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This study reports on the effect of adding negative interaction terms to the hypercycle equation. It is shown
that there is a simple parameter condition at which the behaviour of the hypercycle switches from
dominant catalysis to dominant suppression. In the suppression-dominated hypercycles the main
attractor turns out to be different for cycles consisting of an even or odd number of species. In ‘‘odd’’
cycles there is typically a limit cycle attractor, whereas in ‘‘even’’ cycles there are two alternative stable
attractors each containing half of the species. In a spatial domain, odd cycles create spiral waves. Even
cycles create a ‘‘voting pattern’’, i.e. initial fluctuations are quickly frozen into patches of the alternative
attractors and subsequently, very slowly, small patches will disappear and only one of the two attractors
remains. In large cycles (both even and odd) there are additional limit cycle attractors. In a spatial domain
these limit cycles fail to form stable spiral waves, but they can form stable rotating waves around an
obstacle. However, these waves are outcompeted by the dominant spatial pattern of the system. In
competition between even and odd cycles, the patches of even cycles are generally stronger than the spiral
waves of odd cycles. If the growth parameters of the species vary a little, a patch will no longer contain
only half of the species but will instead attract ‘‘predator’’ species from the other patch type. In such a
system one of the patch types will slowly disappear and the final dynamics resembles that of a
predator–prey system with multiple trophic levels. The conclusion is that adding negative interactions to a
hypercycle tends to cause the cycle to break and thereafter the system attains an ecosystem type of
dynamics.
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1. Introduction

A hypercycle is a collection of self-replicating entities
that ‘‘help’’ each other in a cyclic way. Figure 1(a)
shows a hypercycle with four species. Each species
replicates itself and supports the replication of the next
member in the cycle. Eigen & Schuster (1979, 1982; see
also Eigen et al., 1981; Eigen, 1992) suggested a role for
hypercycles of RNA molecules in prebiotic evolution.
In such a hypercycle each RNA species is capable of
replication and it catalyses the replication of at least
one other species. In this article, we add negative
interaction terms to the hypercycle model. In the
prebiotic RNA case this implies that there is a cost to

the catalyst. This does not seem an unreasonable
assumption, for a catalyst has to bind to the replicant
and presumably during this time it cannot replicate
itself. The duration of the catalysed replication process
under prebiotic conditions might have been relatively
long and thereafter the catalyst might even lose its
ability to reproduce (e.g. due to a change in tertiary
structure). In Fig. 1(b), a hypercycle with both positive
and negative interactions is shown. Each positive
catalytic connection is now accompanied by a negative
suppressive connection.

In recent work (Boerlijst & Hogeweg, 1991a, b) we
have studied the spatial dynamics of the hypercycle
model. We have shown that in a spatial model hyper-
cycles can generate spiral waves. In such a system
selection can shift to the level of the spirals, which leads
to selection for mutants with properties that are clearly
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F. 1. Schematic diagram of a hypercycle. Here the hypercycle
consists of four self-replicating molecule species. (a) Each species
provides catalytic support (solid lines) for the subsequent species in
the cycle. (b) As (a), but now catalysis is accompanied by suppression
(dashed lines).

E. Competition

In the original hypercycle model, competition is
modelled by assuming a chemostat, i.e. the total
number of molecules is kept constant by introducing
a flux that equals the production of the system at any
given time. In our model, we use a different kind of
competition. We assume that the rate of replication is
proportional to the fraction of ‘‘empty spots’’ (as in a
cellular automaton model; see Toffoli & Margolus,
1987, Boerlijst & Hogeweg, 1991a), which is equal to:

1−

s
n

k=1

Xk

N
, (5)

where N stands for the total number of spots available.
The reason for using this ‘‘carrying capacity’’

assumption instead of a chemostat assumption is that
in the spatial model we want to make it possible for the
local density of molecules to vary (for instance, due
to differences in the local amount of catalysis and
suppression).

2.2.  (  )  

(  ) 

We study the following reaction-diffusion type PDE
model:

X� i=Xi0−di−si,i+Xi+

+61− s
n

k=1

Xk7·{ri+ki,i−Xi−}1+D92Xi . (6)

All processes of Section 2.1 are included in this
model. A Laplacian operator 92 is added for the
diffusion, D is the diffusion coefficient, i+ denotes the
next species in the cycle and i− stands for the previous
species in the cycle. Note that we have eliminated N by
scaling Xi to fractions. For numerical computations we
use the explicit Euler method with Neumann boundary
conditions and a rectangular grid of 100×100
elements up to a maximum of 400×400 elements.

We also study the ODE analogue of the PDE model:

X� i=Xi0−di−si,i+Xi+

+61− s
n

k=1

Xk7·{ri+ki,i−Xi−}1+fi . (7)

disadvantageous at the individual level (Boerlijst &
Hogeweg, 1991b, Boerlijst et al., 1993). In this paper
we investigate the attractors and spatial patterns of
hypercycles that have both positive and negative
interaction terms. We report a switch from dominant
catalysis to dominant suppression. In the regime of
dominant suppression, patchy patterns are observed in
addition to spiral waves. The aim of this paper is to
classify the attractors and the spatial patterns of
hypercycles with negative interactions.

2. The Model

2.1. 

We want to include the following processes in the
model :

A. Decay of molecules

Xi 04
di

, (1)
where di stands for the decay rate of molecule type i.

B. Non-catalysed replication

Xi 04
ri

2Xi , (2)
where ri stands for the non-catalysed replication rate
of molecule type i.

C. Catalysed replication

Xi+Xj 04
ki ,j

2Xi+Xj , (3)
where ki,j stands for the rate of catalysed replication of
molecule type i, catalysed by molecule type j.

D. Suppression

Xi+Xj 04
si ,j

Xj , (4)
where si,j stands for the suppression of molecule type
i by molecule type j. For simplicity we introduce
suppression as a simple killing term. Our results are
robust to slight alterations in the suppression term
(as discussed in Section 4.1).
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F. 2. Hypercycle spirals with (a) dominant catalysis and (b) dominant suppression. A hypercycle of nine members is simulated in the
PDE of eqn (6) with the default parameters of eqn (8) except for s. For computation, a grid of 100×100 elements is used with a time step
of 1 and a diffusion rate of D=0.16. We checked scaling up to 400×400 elements and a time step of 0.01, which gives identical results. As
a starting pattern, each grid point is assigned a random species and this species is set at its carrying capacity (1−di /ri ). Panels (a) and (b)
are started from the same random pattern and they are both run for 5000 time steps. The arrows indicate the direction of rotation of a spiral.
(a) Spirals in the dominant catalysis regime; si,i+=0.1. (b) Spirals in the dominant suppression regime; si,i+=0.5.

(a) (b)

We added a small influx term fi to get a better
correspondence to the behaviour of the spatial model
and to avoid singularities. Bifurcation analysis was
performed with AUTO (Doedel, 1981) and for
numerical integration of the ODE model we used
GRIND (De Boer, 1983). As a default parameter
setting for a hypercycle of n species we use:

[i : di=0.05, ri=0.1, ki,i−=0.5,

si,i+=0.5, fi=0.0001. (8)

3. Results

3.1.    



The major bifurcation in the model under study is
the switch from dominant catalysis to dominant
suppression. This bifurcation point can be derived in
the ODE model [eqn (7)] without influx and with
identical parameter values for all species, i.e. [i :di=d,
ri=r, si,i+=s, ki,i−=k, fi=0. If catalysis and sup-
pression are exactly in balance, the carrying capacity
of the ‘‘full’’ system should equal that of the system
without catalysis and suppression. Setting eqn (7) to
zero for the symmetric steady state (i.e. ‘‘[i :Xi=X� )
gives the following expression for the carrying capacity
of the ‘‘full’’ system:

s
n

k=1

Xk=1−
d+sX�
r+kX�

. (9)

The carrying capacity of the systemwithout catalysis
and suppression (k=s=0) equals:

s
n

k=1

Xk=1−d/r. (10)

Thus catalysis and suppression are in balance if
[combining eqns (9) and (10)]:

kd=sr. (11)

This parameter condition yields the switching point
from dominant-catalysis to dominant-suppression. If
kdqsr, there is a net gain of mass (i.e. SXq 1−d/r)
due to catalysis, whereas in the opposite case there
is a net loss of mass due to suppression. In the
spatial system the regimes of dominant catalysis and
dominant suppression can both generate spiral waves.
The mechanism underlying these waves, however,
differs substantially, which is illustrated in Figs 2(a)
and (b). Figure 2(a) shows the abundance of one
species in a hypercycle spiral that is in the dominant-
catalysis regime. The wave has a sharp (catalytic)
upstroke and a gradual (decay-driven) downstroke.
The hypercycle spiral in the suppression-dominated
regime in Fig. 2(b) shows a reversed profile: there is a
gradual (replication-driven) upstroke and a sharp
(suppressive) downstroke. The parameters in eqn (11)
thus reappear in the type of spiral they cause.

In the rest of this article we shall focus mainly on the
case of suppression-dominated dynamics. The be-
haviour of catalysis-dominated hypercycles is similar
to the well-studied case of hypercycles without
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negative interactions (Hofbauer & Sigmund, 1988;
Boerlijst & Hogeweg, 1991a, b). Suppression-
dominated hypercycles show new behaviour, both in
the ODE analysis and in the spatial patterns. We first
consider the differences between cycles of even or odd
length.

3.2.    : ..  4-

Figure 3(a) shows a bifurcation diagram for a
hypercycle of four members. We bifurcate along the
suppression parameter. Half-way along the x-axis (at
s=0.25, without influx) the dynamics switch from

catalysis domination to suppression domination. At
dominant catalysis there is a stable node (which is
reached via oscillations) whereas at dominant sup-
pression there is a pitchfork bifurcation to two
alternative stable states. In each of these alternative
stable states half of the species suppress the other half,
so species 1 and 3 suppress species 2 and 4 or vice versa.
The suppressed species are only maintained due to the
influx.

In Fig. 3(b)–(d) the spatial behaviour of a
suppression-dominated cycle of even length (here a
4-cycle) is shown. In Fig. 3(b), shortly after a random
initialisation, initial fluctuations are frozen into small

F. 3. A 4-member hypercycle. (a) Bifurcation diagram for increasing suppression. Parameters are default [see eqn (8)], except for s. At
s10.26 the stable node has a pitchfork bifurcation to two alternative stable states. On the left side of this bifurcation all species have the
same density, whereas on the right side of the bifurcation either species 1 and 3 or species 2 and 4 are dominant. (b), (c), (d) Patchy patterns
in suppression-dominated hypercycles. Parameters, numerics, initiation and grey scale are as in Fig. 2(b). (b) Abundance of species 1 after
200 time steps. (c) 500 time steps. (d) 2500 time steps.

(a)

(b) (c) (d)
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F. 4. A 5-member hypercycle. (a) Bifurcation diagram for increasing suppression. Parameters are default [see eqn (8)] except for s. For
line styles and abbreviations, see Fig. 3(a). At s10.20 the stable limit cycle at dominant catalysis is damped by the influx and the suppression
and there is a Hopf bifurcation to a stable node. At s10.26 the stable node again destabilizes and a suppression-dominated limit cycle is
born in a second Hopf bifurcation. (b), (c) Time-plot of species density in hypercycles with dominant catalysis or dominant suppression.
(b) Limit cycle at dominant catalysis; si,i+=0.1. (c) Limit cycle at dominant suppression; si,i+=0.5.

patches of the alternative states. In Fig. 3(c), a little
later, the patches have increased in size. The
boundaries of the patches show damped oscillations
which are caused by unequal distributions of the two
dominant species within a patch. If for instance species
1 is locally more abundant than species 3, a wave of
species 2 will invade. This wave-like annealing process
between patches will eventually lead to equal amounts
of the two dominant species within the patches. In
Fig. 3(d), after a long time, it appears that concave
borders between patches expand and this process will
very slowly result in one patch type outcompeting the
other and thus (because there is no influx in the PDE
model) in the loss of two species. This final result will
change if there are small variations in the growth
parameters of the species. We address this matter in

Section 3.6, but first we describe the main attractor
of cycles of odd length.

3.3.    : ..  5-

Figure 4(a) depicts a bifurcation diagram for a
hypercycle of five members. Again, the bifurcation
parameter is the amount of suppression and half-way
along the x-axis the switch from catalysis-dominated
dynamics to suppression-dominated dynamics takes
place. Near this switching point the positive and
negative forces damp each other and there is a stable
equilibrium. This stable equilibrium undergoes a Hopf
bifurcation to both sides and two stable limit cycles
emerge. A time-plot of both limit cycles is shown in
Figs 4(b) and (c). The sequence of dominant species is
different for both limit cycles: whereas the ‘‘catalytic
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signal’’ in Fig. 4(b) travels to the next species in the
cycle, the ‘‘suppressive signal’’ in Fig. 4(c) travels to
two species backwards in the cycle. This reversed
suppressive signal can easily be understood in the light
of the dominant suppression. If, for instance, X3 is
large, species 3 will suppress species 2. Small X2 means
that species 1 is no longer suppressed, so X1 will
increase.

In Figs 2(a) and (b) we have already shown that odd
cycles give rise to spiral waves in both the dominant-
catalysis and the dominant-suppression regime.
Within the spirals the local dynamics obey the catalytic
signal [Fig. 2(a)] or the suppressive signal [Fig. 2(b)].
In hypercycles that are dominated by catalysis any
cycle of length five or more (even or odd) will exhibit
limit cycle behaviour and form spiral waves. In
hypercycles that are dominated by suppression, only
odd cycles show limit cycle behaviour, but in this
regime a cycle of length three can have stable spirals [as
reported by Vespalcová et al., 1995; see Fig. 6(a)]. This
3-cycle is an exceptional case, because here the
suppressive signal follows the same sequence of
maxima as does the catalytic signal. Finally, it should
be noted that the suppressive signal also operates in
cycles of even length, but in that case the signal
stimulates only half of the species and thus they
outcompete the other half and form patches.

3.4.      :
..  6-

Figure 5(a) shows the bifurcation diagram for a
hypercycle of six members. At dominant catalysis
the situation is analogous to the 5-cycle [Fig. 4(a),
sQ0.25], whereas at dominant suppression all the
phenomena of the 4-cycle are present [Fig. 3(a),
sq0.25]. However, at dominant suppression there is a
new Hopf bifurcation. At this bifurcation an unstable
limit cycle is born, which becomes stable for higher
values of s. A time-plot of the dynamics approaching
this limit cycle is shown in Fig. 5(b); species that are
opposite in the cycle synchronize. The situation can
well be interpreted in terms of two suppressive signals,
one affecting only the even numbered species and the
other only the odd numbered species. At all times both
signals are located on opposite sides of the cycle. In this
case the two signals are in phase, i.e. both signals reach
maximum values for a species at the same time. This
need not necessarily be the case, for instance in an
8-cycle a suppression-dominated stable limit cycle may
occur in which the two signals are out of phase. It turns
out that in even longer hypercycles, limit cycles of, for
example, four signals can exist. We also found that
hypercycles with an even number of species will only

have alternative limit cycles with an even number of
signals, whereas hypercycles of odd length exhibit
alternative limit cycles with an odd number of signals.

The spatial patterns that these alternative limit
cycles can generate appear to be weak. It turns out that
the alternative limit cycles can only form stable spatial
structures around an obstacle. In Fig. 5(c) a rotating
2-signal wave of a 6-cycle has stabilized around an
obstacle. If we slowly shrink the size of the obstacle to
zero in Fig. 5(d), we see that this 2-signal limit cycle
cannot form a stable spiral: in the middle of the spiral
the system deteriorates to the patchy pattern (half of
the species outcompete the other half) and this pattern
will expand. Also if the obstacle is not removed, but a
small part of the field is re-initialized randomly, the
dominance of the patchy pattern is evident. In that case
the patchy pattern quickly establishes itself in the
randomized region and the patches expand towards
the obstacle, finally resulting in a complete removal of
the 2-signal limit cycle. This spatial dominance of the
simplest attractor also holds for hypercycles of odd
length. In that case the 1-signal spiral is dominant over,
for example, a 3-signal wave around an obstacle.

3.5.      

The patchy patterns of cycles of even length are
stronger than the spiral waves of cycles of odd length.
We demonstrate this by the experiment shown in
Figs 6(a) and (b). In Fig. 6(a) two cycles of length 3 and
4 are grown separately in two distinct fields of identical
size. In Fig. 6(c), the interaction graph of the two cycles
is shown; the cycles have two species in common. In
Fig. 6(b), the barrier between the fields has been
removed. The patches with species 1 and 3 turn out to
be stronger than the spirals and they will finally
outcompete all other species. The patches with species
2 and 4 seem to be weaker than the 3-cycle spirals. We
tested this by initializing only species 2 and 4 on the
right-hand side of Fig. 6(a) and, as expected, in that
case the spirals win the competition.

A simple explanation for this difference between the
competition strength of the two patch types is that
species 3 suppresses the 3-cycle whereas species 4 is
suppressed by the 3-cycle. Furthermore, species 5 is
catalysed by species 2 [this causes the waves on the
right-hand side of Fig. 6(b)] and it catalyses species 1.
Both effects give the patch type that consists of species
1 and 3 a clear advantage over the patch type that
consists of species 2 and 4 in competition with the
3-cycle. This result can be generalized: in competition
between joint cycles of any even and odd length, one
of the patch types of the even cycle will always
outcompete the spirals of the odd cycle. Furthermore,
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if the possibility of an even cycle is introduced via a
crosscut mutant (a mutant that allows a shorter
hypercycle; see Boerlijst & Hogeweg, 1991b) into a
situation with many spirals of a cycle of odd length, the
patches can easily be attained if the mutation takes
place near the centre of a spiral, where all species are
present.

3.6.    

Now let us return to the patch solution of the cycles
of even length. We concluded in Section 3.2 that in the
long run one of the patch types will outcompete the
other type and thus half of the species will be lost. This,
however, is not a realistic result. Within a patch the

F. 5. A 6-member hypercycle. (a) Bifurcation diagram for increasing suppression. Parameters are default [see eqn. (8)], except for s. At
s10.21 there is a Hopf bifurcation in which the catalysis dominated stable limit cycle is damped by influx and suppression and it becomes
a stable node. At s10.26 the stable node has a pitchfork bifurcation to two alternative stable states. At s10.29 there is a second Hopf
bifurcation in which an unstable limit cycle is born. At s10.35 this limit cycle undergoes a (sub critical) flip bifurcation and becomes stable.
At this bifurcation two new unstable limit cycles appear; in the upper limit cycle species 1, 3 and 5 reach higher numbers than species 2, 4
and 6 and in the lower limit cycle species 2, 4 and 6 are dominant. These alternative unstable limit cycles separate the stable limit cycle from
the two alternative stable states. (b) Time-plot of species density close to the alternative limit cycle. Parameters are default [see eqn (8)]. These
parameters correspond to the right-hand side of (a) at s=0.5: a stable limit cycle coexists with two alternative stable states. In the limit cycle
species in opposite positions in the hypercycle synchronise. (c), (d) Spatial patterns of the 2-signal limit cycle. Parameters, numerics and grey
scale are as in Fig. 2, except for si,i+=0.9 (at si,i+=0.5 all 2-signal waves are unstable). (c) Stable rotating 2-signal waves around an obstacle.
The obstacle has a radius of four grid points (in a 100×100 field). Initially the field around the obstacle is divided into three zones and in
each zone fractions close to one of the maxima of the ODE limit cycle are assigned to the species (a little random variation is added to break
the symmetry). The figure shows the density of species 1 after 5000 time steps. (d) In between 5000 and 13000 time steps the size of the obstacle
is steadily shrunk to zero. The figure of the density of species 1 after 14250 time steps shows that the 2-signal wave fails to form a stable
spiral; instead in the centre the system deteriorates to the alternative patches with either species 1, 3 and 5 or species 2, 4 and 6. The patches
will expand and quickly remove the 2-signal waves.

(c) (d)
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F. 6. Competition between ‘‘odd’’ spirals and ‘‘even’’ patches. Parameters, initiation, numerics and grey scale areas in Fig. 2, except for
all si,i+=0.9 (at si,i+=0.5 the 3-cycle does not form stable spirals). (a) Spirals and patches are grown separately in two distinct fields of 100×100
grid points. The interaction graph of (c) is used. On the right, only species 1, 2, 3 and 4 are initialized and on the left, only species 1, 2 and
5. The figure shows the abundance of species 1 after 4000 time steps. After this point in time the two fields are connected. (b) In competition
the patches with species 1 and 3 outcompete all other patterns. On the right, species 5 invades the patches with species 2 and 4, because species
5 can predate on species 2. This causes the (visual) waves of species 1, which is a predator on species 5. On the left, species 3 gets catalysis
from the 3-cycle and the patches with species 1 and 3 outcompete the spirals. The figure shows the abundance of species 1 after 6000 time-steps.
(c) Interaction graph.

(a) (b)

species have no catalytic or suppressive interactions
and normally this situation would result in competitive
exclusion. Up to this point the growth parameters (i.e.
r and d) have been identical for all species, which is of
course a pathological assumption. In Fig. 7(a) we
decrease the decay rate of species 1 in a 6-member
hypercycle. We start in the suppression-dominated
3-species equilibrium (the one with species 1, 3 and 5)
and we continue this equilibrium. It appears that for
a decreasing decay rate of species 1 there is a Hopf
bifurcation and a stable limit cycle is born. Figure 7(b)
shows a time-plot of this limit cycle. The dynamics can
be understood as a result of the interaction of three
different modes of behaviour. First, the ‘‘suppression
mode’’ causes species 1, 3 and 5 to outcompete species
2, 4 and 6. This mode is reflected in the relatively
high numbers of species 3 and 5 compared to species
2 and 4. Second, the ‘‘competitive exclusion mode’’
causes species 1 to outcompete species 3 and 5. This
mode appears as the increase in species 1 in the absence
of species 2, 4 and 6. Finally, at high numbers of species
1, a third ‘‘predation mode’’ develops, causing a
damped (because of the dominant suppression)
catalytic ‘‘predation’’ signal to pass from species 1
up to species 5. It is as if species 1 acts a prey and

species 2 to 5 form a chain of predators. The hypercycle
is effectively broken in that species 6 remains at
the influx level. If we alter the system by omitting
species 6 and by varying the decay parameters of all
other species, the dynamics of such a ‘‘chain of
predation’’ can also be chaotic. In Fig. 7(c) for
decreasing influx the system exhibits a period-doubling
route to chaos (Feigenbaum, 1978). Figure 7(d)
shows a time-plot of the chaotic dynamics, the limit
cycle of Fig. 7(b) can still be recognized, but species 3
now causes disturbance (due to its small decay
parameter).

In Fig. 8(a)–(c) we examine the spatial dynamics of a
6-member hypercycle with variation in all decay
parameters (variation in r gives analogous results). It
appears that the different modes that we discussed
above operate on different (but interacting) timescales,
each causing its own spatial phenomena. Figure 8(a)
shows that the first patterns that appear are the
‘‘suppression mode’’ patches of either species 1, 3 and
5 or species 2, 4 and 6. In Fig. 8(b) the patches of the
odd numbered species are slowly outcompeting the
patches of the even numbered species. At the same
time, within the patches the second ‘‘competitive
exclusion mode’’ is operating and species 1 is out-
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competing species 3 and 5. This process generates the
‘‘predation mode’’, and in Fig. 8(b) waves of species 2
propagate into the patches of the odd numbered
species. In Fig. 8(c) the dynamics has reached its final
attractor. The patches of species 2, 4 and 6 have been
outcompeted and only the patch type of the odd
numbered species with its predation chain remains.
Species 6 has died out and species 1 to 5 form a
(continuously changing) chaotic mixture of spiral

waves and target waves. In this case the hypercycle is
really broken in that species 6 is completely wiped out.
Species 6 decays even more slowly than species 1, but
the latter is part of the winning patch type and within
the patch it suppresses species 6. Therefore, we
conclude that between-patch competition is dominant
over competition for the best growth parameters.
Between- and within-patch competition finally results
in a breaking of the hypercycle.

F. 7. The effect of variability in growth parameters. (a) Bifurcation diagram for decreasing decay rate of species 1 in a 6-member hypercycle.
Other parameters are default [see eqn (8)]. The upper stable node of Fig. 5(a) at s=0.5 is used as starting point. At around 30% reduction
of d1 the stable node undergoes a Hopf bifurcation and a stable limit cycle is born. For line styles see Fig. 3(a). (b) Time-plot of the limit
cycle in (a) at 50% reduction of d1. The sequence of species at maxima is 1, 2, 3, 4, 5, 1, etc.; the fraction of species 6 remains very small
around the influx level. Species 1 acts as a prey and it initiates a chain of predation (catalytic signal) by the other species. (c) Bifurcation
diagram for increasing influx rate. Parameters are as in (a), but species 6 is removed from the system and species 1 to 5 vary in decay rate:
d1=0.048, d2=0.057, d3=0.049, d4=0.059 and d5=0.06. The diagram shows a continuation of Poincaré sections atX1=0.2276 (the equilibrium
value at f=1×10−4). At f19×10−5 the stable node has a Hopf bifurcation to a stable limit cycle. At f13.3×10−5 the limit cycle has a
period doubling. Around f=2×10−5 there is a period-doubling cascade to first quasi-periodic behaviour and finally chaos. (d) Time-plot
of the dynamics of (c) in the chaotic regime at f=1.5×10−5.
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F. 8. The spatial effect of variability in growth parameters. A 6-member hypercycle is simulated with parameters, initiation, numerics
and grey scale as in Fig. 2, except that all decay parameters vary: d1=0.048, d2=0.057, d3=0.049, d4=0.059, d5=0.06 and d6=0.045. (a) Spatial
pattern after 1500 time steps; the upper side of the figure shows the abundance of species 1 and the lower side shows the abundance of species
2 (the two sides should be superposed). (b) 1650 time steps. (c) 9250 time steps.

(a) (b) (c)

4. Conclusions and Discussion

4.1.      

In hypercycles with both positive (i.e. catalysis) and
negative (i.e. suppression) interactions, there is a
switch from dominant catalysis to dominant suppres-
sion. Stable spiral waves can exist in both parameter
regimes. The profile (sharp front and smooth back) of
the catalysis-dominated spirals resembles that of
experimental spirals as observed in the Belousov–
Zhabotinsky reaction (e.g. Müller et al., 1987) and in
the mount formation of the slime mould Dictyostelium
discoideum (e.g. Siegert & Weijer, 1991). Furthermore,
re-entry waves in models of cardiac tissue (e.g. Starmer
et al., 1993) also have a sharp front and a smooth back.
The profile of the suppression-dominated spirals
deviates from these examples in that there is a gradual
(decay-driven) wave front and a sharp (suppression-
driven) wave back.

Slight alterations in the suppression term in the
model show the robustness of our results. If, for
instance, we directly couple the suppression to the
replication by multiplying the suppression term by the
fraction of empty spots (si,i+XiXi+(1−SXk )), we get the
same bifurcations and the same spatial phenomena. In
this case the switch from catalysis-domination to

suppression-domination, as derived in Section 3.1,
occurs simply at k=s. If we simplify the model by
omitting the suppression terms and letting the catalysis
parameter run from positive to negative values, we get
the catalysis/suppression switch at k=0. In this
simplified model most bifurcations still occur, but the
alternative limit cycles that we observed in large
hypercycles will not become stable.

4.2.   ‘‘’’   ‘‘’’


Suppression-dominated hypercycles will form either
patchy patterns (for cycles of even length) or spiral
waves (for cycles of odd length). In a suppression-
dominated hypercycle the signal of species at maxi-
mum numbers proceeds two steps in the direction of
suppression. This causes the difference in the cycles of
even or odd length. In odd cycles the signal results in
a stable limit cycle that can generate spiral waves. In
even cycles the signal runs over half of the species and
therefore there are two stable solutions in which half
of the species outcompete the other half. In a spatial
domain this bistability results in a patchy pattern
which can be characterized as a ‘‘voting pattern’’
(Vichniac, 1984, 1986; De Boer et al., 1993). In a voting
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rule (which creates a voting pattern) two alternative
states exist and the next state of a grid-point is
determined by the majority state of the neighbour-
hood. In our case there is a strong ‘‘annealing’’ between
the patches, which first results in oscillations of the
borders of patches and finally in the disappearance of
one of the patch types.

The importance of the cycle being even or odd is not
unusual in cyclic networks with negative interactions.
For instance, in idiotypic immune networks a differ-
ence between cycles of even and odd length has been
reported (Neumann & Weisbuch, 1992). In the
percolation regime cycles of even length have
bistability (half of the B-cells suppress the other half)
and cycles of odd length can show sustained
oscillations. The idiotypic network models differ from
our hypercycle model in that the sign of interactions
between B-cell clones is not fixed but is density
dependent and therefore the graph is not directed and
thus signals could in principle run in both directions.
Furthermore, there is no proliferation (selfreplication)
of B-cells without stimulation. Nevertheless, the
idiotypic network models show phenomena related to
our model, for instance the existence of T-cell/B-cell
‘‘voting patterns’’ in a model of lymph nodes
(Hogeweg, 1989).

4.3.   

In competition, the patchy patterns of even cycles
are stronger than the spiral waves of odd cycles.
Generally, one of the patch types of the even cycle will
be able to outcompete the spiral waves of the (joint)
odd cycle and thus selection favours cycles of even
length. This outcome differs from what happens in
catalysis-dominated hypercycles (see Boerlijst &
Hogeweg, 1991b), where competition generally
favours the shortest cycle that can form stable spiral
waves.

In the scheme of the joint cycles of even and odd
length in Fig. 6(c), one of the patch types of the even
cycle is clearly stronger than the spirals of the odd
cycle. But even in the case of disjoint hypercycles,
patches are generally stronger than spirals. This is
because in a patch suppression is avoided and therefore
the level of production of a patch is higher than that
of a spiral. Finally, patches have an advantage over
spirals in that there are always two types of them, each
of which has a chance of being stronger than the spiral.

4.4. -   

If there is a variation in the growth parameters, an
even cycle will break and a chain of ‘‘predation’’
will remain. Variation in the growth parameters
will cause competitive exclusion within the patches.

The dominant species of a patch type will attract its
‘‘predator’’, which will invade as a wave from the other
patch type. In the long run, one of the patch types will
be outcompeted and only one patch type will remain
along with its waves of predation. Typically, this
causes at least one species to become extinct, which
implies that the cycle is broken. The system now
behaves as a chain of predation with sustained
oscillations or chaos (as in Hogeweg & Hesper, 1978).

The introduction of variation into the parameters of
the hypercycle model creates many new possibilities. In
this paper we have shown that spatial patterns on
different time- and space-scales can coexist and
interact. This can result in rather complex patterns,
which may be just as complex as patterns in real
ecosystems (Ives, 1991). Several authors have shown
the existence of chaos in hypercycle networks with
alternative interaction graphs (e.g. Schnabl et al.,
1991) or with inclusion of mutations (e.g. Andrade
et al., 1993). In earlier work (Boerlijst & Hogeweg,
1992; Hogeweg, 1994) we investigated spatial models
of evolving hypercycle networks with only positive
interactions. In that case, chains of predation (coupled
parasites) are generally ‘‘fed’’ by short hypercycles.
The present paper shows that in the regime of
dominant suppression, chains of predation are ‘‘fed’’
by a strongly growing species (a prey) and cycles tend
to be eliminated. This result might explain the rare
existence of cycles in food webs (overview in Briand &
Cohen, 1987). We plan further investigations into
selection in networks with both suppression and
catalysis.One of the intriguing openquestions is: under
what conditions does such a network evolve towards
dominant suppression or dominant catalysis, or
towards a balance of both?
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