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Abstract

Palaeomagnetic measurements have been carried out on Eocene to Pleistocene sediments on the Ionian island
of Zakynthos, NW Greece. Magnetostratigraphic constraints, biostratigraphic analyses of planktonic foraminifera and
calcareous nannofossils provide a reliable time frame for these deposits. The results show that no significant rotation
occurred between 8.11 and 0.77 Ma, but that Zakynthos underwent a 21.6º š 7.4º clockwise rotation between 0.77 Ma
and Recent. Thus, our data indicate a rapid rotational event, in contrast to continuous rotation since 5 Ma as previously
postulated [Laj et al., Tectonophysics 86 (1982) 45–67]. We speculate this late Pleistocene tectonic rotation phase to be
linked to rapid uplift in the Greek region which results from rebound processes caused by (African) slab detachment
underneath the Ionian islands.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main part of Greece belongs to the Hel-
lenides, an approximately NW–SE-running orogenic
belt which forms the connection between the moun-
tain chains of the Dinarides (northern Albania and
former Yugoslavia) in the west and the Taurides
(Turkey) in the east. The Hellenides are divided into
a number of sedimentary facies belts or isopic zones
[1] from internal (east) to external (west): Vardar,
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Pelagonian, Pindos, Gavrovo-Tripolitsa, Ionian and
Pre-Apulian zone. These zones are separated by ma-
jor NW–SE-striking thrusts on the Greek mainland
and on the Ionian Islands. The geological evolution
of the Hellenides is dominated by divergence and
convergence of the African and Eurasian plates [1]
and related processes like subduction, roll back fol-
lowed by extension in the Aegean back-arc, and pos-
sibly an additional westward Anatolian push. During
Mesozoic times, troughs and platforms developed
between the foreland, Adria (the African promon-
tory), and the internal oceanic part of the Neotethys.
Subsequently, the oceanic part closed and the dif-
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ferent isopic zones were emplaced as well-defined
thrust sheets. The timing and locus of emplacement
migrated progressively towards the foreland [2]. The
(outer) westernmost thrust zone, the Ionian thrust,
was probably active during the Early Pliocene [3].

The current southern and western boundaries of
the deforming Aegean region are formed by the sub-
duction (Hellenic trench system) of the African slab
underneath Eurasia, with Adria separating Greece
from Italy. Tomography has shown that subduction
occurred at both sides of Adria [4]. The seismic ve-
locity structure reveals detachment of the (African)
slab from the surface in northern Greece [4] and be-
neath the Calabrian arc in southern Italy [5]. Accord-
ing to Wortel and Spakman [6] the detachment of the
slab started in the north and migrated southwards in
time, causing temporal and spatial variations in the
slab pull. Where the slab is just detached, a basin
(deflection downward) can develop, succeeded by a

Fig. 1. Location of Zakynthos in the Aegean region. Numbers denote the sampled sections=sites (geological map after Underhill [10]. A,
B and C represent sites sampled by Laj et al. [11]. The inset represents the geographical=geological map and the islands discussed in the
text.

period of rebound processes in which the area will be
uplifted. Although other authors have used tomog-
raphy data to propose a continuous slab in southern
Italy and Greece [7,8] there is a growing number of
studies, e.g. on migration of depocentres along the
Apennines [9], that are consistent with the process of
migration of slab detachment.

Over the last decades, palaeomagnetic studies
have aided in the understanding of the Neogene
geodynamic evolution of the Aegean arc (Fig. 1).
Kissel and Laj [12] concluded that the curvature of
the Aegean arc has been acquired by deformation
during two major tectonic phases, an older one dur-
ing the Middle Miocene and a younger one during
the Plio–Pleistocene. They suggested, on the basis
of palaeomagnetic results from the Ionian islands
of Zakynthos, Kefallonia and Corfu, that the west-
ern part of the Aegean arc underwent a continuous
clockwise rotation during the younger phase, from
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approximately 5 Ma to Recent, with an average rate
of 5º=Ma [11]. The area of clockwise rotations ex-
tends further north, including the external Albanides,
and ends at the Scutari-Pec transverse zone [13,14].
More to the centre of the Aegean region, on the
Cycladic islands of Mykonos [15], Tinos [16], Evia
and Skyros [17], comparable clockwise rotations are
found. In western Turkey, forming the eastern part
of the arc, anticlockwise rotations up to 45º were
identified during the Middle Miocene [12]. Based on
palaeomagnetic data from Crete and Rhodes [11,18],
it was suggested that the central and eastern parts
of the Aegean arc did not rotate since Tortonian re-
spectively Pliocene times. The area of non-rotation
(at least since 15 Ma) extends to the east includ-
ing the Antalya region in southern Turkey [19].
Many geophysical modelling studies concerning the
Aegean arc have used constraints derived from these
palaeomagnetic data [20–22]. However, recent re-
sults from Crete indicate predominantly post-early
Messinian anticlockwise (ac) rotations, in agreement
with a tectonostratigraphic analysis [23]. These ac
rotations are governed by rotations of fault-bounded
blocks. Evidence for anticlockwise rotations in the
central Aegean was also found on Naxos since the
Middle Miocene [15] and on Milos since the Plio–
Pleistocene [24], constraining the overall sense of
rotation in the central part of the Hellenic arc.

Recently, accurate astronomical (polarity) time
scales including a significantly improved biostrati-
graphic resolution [25–27] have allowed to constrain
more precisely rotation phases in the central Mediter-
ranean. In contrast to continuous deformation, e.g. as
proposed for the western Aegean area, there is increas-
ing evidence for short periods of rapid, pulsed tec-
tonic rotations. For instance, in southern Italy, palaeo-
magnetic data indicate a large 25º anticlockwise tec-
tonic rotation phase in Calabria that has taken place
somewhere between 8.6 and 7.8 Ma [28]. During the
Pliocene, a 10º clockwise rotation event occurred on
Sicily around 3.21 Ma within some 80–100 ka [29],
while a Pleistocene rotation phase has been docu-
mented in Calabria (15º clockwise) and the southern
Apennines (23º anticlockwise) taking place between
0.8 and 0.7 Ma [30,31]. For this reason, we decided to
examine in detail the timing and duration of tectonic
rotations in the western Aegean area. We first selected
the island of Zakynthos (Fig. 1) because it contains

the most complete sedimentary record of the Ionian
islands, with rocks ranging in age from Cretaceous
to Pleistocene. The new dating techniques enable to
accurately confine the age of the sediments and to de-
termine more precise constraints on rotation phases,
and thus on the geodynamics of the Aegean area.

2. Sections and sampling

The island of Zakynthos belongs partly to the
Ionian and partly to the Pre-Apulian zone (Fig. 1);
the latter zone comprises the eastern slope of the
African promontory. These two zones are separated
by the Ionian thrust, which runs east of Zakynthos
town [10] and was emplaced in the Early Pliocene
according to Sorel [3].

The sediments on Zakynthos range in age from
Cretaceous to Pleistocene and occur in approx-
imately parallel, linear zones running NW–SE
(Fig. 1). A mountain belt, formed by Cretaceous
limestones, dominates the western part of the is-
land, the pre-Apulian zone. To the east, we en-
counter rhythmically bedded Eocene deposits, fol-
lowed by Oligocene olistostromes embedded in
Miocene (Aquitanian to Serravallian) pelagic lime-
stones. Scattered outcrops of Tortonian age mainly
consist of alternations of marls and sapropels. The
southern part of Zakynthos encompasses a long
and continuous Messinian section of marls and
sandy turbidites, which at the top abruptly pass
into steeply dipping (¾60º) evaporites related to
the Messinian salinity crisis. These evaporites are
overlain by Pliocene ‘Trubi’-like marls, representing
the basal Zanclean flooding of the Mediterranean.
Younger Pliocene sediments are found along the
northeast coast of the island and at the base of the
‘Citadel section’ near Zakynthos town. This section
has previously been subjected to detailed studies as
it contains the Plio–Pleistocene boundary [32,33].
The Pliocene part consists of alternating clays and
silt=sandstones with some sapropelitic intercalations
in the lower part; the sand content is increasing to-
wards the top. The Pleistocene part (Citadel–Bochali
sequence) consists of an alternation of open marine
turbidites, which in turn are overlain by calcarenites.

The southeastern peninsula of Zakynthos is be-
lieved to belong to the Ionian zone and is pre-
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dominantly formed by Triassic evaporites and Plio–
Pleistocene sediments [10]. This part is separated
from the Apulian zone by an area of intense defor-
mation. Diapirism of Triassic evaporites, large-scale
faulting and thrusting resulted in scattered and highly
deformed outcrops of sediments in the western part
of this peninsula. The southeastern part of the Ionian
zone at Cape Gerakas contains well-exposed sec-
tions of Pliocene–Pleistocene marls, but clear signs
of deformation (steeply (¾40º) dipping layers, fold-
ing and normal faulting) caused by Late Pliocene
to Quaternary diapiric intrusion, are observed [34].
These marls, immediately adjacent to the diapirs in
SE Zakynthos, are steeply dipping and overturned
([34], field observations), and are overlain by an un-
deformed series of Pleistocene marls alternating with
calcareous sandstones=calcarenites [35], resembling
the earlier mentioned Citadel–Bochali sequence. A
detailed stratigraphic study also revealed the Plio–
Pleistocene boundary in this area [36].

For our study, fifteen sites and sections have been
selected all over Zakynthos with ages ranging from
Eocene to Pleistocene. All but two sections=sites
consist of undeformed sediments with (slightly) in-
clined strata. The Messinian marls and evaporites at
Kalamaki Beach and the Plio–Pleistocene marls at
Cape Gerakas (one of the sites of Laj et al. [11])
were sampled despite their signs of deformation. We
have also sampled the two other sites on Zakynthos
(Fig. 1) used by Laj et al. [11]. A total of 609 cores
was sampled and drilled with an electrical drill and
generator. Preferentially, continuous sections were
sampled — with three cores per level (for paleomag-
netic, biostratigraphic and rock magnetic analysis)
— formed by outcrops of more than 10 m strati-
graphic thickness. This allows magnetostratigraphy
to be used as an age constraint in addition to the
detailed biostratigraphy. Individual outcrops were
sampled with eight to fourteen cores per site. Mostly,
fine-grained sediments (clays, marls) were sampled
with a low sedimentation rate (typically 5 cm=ka)
and over a sufficiently large interval, thus averaging
out, to a large extent, secular variation. In addition,
early post-depositional processes typically smooth
out the finer-scale variations of the geomagnetic field
[37].

Ages of sections are mainly obtained by record-
ing foraminiferal and calcareous nannofossil species

(caption to Fig. 2) of which last (common) oc-
currences (L(C)O) and first (common) occurrences
(F(C)O) have been dated. Foraminifers have been
analysed in washed residues of >125 µm; for
calcareous nannofossils we have used smearslides.
The sections=sites including the age diagnostic
species are shown in Fig. 2 and described in Ap-
pendix A together with their Mediterranean chrono-
stratigraphy and numerical ages [25,27,42]. Most
sections have additional magnetostratigraphic con-
straints (Appendix A).

3. Palaeomagnetic results

3.1. Analysis of the natural remanent magnetisation
(NRM) and isothermal remanent magnetisation
(IRM)

The natural remanent magnetisation (NRM) was
measured on a 2G Enterprise DC SQUID cryogenic
magnetometer using progressive stepwise thermal
demagnetisation with temperature increments of 30
or 50ºC, from room-temperature to the limit of repro-
ducible results. The demagnetisation results (Figs. 3
and 4) show that often a small viscous and labora-
tory-induced component is removed at 100ºC, while
occasionally a relatively small secondary present-day
field component exists which is typically removed at
¾200ºC. As a rule, steps below ¾200ºC are never
used to determine characteristic components because
of possible overlap of blocking temperature spec-
tra (e.g. Fig. 3b). Demagnetisation at temperatures
higher than 200ºC reveals two types of demagneti-
sation behaviour related to intensities and different
maximum unblocking temperatures. In general, sam-
ples with a relatively low NRM intensity have a char-
acteristic remanent magnetisation (ChRM) which is
completely removed at 360–400ºC (Fig. 3d,f,i and
Fig. 4a–h). Demagnetisation at temperatures higher
than 360–390ºC results in randomly directed mag-
netisations because of alteration (oxidation) of iron
sulphides (typically pyrite), which is commonly ob-
served in this type of marls and clays. In high NRM
intensity samples the ChRM is usually only com-
pletely removed at 580–620ºC (Fig. 3a–c,e,g,h and
Fig. 4i), but also here disturbing magnetisations may
occur at temperatures above 360–390ºC, depending
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on the presence of iron sulphides. Since this may
cause an apparent decay of the ChRM passing the
origin (e.g. Fig. 3e), we have in such cases conser-

vatively used only the data points below ¾390ºC.
Samples with a large present-day overprint or un-
stable samples were not used. As the outcrops are
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monoclinal, the fold-test could not be performed.
The reversal-test was positive for Ormos Alikon and
Limnou Keriou (Classifications B and C, respec-
tively). For the Porto Roma site the reversal test was
negative, but this is commonly observed in these
types of sediments [43]. Although Scheepers and
Langereis [44] devised a method to correct the non-
antipodality between normal and reversed polarity, it
appears that simply averaging normal and reversed
directions yields essentially the same result.

We performed some rock magnetic tests to iden-
tify the dominant carriers of the remanence, includ-
ing acquisition of a three-component [45] isothermal
remanent magnetisation (IRM) and subsequent de-
magnetisation of this IRM. The IRM was induced in
a pulse magnetiser and was measured on a digitised
spinner magnetometer based on a Jelinek JR3 driver
unit. The IRM was induced in three orthogonal di-
rections using fields of 75 mT, 200 mT and 2 T.
All samples, both normal and reversed, are charac-
terised by the dominance of a low-coercivity mineral
(Fig. 5A,B) and the magnetisation is carried by
magnetic minerals with coercivities below 200 mT,
mostly below 75 mT (Fig. 5C,D). The relatively low-
intensity samples (0.2–0.8 mA=m) show a maximum
blocking temperature around 570ºC, indicating the
presence of magnetite, but iron sulphides are likely
present as well as can be seen from the inflexion at
¾350ºC (Fig. 5C,D). The ChRM in these low-inten-
sity samples was removed at 360–400ºC; the ChRM
at higher temperatures could not be measured. The
relatively high-intensity samples (3–55 mA=m) have
a maximum blocking temperature between 600 and
650ºC, suggesting (partly) oxidised magnetite as the
dominant carrier of the NRM (Fig. 5D).

The characteristic directions of the magnetisations
were determined by least squares fitting (principal
component analysis) through selected data points.
For each section or site, average ChRM-directions
were calculated using Fisher statistics (Fig. 6; Ta-
ble 1). The distribution of the ChRM directions on
Zakynthos can be seen in Fig. 7; the errors are
calculated using R=∆R and F=∆F (Table 1). Direc-
tions before and after tilt corrections have essentially
the same precision parameter (k); low k values are
typically seen in low-intensity samples.

4. Discussion

Our palaeomagnetic data of all sampled late Neo-
gene sections on Zakynthos, in both the pre-Apulian
and Ionian zones, show no significant differences in
rotation. Since the ages of the sediments range from
Tortonian (8.11 Ma) to Pleistocene (1.03–0.77 Ma),
it must be concluded that no differential rotations
took place between 8.11 Ma and 0.77 Ma. Thus, the
overall 22º clockwise rotation (Table 1) must have
occurred since 0.77 Ma.

The results of three sites, however, are question-
able. The Alikanes section shows magnetisations
largely removed at low (200ºC) temperatures and is a
classic example of overprinting, which is confirmed
by the present-day field direction before tilt correction
(Fig. 6e; Table 1). At Gerakas, the marls are steeply
dipping and overturned caused by Late Pliocene to
Quaternary diapirism [34]. Although the large error
makes the small clockwise rotation of Gerakas not
incompatible with other results (Table 1), we feel
that including this result is not warranted. At Kala-
maki Beach, the (late) Messinian evaporites reveal
anticlockwise rotations. Because of the observed de-
formation in these evaporites in the vicinity of the
Ionian thrust, we do not regard this result as represen-
tative. Therefore, we prefer not to include the results
from Alikanes, Cape Gerakas and Kalamaki Beach.

Our new results have considerable implications
for the geodynamic evolution of the western Aegean
arc. A previous tectonic reconstruction for the north-
western part of Greece was made by Kissel and
Laj [12], based on combined palaeomagnetic data
from the Ionian islands of Zakynthos, Kefallonia
and Corfu. They suggested that all three islands
were subjected to a continuous rotation starting at
5 Ma, with an average rate of 5º=Ma. This scenario
was predominantly based on (9) results from Corfu,
whereas fewer results were obtained from Zakynthos
(3) and from Kefallonia (4). Kissel and Laj [12] thus
considered the Ionian islands as a structural unity,
and they argued that this is supported by structural
data from Mercier et al. [46].

We sampled the Laj et al. [11] sites from Za-
kynthos and re-dated them. It appears that our ages
of these sites are significantly younger. The reason
for this difference cannot be determined because no
age diagnostic fossils are given in Laj et al. [11].
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Fig. 5. Examples of absolute (A) and normalised (B) IRM acquisition of samples from Zakynthos. Solid (dotted) lines represent relatively
low- (high-) intensity samples. Stepwise thermal demagnetisation of the normalised three-component IRM of a low- (C) and high- (D)
intensity sample indicates magnetite, respectively maghemite as the main carriers of the ChRM.

Our larger number of sample localities and accu-
rate age constraints clearly reveal a different tectonic
evolution at least for the island of Zakynthos. A
continuous rotation during the last 5 Ma seems no
longer tenable, since our new palaeomagnetic data
indicate that a significant clockwise rotation of ¾22º
occurred between 0.77 Ma and the Recent, while
no rotational motions occurred between at least 8.11

and 0.77 Ma (Fig. 8). Our different geodynamic sce-
nario for Zakynthos need not be surprising, because
Zakynthos (and Kefallonia) are separated from Corfu
by the important Kefallonia Fault Zone. Moreover,
Corfu does not overlie the Hellenic subduction zone,
in contrast to Zakynthos and Kefallonia. It may thus
have experienced a tectonic evolution quite differ-
ent from that of Zakynthos. Although the rotation
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Table 1
Results from NRM analysis from the different sections on Zakynthos

Site=Section CODE N Dnotc Inotc k Þ95 Dtc Itc k Þ95 rot. R ∆R F ∆F Age
(º) (º) (º) (º) (º) (º) (º) (º) (º) (º) (º) (Ma)

Porto Roma1 PR 20 12.1 62.0 135.7 2.8 20.0 59.2 98.4 3.3 20 c 14.5 5.6 �6.1 3.2 1.03–0.77
Bochali1 BOC 8 193.5 �58.2 65.3 6.9 199.5 �50.2 65.3 6.9 20 c 14.0 8.9 2.9 5.8 1.37–1.24
Zakynthos Town1 ZT 41 21.8 63.8 43.2 3.4 22.3 54.5 43.6 3.4 22 c 16.8 5.1 �1.4 3.3 1.94–1.44
Gerakas GER 8 137.2 �55.2 12.9 16.0 187.9 �54.1 20.9 12.4 8 c 2.4 17.3 �1.0 10.1 1.94–1.61
ZA 80 118* A 10 – – – – 184.0 �57.0 84.5 4.8 4 c �1.5 7.4 �3.9 4.3 1.8–1.61
Alikanes ALE 18 358.7 55.0 225.2 2.3 341.5 58.9 204.3 2.4 – �6.8 3.8 �1.9 2.6 3.31–2.73
Kalamaki Beach KLB 11 143.2 �19.3 27.3 8.9 169.2 �22.6 27.3 8.9 11 ac �16.3 8.0 30.5 7.4 5.95–5.21
Aghios Sostis SOS 9 – – – – – – – – – – – – – Messinian
Limnou Keriou (north)2 LMN 23 176.4 �58.2 44.9 4.6 199.2 �47.4 47.7 4.4 19 c 13.7 5.6 5.7 4.0 7.24–6.60
Linmou Keriou (south) LMS 4 – – – – – – – – – – – – – Tortonian
Ormos Alikon2 ALO 25 170.6 �58 30.1 5.4 195.1 �40.5 34.1 5.0 15 c 9.6 5.7 12.6 4.4 7.64–7.24
ZA 80 119* B 7 – – – – 206.8 �39.8 248.0 3.5 27 c 21.3 4.2 13.3 3.3 7.64–7.24
Vugiato2 VUG 14 350.3 70.2 22.3 8.6 23.9 50.3 20.9 8.9 24 c 18.4 11.4 2.8 7.4 8.11–7.70
ZA 79 66* C 15 – – – – 25.3 44.9 76.6 4.1 25 c 19.8 5.1 8.2 3.8 8.11–7.70
Marathia MA 8 – – – – – – – – – – – – – Serravalian
Lagopodo LAG 20 – – – – – – – – – – – – – early Middle Miocene
Lithakia LIT 7 – – – – – – – – – – – – – early Middle Miocene
Keri KE 7 – – – – – – – – – – – – – Eocene

Mean
1Pleistocene 3 – – – – 20.6 54.6 312.4 7.0 21 c 15.1 9.9 �1.5 5.9 1.94–0.77
2Miocene 3 – – – – 19.1 46.1 189.5 9.0 19 c 13.6 10.6 7.0 7.4 8.11–6.60
All 8 – – – – 21.6 48.4 128.0 4.9 22 c 16.1 6.3 4.7 4.3 8.11–0.77

*Laj et al. [11] (redated).
Corrected and uncorrected for bedding tilt; ages are indicated. N D number of specimens; D, I D site mean ChRM declination and inclination; k D Fisher’s precision
parameter; Þ95 D 95% cone of confidence; rot. D sense of rotation, (a)c D (anti)clockwise with a 0º reference direction; Þ95= cos.I / D error (see Fig. 6).
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a. Porto Roma b. Bochali c. Zakinthos Town

d. Gerakas e. Alikanes f. Kalamaki Beach

g. Limnou Keriou h. Vugiato i. Ormos Alikon

Fig. 6. Equal-area projections of the ChRM from Mio=Plio and Pleistocene sections on Zakynthos, corrected for bedding planes. Closed
(open) circles represent downward (upward) projections. Ellipses denote Þ95. The grey circles (Alikanes) indicate the ChRM results
before bedding plane correction and are indistinguishable from the present-day field direction.
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phase might have been influenced by local tectonics,
considerable evidence is present suggesting a more
regional cause, as outlined below.

The tomographic studies of Spakman [4] have
shown that the African slab (Adria) is subducting
in the west underneath Italy, and in the east under-
neath Greece. These studies have also shown that the
African slab is detached both underneath Calabria in
southern Italy and beneath the southern Pelopones-
sos in Greece [47]. After slab detachment, rebound
processes can cause rapid uplift in the internal zones
caused by stretching of the shallow remainder of the
slab [48]. This scenario is used by Sorel et al. [49]
to explain the Pleistocene uplift of the Ionian islands,
and which consequently would date the detachment in
the Ionian region at that period [4]. In addition, much
of the relief of southern Greece has developed only in

the last million years [50]. As detachment proceeds,
the gravitational pull of the detached part of the slab
is transferred to the undetached part. This leads to an
increase in the effective slab pull exerted by the unde-
tached slab. A more pronounced outward migration
of the trench, relative to the situation where only the
roll-back process is active, is expected above the un-
detached slab [48] which then may result in rotations.

Furthermore, detailed studies of present-day and
past stress fields in the Aegean [20] revealed a tem-
poral change in the orientation of tensional stress —
from NE–SW to NNW–SSE in the northern Aegean
region — during the Late Pleistocene (post-Cal-
abrian and pre-Milazzian) [51], i.e. roughly between
0.8 and 0.3 Ma. Numerical modelling of stress pat-
terns by Meijer and Wortel [52] indicated that this
change in orientation is likely caused by lateral mi-
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lands, indicating 5º=Ma starting around 5 Ma.

gration of slab detachment [6] on the eastern side of
Adria. Our clockwise rotation phase on Zakynthos
occurred after 0.77 Ma, corresponding to this change
in stress regime. Hence, we prefer a scenario in
which slab detachment and the subsequent rebound
causes uplift and a change in stress regime, which in
turn causes rotations.

The Pleistocene rotational phase on Zakynthos
appears to have been rapid since it must have taken
place some time during the last 0.77 Ma. A sim-
ilar young and rapid Pleistocene tectonic rotation
phase was found in southern Italy. In Calabria,

the Calabro–Peloritan block underwent a 15º clock-
wise rotation between 0.8 and 0.7 Ma [31], whereas
the southern Apennines experienced a time-equiva-
lent 23º anticlockwise rotation [30,31]. Concurrently
(0.9–0.7 Ma), uplift in Calabria (southern Italy) oc-
curred which Westaway [53] related to slab detach-
ment. Thus it appears that on both sides of the Adri-
atic platform a similar process of slab detachment,
rebound, uplift and tectonic rotations occurred.

5. Conclusions

Our palaeomagnetic data show that during the
last 8 Ma, the geodynamic evolution of the Ionian
island of Zakynthos is marked by no significant
rotational movements during Tortonian (8.11 Ma)
to Pleistocene (0.77 Ma) times. A well-defined and
rapid tectonic event occurs younger than 0.77 Ma
causing a 22º clockwise rotation of the island. The
Early Pliocene emplacement of the Ionian thrust did
not result in any differential rotations of the island.

We link the clockwise rotation of Zakynthos
to Late Pleistocene uplift in (mainland) Greece
[50], related to rebound processes resulting from
(African) slab detachment underneath the Ionian
islands [6,52]. A similar process of slab detach-
ment, rebound, uplift, and subsequent rotations is
also found in southern Italy. This implies that rota-
tions may ultimately be linked to slab detachment.
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Appendix A

Lithakia
Age: late Early to early Middle Miocene
Geographical coordinates: 37º420N=20º490E
Lithology: blue laminated limestones
Cores: 3 sites=26 cores
Fossil content: H. ampliaperta and H. heteromorphus (pre-Orbulina age)
Magnetostratigraphy: undetermined

Lagopodo
Age: late Early to early Middle Miocene
Geographical coordinates: 37º440N=20º470E
Lithology: scattered outcrops of laminated limestones=marls
Cores: 5 sites=39 cores in marls
Fossil content: H. ampliaperta and H. heteromorphus (pre-Orbulina age)
Magnetostratigraphy: undetermined

Marathia
Age: Serravalian
Geographical coordinates: 37º400N=20º510E
Lithology: ¾30 m blue marls
Cores: 4 sites=32 cores in marls
Fossil content: H. walbersdorfensis and H. orientalis
Magnetostratigraphy: undetermined

Vugiato (D ZA 79 66)
Age: 8.11–7.77 Ma
Geographical coordinates: 37º460N=20º460E
Lithology: 25 m clays with 16 intercalated sapropels
Cores: 15 levels=38 samples in clays
Fossil content: D. pentaradiatus, H. stalis, left coiled N. acostaensis, small-sized C. parvulus and G. menardii 4
Magnetostratigraphy: normal

Ormos Alikon (DZA 80 119)
Age: 7.64–7.24 Ma
Geographical coordinates: 37º520N=20º440E
Lithology: 60 m clay and sapropel alternations
Fossil content: Globorotalia menardii 4, small-sized C. parvulus (in the lower part) and G. menardii 5 (in the

upper part) and M. convallis, D. brouweri, D. pentaradiatus, and H. brouweri.
Magnetostratigraphy: normal (first 17 m), reversed (next 30 m), normal (13 m)

Limnou Keriou South
Age: early Tortonian
Geographical coordinates: 37º410N=20º500E
Lithology: 5 m marly clays with 4 intercalated sapropels
Cores: 1 site=4 levels=12 cores in the marly clays
Fossil content: Neogloboquadrina acostaensis, small-sized Catapsydrax parvulus without keeled globorotaliids,

Discoaster calcaris and Discoaster hamatus
Magnetostratigraphy: undetermined

Limnou Keriou North
Age: 7.24 – 6.60 Ma
Geographical coordinates: 37º420N=20º510E
Lithology: ¾300 m blue clays and sand alternations
Cores: 1 site=31 levels=97 cores in blue clays
Fossil content: sinistral N. acostaensis, G. conomiozea group and R. rotaria
Magnetostratigraphy: 250 m reversed, followed by 50 m normal
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Appendix A (continued)

Kalamaki Beach
Age: 5.95–5.21 Ma
Geographical coordinates: 37º440N=20º530E
Lithology: 125 m evaporites alternating with clays, followed by 10 m marls=sapropel
Cores: 5 levels=15 cores in clays between evaporites and 35 cores in marls=sapropels
Fossil content: Reticulofenestra rotaria in evaporitic part and high relative abundances of Sphaeroidinellopsis and

dextral N. acostaensis in the Trubi part (Sphaerodinellopsis Acme Zone).
Magnetostratigraphy: evaporitic part and base of marls (first 3.5 m) is reversed, top marls normal

Alikanes
Age: 3.31–2.73 Ma
Geographical coordinates: 37º510N=20º470E
Lithology: 10 m blue clays and sand alternations
Cores: 2 sites=20 cores in clays
Fossil content: N. acostaensis, G. ruber, G. bononiensis and Discoaster tamalis
Magnetostratigraphy: overprinted

Gerakas (DZA 80 118)
Age: 1.94–1.61 Ma
Geographical coordinates: 37º420N=20º580E
Lithology: ¾60 m of laminated clays and sandy alternations
Cores: 8 levels=28 cores
Fossil content: absence of H. balthica and G. inflata in the basal, presence of Sphaeroidinella and of D.

asymmetricus (reworked)
Magnetostratigraphy: normal (first metre) followed by reversed

Zakynthos Town
Age: 1.94–1.49 Ma
Geographical coordinates: 37º470N=20º540E
Lithology: 200 m clay, sapropel alternations with occasional sand layers
Cores: 22 levels=64 cores mostly in clays (top of section was not reached)
Fossil content: Discoaster triradiatus, G. inflata and no H. balthica
Magnetostratigraphy: normal (first 50 m) followed by reversed

Bochali
Age: 1.37–1.24 Ma
Geographical coordinates: 37º480N=20º540E
Lithology: scattered outcrops of sandy clay and sand alternations
Cores: 4 sites=43 cores in clays
Fossil content: large-sized Gephyrocapsa, G. inflata, H. balthica and 100% right coiled neogloboquadrinids.
Magnetostratigraphy: reversed

Porto Roma
Age: 1.03–0.77 Ma
Geographical coordinates: 37º420N=20º590E
Lithology: outcrops of blue clays in between calcarenites along the coast
Cores: 11 levels=54 cores
Fossil content: the presence of P. lacunosa, G. inflata and H. balthica together with less than 15–20% left coiled

neogloboquadrinids (in the middle=upper part of the section).
Magnetostratigraphy: normal (first 10 m), reversed (next 5 m) followed by a calcarenite and 10 m of reversed clay, again

calcarenite with 10 m normal clay.
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