View metadata, citation and similar papers at core.ac.uk brought to szO@RE

provided by Utrecht University Rep

Remote Participation Services

Report |

Werkgroep Fysische Informatica, faculty Physics
and Astronomy, Utrecht University

https://core.ac.uk/display/39698897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E.A. van der Meer,
B. Niderost,

A. Taal,

H Blom,

H.M.A. Andree,
C.T.AM. de Laat,
W.Lourens

Utrecht, 9-12-99

(O] 11 (] o | OO RUPP PP PPURRRT 1
SUMIMANY ¢ttt e e ar e as et e s e sr e e re e e nnne s 5
PrETACE ... et 6
Network performance measurements IPP - FOM - UU..........ccccovcvevieeniennns 7
INEFOTUCTION ...ttt bbb e nre 7
FEALUIES ...t 8
Measurements IPP -- FOM - UU ..o 9
CONCIUSION....eeitietie ettt sttt sb e st bbb sbeenree 10
Overview videoconferencing SYSLEMSccocverieieene e 12
INEFOTUCHION ...ttt e 12
ConferenCing CIENTSeoiiiiieiie e 12
TS . ettt 12
Overview IP based ClIENTScooveieeiiinieieee e 12
MUHIPOINT SEIVETSeetiitieiteete ettt e 13
RECOMMENTALIONSeotiiiiiieeieee e 13
MCU ReCOMMENALION........coiieiieiieieeie ettt e 14
MEASUrEMENT ALA.........eeiteiriiiriieriee e e 15
INEFOTUCTION ...ttt e 15
(O] == N 16
DAtADASEeoiieitieee e 16
Storage HIerarChy ..ot 17
Database DIStrDULIONceiieiieiiereeeee e 18
DAta MANAGETeeeeieieiieeitee ettt 20
Interface DataMAaNAQETcueieireiiiiiie e e 20
Transaction SPeCific OPErationscoceeveereereerieiie e 20
Data SPeCific OPEratioNScoevieiierieie e e 20

Access rights and the DataManagerccocvverenienene e 22

Extended iNtErfacCe.........ooovveeeeeeeeeeeeeeee e 22

Performance MEaSUrEMENEScouiruiriiiienie sttt 23
Direct versus CORBA:ANY parameter passing..........ccceveereervenneesneennns 25
Filling @ database..........ccceeiieiieiiee e 25
Dependency on number and size of Objectsccccevevevceicenice e, 26
CONCIUSIONS ...ttt st st sb ettt sb e b b sbeenree 27

APPENAICES ...ttt 29
112 TP PSP SRR 30
SO E et 31
ANY 2 0DJECT. ... 34
0etDyNaObJeCtRETc..ooii 37
CORBA Specification of the DataManager...........ccoveeveereeneeneeneeneens 39
IDL Interface Description DataManageroccvvereerienienieeieseeens 49
CORBA ODbjJecCt DIiagrams.........ceieereereereesieesieesieesieesiee e sieesieesieeseeens 54
Objectivity Specification and Class designcccvcvvvvevevceeveesieeenen 56
DDL for Objectivity database [ayoutcccceveeneinieneineeeee 60
Objectivity Class diagramscoceveeieereeieesee e e 67

Remote participation services rely on stable network connections between partners. Research was conducted
in order to get information about the present status of national and internationa research network backbones
aswell as about the situation locally (IPP and FOM). Measurements indicate that wide area research networks
are il not in a stable state. However improvements can be observed. In the near future it is expected that a
bandwidth in the range of 10 - 20 Mbit/s can be obtained, even during the day. The Stuation in the loca
ingtitutes (IPP and FOM-Rijnhuizen is dready stable. It is recommended that in the local ingtitutes the
bandwidth will be eventually upgraded to 100 Mhit/s.

Remote monitoring of experiments cannot do without a video conferencing system. Also collaboration
meetings will be conducted using this facility. At present, video conferencing (point-to-point) using hardware
solutions (VCON) have shown to be adequate. Multi cast video conference is feasible if one implements
certain standards and uses specific solutions. It is recommended where necessary to bring the hard- and
software up to the required level.

Storing data via CORBA into an object database has proven to meet the requirements of 500 MB/min in a
limited amount of servers (3). One has to take an implementation route via specific data types in CORBA (
not the any type) and use an efficiently structured database. The complete design of the database used during
the testsis given in Appendices. The specifications can be adapted easily to other implementations.

This document isthe first report on issues related to the contract " Remote participation services' between | PP-
FZJ and WFI-Utrecht University .

In the contract the main subjectsto research are distinguished as.

m Performance aspects of an object database to be used in plasma physics experiments and rel ated
issues

m Interfaces between a CORBA architecture and the (object) database
m Interconnections viaan eectronic network (public and private)

In the following report al these issues will be treated in the sense of giving an overview of the present satus
and where possible give recommendations for improvementsin the next stepsin the contract.

The subjectstreated in more detail are:

m Status of locd (IPP and Rijnhuizen) and European research networks and some
recommendations

m Interface between CORBA and Objectivity database. The DataManager. Status and suggested
future tasks

m Performance test to be performed on the federation of the database. Aspects of distribution of
data.

m Audio/ video conferencing. Status and recommendations for improvement using existing hard-
and software.

The starting point for the research is a requirement analysis for the interface between a client (user, scientist)
that wants to either store data or retrieve data and the persistent data itself. The client that wants to store data
can be an instrument, retrieva of datawill be usudly the business of ascientist or technician. The clearness of
such an interface is of utmost importance for large scae implementations. The interface should give the
scientist / technician a kind of template long which he can develop his software. The description of such an
interface and the outlay of the data structures that will reside in some kind of persistent environment are given
in an appendix of this report. The development sketched in chapters ‘ Measurement datal and ‘ Data Manager’
dartsfrom thisanaysis.

Network performance measurements| PP - FOM - UU

I ntroduction

In order to get an impression to what extent capabilities of the underlying network would influence those of

the remote participation architecture, severa performance measurements were carried out. At first a very
coarse topology was defined.

Router IPP
134.94.100.1 ipp277.ipp.kfa-juelich.de
ZAME47 - Juelich IPP - Juelich

Router ZAM
134.94.100.22 zam472-b.zam kfa-juelich.de
ZAMOOZ - Juelich ZAM - Juelich

Router RUS
1.BelWue.DE 193.196.152.162
RUS - Stuttgart RUS - Stuttgart

Router TEN-DE
dfn.de.ten-155.net atm.ws1.de.ten-155.net
TEN-155 - Frankfurt TEN-155 - Frankfurt

Router TEN-NL
surfnet.de.ten-155.net atm.ws1.nl.ten-155.net
TEN-155 - Amsterdam TEN-155 - Amsterdam

Router Router SARA
BRa. surf.net AR1.A .surf.net 192.87.106.120
SARA - Amsterdam SARA - Amsterdam SARA - Amsterdam

Router
AR2.Utrecht.surf.net
ACCU - Utrecht

Router FOM

ciseal.rijnh.nl I tijnh.nl
Nieuwegein Nieuwegein

Router UU-36
131.211.36.1 hst3736.phys.uu.nl
ACCU - Utrecht MG - Utrecht

- Figure 1 Topology for measuring network performance between IPP - UU and FOM. Measured is the response of workstations coupled
directly to essential routers in the network. The measurements cover TEN-155 performance regionally.

Later on severa measuring points (in local workstations) have been added. The scheme that was used for

network performance measurements between IPP - UU, IPP - FOM(Rijnhuizen), and UU - FOM is indicated
in the figure above.

The August ‘99 data, here presented, are the most representative in the period covered by this report. Before
and after August not al connections were available. So to evaluate the Situation with respect to the connection
‘IPP—FOM’ thisisthe most relevant period. We will reconsider to establish the connections once more when

we have the impression that the overal stuation has improved. When more datigtics are available we will
discussthe (find) resultsin anext report.

The generd idea from the measurements is that the international connectivity is unto now not very stable, but
improving. The loca networks at FZJ, FOM and UU are rather stable with some exceptions that have been
cured in the mean time.

Features

The network performance between the sites at |1PP, FOM and UU is measured with a package called RTPL
(Remote Throughput Ping Load). The intention of this package is to do periodic net performance
measurements between a set of hosts which can be specified by the user. From a control host, these
measurements are dtarted at the participating hosts with a remote shell command. The following tests are
executed:

= Thethroughput between each host pair, using the netperf' command.
= Theroundtrip times between each host pair, using the ping command?>.

m Theload of each host with the uptime command. The load is measured to be able to relate net
performance decrease to eventua machine |load.

The measurements are performed at Unix workstations by executing Perl scripts. The crontab uitility is used
to start the tests periodicaly at the so called control host. The Perl script at the control host starts the net
performance measurements at the test hosts with remote or secure shells. The results are collected at the
control host and stored in ZIP compressed data files. The presentation of the data is Web based: A JAVA
Applet is used to load the ZIP compressed data files, JavaScript is used to generate dynamicaly severd views
to the data in the form of HTML tables. JavaScript directly cals Applet methods to obtain the required data.
The Applet can aso be used to present aplot of the data, displayed in the tables.

The following datafiles, also recent ones, of more generd interest, can be viewed viathe Web in the mean
time: [http://www.phys.uu.nl/~blom/doc/net test/ipp fom_uw/]

Since these data do not particularly focus on the connectivity between IPP and FOM, they are mentioned here
just for completeness. This*archive’ contains

m daaof thelast 7 days.

m For each week of the last half year adatafileis available.
m Theweek mean values from the last year.

m The day mean values from the last year.

m The mean vaues, caculated at the periodic measurement times, for the days of the week,
averaged during aquarter. The data are stored during a year.

! Netperf Home Page: http:/Awww.netperf.org/netperf/NetperfPage.html
R. L. A. Cottrel, C. A. Logg, and D. E. Martin, "What is the internet doing?
performance and reliability monitoring for the HEP community"”, Computer
Physics Communications, vol.110, pp.142--148, May 1998

® URL: http://Mmww-iepm.slac.stanford.edu/pinger/

m The mean values, calculated a the measurement times, for the workdays of the week, averaged
during amonth. The data are stored during ayear.

Close § Mo Markers Showr Al EEH <2Days> -

Throughput [Mbit/s]
7.0 T

a0r

W UU-38

50r

40r

3.0r

2.0r

10F =

o AN A,) | B e ,
00:00 18:.00 12:00 0s:00 00:00 18:00 12:.00 0s:00 00:00
25/08 25108 2508 25/08 2508 24,08 24/08 24/08 24,08

| Java spplet Window

- Figure 2 Throughput data between the IPP site and sites at the FOM and UU for two workdays in August. The test direction is specified in
the plot labels. The site entitled "SURFnet" is positioned close to the router in Utrecht.

Measurementsi PP -- FOM -- UU

In this verson of the package the network performance was monitored between the following sites
participating in the Dynacore” initiative:

m Ingtitute for Plasma Physics (IPP) in the Science Center Jilich, Germany.
m FOM-Ingtitute for Plasma Physics Rijnhuizen, Nieuwegein, the Netherlands.

m Inditute of Computationa Physics, Faculty of Physics & Astronomy, Utrecht University,
Utrecht, the Netherlands.

In the comparison of the results we will focus on the situation to and from IPP. During day time there is a
considerable net performance loss at the connections between |PP and FOM and between FOM and UU. In
Figure 2 the throughput measurements from the site at |PP to sites at the FOM and UU during two workdays
in August are displayed.

To check if the bad performance was caused by congestion in the network at the Forschungszentrum Jilich,
two other sites at the FZJ were included in the measurements:

m A host a the ZAM department, close to the router.

m A host a the ZELAS department at another region of the FZJ.

* Dynacore EU-TAP project

The results of the measurements with these sites at the same days as the throughput data from Figure 2 are
shown in Figure 3

Close

arkers Show Al EEH <2Days> !

2 Throughput [Ibit/s]
7.5 .

701

8.51

a0

555

501

451

40r

351

30

251
201

15 . . L . L . L

00:00 18:.00 12:00 06:00 00:00 18:00 12:00 06:00 00:00

28/08 25/08 25/08 25/08 25/08 24,08 24/08 24/08 2408
Date

| Java spplet Window
- Figure 3 Throughput data between the sites IPP, ZELAS and ZAM at the Forschungszentrum Jiilich for two workdays in August.

Figure 3 shows clearly, with the exception of some accidenta dips, that there is no congestion at the FZJ
network: the throughput values during daytime and night-time are not much different. For this reason the sites
at ZELAS and ZAM have been replaced temporarily by hosts close to the routers of the provider (a/o. TEN-
155). However at this moment the ZAM dite again participates in the measurements.

A possible congestion source for the future may be the fact that the PP network is only 10 Mbit/s. This may
be insufficient for extensve data transfer and video conferencing. In principle the TEN-155 line from
Frankfurt to Amsterdam has a much larger capacity: incidentally, between the TEN-155 ste in Frankfurt and
one of hour workstations in Utrecht, throughput vaues up to 20 Mbit/s during night-time are reached. Without
further investments the loca | PP network may become a bottleneck in the future.

Conduson

The initial problems in the video connections between IPP and FOM were one of the reasons to start the
measurements on network performance. Some of the problems could be alotted to the unpredictable
behaviour of the international connections (TEN-155). These problems were brought to the attention of
national network providers (Surfnet, DFN) and were subject to discussions in the internationa research
network associations (Dante, Terena). Since then some improvements could be noticed, but the Situation is
gtill not clear.

Locally the situation seems stable enough, but since we can expect in the future anomina bandwidth of > 100
Mbits/s, the local infrastructure has to be upgraded to thisfigure preferentialy.

10

ISDN does not seem a right solution, since we are expecting to use at least 10 Mbits/s capacity in the future.
Moreover ISDN is afading technology which, perhaps in anot to far future, can be substituted by the service
providers. Using the facility offered by the internationa research networks (1P based) seems il the right way

to go.

Quality of serviceis dtill aresearch topic. QoSis closaly related to the solution of authentication, authorisation
and accounting in 1P environments. Also interworking of products from different vendorsis still not solved at

the moment.

11

Overview videoconfer encing systems

I ntroduction

In remote participation, one of the goasisto use videoconferencing in both the Remote Control Room and for
meetings. In order to achieve this god, alot of tests have been done. In the following document, the current
status of videoconferencing techniquesin generd is outlined.

Conferencng dients
Tedts

From the tests of the last year we can conclude that hardware clients offer a very usable quality. Typically the
following performance is measured:

Video frame rate: 30 frames per second.
Used bandwidth: 384 kilobit/second excluding data bandwidth (320 kilobit for video and 64 kilobit for audio).
Video format: CIF, i.e. 352x288 pixels.

Messured delay: approximately 0.5 seconds point-to-point for long distance connections. Not much difference
is measured for European connections and connections from Europe to the U.S.

Larger bandwidth settings up to 1500 kbit/s yield a better video qudlity, i.e. smoother motion and less
pixelisation. Less bandwidth settings of (at least) 128-kbit/s ill offer an usable connection, but for our
applications the image is not smooth enough. With the current status of the hardware clients about 10 frames
per second (in CIF format) can be transmitted with acceptable pixdisation.

Overview | P based dients

There are a number of 1P based videoconferencing clients available. Here we can distinguish the hardware
clients, such as the VCON Armada PC cards of which at dl three partners of the Dynacore project two
systems are available, and software clients, such as NetMeeting and Cu-SeeMe.

Hardware clients nowadays offer a reasonable quality with quite low bandwidth demands (from 128 kbits/s up
to 384 khits/s). The available VCON systems all follow the H.323 standard. This standard is now quite
common and (should) guarantee interoperability.

Software clients, however, are alot chegper or cost nothing at al (i.e. NetMesting, vic + rat). Some follow the
H.323 standard (NetMeeting, and Cu-SeeMe Pro) wheress others don’t (V DOPhone and vic+rat). The quality
of software clients is still moderate but improving fast. The current state of these clients is that they can be
used as akind of telephone with low qudity video. For the "remote participation” project, software clients are
not consdered to be an option.

Below, the remote video window of the VCON client is shown. The current VCON software (version 4.01)
allows for automatic bandwidth adjustment and synchronisation of video and audio. Only 384 kbit/s is needed
for agood quality videoconference.

12

In addition to audio and video, the VCON systems support T.120 data sharing for chat and whiteboard. This
standard also includes sharing programs.

L ir'-

Y

sl
|

{
[(4 | » THRRRNEEN |

@ } 1
ol ol @ @ Bl B

Multipoint Servers

Most of the above systems only provide point-to-point connections. For the H.323 standard “Multipoint
Control Units’ (MCU) are available. These devices provide the possibility to organise meetings with alarger
number of participants at different locations.

We tested severd MCU'’ s from different vendors (PictureTd, RadVision and WhitePine). All of these MCU'’s
dtill have some drawbacks for integration within the project. The WhitePine (software) MCU does not offer a
quality that meets the high standards of our hardware clients. The PictureTel 330 (software) MCU works quite
well but we were not able to use data sharing with our VCON clients. As far as we can conclude from the
specifications the T.120 server of the PictureTe should be compatible with the VCON clients. For the
RadVision (hardware) MCU, audio, video and data sharing works well, but there are some less attractive
security aspects. The only way to prevent anybody from using this MCU is to predefine the 1P addresses of
alowed videoconferencing clients. Apart from this drawback, this MCU, which dlows up to 9 client
connections at 384 khit/s, works very well. The video and audio quality is amost equd to that of a point-to-
point connection. The video is normally switched to the loudest speaker, but it is aso possible to use chair
control. In case of chair control, a WWW client can switch the video that is distributed to the participants.

Recommendations

All parties need a system that is always switched on and aways on auto answer (this way any party can
conduct tests without having to ask the other parties). Of course, the audio of such atest system can be muted.
It is preferable to point the camera at a moving object such as a clock, or out of a window. In this way the
video quality can be checked at any time.

13

For our VCON systems, now a multicast option is available. We recommend testing this multicast option as
an dternative to an MCU. However at this moment the available software does not yet meet our requirements
entirely and we cannot evaluate its functiondity properly. We will continue investigating this matter.

For data sharing we recommend using the T120 standard. For this standard Hardware whiteboards are
available. These whiteboards just look like normal whiteboards, and copy its contents to the remote system.
We would like to evaluate such systems.

M CU Recommendation

For multi-point conferencing we recommend a RadVison MCU-323. To our VCON clients this MCU
behaves like anorma H.323 endpoint. The RadVision isahardware MCU alowing 3 to 15 client connection,
coupled viaa LAN and H.323 protocol. Configured in this way both MCU and clients are “hardware’, the
latter performing as good H.323 clients. Using more clients can be achieved by stacking or cascading MCU's.
In both ways a virtual MCU with more connections is constructed by combining two or more readl MCU's.
The tested MCU has the following specifications:

Software: MCU-323 version 1.5 (build 1.5.0.6) with OnLAN Configure 1.6.0 (build 1.6.0.19).

For H.323 calls with a bandwidth of 384 kbit/s per second as specified above under "Tests', 9 simultaneous
connections are supported.

14

M easur ement data

I ntroduction

A measurement database will dways be part of a Textor '94 experiment. This database is used to store al the
data created by diagnostics and auxiliary equipment during a shot. As a past design this database is
implemented as a collection of files on an Open VMS system. Every diagnostic that participates in a shot
generates its own file during the first few minutes after the shot. Typical information stored in thisfileis the
content of ADC buffers, which are filled during a shot, and the set-up parameters of the diagnogtic. After a
diagnostic has crested its data file, it is moved to a centra file server. The file name and location indicate
which diagnostic generated it, and which shot it belongs to.

A standard diagnostic consists of a number of CAMAC crates with many ADC channels. One ADC channel
typically generates 10 to 100 kB of data per shot. During the years, the number of channels has gown steedily,
and some newer channels use faster ADC' s that generate more data per channel per shot. There are also new
diagnostics being developed. These use e.g. video camera s PC platforms instead of CAMAC crates or high
speed ADC' s that produce tens of MB of data per shot”.

The volume of the data generated per shot, together with the need to store this data in the short time between
the shots, puts high performance demands on the file server. Also the large data volumes of the new
diagnostics and the non-CAMAC diagnostics cannot be integrated (without many difficulties) in the original
architecture. Findly, for remote operation, the data in the database must be accessible from the virtual control
roomsto alow for quick analysis directly after the shot. The origina architecture provides nearly no hooks to
alow for this.

Because of the shortcomings, it has been decided that the Dynacore plasma physics prototype® will
incorporate its own measurement database. This database should be accessible for storage from a large
number of computer platforms, alowing new diagnostics to be added to the system eadlly.

The database requirements can be summarised as follows:
m The database must be able to store signas which have asize of several MB.
m The database must be able to store hundreds of MB of data per shot.

m All the data generated during a shot need to be stored in the database within a few minutes after
the shot.

m The database must store 30 shots per operation day, 80 days ayear, adding up to TB of data per
year.

m The database needs to be accessible from many different computer platforms, locally and in
virtua control rooms.

® M. Korten et al, “Upgrade of the TEXTOR '94 Data Acquisition Systems for Plasma Diagnostics,” Proceedings 17" IEEE/NPSS, Vol. 2, pp 803 —
806, October 1998

® This would be a prototype to be developed in the framework of the Dynacore project (EU-TAP-RE4005). For this prototype a definite choice of
the database is not foreseen. Database could either be an existing one (TEXTOR type or DOM4-FOM-Rijnhuizen) or a commercial one like
Objectivity, which is considered in this report.

15

A hard requirement has been defined as follows: the measurement database must be able to store
500 MB of datawithin 1 minute.

CORBA

CORBA isaopen standard for middleware. Using the standardised 110P protocol, it can work on the existing
Internet (IP) infrastructure. There are implementations of CORBA available for many computer platforms.
The standardisation guarantees that these implementations can interact with each other. This makes CORBA
an idedl candidate to provide for an architecture of a dynamically configurable (remote) access to data either
for storage or retrieva in a heterogeneous environment.

The Dynacore architecture® defines data managers with CORBA interfaces. These data managers have direct
access to the measurement database. Data clients, for example analysis programs, use the data managers via
their CORBA interface to store and retrieve objects in their database. The data managers provide not only
platform independence, but also a way to introduce security into the database, even if the real database
underneath the data manager does not implement it. Additiondly, the data managers shield the actua
implementation from the clients. This alows us to change to a new database implementation without
reprogramming any data clients. We only have to implement the data manager’s CORBA interface for a new
database type. A speciaised data manager will be discussed in the section” Data Manager”, it will be referred
to as DataManager.

Database
000bj
SecurityObj
Bulk
Dyna Object .
DynaDirectory
Dyna Calibration DynaBase DynaComment | | DynaScalar DynaDimN | [DynaMimeObj

- Figure 4 Inheritance tree of the measurement database classes

As a possible candidate for database implementation we investigated the abilities and performance of an
object database.

The object-oriented database is used to store a predefined set of data classes. Our database model defines these
classes. (See Appendix Objectivity Specification and Classdesign). They are displayed in Figure 4.

" CORBA homepage: http:/mww.corba.org
& With CORBA architecture is meant the architecture foreseen in the Dynacore project.

16

The centra class in the modd is the class DynaObject. Its subclasses are instantiated as the measurements
objects, e.g. DynaScaar, DynaDimN and DynaMimeObj. These are wrapper objects for a specific type of
measurement data generated at Textor 94. A measurement object contains areference to an object of the class
Bulk, which contains the raw data. The Objectivity® database allows us to put this referenced data directly into
the database.

The measurement objects hold references to objects of other classes in the database. For example, a
measurement object has reference to DynaBase objects, which contain information on the measurement bases
and to a DynaCdlibration object, which holds cdibration information. Finally, a user can add a comment to a
measurement by setting a reference in the measurement object to a DynaComment.

Splitting the information about data and the raw data itself speeds up the browsing of the contents of the
database. To view the properties of data, only the measurement object needs to be retrieved. Opening the full
Bulk object, which can contain megabytes of data, would cause too much overhead. Using references to
DynaComment, DynaCalibration and DynaBase objects alows clients to reuse these objects, such that many
measurements that use the same calibration, for example, can reference the same DynaCalibration object. This
saves database space and provides users with extrainformation on the origin of the data. When, for example, a
cdibration turns out to be wrong, all measurements that are influenced by this calibration can be found eesily.
Thisis a consegquence of implementing bi-directional associations for e.g. the DynaCalibration object.

Since there are specid references for comments, calibrations and measurements bases, smart database
browsers can be built that use these references to enhance data viewing. This is a very useful feature in a
multi-user environment. It keeps together al the information in the database that is necessary to interpret a
measurement. In case a user has additiona information on a certain measurement, like a specia cdibration
function, this information can be put into a DynaComment, and, if necessary, parsed by a speciaized database
client. In the case that a DynaComment contains this type of information, the DynaComment should obey
certain syntax rules, in order to give a handle to how this information should be used. A DynaComment can
have a reference to another DynaComment for this purpose. Our data browsers™ do not yet use this feature,

The DynaObject class inherits via the SecurityObj class from 0oObj. OoObj is a class provided by the
Objectivity database framework. Inheriting from 0oObj makes a class persstent. This means that its attributes,
which must be of specia Objectivity types, can be stored in a database automatically. The SecurityObj class
adds security attributes like the user ID and group ID of the owner of an object to al subclasses. It dso has
attributes that hold an object’ s access rights. Inserting the security class alows us to create data managers that
provide a Unix-like security architecture, while all information necessary to implement is stored in the
measurement database itself, together with the objects to which the information belongs. Also this
functionaity has not yet been implemented.

SorageHierarchy

Objectivity provides a storage hierarchy based on a federated database, which contains a number of databases.
Each of these databases in turn contains a number of containers. Our persistent objects are stored in these
containers.

In the proposed architecture, al measurement data (perhaps sometimes supplemented with settings of the
diagnostic) is put together in one federated database. For every diagnostic, a new database is created in this
federated database. Every diagnostic that participates in a certain shot stores the measurement data that
belongs to that shot in a new container in its own database. The name of this container is the unique shot
number.

® Objectivity, Inc.: http:/mww.objectivity.com
1% 70 be described ina next report

17

For easy data access, every container has a DynaDirectory object, which holds references to the objects that
the container holds. Additionally, database users can logically group measurement objects together in modules
and sub modules, which are represented by sub directory entries (* pathnames’) in the DynaDirectory object.
This way, modules and sub modules resemble a Unix-like directory structure, which is stored in a flat
Objectivity container.

One important remark must be made with regard to transporting the measurement objects via CORBA. It is
theoretically possible to creste a CORBA interface to every persstent class in the database. This would,
however, complicate the design of the data manager and database clients considerably. It would also add alot
of network traffic overhead to our architecture. Our data manager, therefore, provides methods that pass data
objects as CORBA'’ s Interface Definition Language (IDL) structures.

Database Digribution

Objectivity alows for the distribution of a federated database over multiple computers. Each computer can
hold one or more databases of the federation™*. For our architecture this means that every diagnostic can have
its own data storage machine. However, severd diagnostics that create only moderate amounts of data might
share one machine.

Users that access Objectivity databases from their desktop don't need to be running on a computer containing
any database. They can access the federation via a private data manager. Objectivity uses internaly the
standard NFS protocol to access remote data, but it can aso use its own proprietary protocol, caled AMS.
Using AMS improves the performance of Objectivity. In our performance tests, we used CORBA 11OP to
communicate between database client and data manager. The data manager had its database locdly.

Figure 5 shows a typica set-up of a distributed architecture. We are planning to use Objectivity’'s database
distribution functiondities in order to distribute our federation — and, therefore, the total load on the
measurement database — over multiple computer systems. In addition, we could run data managers on many
computers, not necessarily the onesthat hold the database, while every data manager can access both local and
remote data via an access to one federated database. However, from e.g. performance consderations one
could decide to use more than one data manager in a client application to address data from other diagnostics
(remote data) and implement distribution in this way via CORBA. This issue has to be studied to a greater
extent in the next phase of the project.

'* A federation is mandatory for Objectivity, like a Master database in MS SQLServer. Under the umbrella of the federation, be it one, specific
databases can be initialized. These databases can be addressed via the federation. It will be cumbersome to make more federations, as to keep
data apart.

18

| Distributedl
Data Database | T paa
Manager I Manager I
/ Platform 1 Platform 2 \
Object
wena] Local Area Network |/ oot I

Router |~~——_ I

Services

Textor Control Room

- Figure 5 Typical set-up for a distributed database

The prototype aso provides for an object manager'?, which acts a central starting point for al database
clients. When adata manager is started, it registers at the object manager. The object manager then assignsthe
available data managers to clients, thereby distributing the database load over more computers. This object
manager has only been implemented at its most smple form. For the peformance test we included the
functionality in a dedicated data manager.

When a database client contacts a data manager and asks it for an object from the database, the data manager
first has to load the object from the database into its memory. After that, it can fill IDL structure and send this
structure to the database client. In this scheme, a database object must be sent twice over the network in the
local control room, once from the database that stored the object to the data manager that serves the client and
once from that data manager to the Internet router. Running the data manager on the machine that contains the
data object to be transferred can save one transfer. Since certain clients (for example diagnostics themsalves)
mainly use objects that are located in the same database on the same physical machine, it makes sense to
assign data managers to these clients that are located on those specific machines. In the proposed architecture,
the object manager has knowledge about such clients and is able to assign them the most network-efficient
data managers.

'2 70 be described in the next report

19

Data Manager

The DataManager isthe “middleware’ between a client and a database. A client can be a user (scientist) who
wants to read data for analysis, or an instrument that delivers datain araw format for storage. Viaan interface
the DataManager provides access to the database in a generic way. This means that the interface does not
revead any information about the way the DataManager actualy stores the data. It is possible that the data is
stored inflat files, or in arelationa database or in an object-oriented database.

I nterface DataM anager

Accessing the DataManager proceeds through CORBA, where at the DataManager side a C++ ORB (Object
Request Broker, implemented in C++) is employed. The operations of the CORBA interface can be divided
into transaction specific operations and data specific operations. These operations are listed below (for more
information of the data types referred to in this paragraph see the Appendices “CORBA Specification of the
DataManager” and “Objectivity Specification and Class design).

Transaction specific operations

void start ()

Starts a new transaction with the DataManager. If a transaction is dready active, an Error exception will be raised
withtype Nest edTr ansact i on.*®

void comit ()

Commits the changes made to the database during the current transaction. This stops the current transaction. If no
transaction is currently active, an Error exception with type NoTr ansact i on will beraised.

void conmitAndHold ()

Commits the changes made to the database s0 far, but does not end the current transaction. If no transaction is
currently active, an Error exception with type NoTr ansact i on will beraised.

void abort ()

Aborts the changes made to the database in the current transaction. If no transaction is currently active, an Error
exception with type NoTr ansact i on will be raised.

Data specific operations

void store (in any object, in string path)

Cregtes a new object in the database and creates an entry which binds the object to a symbolic name, specified by
pat h. The syntax of pat h should be a lega according to the grammar defined.in ... If an entry with the same
symbolic name aready exits, an Error exception will be raised with type Cbj ect Exi st s. Use updat e ()
for updating exigting objects. If the type of object is not alegal type known to the DataM anager, an exception with
typel nval i dType will beraised. Revison information is supplied by adding a new DynaReflnfo object to the
history of the object to be stored. The members time and description of the DynaRefInfo object are respectively
s to, the creation time, and the string “ Created” . For a detailed description of the implementation of this interface
member see Appendix “ Store”

'3 IDL types and attributes are give in the font “Courier new 11 (| nval i d t ype)
Corresponding DDL (Objectivity) objects in “Arial 11 (DynaRevInfo)

20

void update (in any object, in string path, in bool ean
headerOnly, in string info)

Updates the content of an exigting object using the data provided. If the object indicated by pat h is not found an
exception with type NoSuchChj ect will be raised. You can use the header Onl y to specify that you do not
wish to update the bulk of the data contained in an object, but only the headers. If the type of the object you wish to
update is not the same as the type of the object you' re sending, or if the type of object you're sending is unknown,
an exception with type | nval i dType will beraised.

When an object is updated, revision information is stored by adding a new DynaReflnfo object to the history of
the object. The description member of the DynaRefInfo object is set equa to thei nf o argument.

RevinfoSeq getH story (in string path)

Retrieves the history of the object indicated by pat h asasequence of RevI nf o Structures, where the Revl nf o
gructure is the CORBA counter part of the DynaRefinfo object. Every data object yields at least one Revl nf o
structure describing its creetion. There can be more entries describing further revisions. If the object is not found, an
exception with type NoSuchCbj ect will beraised.

bj ect Header getHeader (in string path)
Retrieves only the basic object header of an object indicated by pat h. If the object is not found, an exception with
type NoSuchQbj ect will beraised.

any getProperties (in string path)

Retrieves dl properties other than the bulk of data of an object. If the object indicated by pat h is not found an
exception with type NoSuchCbj ect will be raised. Thiswill return an object of the correct type with al property
attributes set, but with empty content.

any getData (in string path)

Retrieves an object from the database. If the object indicated by path is not found an exception with type
NoSuchCoj ect will beraised.

D n\Fl oat64 getD niData (in string path, in ulong npoints, in
ulong interval,in ulong how, in interpolation)

Retrieves expanded data of a 1-dimensiona object. If the object indicated by pat h is not found an exception with
type NoSuchQbj ect will beraised. Allows retrieva of only a part of the data by providing the index of the first
point to read together with an interval and the total number of points to be retrieved. The data in the interva is
interpolated in the way specified by thei nt er pol at i on argument. None does no interpolation and returns only
thefirgt data point of every intervd. Aver age will return the average of adl pointsin the interval.

21

M nMax will return both the minimum and the maximum value for each interval. Therefore, in M nMax mode
twice the number of requested pointsis returned.

voi d rm(in string path)

Deletes any object in the database. If the object indicated by pat h is not found an exception with type
NoSuchQnj ect will be raised. Data with attribute | evel equa to zero will never be deleted. Attempting to
delete an object with level zero will raise an exception with type Per mi ssi onDeni ed.

void link (in string source, in string destination)

Creates an entry that binds an object to asymbolic name. Thedest i nat i on will be used as the path for the new
entry, and the sour ce as the path of the object it is pointing to. The sour ce must point to an exigting object to
prevent the possibility of dangling links. If an entry with the same path asthedest i nat i on exists an exception
with type Cbj ect Exi st s will beraised, and the entry will not be crested.

StrSeq list (in string path)

Returns a list with the full path of al objects at a given location. If the location pointed to by pat h isnot found an
exception with type NoSuchCbj ect will be raised. Does not recursively list the content of directories. The path
of directoriesin the list will end with a‘/’ character o they can eadily be distinguished from objects.

void close ()
Shuts down the DataManager. Any currently active transaction will be aborted.

Accessrightsand the DataM anager

In the Dynacore project the authenti cation/authorisation issue has not yet crystallised into a clear-cut solution.
In the present status a user may be authenticated/authorised by a third party (e.g. alogin manager) and given
access to the database by providing him with his ‘private DataManager. After the DataManager is launched,
it produces an |OR(Interoperable Object Reference) string that is delivered to the user viathe third party. Any
user equipped with this IOR string can communicate with the DataM anager, because the DataM anager has no
means at its disposa to authenticate the user it services. Aslong as of the DataManager is only known to the
third-party-authenticated user, we may say that he has a private DataManager. But still access rights cannot be
checked.

As soon as the authentication of a user through CORBA is provided for, the following operations become relevant:

PolicySeq getPolicies (in string path)

Gets a ligt of policies that apply to an object. If the object indicated by path is not found an exception with type
NoSuchChj ect will beraised.

void setPolicy (in string path, in Policy policy)

The DynaPolicy object of data (DynaObject) contains information about the access rights. All the data specific
operations have to ded with the DynaPolicy of a DynaObject and have to be extended when this issue has been
settled. The return value of the get Pol i cy operation is a sequence of Pol i cy structures, Pol i cySeq, where
thePol i cy structure isthe CORBA counterpart of the DynaPol i cy object.

Extended interface

As mentioned above the use of CORBA Any objects to store large amount of data may be too time
consuming under experimenta circumstances. To provide for optima storage performance the interface has

22

been extended with members to store separately those data types that may be very large in practice. These
extramembers are the following:

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

storeMneCoj (in MmeCbj nobj,in string path)
storeDMNINt8(in DDMNINt8 nint8,in string path)
storeDMNInt16(in DMNINt16 nint1l6, in string path)
storeDMNINt32(in DMNINt32 nint32, in string path)
storeDMNUINt16(in DnMNInt16 nuintl16, in string path)
storeDMUINt32(in DMNUINt32 nuint32, in string path)
storeD M\Fl oat32(in DnNInt32 nfloat32, in string path)
st oreD n\Fl oat 64(in D nm\Fl oat 64 nfloat64, in string path)

These members have equa functionality asst or e() , except for the unwrapping of the CORBA Any object.

23

Per for mance measur ements

We measured the performance of our distributed database architecture in order to see if it can meet the high
performance requirements mentioned before. For this, we have used the Gigacluster setup as shown in Figure
6.

HDE

o
Cabletron

Ultra

- Figure 6 The Gigacluster measurement setup

The Gigacluster set-up consists of eight Sun-Ultra-10 workstations running SunOS 5.7 and two Cabletron
SSR-8000 Smart Switch Routers. The SUN'’s are grouped in two clusters of four computers. All computersin
acluster areinterconnected via a Cabletron router in aswitched 1 Gigabit/sec fibre network.

Server side

Objectivity
Database

Client side

Objects to store

CORBA/IIOP
1

TestClient (@& ---1---9 DataManager
]
Sun Ultra 10 ¢ :) Sun Ultra 10
SunOS 7.0 : SunOS 7.0

IP over Ethernet

- Figure 7 Actual set-up for the performance measurements.

The two routers are aso interconnected via a 100 Mbit/sec fibre network. Finaly, all computers are aso
interconnected viaa 100 Mbit/sec link using a Cabletron switch.

* SUN-Ultra-10 Gigacluster project overview and status:http://www.phys.uu.nl/~niderost/gigacluster. This reference is given for a complete
overview on the available hardware and is not directly of concern for this report.

24

For the performance measurements described in the sequel we used only a part of the cluster. To thisend a
client (data producer) and a server (data storage) were implemented according to the scheme above, each on
one computer in the cluster.

Direct var usCORBA:ANY parameter passng

In our firg test, we have run a database with a data manager on a computer of one of the clusters, and a
database client on a computer on the other cluster. The measurement was performed with two different
CORBA interfaces. Using the first (fast) interface, data was sent as is from the client to the server. Using the
second (generic) interface, data was packed into a CORBA:ANY object before trangport, and after the
transport, this object was unpacked again by the server before storage. The fast interface looks very
complicated, sinceit needs separate methods for storage of every type of data objects. The generic interfaceis
much simpler, but the data-packing might influence the performance of the system sSgnificantly. The
messured times aregiven in Table 1.

CORBA interface Clienttime Server time
Fast interface 9848+ 0.14 s=c 7055+ 0.11 s=c
Genericinterface 4839+ 05sc 289.7+ 03 sc

- Table 1 Time to set up a transaction, store 324 data objects, each consisting of a header and 106 bytes of raw data, in a single directory,
and commit the transaction. The client time is the total time as seen from the client. The server time is the time spent in the data manager
routines at the server.*

The errors given are the interna errors in the results of the measurement series, taken with only minimal
processes running on the computer, and one active user. Systematic errors depending on the software
environment can have much larger influences. Clearly, the time necessary to pack datainto a CORBA:ANY
and unpack it again adds a considerable overhead. Thisistrue for the server aswell asfor the client, as can be
seen from the measurements of the time spent in the server routines during the previous test (see Table 1

again).
Filling a database

In order to achieve higher performance, we have used only the fast interface in further testing. In the next test,
we measured again the time necessary to store 324 objects with 10° bytes of raw data We repested the
measurements 20 times, while we reused the database until it was full. Every time the database was full, we
emptied the database and continued our measurement. The result is depicted in Figure 8.

We grouped the 20 measurement results into four series (1to 6, 7 to 12, 13to 18 and 19 & 20), since we had
to empty the database after every 6 measurements'®. The number on the x-axis of the graph is the number of
the measurement within its series.

The measurements show that the time to store data in a database is dightly dependent on the size of the
database. Maximum time is about 10 % above the average. The time does not increase linearly with increasing
database size, but shows a characteristic peak just below a 1 GB database size. Perhaps that thisis a result of
the algorithm used by Objectivity to increase to database file stepwise. We repeated this experiment with
different object sizes. The same characteristic appeared, and it turned out that it depends on the amount of data
in the database, not the number of objects.

'® These are the routines that implement the CORBA interface. Only the time used to unpack and store the data is included, not the time spent in
the IP-stack or in the CORBA IIOP protocol.

'® On our test platform, the maximum database size is 2*™-1 bytes, or 2 GB. Since we store 320'000'000 bytes per measurement, we hit the
database limit during the 7th measurement. This number is not the maximum storage capacity of our architecture, since a federated database
can contain many databases.

25

112

j‘\ ——Measurement 1 to 6
110 / \\ —=— Measurement 7 to 12
108 7 - #--Measurement 13 to 18
< 106 // \ - o--Measurement 19 & 20
100 e T

Number within series

- Figure 8 Repeatedly storing data in the same database. The database is emptied after the 6, 12t and 18t measurement.

One more remark should be made here. The first measurement series started with a completely new database,
while the other three reused the database after it was emptied. This difference might explain the difference
between the corresponding graphs. The physical file size of the database on the hard disk was small in the first
case, but it remained 2 GB after emptying afull (2 GB) database.

Dependency on number and Sze of objects

The following two measurements show the dependency of the performance on the object size and the number
of objects stored. They both measure the time at the client involved in storing a number of data objects into an
empty database. In the first case, the size of the objects was fixed to 10° bytes of raw data, and the number of
objects stored in one transaction was varied (Figure 9), in the second case, the number of objects was fixed to
324, and the size was varied (Figure 10).

350
300 |y = 0,3116x - 1,9894 —7
250 11 R*=0,9998 il
< 200
()
E 150
'_
100
50 L
L 4
Pl
O v T T T T
0 200 400 600 800 1000
Number of objects
(each containing 10° bytes of raw data)

- Figure 9 Time needed to store objects containing 106 of raw data as a function of the number of objects stored. (R2 is corr.. coeff. squared)

Both measurements fit well to alinear functiony = ax + b. The offset b can be understood as a non-linearity
for small number of objects or object sizes respectively. The a-values indicate a storage speed of 3.2 x 10° and
3.4 x 10° B/srespectively. Thisis about one third of the raw data storage speed of the hard disk used (10 to 11
MB/s).

26

250

y = 95.521x + 11.141
200 +— R? = 0.9991

150 /
100
50 /

0

Time (s)

0 0.5 1 1.5 2
Raw data in object (x 10° bytes)

- Figure 10 Time to store 324 objects as a function of object size.

To achieve the performance requirements, a storage speed of 500 x 10° / 60 = 8,3 x 10° B/s is needed. This
can easily be achieved using 3 SUN'sin parallel (3 x 3.2 x 10° = 9.6 x 10° B/s).

Finaly we measured the time needed to store data using different networks. The results are displayed in Table
2.

Network type Clienttime Network time
Client and server on same machine 89.20 sec Osc

10 Mbit/sec UTP 350.77 sec 259 sec

100 Mbit/sec UTP (using SS-6000) 98.51 sec 259 =c

1 Ghit/sec & 100 Mbit/sec fiber 95.76 sec 259 =c
network (client and server on different

clugters)

1 Ghit/sec fiber-optic (client and server 91.64 sec 259 sc
on same cluster)

- Table 2 The time measured at the client to start a transaction, store 324 objects containing 106 bytes of raw data each and finish the
transaction using different networks, and the theoretical minimal time to transfer the amount of data without any overhead over the
network.

Congdering that the time spent in the data unpack and storage routines always amounts to about 70 s, the
times measured for aclient and a server on the same machine and for a client and a server interconnected viaa
1 Ghit/s network can be explained when it is assumed that about 20 s are spent in the IP-stack routines. The
three other times can be explained considering the network limitation, where the network overhead varies
from negligible for the 1 Gbit/sec & 100 Mbit/s fiber network to 10 % for the 10 Mbit/s and 100 Mbit/sec
switched UTP network Using these figures, it can be seen that at least a 100 Mbit/s switched UTP network is
necessary to achieve the performance goal using 3 SUN'sin parald. A 100 Mbit/s shared network would not
have enough bandwidth to meet the requirements.

Condudons

We have designed a database mode theat is very flexible. It can store any measurement object that is created
currently at the Textor ’ 94 experiment, and we assume it is flexible enough to be able to store any new type of
mesasurement data that will be created in the future.

The database model is embedded in a distributed database architecture using Objectivity and CORBA. The

architecture has been optimised for performance, since high performance is of utmost importance in this
project.

27

We have measured the performance of our prototype architecture on a state-of-the-art computer cluster. We
used different network configurations to emulate a real-world scenario. Our measurements showed that the
prototype architecture can meet the high performance requirements of a Textor ' 94 measurement database
using SUN Ultra-10 workstations in paralel as database servers together with a 100 Mbit/s switched network.

28

29

Syntax

The grammar used isthe following:

char ={a| b| ...] 2| {A]| B| ...] Z | {+]| -1 _}

digit ={0] 1] ...| 9}

name = char [nane] | digit [name]

separator =/

subpat h = name separator [subpath]

pat h = separator nane separator name separator [subpath] [nane]
Store

In the member st or e of the CORBA interface the expression ‘syntax(pat h) successful’ has the following
meaning:

pat h equals separ at or name separator nane separator [subpath] nanme

Semantics

The first nane in pat h is interpreted as the name of a container, while the second namne in pat h is
interpreted as the name of a database.

30

Sore

void store(const CORBA::Any & any, const char* path)

For the meaning of the expressions ‘any_2_object(any) successful’ and ‘ syntax (path) successful’, see section
‘Any_2 object’ and ‘ Syntax’, respectively.

PRE: TRUE
POST any 2 object(any) successful AND syntax(path) successful =
object in database.

syntax(path) NOT successful =
No change in database, exception thrown.

syntax(path) successful AND any_2 object(any) NOT successful =>»
No change in database, exception thrown.

START

[ool nitThread(couple->context)]

transaction == NULL

throw DataM anager::Error
NoTr ansacti on
“store(): No transaction object.”

No
END
throw DataM anager::Error
transaction active? NoTr ansacti on
“store(): No transaction active.”
Yes

END

throw DataManager::Error
I'l'l egal Pat h
“store(): Syntax error in path.”

synt ax(path)successful ?

31

throw DataM anager::Error
NoSuchbj ect
“store(): Database does not exist.”

database exists?

END

throw DataM anager::Error
I nternal Error
“store(): Cannot open database.”

Open database for update
successful ?

END

throw DataM anager::Error
NoSuchbj ect
“store(): Container does not exist.”

container exists?

END

throw DataM anager::Error
I nternal Error
“store(): Cannot open container.”

open container for update
successful ?

END

32

. throw DataM anager::Error
look up RootDir for update I nt er nal Error

successful ?

store(): Cannot open RootDir.”

J

. o throw DataM anager::Error
path in RootDir* Obj ect Exi st s

“store(): Object already exists.”

END
any contains a throw DataM anager::Error
CORBA::tk_struct? I nval i dType

“store(): Any object not a struct.”

END

throw DataM anager::Error

any contains an X
ObjectHeader? I nval i dType
“store(): Any object has no
ObjectHeader.”
END

throw DataM anager::Error

I nval i dType
“store(): Any object contains an
unkown struct.”

any contains a known

END

33

Any 2 object

The expression ‘any_2_object(any) is successful’ means that in the conversion of the CORBA::Any object,
any, to the corresponding DynaDimN object no exceptions have occurred.

Depending on the type of the CORBA structure contained in the Any object (cConment, cM meQbj, ..., or
cDi mNFl oat 64) the following conversions are distinguished:

cConmrent = any_2 DynaCommrent

cM ne(oj = any_2 DynaM nme(bj

cPol yCal i brati on =>» any_2 DynaPol yCal i brati on
cTabl eCal i bration => any_2_ DynaTabl eCal i brati on
cShort Base = any_2 DynaShort Base
cLongBase = any_2 DynalongBase

cScal ar = any_2 DynaScal ar

chD MmNl nt 8 = any_Int8 2 DynaDi nN

ch M\l nt 16 = any_Int16 2 DynaD nN

ch Nl nt 32 = any_Int32_2 DynaD nN

chD mM\UI nt 16 = any_Unt16 2 DynaD nN

chD m\UI nt 32 = any_U nt32_2 DynaD nN

chD nmiNFl oat 32 = any_Fl oat 32_2 Dynabi nN
chD n\Fl oat 64 = any_Fl oat 64_2 DynabDi nN

any _UInt32 2 DynaDimN
- Initidlize DynaDimN object to be stored in database.
- Extract D' mNUI nt 32 structure from Any object, if unsuccessful throw exception.

- Add references from Obj ect Header to DynaDimN object, if reference does not exist or reference
is a cross-database or cross-container reference and cannot be obtained (due to lock on
database/container by another thread), throw exception.

- Add name, level, quality from ObjectHeader to DynaDimN object.
- Add Si Uni t s to DynaDimN object.
- Copy si zes to DynaDimN object.

- Add DynaBase references to DynaDimN object, if reference does not exist or reference is not a
DynaBase or reference is a cross-database or cross-container reference and cannot be obtained (
dueto lock on database/container by another thread), throw exception.

- Add DynaCalibration references to DynaDimN object, if reference does not exist or reference is
not a DynaCalibration or reference is a cross-data or cross-container reference and cannot be
obtained (due to lock on database/container by another thread), throw exception.

- Add adcresto DynaDimN object.

- Initialize BulkUInt32 object.

- If the product of | engt hs insi zes not equd | engt h of cont ent , no copy of data.
- Copy cont ent to BulkUInt32(data) object.

- Add BulkUInt32 object to DynaDimN object.
int any_UInt32 2 DynaDimN(const Any& any, ooHandlg(DynaObject)& theObject)

For the meaning of the expresson ‘getDynaObjectRef(reference) is successful’ see section
‘getDynaObjectRef’.

PRE: any containsa CORBA structure AND theObject isnot NULL

POST: If no exception occurs theObject contains dl information from the corresponding CORBA structure of type
cD m\U nt 32 contained in the Any object.

START

initialise DynaDi N object
as an object to be stored.

throw DataM anager::Error
I nternal Error
“Could not extract struct from
Any object.”

extract DIimNUInt32
struct from any
successful ?

al referencesfrom

throw DataM anager::Error
See specifaction of
‘getObjectRef’.

get Obj ect Ref (reference

add reference to
DynaDi mN object >

y

add nane, | evel ,quality
to DynaDi mN object

;

35

v

copy Si Units
to DynaDimN object

v

copy array sizes
to DynaDi mN object

Yes
all DynaBase references

No throw DataManager::Error
See specifaction of A
‘getObjectRef’.

throw DataM anager::Error
NoSuchbj ect
‘Referenced object of wrong

type'.

;
>

get (bj ect Ref (reference)

reference of type DynaBase?

add DynaBase reference
to DynaDi mN object

36

get Obj ect Ref (reference throw DataM anager::Error

See specifaction of

successful for ‘ | ,

DynaCal i brati on? getObjectRef’.
L Yes END

getDynaObj ectRef

The expression ‘ getObjectRef(reference) is successful’ means that the method getDynaObjectRef proceeds
without exception.

int getDynaObj ectRef(const char* path, coRef(DynaObject)& object)
For the expression * Syntax(path) successful’ see section Syntax.
PRE: TRUE

POST: If Syntax(path) successful AND database object referenced by path can be opened, argument object is assigned
to the referenced database object.

throw DataM anager::Error
Il egal Pat h
“Syntax error in reference path.”

synt ax(path)successful ?

END

throw DataM anager::Error
NoSuchbj ect
“Database in reference does not exist.”

referenced database exists?

END

throw DataM anager::Error
I nt ernal Error
“Cannot open database in reference.”

open database for read
successful?

END

throw DataM anager::Error
NoSuchhj ect
“Container in reference does not exist.”

referenced container exists?

END

37

throw DataM anager::Error
I nt ernal Error
“Cannot open container in reference.”

open container for read
successful?

throw DataM anager::Error
I nt ernal Error
“Cannot open RootDir in reference.”

lookup RootDir for read
successful?

throw DataM anager::Error
NoSuchhj ect
“Referenced object does not exist.”

path in RootDir?

Yes

assign argument object to
referenced object.

i

RETURN

38

CORBA Spedification of the DataM anager
This package contains all objects defined in the CORBA Interface Definition Language (IDL).

ObjectType
Enumeration of the possible types of objects.
Public Attributes:

cUnknown :
cComment :
cMimeObj :
cPolyCalibration :
cTableCalibration :
cShortBase:
cLongBase:
cScalar :
cDIimNInt8:
cDImNInt16:
cDImNInt32 :
cDIimNUINt16:
cDImNUINt32:
cDimNFloat32 :
cDimNFloat64 :

Revinfo
I nformation describing a revison of a data object.
Public Attributes:

time: long
Time of the revison, represented in the number of seconds since midnight,
January 1st 1970 GMT.

username: string
Identity of the person making the modification.

description : string
Full description of the revision, including at least the reason for the modification,

the type of modification that was made and optionaly version/revison
information about possible software that was involved.

39

SiUnits
Units of a data object in powers of the S basic units.
Public Attributes:

kg: long
m : long
s:long

A :long
cd : long
moal : long
K :long
rad: long
g : long

ObjectHeader

A header describing the properties of an object. All Dynacore objects have such a header, which
can be retrieved separately using the DataManager.

Public Attributes:;

name: string
Unique identifier of the object.

leve : ulong
Storage level of the object. Level O isreserved for (raw) experiment data. If datais
processed, and the results are stored, these results must have aleve higher than
the data used for the processing.

quality : ulong
Indicator that can be used to measure the quality of a data object. Could be used to
mark an object as unreliable.

fullPath : string
The full path of the object in the database.

references: StringSeq
A list of paths of other objectsthat are somehow related to thisobject. If thelistis
empty, no objects are related to this object. Relationships can be used to tie
together objects which are coupled, but are stored separately.

type: ObjectType
The type of this object.

40

ByteSeq
An IDL sequence of bytes.

ShortSeq
An IDL sequence of shorts.

UShortSeq
An IDL sequence of unsigned shorts.

LongSeq
An IDL sequence of longs.

ULongSeq
An IDL sequence of unsigned longs.

FloatSeq
An IDL sequence of floats.

DoubleSeq
An IDL sequence of doubles.

StringSeq
An IDL sequence of gtrings.

ulong
An IDL typedef of unsigned long.

ushort
An IDL typedef of unsigned short.

TimeStamp

A long representing a time value. Contains the number of seconds since January 1st 1970 GMT
(Epoch).

RevinfoSeq

An IDL sequence of Revinfo structures.

Comment

A comment object which makes it possible to add comments on all levels of the database.
Comments are free-form strings.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

content : string
The actua content of the comment. This can be formatted text like HTML.
MimeObj

An object used to store multimedia data. The data is stored as a sequence of bytes. The type can be
derived by checking the mimetype attribute in the properties.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

mimetype: string
The mimetype of the object. This could be something like image/jpeg.

bytecount : ulong
Size of the object in bytes.

content : ByteSeq
Actua content of the object. The mimetype attribute can be used to interpret the

content.
PolyCalibration

A calibration in the form of a polynomial. The most common type will be a first order (linear)
calibration with two coefficients.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

coefficients : DoubleSeq
Coefficients of the calibration. The signal value can be derived from the value N
by calculating coefficientg 0] + N * coefficientg 1] + N2 * coefficientd2] etc..

42

TableCalibration

A calibration in the form of a table which supplies the corresponding double precision value for
each integer input value.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

table: DoubleSeq
Table with one double precision vaue for each vaue of the ADC output. The
sgnal value corresponding to N will be table[N].

ShortBase

An object used to store base information for DimN objects in a short form, providing a start value

and an interval value.
Public Attributes:;

oh : ObjectHeader
A header describing the object.

unit : SUNits
The unit of the object.

dart : double
Start value of the base.

step : double
Interval value of the base.
LongBase

An object used to store base information for DimN objects in a long formwith one base entry for
each array entry.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

unit : SUNits
The unit of the object.
data: DoubleSeq
A sequence of base vaues.
Scalar
A double precision floating point scalar.
Public Attributes:

oh : ObjectHeader

A header describing the object.
unit : SiUNits

The unit of the object.

43

time: double
The time the scalar was measured.

content : double
Vaue of thescdar.

DimNInt8

An N-dimensional object containing 8-bit signed or unsigned integer data where (N > 0). The sizes
and bases of each dimension are stored in two sequences of the same length. The corresponding
datais stored in a one-dimensional sequence. You can find datapoint obj[i][j][K] at index
(i*sizeqd 1] + j*s5zeq 0] + k) of the sequence.

Aflagisprovided to determine whether the data is signed or unsigned. Thisflag is needed because
CORBA does not distinguish signed and unsigned 8-bit values.

Public Attributes:;

oh : ObjectHeader

A header describing the object.
unit : SiUNits

The unit of the object.

szes: ULongSeq
Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.
Peth of the calibration object for this data object. If the path is empty, no
cdibration is present.

adcresolution : ushortcalibration : string
Resolution of the ADC used to measure this object.

sign : boolean
Flag describing whether the data should be interpreted as signed (true) or
unsigned (false).

content : ByteSeq
Content of the data object.

DimNInt16

An N-dimensional object containing 16-bit Sgned integer data where (N > 0). The Sizes and bases
of each dimension are stored in two sequences of the same length. The corresponding data is stored
ina one-dimensional sequence. You can find datapoint obj[i][j][k] at index (i*sizeq 1] + j*sSizeq Q]
+ K) of the sequence.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

unit : SUNits
The unit of the object.

szes: ULongSeq

Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.

calibration : string
Peth of the calibration object for this data object. If the path is empty, no
cdibration is present.

adcresolution : ushort
Resolution of the ADC used to measure this object.

content : ShortSeq
Content of the data object.

DimNInt32

An N-dimensional object containing 32-bit signed integer data where (N > 0). The Sizes and bases
of each dimension are stored in two sequences of the same length. The corresponding data is stored
ina one-dimensional sequence. You can find datapoint obj[i][j][K] at index (i*szeq 1] + j*sSizeq Q]
+ K) of the sequence.

Public Attributes:;

oh : ObjectHeader

A header describing the object.
unit : SiUNits

The unit of the object.

szes: ULongSeq
Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.
Peth of the calibration object for this data object. If the path is empty, no
cdibration is present.

adcresolution : ushortcalibration : string
Resolution of the ADC used to measure this object.

content : LongSeq
Content of the data object.

45

DimNUInt16

An N-dimensional object containing 16-bit unsigned integer data where (N > 0). Thesizesand
bases of each dimension are stored in two sequences of the same length. The corresponding data is
stored in a one-dimensional sequence. You can find datapoint obj[i][j][K] at index (i*szeq 1] +
j*sizeq 0] + K) of the sequence.

Public Attributes:;

oh : ObjectHeader
A header describing the object.

unit : SUNits
The unit of the object.

szes: ULongSeq
Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.

calibration : string
Peth of the calibration object for this data object. If the path is empty, no
cdibration is present.

adcresolution : ushort
Resolution of the ADC used to measure this object.

content : UShortSeq
Content of the data object.

46

DimNUInt32

An N-dimensional object containing 32-bit unsigned integer data where (N > 0). Thesizesand
bases of each dimension are stored in two sequences of the same length. The corresponding data is
stored in a one-dimensional sequence. You can find datapoint obj[i][j][K] at index (i*sizeq 1] +
j*sizeq 0] + K) of the sequence.

Public Attributes:
oh : ObjectHeader
A header describing the object.
unit : SiUNits
The unit of the object.

szes: ULongSeq
Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.

calibration : string
Peth of the calibration object for this data object. If the path is empty, no
cdibration is present.

adcresolution : ushort
Resolution of the ADC used to measure this object.

content : ULongSeq
Content of the data object.

DimNFloat32

An N-dimensional object containing single precision floating point data where (N > 0). The Sizes
and bases of each dimension are stored in two sequences of the same length. The corresponding
datais stored in a one-dimensional sequence. You can find datapoint obj[i][j][K] at index
(i*szeq 1] + j*s5zeq 0] + k) of the sequence.

Public Attributes:;

oh : ObjectHeader

A header describing the object.
unit : SiUNits

The unit of the object.

szes: ULongSeq
Sequence of lengths of the datain each dimension.

bases: StringSeq
Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.
Content of the data object.

content : FloatSeq

DimNFloat64

47

An N-dimensional object containing double precision floating point data where (N > 0). The sizes
and bases of each dimension are stored in two sequences of the same length. The corresponding
datais stored in a one-dimensional sequence. You can find datapoint obj[i][j][K] at index
(i*szeq 1] + j*sizeqd Q] + k) of the sequence.

Public Attributes:;

oh : ObjectHeader
A header describing the object.
unit : SUNits
The unit of the object.
szes: ULongSeq
Sequence of lengths of the datain each dimension.
bases: StringSeq

Sequence of paths of the base objects corresponding to each dimension of this
object. If the paths are empty, no base information is present.

content : DoubleSeq
Content of the data object.

48

IDL Interface Description DataM anager

Dat aManager . i dl

#include "DataChject.idl";

i nterface Dat aManager

{
enum DnErr Type

{
NoTr ansact i on,
Nest edTr ansact i on,
Per m ssi onDeni ed,
I'll egal Path,
NoSuch(hbj ect ,
oj ect Exi st s,
LockTi neout ,
LockNot Acti ve,
I nval i dType,
Internal Error

}s

exception Error { DnErrType type; string message; };

enum | nterpol ati on

{
None,

Aver age,
M nMax

};

const unsigned | ong naxl dl eTi me = 3600;

readonly attribute unsigned |ong idleTineg;

/1 Transaction operations
void start ()
rai ses(Error);
void comit ()
rai ses(Error);
voi d abort ()
rai ses(Error);
voi d comm t AndHol d()
rai ses(Error);

/1 Data object operations

void store(in any obj, in string path)
rai ses(Error);

void update(in any obj, in string path,

info)

rai ses(Error);

Revl nf oSeq getH story(in string path)
rai ses(Error);

Pol i cySeq getPolicies(in string path)
rai ses(Error);

bj ect Header get Header(in string path)
rai ses(Error);

any getProperties(in string path)
rai ses(Error);

any getData(in string path)
rai ses(Error);

i n bool ean headerOnly,

in string

49

D n\Fl oat 64 get D nlData(in string path, in ulong first, in ulong npoints,
inulong interval, in Interpolation how)
rai ses(Error);
void rn(in string path)
rai ses(Error);
void lock(in string path)
rai ses(Error);
void unlock(in string path)
rai ses(Error);
void link(in string srcpath, in string dstpath)
rai ses(Error);

/1 Directory operations
StringSeq list(in string path)
rai ses(Error);

/1 Qher operations
voi d keepAlive()
rai ses(Error);
oneway voi d shutdown();

Dat aCoj ect . i dl

/1

/1 Typedefs

/1

t ypedef sequence<oct et > Byt eSeq;

t ypedef sequence<short> Short Seq;

t ypedef sequence<unsi gned short> UShort Seq;
t ypedef sequence<l| ong> LongSeq;

t ypedef sequence<unsi gned | ong> ULongSeq;

t ypedef sequence<fl oat> Fl oat Seq;

t ypedef sequence<doubl e> Doubl eSeq;

t ypedef sequence<string> StringSeq;

t ypedef unsigned | ong ul ong;
t ypedef unsi gned short ushort;
typedef |ong Ti meStanp;

/1
/1 Enumeration types
/1
enum Cbj ect Type
{
cUnknown,
cConmmrent ,
cM ne(bj ,
cPol yCal i brati on,
cTabl eCal i brati on,
cShort Base,
cLongBase,
cScal ar,
cD mNl nt 8,
cD MmNl nt 16,
cD MmNl nt 32,

50

cD mM\UI nt 16,
cD m\UI nt 32,
cD m\Fl oat 32,
cD mi\Fl oat 64

}s

enum AccesshMde
{
cNone,
cRead,
cWite,
cReadWi t e,
cPol ,
cPol Read,
cPol Wite,
cPol ReadWite

}s

/1
/1 Structs used in the data objects
/1

struct Policy

{
ushort gid;

AccessMbde node;
}s

t ypedef sequence<Policy> PolicySeq;

struct Revlnfo

{
[ong tine;
string usernane;
string description;

} y
t ypedef sequence<Revlnfo> Revl nf 0Seq;

struct Silnits

long kg, m s, A cd, nol, K rad, sr;
b

struct hj ect Header
{
string nane;
ul ong | evel;
ulong quality;
string full Path;
StringSeq references;
oj ect Type type;
b
/1
/1 Structs for actual data objects
/1
struct Comment

oj ect Header oh;

51

string content;

};

struct M meQj

{
oj ect Header oh;
string m netype;
ul ong byt ecount;
Byt eSeq content;

}s

struct Pol yCalibration
{
bj ect Header oh;
Doubl eSeq coefficients;

};

struct Tabl eCalibration

bj ect Header oh;
Doubl eSeq t abl e;
b

struct Short Base

{
bj ect Header oh;
SiUnits unit;
doubl e start;
doubl e step;

};

struct LongBase
{

bj ect Header oh;
SiUnits unit;
Doubl eSeq dat a;
}s

struct Scal ar

{
bj ect Header oh;
SiUnits unit;
doubl e tine;
doubl e content;

}s

struct DnNInt8

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;
ushort adcresol ution;
bool ean si gn;
Byt eSeq content;

}s
struct D nN nt 16

bj ect Header oh;

52

SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

ushort adcresol ution;

Short Seq content;
b

struct D nmNI nt 32

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

ushort adcresol ution;

LongSeq content;
b

struct D m\UI nt 16

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

ushort adcresol ution;

UShort Seq content;
b

struct D nNU nt 32

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
string calibration;

ushort adcresol ution;

ULongSeq cont ent;
b

struct D ni\NFl oat 32
{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
Fl oat Seq content;
b

struct D ni\NFl oat 64

{
bj ect Header oh;
SiUnits unit;
ULongSeq si zes;
StringSeq bases;
Doubl eSeq content;

53

CORBA Object Diagrams

ObjectType Revinfo SiUnits ObjectHeader ByteSeq ShortSeq UShortSeq
cU nknown ime : long [gkg : long name : string
cComment username : string !m :long level : ulong
cMimeObj description : string HS :long quality : ulong Lengsey loggss
cPolyC alibration :long IIPath : string
cTableCalibration cd : long references : StringSeq
cShortBase mol : long ype : ObjectType BlCLSE ROLLIESRY
cLongBase K : long
cScalar rad : long
cDimNInt8 sr : long StringSeq
cDimNInt16
cDimNInt32
cDImMNUINt16 ulong ushort TimeStamp
cDimNUInt32
cDimNFloat32
cDimNFloat64 Revn{bEey

Comment

MimeObj

PolyCalibration

TableCalibration

[ioh : ObjectHeader
[content : string

oh : ObjectHeader
mimetype : string

[igloh : ObjectHeader
[IZcoefficients : DoubleSeq

[ioh : ObjectHeader
[igtable : DoubleSeq

bytecount : ulong

content : ByteSeq

ShortBase LongBas e Scalar
oh : ObjectHeader oh : ObjectHeader oh : ObjectHeader
unit : SiUnits P&unit : Siunits unit : SiUnits
start : double data : DoubleSeq ime : double
step : double content : double

DimNInt8

[igloh : ObjectHeader

Pgunit : SiUnits

[sizes : ULongSeq
bases : StringSeq
calibration : string
adcresolution : ushort
sign :boolean
content : ByteSeq

sizes : ULongSeq
bases : StringSeq
calibration : string
adcresolution : ushort
content : ShortSeq

DimNInt16 DimNIn32
oh : ObjectHeader ~oh : ObjectHeader
unit : SiUnits ~unit : SiUnits

~sizes : ULongSeq
~bases : StringSeq
~calibration : string
~zadcresolution : ushort
~zcontent : LongSeq

DimNUInt16 DimNUInt32 Dim NFloat32 DimNFloat64
oh : ObjectHeader oh : ObjectHeader [iZoh : ObjectHeader | |[oh : ObjectHeader
unit : Siunits unit : SiUnits [Igunit : SiUnits Pgunit: Siunits

sizes : ULongSeq
bases : StringSeq
calibration : string
adcresolution : ushort
content:UShortSeq

sizes : ULongSeq
bases : StringSeq
calibration : string
adcresolution : ushort
content : ULongSeq

[gsizes : ULongSeq
[gbases : StringSeq
[iGcontent : FloatSeq

[sizes : ULongSeq
[gbases : stringSeq
[Pfcontent : DoubleSeq

- Figure 11 Description of the IDL data types of the CORBA interface of the DataManager

DataManager

~idleTime : unsigned long
~maxidle Time :unsigned long

s tart()

com m it()

abort() Error Interpolation
com m itAndHold() utype :DmErrType None
store() message :string verage
update() MinMax
getHistory()

getPolicies()

getHeader() DmEmnType
getPropetrties () PENoTransAction
getData () [ENestedTransaction

getDim 1Data()

~PermissionDenied

lock() ~lllegalPath
unlock() ~lllegalMode
rm () ~NoSuchObject
link () ~ObjectExists
list() ~LockTimeout
keepAlive() ~LockNotActive
close()

~InvalidType
~internalError

- Figure 12 Continuation of Figure 11

Obj ectivity Spedification and Classdedgn

This package contains all objects that will be implemented in Objectivity Data Definition Language
(DDL)
DynaSiUnits

Expresses the physical units of measured values. The units are expressed as powers of S units. This
is convenient, since it allows for arithmetic on units.

Public Attributes:

kg: int32
m: int32
S:int32

A :int32
cd:int32
mol : int32
K :int32
rad: int32
s int32

DynaPolicy
Public Attributes:

gid : uint16
mode : DynaAccessM ode

DynaRevinfo

I nformation describing the revision history of data objects. These structures are automatically
created by the DataManager and cannot be modified by the user. The time and username attributes
are automatically set by the DataManager, and the description is supplied by the user.

Public Attributes:;

time: int32

Time of the revison, represented in the number of seconds since midnight, January
1% 1970 GMT.

username: char[256]
|dentity of the person making the modification.
description : char[8192]

Full description of the revision, including at least the reason for the modification, the
type of modification that was made and optionaly version/revison information
about possible software that was involved.

56

DynaObject

The base classfor all Dynacore data objects. Each object can contain optional referencesto other
objects.
Derived from 0oObj

Public Attributes:;

fullpath : 00String(256)
name: ooString(32)

Unique identifier for this object.
leve : uint32

Analysis level of this object. Objects with level O contain raw data. Data is written
back after analysis should always have a level attribute that is one higher than the
level found in the source data.

quality : uint32

Attribute which can be used to assign aquality to the data.
referenceq] : ooRef(DynaObject)

Other objects which are somehow related to this object.
policies: ooVArray(DynaPalicy)

The access policies that apply to this data object.
history : ooVArray(DynaRevinfo)

Thefull revision history of this object.

DynaComment

An object used to store comments
Derived from DynaObject

Public Attributes:;

content : ooVSiring
Thetext contained in the comment

DynaMimeObj

A container-like object used for storing multimedia data. The data is stored as an array of bytes.
Use the mime type attribute to determine the type.
Derived from DynaObject

Public Attributes:;

mimetype: ooV String
content : coVArray(uint8)

57

DynaCalibration

Calibration information used for ADC's. It is stored separately to make it easy to correct

calibration information.
Derived from DynaObject

DynaPolyCalibration

A polynomial calibration. For alinear calibration, the number of coefficients would be two, a

constant termand a first order term.
Derived from DynaCalibration

Public Attributes:;

coefficients : ooV Array(float64)

DynaTableCalibration

A calibration lookup table.
Derived from DynaCalibration

Public Attributes:;

data: ooVArray(float64)

DynaBase

An object used to store base information for DimN objects.
Derived from DynaObject

Public Attributes:;

unit : DynaSiUnits

DynaShortBase

An object used to store base information in a short form
Derived from DynaBase

Public Attributes:;

sart : float64
step : floate4

Dynal ongBase

An object used to store base information in a long form (one value per sample).

Derived from DynaBase
Public Attributes:

data: ooVArray(float64)

58

DynaScalar

A double precision floating point scalar object.
Derived from DynaObject

Public Attributes;

unit : DynaSiUnits
time: int32
content : float64

DynaDimN

An N-dimensional array object.
Derived from DynaObject

Public Attributes:;

unit : DynaSiUnits

Szes: ooVArray(uint32)
baseq]] : ooRef(DynaBase)
cal : ooRef(DynaCalibration)
adcres: uint16

content : coRef(Bulk)

59

DDL for Objectivity database layout

Dyna(bj ect . ddl

#i fndef _ Dyna(bj ect
#define _ Dyna(hj ect
#endi f

#i ncl ude "DynaSi Units. h"
#i ncl ude "DynaPol i cy. h"
#i ncl ude "DynaRevl nfo. h"

#i ncl ude "Bul k. ddI "

decl are(ooString, 32);

decl are(o0String, 256) ;

decl ar e(0ooVArray, DynaPol i cy) ;
decl ar e(0oVArr ay, DynaRevl nf 0) ;

cl ass Dynathj ect: public ooChj
{

public:
ooString(256) fullpath;
ooString(32) nare;
uint 32 | evel ;
uint32 quality;
ooRef (Dyna(bj ect) references[] <-> theReferences[] ;
ooRef (Dyna(bj ect) theReferences[] <-> references[];
ooVArray(DynaPol i cy) poli cies;
00VAr ray(DynaRevl nfo) history;

b
cl ass DynaComment: public Dyna(hj ect
{
public:
ooVString content;
public:
DynaComment () {};
b
cl ass DynaM ne(bj: public Dyna(hj ect
{
public:

ooVString m netype;
ooVArray(uint8) content;

public:
DynaM meQoj () {};

}s

60

class DynaCalibration: public DynaChject
{

public:
ooRef (DynaD) theDinf] <-> cal;

public:
DynaCal i bration() {};

b
cl ass DynaPol yCal i bration: public DynaCalibration

{

public:
ooVArray(fl oat64) coefficients;

public:
DynaPol yCal i bration() {};

}s

cl ass DynaTabl eCal i bration: public DynaCalibration
{

public:
ooVArray(fl oat 64) tabl e;

public:
DynaTabl eCal i bration() {};
b
cl ass DynaBase: public Dyna(hj ect
{
public:

DynaSi Units unit;
ooRef (DynaD nN) di m\s[] <-> bases|[];

public:
DynaBase() {};

}s

cl ass DynaShort Base: public DynaBase
{

public:
float64 start;
fl oat 64 step;

public:
DynaShort Base() {};

}s

61

cl ass DynalLongBase: public DynaBase
{

public:
ooVArray(fl oat 64) dat a;

public:
DynaLongBase() {};

}

cl ass DynaScal ar: public Dyna(hj ect
{

public:
DynaSi Units unit;
int32 tineg;
fl oat 64 content;

public:
DynaScal ar () {};

}s

cl ass DynaD nN: public Dyna(hj ect
{

public:
DynaSi Units unit;
ooVArray(ui nt 32) sizes;
ooRef (DynaBase) bases[] <-> dinNs[];
ooRef (DynaCal i bration) cal <-> theDini];
ui nt 16 adcr es;
ooRef (Bul k) content <-> theBul k : del et e(propagate);

public:
DynaDi m\() {};

b
DynaDi rect ory. ddl
#i fndef _ DynaDirectory

#define _ DynaDirectory

#endi f

#i ncl ude "DynaDi rEntry. h"

decl are(ooVArray, DynaDi rEntry);

class DynaD rectory: public ooQbj
{

public:
ooVArray(DynaDi rEntry) |ist;

public:
DynaDirectory() {};

62

}s
Bul k. ddlI

#i fndef _ Bul k
#define _ Bulk
#endi f

decl are(ooVArray, i nt 8);
decl are(ooVArray, i nt 16);
decl are(ooVArray, i nt 32);
decl are(ooVArray, ui nt 8);
decl are(ooVArray, ui nt 16) ;
decl are(ooVArray, ui nt 32) ;
decl are(ooVArray, fl oat 32);
decl are(ooVArray, fl oat 64) ;

class Bul k: public ooQbj
{

public:
ui nt 32 si ze;
ooRef (DynaDi m\) theBul k <-> content;

public:
Bul k() {};

}s

class Bul klnt8: public Bulk
{

public:
ooVArray(int8) data;

public:
Bul kI nt8() {};

b
class Bul kl nt16: public Bul k

{

public:
ooVArray(int16) data;

public:
Bul kI nt 16() {};

}s

class Bul kl nt32: public Bul k
{

public:
ooVArray(int32) data;

63

public:
Bul kI nt 32() {};

}s

class Bul kU nt8: public Bulk
{

public:
ooVArray(ui nt8) data;

public:
Bul kU nt8() {};

}s

class Bul kU nt16: public Bul k
{

public:
ooVArray(ui nt 16) dat a;

public:
Bul kU nt 16() {};

}s

class Bul kU nt32: public Bulk
{

public:
ooVArray(ui nt 32) dat a;

public:
Bul kUi nt 32() {};

}s

cl ass Bul kFl oat 32: public Bul k
{

public:
ooVArray(fl oat 32) dat a;

public:
Bul kFl oat 32() {};

}s

cl ass Bul kFl oat 64: public Bul k
{

public:
ooVArray(fl oat 64) dat a;

public:

Bul kFl oat 64() {};

b
DynaDirEntry. h

#ifndef _ DynaDrEntry
#define _ DynaDirEntry

#i ncl ude "Dyna(bj ect. h"

class DynaDirEntry
{

public:
char pat h[256] ;
ooRef (DynaChj ect) ref;

public:
DynaD rEntry() { };

}s

#endi f

DynaSi Units

#ifndef _ DynaSi Units
#define _ DynaSi Units

class DynaSi Units
{

public:
int32 kg;
nt32 m
nt32 s;
nt32 A
nt 32 cd;
nt 32 nol ;
nt 32 K;
nt 32 rad;
nt32 sr;

public:
DynaSi Units() { };

}s
#endi f

DynaPol i cy

#i fndef _ DynaPol i cy
#define _ DynaPolicy

#i ncl ude "DynaAccessMbde. h"

cl ass DynaPol i cy

{

65

public:
uint16 gid;
DynaAccessMbde node;

public:
DynaPolicy() { };

}s
#endi f

DynaRevI nf o

#i f ndef _ DynaRevinfo
#define _ DynaRevinfo

cl ass DynaRevlnfo

{

public:
int32 tinme;
char usernane[256] ;
char description[8192];

public:
DynaRevinfo() { };

}s

#endi f

66

Objectivity dlassdiagrams

000bj

DynabDirectory 00FD Obj 0oDBObj |1 00CoNtObj
[i&list : ooVArray(DynaDirEntry) o0 o
DynaDirEntry DynaObject
czpath : char[256] ullpath : 00String(256)
garef : ooRef(DynaObj) name : 00String(32)
level : uint32
quality : uint32
references[] : ooRef(DynaObj)
DynaRevinfo policies : ooVArray(DynaPolicy)

ime : int32 history : ooVArray(DynaRevInfo)

username : char256]

description : char[8192]

DynaPolicy
~40id 1 uint16
smode : DynaAccessMode
- Figure 13 Hierarchy of top level classes of the DataManager
000bj
Bulk
BulkUInt8 BulkUInt16 BulkUInt32 BulkFloat32
data : 00VArray(uint8) data: 0oVArray(uint16) data: 0oVArray(uint32) data : ooVArray(float32)
Bulkintl 6 Bulkint32 BulkFloat64

Bulkint8

[Zdata :ooVArray(int8)

data : 00VArray(int16)

data : 00VArray(int32)

data : ooVArray(float64)

- Figure 14 Class hierarchy of raw data (BULK)

67

- Figure 15 Class hierarchy of measurement data

68

DynaObject
Ilifullpath : 00String(256)

[iname : ooString(32)

vel : uint32

[quality : uint32

ferences(] : ooRef(DynaObject)
-pohcies : 0oVArray(DynaPolicy)
[iihistory : 00VArray(DynaRevinfo)

£

DynaMimeObj
imetype : 00VString

[licontent : ooVArray(uint8)

DynaScalar

unit : DynasiUnits

im e :int32
content : float64

DynaDimN
unit : DynaSiUnits
izes : 00VArray(uint32)
bases[] : ooRef(DynaBase)

cal : ooRef(DynacCalibration)
adcres : uint16
content : ooRef(Bulk)

DynaSiUnits
Kg : int32
m :int32

tint32
©int32
cd :int32
mol : int32
K :int32
rad : int32
r:int32

DynaComment
-contem : 00VString

[unit: DynasiUnits

DynashortBase
s tart : float64.
s tep : float64

DynaBase

DynaPolyCalibration

DynaTableCalibration

[iicoeflicients : ooVArray(float6a)

[iidata : ooVArray(float6a)

DynalLongBase
[iidata : ooVArray(float64)

