes, al histograms show a clear
maximum (shifted to a larger bin at night compared to the working hours). The
distribution of the higher throughput bins shows a shape smilar to a Poisson
distribution, probably due to router -> queue algorithms, while there exists a
relaive flat shape for the lower bins. In this area more incident driven protocols
may play arole, like for instance packet retransmission.

24

1@

ZAH =» UU-36 ——

Count [¥1
o

a 2 4 6 i 18 12 14
Throughput [Hbit/=]

- Figure 9 Histogram of the throughput distribution during working days (08h - 18h) ZAM - UU

12

16

UU-36 => ZAH ——

18 r

Count [¥]1
o

a 2 4]] 18 12 14
Throughput [Hbit/=s]

- Figure 10 Histogram of the throughput distribution during working days (08h - 18h) UU - ZAM

16

25

16

ZAH => UU-36 ——

14 + 4

12 - 1

18 r 1

Count [¥]1
-

el

a 2 4]] 18 12 14 16
Throughput [Hbit/=s]

- Figure 11 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) ZAM -
uu

12

UU-36 => ZAH ——

18 r 1

Count [¥]1
o

a 2 4]] 18 12 14 16
Throughput [Hbit/=s]

- Figure 12 Histogram of the throughput distribution during nights of working days working days (18h - 24h; 00h - 08h) UU -
ZAM

26

Overview timethroughput aver ages

In this section we give an overview of the throughput average values, caculated at the hours,
from al available workday datafor a particular connection. The data are presented in the form of
3D plots, where the x-axis represents the hour and the y-axis the week of year (1999 and 2000).
The plotsfor the following connections at workdays (Mon - Fri) are shown:

TEN-DE <=> TEN-NL

During a couple of weeks at the last haf of 1999, hosts at the Frankfurt and the Amsterdam PoP
of the TEN-155 network were added to be able to see the influence of router tuning in the
throughput performance measurements. Figure 14 displays the performance of the TEN-DE =>
TEN-NL connection and Figure 15 the reverse connection. In both plots the data are averaged
over the workdays of one week.

The following conclusions can be given:

Both plots clearly show the performance improvements due to the router tuning.

In fact there were two stages in the tuning: after large improvements around week
42 (1999), there was aso a tuning around week 48 where the performance during
daytime was improved. Meanwhile also some high performance pesks especidly
for TEN-DE => TEN-NL) were flattened.

ZAM <=>UU-36
Error! Reference source not found. presents the hourly throughput values for the connection

ZAM => UU-36 and Figure 16 for the reverse connection. In these plots the data are averaged
over the workdays of two weeks.

The following conclusions can be given:

The same conclusions are valid as for the TEN-DE <=> TEN-NL connections.

Around week 52 1999 there is a maximum for al hours. This is caused by the
traditional low seasondl traffic, especialy in the Netherlands, in that period.

In begin of 2000 there was a further improvement of the performance.

27

Throughput [Hbit/=]

25
28
15

i@

Hour of Day

ZAH => UU-36 ——

13

Cont, Heek #

- Figure 13 Performance of the network between ZAM-FZJ Germany and UU, the Netherlands.

Throughput [Hbit/s]

45
48

ha
=
T T T T T T T T 1T

Hour of Day

28

a8

TEN-DE => TEN-NL —+—

a5
a6
a4

Cont, Heek #

- Figure 14 Performance of the network backbone between Germany and the Netherlands

28

Throughput [Hbit/s]

35
38
29
28
15
i@

18

Hour of Day

28

TEN-NL => TEN-DE —+—

a8
43
456
44
42
40 Cont, Heek #
33

- Figure 15 Performance of the network backbone between the Netherlands and Germany

Throughput [Hbit/=]

e e R NS
DNMAMODNADODN
T T

Hour of Day

uU-36 =» ZAH ——

13

Cont, Heek #

38

- Figure 16 Performance of the network between UU, the Netherlands and ZAM-FZJ Germany.

29

Bad performance events

- Table 1 Events with Tput < 0.5 Mbit/s for the connection ZAM <=> UU-36, w

Dat e Ti ne Site Site Tput Pi ng | ost
dd/mmlyyyy hh:mm:ss 1 2 Mbit/s min[us] avglus] max[us] [%]
29/03/2000 17:00:08 UU-36 ZAM 0.32 31.200 57.075 85.500 5.000
29/03/2000 15:00:04 UU-36 ZAM 0.21 29.300 45.431 96.500 7.500
29/03/2000 13:00:02 UU-36 ZAM 0.02 23.500 46.862 144.000 2.500
29/03/2000 12:00:07 UU-36 ZAM 0.03 19.500 27.762 44,500 2.500
29/03/2000 11:00:03 UU-36 ZAM 0.07 30.500 60.181 81.500 5.000
29/03/2000 10:00:03 UU-36 ZAM 0.02 19.100 34.594 63.000 5.000
29/03/2000 09:00:03 UU-36 ZAM 0.08 18.300 23.492 45.000 2.500
29/03/2000 08:00:03 UU-36 ZAM 0.01 17.800 22.600 44,100 2.500
29/03/2000 07:00:04 UU-36 ZAM 0.02 16.500 20.341 112.000 2.500
29/03/2000 06:00:03 UU-36 ZAM 0.15 17.500 20.051 32.300 2.500
29/03/2000 05:00:03 UU-36 ZAM 0.02 17.300 18.611 20.100 0.000
29/03/2000 04:00:04 UU-36 ZAM 0.02 17.200 18.624 21.300 0.000
29/03/2000 03:00:03 UU-36 ZAM 0.01 17.000 19.868 61.000 0.000
29/03/2000 02:00:03 UU-36 ZAM 0.02 17.500 23.264 33.300 5.000
29/03/2000 01:00:03 UU-36 ZAM 0.14 17.400 20.060 52.600 7.500
29/03/2000 00:00:04 UU-36 ZAM 0.01 17.200 19.697 24,700 0.000
28/03/2000 23:00:02 UU-36 ZAM 0.03 17.100 19.224 22.900 2.500
28/03/2000 22:00:01 UU-36 ZAM 0.00 19.100 25.067 35.000 5.000
28/03/2000 21:00:02 UU-36 ZAM 0.00 17.500 20.013 28.800 0.000
28/03/2000 20:00:03 UU-36 ZAM 0.00 17.400 21.742 30.800 5.000
28/03/2000 19:00:02 UU-36 ZAM 0.01 17.700 19.561 23.200 0.000
28/03/2000 18:00:03 UU-36 ZAM 0.01 17.800 19.263 23.700 0.000
28/03/2000 17:00:01 UU-36 ZAM 0.02 18.300 25.151 53.900 7.500
28/03/2000 15:00:02 UU-36 ZAM 0.23 98.500 268.350 448.000 20.000
27/03/2000 18:00:04 UU-36 ZAM 0.34 18.300 20.792 23.800 0.000
22/03/2000 18:00:01 UU-36 ZAM 0.16 25.600 35.103 47.300 0.000
22/03/2000 12:00:06 UU-36 ZAM ok 83.000 121.276 152.000 0.000
20/03/2000 16:00:13 UU-36 ZAM ok 25.200 27.197 33.400 0.000
16/03/2000 16:00:06 UU-36 ZAM 0.10 25.300 31.614 44,700 5.000
16/03/2000 16:00:06 ZAM UU-36 0.08 25.000 32.243 59.000 2.500
16/03/2000 15:00:05 UU-36 ZAM 0.00 25.100 27.881 34.700 2.500
16/03/2000 15:00:05 ZAM UU-36 0.00 25.000 28.314 36.000 7.500
16/03/2000 14:00:12 UU-36 ZAM 0.02 24.400 27.229 37.300 0.000
16/03/2000 13:00:08 UU-36 ZAM 0.12 19.100 22.389 31.000 2.500
16/03/2000 12:00:02 UU-36 ZAM 0.04 18.700 21.543 29.000 2.500
16/03/2000 11:00:05 UU-36 ZAM 0.01 18.400 22.418 46.300 0.000
16/03/2000 10:00:02 UU-36 ZAM 0.48 334.000 422.105 505.000 0.000
16/03/2000 10:00:02 ZAM UU-36 0.21 448.000 527.811 629.000 2.500
14/02/2000 15:00:04 UU-36 ZAM 0.28 44.200 47.850 51.300 10.000
08/02/2000 12:00:07 ZAM UU-36 0.40 30.000 36.270 43.000 2.500
28/01/2000 09:00:05 UU-36 ZAM 0.46 30.500 36.554 43.300 2.500
24/01/2000 17:00:06 ZAM UU-36 ook 766.000 850.094 919.000 15.000
23/01/2000 14:00:06 ZAM UU-36 0.03 25.000 52.667 83.000 5.000
20/01/2000 10:00:07 UU-36 ZAM ok 23.000 25.126 30.400 0.000
13/01/2000 16:00:07 UU-36 ZAM ok 17.500 19.463 23.300 0.000

30

Table 1 shows the monitor parametersfor al events where Tput < 0.5 Mbit/s, which isaarbitrairy
for the first thirteen weeks of 2000. Only the events for the ZAM <=> UU-36
connections are listed.

number,

The following conclusions can be derived from thistable:

There are no structural performance decreases (collgpses).

The performance diminutions are clustered at the same dates. They are probably
caused by network problems. This is especidly the case for the events during the
night.

The most events are registered for the connection UU-36 => ZAM. They can also
be observed as loca maximain the histograms for the corresponding bins.

- Table 2 Failures in the network listed according date / time for the last part of the reported period (end April 2000) for the
connection FOM - IPP, w

Date Time Site Site Tput Ping lost
dd/mmlyyyy hh:mm:ss 1 2 [Mbit/s] min[us] avglus] max[us] [%]
03/05/2000 12:30:05 FOM IPP 0.08 21.511 31.684 100.014 2.500
02/05/2000 14:30:05 FOM IPP 0.45 26.727 32.291 39.207 5.000
01/05/2000 01:30:04 FOM IPP fid 94.804 95.665 96.626 0.000
01/05/2000 01:30:04 IPP FOM 0.03 93.600 94.621 95.746 0.000
30/04/2000 14:30:05 FOM IPP fid 94.999 95.503 96.045 67.500
30/04/2000 04:30:04 FOM IPP ok 18.284 19.087 20.518 0.000
30/04/2000 04:30:04 IPP FOM 0.31 17.550 18.313 19.540 0.000
29/04/2000 03:30:06 IPP FOM ok 17.550 24973 219.375 15.000
25/04/2000 15:30:04 FOM IPP 0.35 25.996 31.196 35.238 10.000
14/04/2000 15:30:05 IPP FOM 0.05 26.325 80.163 254.475 22.500
14/04/2000 14:30:05 FOM IPP 0.20 28.613 36.875 41.483 0.000
14/04/2000 13:30:05 FOM IPP 0.05 30.705 103.175 267.399 27.500
14/04/2000 13:30:05 IPP FOM 0.14 31.200 114.903 240.342 30.000
13/04/2000 08:30:04 IPP FOM 0.03 23.400 84.153 373.724 15.000
12/04/2000 14:30:05 FOM IPP 0.46 30.107 49.902 137.668 10.000
11/04/2000 12:30:06 FOM IPP 0.21 30.782 160.100 508.345 37.500
11/04/2000 12:30:06 IPP FOM 0.16 25.350 108.707 253.500 22.500

Table 2 shows the events with Tput < 0.5 Mbit/s, for the connection IPP — FOM directly. Since
the first week of April this connection was monitored once again. Thereis still not much Statistics.

Overal Condusons

The connection Jilich - FOM / UU performs quite satisfactory. There are no
structural performance decreases.

The required bandwidth of 10 Mbit/s can only be obtained during the night.
However, improvements in the TEN-155 network in the near future may help to
improve this picture.

31

Video conferencing

I ntroduction

In this chapter we will deal once more with the recommended architecture for video conferencing
that uses the “Armada Cruiser” hardware, present a the TEC partners. As explained in the
previous report and here, this is ill the best solution for point-to-point, quality video
conferencing at limited bandwidth. We will describe the way in which the present tools and
hardware can be used for multi-cast conferencing. This requires additional hardware at TEC, but
could be tested using the Surfnet facilities, present at the UU>.

We will aso briefly comment on the “public domain® software solutions based on Mbone:
VRVS, VIC and RAT

VCON MedtingPoint 4.01 with the RadVison MCU-323

From the tests of the last year we can conclude that hardware clients offer a very usable qudlity.
Typicaly the following performance is measured:

Video frame rate: 30 frames per second.

Used bandwidth: 384 kilobit/second excluding data bandwidth (320 kilobit for
video and 64 kilobit for audio).

Video format: CIF, i.e. 352x288 pixels.

Measured delay: approximately 0.5 seconds point-to-point for long distance
connections. Not much difference is measured for European connections and
connections from Europeto the U.S.

The tested MCU is a dedicated hardware device supporting up to 15 video cdls and up to 24
audio only cdls. The MCU comes with a software upload tool to upgrade the software from any
windows 9x/NT machine. Our unit was configured software version 1.5 (build 1.5.0.6).

A single MCU, as described above, can support up to 9 smultaneous video cals. The tested
MCU is gill available as a "free-love” MCU, this means that people can connect to it when it is
not used by SURFnet (its owner).

Information on when the MCU should be available and how to connect can be requested by e-
mail: h.m.a.andree@phys.uu.nl

Guiddinesfor the use of the recommended “VC” hard- and software can be found in an appendix

0

® We already tested with Dr.Schorn (IPP-TEC) and he agrees that this is a relatively simple system that requires only a mouse
click to connect.

32

VRVS, VIC and RAT
Introduction

The VRVS package (vrvs.cern.ch) includes the VIC (currently verson 2.8) and RAT (3.0.29)
tools for video and audio respectively. We evauated the tools mentioned above using point-to-
point connections. The use of aVRV S reflector offers multi-point facilities for these tools.

Teds

Wetested the VIC and RAT tools on two PC's on different VLAN's but inside the same building.
The audio latency, using the RAT tool was up to four seconds, especialy when at the same time
the VIC tool was running. When only one microphone was un-muted, no VIC tools were running
and no audio driver was using full duplex, the delay was about 1 second.

The VIC tool is much quicker athough (in case of a point-to-point connection) selection of video
device and IP port numbers must be done by the end-user. It is also possible to use a config file,
but the use of these tools is far less smple than that of the well-known H.323 systems like
NetMesting and VCON MeetingPoint. The quality of VIC iscomparable to that of NetMeeting.

Concluson

Asfar as VRVS concerns. VRV S is a server for the well known VIC/RAT tools. The end-to-end
delay with RAT (audio) should be 1 second, not including transcoding in the server. This smply
lies in the specification of the chosen CODEC for audio. With systems that work well with
Netmeeting however, we measured much larger delays. Asthe VIC and RAT tools offer aquality
that doesn't match that of hardware H.323 systems by any means we do not investigate the use of
aVRVS saver yet. Software conferencing systems may be very promising in the future, but at
the moment only hardware systems seem to offer the quality and that is needed in future TEC
collaborations.

33

Guiddinesfor usng VCON MestingPoint 4.01 with the RadVison MCU-323
Introduction

This part describes the use of VCON MestingPoint 4.01 in combination with the RadVision
MCU-323. It is not meant as ageneral guide to VCON MeetingPoint. For a comprehensive guide
to MedtingPoint we refer to the (online and written) documentation that accompanies the
software.

Neither isit intended to be a guide to MCU operators. We assume that within an organization that
setsup an MCU, at least one technica person with knowledge of H.323 conferencing is available.

Conference Panel

2! A ?

Yideo Dial [ata Help

- Figure 17 Configuration panel. NetMeeting
Configuring M egtingPoint

We assume that VCON MeetingPoint 4.01 is successfully installed and that the user is able to set-
up point-to-point connections with other VCON systems. This means that the user is able to Start
the software and dia another user. Furthermore we assume that the MCU isinstalled and properly
managed

If the software is started, the “Configuration Panel” (Figure 17) is visible. Depending on the
chosen data-sharing application it can have a different look. The picture above shows the pandl
with the Microsoft NetMeeting date application whereas the picture below shows the pand for
the standard date application. Both applications use the same data stack and are interoperable.

Conference Panel

D] W B B B 9

£ | Yideo Dial Tranzfer Strare W-E?u:uard Help

- Figure 18 Configuration panel. Standard Application.

35

The only MCU specific configuration need isto provide the software with gatekeeper registration
information. To do this, click on the VCON logo in the “Conference Paned” and sdlect
“Configuration Properties’. Then sdlect the “H323" tab (see beow) and fill-out the “User
Number” and “Gatekeeper Address’ fields. In our example the “User Number” equals 7783100
and the “Gatekeeper Address’ is 131.211.147.5, but normally the MCU operator must provide
these two values.

[Configuraton Propertis 3|
Llserlnfu:urmatinnl Communicaticn I Switch Type I Phaone Mumbers H323 |Li__LI
—H323 Information -%3
P Address: [131.211.147.3
Izer Alias: I.ﬁ.ndree
User Number. |77a3100

Gatekeeper &ddiess: |1 3.211.147H

¥ Allow &daptive B andwidth &djustment
¥ Enable lip synchrorization mechanizm
V¥ Automatic butfering contral

Your User Aliaz and Uszer Mumber are uzed to uniguely
identify your camputer on the nebwork, Yaour Uzer
Mumber muzt congizt of digits anly.

If vou do not know the addresz of the Gatek.eeper, pou
ma leave thiz field blank.

- Figure 19 Window for Configuration properties.

Now the MeetingPoint software has to be restarted to complete the configuration.

36

Satingup acall

To set up acdl, click “Did” in the “Conference pand” (Figure 20). This action opens a new
window. In this window, click in “LAN Connect”, fill-out the conference number in the dialog
box at the right side of the window and finaly click on “Dia” just below this didlog box. The
conference number (69 in our case) must be provided by the MCU operator. Normally the audio
of al participants is mixed and the video is switched to the loudest speaker. Of course this
switching does not affect the local video window and the first participant in a conference sees its

own video in the remote video window until asecond participant connects to the conference.

LAM Connect - MeetingPoint Address Book, Explorer

File Edt Yiew Toolz [hal Help
e g Address Books
--[47 Speed Dial List
: B9 -
E'E M anual Dialers “—I
o 1SDM Dialer . .
LAN Connect I E'al I | Hangip |
35 PC Phone
| |terachiye Mulheast I
I Clear I l Optiong:» I
Ready [o
- Figure 20 Setting up a call

37

Sartingthe WWW interface

Each participant can use Internet Explorer (version 4 or higher) to see who is connected to the
MCU and start data sharing. First the user must start the browser and fill-out the I P address of the
MCU. In our casethisis 131.211.147.5. (Figure 21)

<3 RADVision MCU - 323 1.5 - Microsoft Internet Explorer

| File Edt “iew Favontes Toolz Help

@« .0=s @ [| a H @ B
Back Eariard Stop Refresh Home Search Favaortes Histom b il
Jﬁgdress@ http:/4131.211.147.5/ ~| PG |] Links >

RADVISION

MCU-3231.5

Please, enter the conference password:

|63

oK | Clear |

€] L | & Intemet i

- Figure 21 The WWW interface

As conference password (see above) the conference number (provided by the MCU operator)
must be chosen. This conference number isthe same asis used for didling the conference.

38

After clicking on “OK”, the participant is logged in to the WWW interface, and a list of

connected users (see below) is shown.

<3 RADVision MCU - 323 1.5 - Microsoft Internet Explorer

_| File Edt “iew Favontes Toolz Help
o I < AT+ BRTE= R B S S
Back Eariard Stop Refresh Home Search Favaortes Histom b il

| Address [@] hpan 312111475/ | @Go || Links »

RADVISION

MCU-3231.5

Irevite |
Fefresh |

Chair Control | FPhone
Participant
‘ EIR ‘Nu.mh er

| [Andres 7783100 [Veonh323[131.211.147.3

1 Participant(s) m Conference 69

Tvpe ‘ IP

€] L | & Intemet

- Figure 22 List of users connected to MCU

39

Setting up data sharing

In case that we want to use data sharing (T.120), the data connection must be started from the
WWW interface using Internet Explorer. This festure is not available for Netscape. To start data
sharing select another participant and click on the “Data Share€’ button that is now availablein the
left frame. (Figure 23)

<3 RADVision MCU - 323 1.5 - Microsoft Internet Explorer

;

| File Edit Miew Favorites Tool: Help

e 2. @0 dl@a & o

Back Earard Stop Fefresh Home Search Favortez Hiztom b ail
| ddress [&] hip:2131. 211 14750 > @G0 ||Links »
RADVISION -
MCU-3231.5
Diata Share |
: 1 Participant(s) m Conference 69
[rvite | X
Refresh | B Ph
. . one
Participant Type 1P
Chair Control | ‘ | g ‘N“IHI-"EI' " ‘

Andree (7783100 [Voonh323 [131.211.147.3

{&] Done L | & Intemet i

- Figure 23 Data sharing

This action has to be repeated for every participant that is to be included in the T.120 (data
sharing) part of the conference.

40

IDL Interface Description ObjectM anager
oj ect Manager . i dl

/1 Version 1.0.1 : updated 23-02-2000
/1

#i f ndef OCBIJECTVANAGER i dI
#def i ne CBJECTVANAGER i dI

#i ncl ude "Dat aManager.idl"
[/ #i nclude "D agnostic.idl"

typedef string DataManager Type ;

i nterface hj ect Manager

typedef sequence<string> StringSeq ;
t ypedef sequence<l ong> LongSeq ;

enum QOrResul t Type
{
Oper at i onSuccesful ,
Aut hori sati onFai | ed,
I nval i dRequest,
UnknownDat aManager Type,
I nternal Error

} y
exception Error

QmResul t Type type ;

string nmessage ;

.

struct OnLi st Struct

{
OmResul t Type Resul t ;
string strResult ;
StringSeq Nanes ;
LongSeq | Ds ;
| ong i Size ;

.

struct Onrli st ReqStruct

{

G yptoSeq Key ;

struct QrConStruct

QmResul t Type Resul t ;
string strResult ;
string IR ;
.

41

struct OrConReqStruct

G ypt 0Seq Key ;
| ong ilD ;
.

bool ean Cet Li st (
in QmistRegStruct
out Qrli st Struct
raises(Error) ;

bool ean Get Dat aManager (
in OrConReqgStruct

out QrConSt ruct
raises(Error) ;

#endi f

42

Li st Request
ListResult)

Connect i onRequest ,
ConnectionResult)

IDL Interface Description DataObject
Dat aChj ect . i dl

#i f ndef DATACBJECT_i dI
#defi ne DATACBJECT_i dI

/1

/1 Typedefs

/1

t ypedef sequence<oct et > Byt eSeq;

t ypedef sequence<short> Short Seq;

t ypedef sequence<unsi gned short > UShort Seq;
t ypedef sequence<l| ong> LongSeq;

t ypedef sequence<unsi gned | ong> ULongSeq;

t ypedef sequence<fl oat> Fl oat Seq;

t ypedef sequence<doubl e> Doubl eSeq;

t ypedef sequence<string> StringSeq;

typedef |ong Ti meStanp;

/1

/1 Enurerate types

/1

enum Cbj ect Type

{
cUnknown,
cComment ,
cM ne(bj ,
cPol yCal i brati on,
cTabl eCal i brati on,
cShort Base,
cLongBase,
cScal ar,
cD mill nt 8,
cDi nil nt 16,
cDi nil nt 32,
cD nlUl nt 16,
cD nlUl nt 32,
cDi niFl oat 32,
cDi niFl oat 64,
cD n2l nt 8,
cDi n2l nt 16,
cD n2l nt 32,
cD nRUl nt 16,
cD nRUl nt 32,
cDi n2Fl oat 32,
cD n2Fl oat 64,
cD mNl nt 8,
cD MmNl nt 16,
cD MmNl nt 32,
cD m\Ul nt 16,
cD m\UI nt 32,
cD m\Fl oat 32,
cD m\Fl oat 64

enum AccesshMde
{
cNone,
cRead,
cWite,
cReadWi t e,
cPol ,
cPol Read,
cPol Wite,
cPol ReadWite

}

/1
/1 Structs used in the data objects
/1

struct Policy

{

unsi gned short gid;
AccesshMde node;
b

t ypedef sequence<Policy> PolicySeq;

struct Revlnfo

{
[ong tine;
string usernane;
string description;

}1
t ypedef sequence<Revlnfo> Revl nf 0Seq;
struct SiUnits

long kg, m s, A cd, nol, K rad, sr;
b

struct Cbj ect Header

{
string nane;
unsi gned | ong | evel;
unsi gned long quality;
string full Path;
StringSeq references;
oj ect Type type;

b

/1
/1 Struct for actual data objects
/1

struct Conment

oj ect Header oh;
string content;

};

struct Short Base

{
oj ect Header oh;

SiUnits unit;
doubl e start;
doubl e step;

};

struct LongBase
{

oj ect Header oh;
SiUnits unit;
Doubl eSeq dat a;
}s

struct Pol yCalibration
{
bj ect Header oh;
Doubl eSeq coefficients;

}!
struct Tabl eCalibration

bj ect Header oh;
Doubl eSeq t abl e;
b

struct M neQbj
{
bj ect Header oh;
string m netype;
unsi gned | ong byt ecount;
Byt eSeq content;

}s

struct Scal ar

{
bj ect Header oh;
SiUnits unit;
doubl e tine;
doubl e content;

};

struct DnNInt8
{
oj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;
unsi gned short adcresol ution;
bool ean si gn;
Byt eSeq content;

}s

struct D nNInt16
{
oj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;
unsi gned short adcresol ution;
Short Seq content;

45

}s

struct D nmNI nt 32

{
oj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

unsi gned short adcresol ution;

LongSeq content;
b

struct D m\UI nt 16

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

unsi gned short adcresol ution;

UShort Seq content;
b

struct D nNU nt 32

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

unsi gned short adcresol ution;

ULongSeq cont ent;
b

struct D n\NFl oat 32
{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
Fl oat Seq content;
b

struct D mNFl oat 64

{
bj ect Header oh;

SiUnits unit;
ULongSeq si zes;
StringSeq bases;

Doubl eSeq content;
b

#endi f

46

IDL Interface Description DataM anager
Dat aManager . i dl

/1
/1

#i

Version 1.2.1 : updated 23-02-2000

fndef DATAMANACER i di

#def i ne DATAMANACER i dI

#i

/1
/1
/1

ncl ude "DataChject.idl"

Typedef s

t ypedef sequence<octet, 128> O ypt 0Seq;

i nterface DataManager

{

enum DnErr Type

{
NoTr ansact i on,
Nest edTr ansact i on,
Per m ssi onDeni ed,
I'll egal Path,
I'll egal Mode,
NoSuch(hbj ect ,
oj ect Exi st s,
LockTi neout ,
LockNot Acti ve,
I nval i dType,
Internal Error,
Servi ceNot Avai | abl e,
SecurityError

}s

exception Error

{

DnErr Type type ;
string nmessage ;

};

exception Cannot Proceed
{

Dat aManager NewCont ext ;
string Rest Of Pat h ;

};

enum | nterpol ati on

{
None,

Aver age,
M nMax
b

const unsi gned | ong naxl dl eTi ne = 3600 ;
readonly attribute unsigned |long idleTine ;

/1 Transaction operations
void start(in CyptoSeq signature)

47

rai ses(Error);

void commit(in CyptoSeq signature)
rai ses(Error);

voi d abort(in CyptoSeq signature);

voi d commi t AndHol d(in CyptoSeq signature)
rai ses(Error);

/1 Data object operations
void store(in any obj, in string path, in OGyptoSeq signature)
rai ses(Error);
voi d update(in any obj, in string path, in bool ean header Only,
instring info, in OyptoSeq signature)
rai ses(Error);
Revl nf oSeq getH story(in string path, in OyptoSeq signature)
rai ses(Error);
Pol i cySeq getPolicies(in string path, in OyptoSeq signature)
rai ses(Error);
bj ect Header get Header (in string path, in OyptoSeq signature)
rai ses(Error);
any getProperties(in string path, in OyptoSeq signature)
rai ses(Error);
any getData(in string path, in OyptoSeq signature)
rai ses(Error);
D mM\Fl oat 64 get D nlData(in string path, in unsigned long first,
i n unsigned | ong npoints, in unsigned | ong
interval,
in Interpolation how, in CyptoSeq signature)
rai ses(Error);
D m\Fl oat 64 get Di nRDat a(in string path,
in unsigned | ong x_first,
in unsigned |long x_npoints,
in unsigned | ong x_interval,
in unsigned long y_first,
in unsigned | ong y_npoints,
in unsigned long y_interval,
in Interpolation how,
in OGyptoSeq signature)
rai ses(Error);
void setPolicy(in string path, in Policy p, in OyptoSeq signature)
rai ses(Error);
void rm(in string path, in OyptoSeq signature)
rai ses(Error);
void lock(in string path, in CyptoSeq signature)
rai ses(Error);
voi d unl ock(in string path, in OGyptoSeq signature)
rai ses(Error);
void link(in string srcpath, in string dstpath, in OyptoSeq
gnat ure)
rai ses(Error);

S

/1 Directory operations

StringSeq list(in string path, in OGyptoSeq signature)
rai ses(Error, CannotProceed) ;

/1 Qher operations

voi d keepAlive(in OyptoSeq signature)
rai ses(Error);

oneway voi d shutdown(in CyptoSeq signature);

}s

#endi f

48

