Temporal aspects of binocular slant perception

Raymond van Ee and Casper J. Erkelens

Vision Feacarch 36, 43-51, 1996.
Please and correspondence to the first author:
Utrecht University, Wakgroep Fysica v/d Mens, Frinetonplein $5, \mathrm{NL}-35840 \mathrm{G}$, Utrecht, The Netherlands;

Email: r.vanee Ophya.uung;
Fax: +313054\$664

Keywords: Finocular diaparity, Binocular vision, Human alant perception, Stereopais

Abstract

We investigate temporal aspecta of binocular alant perception in the presence and absence of a viaual reference. Subjecta judge alant induced by large-field atereograms of which one half-image is either horisontally acaled or sheared relative to the other half-image. Each atimulua is preaented for different obaervation periods ranging from 0.1 to 19.2 aec . WFe quantitatively corroborate earlier findinge that perceived alant developasignificantly faster and to higher levela with risual reference than without it. In daily life, when we are active, there will not be much time for alant to develop. WFe find that if observation periods are brief (a few aeconda or less) alant is poorly perceived if there is no visual reference. Wre conclude that the visual system is relatively insensitive to large-field horisontal acale and ahear.

Introduction

Experimental knowledge sbout diapority-bised three-dimenaional (3D) vision has been obtained mainly from atudies which use atereograms produced by stereoscopes (first developed by Tiifheatatone, 180) ar Julese random-dot potterne (first developed by Julean, 1960).

From the time of TiWheatatone it has been clear that perception of distance is induced by local apatial ahifte between the pattern viewed by the right eye relative to the pattern viewed by the left eye.' Perceived orientationa of planar aurfaces are related to linear tranaformations between the half-imsges of atereograms, which include horioontal acale and horiontal ahear (aee figure 1 for an explanation of these tranaformations). Pereeption of non-planar surfaces depende on higher-order apotial differencea between the half-images of atereograms. This study concentrates on perceived orientations of planar aurfaces.

Gibson (1950) deacribed aurface orientation in human vision in terma of the amount and direction of slant. Stevens (1983) proposed a formal way for dearibing encodinge of surface orientation and showed it to be consiatent with various paychophysical phenomena. His proposal was that surface orientation can be uniquely quantifed by alant and tilt. Slant is the angle between the aurface-nomal and the line of aight. Tilt denotea the slant direction which ia the angle between the projection of the aurface-nommal on the fronto-parallel (frontal) plane and the horiontal in the frontal plane.

Figure 1 about here.

Horimontal acale of one half-image of a stereogram relative to the other half-image is perceived as alant about the vertical axis (eg. Juleat, 1971; the tilt remaina ero), whereas horimontal ahear is perceived as alant about the horiontal axia (e.g. Wifallach 8 Eacon, 1976; tilt ia 90 deg). Slant estimation about oblique axes can be described, both theoretically and experimentally, aolely by horimontal acale and horiwontal ahear between the images viewed by the left and the right eye (van Ee \& Erkelens, 1993; 1995).

However, aeveral atudies report that horimontal acale and shear between the two halfimagea of a steregram without a viaual reference are poorly perceived (Shipley \& Hyan,

[^0]1974; Mitchison 4 Wifetheimer, 1984, 1990; Stevens \& Frookes, 1987, 1988; Gillam, Ghambera \& Fisas, 1988). In addition, horiwontal acale between the two retinal imagea cansed by an aniseikonic lena leade to perception of alant only after conaiderable latencies (Ames, 1946; Seagrim, 1967; Gillam, Flagg \& Finlay, 1984).

During the conferenceliNATO-workhop on binocular stereopaia in Toronto in 1993 we reported on the fact that the viausl aystem ia poorly auseptible to horimontal acale and horibontal shear if these tranaformstions comprise the entire visual field, which means that the tranaformations are presented without a viaual frame of reference (Erkelens a van Ee, 1993). As a reason for this poor suaceptibility we auggested that a whole-field disparity field cansed by horimontal seale or horivontal shear between the half-images is an unreliable mesaure for the viaual aystem. Such a whole-field diaparity field could ala be canaed by a head rotation: Hesd rotation about the vertical axis canaea a horimontal acale between the two retinal imagea; head rotation about the horivontal axis canaea a horimontal ahesr between the two retinal images. During the asme conferenee, Howard and Kaneko (1993) presented experimental reaulte which ahowed that alant perception canaed by whole-field horivontal ahear was clearly perceived even when preaented without viaual reference. The most conspicuous differences between Howard and Kaneko's experiment and our experiment were the lengthe of time during which the atimuli were observed. In the experiment of Howard and Kaneko the aubjecte were allowed to look at the atimulus for as long as they wished, which was on average for about 15 sec, wherese we presented the atimuli for less than 5 sec . Intrigued by the rather different experimental resulte we decided to investigate the temporal aspecte of binocular alant perception.

The purpose of thia study ia primarily to compare alant eatimation with and without the preance of a visual reference for a large range of presentation periods. Tife begin by inveatigating the perceived alant that can be expected on geometrical grounde from the horinontal acale and ahear tranaformations.

The theoretical relationship between alant and horisontal acale and ahear
TiWe mentioned that much knowledge about binocular 3D vision has been obtained from studies with atereograme. Another method which has proved important for the understanding of binocular alant perception ia based on the use of an aniseikonic lens which is positioned just in front of one eye (e.g. Ogle, 1950 or Gillam et al., 1984). Ogle derived a relationship between the horimontal magnification of the aniseikonie lens and the alant about the vertical axis:

$$
\operatorname{slant}=\arctan \left(\frac{M-1}{M} \cdot \frac{z_{\mathrm{n}}}{I}\right),
$$

where M is the horiwontal magnification factor of the lens, I is the interocular distance and z_{0} is the distance between the atimulus and the eyes. Several anthors have used Ogle's relationship ala sa a measure of the perceived alant indued by horiwontal acale between
the half-imagea of a stereogram. Strietly apeaking, however, Ogle's relationship was derived for sniseikonic lenses, not for steregrame.' Furthermore, as far as we know Ogle did not derive a relationship between horimontal shear and slant about the horimontal axis. Tife need these relationahipe for atereograms in order to produce atimuli which theoretically induce equal slanta about the horivontal and vertical axes. Therefore we atart by deriving relationshipe between alant and horivontal acale on the one hand and between alant and hormontal ahear on the other hand. Wife will adopt Ogle's notation.

Suppose that there is a unique correapondence between both half-imagea of the atereogram and that fusion has been eatabliahed. Gonaider the viaual ray between a particular atimulua point in the left-eye half-image (s_{0}) and the nodal point in the left eye (Nu, figure 2). Gonsider also the visual ray between the correaponding atimulus point of the right-eye half-imsge ($M s_{0}$) and the nodal point of the right eye (N_{1}). The point of interaction of the two visual ray define the locus of a stimulus point (F) which can be positioned outaide the plane in which the stereogram is presented. In figure 2, this point F is located behind the sereen. The complete set of interaction pointe obtained by this method defines a three-dimensional object whose image has the same retinal positions in the two eyes as the individual half-images of the atereogram.

```
Figure 4 about here.
```

Tife use an orthogonal coordinate syatem with the origin (O) at the centre between the eyes. The positive x-axia pointa to the right, the y-axis upwarda and a-axia in the primary direction. Wifith regard to a horibontal acsle of magnification M (aee figure a) between both parta of the atereogram, the interection point (P) of the viaual raya of the atimulus point ($x_{\mathrm{a}}, 3_{0}, z_{0}$) can be obtained by a act of three equations which in their turn can be combined to form a single vector equation. The vectors we use may be thought of as arrows, one beginning at the nodal point of the left eye (N) and pointing to a stimulus. point in the left-eye part of the stereogram (s_{0}), the other beginning st the nodal point of the right eye (N_{1}) and pointing to the corresponding, but tranaformed, atimulua point

[^1]in the right-eye part of the stereogram ($M s_{0}$). The vector equation is:
\[

\left($$
\begin{array}{c}
-\frac{1}{2} I \\
0 \\
0
\end{array}
$$\right)+\lambda \quad\left($$
\begin{array}{c}
\frac{1}{2} I+s_{0} \\
33_{0} \\
z_{0}
\end{array}
$$\right)=\left($$
\begin{array}{c}
\frac{1}{2} I \\
0 \\
0
\end{array}
$$\right)+\mu\left($$
\begin{array}{c}
-\frac{1}{2} I+M s_{0} \\
30 \\
z_{0}
\end{array}
$$\right)
\]

where A and μ are acalara. Figure i illustrates in two dimensions how the x - and u componenta of the vector-equstion have been obtained. The coordinates (P_{a}, P_{r}, P_{r}) of the interaection point P are:

$$
P=\left(-\frac{1}{2} I+\frac{\Gamma\left(\frac{1}{2} I+s_{0}\right)}{I+(1-M) s_{0}}, \frac{3 m_{0}}{I+(1-M) s_{0}}, \frac{z_{0} I}{I+(1-M) s_{0}}\right) .
$$

Not only the x - and e-coordinates of the interaection point but also the y-coordinate depend on the amount of horivontal acale. This means that alant due to horivontal acale ia not exactly equivalent to rigid rotation of an object about the vertical axis. The dependence of the y-coordinate of the interaction point on the amount of horiwontal scale explains why horisontally acsled rectangles are perceived as trapesoids of which the amall vertical side is perceived to be nearer than the large vertical side. Figure 1 showa that alant equale arctan $\left(\Delta z \|^{\prime} \Delta x\right)$ and thus equale arctan $\left.\left(P_{s}-z_{0}\right)^{\prime} P_{a}\right)$. As a reault, the relationship between slant and horimontal acale is:

$$
\operatorname{slant}=\arctan \left(\frac{M-1}{M+1} \cdot \frac{2 z_{0}}{I}\right),(\operatorname{tin} t=0)
$$

Note that this relationship differs from the relationship that has been derived for aniaeikonic lenaes. (In practice the difference in predicted slant is amall: with reapect to our experimental aet-up, the difterence is 1 deg for a alant of 60 deg) Tife repeat the procedure for a horiontal ahear defined by angle β (ace figure 1):

$$
\left(\begin{array}{c}
-\frac{1}{2} \Gamma \\
0 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
\frac{1}{2} \Gamma+s_{0} \\
30 \\
z_{0}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \Gamma \\
0 \\
0
\end{array}\right)+\mu \quad\left(\begin{array}{c}
-\frac{1}{2} \Gamma+s_{0}+3 \tan \beta \\
30 \\
s_{0}
\end{array}\right)
$$

from which it follows that the intersection proint is:

$$
P=\left(-\frac{1}{2} I+\frac{I\left(\frac{1}{2} I+s_{0}\right)}{I-3_{0} \tan \beta}, \frac{3}{I-3_{0} \tan \beta}, \frac{z_{0} I}{I-\sin _{0} \tan \beta}\right) .
$$

As before, not only the $y-$ and u-coordinates, but slao the x-coordinate of the interaection point depend on the amount of ahear. This explaine why horiwontally aheared rectangles are perceived as trapewids of which the small horivontal side is perceived to be nearer than the large horiwontal side. In the case of hariwontal ahear, alant is equal to arctan($P_{r}-$ $\left.s_{0} \mid F_{y}\right)$. The relationship between alant and hariontal ahear ia:

$$
\operatorname{slant}=\operatorname{srctan}\left(\tan \beta \cdot \frac{s_{\mathrm{a}}}{I}\right),(\operatorname{fri} f=90 \mathrm{deg}) .
$$

Hy using the two derived relationshipa between horivontal acale, horivontal ahear and alant we are able to produce atimuli which ahould induce equal alanta about the horimontal and vertical axes.

Figure 3 about here.

Methods

Figure 3 showa the experimental aet-up. Wife used an anaglyph aet-up for the generation of the stereograms. The atereograms were generated at a frequency of 70 Hz by an HF 750 graphies computer. Subsequently, the atimuli were back-projected on a frontal tranalucent acreen by a projection TV (Eareo Data 800). The aubject was aeated about 1.5 metrea from the acreen. The right-eye half-image was projected in green light and was observed through a green filter. Fied filtera were used to make the other image viaible excluaively to the left eye. The tranamiasion apectra of the filters (Schott Tiel, the Wetherlands) were chosen anch that they corresponded as well as posible to the emission spectra of the projection TV.

In order to compare our atudy closely with the Howard and Kaneko (1993) atudy we used aimilar stereograms. The atimulua was circular and contained randomly distributed circles (aee figure 3). The sdyantage of auch a stimulus ia that perspective cues play only a minor role. The amall circles had a diameter of 1.5 deg esch and a density of about 10%. The large circle had a diameter of 70 deg. A different, randomly chosen configurstion of circles was presented during each trial.

The preanted tranaformations of the green part relative to the red part of the atereogram were either horimontal acale (alant with a tilt of 0 deg) or horimontal ahear (alant with a tilt of 90 deg). Horivontal seale varied between - 9.0% and 9.0% in six steps (with a step-aibe of 3.0%) and horimontal shear varied between -4.9 deg and 4.9 deg (again in six ateps'). The magnitudes of the acale and shear transformations were chosen auch that they were identical to each other with respect to the amount of predicted slant. As can be inferred from the derived alant-equations, the magnitudes are related according to the equation $\beta=\arctan \left(4 \cdot \frac{\mathbf{x}-1}{\mathbf{x}+1}\right)$, where β indieatea the angle of ahear and M the magnitude of acale. For instance, both a horivontal acale of 6.0% and a horivontal ahear of 3.3 deg theoretically induee a slant of 53 deg (for $z_{0}=150 \mathrm{~cm}$ and $I=6.5 \mathrm{~cm}$). The amounte
of transformation presented comprise more or less the entire range of fusible disparities; care was taken to prevent fusion problems.

$$
\text { Figure } 4 \text { about here. }
$$

The task of the aubject was to judge the perceived slant induced by the presented horimontal acale or ahear tranaformations. After each preaentation two lines (one fixed and one rotatable') appeared on the acren, as shown in figure 4. By changing the computermonae position, the anbjecte aet the angle between the adjuatable line and the fixed line; the angle represented the estimated alant. The fixed line represented the frontal plane, the adjustable line represented the slanted plane. The two lines were diaplayed without disparity. Therefore they were perceived in the plane of the sereen. An advantage of this adjustment procedure was that during the adjustment, alant adaptation effecte due to the former test stimulus were cancelled out. The adjustable stimulus aerved as a mask.

Experimenta were of two types: transformstions were presented either with or without a viaual reference. In the aituation without viaual reference the atimuli were viewed in a completely dark room; the only thing viaible in the experimenta was the stimulua. This type of experiment was preceded by a dark-adaptation period of six minutea. Fecause the aubjecte were dark sdapted, experimenta could be done with low contrast and low brightness of the projection TV, without lose of visibility of either part of the atereogram. This meana on the one hand that the acreen did not (as far as poasible) serve as an illuminated plane and on the other hand that we made optimum use of the transmisaion apectrum of the anaglyph glases. The aubjecte did not experience any crosstalk between the right-eye and left-eye views of the atereogram. The brightness of the red part and the brightresa of the green part of the stimuli were sdjusted independently auch that the two parta were perecived as equally bright.

During the series of trials in which we used a visual reference, a whole-field reference pattern was projected on the acreen as shown in figure 5 . The reference (width 70 deg and height 70 deg) conaiated of a croa-hatched pattern. The crosa-hatched pattern was made up of a field of adjacent aquarea with diagonale of 15 deg. To prevent alisaing effecte (fixation on false depth planes) not every poasible aquare was ahown. The denaity of aquares was about 60%. The reference pattern was changed randomly every time a new atimulus appears. The room was also dimly lit (in the situstion with reference) which prevented depth contrast effecte that might have induced perceived alant of the reference pattern due to perceived alant of the circular test pattern.

Figure 5 about here.

The following obervation periode were presented in random order: 100 maec, 000 maee, 400 maec, 800 msec, $1.6 \sec , 3.2 \mathrm{sec}, 6.4 \mathrm{sec}, 14.8 \mathrm{sec}$ and 19.2 sec . Each trial was repested seven times. In all, each subject had to juige 1764 slante, namely 9 presentation times, 2 tranaformationa (horimontal acale and shear), 4 conditions (with and without visual reference), 7 magnitudes of tranaformationa ($-9.0,-6.0,-3.0,0.0,3.0,6.0,9.0 \%$ or -4.9 , $-3.3,-1.6,0.0,1.6,3.3,4.9$ deg) and 7 repetitions. The subjecte atarted with a series of trials without visual reference ($8 \Delta 2$ triala). Then after a two-hour breat the subjecte repeated the ame aeriea of triala but with visual reference (again sti trials'). Each aeries lasted about 75 minutes.

Six aubjecta (5 malea and 1 female, agea $13-99$ yeare) took part in the experiment. Although each aubject was familiar with the concept of mathematical angles, we checked before starting the experiment whether the subject was able to represent alant by our method in a consistent manner. Therefore, a series of triale with real and dichoptically projected alanted planea was conducted with each of our aubjecta. During the final experiment no feedback was given about the reaulte. Except for the author (RE) the subjecte were uninformed about the purposes of the experiment. Four subjecta ($\mathrm{FV}, \mathrm{GG}, \mathrm{OS}, \mathrm{JJ}$) were inexperienced with respect to stereoseopic experimenta. Four subjecte (FV, JZ, FE and FO) ahowed refraction anomalies which were corrected by their own glases. One subject (FO) showed a slight astigmatiam (0.5 diopters, axis 15 deg) which was corrected by his own glases.

Results

Estimated alant as a function of predicted alant for a typical anbject (G G) ia ahown in figure 6 for the tranaformstions horivontal acale and shesr and the conditions with and without viausl reference. For the aske of clarity and in order to explain the method of data analysis, (for the moment') we show the resulte for only three observation periods, namely 0.1 aec, 1.6 aec and 19.2 sec. The reaulta show, to a good approximation, a linear relationship between estimated and predieted alant. The settinge for each transformation, condition and observation period are fitted by a linear function. The good fite to linear functions imply that slant estimation followa 而e ber's law. The slopes of the fitted linear functions represent the fraction of predieted alant that is eatimated by the anbject.

Figure 6 about here.

The complete data (estimated slant as a fraction of predicted slant for each observation period) for our aix aubjecta are presented in figure 7 . The fite to the raw data (auch as
presented in figure 6) are good in all cases. X^{2} (obtained by a least-aquares method bused on the experimental outcomed) is alwaya larger than 0.94 and in most casea larger than 0.99. Figure 7 shows that estimated alant develops over time for each condition. Eatimated alant in the presence of a visual reference develope faster and to a higher level than without visual reference. For brief observation periode (of the order of 1 second or less) alant is poorly eatimated when no visual reference is present.

Figure 7 about here.

Like Gillam et al. (1984) and Mitchison and McKec (1990) we find that eatimated slant as a fraction of predicted slant is amaller than unity in all cases, which means that alant is conaistently underestimated. Slant judgmente are rather similar for three aubjecta ($\mathrm{FV}, 0 \mathrm{Sand} \mathrm{J} \mathrm{S}^{\prime}$) with reapect to both horivontal acale and shear. Two anbjecte (GGand FO) ahow the well-known anisotropy for slant perception in favour of ahear (Tifallach $\&$ Eacon, 1976; Fiogera $\frac{1}{5}$ Graham, 1983; Mitchison \& MeKee, 1990). One aubject (FE), however, ahowa an anisotropy in favour of horimontal acale. For one subject (FV) the anisotropy in favour of shear exista only for observation periods of 100 and 200 mes. Subjecta FE and FO are experienced in atereosopic experimenta. These aubjecta show amaller differences between the conditions with and without viaual reference.

Discussion

Wife investigated temporsl aspecta of binocularly estimated alant induced by horiwontal scale and horivontal shear. These transformations were presented by means of a stereogram. Our findinge corroborate earlier findings that estimated alant developa over time. Slant in the presence of a visual reference develops significantly faster than without visual reference. For brief observation periode (of the order of 1 see or less) slant is poorly perceived, particularly when no visual reference was present.

Significance of a viaual reference
Many atudiea have shown that perception of alant induced by a certain atimulus dependa on the presence of items surrounding the stimulus (TWerner, 1938; Fastore, 1964; McKee, 1983; Mitchison 8 而eatheimer, 1984, 1990; Gillam et al, 1984; Gillamet al. (1988); Fahle \& 侕eatheimer, 198s; Mitchison \& MeKee, 1990). Shipley and Hyson (1972), Gillam et al. (1984) and Gillam et al. (198*) showed that a second surface has a facilitating effect on alant pereeption of a teat aurface. Gillam et al. (1988) proposed that boundaries in the presented atereograme are effective in indueing alant (by a boundary they meant that ateps
in disparity were present between different parts of the stimulus). This finding confirmed the reaulte of one of their earlier experimenta which they performed with aniaeikonic lenaes (Gillam et al., 1984). Stevena and Erookes (1987, 1980) propoed that binocular 3D information is effectively integrated only where the surface exhibita curvature featurea or edge diacontinuities. Another atudy on the significance of a visual reference was performed by Erkelens and Gollewijn (1985a,b) and Fiegan, Erkelena and Gollewijn (1986) who were dealing with oculomotor behaviour. They studied perception of motion in depth caused by whole-field spatial shifte between stereograms. Gillam et al. (1984), Erkelens and Gollewijn (1985a,b), Fegan et al. (1986), Gillam et al. (1988) concluded that abaolute disparity is not a cue for depth perception.

Deapite the above-mentioned findinga, it ia not yet generally acknowledged that linear tranaformations between the stereosopic half-images elicit foor perception of alant. Many experimenta have been done under different circumstances. A number of authore did not report explicitly whether, or to what extent, a viaual reference was present. Several studies were conducted in a room which was not entirely dark, without the experimentera realiving that a dimly lit room acte as a visual reference. Therefore, many experimental resulte are not unambiguously comparable with esch other.

Howard and Kaneko (1993, 1994) (concerning horiwontal shear) and very recently Kaneko and Howard (1994) (coneerning horimontal acale') explicitly reported on the care they had taken to exclude all visual stimuli that could aerve as a reference. They found that slant indued by horivontal acale and shear was clearly perceived without a visual reference. In their experimenta subjecte were allowed to take as long sa they wished in order to eatimate perceived alant (on average about 15 sec). One of the main resana for our preant experimenta was the apparent diacrepancy between the reaulte of Howard and Kaneko (1993) and our previous resulta (Erkelena \& van Ee, 1993) which ahowed poor alant pereption. Our present findinge explain why these reaulte were different. The length of the observation period appeara to be a deciaive parameter.

Slant perception and latenciea
Another study concerning temporal sapecta of alant pereeption cansed by horisontal acale and horibontal shear (and a number of other transformstions) is the one by Gillame al. (1988). They mesaured latency from stimulus onset to fusion and latency from fusion to atereoscopic resolution. By resolution they meant the recognition of one out of twelve configurations. The task of their subjecte was to prese a button when fusion was obtained and to relesae the button when the atimulus was recognived. Fusion was deacribed by the authore as a atate 'in which the anbject could aee a clear and single image without funcines or a feeling of busumes. Fusion latency (which in fact is the time required for the aubject to get the deacribed feeling and to activate the motor aystem to prese a button) was found to be about 1 sec. Fecognition took roughly between 5 and 60 aeconds.

In our atudy, we find much shorter latencies. However, the type of task of Gillamet al. (1988 ') differs fundamentally from our task where stereograme are presented for a limited period of time. Their experiment was designed to compare latencies of alant for different stimuli and not to mesaure latency per as. This means that from their study it is not possible to derive a precise relationship between the presentation period of the stimulus and the smount of perceived alant.

Uttal, Davia and Tifelke (1994) recently reported that a powerful and compelling atereoacopic experience can be elicited with very brief (≤ 1 maec) atimulua durations. In fact what they measured was whether anbjecta could diatinguish a flashed, atereoseopic aurface from 7 other aurfaces. Their reaulta ahow that anbjecta' acorea exceeded 70\% correct (in 5 out of 8 surfaces) only when atrongly curved aurfaces are used. It would be interesting to know what the minimum stimulue durstion ia for subjecte to be able to give a quantitative atimulue characteribation, for inatance uaing the ahape index (Koenderink, 1990). The resulte of de Vries, Kappers and Koenderink (1994) angest that aubjecta need exposures much longer than 1 maec to do auch quantitative taske.

Slant perception and ego-motion
A posable explanation for the observed phenomena is that two different linear tranaformations (gradienta) within the stereogram are required to obtain unambiguous alant perception; this explanation was auggested earlier by Shipley and Hyan (1972) and Gillam et al. (1988). As remarked by Mitchian and 而eatheimer (1990), it turne out that viewing in oblique directions introduces disparity gradiente. They used this insight to give a posaible explanstion for the well-known horiwontalivertical anisotropy (Fiogere \& Graham, 1983). On the basie of their insight we auggest that the reason for the difference in perception of one gradient (poor perception') and two different gradiente (better perception') ie that one gradient can be the reault of an ego-movement (for instance after a left-right rotation of the hesd'). This gradient is therefore unrelisble in the case of brief observation periods and is primarily ignored as a signal for perception of alant. Two difterent gradienta preant at the asme time in the steregram cannot be a reault of an ego-movement and therefore form a more reliable atimulua for alant perception.

A posaible explanation for the fact that aubjecta can perceive alant without viaual reference, although only after long latencies, is that extra-retinal aignals or information about perspective may be involved in the alant perception. Inspection of the atimulua by eye movemente might ala be involved in the enhancement of the slant perception with time because the aubjecta were not required to fixste a single point.

An explanation similar to the one which has been put forward for the poor perception of alant canaed by linear tranaformationa between the half-imagea has been proposed in the litersture for the poor perception of whole-field shifte. Offecta between the halfimage of a stereogram are not interpreted as changes in distance (Erkelens 8 Gollewijn,

1985a; Fegan et al., 1986). On the other hand, two different offecte are very effective. The analogy ia that offacta are most probably due to errors in the horivontal vergence of the cyes. These offeta occur during binocular fixation of a target moving in depth, after ascondic eye movementa, or during head movement and have magnitudea of as much as 1-9 deg in position (Erkelens \& Gollewijn 1985b; Gollewijn \& Erkelens, 1990) and 1 degis in velocity (Steinman 8 Gollewijn, 1980) and are therefore best ignored as aignala for depth.

Analoguous reasoning, but now concerning cyclodisparity, has been used by Howard, Ohmi and Sun (1993). They bosed their argumenta on the resulte of Howard and Jacher (1991) who showed that even when cyclovergence (diajunctive ocular torsion) oceure alant perception ia not altered. Howard et al. (1993) concluded that overall cyclodiaparities could signify that the eyes are miasligned and are therefore ignored by the perceptual syatem for the purpose of judging slant. Gyclodisparities are of considerable amplitude and oceur frequently during natural behaviour, as was found by van Fijn, van der Steen and Gollewijn (1994). Wifhereas in the previous paragraphe two gradiente were required for unambiguious perception, here two different cyclodiaparities are required for reliable alant perception: Gollewijn, van der Steen and van Fijn (1991) reported that threaholda for pereeption of alant due to cyclodiapority incressed by a factor of 7 when the vianal reference was removed.

Gyclovergence and slant perception

The oceurrence of cyclovergence could, in principle, alter the perception of alant (Fogers, 1994). Rogers hypothesied that the role of cyclovergence is to mullify the transverse positional diaparities along the horimontal (interocular) axis. He auggeated therefore that the tranaformation horiontal ahear doea not generste cyclovergence. Thia was inded one of his experimental resulte (Rogers, 1994). By the ame reasoning the tranaformation horicontal acale will not induce cyclovergence: on the one hand, cyclovergence cannot minimive the diaparities cansed by the horibontal magnification, on the other hand no transverse prositional diaprities along the horiwontal axis are present to drive cyelovergence. Finally, Howard and Jacher (1991) and Howard et al. (1993) ahowed that perception of alant remains atable even when cyclovergence changes. On the busie of these reporta we decided that monitaring cyclovergence in our experiment would not produce new information.

Undereatimation of alant

Ferception of depth bused on atereopaia slone ia not veridical (Gogel, 1960; Foley, 1980; Johnston, 1991; Farker, Johnston, Manafield 8 Yang, 1991; Johnaton, Gumming \boldsymbol{S}^{2} Farker, 1993; Johnston, Gumming \& Landy, 1994). At short distance depth is overestimated and at long diatance it is undereatimated. There is an intermediate diatance where depth perception is veridical which varies between aubjects, averaging sol em (Johnston,
1991). Like Gillam et al. (1984) and Mitchison and MoKee (1990) we find that perceived slant is consistently underestimated. The fact that in our experiment the distance between oberver and acreen was much larger than 80 om (namely 150 cm) can therefore explain the undereatimations.

Another possible explanstion for the undereatimation of alant in our experiment is that aubjecta cannot make preciae estimationa of anglea. In the atudy of Jastrow (1893) subjecta had to view a drawn angle as long as was needed to fix it in mind. Immedistely afterwards, the subject had to draw, from memory, another angle equal to the firat. Jastrow found that anglea larger than 95 deg and amaller than 75 deg were conaiatently underestimsted. The order of underestimstion, however, was only about 10% which is too amall to explain our undereatimations.

Conclusion

Tifie inveatigated the relationship between eatimated alant (canaed by the tranaformstions horimontal acale and shear between the two half-imagea of a stereogram) and the observation period of the atimulua. In previous atudies desling with binocular alant perception, stimuli were presented for long observation periods in order to allow perceived depth to develop over time. Tife quantitatively corroborate carlier findinge that binocular alant perception develops over time. In daily life, when we are active, there will not be enough time for alant to develop. Wife conclude that the visual aystem is relatively insensitive to large-field horivontal acale and shesr.

References

Amea, A. (1946). Binocular vision as aftected by relationa between uniocular atimulua-

Anstis, 5. M., Howard, I. F. 8 Fogers, E. (1978). A Graik-O'Erien-Gornsweet illusion for visual depth. Winion Feneapeh, 1s, 213-117.

Gollewijn, H. \& Erkelens, G. J. (1990). Binoculareye movemente and perception of depth.
 213-161). Amsterdam: Elaevier Science Publishera F.V.

Gollewijn, H., van der Steen, J. 8 van Fijn, L. J. (1991). Finocular eye movementa and
 fion in pidion reneafi (fp 165-183). Gambridge: Gambridge University Prese.
van Ee, F. 8 Erkelens, G.J. (1993). Slant perception in relation to the geometry of binocular viaion: Effecte of local and global diapority fielda. Forfer fresenfofion af ihe
 fic Flow, Toronto, Ganada.
van Ee, F. \& Erkelens, G. J. (1995). Binocular perception of alant about oblique axe relative to a viaual frame of reference. Fefieption, in pren.

Erkelens, G. J. \& Gollewijn, H. (1985, Motion perception during diehoptic viewing of moving random-dot stereograms. Winion Feneafin, 25, 5s3-5**.

Erkelens, G. J. 8 Gollewijn, H. (1985b). Bye movemente and atereopsia Auring dichoptic viewing of moving random-dot atereograms. Wiaion Fiten fih, 25, 1689-1700.

Erkelens, G. J. 8 van Be, F. (1993). Disparity procesing for depth perception under

 rowe of pointe. Wiaion Fieseach, 2*, 171-178.

Foley, J. M. (1980). Binocular diatance perception. Figiholopicai Fifiew, 87, 411-434.
Foley, J. M. (1991). Einocular apace perception. In Fiegan, D. (Ed.), Einotilaf pidion (pp 75-94). London: Macmillan Prese.

Gibson, J. J. (1950). The pereption of the pinal worla. Eoston: Houghton Miffin.
Gillam, B., Ghambers, D. 8 Fiusa, B. (198s). Posffusional latency in atereosopic alant
 Fereprion and $F_{\text {erformance, } 14, ~ 163-175 . ~}^{\text {. }}$

Gillam, E., Flagg, T. 8 Finlay, D. (1984). Evidence for dieparity change as the primary

Gogel, 而. 0. (1960). The perception of ahape from binocular diapority cues. Sownal of Figichogy, 50, 179-194.

Howard, I. F. \& Kaneko, H. (1993). Shear diaparity, cyclovergence and the pereeption of

Worhihop on Einotiof Siepopiland Dpfic Flow, Tomonto, Ganada.
Howard, I. P. 8 Kaneko, H. (1994). Felative ahear diaparities and the perception of surface inclination. Winion Fenearih, 34, 2505-4517.

Howard, I. F., Ohmi, M. 8 Sun, L. (1993). Gyclovergence: a comparison of objective and paychophysical measuremente. Epprimenfal Erain Ferearih, 97, 349-355.

Howard, I. F. \boldsymbol{p}^{8} 马acher, J. B. (1991). Human cyclovergence as a function of atimulus frequency and amplitude. Epprimenial Erain Fenearih, $85,445-450$.

Jastrow, J. (1893). On the judgment of angles and position of lines. American Iompai of F 1gindog, $5,217-248$.
 31, 1351-1360.

Johnston, E. B., Gumming, B. G. $\boldsymbol{S}_{\text {Landy, M. S. (1994). Integration of atereopsia and }}$ motion ahape cues. Wiaion Frueafeh, 34, 2959-2475.

Johnston, E. B., Gumming, B. G. \& Parker, A. J. (1993). Integration of depth modules: Stereopsis and texture. Winion Fenearih, 33, s13-st6.

Julest, B. (1960). Binocular depth peception of computer-genersted patterne. Eell Sys. fema Trinnical Somal, 39, 1115-1164.
 Pres.

Kaneko, H. 8 Howard, I. P. (1994). Gompresaion-magnification disparities and the perception of aurface alant. Fereprion, i3, p. 33.

Koenderink, J. J. (1990). Solia shape. Gambridge, Mass: MIT Press.
 191-198.

Mitchison, (G. J. 8 McKee, S. P. (1990). Mechanisme underlying the anisotropy of stereoacopie tilt perception. Wiaion Fieseafih, 30, 1781-1791.

Mitchison, G. J. \boldsymbol{s}^{2} Tifestheimer, G. (1984). The perception of depth in simple figures. Vinion Feneafin, 24, 1063-1073.

 bridge: Gambridge University Press.

Ogle, K. N. (1950). Renequhes in Binotidap pidion. Philadelphia: Sanndere.
Parker, A. J., Johnaton, E. E., Manafield, J. S. 8 Yang, Y. (1991). Stereo, aurfaces and
 inp (pp 359-3*1). Gambridge, Mass: MIT Press.

Pastore, N. (1964). Induction of atereosopic depth effect. Sience, 144, p. *8s.
Fegan, H., Erkelens, G. J. A Gollewijn, H. (1986). Wecesary conditiona for the perception

van Fijn, L. J., van der Steen, J. 8 Gollewijn, H. (1994). Instability of ocular toraion during fixation: cyclovergence is more atable than cycloveraion. Vinion Fenearih, 34, 1077-1087.

Fogera, E. J. (1992). The perception and representation of depth and alant in atereoseopic
 241-266). Berlin: Springer.

Fogers, B. J. \& Graham, M. E. (1983). Aniaotropies in the perception of threedimensional aurfaces. Sienie, 211, 1409-1411.

Seagrim, G. N. (1967). Stereasopic vision and aniseikonic lenaes I. Brifish Somal of $F_{1 \text { gin }}$ ology, $5 *, 337-350$.

Shipley, T. 8 Hyson, M. (1972). The stereoscopic sense of order-a classification of
 fomery, 49, 83-95.

Steinman, F. M. \& Gollewijn, H. (1900). Binocular retinal image motion during active head rotation. Wision Fenearih, 20, 415-499.

Stevens, K. A. (1983). Slant-Tilt: The visual encoding of aurface orientation. Eiological

Cybernefici，46，183－195．
Stevens，K．A．A Frookes，A．（1987）．Depth reconstruction in stereopas．Froteringu of

Stevens，K．A． 8 Erookes，A．（1988）．Integrating stereopsis with monocular interpreta－ tions of planar aurfaces．Winion Ferearih，28，371－386．

Uttal，而．F．，Davis，S．D．\＆而elke，G．（1994）．Stereocopie perception with brief expo－ sures．Fefterion \boldsymbol{S} Figihophyia，56，599－604．
de Vries，5．G．，Kappers，A．M．L．\＆Koenderink，J．J．（1994）．Influence of aurface at－ titude and curvature acaling on diacrimination of binocularly presented curved anrfaces． Finion Fereaph，34，2409－2433．

TWallach，H． 8 Eacon，J．（1976）．Two forme of retinal diaparity．Fefepfion 8 Fig． chophysics，19，375－3＊2．

Tiferner，H．（1938）．Binocular depth contrast and the conditions of the binocular field． Ampricon Jomand of \bar{F} guchology， $51,489-497$ ．

Tiifheatetone， $0 .(1838)$ ．On some remarkable and hitherto unobserved phenomena of

Acknowledgernenta－而e are grateful to P ．Schiphorst for developing the atimuli．Wife thank S．M．MNab for linguistic advice．The work was aupported by the Netherlanda Organication for Scientifie Feacarch（NTiTO），grant no．810－404－00611．

Figure captiona
Fig. 1: The left-eye part of the stereogram is drawn in thin lines and has dimensions s_{a} in the horivontal (interocular') direction and ${ }_{3}$ in the vertical direction. The right-eye part of the atereogram ia tranaformed by a horiwontal acale (upper figure) or horiwontal ahear (lower figure) and drawn in thich lines. Horioontal acale is uavally expresed as a percentage. For instance, a horivontal acale of 3 多 corresponde to a magnification factor M of 1.03 . Horimontal shear is expresed in angles (β).

Fig. 2: The geometry of alant indued by horimontal acale (top view). To compute the alant which is induced by horimontal acale we find the aet of interaection pointe (F) which belonge to fused (eorresponding) atimulus points of both half-images of the stereogram. Ench point of intersection is located at the position where the viaual rays (armows) of both eyea meet. The viaual rays are expreaed as vectore which atart at the nodal point of each eye (N_{1} and $N_{\text {, }}$) and point to the stimulus locus. I is the interocular distance and M the horibontal magnification factor.

Fig. 3: The experimental aet-up.
Fig. 4: The aubject eatimates the angle of perceived slant by manipulating the computer-mouse. In the case of pre-aet horiwontal acale (which means alant about the vertical axis) the left panel is presented to the subject. This panel corresponds to a top view of the experimental aet-up. Horimontally aheared atimuli (alant about the horimontal axis) are followed by the sereen image shown in the right panel (which corresponds to a side view').

Fig. 5: The crose-hatched pattern aerves as a visual reference and is presented in the plane of the acren. The diagonala of the individual squares are 15 deg. The density of the aquares is about 60%, the denaity of the circlea is about 10%.

Fig. 6: Estimated alant (and standard devistions) as a function of predicted alant of (a typical) aubject $G G$ for three observation periods. Each data point is based on seven alant judgmente. For esch observation period the data are fitted by a linesr function.

Fig. 7: Estimated alant as a function of the observation period. Each data point ia bsed on 49 alant judgmenta. Differences in alant eatimated with and without vianal reference are large for the inexperienced aubjecte and amaller but still significant for the experienced aubjecta (FE and FO), eapecially when observation periods are shorter than one second.

Fig 1, van Ee \& erkelens

Fig 2, van Ee \& erkelens

Red/green projection TV

Fig 3, van Ee \& erkelens

SCREEN

SCREEN

Fig 4, van Ee \& erkelens

Fig 5, van Ee \& erkelens

Fig 6, van Ee \& erkelens

Fig 7, van Ee \& erkelens

Fig 8, van Ee \& erkelens

[^0]: ${ }^{1}$ Since the retinae are spherical and observed stereograms are usually planar, linear transformations of the stereogram half-images relative to each other lead to non-linear transformations between their retinal images. For instance, planar half-patterns of a stereogram with zero shift relative to each other at a certain distance from the eyes nevertheless give rise to essentially non-linear retinal disparities (see also figure 4.4 in Foley, 1991). It can also be calculated that a horizontal scale (gradient) between the halfpatterns of the stereogram is certainly not a gradient in the disparity domain. This study is concerned with transformed viewed (screen) images.

[^1]: ${ }^{2}$ There are at least two principal differences between the two situations. 1) Retinal horizontal scale (caused by an aniseikonic lens) leads merely to modifications of the horizontal disparity. Horizontal scale of a stereogram also leads to modifications of vertical disparities because the left-most and right-most parts of the two half-images are at different distances, in particular for large-field stimuli. 2) The second reason is explained in footnote 1 and is based on the fact that stereograms are planar whereas the retinae are spherical. Because aniseikonic lenses are positioned directly in front of the eye, the retinal-disparity is proportional to the angle of the visual direction. In a stereogram the screen-disparity is proportional to the position on the screen.

