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Dispersing predators and prey can exhibit co
interactions between them cause oscillatory d
prey density waves on the competition betwee
lations with different dispersal strategies. We
of both discrete and continuous predator�prey
that diffuses faster, disperses farther, or is m
ing, shorter dispersing, or less likely dispersing
appears that it does not matter whether time
what the exact interactions between the pred
competition between populations occurs in
qualitatively explains the observed behaviour
that describe, to a reasonable extent, these be
are tested. If strong enough, cost can reverse
or lead to coexistence because of the effect
explain previous results of simulations of co
H. N., and Massell, M. P., 1996, J. Theor. Biol.
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1. INTRODUCTION

Dispersal is a ubiquitous phenomenon in the natural
world. Its importance in understanding the ecological
and evolutionary dynamics of populations is mirrored by
the large number of mathematical models devoted to it in
the scientific literature (for a detailed review see Johnson
and Gaines, 1990; more recent work includes Gustafson
and Gardner, 1995; Johst and Brandl, 1997). The general
conclusion from the theoretical work indicates that
temporal variation tends to result in increased dispersal
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lex spatio-temporal wave-like patterns if the
amics. We study the effect of these predator�
rey populations and between predator popu-

rst describe 1- and 2-dimensional simulations
odels. The results suggest that any population

likely to disperse will exclude slower diffus-
pulations, everything else being equal. It also
ace, or state are discrete or continuous, nor

ors and prey are. So long as waves exist the
similar fashion. We derive a theory that

d calculate approximate analytical solutions
iours. Predictions about the cost of dispersal

e populations' relative competitive strengths
spiral wave cores. The theory is also able to
istence in host�parasitoid models (Comins,
3, 19�28). ] 1999 Academic Press

ons; individual oriented models; spiral waves;

and spatial variation in decreased dispersal (Johnson and
Gaines, 1990; McPeek and Holt, 1992). There are, of
course, some exceptions: for example, Hamilton and
May (1997), who looked at competitive interactions
among relatives, and Johst and Brandl (1997), who
looked at the temporal order of reproduction and disper-
sal. In this paper we will consider only unconditional
dispersal of asexually reproducing populations.

The previous work on the evolution of dispersal almost
invariably makes use of multi-patch models where
organisms that do disperse can disperse into any of the
available patches. This assumes that all patches are
within reach from any other patch and that the cost of
reaching a patch from any other is identical. This is not
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true for many species, where their range may extend over
more area than any one organism can visit in its lifetime
(Wright, 1943). In this paper we study what effect this
has on competing populations with different dispersal
strategies with the help of so-called spatially extended (or
explicit) models (Hogeweg, 1988; Durrett and Levin,
1994; Holmes et al., 1994).

Another assumption used in previous work is that the
spatial heterogeneity and the temporal fluctuations are
exogenous, i.e., they are forced upon the populations
within each patch. It can be the case, however, that the
interactions between dispersing populations induce
spatial heterogeneity and�or temporal fluctuations
through so-called self-structuring without help from
external forcing, i.e., the patterns are endogenous. There
are several processes that can lead to the formation of
these spatial and temporal patterns (Turing, 1952; Cross
and Hohenberg, 1993). We will consider one, namely
self-oscillation. This occurs frequently in ecological
models of predator and prey interactions and we will use
these models to study competition in spatially extended
oscillatory systems.

Theoretical work has shown that spatial and temporal
pattern formation can play a very important role in
ecological and evolutionary systems. Patterns can
affect, for example, stability of ecosystems (Hassell et al.,
1991; McCauley et al., 1996; Bascompte and Sole� , 1996),
the coexistence of species (Sole� et al., 1992; Ruxton
and Rohani, 1996), invasion of mutants (Boerlijst and
Hogeweg, 1991b), and chaos (Ruxton, 1996). Moreover,
the patterns themselves may interact, leading to selection
on the level of patterns (Boerlijst and Hogeweg, 1991a;
Boerlijst et al., 1993; Savill et al., 1997), interlocking eco-
evolutionary time scales (van der Laan and Hogeweg,
1995), evolutionary stagnation (Savill and Hogeweg,
1997), and diversity (Hogeweg, 1994).

In spatial oscillatory systems typical patterns include
spiral waves, turbulence, and target patterns. Much
theoretical work is devoted to this area because of its
wide applications in physics. The overwhelming majority
of this theory concerns continuous systems (continuous
in time, space, and state). However, there is a growing
body of literature on the simulation of discrete systems
(discrete in time and�or space and�or state) that shows
that the patterns mentioned above are generic to all
oscillatory systems (e.g., Sole� and Valls, 1992; Sherratt et
al., 1997). At this time though there is no formal theory
that proves the link between continuous and discrete
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systems. If the patterns are generic then it is probable
that they influence the ecological and evolutionary
dynamics of both continuous and discrete systems in a
similar fashion. In this paper we give an intuitive argument
for why this is so for competition in any oscillatory
system. We also show several simulations and develop
theories in continuous and discrete time systems (space
and state continuous) that shows that this is indeed true
for the competition between populations with different
dispersal strategies.

As a starting point for the simulations and theory we
assume there is no cost to dispersing, the reason being
that cost can come in many forms and strengths and adds
an extra parameter to the models. We first examine the
ecological dynamics without cost to see what possible
behaviours the models can exhibit. Cost is then added to
see what possible effects this has on the models.

The paper is organised as follows: In the next section
we describe the numerous simulations of both continuous
and discrete predator�prey models. This is done to show
that the patterns generated by these models are generic
and their effect on the ecological dynamics are similar. In
each simulation we have two competing prey populations
and two competing predator populations. Predator�prey
interactions are used primarily to achieve spatio-temporal
oscillations but also to demonstrate the generality of
competition between differently dispersing populations
with oscillatory dynamics.

In the Theory section we derive theories for continuous
and discrete time systems that predict the behaviour
seen in the simulations. The theory is not meant to be
rigorous; we wish to keep the mathematics simple so that
the essence of the ideas is clear and concise. Comparisons
between the results of the simulations and the theory are
shown and several predictions are made and tested.

2. SIMULATIONS

2.1. Introduction

In this section we will show simulations of continuous
and discrete spatially extended predator�prey models
exhibiting waves. The first two simulations are 1- and
2-dimensional models of predator�prey interactions with
continuous time, space and state and are modelled as
partial differential equations (PDE). The equations are
of the reaction�diffusion type. These equations have a set
of reaction terms that model the predator�prey interac-
tions and diffusion terms that model dispersal.

The next two simulations are 1- and 2-dimensional
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models of host�parasitoid interactions (formally equiv-
alent to predator�prey interactions) with continuous state
and discrete time and space and are modelled as coupled
map lattices (CML). These are discrete generation models



where, within one generation, the hosts and parasitoids
first disperse and then interact.

The final two simulations are 2-dimensional models of
a continuous time predator�prey system and a discrete
time host�parasitoid system both with discrete space and
discrete individuals (states), i.e., individual oriented (IO)
models. In these models individuals are modelled as
separate entities as opposed to modelling local densities
as in the continuous state PDE and CML models.

In all of the simulations we have two prey (host)
populations that compete and two predator (parasitoid)
populations that compete. There is no competition
between the predator and prey populations; we only
utilise the interactions between them to get oscillatory
dynamics. The competing populations are identical in
every respect except for their dispersal strategies. In the
PDE models the competing populations have different
diffusion coefficients; in the CML and IO models the
competing populations have different maximum dispersal
distances.

The models can also be interpreted as the invasion of
a mutant with a different dispersal distance or diffusion
coefficient into a wildtype population. Although the
initial conditions would be different from those in the
simulations, our major conclusions would still hold.

2.2. 1D PDE Predator�Prey Simulation

The system we use is the well-known Lotka�Voltera
model with self-limitation of the prey and Holling type
II functional response for two prey and two predator
populations,

r* i (x, t)=\a&br&
p

1+r+ ri+dri {2ri (1)

p* i (x, t)=\ r
1+r

&c+ pi+dpi {2pi , (2)

where t and x represent time and space, r=r1+r2 and
p= p1+ p2 , a, b, and c are positive parameters, and dri

and dpi are the diffusion coefficients of the prey and
predator populations, respectively. The system has already
been normalised. The values of the parameters are chosen
so that the system exhibits oscillations (i.e., in the spatially
homogeneous case the attractor is a stable limit cycle).
Both prey populations and both predator populations
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are identical in every respect except for their diffusion
coefficients which are dr1

=dp1
=0.5 and dr2

=dp2
=1.

Figure 1a shows a space�time plot of a typical simula-
tion. Time runs from top to bottom. From left to right we
have r1 , r2 , p1 , and p2 . The length of the 1-dimensional
space is 200 length units. The initial condition is one
predator�prey wave of wavelength 200 length units. The
initial densities are r1=9r2 and p1=9p2 at all positions.
Space has periodic boundary conditions so that as the
wave travels off the right of space it reappears on the left.
The simulation clearly shows that the faster diffusing
prey and predator populations (r2 and p2) exclude the
slower diffusing populations (r1 and p1).

Figure 1b shows the proportion of each population at a
certain point in space. In the top plot we show the propor-
tion of the two prey populations (thick line r1�(r1+r2),
thin line r2 �(r1+r2)). In the bottom plot we show the
proportion of the two predator populations (thick line
p1 �( p1+ p2), thin line p2 �( p1+ p2)). Notice the sigmoid
shape of the curves in both plots.

2.3. 2D PDE Predator�Prey Simulation

This simulation is similar to the 1D simulation. The
only differences between the two are zero flux instead
of periodic boundary conditions and complex spatial
patterns of spirals and turbulence instead of one plane
wave as initial conditions. The boundary conditions have
been changed from the 1D simulation to demonstrate
that they have no qualitative effect on the competitive
dynamics. All other parameters and initial densities are
the same.

The system is allowed to evolve freely exhibiting
complex spatio-temporal patterns instead of the stable
plane wave in the 1D simulation (Fig. 2a). Again, the
faster diffusing populations exclude the slower diffusing
populations. The first thing to notice is that, at a given
point in space, the amplitude of the oscillations varies in
a complex fashion (Fig. 2b). This is because the spatial
patterns shift and change over time. This is a well-known
effect in spatial oscillatory systems. Typically, at a given
point in space either spirals or turbulence can be observed.
Turbulence, by its very nature, exhibits varying amplitudes
and wavelengths. Spirals, on the other hand, are highly
structured. A spiral is composed of a core and an arm. At
the centre of the core is a singular defect that has zero
amplitude oscillations. Moving radially away from the
defect the amplitude increases (the core) until it saturates
in the arm of the spiral. Where waves collide, at so-called
shocks, the amplitude shows a small increase.

Figure 2c shows the change in the predator and prey
proportions at a point in space. Note that the propor-
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tions oscillate at the same frequency as the predator and
prey densities. The oscillations give us a handle with
which to calculate the rate of exclusion of the slower
diffusing population by the faster diffusing population.
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FIG. 1. One-dimensional simulation of two competing prey popula
Voltera system with self-limitation of the prey and Holling type II funct
predator populations are identical except for their diffusion coefficients,
space units and has periodic boundary conditions. The initial condition i
transients. The initial densities are r1=9r2 and p1=9p2 . The paramete
$t=0.01 and $x=0.3. $x was chosen so that the smallest wavelength, fo

2
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chosen so that the solution was within stability limits, i.e., 4d$t �$x�1. (a) S
from 0 to 50,000 time units, plotted every 50 time units. From left to right w
prey and predator populations exclude the slower diffusing populations. The
of the waves is much higher than that depicted in the figure. (b) The propo
shows the prey (thick line \r1

, thin line \r2
), bottom plot the predators (thic
s and two competing predator populations modelled using the Lotka�
al response given by Eqs. (1) and (2). Both prey populations and both

dp1
=0.5 and dr2

=dp2
=1. The 1-dimensional space has a length of 200

e wave covering the whole space and has been allowed to run to remove
re a=2.2, b=1.1, and c=0.18. The integration scheme is FTCS with
by observation, spanned approximately five lattice points. $t was then
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pace�time plot of the simulation with time running from top to bottom
e plot the population densities of r1 , r2 , p1 , and p2 . The faster diffusing
competition between the prey is much stronger. Note that the frequency

rtion of each population over time at a certain point in space. Top plot
k line \p1

, thin line \p2
).
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FIG. 2. Two-dimensional simulation of two competing prey popula
100_100 space units and has zero flux boundary conditions. The initia
pattern of spirals and turbulence. The integration scheme is Crank�Nich
for Fig. 1. $t was chosen to provide sufficient temporal resolution. Para
snapshots showing the faster diffusing predator and prey populations ex
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is much stronger. (b) The two prey (top) and two predator (bottom) popul
dotted lines). There are complex temporal fluctuations as the spatial pattern
time at a certain point in space. Top plot shows the prey (thick line \r1

, thi
oscillations in the proportions are due to the differential flow rates of prey a
occur in all simulations but may be difficult to see because of very long time
ns and two competing predator populations similar to Fig. 1. Space is
ndition has been allowed to run to remove transients and is a complex
on with $t=0.1 and $x=0.3. $x was chosen in a fashion similar to that
ers and initial population densities are the same as in Fig. 1. (a) Three
ing the slower diffusing populations. The competition between the prey
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ation densities at a given point in space (r1 and p1 solid lines, r2 and p2

s shift and change over time. (c) The proportion of each population over
n line \r2

), bottom plot the predators (thick line \p1
, thin line \p2

). The
nd predators from high densities regions to low densities regions. They
scales.
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FIG. 3. One-dimensional simulation of two competing host populat
equations with self-limitation of the hosts. The competing population
dr1

=dp1
=2 and dr2

=dp2
=3. Space is 200 patches wide and has periodic b

transients and is a complex pattern of defects, waves, and shocks. The ini
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c=0.05, d=1, :r=0.2, and :p=0.9. (a) Space�time plot of the simulation w
every generation. From left to right we plot the population densities of r1 , r2 ,
the shorter dispersing populations. The competition between the parasitoids
shocks where waves collide and weak in defects (cores). (b) The proportion
the hosts (thick line \r1

, thin line \r2
), bottom plot the parasitoids (thick lin
and two competing parasitoid populations using the Nicholson�Bailey
re identical except for their maximum dispersal distances, which are
dary conditions. The initial condition has been allowed to run to remove
densities are r1=99r2 and p1=99p2 . The parameters are a=2, b=300,
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ith time running from top to bottom from 0 to 800 generations, plotted
p1 and p2 . The farther dispersing host and parasitoid populations exclude
is much stronger than that between the hosts. Competition is strong in

of each population over time at a certain point in space. Top plot shows
e \p1

, thin line \p2
).
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FIG. 4. Two-dimensional simulation of two competing host populat
mum dispersal distances are dr1

=dp1
=1 and dr2

=dp2
=2. Space is a squ

initial condition has been allowed to run to remove transients and is a co
The parameters are the same as in Fig. 3. (a) Three snapshots showing t
populations. As the farther dispersing populations win the size of the patt
point in space. Top plot shows the hosts (thick line \r1

, thin line \r2
), bo

2.4. 1D and 2D CML Host�Parasitoid
Simulations

These simulations are based on models developed by
Hassell et al. (1991) and Comins et al. (1992). Time is
discretised into generations. In each generation there is
first dispersal of hosts and parasitoids then parasitism

Competition and Dispersal
and reproduction. Space is also discretised into a lattice
of square patches. Hosts and parasitoids may randomly
disperse from one patch to another local patch. If ri (x, t)
and pi (x, t) are the host and parasitoid pre-dispersal
s and two competing parasitoid populations similar to Fig. 3. The maxi-
lattice of 150_150 patches and has periodic boundary conditions. The

ex pattern of many spirals. The initial densities are r1=9r2 and p1=9p2 .
arther dispersing hosts and parasitoids excluding the shorter dispersing
s increases. (b) The proportion of each population over time at a certain

plot the parasitoids (thick line \p1
, thin line \p2

).

densities at time t then r$i (x, t) and p$i (x, t) are the post-
dispersal densities given by

r$i (x, t)=(1&:r) ri (x, t)+:r |
�

&�
ri (x&!, t) Dri (!) d!

(3)
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p$i (x, t)=(1&:p) pi (x, t)+:p |
�

&�
pi (x&!, t) Dpi (!) d!,

(4)
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where :r and :p are the dispersal probabilities of hosts
and parasitoids, respectively. The first terms in Eqs. (3)
and (4) represent those hosts and parasitoids that do not
disperse, the second terms those that do. The functions
Dri and Dpi describe the dispersal distribution of hosts
and parasitoids from a given patch. For example, they
might have a Gaussian distribution. In these simulations
we use a flat distribution; e.g., in 2D,

Dri (x)={
1

?d 2
ri

0

if &x&�dri

otherwise
(5)

Dpi (x)={
1

?d 2
pi

0

if &x&�dpi

otherwise,
(6)

where dri and dpi are the maximum dispersal distances of
the hosts and the parasitoids, respectively. Numerous
simulations lead us to conclude that the exact form of the

FIG. 5. Two-dimensional simulation of the individual oriented pred
maximum dispersal distances which are dr1

=dp1
=2 and dr2

=dp2
=3. Spa

The initial condition has been allowed to run to remove transients and is
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and p1=9p2 . (a) Four snapshots showing the farther dispersing predator an
not plot the competing populations separately as in the continuous state mo
dispersal distances we plot the dispersal distance which is in the majority (d=
of each population over time over all space. Top plot shows the prey (thic
line \p2

).
r�prey model. The competing populations are identical except for their
s a square lattice of 150_150 patches and has zero boundary conditions.
mplex pattern of spirals and turbulence. The initial densities are r1=9r2

distribution does not qualitatively influence the com-
petitive interactions between populations. The dispersal
distances are dr1

=dp1
=2 and dr2

=dp2
=3 for the 1D

simulation and dr1
=dp1

=1 and dr2
=dp2

=2 for the 2D
simulation.

Once dispersal has taken place the hosts and parasitoids
interact. We use the well known Nicholson�Bailey equa-
tions (Nicholson and Bailey, 1935) with the addition of
self-limitation of the hosts (Varley and Gradwell, 1963),

ri (x, t+1)=ar$i (1&r$) e&p$ (7)

pi (x, t+1)=br$(1&e&p$)
p$i
p$

, (8)

where r$=r$1+r$2 and p$=p$1+ p$2 and a and b are
positive parameters. The details of the models are given
in the figure legends (Figs. 3 and 4).

For the 1D simulation Fig. 3a shows the space�timeplot.
The farther dispersing host and parasitoid populations
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d prey populations excluding the shorter dispersing populations. We do
dels. Because in each patch there can be many individuals with different

2 light grey, d=3 dark grey, empty patches white). (b) The proportion
k line \r1

, thin line \r2
), bottom plot the predators (thick line \p1

, thin
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FIG. 6. Two-dimensional simulation of the individual oriented host
maximum dispersal distances which are dr1

=dp1
=2 and dr2

=dp2
=3. Spa

The initial condition has been allowed to run to remove transients and is
and p1=9p2 . (a) Four snapshots showing the farther dispersing host and
ing as in Fig. 5). (b) The proportion of each population over time over a
the parasitoids (thick line \p1

, thin line \p2
).

exclude the closer dispersing populations. Within defects
exclusion occurs more slowly than at shocks where waves
collide; this is most easily observed for the parasitoids.
Figure 3b shows the proportion of each population
at a certain position in space with the characteristic
oscillations in the curves. The 2D simulation is shown
in Fig. 4 with very similar results. This simulation
clearly shows an increase in the size of the spatial patterns
as the farther dispersing populations increase in number.
This is not really surprising as it is known for diffusive
PDE systems that the pattern size increases as the square
root of the diffusion coefficient.

2.5. 2D IO Predator�Prey and Host�Parasitoid
Simulations

We have also simulated the predator�prey system in
continuous time (Fig. 5) and the host�parasitoid system
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in discrete time (Fig. 6) in IO models to show that using
discrete entities gives the same results as for continuous
state models. The details of the models are given in the
Appendix A.
rasitoid model. The competing populations are identical except for their
s a square lattice of 150_150 patches and has zero boundary conditions.
mplex pattern of spirals and turbulence. The initial densities are r1=9r2

asitoid populations excluding the shorter dispersing populations (colour-
ace. Top plot shows the hosts (thick line \r1

, thin line \r2
), bottom plot

In both cases the farther dispersing populations always
exclude the closer dispersing ones. The size of the spatial
patterns increase as the farther dispersing populations
increase in numbers. In the previous simulations the
proportions of each population were calculated at a
single point or patch in space. This is possible because the
models have a continuous state and zero densities do not
occur. In these discrete state models there may be no
individuals in a patch due to local extinctions. Therefore,
calculating the proportion in one patch is not very help-
ful. Thus, the proportion of each population is calculated
over the whole of space (Figs. 5b and 6b). This averaging
over many waves causes the oscillations in the propor-
tions to become less pronounced.

3. THEORY

3.1. Why Dispersal Confers a Competitive
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Advantage

If spatial waves exist then diffusion or dispersal will
always cause a positive net flux of organisms from the



FIG. 7. The host population density before dispersal (solid line)
and after dispersal with a dispersal distance of 5 (dotted line) and
15 (dashed line) taken from the 1D CML simulation. More of the
farther dispersers disperse into the wave troughs where there is less
competition. Hence they have, on average, a higher per-capita growth
rate.

peaks into the troughs of the waves (more precisely from
regions where {2r<0 to regions where {2r>0, where r
is the population density, Fig. 7). The larger the dispersal
the greater the net flux. In the predator�prey systems
defined in this paper per�capita growth rates of the
populations are a function of the local density. In fact, as
the density increases per�capita growth rates decline.
This implies that growth rates are larger in the troughs of
the waves than in the peaks (Fig. 7). Hence, a population
with a larger dispersal distance or diffusion rate with a
larger net flux into the wave troughs will have larger
per-capita growth rates averaged over the whole wave.
Therefore, this population will exclude a population with
a smaller dispersal distance or diffusion rate. For example,
in Fig. 7 the average per-capita growth rate for the popula-
tion with dr=5 (dotted line) is 1.17 and for the population
with dr=15 (dashed line) is 1.35. This would seem to
suggest that the faster diffusing population always excludes
the slower diffusing population unless the functional
form for predator�prey interactions reduces competition
as density increases whilst maintaining oscillatory
dynamics.

Intuitively one can see that the difference in per-capita
growth rates, and hence the rate of exclusion, between
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the two populations will be some function of the dispersal
distances or diffusion rates and the wave amplitude and
frequency. In the next section we derive approximate
analytical expressions for that function.
3.2. The Oscillations in the Proportions

To formulate an analytical theory for competition
in predator�prey waves we will do so in terms of the
proportion of each population, namely:

\ri=
ri

r1+r2

(9)

\pi=
pi

p1+ p2

. (10)

In the previous section we argued for exclusion by
considering competition over the whole wave. To derive
analytical expressions we shift the focus into a single
point in space. We want to show that the proportion of
the faster or farther dispersing populations increase with
time. However, Figs. 1b, 2c, 3b, 4b, 5b, and 6b show that
\r2

and \p2
are sometimes increasing and sometimes

decreasing. In fact, not surprisingly, the oscillations in
the proportions have the same frequency as the oscilla-
tions of the density waves in space. Hence, we want to
show that \r2

and \p2
always increase over one period of

a wave even though there is some decrease during part of
that period.

The oscillations in the proportions arise for the following
reason. (We consider diffusion of the prey populations. A
similar argument applies to the predator populations and
for dispersal probability and distance.) Where the prey
densities are at their maximal value diffusion will lower
the prey densities at that point. Conversely, where the
prey densities are at their minimal value diffusion will
increase the prey density at that point. In other words,
prey flow from high density to low density regions in
space. Moreover, the faster the diffusion the greater the
flow. Hence, where the prey densities are high (in fact,
when {2r<0) proportionately less of the slower diffusing
prey leaves these points in space than the faster diffusion
prey and, therefore, the proportion of the slower diffusing
prey at that point increases more than the proportion of
the faster diffusing prey. Conversely, at low prey densities
(when {2r>0) proportionately more faster diffusing
prey enter a point in space and the proportion of these
prey increases more than the proportion of the slower
diffusing prey. Hence, at a given position in space, when
the prey density is high the proportion of slower diffusing
prey increases and when the prey density is low the
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proportion of the faster diffusing prey increases. There-
fore we see oscillations in the proportions of the prey at
the same frequency as the oscillations of the density
waves.



What we have not explained is why, for the faster
diffusing prey, there is more increase in its proportion
than decrease over one period at a given point in space.
The theory developed next tackles this problem. We first
derive a theory for continuous time systems and compare
the predictions to the 1D and 2D PDE predator�prey
models and the 2D IO predator�prey model. Then we
derive a theory for discrete time systems and compare the
predictions to the 1D and 2D CML host�parasitoid
models and the 2D IO host�parasitoid model.

3.3. Continuous Time

Consider two prey populations, ri=ri (x, t), and
two predator populations, pi= pi (x, t), where t and x
represent time and space. Let

r(x, t)=r1(x, t)+r2(x, t) (11)

p(x, t)=p1(x, t)+ p2(x, t) (12)

for notational convenience. The prey and predator
populations interact with the following dynamics,

r* i=f (r, p) ri+dri {2ri (13)

p* i=g(r, p) pi+dpi {
2pi (14)

(cf., Eqs. (1) and (2)), where f and g are chosen so that the
system exhibits oscillations and dri and dpi are the diffusion
coefficients of the prey and the predator populations,
respectively. We will consider the competition between the
prey populations; similar results can be derived for the
predators. Individuals in the two populations are identical
except that r2 has a higher diffusion coefficient than r1 :

dr1
<dr2

. (15)

The fraction of prey ri is given by

\ri=
ri

r
. (16)

The criterion for r2 to exclude r1 is

\r2
(x, t+T )&\r2

(x, t)>0 (17)

over all periods (Figs. 1b, 2c, and 5b), where T is the
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wave period. The LHS can be rewritten as

|
t+T

t
\* r2

(x, t) dt. (18)
FIG. 8. The ratio of the magnitude of the third term and the first
two terms in Eq. (21) as given by Eq. (65) over 20 time units in the 1D
PDE simulation (solid line) and in the 2D PDE simulation within a
spiral core (dotted line) and within a spiral arm (dashed line). The ratio
is always greater than 1 and often much larger, allowing the assumption
that the first two terms can be neglected.

Differentiating \r2
with respect to time gives

\* r2
=

r1r* 2&r2r* 1
r2 . (19)

Substituting in Eq. (13) gives

\* r2
=

r1dr2
{2r2&r2dr1

{2r1

r2 . (20)

Note that \r2
does not depend explicitly on the f and g

reaction terms in Eqs. (13) and (14) but only implicitly
through r1 and r2 , which are oscillatory solutions of
these equations.

Unfortunately we cannot proceed further without
making a simplifying assumption. The second derivative
of ri with respect to space is given by

{2ri=r {2\ri+2 {r } {\ri+\ri {2r. (21)

In Appendix B and Fig. 8 we show that the amplitude of
the third term is 100�1000 times larger in the 1D simula-
tion and 1�50 times larger in the 2D simulation than the
amplitude of the sum of the first two terms. Therefore, we
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assume that the first two terms are negligible. In fact,
assuming this is equivalent to assuming that

\ri (x, t)=\ri (t), (22)



i.e., \ri is constant over all space. This is not true, hence
we cannot now find an exact solution to the problem.
However, an approximate analytical solution is still
tractable.

Substituting Eqs. (16) and (22) into Eq. (20) gives

\* r2
=

\r1
\r2

(dr2
&dr1

) {2r

r
. (23)

Every term except the second derivative of r is positive.
As r is oscillatory {2r<0 when r takes on high values
and {2r>0 when r takes on low values. This means that
if r is high for roughly the same length of time that it is low
then Eq. (18) is greater than 0, implying that \r2

always
increases over one period. This can be seen intuitively by
sketching {2r�r over one period. Because we are consider-
ing an arbitrary period of a wave, r2 will exclude r1 .

To determine how fast r2 excludes r1 an exact form for
r must be assumed. In general, a closed analytical form
cannot be found for reaction�diffusion equations such as
Eqs. (13) and (14). Thus, we choose a form for r that
captures the local spatial behaviour of the oscillatory
dynamics of Eqs. (13) and (14), realising that this further
approximation to the real system could cause further
divergence between it and our derived approximation.
We take the simplest form for r in one dimension,

r(x, t)=r� +Ar cos(kx&|t), (24)

where r� is the mean value of r, Ar the amplitude of the
oscillations, k the wavenumber, and | the temporal
frequency. By this equation we do not mean to imply that
the whole of space is covered by plane waves, but just
that the local behaviour at a given point in space can be
approximated by this form.

The second derivative of r with respect to x is

�2r
�x2=&k2(r&r� ). (25)

Substituting Eq. (25) into Eq. (23) and using the fact that
\r1

=1&\r2
gives

\* r2=&\r2(1&\r2) k2(dr2&dr1) }
r&r�

r
. (26)

This can be integrated,

\r2 (t) 1
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|
\r2 (0) \r2

(1&\r2
)

d\r2

=&k2(dr2
&dr1

) |
t

0

Ar cos(kx&|t)
r� +Ar cos(kx&|t)

dt, (27)
where \r2
(0) is the value of \r2

at t=0. The integral on the
RHS is possible but rather messy. However, we can use
the fact that the integrand is oscillatory with period
T=2?�| at a fixed position x. Therefore, we make a
change of variables so that t=nT, where n is the number
of whole periods the integral is taken over. Thus, Eq. (27)
becomes

ln \
\r2

(nT )(1&\r2
(0))

\r2
(0)(1&\r2

(nT ))+
=&k2(dr2

&dr1
) n |

?

&?

Ar cos %
r� +Ar cos %

d% (28)

=*rnT, (29)

where

*r=k2(dr2
&dr1

) \ r�

- r� 2&A2
r

&1+ . (30)

Rearranging Eq. (29) gives

\r2
(nT )=

\r2
(0) e*rnT

1&\r2
(0)+\r2

(0) e*rnT , (31)

which describes a sigmoid shaped curve that tends to 1
(0) as t tends to � (&�), respectively.

3.3.1. Comparison to Simulations. We now wish to
see if the approximate analytical solution can describe
the results of the simulations. The derivation of the
theory has assumed that the proportions do not change
over space and that the oscillations are pure sine waves.
A sine wave has a well defined mean and amplitude. This
is rarely the case in nonlinear models such as Eqs. (1),
(2), (7), and (8). Figure 2b shows a typical example of the
modulations in the amplitudes. Another problem is the
increase in the size of the patterns as the slower diffusing
population is excluded. We have assumed a fixed wave-
length in Eq. (24). All this leads to the conclusion that the
predictions of the theory will only be rough approxima-
tions to the simulations.

The wavelength can be approximated either by eye or
by calculating | and v, the wave speed (k=|�v). | can
be calculated, for example, by performing a Fourier
transform on a time series of the population density at a
given point in space. v is calculated by dividing the

Savill and Hogeweg
distance traveled by a wave in a given amount of time.
The best method we have found for calculating r� and p� is
to calculate the mean value of time series r(x, t) and
p(x, t) respectively. The best method we have found for



r an

2D
st�

2
1
1
1

calculating Ar and Ap for continuous state systems is to
calculate the averages of the minimum values of each
wave and subtract these values from r� and p� respectively.
The mean of the minimums is used because this always
gives Ar<r� (Ar>r� implies negative densities). The mean
of the maximums can, and often does give Ar>r� . For
discrete state systems a problem arises because the mini-
mum of a wave is normally zero because of local extinc-
tion of the population. This gives Ar=r� , which is not
true. Several methods were tried using the maximums for
the calculation of the means but problems arise because
the waves are not nicely behaved sine waves; the maxi-
mums tend to be very large compared with the mean.
The best method we have found so far is to calculate the
standard deviation of the time series. However, the
standard deviation can be greater than the mean. So to
use the standard deviation as a measure of the amplitude
of the waves we halve its value.

The choice of an approximation method is somewhat
arbitrary and depends on the data set available. We have
data that span many generations and can, therefore, take
time averaged measures. Other data sets may contain
only a few generations. However, experimenting suggests
that even very rough approximations can still give
correct order of magnitude predictions. Table 1 lists the
values for r� , Ar , *r , p� , Ap , *p , and k for all the simulations
in the second section.

Figure 9 shows the comparison of the theory (Eq. (31))
to the continuous time simulations ((a) 1D PDE predator�
prey, (b) 2D PDE predator�prey, (c) 2D IO predator�prey).

TABLE 1

The Approximated Values of r� , A r , p� , A p , and k and the the Calculated *
and the Dispersal Probability Simulation (Last Column)

1D PDE 2D PDE 1D CML
predator�prey predator�prey host�parasitoid ho

r� 0.268 0.221 32.6
Ar 0.266 0.196 28.2
p� 2.25 2.4 11.9

Ap 1.25 0.9 11.0
k 0.031 0.22 0.24
*r 0.0039 0.029 1.24
*p 0.0001 0.0019 1.41

dr1
0.5 0.5 2

dr2
1 1 3

dp1
0.5 0.5 2

dp2
1 1 3
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:r1
0.2

:r2
0.2

:p1
0.9

:p1
0.9
d *p Values for the Six Simulations Described in the Simulations Section

CML 2D IO 2D IO 1D CML
parasitoid predator�prey host�parasitoid host�parasitoid

7.8 2.26 2.86 34.7
7.3 1.89 2.27 30.8
0.115 13.2 2.51
0.107 6.66 1.89
0.57 0.29 0.52 0.25
1.25 0.069 1.51 1.06
3.96 0.013 1.44

1 2 2 2
2 3 3 2
1 2 2 2
2 3 3

As expected there is some difference because of the
assumptions made in the theory and the rough approxi-
mations of r� , p� , Ar , Ap , and k. Notwithstanding this, the
approximate analytical solution does give the right order
of magnitude for the exclusion time. The worst case is
that for the continuous time IO model, which is approxi-
mately a factor of 2 out. It is difficult to say which of the
assumptionswe have made contribute most to the observed
discrepancies between simulation and theory. This is
because relaxing any of the assumptions to observe its
effect would mean that an analytical analysis would
become intractable.

3.3.2. Neutral Competition. Locally competition is
always neutral because we have defined per capita growth
rates as being identical for both populations ( f and g in
Eqs. (13) and (14)). Dispersal introduces non-local com-
petition by inducing spatial pattern formation. However,
non-local neutral competition occurs when *r=0, i.e.,
r2 can neither invade nor exclude r1 . *r=0 can occur in
two circumstances; when Ar=0, i.e., when there are
no oscillations, and when k=0, i.e., when there are no
waves, the spatially homogeneous case.

The first case typically occurs in spiral cores where the
amplitude of the oscillations approach zero. In none of
the PDE simulations in this paper, however, are there
stable spiral cores (or more appropriately defects in one
dimension) and, hence, positions in space where Ar=0.
They may exist for a long period of time but in the end
they are annihilated. Thus, r2 can invade at all positions
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0.2 1 1 0.2
0.2 1 1 0.4
0.9 1 1 0.9
0.9 1 1
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FIG. 9. Comparison of simulation and theory (Eq. (31)) for
continuous time systems. We plot \r2

and \p2
(thin lines simulation,

thick lines theory). (a) 1D PDE predator�prey simulation of Fig. 1.
(b) 2D PDE predator�prey simulation of Fig. 2. (c) 2D IO predator�
prey simulation of Fig. 5.
in space given enough time. The second case is intuitively
obvious: If there are no waves it makes no difference at
what rate an organism diffuses; all organisms see exactly
the same environment and hence there is no competitive
pressure. This case could arise if the spatial domain was
very small, on the order of the diffusion coefficient.

3.3.3. Cost of Dispersal. So far we have assumed that
the two competing populations are identical in every
respect except their rates of diffusion. What happens if
this is not the case? A good example is if there is a cost
to having a higher diffusion rate such that it incurs a
lower growth rate. For example, for the prey, this might
mean that a1>a2 , i.e., the net growth rate of the slower
diffusing prey population is larger than that of the faster
diffusing prey population because it has, for example,
more time or energy for the raising of its offspring.
Substituting a=a1 , a2 into Eq. (13) and following the
arguments for the derivation of *r from Eq. (20) to (30)
gives

*rcost
=*r&(a1&a2), (32)

where *r is defined in Eq. (30). Figure 10 shows simula-
tions of the 1D PDE predator�prey for different values of
2a=a1&a2 . When 2a>*r , *rcost

is negative and hence
the cost of dispersal outweighs the benefits gained and,

FIG. 10. Effect of cost on *r . The faster diffusing prey population
has a smaller growth rate. The effect of which on *r is given by Eq. (32).
The simulation is the 1D PDE predator�prey, all parameters and
boundary conditions as in Fig. 1. The initial prey densities are r1=r2 .
The parameter a2 is kept constant; a1 is varied. Let 2a=a1&a2 . Solid
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line 2a=0, dot�dashed line 2a=0.001, long dashed line 2a=0.003,
short dashed line 2a=0.005, dotted line 2a=0.01. From the theory we
predicted *r=0.0039 (Table 1) but from these simulations it appears
that it should be closer to 0.003, which is a 0.140 difference in the
growth rates of the prey.



therefore, the slower diffusing population excludes the
faster. On the other hand, when 2a<*r , the cost is not so
prohibitive, nevertheless it does increase the exclusion
time of the slower diffusing population. 2a can be
adjusted so that it exactly counterbalances the benefit of
dispersal. This is seen as the continued coexistence of
both populations for very long time periods and occurs
when 2a=0.003 in Fig. 10. This means that the value of
*r=0.0039 calculated earlier was too high by about
9_10&4. The above argument holds for any of the
parameters in Eqs. (1) and (2). If all parameters are dif-
ferent then *rcost

=*r&(a1&a2)&r� (b1&b2) and *pcost
=

*p&(c1&c2).

3.4. Discrete Time

The discrete time case is very similar to the continuous
case. However, now we consider maximum dispersal
distance as opposed to diffusion rate.

Consider two prey populations, ri=ri (x, t), and two
predator populations, pi= pi (x, t), and let

r(x, t)=r1(x, t)+r2(x, t) (33)

p(x, t)=p1(x, t)+ p2(x, t) (34)

for notational convenience. At the start of generation t
there is dispersal of prey and predators,

r$i (x, t)=(1&:r) ri (x, t)+:r |
�

&�
ri (x&!, t) Dri (!) d!

(35)

p$i (x, t)=(1&:p) pi (x, t)+:p |
�

&�
pi (x&!, t) Dpi (!) d!,

(36)

where :r and :p are the dispersal probabilities of prey and
predators, respectively, and Dri (x) and Dpi (x) are the
prey and predator dispersal functions, respectively, and

|
�

&�
Dri (x) dx=1 (37)

|
�

&�
Dpi (x) dx=1. (38)

Competition and Dispersal
For convenience we denote the convolution of the prey
and predator densities with their dispersal functions as
ri V Dri and pi V Dpi , respectively. Also let
r$(x, t)=r$1(x, t)+r$2(x, t) (39)

p$(x, t)=p$1(x, t)+ p$2(x, t) (40)

for notational convenience.
The prey and predator densities in the next generation

are given by

ri (x, t+1)=r$i (x, t) } f (r$(x, t), p$(x, t)) (41)

pi (x, t+1)=p$i (x, t) } g(r$(x, t), p$(x, t)) (42)

(cf. Eqs. (7) and (8)), where f and g are chosen so that
the system exhibits oscillations. We will consider the
competition between the two prey populations. Similar
results can be derived for the predators. Individuals in
the two populations are identical except that r2 disperses
farther than r1 on average. In terms of the dispersal
functions this means

Variance(Dr1
(x))<Variance(Dr2

(x)). (43)

The fraction of prey ri is given by

\ri=
ri

r
. (44)

The criterion for r2 to exclude r1 is

\r2
(x, t+T)&\r2

(x, t)>0 (45)

over all periods (Figs. 3b, 4b, and 6b), where T is the
wave period. The LHS can be rewritten as

:
t+T&1

t

\r2
(x, t+1)&\r2

(x, t). (46)

Let

,r2
(x, t+1)=\r2

(x, t+1)&\r2
(x, t). (47)

Using Eq. (44) and substituting in (41) we get

\r2
(x, t+1)=

r2(x, t+1)
r(x, t+1)

=
r$2(x, t)
r$(x, t)

. (48)

Substituting this into Eq. (47) and using Eqs. (33), (39),
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and (44) gives

,r2
=

r1r$2&r2r$1
rr$

. (49)



Again, to proceed further, we use the assumption

\ri (x, t)=\ri (t), (50)

which gives r$i=\ri r V Dri . Substituting this into Eq. (49)
and using the convolution notation we get

,r2
=

\r1
\r2

r V (Dr2
&Dr1

)

r$
. (51)

Every term except the convolution of r is positive. As r is
oscillatory r V (Dr2

&Dr1
)<0 when r takes on high values

and r V (Dr2
&Dr1

)>0 when r takes on low values. This
means that if r is high for roughly the same length of time
that it is low then Eq. (46) is greater than 0, implying that
\r2

always increases over one period. And because we are
considering an arbitrary period, r2 will exclude r1 .

Again, taking a specific function for r in one space
dimension to determine how fast exclusion occurs,

r(x, t)=r� +Ar cos(kx&|t). (52)

We use the simplest form for Dri ,

Dri (x)={
1

2dri

0

if &dri�x�dri

otherwise,
(53)

where

dr1
<dr2

. (54)

This gives

r V Dri =r� +(r&r� )
sin(kdri)

kdri

(55)

=r� +(r&r� ) \1&
k2d2

ri

6 + , (56)

assuming kdri is small. (The values for k given in Table 1
show that kdri<1 which is good enough considering the
other assumptions we have made.) Substituting Eq. (56)
into Eq. (51) and using \r1=1&\r2 :
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,r2
=

\r2
(1&\r2

)(r&r� ) k2(d2
r2

&d2
r1

)

&6r+(r&r� ) k2d2
r1

+\r2
(r&r� ) k2(d2

r2
&d2

r1
)

. (57)
Using Eq. (47) gives

\r2
(x, t+1)

=
6r&(r&r� ) k2d2

r2

6r&(r&r� ) k2d2
r1

&(r&r� ) k2(d2
r2

&d2
r1

) \r2
(x, t)

_\r2
(x, t), (58)

which describes a sigmoid shaped curve that tends to 1
(0) as t tends to � (&�), respectively.

The nonlinearities in Eq. (58) mean there is no simple
method of determining an analytical solution for it. So
far we have not been able to find one, if one exists at all.
However, we can get a rough estimate of the rate of
exclusion by linearising Eq. (58) when \r2

is small,

\r2
(x, t+1)=*r \r2

(x, t), (59)

where

*r=1+
k2(r&r� )(d2

r2
&d2

r1
)

k2(r&r� ) d2
r1

&6r
. (60)

Equation (60) is still a function of r and hence, of t. To
remove this dependence we must choose a fixed value for
r. As a first approximation we choose a value for r when
\r2

is increasing fastest. This occurs when r is at its mini-
mum value, i.e., when r=r� &Ar . Substituting this into
Eq. (60) we get

*r=1+
Ark2(d2

r2
&d2

r1
)

6(r� &Ar)+Ark2d2
r1

. (61)

Hence, we expect the rate of exclusion to increase with
increasing amplitude, increasing difference in maximum
dispersal distances, and decreasing wavelength, all the
same as for the continuous case. The equation also
predicts faster exclusion in shocks than in defects (cores).

3.4.1. Comparison to Simulations. We now wish to
see if the approximate analytical solution can describe
the results of the simulations. We use the same techniques
as mentioned for the continuous time systems to approx-
imate the parameters in Eqs. (58) and (61). Their values
are given in Table 1. Figure 11 shows the comparison of
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the discrete time simulations to the solution (58) which
shows reasonable agreement even with the rough
approximations ((a) 1D CML host�parasitoid, (b) 2D
CML host�parasitoid, (c) 2D IO host�parasitoid).
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FIG. 11. Comparison of simulation and theory (Eq. (58)) for
discrete time systems. We plot \r2

and \p2
(thin lines simulation, thick

lines theory). (a) 1D CML host�parasitoid simulation of Fig. 2. (b) 2D
CML host�parasitoid simulation of Fig. 4. (c) 2D IO host�parasitoid
simulation of Fig. 6.
3.4.2. Dispersal Probability. We have only considered
the case where competing organisms have the same
dispersal probability and the only difference between the
organisms is the maximum distance they disperse. Now
we consider the case where the maximum dispersal
distances are the same but the probabilities of dispersal
are different, i.e., Dr1

=Dr2
=Dr , implying that dr1

=dr2

=dr . Then the prey post�dispersal densities are given by

r$i (x, t)=(1&:ri) ri (x, t)+:ri |
�

&�
ri (x+!, t) Dr(!) d!.

(62)

Using this equation and following the same arguments
from Eq. (51) to Eq. (61) we get for *r

*r=1+
Ark2d2

r (:r2
&:r1

)

6(r� &Ar)+Ark2d2
r :r1

. (63)

Therefore, competition favours prey that are more
likely to disperse. Figure 12 shows the proportion of r2

and the predicted proportion for the 1D CML host�
parasitoid model with dr=2 and :r1

=0.2 and :r2
=0.4

(the means and amplitudes are given in the last column
of Table 1). Note that *r depends linearly on the dispersal
probabilities but quadratically on the maximum dispersal
distance. This suggests, and intuitively it seems correct, that
the dispersal probability is the discrete time analogue of
continuous time diffusion as *r depends linearly on the
diffusion coefficients.
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FIG. 12. Comparison of simulation and theory (Eq. (63)) for
different prey dispersal probabilities in the 1D CML host�parasitoid
model. All parameters, initial conditions, and boundary conditions are
the same as in Fig. 3, except dr1

=dr2
=dr=2 and :r1

=0.2 and :r2
=0.4.

We plot \r2
(thin lines simulation, thick lines theory).



3.4.3. Coexistence. Comins and Hassell (1996) have
shown that a parasitoid population with a certain disper-
sal rate and a certain birth (or attack) rate can either
exclude, coexist with, or be excluded by a parasitoid
population with a lower dispersal rate and a higher birth
(or attack) rate. The outcome depends strongly on the
relative difference between the two populations' birth (or
attack) rates. If coexistence occurs the weaker dispersing
population only occupies the spiral cores.

We have repeated some of the work by Comins and
Hassell (1996) and calculated the exclusion rates to see if
we could explain their results. Their system is a one-host�
two-parasitoid model with dr=1 and dpi=dp=1. They
use a slightly different notation with +N=:r and +Pi

=:pi . The ratio of the birth (attack) rates of the weak
dispersing population to the strong dispersing popula-
tion is :; we will use ;. If ;=1 the two parasitoid popula-
tions are effectively identical except for their dispersal
rates. We will only look at three cases for brevity. We
take :r=0.5, :p1

=0.5, and :p2
=0.05 (i.e., p2 is the

weaker dispersing population) and values of 1, 1.3, and 2
for ; that correspond with p2 excluded by, coexisting
with, and excluding p1 , respectively (see their Figs. 3a, 5).
We ran the simulations for 100 generations and calculated
p� , Ap , and *p in a defect of a spiral core and the spiral
arm. The exclusion rate *p in our notation is given by

*p=; \1+
Apk2d2

p(:p2
&:p1

)

6( p� &Ap)+Ap k2d2
p:p1

)+ (64)

The results of the three simulations are given in Table 2.
For ;=1, *p<1 in the arm and the defect and hence

p2 is excluded everywhere by p1 . For ;=1.3, *p>1 in the

TABLE 2

The Approximated Values of p� , Ap , and *p for the Simulations of the
One-Host�Two-Parasitoid Models of Comins and Hassell (1996)

;

1 1.3 2

defect arm defect arm defect arm

p� 0.77 1.0261 0.75 1.0208 0.549 1.15776
Ap 0.28 1.0215 0.50 1.0170 0.51 0.15765
*p 0.99 0.26 1.25 0.31 1.57 0.25

Note. The values are calculated in a spiral defect and a spiral arm
averaged over 100 generations for the different values of ; (the relative
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fitness of p2 over p1); k=0.5. The less likely dispersing population, p2 ,
is excluded by, coexists with, and excludes the stronger dispersing
population p1 for ;=1, 1.3, and 2, respectively. Other parameters and
their corresponding names in their paper are dr=1, dpi

=dp=1, +N=
:r=0.5, +P1

=:p1
=0.5, +P2

=:p2
=0.05, and :=;.
FIG. 13. The amplitude (Ap , solid line) and the competition rate
(*p , dotted line) in a cross section through a spiral wave for ;=1.3
from Comins and Hassell (1996). The weaker dispersing population,
p2 , can only exclude the stronger dispersing population, p1 , near the
defect (*p>1), but p1 can exclude p2 further from the defect but still in
the core, and hence they coexist within the core. In the arm p1 can
exclude p2 (*p<1).

defect but <1 in the arm, i.e., p2 excludes p1 in the defect
but not in the arm. At first sight this would seem to agree
with the coexistence reported by Comins and Hassell
(1996), but if one considers a property of spiral cores in
ecological systems this is not so obvious. It has been
shown that spiral cores act as the source of all genetic
information in a spiral (Boerlijst and Hogeweg, 1991a;
Boerlijst and Hogeweg, 1991b; Savill et al., 1997), i.e., all
individuals in a spiral are descended from individuals
that once existed in the core. If this is so p2 excluding p1

in the core would mean it excluded p1 in the whole spiral.
The reason this does not occur is shown in Fig. 13. p2

only excludes p1 near the defect, further away but still in
the core, p1 excludes p2 . Therefore, they can coexist in the
core but p2 is excluded in the arm. For ;=2, p2 excludes
p1 in the whole core and hence in the whole spiral even
though *p<1 in the arm.

4. DISCUSSION AND CONCLUSION

Spatial oscillatory systems, whether continuous or
discrete in time, space, or state, all exhibit the generic
patterns of spiral waves and turbulence (Cross and
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Hohenberg, 1993). Sherratt et al. (1997) have also shown
that turbulence arises in the wake of predator�prey
invasion waves in a variety of oscillatory systems. We
have shown that the effect of these generic patterns on the



competition between populations with different dispersal
strategies is similar for both discrete and continuous
systems. Moreover, we have also shown that the precise
interactions between predators and prey do not affect the
competitive behaviour. All that matters is that waves
exist. This is not to say that the effect of the patterns on
other processes in ecological systems, perhaps, for example,
on foraging strategies, will be similar.

Previous models of the evolution of dispersal strategies
have assumed that spatial and temporal patterns (varia-
tion) that can affect the fitness of the dispersing organisms
are externally driven, e.g., by carrying capacity of a patch
or random patch extinction. It is possible, however, that
spatio-temporal patterns are due to self-structuring
processes of the organisms themselves. In fact there will
probably be a bit of both. The task of theoretical models
is then to examine the relative strengths of externally and
internally driven patterns, to find common ground, and
to discover differences between them.

In this paper we have examined predator�prey popula-
tion models that, because of their oscillatory dynamics,
exhibit self-structuring into wave-like patterns in space.
Competing populations have been assumed to be identi-
cal in every respect except for their dispersal strategy.
This situation may arise in the case of a mutant invading
a wildtype population. Both simulation results and
mathematical theory predict that organisms are more
likely to disperse and disperse farther in these waves. This
is in direct agreement with many of the previous models
that predicted increased dispersal in externally driven
temporally varying environments (e.g., Levin et al., 1984).
Our results can be intuitively understood: By definition
waves structure the spatial distribution of organisms into
regions of high and low density. In high density regions
competition is most fierce for the scarce resource, what-
ever that may be. Therefore, it pays to disperse into low
density regions where competition is weaker.

Previous modelling of spatio-temporal oscillations
and competition have determined the effect of competi-
tion on the spatio-temporal oscillations, e.g., the spread
of genetically engineered organisms (Cruywagen et al.,
1996) and the effect of noise (Vilar and Sole� , 1998). In
this paper we have turned the process around and looked
at the effect of spatio-temporal oscillations on competi-
tion. Although there is considerable evidence of temporal
oscillations in the field, only very recently have the causes
and effects of spatio-temporal oscillations been studied.
A large problem to overcome is actually proving that
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waves exist. Waves are easy to see and analyse in com-
puter simulations because all the data one requires are at
hand. However, field study data can be noisy, absent, or
taken over too short a time scale or at the wrong spatial
resolution. Moreover, the collection of data may interfere
with the dynamics of the ecological system. Hence, one
has to rely on statistics to ``observe'' the waves, and then
the data may only be suggestive of waves. Some ecologi-
cal systems that have been proposed as exhibiting waves
are the Canadian Horseshoe hare (Ranta et al., 1997b;
Ranta et al., 1997a), wood lemmings in Norway and
Sweden (Fredga et al., 1993), red grouse in Scotland
(Moss et al., 1999), voles in Finland and France (Ranta
and Kaitala, 1997) and Northern Britain (Lambin et
al., 1998). Roland and Taylor (1997) observed spatial
patterns of parasitic flies over a 3-year period; they did
not hypothesize travelling waves but there is a distinct
possibility that they exist.

The theory predicts that exclusion will be faster in
waves with smaller wavelengths, larger amplitudes, and
smaller means. Exclusion is also faster when the relative
differences between the diffusion coefficients or the disper-
sal distances are larger. Considering the assumptions we
have made, the theory and the simulations agree
reasonably well. Even very rough approximations of the
wave's properties are good enough to give the correct
order of magnitude for the rate of exclusion. If a cost for
dispersal is introduced then it is possible, if the cost is high
enough, for the weaker dispersing population to exclude
the stronger dispersing population. The simulations show
clearly that the size of the patterns increases as the diffusion
coefficient or maximum dispersal distance increases.

In this paper the boundary conditions do not affect the
competitive exclusion with the spatial patterns. However,
there are cases where the boundary conditions are impor-
tant. In 1D zero boundary conditions behave like stable
defects and hence waves are seen to originate from them.
In 2D it is possible to have a short dispersing population
``trapped'' on the boundary with a far dispersing popula-
tion rotating within spirals that are almost on the same
scale as the spatial domain. This scenario can arise if
the dispersal distance is allowed to evolve (Savill and
Hogeweg, 1998). Roland and Taylor (1997) have observed
that insect parasitoids that disperse shorter distances
than their competitors have higher parasitism rates at the
edges of the forests they inhabit.

We have only considered competition; the next logical
step is to examine how dispersal strategies would evolve
(Savill and Hogeweg, 1998). The theory presented in this
paper suggests that populations should evolve to ever
higher dispersal rates and�or distances given no cost to
dispersal. However, as the dispersal rates and�or distan-
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ces increase the size of the patterns also increase. There
may come a point where the size of the patterns are on
the same scale as the size of the space. At this point the
patterns can disappear, leading to extinction. A more



interesting possibility for an evolving population is the
process of speciation and the coexistence of more than
one species.

APPENDIX A

The 2D individual oriented predator�prey model is
defined as follows. Space is made up of a square lattice of
150_150 patches with zero or no-flux boundary condi-
tions (numerous simulations suggest no difference in
the results for the different boundary conditions). The
oscillations of the PDE system are due to the Holling
type II functional response which is the effect of the
predators having a handling time, i.e., some time being
taken to catch, consume, and digest a prey. To achieve
oscillations in the IO model we must explicitly model a
handling time.

To model continuous time, individuals are picked at
random to be updated. If a prey is chosen to be updated
it can either disperse according to the prey dispersal func-
tion (probability of dispersal is 1000) or give birth to a
pre-determined number of offspring (2) if the prey-carry-
ing capacity of the patch it occupies has not been reached
(10). There is a 500 chance of either behaviour happen-
ing. A predator, if chosen, can either disperse according
to the predator dispersal function (probability of disper-
sal is 1000) or die (500 chance) or attack a prey if one
is available in the patch it occupies and if it is not already
handling a prey. The handling time is set to one update
step. Once a predator has eaten its prey it gives birth to
a pre-determined number of offspring (5) if the predator-
carrying capacity of the patch it occupies has not been
reached (50). There is a 33.34 0 chance of any of the three
behaviours happening.

Using the above parameters as default, each parameter
was varied, keeping all other parameters equal to their
default values. Predator and prey dispersal rates varied
from 10 to 1000. The number of predator and prey
offspring varied from 5 to 10 and 2 to 5 respectively. The
predator and prey carrying capacities varied from 30 to
55 and 5 to 20, respectively. The predator handling time
varied from 1 to 2. The predator death probability varied
from 0.5 to 0.9. Quantitative results can vary but
qualitative wave-like patterns are very easy to produce.
This leads us to speculate that the precise interactions
between predators and prey are not a factor in the results
of this paper.
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The discrete time host�parasitoid system is modelled
as follows. In each generation hosts and parasitoids dis-
perse in a random direction and to a distance determined
by their dispersal function (1000 chance of dispersal).
After dispersal some hosts are killed if the total number
of hosts in a patch exceeds the pre-determined carrying
capacity (5). Each parasitoid in a patch can infect only
one host (1000 chance of infection). If there are more
parasitoids than hosts some parasitoids will not infect
hosts. Once parasitism has occurred uninfected hosts
give birth to a pre-determined number of offspring (3)
and die. Infected hosts are killed by the offspring of the
parasitoid that infected them and a pre-determined
number of parasitoid offspring survive (3). All parasitoids
from the previous generation die. The cycle begins anew.
Using the above parameters as default, each parameter
was varied keeping all other parameters equal to their
default values. Host and parasitoid dispersal rates varied
between 10 and 1000. The number of host and parasitoid
offspring varied between 2 and 10. The host carrying
capacity varied between 2 and 20.

Again the exact parameters are not important, as long
as the system oscillates to produce host�parasitoid waves,
the farther dispersing hosts and parasitoids exclude the
shorter dispersing hosts and parasitoids, respectively.

APPENDIX B

We want to show that the first two terms in Eq. (22)
are smaller than the third term so that we can neglect
these terms. To simply calculate the ratio of these terms
is uninformative because they will equal zero at some
positions in space. A better method is to calculate their
integrals of their absolute values over a region of space S,
then take their ratio, i.e.,

R=
�S |\ri {2r| dS

�S |r {2\ri+2 {r {\ri | dS
. (65)

This gives a measure of the ratio of the magnitude of the
terms.

Figure 8 shows the value of R calculated over 20 time
units for the 1D PDE simulation (solid line), the 2D
PDE simulation within a core (dotted line), and the 2D
PDE simulation within a spiral arm (dashed line). In the
1D case the third term averaged over the whole wave, is
at least two orders of magnitude larger than the sum of
the first two terms. The 2D case is worse in both the core
and the spiral arm with the ratio, at some times, only
slightly greater than 1. However, averaged over time, the
third term is roughly 10 times larger than the sum of the
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first two terms. Therefore, in the 1D case we can safely
assume the first two terms are negligible compared with
the last term. In the 2D case the assumption can still be
made but with weaker justification.
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