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Preface

The ultimate arbiter of correctness is formalisability. It is a widespread view
amongst mathematicians that correct proofs can be written out completely for-
mally. This means that, after ‘unfolding’ the layers of abbreviations and con-
ventions on which the presentation of a mathematical proof usually depends,
the validity of every inference step should be completely perspicuous by a pre-
sentation of this step in an appropriate formal language. When descending from
the informal heat to the formal cold,1 we can rely less on intuition and more
on formal rules. Once we have convinced ourselves that those rules are sound,
we are ready to believe that the derivations they accept are correct. Formalis-
ing reduces the reliability of a proof to the reliability of the means of verifying
it ([60]).

Formalising is more than just filling-in the details, it is a creative and chal-
lenging job. It forces one to make decisions that informal presentations often
leave unspecified. The search for formal definitions that, on the one hand, con-
vincingly represent the concepts involved and, on the other hand, are convenient
for formal proof, often elucidates the informal presentation.

Checking conformity to formal rules is something computers are good at and
with their arrival the old dream of formalising mathematics has become feasible,
at least in principle. Even though a proof may be large, a small verification
program can check each inference step locally. Besides such proof checkers, there
are systems that support (interactive) proof development. A proof assistant
consists of both, it checks and supports. Theorem proving using a proof assistant
is the interactive construction of explicit proof objects, which can be verified
independently.

I will exploit the proof assistant Coq as a tool for the development of logic
and metamathematics. Three aspects are thematic:

- Incorporating the logical technique of resolution to support reasoning in
type-theoretical systems.

- Using reflection to enable manipulation of proof objects.

- A complete formalisation of new meta-theory.

1A refreshing trip!
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My PhD research started five years ago. First I continued the work initiated
in my master’s thesis [31] on incorporating resolution based theorem proving in
Coq. The research that led to an implementation of a tool which enables the
use of Bliksem in Coq, is joint work with Marc Bezem and Hans de Nivelle. The
results are presented in Chapter 1, a copy of our article [14] (though slightly
modified to fit in the present thesis), which in turn is a modified and extended
version of our conference paper [13]. We describe techniques to integrate resolu-
tion logic in type theory. Refutation proofs obtained by resolution are translated
into λ-terms, using reflection and an encoding of resolution proofs in minimal
logic. Thereby we obtain a verification procedure for resolution proofs, and,
more importantly, we add the power of resolution theorem provers to interac-
tive proof construction systems based on type theory. We introduce a novel
representation of clauses in minimal logic such that the λ-representation of res-
olution steps is linear in the size of the premisses. A clausification algorithm,
equipped with a correctness proof, is encoded in Coq.

After this project was finished, we learned from Gilles Dowek that Skolem
function symbols can be eliminated from refutation proofs.2 This follows from
the conservativity of the Axiom of Choice over first-order classical logic, see [63]
and [30]. In order to deal with proof transformations, I formalised predicate
logic with explicit proof terms; the results are described in Chapter 2, which
is a modified and extended version of [32]. Natural deduction for first-order
logic is formalised in the proof assistant Coq, using De Bruijn indices ([19]) for
variable binding. The main judgement is of the form Γ ` d [:] φ, stating that d
is a proof term of formula φ under hypotheses Γ; it can be viewed as a typing
relation by the Curry–Howard–De Bruijn isomorphism. This relation is proved
sound with respect to Coq’s native logic and is amenable to the manipulation of
both formulas and derivations. As an illustration, I define a reduction relation
on proof terms with permutative conversions and prove the property of subject
reduction.

I spent quite some time on the problem of implementing a ‘deskolemiser’,
but did not manage to reach that goal. The invitation of Vincent van Oost-
rom to collaborate on new research concerning explicit scoping mechanisms in
the λ-calculus, came as a welcome alternative. I decided to put the project of
deskolemising aside, and spent the remaining time of my PhD scholarship on
what we baptised the λ-calculus. Chapter 3 has been submitted for publication
in the Journal of Functional Programming, and is the full version of the confer-
ence paper [34]. Central to this chapter is the reification of the notion of scope
in the λ-calculus. To this end we extend the syntax of the λ-calculus with an
end-of-scope operator λ. The idea is that an λx ends the scope of the matching
λx above it (in the term tree). Accordingly, β-reduction is extended to the set
of scoped λ-terms by performing minimal scope extrusion before performing
replication as usual. We show confluence of the resulting scoped β-reduction.
Confluence of β-reduction for the ordinary λ-calculus is obtained as a corollary,

2As a result, proofs obtained via the proposed method of refutation, clausification and
resolution, would no longer depend on (instances of) the Axiom of Choice.
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by extruding scopes maximally before forgetting them altogether. Only in this
final forgetful step, α-equivalence is needed. All our proofs have been verified
in Coq.

In the following sections we briefly introduce type theory and the system
Coq, explain the idea of reflection, and motivate the design choices made in the
first two chapters with respect to variable binding mechanisms and the format
of hypothetical judgements.

Type Theory and Coq Type theory offers a powerful formalism for for-
malising mathematics and, in particular, for formalising meta-theory of calculi
and deduction systems. Definitions, reasoning and computation are captured
in an integrated way. The level of detail is such that the well-formedness of
definitions and the correctness of derivations can be verified automatically. In a
type-theoretical system, formalised mathematical statements are represented by
types, and their proofs are represented by λ-terms. This strong correspondence
between proofs and typed λ-terms is referred to as the Curry–Howard–De Bruijn
isomorphism. The relation between a proof and the statement it verifies, can
be viewed as the membership of an object in a set. The problem whether a is
a proof of statement A reduces to checking whether the term a has type A. A
constructive proof is, in effect, a program annotated with additional information
(types), which is used for verification (type checking).

The logical framework of the proof assistant Coq ([66]) is the calculus of
inductive constructions ([69]). Useful are the common proof techniques of struc-
tural induction, pattern matching and primitive recursion. The user is allowed
to extend the type theory with inductive types. Dually, the reduction rules can
be extended in a flexible way. An inductive type provides a principle of struc-
tural induction (inhabited by a λ-term automatically generated by the system).
Functions whose domain is an inductive type, can be defined using case analysis
over the possible constructors of the object and recursion.

The basic sorts in Coq are ∗p and ∗s. An object M of type ∗p is a logical
proposition and objects of type M are proofs of M . Objects of type ∗s are usual
sets such as the set of natural numbers or lists. The typing relation is expressed
by t : T , to be interpreted as ‘t belongs to set T ’ when T : ∗s, and as ‘t is a proof
of proposition T ’ when T : ∗p. The primitive type constructor is the constructor
of the product type Πx :T.U and is called dependent if x occurs in U ; if not, we
write T → U . The product type is used for logical quantification (implication)
as well as for function spaces. This overloading witnesses the Curry–Howard–
De Bruijn isomorphism. Scopes of Πs and λs extend to the right as far as
brackets allow (→ associates to the right). Furthermore, well-typed application
is denoted by (M N) and associates to the left.

In Coq, connectives are defined as inductive types, the constructors being the
proof formators. For example, conjunctionA ∧B is defined as the inductive type
inhabited by pairs 〈a, b〉, where a : A and b : B. The corresponding induction
principle is inhabited by ∧ind, a λ-term generated by the system:

∧ind : ΠA,B, P :∗p. (A→ B → P )→ A ∧B → P
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which can be used to eliminate the ∧. For instance, a proof of A ∧B → B ∧A
can be constructed as follows:

(∧ind A B (B ∧A) (λa :A. λb :B. 〈b, a〉))

Two-level Approach, Reflection In Chapters 1 and 2 we choose for a deep
embedding in adopting a two-level approach for the treatment of arbitrary first-
order languages. The idea is to represent first-order formulas as objects in an
inductive set o : ∗s, accompanied by an interpretation function [[ ]] that maps
these objects into ∗p. The next paragraphs explain why we distinguish a higher
(meta-, logical) level ∗p and a lower (object-, computational) level o.

The universe ∗p includes higher-order propositions; in fact it encompasses
full impredicative type theory. As such, it is too large for our purposes. More-
over, Coq supplies only limited computational power on ∗p; every connective
is defined as the inductive set of proofs of propositions with that connective in
the head. We need a way to grasp first-order formulas (Chapters 1 and 2) and
natural deduction proofs (Chapter 2), so that they can be subject to syntactical
manipulation. Moreover, we want the ability to reason about such objects, and
prove logical properties about them.

A natural choice, then, is to define formulas and proof terms as inductive
objects, equipped with the powerful computational device of higher-order prim-
itive recursion.

Object-level formulas (type o) are related to the meta-level by means of an
interpretation function [[ ]] : o→ ∗p. Given a suitable signature, any first-order
proposition φ : ∗p will have a formal counterpart p : o such that φ is convertible
with [[p]], the interpretation of p. Thus, the first-order fragment of ∗p can be
identified as the collection of interpretations of objects in o.

In Chapter 1, reflection is used for the proof construction of first-order for-
mulas in ∗p in the following way. Let ϕ : ∗p be a first-order formula. Then there
is some ϕ̇ : o such that [[ϕ̇]] is convertible with ϕ. Moreover, suppose we have
proved:

Tsound : Πp :o. [[(T p)]]→ [[p]]

for some function T : o → o, typically a transformation to clausal form. Then,
to prove ϕ it suffices to prove [[(T ϕ̇)]]. Matters are presented schematically in
Figure 1.1 on page 4. We will discuss a concrete function T , for which we have
proved the above. For this T , proofs of [[(T ϕ̇)]] will be generated automatically.

In Chapter 2, proof terms are defined as syntactical objects in an inductive
set. There, the main judgement is of the form Γ ` d [:] φ; it is of type ∗p.
The structure of the proof of Γ ` d [:] φ is similar to the structure of d, as will
be pointed out in the sequel. Furthermore, we prove that if Γ ` d [:] φ, then
[[Γ]]→ [[φ]], in other words we construct a λ-term M of the following type:

M : (Γ ` d [:] φ)→ [[Γ]]→ [[φ]]

One could say that an object d reflects the λ-term (M Hd HΓ) : [[φ]], where
Hd : (Γ ` d [:] φ) and HΓ : [[Γ]].
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Deep versus shallow embeddings One of the design choices to be made
is whether to use a deep or shallow embedding of the objects we need. When
syntax and meaning of a language are described separately, the language is said
to be deeply embedded. Sometimes it is more economic to use a shallow em-
bedding, where representation and denotation of objects are identified (in other
words: the interpretation function is the identity function). The disadvantage
of a shallow embedding is that the syntactic structure cannot be exploited. In
Chapter 1, first-order formulas are deeply embedded, whilst a shallow embed-
ding is used for first-order terms. In combination with the use of higher-order
abstract syntax to represent quantifiers (see the paragraph on variable binding
below), this gives rise to several difficulties. For example, it’s not possible to
prove syntactical correctness of the described formula transformation in a for-
mal way. In Chapter 2, we choose for a deep embedding of terms, formulas, and
derivation terms, giving us full control over the defined constructs.

Variable Binding Several ways exist for representing binding operators (e.g.
quantification over first-order terms, binding of assumption variables), of which
we mention formalising binding with the use of named variables, higher-order
abstract syntax and De Bruijn indices.

In informal practice, the so-called variable convention plays a crucial role;
expressions that differ only in the names assigned to their bound variables are
to be identified; ∀x. φ(x) is said to be α-equivalent to ∀y. φ(y). In mathematical
contexts bound variables are chosen different from free variables. In the process
of substitution this means the (often silent) renaming of bound variables.

Using names (e.g., natural numbers) to encode the link between a binder and
the variable it binds, is technically hard work. On top of the ‘natural’ definition
of formulas one needs to define explicitly α-equality. As pointed out in [57], the
(unavoidable) use of side-conditions in the definition of substitution is problem-
atic when it comes to computation. As the unfolding of definitions proceeds,
the number of side-conditions increases exponentially. Another difficulty is that
there is no canonical choice of a fresh variable, necessary, for example for satis-
fying the eigenvariable condition in the inference rule for introducing a universal
quantifier. Moreover, for many applications one needs a way to distinguish free
and bound variables.

The advantage of representing binders by the use of higher-order abstract
syntax is that several binding mechanisms are handled by λ-abstraction. This is
the approach taken in Chapter 1. Identification of α-convertible formulas now
comes for free. Substitution on the object level is supported by β-reduction
in the meta-language. One problem of this representation3 is that it generates
a class of terms that contains too much. In Chapter 1, first-order terms are
shallowly embedded, the domain of discourse A, being a parameter set. Object-
level quantifiers are ∃̇ , ∀̇ mapping propositional functions of type A → o to

3A related problem is the conflict between higher-order abstract syntax and inductive
definitions. A constructor of type (o → o) → o cannot be accepted in an inductive definition,
because of the negative (leftmost) occurrence of o. This problem is absent in the case of
representing a first-order language.
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propositions of type o. If we instantiate A with an inductive set, it is possible
to construct anomalous objects (that no longer fit in the intended language)
by making use of a case construct, e.g., ∀̇ (λx :A.Case x of . . .). Several pos-
sibilities have been explored to overcome this problem (apart from rejecting
higher-order abstract syntax altogether), but many of them seem to harm the
‘directness’ of induction principles.

In Chapter 2, variable bindings are formalised by the use of De Bruijn indices.
The major advantage is that inductive definitions can be used in a direct way.
The freely generated (structural) equality of inductively defined objects is the
natural equality satisfying α-convertibility. Instead of static scoping as in named
calculi, De Bruijn indexing provides a dynamic counting scheme. The involved
algorithms are of a computational nature. Surely, there’s more work for the
programmer, but that’s no reason not to do it.4 The idea is to get rid of names
altogether and replace a variable occurrence by a pointer to the corresponding
binder. A variable is represented by a natural number which indicates the
number of binders between the variable and its binder. In Chapter 2, we have
constructors ∀̇ , ∃̇ of type o→ o; the operational semantics prescribes that, e.g.,
∀̇ ∃̇φ(v1, v0) reads as ∀x. ∃y. φ(x, y).5

Analytic versus Synthetic Judgements Another design choice to be made,
for the purpose of Chapter 2, is whether to localise derivations themselves. In the
terminology of Martin-Löf, this is the distinction between analytic and synthetic
judgements. Synthetic judgements are of the form Γ ` φ as opposed to analytic
judgements Γ ` d : φ, which carry their own evidence d. Objects d can be seen
as λ-terms and formulas φ as classifying those λ-terms. Given our objective of
building a ‘tool’ for manipulation of first-order proofs, the choice for analytic
judgements is obvious. The advantage of analytic judgements is that we get
more control over proofs and that such judgements are decidable, as will be
shown in the sequel. We are able to perform computational proofs of lemmas
about judgements, because instead of induction over a logical hypothesis Γ ` φ,
we can use structural recursion on a proof object. It has to be noted that, in
the case of synthetic judgements, it’s possible to view the constructors of ` as
constituting a λ-calculus. But those constructors have Γ and φ as arguments,
which make them less practical to reason about or to manipulate.

4On the contrary, Coq is the best game in town; it’s fun!
5De Bruijn counts from 1, we start counting from 0, consistently with the definition of N.
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Chapter 1

Automated Proof
Construction in Type
Theory using Resolution

We provide techniques to integrate resolution logic with equality in type theory.
The results may be rendered as follows.

• A clausification procedure in type theory, equipped with a correctness
proof, all encoded using higher-order primitive recursion.

• A novel representation of clauses in minimal logic such that the λ-represen-
tation of resolution steps is linear in the size of the premisses.

• A translation of resolution proofs into lambda terms, yielding a verification
procedure for those proofs.

• The power of resolution theorem provers becomes available in interactive
proof construction systems based on type theory.

Authors: Marc Bezem, Dimitri Hendriks and Hans de Nivelle

1.1 Introduction

Type theory (= typed lambda calculus, with dependent products as most rele-
vant feature) offers a powerful formalism for formalising mathematics. Strong
points are: the logical foundation, the fact that proofs are first-class citizens and
the generality which naturally facilitates extensions, such as inductive types.
Type theory captures definitions, reasoning and computation at various levels
in an integrated way. In a type-theoretical system, formalised mathematical
statements are represented by types, and their proofs are represented by λ-
terms. The problem whether a is a proof of statement A reduces to checking
whether the term a has type A. Computation is based on a simple notion of
rewriting. The level of detail is such that the well-formedness of definitions and
the correctness of derivations can automatically be verified.

1



2 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

However, there are also weak points. It is exactly the appraised expressiv-
ity and the level of detail that makes automation at the same time necessary
and difficult. Automated deduction appears to be mostly successful in weak
systems, such as propositional logic and predicate logic, systems that practi-
cally fall short of formalising a larger body of mathematics. Apart from the
problem of the expressivity of these systems, only a minor part of the theo-
rems that can be expressed can actually be proved automatically. Therefore it
is necessary to combine automated theorem proving with interactive theorem
proving. Recently a number of proposals in this direction have been made. In
[18] a two-level approach (called reflection) is used to develop in Coq a certi-
fied decision procedure for equations in abelian rings. In the same vein, [53]
certifies ELAN traces in Coq. In [49] Otter is combined with the Boyer-Moore
theorem prover. (A verified program rechecks proofs generated by Otter.) In
[41] Gandalf is linked to HOL. (The translation generates scripts to be run by
the HOL-system.) In [64], proofs are translated into Martin-Löf’s type theory,
for the Horn clause fragment of first-order logic. In the Omega system [38, 29]
various theorem provers have been linked to a natural deduction proof checker.
The purpose there is to automatically generate proofs from so called proof plans.
Our approach is different in that we generate complete proof objects for both
the clausification and the refutation part.

Resolution theorem provers, such as Bliksem [54], are powerful, but have the
drawback that they work with normal forms of formulas, so-called clausal forms.
Clauses are (universally closed) disjunctions of literals, and a literal is either an
atom or a negated atom. The clausal form of a formula is essentially its Skolem-
conjunctive normal form, which need not be exactly logically equivalent to the
original formula. This makes resolution proofs hard to read and understand, and
makes interactive navigation of the theorem prover through the search space
very difficult. Moreover, optimised implementations of proof procedures are
error-prone. It has occurred that systems that took part in the yearly theorem
prover competition CASC had to withdraw afterwards, due to the fact that the
system turned out unsound. In 1999 the system that otherwise would have won
the MIX category was withdrawn, see [65].

In type theory, the proof generation capabilities suffer from the small granu-
larity of the inference steps and the corresponding astronomic size of the search
space. Typically, one hyperresolution step requires a few dozens of inference
steps in type theory. In order to make the formalisation of a large body of
mathematics feasible, the level of automation of interactive proof construction
systems such as Coq [66], based on type theory, has to be improved.

We propose the following proof procedure. Identify a non-trivial step in a
Coq session that amounts to a first-order tautology. Export this tautology to
Bliksem, and delegate the proof search to the Bliksem inference engine. Convert
the resolution proof to type theoretic format and import the result back in Coq.
We stress the fact that the above procedure is as secure as Coq. Hypothetical
errors (e.g. the clausification procedure not producing clauses, possible errors
in the resolution theorem prover or the erroneous formulation of the lambda
terms corresponding to its proofs) are intercepted because the resulting proofs
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are type-checked by Coq. The security could be made independent of Coq by
using another type-checker.

Most of the necessary meta-theory is already known. The negation nor-
mal form transformation can be axiomatised by classical logic. The prenex
and conjunctive normal form transformations require that the domain is non-
empty. Skolemisation can be axiomatised by so-called Skolem axioms, which
can be viewed as specific instances of the Axiom of Choice. Higher-order logic
is particularly suited for this axiomatisation: we get logical equivalence mod-
ulo classical logic plus the Axiom of Choice, instead of awkward invariants as
equiconsistency or equisatisfiability in the first-order case.

Following the proof of the conservativity of the Axiom of Choice over first-
order logic (without equality), see e.g. [63] (elaborated in [30]) and [58], Skolem
functions and –axioms could be eliminated from resolution proofs, which would
allow us to obtain directly a proof of the original formula, but currently we still
make use of the Axiom of Choice.

This chapter is organised as follows. In Section 1.2 we set out a two-level ap-
proach and define a deep embedding to represent first-order logic.1 Section 1.3
describes a uniform clausification procedure. We explain how resolution proofs
are translated into λ-terms in Sections 1.4 and 1.5. Finally, the outlined con-
structions are demonstrated in Section 1.6.

1.2 A Two-level Approach

We choose for a deep embedding in adopting a two-level approach for the treat-
ment of arbitrary first-order languages. The idea is to represent first-order
formulas as objects in an inductive set o : ∗s, accompanied by an interpretation
function [[ ]] that maps these objects into ∗p.2 The next paragraphs explain why
we distinguish a higher (meta-, logical) level ∗p and a lower (object-, computa-
tional) level o.

The universe ∗p includes higher-order propositions; in fact it encompasses
full impredicative type theory. As such, it is too large for our purposes. Given a
suitable signature, any first-order formula ϕ : ∗p will have a formal counterpart
p : o such that ϕ equals [[p]], the interpretation of p. Thus the first-order fragment
of ∗p can be identified as a collection of interpretations of objects in o.

Secondly, Coq supplies only limited computational power on ∗p, whereas o,
as every inductive set, is equipped with the powerful computational device of
higher-order primitive recursion. This enables the syntactical manipulation of
object-level propositions.

Reflection is used for the proof construction of first-order formulas in ∗p in
the following way. Let ϕ : ∗p be a first-order formula. Then there is some ϕ̇ : o
such that [[ϕ̇]] is convertible with ϕ.3 Moreover, suppose we have proved:

Tsound : Πp :o. [[(T p)]]→ [[p]]
1Cf. the discussion on deep vs. shallow embeddings in the preface.
2Both o as well as [[ ]] depend on a fixed but arbitrary signature.
3The mapping ˙ is a syntax-based translation outside Coq.
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Bliksem
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(Tsound ϕ̇ d) : ϕ

˙
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||

[[(T ϕ̇)]]

YY············
meta-level ∗p

ϕ̇
T

//

[[ ]]

XX

(T ϕ̇)

[[ ]]

OO

object-level o

Coq

Figure 1.1: Schematic overview of the general procedure. Arrows correspond to
application in Coq, dotted arrows are not performed by Coq. The term [[(T ϕ̇)]]
is computed by Coq and exported to Bliksem. Bliksem is to return a proof term
d, which is imported back in Coq. Then (Tsound ϕ̇ d) is a proof of [[ϕ̇]], and hence
of ϕ.

for some function T : o → o, typically a transformation to clausal form. Then,
to prove ϕ it suffices to prove [[(T ϕ̇)]]. Matters are presented schematically in
Figure 1.1. In Section 1.3 we discuss a concrete function T , for which we have
proved the above. For this T , proofs of [[(T ϕ̇)]] will be generated automatically,
as will be described in Sections 1.4 and 1.5.

Object-level Propositions and the Reflection Operation

In Coq, we have constructed a general framework to represent first-order lan-
guages with multiple sorts. Bliksem is one-sorted, so we describe the setup for
one-sorted signatures only.

The set o (formulas) defined in the present section depends on the signature,
constituted by an arbitrary but fixed list of natural numbers, representing rela-
tion arities. This dependence remains implicit in the sequel. We start by giving
some preliminary definitions.

Definition 1.2.1 Given a set A, lists of type (list A) are defined by 2 and [a|l],
where a : A and l : (list A). Given a list l : (list A), its index set is defined by
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Il = {0, . . . , |l| − 1}, where we write |l| to denote the length of l.4 Furthermore,
we write l(i) for the element indexed by i ∈ Il. The cartesian product An of n
copies of a set A is defined by:

A0 = 1 An+1 = A×An

where 1 is the unit set with sole inhabitant •.

Note that the product A × B is the set of pairs (a, b) with a : A and b : B.
We shall use the following notational conventions regarding lists and tuples.
Let a, a1, a2, . . . , an : A. The sugared version of a list [a1|[a2| · · · |[an|2] · · ·]] is
[a1, a2, . . . , an]. Similarly, tuples (a1, (a2, . . . , (an, •) . . .)) of type An are written
(a1, a2, . . . , an); also, we simply use a instead of (a, •) of type A1.

Next, we define object-level propositions.

Definition 1.2.2 Assume a domain of discourse A : ∗s and let lrel be a list of
natural numbers representing arities. The set o of objects representing proposi-
tions is inductively defined as follows, where p, q : o, p′ : A→ o, x1, . . . , xk : A,
i : Ilrel , and lrel(i) = k.

o := Ri(x1, . . . , xk) | ¬̇p | p →̇ q | p ∧̇ q | p ∨̇ q | (∀̇ p′) | (∃̇ p′)

Note that R : Πi : Ilrel . A
lrel(i) → o, we write Ri instead of (R i). We use the

dot-notation ˙ to distinguish the object-level constructors from Coq’s predefined
connectives. The constructors ∀̇, ∃̇ are typed (A → o) → o; they map proposi-
tional functions of type A→ o to propositions of type o. This representation has
the advantage that binding and predication are handled by λ-abstraction and
λ-application. On the object-level, existential quantification of x in p (of type o,
possibly containing occurrences of x) is written as (∃̇ (λx :A. p)). Although this
representation suffices for our purposes, it causes some well-known difficulties.
See [52, Sections 8.3, 9.2] and the preface for a further discussion.

For our purposes, a shallow embedding of function symbols is sufficient. We
have not defined an inductive set term representing the first-order terms in A like
we have defined o representing the first-order fragment of ∗p. Instead, ‘meta-
level’ terms of type A are taken as arguments of object-level predicates. Due
to this shallow embedding, we cannot check whether variables have occurrences
in a given term. Because of that, e.g., distributing universal quantifiers over
conjuncts can yield dummy abstractions. These problems could be overcome
by using De Bruijn indices (see [19]) for a deep embedding of terms in Coq,
cf. Chapter 2.

Definition 1.2.3 The interpretation function [[ ]] is a canonical homomorphism
recursively defined as follows. Assume a family of relations indexed over Ilrel .

R : Πi :Ilrel . A
lrel(i) → ∗p

4For a more formal definition (i.e. closer to the actual Coq implementation) of list indices,
the reader is referred to Chapter 2, Definition 2.2.1.
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We write Ri for (R i).

[[Ri(t1, . . . , tk)]] = Ri(t1, . . . , tk)
[[¬̇p]] = ¬[[p]]

[[p →̇ q]] = [[p]]→ [[q]]
[[p ∧̇ q]] = [[p]] ∧ [[q]]
[[p ∨̇ q]] = [[p]] ∨ [[q]]
[[(∀̇ p′)]] = Πx :A. [[(p′ x)]]
[[(∃̇ p′)]] = ∃x :A. [[(p′ x)]]

We use ∧,∨,∃ for Coq’s predefined logical connectives. Note that ‘→’ (and
‘Π’) is used for both (dependent) function space as well as for logical implica-
tion (quantification); this overloading witnesses the Curry–Howard–De Bruijn
isomorphism.

We do not have to worry about name conflicts when introducing a new x : A
for interpretation of formulas whose head constructor is a quantifier. Coq’s
binding mechanisms are internally based on De Bruijn indices (with a user-
friendly tool showing named variables on top of it). In the above definitions of
o, its constructors and of [[ ]], the dependency on the signature (constituted by
A, lrel and R) has been suppressed.

1.3 Clausification and Correctness

We describe the transformation to clausal form (see Section 1.4), which is re-
alised on both levels. On the object-level, we define an algorithm mcf : o→ o
that converts object-level propositions into their clausal form. On the meta-
level, clausification is realised by a term mcfsound, which (given the axiom of
excluded middle and the axiom of choice) transforms a proof of [[(mcf p)]] into
a proof of [[p]].

The algorithm mcf consists of the subsequent application of the following
functions: nnf, pnf, cnf, sklm, duqc, impf standing for transformations to nega-
tion, prenex and conjunctive normal form, Skolemisation, distribution of uni-
versal quantifiers over conjuncts and transformation to implicational form, re-
spectively. As an illustration, we describe the functions nnf and sklm.

1.3.1 Negation Normal Form

Concerning negation normal form, a recursive call like:

(nnf ¬̇(p ∧̇ q)) = (nnf ¬̇p) ∨̇ (nnf ¬̇q)

is not primitive recursive, since ¬̇p and ¬̇q are not subformulas of ¬̇(p ∧̇ q). Such
a call requires general recursion. Coq’s computational mechanism is higher-order
primitive recursion, which is weaker than general recursion but ensures universal
termination.
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Definition 1.3.1 The function nnf : o → pol → o makes use of the so-called
polarity (⊕ or 	) of an input formula.

(nnf Ri(t1, . . . , tk) ⊕) = Ri(t1, . . . , tk)
(nnf Ri(t1, . . . , tk) 	) = ¬̇Ri(t1, . . . , tk)

(nnf ¬̇p ⊕) = (nnf p 	)
(nnf ¬̇p 	) = (nnf p ⊕)

(nnf p1 →̇ p2 ⊕) = (nnf p1 	) ∨̇ (nnf p2 ⊕)
(nnf p1 →̇ p2 	) = (nnf p1 ⊕) ∧̇ (nnf p2 	)
(nnf p1 ∧̇ p2 ⊕) = (nnf p1 ⊕) ∧̇ (nnf p2 ⊕)
(nnf p1 ∧̇ p2 	) = (nnf p1 	) ∨̇ (nnf p2 	)
(nnf p1 ∨̇ p2 ⊕) = (nnf p1 ⊕) ∨̇ (nnf p2 ⊕)
(nnf p1 ∨̇ p2 	) = (nnf p1 	) ∧̇ (nnf p2 	)
(nnf (∀̇ p′) ⊕) = (∀̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∀̇ p′) 	) = (∃̇ (λx :A. (nnf (p′ x) 	)))
(nnf (∃̇ p′) ⊕) = (∃̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∃̇ p′) 	) = (∀̇ (λx :A. (nnf (p′ x) 	)))

In order to prove soundness of nnf we need the principle of excluded middle
PEM, which we define in such a way that it affects the first-order fragment only
(like o, PEM depends on the signature):

Definition 1.3.2

PEM := Πp :o. [[p]] ∨ ¬[[p]]

Lemma 1.3.1 Assume PEM, then we have for all p : o:

[[p]]↔ [[(nnf p ⊕)]]
¬[[p]]↔ [[(nnf p 	)]]

1.3.2 Skolemisation

Skolemisation of a formula means the removal of all existential quantifiers and
the replacement of the variables that were bound by the removed existential
quantifiers by new terms, that is, Skolem functions applied to the universally
quantified variables whose quantifier had the existential quantifier in its scope.
Instead of quantifying each of the Skolem functions, we introduce an index type
S, which may be viewed as a type for families of Skolem functions:

Definition 1.3.3

S := N→ N→ Πn :N. An → A



8 CHAPTER 1. AUTOMATED PROOF CONSTRUCTION

A Skolem function, then, is a term (f i j n) : An → A with f : S and i, j, n : N.
Here, i and j are indices that distinguish the family members. If the output of
nnf yields a conjunction, the remaining clausification steps are performed sep-
arately on the conjuncts. (This yields a significant speed-up in performance.)
Index i denotes the position of the conjunct, j denotes the number of the re-
placed existentially quantified variable in that conjunct.

Definition 1.3.4 The function sklm is defined as follows.

(sklm f i j n t (∀̇ p′)) = (∀̇ (λx :A. (sklm f i j n+ 1 (t, x) (p′ x))))
(sklm f i j n t (∃̇ p′)) = (sklm f i j + 1 n t (p′ (f i j n t)))

(sklm f i j n t p) = p, if p is neither (∀̇ p′) nor (∃̇ p′)

Here and below (t, x) denotes the tuple typed An+1 obtained by appending x
to t. If the input formula is of the form (∀̇ p′), then the quantified variable
is added at the end of the so far constructed tuple t of universally quantified
variables. In case the input formula matches (∃̇ p′) with p′ : A → o the term
(f i j n t) is substituted for the existentially quantified variable (the ‘hole’ in p′)
and index j is incremented. This substitution comes for free and is performed
on the meta-level by β-reducing (p′ (f i j n t)). The third case exhausts the five
remaining cases. As we enforce input formulas of sklm to be in prenex normal
form (via the definition of mcf), nothing remains to be done.

Lemma 1.3.2 For all i : N and p : o we have:

A→ ACS → [[p]]→ ∃f :S. [[(sklm f i 0 0 • p)]]

In the above lemma, A→ · · · expresses the condition that A is non-empty, and
below a : A denotes a canonical inhabitant. ACS is a specific formulation of the
Axiom of Choice, which allows us to form Skolem functions. Like PEM, ACS
implicitly depends on the signature, that is, on A, lrel and R.

Definition 1.3.5

ACS := Πα :A→ S → o.
(Πx :A.∃f :S. [[(α x f)]])
→ ∃F :A→ S.Πx :A. [[(α x (F x))]]

Note that ACS indeed follows from the more general:

AC := ΠA,B :∗s.
ΠP :A→ B → ∗p.
(Πx :A.∃y :B. (P x y))
→ ∃f :A→ B.Πx :A. (P x (f x))

Let us inspect a crucial step in the proof of this lemma, which proceeds by
induction on p : o. Consider the case that p is of the form (∀̇ p′). Our induction
hypothesis is:

Πx :A. [[(p′ x)]]→ ∃f :S. [[(sklm f i 0 0 • (p′ x))]]
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Assume Πx :A. [[(p′ x)]]. Then we have:

Πx :A.∃f :S. [[(sklm f i 0 0 • (p′ x))]]

By application of ACS we get:

Πx :A. [[(sklm (F x) i 0 0 • (p′ x))]]

for some function F : A→ S. Our goal is:

∃g :S.Πx :A. [[(sklm g i 0 1 x (p′ x))]]

The witnessing g is given by:

(g i j 0 •) = a

(g i j n+ 1 (x, t)) = (F x i j n t)

Now
[[(sklm g i 0 1 x (p′ x))]]

follows from
[[(sklm (F x) i 0 0 • (p′ x))]]

via Lemma 1.3.3, as for any n : N, g behaves like (F x) on any tail t : An.

Lemma 1.3.3 For all i, jf , jg, nf , ng : N, tf : Anf , tg : Ang , p : o, we have: if
for all m,n : N, t : An

(f i jf +m nf + n (tf , t)) = (g i jg +m ng + n (tg, t))

then
[[(sklm f i jf nf tf p)]]→ [[(sklm g i jg ng tg p)]]

Here tuples (tf , t) : Anf +n and (tg, t) : Ang+n are the result of appending t to tf
and tg, respectively.

1.3.3 Composing the Modules

Reconsider Figure 1.1 and substitute mcf for T . Given a suitable signature,
from any first-order formula ϕ : ∗p, we can compute the clausal form [[(mcf ϕ̇)]].

Theorem 1.3.1 There exists a proof term mcfsound which validates clausifica-
tion on the meta-level. More precisely:

mcfsound : PEM→ ACS → A→ Πp :o. [[(mcf p)]]→ [[p]]

The term [[(mcf ϕ̇)]] computes a format C1 → · · · → Cn → ⊥. Here C1, . . . , Cn :
∗p are universally closed clauses that will be exported to Bliksem, which con-
structs the proof term d representing a resolution refutation of these clauses
(see Sections 1.4 and 1.5). Finally, d is type-checked in Coq. Section 1.6 demon-
strates the outlined constructions.

The complete Coq-script generating the correctness proof of the clausification
algorithm comprises ± 65 pages. It is available at [12].
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1.4 Minimal Resolution Logic

There exist many representations of clauses and corresponding formulations of
resolution rules. The traditional form of a clause is a disjunction of literals, that
is, of atoms and negated atoms. Another form which is often used is that of a
sequent, that is, the implication of a disjunction of atoms by a conjunction of
atoms.

Here we propose yet another representation of clauses, as far as we know not
used before. There are three main considerations.

- A structural requirement is that the representation of clauses is closed
under the operations involved, such as instantiation and resolution.

- The Curry–Howard–De Bruijn correspondence is most direct between min-
imal logic (→,∀) and a typed lambda calculus with product types (with
→ as a special, non-dependent, case of Π). Conjunction and disjunction
in the logic require either extra type-forming primitives and extra terms
to inhabit these, or impredicative encodings.

- The λ-representation of resolution steps should preferably be linear in the
size of the premisses.

These considerations have led us to represent a clause like:

L1 ∨ · · · ∨ Lp

by the following classically equivalent implication in minimal logic:

L1 → · · · → Lp → ⊥

Here Li is the complement of Li in the classical sense (i.e. double negations
are removed). If C is the disjunctive form of a clause, then we denote its
implicational form by [C]. As usual, these expressions are implicitly or explicitly
universally closed.

A resolution refutation of given clauses C1, . . . , Cn proves their inconsistency,
and can be taken as a proof of the following implication in minimal logic:

C1 → · · · → Cn → ⊥

Here and below, ‘minimal’ refers to minimal logic, as we use no particular prop-
erties of ⊥. In particular, ‘minimal clause’ refers to the representation in min-
imal logic, and not to any other kind of minimality. We are now ready for the
definition of the syntax of minimal resolution logic.

Definition 1.4.1 Let ∀~x. φ denote the universal closure of φ. Let Atom be
the set of atomic propositions. We define the sets Literal, Clause and MCF of,
respectively, literals, clauses and minimal clausal forms by the following abstract
syntax:

Literal ::= Atom | Atom→ ⊥
Clause ::= ⊥ | Literal→ Clause
MCF ::= ⊥ | (∀~x.Clause)→ MCF
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Next we elaborate the familiar inference rules for factoring, permuting and
weakening clauses, as well as the binary resolution rule.

Factoring, Permutation, Weakening

Let C and D be clauses, such that C subsumes D propositionally, that is, any
literal in C also occurs in D. Let A1, . . . , Ap, B1, . . . , Bq be literals (p, q ≥ 0)
and write

[C] = A1 → · · · → Ap → ⊥

and
[D] = B1 → · · · → Bq → ⊥

assuming that for every 1 ≤ i ≤ p there is 1 ≤ j ≤ q such that Ai = Bj .
A proof of [C]→ [D] is the following λ-term:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

with πi = bj , where j is such that Bj = Ai.

Binary Resolution

In the traditional form of the binary resolution rule for disjunctive clauses we
have premisses C1 and C2, containing one or more occurrences of a literal L
and of L, respectively. The conclusion of the rule, the resolvent, is then a clause
D consisting of all literals of C1 different from L joined with all literals of C2

different from L. This rule is completely symmetric with respect to C1 and C2.
For clauses in implicational form there is a slight asymmetry in the formu-

lation of binary resolution. Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and
write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the negated atom A→ ⊥ among the Ai and

[C2] = B1 → · · · → Bq → ⊥,

with one or more occurrences of the atom A among the Bj . Write the resolvent
D as

[D] = D1 → · · · → Dr → ⊥

consisting of all literals of C1 different from A→ ⊥ joined with all literals of C2

different from A. A proof of [C1]→ [C2]→ [D] is the following λ-term:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)

For 1 ≤ i ≤ p, πi is defined as follows. If Ai 6= (A→ ⊥), then πi = dk, where k
is such that Dk = Ai. If Ai = A→ ⊥, then we put

πi = λa :A. (c2 π′1 . . . π′q),
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with π′j (1 ≤ j ≤ q) defined as follows. If Bj 6= A, then π′j = dk, where k is such
that Dk = Bj . If Bj = A, then π′j = a. It is easily verified that πi : (A→ ⊥) in
this case.

If (A → ⊥) occurs more than once among the Ai, then (c1 π1 . . . πp)
need not be linear. This can be avoided by factoring timely. Even without
factoring, a linear proof term is possible: by taking the following β-expansion
of (c1 π1 . . . πp) (with a′ replacing copies of proofs of (A→ ⊥)):

(λa′ :A→ ⊥. (c1 π1 . . . a′ . . . a′ . . . πp))(λa :A. (c2 π′1 . . . π′q))

This remark applies to the rules in the next subsections as well.

Paramodulation

Paramodulation combines equational reasoning with resolution. For equational
reasoning we use the inductive equality of Coq. In order to simplify matters,
we assume a fixed domain of discourse A, and denote equality of s1, s2 ∈ A by
s1 ≈ s2.

Coq supplies us with the following terms:

eqrefl : ∀s :A. (s ≈ s)
eqsubst : ∀s :A.∀P :A→ ∗p. (P s)→ ∀t :A. (s ≈ t)→ (P t)
eqsym : ∀s1, s2 :A. (s1 ≈ s2)→ (s2 ≈ s1)

As an example we define eqsym from eqsubst, eqrefl:

λs1, s2 :A. λh : (s1 ≈ s2). (eqsubst s1 (λs :A. (s ≈ s1)) (eqrefl s1) s2 h)

Paramodulation for disjunctive clauses is the rule with premiss C1 containing
the equality literal t1 ≈ t2 and premiss C2 containing literal L[t1]. The conclu-
sion is then a clause D containing all literals of C1 different from t1 ≈ t2, joined
with C2 with L[t2] instead of L[t1].

Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the equality atom t1 ≈ t2 → ⊥ among the Ai,
and

[C2] = B1 → · · · → Bq → ⊥,

with one or more occurrences of the literal L[t1] among the Bj . Write the
conclusion D as

[D] = D1 → · · · → Dr → ⊥

and let l be such that Dl = L[t2]. A proof of [C1]→ [C2]→ [D] can be obtained
as follows:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)
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If Ai 6= (t1 ≈ t2 → ⊥), then πi = dk, where k is such that Dk = Ai. If
Ai = (t1 ≈ t2 → ⊥), then we want again that πi : Ai and therefore put

πi = λe : (t1 ≈ t2). (c2 π′1 . . . π′q).

If Bj 6= L[t1], then π′j = dk, where k is such that Dk = Bj . If Bj = L[t1], then
we also want that π′j : Bj and put (with dl : Dl = L[t2])

π′j = (eqsubst t2 (λs :A.L[s]) dl t1 (eqsym t1 t2 e))

The term π′j has type L[t1] in the context e : (t1 ≈ t2). The term π′j contains
an occurrence of eqsym because of the fact that the equality t1 ≈ t2 comes in
the wrong direction for proving L[t1] from L[t2]. With this definition of π′j , the
term πi has indeed type Ai = (t1 ≈ t2 → ⊥).

As an alternative, it is possible to expand the proof of eqsym in the proof of
the paramodulation step.

Equality Factoring

Equality factoring for disjunctive clauses is the rule with premiss C containing
equality literals t1 ≈ t2 and t1 ≈ t3, and conclusion D which is identical to C
but for the replacement of t1 ≈ t3 by t2 6≈ t3. The soundness of this rule relies
on t2 ≈ t3 ∨ t2 6≈ t3.

Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C] = A1 → · · · → Ap → ⊥,

with equality literals t1 ≈ t2 → ⊥ and t1 ≈ t3 → ⊥ among the Ai. Write the
conclusion D as

[D] = B1 → · · · → Bq → ⊥

with Bj′ = (t1 ≈ t2 → ⊥) and Bj′′ = (t2 ≈ t3). We get a proof of [C] → [D]
from

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t1 ≈ t3 → ⊥), then πi = bj , where j is such that Bj = Ai. For
Ai = (t1 ≈ t3 → ⊥), we put

πi = (eqsubst t2 (λs :A. (t1 ≈ s→ ⊥)) bj′ t3 bj′′).

The type of πi is indeed t1 ≈ t3 → ⊥.
Note that the equality factoring rule is constructive in the implicational

translation, whereas its disjunctive counterpart relies on the decidability of ≈.
This phenomenon is well-known from the double negation translation.
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Positive and Negative Equality Swapping

The positive equality swapping rule for disjunctive clauses simply swaps an atom
t1 ≈ t2 into t2 ≈ t1, whereas the negative rule swaps the negated atom. Both
versions are obviously sound, given the symmetry of ≈.

We give the translation for the positive case first and will then sketch the
simpler negative case. Let C be the premiss and D the conclusion and write

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t1 ≈ t2 → ⊥, and

[D] = B1 → · · · → Bq → ⊥.

Let j′ be such that Bj′ = (t2 ≈ t1 → ⊥). The following term is a proof of
[C]→ [D].

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

If Ai 6= (t1 ≈ t2 → ⊥), then πi = bj , where j is such that Bj = Ai. Otherwise

πi = λe : (t1 ≈ t2). (bj′ (eqsym t1 t2 e))

such that also πi : (t1 ≈ t2 → ⊥) = Ai.
In the negative case the literals t1 ≈ t2 in question are not negated, and we

change the above definition of πi into

πi = (eqsym t2 t1 bj′).

In this case we have bj′ : (t2 ≈ t1) so that πi : (t1 ≈ t2) = Ai also in the negative
case.

Equality Reflexivity Rule

The equality reflexivity rule simply cancels a negative equality literal of the form
t 6≈ t in a disjunctive clause. We write once more the premiss

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t ≈ t, and the conclusion

[D] = B1 → · · · → Bq → ⊥.

The following term is a proof of [C]→ [D]:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t ≈ t), then πi = bj , where j is such that Bj = Ai. Otherwise
πi = (eqrefl t).
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1.5 Lifting to Predicate Logic

Until now we have only considered inference rules without quantifications. In
this section we explain how to lift the resolution rule to predicate logic. Lifting
the other rules is very similar.

Recall that we must assume that the domain is not empty. Proof terms
below may contain a variable a : A as free variable. By abstraction λa :A we
will close all proof terms. This extra step is necessary since ∀a :A.⊥ does not
imply ⊥ when the domain A is empty. This is to be compared to 2⊥ being true
in a blind world in modal logic.

Consider the following clauses

C1 = ∀x1, . . . , xp :A. [A1 ∨R1]

and
C2 = ∀y1, . . . , yq :A. [¬A2 ∨R2]

and their resolvent

R = ∀z1, . . . , zr :A. [R1θ1 ∨R2θ2]

Here θ1 and θ2 are substitutions such that A1θ1 = A2θ2 and z1, . . . , zr are
all variables that actually occur in the resolvent, that is, in R1θ1 ∨ R2θ2 after
application of θ1, θ2. It may be the case that xiθ1 and/or yjθ2 contain other
variables than z1, . . . , zr; these are understood to be replaced by the variable
a : A (see above). It that case θ1, θ2 may not represent a most general unifier.
For soundness this is no problem at all, but even completeness is not at stake
since the resolvent is not affected. The reason for this subtlety is that the proof
terms involved must not contain undeclared variables.

Using the methods of the previous sections we can produce a proof π that
has the type

[A1 ∨R1]θ1 → [¬A2 ∨R2]θ2 → [R1θ1 ∨R2θ2].

A proof of C1 → C2 → R is obtained as follows:

λc1 :C1. λc2 :C2. λz1 . . . zr :A.
(π (c1 (x1θ1) . . . (xpθ1)) (c2 (y1θ2) . . . (yqθ2)))

We finish this section by showing how to assemble a λ-term for an entire res-
olution refutation from the proof terms justifying the individual steps. Consider
a Hilbert-style resolution derivation

C1, . . . , Cm, Cm+1, . . . , Cn

with premisses c1 : C1, . . . , cm : Cm. Starting from n and going downward, we
will define by recursion for every m ≤ k ≤ n a term πk such that

πk[cm+1, . . . , ck] : Cn
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in the context extended with cm+1 : Cm+1, . . . , ck : Ck. For k = n we can
simply take πn = cn. Now assume πk+1 has been constructed for some k ≥ m.
The proof πk is more difficult than πk+1 since πk cannot use the assumption
ck+1 : Ck+1. However, Ck+1 is a resolvent, say of Ci and Cj for some i, j ≤ k.
Let d be the proof of Ci → Cj → Ck+1. Now define

πk[cm+1, . . . , ck] = (λx :Ck+1.πk+1[cm+1, . . . , ck, x])(d ci cj) : Cn

The downward recursion yields a proof πm : Cn which is linear in the size of the
original Hilbert-style resolution derivation. Observe that a forward recursion
from m to n would yield the normal form of πm, which could be exponential.

1.6 Examples

1.6.1 A small example

Let P be a property of natural numbers such that P holds for n if and only if P
does not hold for any number greater than n. Does this sound paradoxical? It is
contradictory. We have P (n) if and only if ¬P (n+1),¬P (n+2),¬P (n+3), . . .,
which implies ¬P (n+ 2),¬P (n+ 3), . . ., so P (n+ 1). It follows that ¬P (n) for
all n. However, ¬P (0) implies P (n) for some n, contradiction.

A closer analysis of this argument shows that the essence is not arithmetical,
but relies on the fact that < is transitive and serial. The argument is also valid in
a finite cyclic structure, say 0 < 1 < 2 < 2. This qualifies for a small refutation
problem, which we formalise in Coq.

Let us adopt N as the domain of discourse. We declare a unary relation P
and a binary relation <.

P : N→ ∗p
< : N×N→ ∗p

Let lrel = [1, 2] be the corresponding list of arities. The relations are packaged
by R of type Πi : [0, 1].Nlrel(i) → ∗p. We write Ri for (R i); note Ilrel = [0, 1].

R0 = P R1 = <

We write Ṗ for R0 and infix <̇ for R1 respectively.
Let us construct the formal propositions trans and serial, stating that <̇ is

serial and transitive. ∀̇x. φ is syntactic sugar for (∀̇ (λx :N. φ)), likewise for ∃̇.

trans = ∀̇x, y, z. (x <̇ y ∧̇ y <̇ z) →̇ x <̇ z

serial = ∀̇x. ∃̇y. x <̇ y

We define foo.

foo = ∀̇x. (Ṗ x) ↔̇ (∀̇y. x <̇ y →̇ ¬̇(Ṗ y))
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Furthermore, we define taut on the object-level, representing the example
informally stated at the beginning of this section. (If the latter is denoted by
ϕ, then taut = ϕ̇.)

taut = (trans ∧̇ serial) →̇ ¬̇foo

Interpreting taut, that is βδι-normalising [[taut]], results in ‘taut without dots’.
We declare pem : PEM, ac : ACS and use 0 to witness the non-emptiness

of N. We reduce the goal [[taut]] using the result of Section 1.3, to the goal
[[(mcf taut)]]. If we prove this latter goal, say by a term d, then

(mcfsound pem ac 0 taut d) : [[taut]]

We compute the minimal clausal form (Definition 1.4.1) of taut by normalising
the goal [[(mcf taut)]].

[[(mcf taut)]] =βδι

(Πx, y, z :N. x < y → y < z → (x < z → ⊥)→ ⊥)
→ (Πx :N. (x < (f 1 0 1 x)→ ⊥)→ ⊥)
→ (Πx :N. (x < (f 2 0 1 x)→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx :N. ((P (f 2 0 1 x))→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx, y :N. (P x)→ x < y → (P y)→ ⊥)
→ ⊥

This is the minimal clausal form of the original goal. We refrained from exhibit-
ing its proof d. All files can be found in [12].

1.6.2 A medium scale example: Newman’s Lemma

A medium scale example is provided by the automation of Huet’s [39] proof
of Newman’s Lemma (NL), a well known result in rewriting theory stating
that a rewriting relation is confluent whenever it is both locally confluent and
terminating. For a precise analysis we have to introduce some notions from
rewriting theory.

Definition 1.6.1 Let → be a binary relation on a set S and let →→ be the
reflexive-transitive closure of →.

1. We say that x is confluent if, for all x1, x2 ∈ S, x →→ x1 and x →→ x2

implies that x1 →→ y and x2 →→ y for some y ∈ S. In other words, any two
diverging reductions starting from x can always be brought together. We
say that → is confluent if every x ∈ S is confluent.

2. We say that x is locally confluent if, for all x1, x2, x → x1 and x → x2

implies that x1 →→ y and x2 →→ y for some y ∈ S. Here the ‘locality’ lies
in the fact that only diverging one-step reductions can be brought together.
We say that → is locally confluent if every x ∈ S is locally confluent.

3. We say that → is terminating if there is no infinite sequence x0 → x1 →
x2 → · · · in S.
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NL provides an interesting test case for several reasons. First, it consists of a
mix of first-order and higher-order aspects. The higher-order aspects are the
transitive closure and the termination. This makes the identification of the first-
order combinatorial core of the proof non-trivial. Second, the proof of Newman’s
Lemma is not completely trivial, as experienced by everybody seeing it for the
first time. It will turn out to be a reasoning step that is just on the edge of what
can be achieved by current theorem provers. As such the successful automation
is very sensitive to the exact formalisation of the problem, the settings of the
theorem prover and the machine on which one runs the proof. We admit that
this is in some sense a disadvantage for an example. However, the aim of this
example is to explore the borders of what is possible, and not to show-off how
great the method is. It is to be expected that, with faster machines and better
strategies for proof search, the automatic solution of problems of the size of NL
will soon become routine. Moreover, the inductive approach to termination and
the speed-up obtained by removing superfluous symmetries have a generality
that goes beyond NL.

The classical proof of NL is by contradiction. Assume there is an x which
is not confluent, that is, there exist x1, x2 ∈ S such that x →→ x1 and x →→ x2

and no y ∈ S exists such that x1 →→ y and x2 →→ y. Since → is terminating, we
may assume without loss of generality that x is an →-maximal5 non-confluent
element. If not, there would be a non-confluent x′ with x → x′, and if that
x′ is not →-maximal, then there would be a non-confluent x′′ with x′ → x′′

and so on, leading to a sequence contradicting the termination of →. This part
is difficult to explain, it actually uses the Axiom of Dependent Choice (DC).
From the fact that x1 and x2 have no common reduct, it follows that we do not
have x = x1 or x = x2, so there must exist intermediate points i1, i2 such that
x → i1 →→ x1 and x → i2 →→ x2. To x and these intermediate points we can
apply local confluence to obtain a common reduct of the intermediate points.
By the maximality of x we can then complete the diagram in Figure 1.2 below.
This is a contradiction and hence NL has been proved.

The formalisation of the classical argument requires higher-order logic (to
express transitive closure) and three-sorted first-order logic: one sort for the set
S, one for the natural numbers and one for infinite sequences of elements of S.
An important improvement is obtained by taking the constructive reformulation
of NL as point of departure. In this formulation the infinite sequences such
as used in the definition of termination and in DC are avoided by using an
inductively defined predicate called accessibility.

Definition 1.6.2 Let → be a binary relation on a set S. The unary predicate
Acc→ is inductively defined as follows: if Acc→(y) for all y ∈ S such that x→ y,
then Acc→(x). By Acc→(S) we express that Acc→(x) for all x ∈ S.

In other words, all →-maximal elements are accessible, as well as all elements
whose successors are all →-maximal, and so on. An infinite sequence x0 →

5If the transitive closure of → is viewed as a greater than ordering, then it would be natural
to speak of →-minimal instead.
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x //

��

i1 // //

����

x1

����
i2 // //

����

· // //

local confluence

·

����
x2 // // ·

Figure 1.2: Diagram chase for confluence

x1 → x2 → · · · consists of elements that are not accessible. The reason is that
they can be left out without violating the defining rule for Acc. In fact one can
prove by classical logic and DC that→ is terminating if and only if all elements
of S are accessible, that is, if Acc→(S).

The advantages of using Acc→(S) instead of the traditional formulation of
termination are three-fold.

• DC is not needed anymore in the proof of NL.

• The sorts for the natural numbers and for infinite sequences become ob-
solete.

• We can reason by induction on Acc→(x), the induction step being first-
order.

These reasons above should motivate the following reformulation of NL: if
Acc→(S), then confluence of → follows from local confluence.

We could have added a fourth advantage to the three advantages above,
namely that the proof of NL in the formulation with the accessibility predicate
can be done constructively. This would require resolution to be used bottom-
up, in a forward reasoning style. We have not been able to generate a proof in
this way. Instead, we had to appeal to classical logic by using resolution as a
refutation procedure. The constructive proof is not more complicated than the
classical one, it is actually shorter, but the relevant point here is that the search
space for finding the proof in a bottom-up way appears to be larger than that
for finding a proof in a more top-down, goal-oriented, way. We consider the
situation in which there is a constructive proof, but for ill-understood reasons
of efficiency only a classical proof can be found, as unsatisfactory.

We will sketch the constructive argument. By induction one proves that
every accessible x is confluent. By Acc→(S) we then obtain confluence. The in-
duction step we have to prove is that confluence is preserved under the inductive
definition of Acc→. In other words, we have to prove that x is confluent if the
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induction hypothesis (IH) holds, that is, every y such that x → y is confluent.
Assume IH and let x1, x2 ∈ S such that x →→ x1 and x →→ x2. If x = x1 or
x = x2 then x2 or x1 is a common reduct of x1, x2. Otherwise, actually ap-
pealing to the inductive definition of the reflexive–transitive closure, there exist
intermediate points as in the classical proof above. Now a common reduct can
be obtained in exactly the same way as in the classical proof, with IH replacing
the →-maximality of x. This proves the induction step.

The above proof of the induction step is completely first-order, provided that
we replace the appeal to the inductive definition of →→ by some first-order sen-
tences that trivially follow from the inductive definition of →→ and are sufficient
for the proof.

= is reflexive and symmetric
→→ includes = and → and is transitive
→→ is included in the union of = and →·→→
→ is locally confluent

⇒ confluence
is Acc→-inductive

Here the conclusion that confluence is Acc→-inductive means that for all x ∈ S
confluence of x follows from confluence of all y such that x→ y. Note that we
do not need transitivity of =. Moreover, →·→→ is the composition of→ and→→.

We have formalised in Coq the proof of NL based on the above first-order
tautology, with the intention to delegate the proof of the latter to a resolution
theorem prover in the style of Section 1.6. The automatic clausification in Coq
was a matter of seconds and resulted in 14 clauses. Both Otter and Bliksem were
slow to refute the 14 clauses (without any tuning at least half an hour). The best
results have been obtained with ordered hyperresolution in combination with
unit-resulting resolution. The proof found by Otter is quite close to a ‘human’
proof by contradiction and the diagram chase in Figure 1.3. Bliksem managed
to refute the corresponding set of clauses and to generate a proof object in the
form of a lambda term. Although this lambda term has a considerable size (100
KByte), it could be type checked by Coq without any problem and included in
a complete proof of NL in Coq. All files can be found in [12].

An obvious difficulty for proof search is the symmetry of the formulation
of NL. Inspection of the proof shows that it is possible to distinguish between
‘horizontal’ and ‘vertical’ steps in the formulation of both confluence and local
confluence. This leads to an asymmetrical version of Newman’s Lemma (aNL),
which can be proved by the same proof with all the steps properly labelled as
either ‘horizontal’ or ‘vertical’. NL can easily be recovered from aNL by remov-
ing the distinction. The advantage of the asymmetrical over the symmetrical
formulation is that the search space for the proof is considerably reduced. For
example, in the symmetrical case any step x → y leads to useless common
reducts of y and y, which are avoided in the asymmetrical case. The asymmet-
rical analogues of confluence and local confluence are known in the literature as
commutativity and weak commutativity, respectively.

Definition 1.6.3 Let→h and→v be binary relations on a set S, with reflexive-
transitive closures →→h and →→v, respectively.
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1. We say that x is commutative if, for all x1, x2 ∈ S, x→→h x1 and x→→v x2

implies that x1 →→v y and x2 →→h y for some y ∈ S. We say that →h and
→v commute if every x ∈ S is commutative.

2. We say that x is weakly commutative if, for all x1, x2 ∈ S, x→h x1 and
x→v x2 implies that x1 →→v y and x2 →→h y for some y ∈ S. We say that
→h and →v commute weakly if every x ∈ S is weakly commutative.

The precise statement of aNL is that →h and →v commute if they commute
weakly, provided Acc→hv

(S). Here →hv is the union of →h and →v. A glance
at Figure 1.3 tells us that we need the induction hypothesis both for i1 with
x→h i1 and for i2 with x→v i2.

x
h //

v

��

i1
h // //

v

����

x1

v

����
i2

h // //

v

����

· h // //

weak commutativity

·

v

����
x2

h // // ·

Figure 1.3: Diagram chase for commutativity

The proof of aNL follows the pattern of the proof of NL, but is based on the
following first-order tautology:

= is reflexive and symmetric
→→h includes = and →h and is transitive
→→v includes = and →v and is transitive
→→h is included in the union of = and →h·→→h

→→v is included in the union of = and →v·→→v

→h and →v are weakly commutative


⇒ commutativity is

Acc→hv
-inductive

Here the conclusion means that for all x ∈ S commutativity of x follows from
commutativity of all y such that x→h y or x→v y.

We formalised in Coq the proof of aNL based on the above first-order tau-
tology. Proof search in the asymmetrical case is about two orders of magnitude
faster than in the symmetrical case. Again all files can be found in [12].

Summarising, the method can be put to work on medium scale examples.
However, it is obvious that some human intelligence has been spent on stylising
the proof before it could be automated. The techniques for proof search should
be improved before the method can be scaled up any further.
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Chapter 2

Proof Reflection in Coq

We formalise natural deduction for first-order logic in the proof assistant Coq,
using De Bruijn indices for variable binding. The main judgement we model
is of the form Γ ` d [:] φ, stating that d is a proof term of formula φ under
hypotheses Γ; it can be viewed as a typing relation by the Curry–Howard–
De Bruijn isomorphism. This relation is proved sound with respect to Coq’s
native logic and is amenable to the manipulation of formulas and of derivations.
As an illustration, we define a reduction relation on proof terms with permutative
conversions and prove the property of subject reduction.

Author: Dimitri Hendriks

2.1 Introduction

We represent intuitionistic predicate logic in Coq [66], an interactive proof con-
struction system that implements the calculus of inductive constructions [69],
which is a type theory that provides inductive definitions. We adopt a two-level
approach [8] in the sense that the native logic of the system is the meta-language
in which we define and reason about our object-language. The object-language
consists of a deep embedding of first-order terms, formulas and derivation terms.
Derivation terms and formulas are related on the meta-level by definition of a
deduction system for hypothetical judgements Γ ` d [:] φ, that encapsulate their
own evidence; d inhabits φ given context Γ. Several binding mechanisms are
handled by De Bruijn indices [19].

The main contribution of our work is that we design an object language
representing first-order logic, which can be used as a ‘tool’ for the manipulation
of formulas and proofs. Moreover, via the so-called reflection operation [18] and
the soundness result, it’s possible to reason about the first-order fragment of
the native logic itself.

The meta-theory of lambda calculi, type and proof systems of various kinds
has already been treated quite extensively with the use of theorem provers, as
shown, for example, in [50, 2, 10, 40, 6, 51, 7].

To our knowledge, this is the first complete (first-order) formalisation of

23
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natural deduction for first-order logic using analytic judgements. Although we
realise that our work is just standard first-order logic, and the results proved are
the first basic ones, the strong point is the achievement of a Coq implementation,
a library which can be reused in the future for several purposes, of which we
mention:

- investigating the meta-theory of deduction systems, and

- proving correctness of proof-search algorithms.

Finally, we think that our work might serve as an overview on how to formalise
logical systems in a theorem prover.

The complete development is formalised in Coq and can be retrieved from
[33]; it’s size is 116184 bytes, 4980 lines. The development time is approximately
half a man-year.

For a brief introduction to type theory and the Coq proof assistant, an
explanation of reflection and the two-level approach, and the motivation of our
design choices with respect to variable binding mechanisms and the format of
hypothetical judgements, the reader is referred to the preface.

This chapter is organised as follows. In Section 2.2 we introduce objects rep-
resenting first-order terms, first-order formulas and derivation terms. In Sections
2.3 and 2.4, we define lifting and substitution. In Section 2.5 some basic alge-
braic properties of the defined De Bruijn operations are listed. The inference
rules for hypothetical judgements are presented in Section 2.6. In Section 2.7
we show that the structural rules are admissible. In Section 2.8 we define the
translation from object level formulas to their meta-level counterparts. In Sec-
tion 2.9 we discuss an alternative set-up with a finite number of free variables
instead of infinitely many; and we discuss an inconvenient aspect of substitution
of free variables. Section 2.10 presents thinning and substitution lemmas about
this translation function, necessary for the proof of soundness with respect to
Coq’s logic, given in Section 2.11. In Section 2.12, we specify a function which
infers the type of (correct) proof terms. In Section 2.13 this function is proved
correct with respect to the outlined inference system. As a corollary, derivation
terms have unique types (Section 2.14). Section 2.15 serves as an example of
how the defined machinery can be used to manipulate/transform proof terms;
Prawitz’s proof reduction rules are defined. In Section 2.16 we present sound-
ness of types for the defined proof reduction, the property known as subject
reduction. Finally, we conclude and discuss future work.

2.2 Objects

A logic is usually defined with respect to a signature determining its sorts,
function symbols and predicate symbols. In our formalisation of intuitionistic
predicate logic, we choose to deal with one sort only. We freed ourselves of the
technical care multiple sorts would demand, simply for practical reasons.1

1It is well-known that sorts can be built-in artificially by using unary predicates.
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The sets τ (terms), o (formulas) and π (proof terms), defined in the present
section, depend on the signature—constituted by two arbitrary but fixed lists
of natural numbers, representing function and relation arities. This dependence
remains implicit in the sequel. We motivate this design choice.

A first (set-theoretical) attempt to formalise the dependency of an arbitrary
signature would be to depart from an abstract set of function symbols, say F ,
along with an abstract function, say arity : F → N. Given our aim to gain
full control over the object language, however, this is unsatisfactory in several
respects, of which we mention

- the undecidability of equality of terms, and

- the impossibility to check whether a function symbol occurs in a term.

Admittedly, one can add the necessary axioms. For example, we can assume
the existence of a Boolean predicate eqb : F → F → bool. Of course, we
then have to show consistency, but this doesn’t seem to be problematic. What
matters is the conceptual difference. With the approach chosen here, signatures
are first class citizens and are finite, as opposed to the representation with
F , arity and eqb. Such a representation of functions is what we called in the
introduction a shallow embedding where the interpretation function of object-
level function symbols to meta-level function symbols is the identity. As said
before, the disadvantage of a shallow embedding is the impossibility to exploit
the syntactical structure.2

Instead, we use an index set for function (as well as for relation) symbols.

Definition 2.2.1 Given a set A, lists of type list(A) are defined by 2 and [a|l]
where a : A and l : list(A). Given a list l : list(A), its index set Il is defined by
the equations:

I2 = ∅ I[a|l′] = 1 + Il′

where ∅ is the empty set (i.e., without contructors), 1 the unit set (with sole
inhabitant •) and A + B the disjoint sum of sets A and B, defined inductively
by:

A+B := inl(a) | inr(b)

where a : A and b : B. The application l(i) computes the list element indexed
by i : Il, as defined by the following recursion:

[a|l](inl(•)) = a

[a|l](inr(i)) = l(i)

For the sake of readability we set Il = {0, . . . , |l| − 1}, where |l| denotes the
length of l.

2A philosopher might raise his finger and swap things around: “A shallow embedding
of objects in combination with full control over those objects, leads to well-known classical
complications, such as diagonalisation, paradoxes and worse.”
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Definition 2.2.2 (Terms) Assume a list of natural numbers, representing func-
tion arities.

lfun : list(N)

The set τ of syntactic objects representing first-order terms is inductively defined
by:

τ := vn | fi(t1, . . . , tk)

where n : N, i : Ilfun
, k = lfun(i) and t1, . . . , tk : τ . It is to be understood that

lfun(i) computes the arity k of fi (if k = 0, then fi() is a constant).

Definition 2.2.3 (Formulas) We assume a second list of natural numbers,
representing relation arities.

lrel : list(N)

The set of objects o representing predicate logical formulas, is defined by the
following abstract syntax, where j : Ilrel , m = lrel(j) and φ, χ : o.

o := >̇ | ⊥̇ | Rj(t1, . . . , tm) | φ →̇ χ | φ ∧̇ χ | φ ∨̇ χ | ∀̇φ | ∃̇φ

As usual, we write ¬̇φ as shorthand for φ →̇ ⊥̇.

We use the following binding priorities for the connectives: ∀̇ , ∃̇ > ∧̇, ∨̇ > →̇ and
let binary connectives associate to the right. For example, ∃̇φ ∨̇ ∃̇χ →̇ ∃̇ (φ ∨̇ χ)
reads as ((∃̇φ) ∨̇ (∃̇χ)) →̇ ∃̇ (φ ∨̇ χ).

In the sequel, when we write fi(t1, . . . , tk) or Rj(t1, . . . , tm), we implicitly
assume:

i : Ilfun
lfun(i) = k j : Ilrel lrel(j) = m

We now turn to the definition of derivation terms, which can be seen as
linear notations for two-dimensional proof trees.

Definition 2.2.4 (Derivations) The syntactic class π of proof terms is de-
fined by the grammar:

π := >+ | hn | ⊥−(d, φ) | →+(φ, d) | →−(d, e)
| ∧+(d, e) | ∧−l (d) | ∧−r (d) | ∨+

l (φ, d) | ∨+
r (φ, d) | ∨−(d, e, f)

| ∀+(d) | ∀−(t, d) | ∃+(φ, t, d) | ∃−(d, e)

where n : N, d, e, f : π, φ : o and t : τ . Note that the hn are assumption
variables, as will become clear in the sequel.

As an example, we depict the construction ∨−(d, e1, e2) in traditional natural
deduction format:

.... (d)
χ1 ∨ χ2

[χ1].... (e1)
φ

[χ2].... (e2)
φ

φ ∨−
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Some constructors (⊥−, →+, ∨+
l , ∨+

r and ∃+) carry an argument of type o in
order to have proof terms uniquely determine natural deductions, as will be
shown in the sequel (see Section 2.12). Had we omitted the formula argument
in, for example, →+, a term →+(h0) would be ambiguous in the sense that it
serves as a proof term for φ →̇ φ for any φ : o. Thus, we use explicit Church style
typing. The formula argument in ∃+ is required, because there is no inverse of
substitution, that is, we cannot deduce φ from φ[t] (see Definition 2.6.1).

2.3 Recursive Patterns

Several object (of types o and π) transformations concerning (assumption as well
as term) variables recursively descend in the same way. These recursive patterns
are shared by abstracting from what should happen to terms or assumption
variables.

The operations carry an argument storing the so-called reference depth of
variables, because variables can only be ‘grasped’ (lifted, substituted, etc.) if
we know at what reference depth they reside.

For objects in o, the reference depth increments when a quantifier is passed.

Definition 2.3.1 Given n : N, g : N→ τ → τ and φ : o, define mapo(g, n, φ)
as follows.

mapo(g, n, c) = c for c = >̇, ⊥̇
mapo(g, n,Rj(t1, . . . , tm)) = Rj(g(n, t1), . . . , g(n, tm))

mapo(g, n, φ ◦ χ) = mapo(g, n, φ) ◦ mapo(g, n, χ) for ◦ = →̇, ∧̇, ∨̇
mapo(g, n,Qφ) = Qmapo(g, n+ 1, φ) for Q = ∀̇ , ∃̇

For proof terms, the reference depth of term variables vi increments in the
cases of ∀+, ∃+ (first argument) and ∃− (second argument).

Definition 2.3.2 Given g : N → τ → τ , n : N and d : π, the function
mapv

π(g, n, d) is defined by the following recursive equations.

mapv
π(g, n,>+) = >+

mapv
π(g, n,⊥−(d, φ)) = ⊥−(mapv

π(g, n, d),mapo(g, n, φ))
mapv

π(g, n, hi) = hi

mapv
π(g, n,→+(φ, d)) = →+(mapo(g, n, φ)),mapv

π(g, n, d))
mapv

π(g, n,→−(d, e)) = →−(mapv
π(g, n, d),mapv

π(g, n, e))
mapv

π(g, n,∧+(d, e)) = ∧+(mapv
π(g, n, d),mapv

π(g, n, e))
mapv

π(g, n,∧−l (d)) = ∧−l (mapv
π(g, n, d))

mapv
π(g, n,∧−r (d)) = ∧−r (mapv

π(g, n, d))
mapv

π(g, n,∨+
l (φ, d)) = ∨+

l (mapo(g, n, φ)),mapv
π(g, n, d))

mapv
π(g, n,∨+

r (φ, d)) = ∨+
r (mapo(g, n, φ)),mapv

π(g, n, d))
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mapv
π(g, n,∨−(d, e1, e2)) = ∨−(mapv

π(g, n, d),mapv
π(g, n, e1),mapv

π(g, n, e2))
mapv

π(g, n, ∀+(d)) = ∀+(mapv
π(g, n+ 1, d))

mapv
π(g, n, ∀−(t, d)) = ∀−(g(n, t),mapv

π(g, n, d))
mapv

π(g, n, ∃+(φ, t, d)) = ∃+(mapo(g, n+ 1, φ)), g(n, t),mapv
π(g, n, d))

mapv
π(g, n, ∃−(d, e)) = ∃−(mapv

π(g, n, d),mapv
π(g, n+ 1, e))

Note the increment of the reference depth of the formula argument in ∃+. Con-
sider the inference rule corresponding to ∃+ given in Definition 2.6.1. The ar-
gument φ in term ∃+(φ, t, d) has free variable v0 (‘from the outside’), for which
the witnessing t is substituted in the type φ[t] of subterm d. This free variable
should remain free; therefore the reference depth is incremented.

Also, the recursive pattern for proof term transformations concerning as-
sumption variables will be reused several times in the sequel. The reference
depth of assumption variables hi is incremented in the cases of →+ (second
argument), ∨− (second and third argument) and ∃− (second argument); that
is, any time an extra hypothesis is added to the context (the inference rules of
Definition 2.6.1 viewed bottom up).

Definition 2.3.3 Let g : N → N → π, a function that returns a proof term
given two natural numbers (reference depth, resp. index of assumption variable),
n : N, and d : π, then maph

π(g, n, d) is defined by the following recursive equa-
tions.

maph
π(g, n,>+) = >+

maph
π(g, n,⊥−(d, φ)) = ⊥−(maph

π(g, n, d), φ)
maph

π(g, n, hi) = g(n, i)
maph

π(g, n,→+(φ, d)) = →+(φ,maph
π(g, n+ 1, d))

maph
π(g, n,→−(d, e)) = →−(maph

π(g, n, d),maph
π(g, n, e))

maph
π(g, n,∧+(d, e)) = ∧+(maph

π(g, n, d),maph
π(g, n, e))

maph
π(g, n,∧−l (d)) = ∧−l (maph

π(g, n, d))

maph
π(g, n,∧−r (d)) = ∧−r (maph

π(g, n, d))
maph

π(g, n,∨+
l (φ, d)) = ∨+

l (φ,maph
π(g, n, d))

maph
π(g, n,∨+

r (φ, d)) = ∨+
r (φ,maph

π(g, n, d))
maph

π(g, n,∨−(d, e1, e2)) = ∨−(maph
π(g, n, d),maph

π(g, n+ 1, e1),
maph

π(g, n+ 1, e2))
maph

π(g, n, ∀+(d)) = ∀+(maph
π(g, n, d))

maph
π(g, n, ∀−(t, d)) = ∀−(t,maph

π(g, n, d))
maph

π(g, n,∃+(φ, t, d)) = ∃+(φ, t,maph
π(g, n, d))

maph
π(g, n,∃−(d, e)) = ∃−(maph

π(g, n, d),maph
π(g, n+ 1, e))
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2.4 Lifting and Substitution

The representation of variables by De Bruijn indices requires an extra operation
called lifting.3 Lifting increments the free variables in a formula.

We start with defining the operations of lifting and substitution, using side
conditions. The implementation uses computationally more efficient definitions,
as listed thereafter.

Definition 2.4.1 We define term lifting ↑nt by structural recursion on t : τ ,
where n : N is the reference depth. The first n variables, v0, . . . , vn−1, are
assumed to be bound (this information being imported from functions calling
↑nt) and remain unchanged.

↑nvi =
{
vi if i < n
vi+1 if i ≥ n

↑nfi(t1, . . . , tk) = fi(↑nt1, . . . , ↑ntk)

We write ↑t to denote the lifting of all variables in t, shorthand for ↑0t.

Definition 2.4.2 Substitution of t′ for vn in t, notation t[t′]n, is defined by
recursion on the structure of t. Again, n is the reference depth, present in
order to deal with substitution under binders. Thus, the first n variables should
remain untouched. The term t′ is lifted such that capture by binders is avoided.
Indices greater than n are decremented, because substitution removes the original
variable vn.

vi[t]n =

 vi if i < n
↑n0 t if i = n
vi−1 if i > n

fi(t1, . . . , tk)[t]n = fi(t1[t]n, . . . , tk[t]n)

where ↑mn t is defined by ↑0nt = t and ↑m+1
n t = ↑mn (↑nt). We set t[t′] = t[t′]0.

As mentioned, the side-conditions (if i < n, etc.) in the above definitions
are inefficient. As the unfolding of definitions proceeds, the number of side-
conditions increases exponentially. The implemented lifting and substitution
functions are defined recursively and have no side-conditions ↑nt is encoded as
lift trm(n, t) and t[t′]n is encoded as subst trm(n, t, t′).4

lift(0, i) = i+ 1
lift(n+ 1, 0) = 0

lift(n+ 1, i+ 1) = lift(n, i) + 1

3In the literature on explicit substitutions (e.g., [9]) the operation we call lifting here
consists of two more primitive operations: lifting ⇑ of substitutions and the shift substitution
↑, which increments the indices in a term. Our ↑n actually corresponds to ⇑n(↑).

4We found these definitions in [57], where they are attributed to [2].
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lift trm(n, vi) = vlift(n,i)

lift trm(n, fj(t1, . . . , tk)) = fj(lift trm(n, t1), . . . , lift trm(n, tk))

subst(0, 0, t) = t

subst(0, i+ 1, t) = vi

subst(n+ 1, 0, t) = v0

subst(n+ 1, i+ 1, t) = lift trm(0, subst(n, i, t))

subst trm(n, vi, t) = subst(n, i, t)
subst trm(n, fj(t1, . . . , tk), t) = fj(subst trm(n, t1, t),

. . . , subst trm(n, tk, t))

Next we define the lifting and substitution operations on formulas.

Definition 2.4.3 The lifting of φ : o for reference depth n, notation ↑nφ, is
defined as follows.

↑nφ = mapo(λm :N. λt :τ. ↑mt, n, φ)

Let ↑φ abbreviate ↑0φ, the increment of all free variables in φ.

Definition 2.4.4 Substitution of t : τ for vn
5 in φ : o, notation φ[t]n, is defined

as follows.
φ[t]n = mapo(λm :N. λu :τ. u[t]m, n, φ)

For the inference system introduced in the next section, we also need the
lifting and substitution operation on contexts. Contexts are defined by 2 and
Γ;φ, where φ : o and Γ is a context.

Definition 2.4.5 Lifting of all free variables in context Γ, given that the first
n variables are bound, notation ↑nΓ, is defined by:

↑n2 = 2

↑n(Γ;φ) = ↑nΓ; ↑nφ

Substitution of t for vn in Γ, written Γ[t]n, is defined by:

2[t]n = 2

(Γ;φ)[t]n = Γ[t]n;φ[t]n

Again, we write ↑Γ for ↑0Γ and Γ[t] for Γ[t]0.

The type checking function, introduced in Section 2.12, requires the defini-
tion of the inverse of lifting: projection.

5The n + 1-th free variable ‘as seen from the outside’.
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Definition 2.4.6 We define term projection, ↓nt, as follows.

↓nvi =
{
vi if i ≤ n
vi−1 if i > n

↓nfi(t1, . . . , tk) = fi(↓nt1, . . . , ↓ntk)

Formula projection, ↓nφ, is defined as follows.

↓nφ = mapo(λm :N. λt :τ. ↓mt, n, φ)

Define ↓φ = ↓0φ.

Lemma 2.4.1 For all n : N and φ : o, we have that ↓n↑nφ = φ.

Also needed for Definition 2.12.1 is the ability to check whether a variable occurs
free in a formula.

Definition 2.4.7 vn ∈ FV(φ) is defined as follows.6

vn ∈ FV(Rj(t1, . . . , tm)) if vn ∈ ti for some 1 ≤ i ≤ m
vn ∈ FV(φ ◦ χ) if vn ∈ FV(φ) or vn ∈ FV(χ) for ◦ = →̇, ∧̇, ∨̇
vn ∈ FV(Qφ) if vn+1 ∈ FV(φ) for Q = ∀̇ , ∃̇

with vn ∈ t defined by:

vn ∈ vm if n = m
vn ∈ fi(t1, . . . , tk) if vn ∈ tj for some 1 ≤ j ≤ k

Lemma 2.4.2 For all n : N and φ : o, we have that ↑n↓nφ = φ, if vn 6∈ FV(φ).

Lemma 2.4.3 For all n : N, t : o, we have vn 6∈ FV(↑nt).

Definition 2.4.8 For n : N and d : π, lifting of term variables in proof terms
↑vnd is defined as follows.

↑vnd = mapv
π(λm :N. λt :τ. ↑mt, n, d)

Definition 2.4.9 For n : N, t : τ and d : π, substitution of term variables in
proof terms d[t]nv is defined by

d[t]nv = mapv
π(λm :N. λu :τ. u[t]m, n, d)

Definition 2.4.10 Lifting of assumption variables in proof terms is defined by

↑hnd = maph
π(λm :N. λi :N. hlift(m,i), n, d)

The function lift is defined on page 29. Define ↑hd = ↑h0d.
6We present vn ∈ FV(φ) as an inductive relation; it’s implementation actually is a Boolean

function.
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Definition 2.4.11 Substitution of proof terms for assumption variables is de-
fined by

>+[d′]nh = >+

hi[d′]nh =

 hi if i < n
↑n0d′ if i = n
hi−1 if i > n

⊥−(d, φ)[d′]nh = ⊥−(d[d′]nh , φ)
→+(φ, d)[d′]nh = →+(φ, d[d′]n+1

h )
→−(d, e)[d′]nh = →−(d[d′]nh , e[d

′]nh )
∧+(d, e)[d′]nh = ∧+(d[d′]nh , e[d

′]nh )
∧−l (d)[d′]nh = ∧−l (d[d′]nh )
∧−r (d)[d′]nh = ∧−r (d[d′]nh )

∨+
l (φ, d)[d′]nh = ∨+

l (φ, d[d′]nh )
∨+

r (φ, d)[d′]nh = ∨+
r (φ, d[d′]nh )

∨−(d, e1, e2)[d′]nh = ∨−(d[d′]nh , e1[d
′]n+1

h , e2[d′]n+1
h )

∀+(d)[d′]nh = ∀+(d[↑vd′]nh )
∀−(t, d)[d′]nh = ∀−(t, d[d′]nh )

∃+(φ, t, d)[d′]nh = ∃+(φ, t, d[d′]nh )
∃−(d, e)[d′]nh = ∃−(d[d′]nh , e[↑

vd′]n+1
h )

where ↑mn d is defined by ↑0nd = d and ↑m+1
n d = ↑mn (↑hnd). It should be noted

that hi[d′]nh is encoded without side-conditions, in a similar way as vi[t]n (see
Definition 2.4.2). Define d[d′]h = d[d′]0h.

Note that it is not correct to define d[d′]nh by maph
π(λm :N. λi :N. hi[d′]mh , n, d)

7,
because all free variables vi in d′ have to be lifted to avoid capture of the first
free variable by ∀+ or ∃− (second argument).

2.5 Properties of De Bruijn Operations

We present some basic algebraic properties of the operations introduced in Sec-
tion 2.4. Similar properties can be found in [7].8 All five lemmas are proved for
both t : τ as well as for t : o.9 Furthermore t′, t1, t2 : τ and n,m : N.

Lemma 2.5.1 (Permutation of lifting)

↑m(↑nt) = ↑n+1(↑mt) if m ≤ n

7As we did in [32] (though not in the Coq development).
8Where they are attributed to [40].
9Similar properties have been proved for lifting and substitution in proof terms, but these

are not used in the sequel.
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Lemma 2.5.2 (Simplification of substitution)

(↑nt)[t′]n = t

Lemma 2.5.3 (Commutation of lifting and substitution)

↑m(t[t′]n) = (↑mt)[t′]n+1 if m ≤ n

Lemma 2.5.4 (Distribution of lifting over substitution)

↑m+k(t[t′]m) = (↑m+k+1t)[↑kt′]m

Lemma 2.5.5 (Distribution of substitution)

(t[t1]m)[t2]m+k = (t[t2]m+k+1)[t1[t2]k]m

2.6 Judgements

We introduce judgements of the form Γ ` d [:] φ, stating that d is a proof term
of formula φ under hypotheses Γ.10 Alternatively, the object d can be seen as a
λ-term of type φ given variables hi of type Γ(i) for 0 ≤ i < |Γ|.

Definition 2.6.1 The relation (Γ ` d [:] φ) : ∗p is inductively defined by the
following clauses. A context Γ is a list of formulas, where the rightmost ele-
ment has index 0, d, d1, d2, e1, e2 are proof terms, t is a first-order term, and
φ, φ1, φ2, χ are formulas.

Γ;φ ` h0 [:] φ
Γ ` hi [:] χ

Γ;φ ` hi+1 [:] χ

Γ ` >+ [:] >̇
Γ ` d [:] ⊥̇

Γ ` ⊥−(d, φ) [:] φ

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ

Γ ` d [:] φ →̇ χ Γ ` e [:] φ
Γ ` →−(d, e) [:] χ

Γ ` d1 [:] φ1 Γ ` d2 [:] φ2

Γ ` ∧+(d1, d2) [:] φ1 ∧̇ φ2

Γ ` d [:] φ1 ∧̇ φ2

Γ ` ∧−l (d) [:] φ1

Γ ` d [:] φ1 ∧̇ φ2

Γ ` ∧−r (d) [:] φ2

10We use this notation in order to distinguish ‘[:]’ from ‘:’, which is reserved for the typing
relation of Coq.
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Γ ` d [:] φ1

Γ ` ∨+
l (φ2, d) [:] φ1 ∨̇ φ2

Γ ` d [:] φ2

Γ ` ∨+
r (φ1, d) [:] φ1 ∨̇ φ2

Γ ` d [:] φ1 ∨̇ φ2 Γ;φ1 ` e1 [:] χ Γ;φ2 ` e2 [:] χ
Γ ` ∨−(d, e1, e2) [:] χ

↑Γ ` d [:] φ

Γ ` ∀+(d) [:] ∀̇φ
Γ ` d [:] ∀̇φ

Γ ` ∀−(t, d) [:] φ[t]

Γ ` d [:] φ[t]

Γ ` ∃+(φ, t, d) [:] ∃̇φ
Γ ` d [:] ∃̇χ ↑Γ;χ ` e [:] ↑φ

Γ ` ∃−(d, e) [:] φ

In contrast to a formalisation with named variables (see [57]), there is a canonical
choice of a fresh variable in the setting with De Bruijn indices, as, for example,
needed in the rules ∀+ and ∃−. We simply lift all free variables (of Γ in the case
of ∀+, and of Γ and φ in the case of ∃−), so that the first free variable becomes
fresh.

The deduction system above defines the De Bruijn binding mechanism for
assumption variables. Binders of assumption variables are→+, ∨− and ∃−. For
example, in→+(φ,→+(χ,∧+(h1, h0))), h1 refers to the outer→+ and h0 refers
to the inner →+, as illustrated by the corresponding proof tree.

φ;χ ` h1 [:] φ φ;χ ` h0 [:] χ
φ;χ ` ∧+(h1, h0) [:] φ ∧̇ χ

φ ` →+(χ,∧+(h1, h0)) [:] χ →̇ φ ∧̇ χ
` →+(φ,→+(χ,∧+(h1, h0))) [:] φ →̇ χ →̇ φ ∧̇ χ

Note that ∨− and ∃− don’t bind assumption variables in their first argu-
ment, since in the subtrees corresponding to those arguments no assumption is
introduced (travelling bottom-up) into the context. For example, in

→+(φ ∨̇ χ,∨−(h0,∨+
r (χ, h0),∨+

l (φ, h0)))

only the underlined ocurrences of h0 are bound by the constructor ∨−; the other
one (referring to φ ∨̇ χ) is bound by the constructor →+. The corresponding
proof tree is:

φ ∨̇ χ ` h0 [:] φ ∨̇ χ T1 T2
φ ∨̇ χ ` ∨−(h0,∨+

r (χ, h0),∨+
l (φ, h0)) [:] χ ∨̇ φ

` →+(φ ∨̇ χ,∨−(h0,∨+
r (χ, h0),∨+

l (φ, h0))) [:] φ ∨̇ χ →̇ χ ∨̇ φ
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where T1 denotes
φ ∨̇ χ;φ ` h0 [:] φ

φ ∨̇ χ;φ ` ∨+
r (χ, h0) [:] χ ∨̇ φ

and T2 is the analogous tree of φ ∨̇ χ;χ ` ∨+
l (φ, h0) [:] χ ∨̇ φ.

Some constructors also bind term variables. The constructor ∀+ binds the
first free variable in its argument; ∃− binds the first free variable in its second
argument. These variables are called the eigenvariables of ∀+ and ∃−. The
constructor ∃+ binds the first free term variable in its first argument. We give
a final example:

∃̇ ↑1φ →̇ ↑χ;φ ` h1 [:] ∃̇ ↑1φ →̇ ↑χ
∃̇ ↑1φ →̇ ↑χ;φ ` h0 [:] φ

∃̇ ↑1φ →̇ ↑χ;φ ` ∃+(↑1φ, v0, h0) [:] ∃̇ ↑1φ
∃̇ ↑1φ →̇ ↑χ;φ ` →−(h1,∃+(↑1φ, v0, h0)) [:] ↑χ

∃̇ ↑1φ →̇ ↑χ ` →+(φ,→−(h1,∃+(↑1φ, v0, h0))) [:] φ →̇ ↑χ
∃̇φ →̇ χ ` ∀+(→+(φ,→−(h1,∃+(↑1φ, v0, h0)))) [:] ∀̇ (φ →̇ ↑χ)

The application of the ∃+-rule is correct as (↑1φ)[v0] = φ by the following
lemma. The application of ∀+ is correct because ↑(∃̇φ →̇ χ) = ∃̇ ↑1φ →̇ ↑χ, by
definition of lifting. Note that, on the named level, for the formula (∃x.φ →
χ)→ ∀x.(φ→ χ) to be a tautology, the condition x 6∈ FV(χ) is required to avoid
capture by ∀x in χ. This is expressed by ↑χ and can be compared to λx.χ (see
Chapter 3).

Lemma 2.6.1 For n : N, t : τ as well as for t : o, (↑n+1t)[v0]n = t.

Note that, because intuitionistic predicate logic has the structural rules
of weakening, exchange and contraction, the formulation of natural deduction
above is logically equivalent to one that mentions (possibly) different contexts in
rules with more than one premiss. Given the structural rules (shown to be deriv-
able in the meta-theory in Section 2.7), for example, the following formulation
of the rule for →− is admissable, as can be shown by applying the weakening
lemma (Lemma 2.7.2) |Γ′| times. The assumption variables in d have to be
lifted so that they still refer to the same assumptions in Γ as they originally
did. Proof term e can be left unchanged, because there are no other assumption
variables in e than those referring to Γ′.

Γ ` d [:] φ →̇ χ Γ′ ` e [:] φ

Γ,Γ′ ` →−(↑|Γ
′|

0 d, e) [:] χ

In Section 2.11 we show soundness of the deduction relation given in Defi-
nition 2.6.1, with respect to an interpetation function [[ ]] mapping object-level
formulas to Coq’s native logic.
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2.7 Admissible Rules

The following rules are admissible, that is, derivable in the meta-theory. In order
to prove by induction, the statements are loaded appropriately (quantification
over Γ,∆, and so forth).

Lemma 2.7.1 (Lifting of judgement)

Γ ` d [:] φ
↑nΓ ` ↑vnd [:] ↑nφ

Proof. Induction on the proposition Γ ` d [:] φ. The proofs of cases ∀+ and ∃−
require Lemma 2.5.1; cases ∀− and ∃+ require Lemma 2.5.4.

Lemma 2.7.2 (Weakening)

Γ;∆ ` d [:] φ

Γ;χ;∆ ` ↑h|∆|d [:] φ

Proof. By induction on d and inverting the judgement.

Lemma 2.7.3 (Substitution of variables vi in derivation terms)

↑nΓ;∆ ` d [:] φ
Γ;∆[t]n ` d[t]nv [:] φ[t]n

Proof. By induction on d and inversion. Case hi is proved by induction over i
and Lemma 2.5.2. Cases ∀+ and ∃− require lemmas 2.5.3 and 2.5.1. Cases ∀−
and ∃− require Lemma 2.5.5.

Lemma 2.7.4 (Substitution of variables hi in derivation terms)

Γ ` d [:] φ Γ;φ;∆ ` e [:] χ

Γ;∆ ` e[d]|∆|h [:] χ

Proof. By induction on e and inversion. Case hi is proved by induction over i
and Lemma 2.7.2.

Exchange, contraction

The structural rules exchange and contraction are admissible, too.11 First we
need the functions exch and contr. The former swaps the indices n and n + 1,
while the latter decrements all indices greater than n, where n intends to be the
reference depth of assumption variables (n = |∆| in Lemmas 2.7.5 and 2.7.6).

exch(n, i) =

 hn+1 if i = n
hn if i = n+ 1
hi otherwise

contr(n, i) =
{
hi−1 if i > n
hi otherwise

Again, the side conditions in the definitions above are avoided in the formalisa-
tion.

11These lemmas are not needed in the proof of Subject Reduction (Thm. 2.16.2).
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Lemma 2.7.5 (Exchange)

Γ;χ;φ;∆ ` d [:] ψ

Γ;φ;χ;∆ ` maph
π(exch, |∆|, d) [:] ψ

Lemma 2.7.6 (Contraction)

Γ;φ;φ;∆ ` d [:] χ

Γ;φ;∆ ` maph
π(contr, |∆|, d) [:] χ

2.8 Translation to Coq’s Native Logic

We define the translation of object level statements (i.e., the objects defined in
Definition 2.2.3) to meta-level statements (i.e., in the language of the framework
itself). This translation will be referred to as interpretation and depends on a set
A, the domain of discourse and parameters V, F , R for interpreting variables,
function symbols and relation symbols respectively. As will be explained in
Subsection 2.9.1, using N as an index set for variables, requires the domain to
be non-empty; choose a0 as the default value in A.

We introduce the operations of shifting, notation ⇑nV and inserting terms
a : A, notation V[a]n, in variable mappings, that is, λ-terms of type N→ A.

Definition 2.8.1 Given V : N→ A, n : N, we define ⇑nV as follows.

⇑nV = λp :N.V(p+ n)

Definition 2.8.2 Given V : N→ A, n : N and a : A, V[a]n is defined as
follows.

V[a]0(0) = a

V[a]0(m+ 1) = V(m)
V[a]n+1(0) = V(0)

V[a]n+1(m+ 1) = (⇑1V)[a]n(m)

We write V[x] for V[x]0.

Term evaluation is defined as follows.

Definition 2.8.3 Assume an arbitrary domain of discourse A : ∗s and a func-
tion V : N → A to interpret (free) variables. Declare a parameter F , a family
of functions indexed over Ilfun

, used to interpret function symbols.

F : Πi :Ilfun
. Alfun(i) → A

We write Fi for (F i). Given such a family, we define the evaluation function
for terms of type τ .

[[vn]]V = V(n)

[[fi(t1, . . . , tk)]]V = Fi([[t1]]
V
, . . . , [[tk]]V)
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Next, we define the canonical interpretation of objects of type o.

Definition 2.8.4 Again, let A : ∗s and V : N → A. Assume a family of
relations indexed over Ilrel .

R : Πj :Ilrel . A
lrel(j) → ∗p

We write Ri for (R i).

[[>̇]]
V

= >

[[⊥̇]]
V

= ⊥
[[Rj(t1, . . . , tm)]]V = Rj([[t1]]

V
, . . . , [[tm]]V)

[[φ ∧̇ χ]]V = [[φ]]V ∧ [[χ]]V

[[φ ∨̇ χ]]V = [[φ]]V ∨ [[χ]]V

[[φ →̇ χ]]V = [[φ]]V → [[χ]]V

[[∀̇φ]]
V

= Πx :A. [[φ]]V[x]

[[∃̇φ]]
V

= ∃x :A. [[φ]]V[x]

Initially (for closed formulas) we set V0 = λn :N. a0, with a0 the chosen default
value in A, and define [[φ]] = [[φ]]V0 .

We use >,⊥,∧,∨,∃ for Coq’s predefined logical connectives. Note that ‘→’
(and ‘Π’) is used for both (dependent) function space as well as for logical impli-
cation (quantification); this overloading witnesses the Curry–Howard–De Bruijn
isomorphism.

We don’t have to worry about name conflicts when inserting a new x :
A to the variable interpretation function V (quantifier cases). Coq’s binding
mechanisms are internally based on De Bruijn indices (with a user-friendly tool
showing named variables on top of it).

Definition 2.8.5 The interpretation of a context is the conjunction of its in-
terpreted elements.

[[2]]V = > [[Γ;φ]]V = [[Γ]]V ∧ [[φ]]V

Remark 2.8.1 We stress the following analogies between the types of v, f , R,
and the types of V, F , R, respectively. First note that:

vn is syntactic sugar for (v n)
fi(t1, . . . , tk) ” ” (f i t1 . . . tk)
Rj(t1, . . . , tm) ” ” (R j t1 . . . tm)

(Recall that k = lfun(i) and m = lrel(j).)

v : N→ τ analogous to V : N→ A

f : Πi :Ilfun
. τk → τ ” ” F : Πi :Ilfun

. Ak → A

R : Πj :Ilrel . τ
m → o ” ” R : Πj :Ilrel . A

m → ∗p
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2.9 Free Variables

2.9.1 Free Variables, Finitely versus Infinitely Many

Note that, differently from type theory where variables have to be declared in
the environment, in our representation we have infinitely many variables (N is
the index set of variables). Therefore, we shall need a default value in order to
have a total evaluation function (see Definition 2.8.3). Alternatively, we could
have chosen to parameterise the sets of terms, formulas, and proof terms over
a natural number n indicating the number of free variables an object is allowed
to contain (enforced by definition via dependent types). Variables would then
be indexed over Nn, defined as follows (think of Nn as {0, . . . , n− 1}).

N0 = ∅ Nn+1 = 1 +Nn

The set τn of first-order terms containing n free variables would then be defined
as follows; let m : Nn and t1, . . . , tk : τn.

τn := vm | fi(t1, . . . , tk)

The constructors ∀̇ and ∃̇ of on then should be typed on+1 → on, as they
bind the first free variable of their argument. The definition of lifting should
be such that, given t : τn, the application ↑mt is typed τn+1 (a fresh variable
vm is introduced) and that m ≤ n is enforced. Given k,m : N, t : τk+m+1

and t′ : τk, t[t′]m should be typed τk+m. Apparently, such an extra parameter
means a considerable complication of matters and we chose to do without it. As
a consequence, to be able to define a V : N → A for the evaluation of objects,
one needs a default value in A.

2.9.2 Free Variables and Substitution

The De Bruijn representation works elegantly for bound variables, there is no
renaming and the structural equality on De Bruijn terms corresponds to the
intented identity of terms. As pointed out in [50], however, there is a slight
inconvenience in the way free variables are treated. The point is that the order
of free variables matters, not their names.

The subtle point about an expression t[t′]n is that the first n variables are
assumed to be bound. Let V : N→ A be such that V(0) = y and V(1) = x (i.e.,
y is introduced later than x), then we can make a substitution that transforms,
for example Rj(x, y) into Rj(x, x), as illustrated below. Note that, for any V ′,
if t is interpreted under V ′, then t[t′] has to be interpreted under ⇑1V ′, because
the original occurrences of v0 in t that pointed to V ′(0) have been removed, and
the other variables have been decremented. We have ⇑1V(0) = V(1) = x and

[[Rj(v1, v0)]]
V = Rj(x, y)

[[Rj(v1, v0)[v0]]]
⇑1V = [[Ri(v0, v0)]]

⇑1V = Rj(x, x)
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However, we cannot make a substitution that transforms Rj(x, y) into Rj(y, y).
The reason for this is that x corresponds to v1 and if you want to replace
this, it is assumed that v0 (pointing to y) is bound so that the variables in the
substituent are lifted.

The substitution functions are meant for use only in combination with the
removal of a binder; φ[t] is called to instantiate ∀̇φ with t or to give t as a
witness for ∃̇φ. Another possible (meta-level) binder is the variable mapping V
as exemplified above. We maintain the term “substitution” par abus de langage.

2.10 Thinning and Substitution Lemmas

It is possible to insert free variables to the mapping V of the interpretation func-
tion given in definitions 2.8.3, 2.8.4 and, if the argument is appropriately lifted,
keep the same interpretations. This is called thinning and can be compared
to weakening (see Lemma 2.7.2); the latter is about assumption variables, the
former about term variables. First we define some auxiliary lemmas.

Lemma 2.10.1 For all V,V ′ : N→ A, x, y : A, n,m : N, t : τ and φ : o, we
have:

(V[x]n)[y](m) = (V[y])[x]n+1(m) (permutation of insertion)
⇑n+1(V[x])(m) = ⇑nV(m) (simplification of insertion)

[[↑t]]V = [[t]]⇑1V (lift-shift interchange)

Extensional equality of V and V ′, i.e. Πn.V(n) = V ′(n), implies [[t]]V = [[t]]V
′

and [[φ]]V ↔ [[φ]]V
′
.

Lemma 2.10.2 (Thinning lemma) Let V : N→ A, a : A and n : N. (Anal-
ogous to Lemma 2.7.2).

[[t]]V = [[↑nt]]
V[a]n

[[φ]]V ↔ [[↑nφ]]V[a]n

Similarly we need [[t[t′]]]V = [[t]]V[[[t′]]V ]. We need induction loading, no longer
assuming that [[t′]]V is the last added element.

Lemma 2.10.3 (Substitution lemma) (Analogous to Lemma 2.7.4).

[[t[t′]n]]V = [[t]]V[[[t′]]⇑nV ]n

[[φ[t′]n]]V ↔ [[φ]]V[[[t′]]⇑nV ]n

2.11 Soundness with respect to the Native Logic

We show that the deduction relation defined in Definition 2.6.1 is sound with
respect to Coq’s native logic.
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Theorem 2.11.1 (Soundness) For all contexts Γ, proof terms d, formulas φ,
and variable mappings V we have that:

(Γ ` d [:] φ)→ [[Γ]]V → [[φ]]V

Proof. First the statement is loaded to (Γ ` d [:] φ)→ ΠV :N→ A. [[Γ]]V → [[φ]]V .
Its proof proceeds by induction on the proposition Γ ` d [:] φ. We sketch the
proof for some representative cases.

(Case Γ ` →+(φ1, d) [:] φ1 →̇ φ2) Assume HΓ : [[Γ]]V . We have the induction
hypothesis IHd : [[Γ;φ1]]

V → [[φ2]]
V . Note that [[Γ;φ1]]

V = [[Γ]]V ∧ [[φ1]]
V .

It suffices to prove [[φ1]]
V → [[φ2]]

V . Assume Hφ1 : [[φ1]]
V , then IHd applied

to the pair 〈HΓ,Hφ1〉, is a proof of [[φ2]]
V .

(Case Γ ` ∨−(d, e1, e2) [:] φ) Assume HΓ : [[Γ]]V . The proof obligation is [[φ]]V .
Three induction hypotheses, corresponding to the three premisses of the
∨−-rule are IH d : [[Γ]]V → [[χ1 ∨̇ χ2]]

V and IH ei
: [[Γ;χi]]

V → [[φ]]V (i =
1, 2). We get [[χ1]]

V ∨ [[χ2]]
V from IH d and HΓ.

- Suppose Hχ1 : [[χ1]]
V , then (IH e1 〈HΓ,Hχ1〉) : [[φ]]V .

- Suppose Hχ2 : [[χ2]]
V , then (IH e2 〈HΓ,Hχ2〉) : [[φ]]V .

(Case Γ ` ∀+(d) [:] ∀̇φ) Let HΓ : [[Γ]]V . The induction hypothesis is IHd : ΠV :
N→ A. [[↑Γ]]V → [[φ]]V . We have to prove Πx : A. [[φ]]V[x]. Assume an
arbitrary x : A. From Lemma 2.10.2 and HΓ, it follows that [[↑Γ]]V[x].
Then, IHd for V[x] and the proof of [[↑Γ]]V[x], proves [[φ]]V[x].

(Case Γ ` ∃+(φ, t, d) [:] ∃̇φ) Let HΓ : [[Γ]]V . We have IH d : [[Γ]]V → [[φ[t]]]V . The
proof obligation is ∃x :A. [[φ]]V[x]. Give [[t]]V as witness for this existential
statement, so that our goal becomes [[φ]]V[[[t]]V ], which, by Lemma 2.10.3,
is implied by [[φ[t]]]V , which in turn follows directly from IH d and HΓ.

The following remark explains this chapter’s title.

Remark 2.11.1 As with all lemmas and theorems in this thesis, the proof of
Theorem 2.11.1 is a formalised and verified λ-term in Coq:

sound : ΠΓ, d, φ.(Γ ` d [:] φ)→ [[Γ]]→ [[φ]]

Given Hd of type Γ ` d [:] φ and HΓ of type [[Γ]] for some context Γ, proof term
d, and formula φ, define:

M = (sound Γ d φ Hd HΓ)

We say that d reflects the proof M of the first-order proposition [[φ]]:

(Hd : (Γ ` d [:] φ);HΓ : [[Γ]]) `cic M : [[φ]]

where we use `cic to denote derivability in the calculus of inductive constructions.

For correct derivation terms d, the λ-termHd of type Γ ` d [:] φ can be generated
from d, as will be shown in the next two subsections.
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2.12 Type Checking Function

Given a context Γ and a proof term d, it is possible to determine whether d
reflects a correct proof and, if it does, to synthesise the type of d. First we
define so-called options.

Definition 2.12.1 The set opt of options is defined inductively as follows.
Let φ : o.

opt := val(φ) | err

Definition 2.12.2 We define the type checking function chk(Γ, d) : opt by re-
cursion on d.

chk(Γ,>+) = val(>̇)
chk(Γ, hi) = val(Γ(i)) if i < |Γ|

chk(Γ,⊥−(d, φ)) = val(φ) if chk(Γ, d) = val(⊥̇)
chk(Γ,→+(φ, d)) = val(φ→̇χ) if chk([Γ;φ], d) = val(χ)

chk(Γ,→−(d, e)) = val(χ) if

 chk(Γ, d) = val(φ→̇χ)
chk(Γ, e) = val(φ′)
φ = φ′

chk(Γ,∨−(d, e1, e2)) = val(φ) if


chk(Γ, d) = val(ψ1∨̇ψ2)
chk([Γ;ψ1], e1) = val(φ)
chk([Γ;ψ2], e2) = val(φ′)
φ′ = φ

chk(Γ,∀+(d)) = val(∀̇φ) if chk(↑Γ, d) = val(φ)
chk(Γ,∀−(t, d)) = val(φ[t]) if chk(Γ, d) = val(∀̇φ)

chk(Γ,∃+(φ, t, d)) = val(∃̇φ) if
{

chk(Γ, d) = val(φ′)
φ′ = φ[t]

chk(Γ,∃−(d, e)) = val(↓φ) if

 chk(Γ, d) = val(∃̇χ)
chk([↑Γ;χ], e) = val(φ)
v0 6∈ FV(φ)

For any recursive call on a subterm, it is checked whether it gives a value or
an error. Thus, unlike other programming languages, errors have to be prop-
agated recursively. The proviso’s are defined by case analysis on the recursive
calls on substructures and by using a Boolean equality relation on formulas. If
these conditions are not satisfied, err is returned. The canonical cases for the
constructors ∧+, ∧−l , ∧−r , ∨+

l , ∨+
r are left out.

2.13 Correctness of Type Checking Function

Type checking is sound and complete with respect to the deduction system of
Definition 2.6.1.

Theorem 2.13.1 (Correctness of chk) For all proof terms d, contexts Γ and
formulas φ, we have that:

chk(Γ, d) = val(φ)↔ Γ ` d [:] φ
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Proof. (→) By induction on d.

(Case chk(Γ,∃−(d, e)) = val(↓φ)) From this it follows that chk(Γ, d) = val(∃̇χ)
and chk([↑Γ;χ], e) = val(φ). By the induction hypotheses, we obtain Γ `
d [:] ∃̇χ and ↑Γ;χ ` e [:] φ. Because e is a correct term, v0 6∈ FV(φ); by
Lemma 2.4.2 we get φ = ↑↓φ. The proof obligation, then, is fulfilled by
application of the inference rule for ∃−.

Γ ` d [:] ∃̇χ ↑Γ;χ ` e [:] ↑↓φ
Γ ` ∃−(d, e) [:] ↓φ

(←) By induction on Γ ` d [:] φ.

(Case Γ ` ∃−(d, e) [:] φ) We have Γ ` d [:] ∃̇χ and ↑Γ;χ ` e [:] ↑φ. By the
induction hypotheses, we obtain chk(Γ, d) = val(∃̇χ) and chk([↑Γ;χ], e) =
val(↑φ). We have v0 6∈ FV(↑φ) (Lemma 2.4.3) and so chk(Γ,∃−(d, e)) =
val(↓↑φ); finally, ↓↑φ = φ by Lemma 2.4.1.

2.14 Unique Types

Proof terms have unique types.

Corollary 2.14.1 (Uniqueness of Types) For all proof terms d, contexts Γ
and formulas φ and χ, we have that:

(Γ ` d [:] φ)→ (Γ ` d [:] χ)→ φ = χ

Proof. Direct from double application of Theorem 2.13.1.

2.15 Proof Reduction

To illustrate how the defined machinery can be used to manipulate proof objects,
we define Prawitz’s proof reduction rules [61].12 The goal is to remove detours,
as in the following tree.

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ Γ ` e [:] φ

Γ ` →−(→+(φ, d), e) [:] χ

Instead of first assuming φ to build a proof d of χ, introduce the implication
φ →̇ χ, and then eliminate it immediately by plugging in derivation e, we
can more directly replace the assumption φ in d (represented by the first free
assumption variable) by e.

Γ ` d[e]h [:] χ

12We actually follow [59], pages 85–88.
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The removal of such a direct detour is called a proper reduction. There are
seven such rewrite rules, where on the left-hand side an introduction of a cer-
tain connective is immediately followed by an elimination of that connective.
Sometimes, proper redexes are hidden by intermediate ∨− and/or ∃− rules.
Such hidden detours are made direct by a sequence of so-called permutative
conversions. These conversions pull out the ∨− and ∃− rules. After the follow-
ing definition, we give an example of such a permutative conversion. The proof
of Theorem 2.16.1 demonstrates why the various lifting operations are necessary
to keep correct proofs.

Definition 2.15.1 Immediate proof reduction, d 7→ e, is defined by the follow-
ing rewrite rules. The left-hand sides are called immediate (proper, permutative)
redexes and the right-hand sides immediate (proper, permutative) reducts.
Proper reductions.

→−(→+(φ, d), e) 7→ d[e]h (PR→)
∧−l (∧+(d1, d2)) 7→ d1 (PR∧1)
∧−r (∧+(d1, d2)) 7→ d2 (PR∧2)

∨−(∨+
l (φ, d), e1, e2) 7→ e1[d]h (PR∨1)

∨−(∨+
r (φ, d), e1, e2) 7→ e2[d]h (PR∨2)
∀−(t,∀+(d)) 7→ d[t]v (PR∀)

∃−(∃+(φ, t, d), e) 7→ (e[t]v)[d]h (PR∃)

Permutative conversions.

⊥−(∨−(d, e1, e2), φ) 7→ ∨−(d,⊥−(e1, φ),⊥−(e2, φ)) (PC∨⊥)
→−(∨−(d, e1, e2), g) 7→ ∨−(d,→−(e1, ↑hg),→−(e2, ↑hg)) (PC∨→)
∧−l (∨−(d, e1, e2)) 7→ ∨−(d,∧−l (e1),∧−l (e2)) (PC∨∧1)
∧−r (∨−(d, e1, e2)) 7→ ∨−(d,∧−r (e1),∧−r (e2)) (PC∨∧2)

∨−(∨−(d, e1, e2), g, h) 7→ ∨−(d,∨−(e1, ↑h1g, ↑
h
1h),

∨−(e2, ↑h1g, ↑
h
1h)) (PC∨∨)

∀−(t,∨−(d, e1, e2)) 7→ ∨−(d, ∀−(t, e1),∀−(t, e2)) (PC∨∀)
∃−(∨−(d, e1, e2), g) 7→ ∨−(d, ∃−(e1, ↑h1g),∃−(e2, ↑h1g)) (PC∨∃)
⊥−(∃−(d, e), φ) 7→ ∃−(d,⊥−(e, ↑φ)) (PC∃⊥)
→−(∃−(d, e), f) 7→ ∃−(d,→−(e, ↑h(↑vf))) (PC∃→)
∧−l (∃−(d, e)) 7→ ∃−(d,∧−l (e)) (PC∃∧1)
∧−r (∃−(d, e)) 7→ ∃−(d,∧−r (e)) (PC∃∧2)

∨−(∃−(d, e), f, g) 7→ ∃−(d,∨−(e, ↑h1(↑
vf), ↑h1(↑

vg))) (PC∃∨)
∀−(t,∃−(d, e)) 7→ ∃−(d, ∀−(↑t, e)) (PC∃∀)
∃−(∃−(d, e), f) 7→ ∃−(d, ∃−(e, ↑h1(↑

v
1f))) (PC∃∃)

Definition 2.15.2 We define � as the closure of 7→ under the construction
rules of π. In other words, d� d′ holds if d′ can be obtained from d by replacing
a subterm of d by an immediate reduct of it.

As an example, consider the following reduction sequence, consisting of rules
PC∨∃ and PR∃ respectively.

∃−(∨−(d, ∃+(φ, t, e1), e2), g)
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� ∨−(d, ∃−(∃+(φ, t, e1), ↑h1g),∃−(e2, ↑h1g))
� ∨−(d, ((↑h1g)[t]v)[e1]h,∃−(e2, ↑h1g))

Let’s depict the corresponding proof trees, starting with the permutative redex.

Γ ` d [:] ψ1 ∨̇ ψ2

Γ;ψ1 ` e1 [:] φ[t]

Γ;ψ1 ` ∃+(φ, t, e1) [:] ∃̇φ Γ;ψ2 ` e2 [:] ∃̇φ
Γ ` ∨−(d, ∃+(φ, t, e1), e2) [:] ∃̇φ ↑Γ;φ ` g [:] ↑χ

Γ ` ∃−(∨−(d, ∃+(φ, t, e1), e2), g) [:] χ

The previously hidden detour is made direct, as shown in the following tree,
corresponding to the permutative reduct.

Γ ` d [:] ψ1 ∨̇ ψ2 T1 T2
Γ ` ∨−(d, ∃−(∃+(φ, t, e1), ↑h1g),∃−(e2, ↑h1g)) [:] χ

Where T1 denotes

Γ;ψ1 ` ∃+(φ, t, e1) [:] ∃̇φ ↑(Γ;ψ1);φ ` ↑h1g [:] ↑χ
Γ;ψ1 ` ∃−(∃+(φ, t, e1), ↑h1g) [:] χ

and T2 denotes

Γ;ψ2 ` e2 [:] ∃̇φ ↑(Γ;ψ2);φ ` ↑h1g [:] ↑χ
Γ;ψ2 ` ∃−(e2, ↑h1g) [:] χ

Now T1 contains a direct detour, which reduces to T ′1 :

Γ;ψ1 ` ((↑h1g)[t]v)[e1]h [:] χ

The proof tree corresponding to the final term in the reduction sequence then
reads:

Γ ` d [:] ψ1 ∨̇ ψ2 T ′1 T2
Γ ` ∨−(d, ((↑h1g)[t]v)[e1]h,∃−(e2, ↑h1g)) [:] χ

2.16 Subject Reduction

Theorem 2.16.1 (Subject Reduction ( 7→))

(d 7→ e)→ (Γ ` d [:] φ)→ (Γ ` e [:] φ)

Proof. By induction on the proposition d 7→ e. The so obtained instances of
Γ ` d [:] φ are inverted twice. We show some representative cases.
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(PR→) The following tree is built bottom-up with the use of inversion, starting
at the given judgement Γ ` →−(→+(φ, d), e) [:] χ in the root. Inverting
the root gives Γ ` →+(φ, d) [:] φ →̇ χ and Γ ` e [:] φ. Inverting the former
judgement gives Γ;φ ` d [:] χ.

Γ;φ ` d [:] χ
Γ ` →+(φ, d) [:] φ →̇ χ Γ ` e [:] φ

Γ ` →−(→+(φ, d), e) [:] χ

We have to prove: Γ ` d[e]h [:] χ, which follows from Lemma 2.7.4 by
substituting the empty context for ∆:

Γ ` e [:] φ Γ;φ ` d [:] χ
Γ ` d[e]h [:] χ

(PR∀) Assume Γ ` ∀−(t,∀+(d)) [:] φ[t]. Using inversion, we build the following
tree.

↑Γ ` d [:] φ

Γ ` ∀+(d) [:] ∀̇φ
Γ ` ∀−(t,∀+(d)) [:] φ[t]

We have to prove: Γ ` d[t]v [:] φ[t], which follows from Lemma 2.7.3 and
↑Γ ` d [:] φ (take ∆ empty and n = 0).

(PC∨∨) Assume Γ ` ∨−(∨−(d, e1, e2), g, h) [:] φ. The proof obligation is:

Γ ` ∨−(d,∨−(e1, ↑h1g, ↑
h
1h),∨−(e2, ↑h1g, ↑

h
1h)) [:] φ

We use the following abbreviations.

Jd ≡ Γ ` d [:] ψ1 ∨̇ ψ2

Jg ≡ Γ;χ1 ` g [:] φ
Jh ≡ Γ;χ2 ` h [:] φ

Je1 ≡ Γ;ψ1 ` e1 [:] χ1 ∨̇ χ2

Je2 ≡ Γ;ψ2 ` e2 [:] χ1 ∨̇ χ2

After inversion, we come to the following tree.

Jd Je1 Je2

Γ ` ∨−(d, e1, e2) [:] χ1 ∨̇ χ2 Jg Jh

Γ ` ∨−(∨−(d, e1, e2), g, h) [:] φ

The following tree demonstrates how the goal is deduced.

Jd T1 T2
Γ ` ∨−(d,∨−(e1, ↑h1g, ↑

h
1h),∨−(e2, ↑h1g, ↑

h
1h)) [:] φ

where T1 denotes the subtree:

Je1 Γ;ψ1;χ1 ` ↑h1g [:] φ Γ;ψ1;χ2 ` ↑h1h [:] φ

Γ;ψ1 ` ∨−(e1, ↑h1g, ↑
h
1h) [:] φ
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and T2 the analogous deduction of Γ;ψ2 ` ∨−(e2, ↑h1g, ↑
h
1h) [:] φ. Now it

becomes clear why all free assumption variables except the first have to
be lifted in, for example, proof term g: ↑h1g. In T1 the extra assumption
ψ1 is added to the context. The leafs Γ;ψ1;χ1 ` ↑h1g [:] φ and Γ;ψ1;χ2 `
↑h1h [:] φ in T1 are implied by the judgements Jg and Jh respectively, via
the weakening lemma (2.7.2).

(PC∃→) Assume Γ ` →−(∃−(d, e), f) [:] χ.

Γ ` d [:] ∃̇ψ ↑Γ;ψ ` e [:] ↑(φ →̇ χ)
Γ ` ∃−(d, e) [:] φ →̇ χ Γ ` f [:] φ

Γ ` →−(∃−(d, e), f) [:] χ

The conversion PC∃→ puts derivation f in the scope of the ∃−. In the
new situation, in order to obtain a correct deduction, f is lifted such that
it no longers contains v0 and h0 (now referring to the new assumption ψ).
We have to prove Γ ` ∃−(d,→−(e, ↑h(↑vf))) [:] χ.

Γ ` d [:] ∃̇ψ
↑Γ;ψ ` e [:] ↑φ →̇ ↑χ ↑Γ;ψ ` ↑h(↑vf) [:] ↑φ

↑Γ;ψ ` →−(e, ↑h(↑vf)) [:] ↑χ
Γ ` ∃−(d,→−(e, ↑h(↑vf))) [:] χ

Note that ↑(φ →̇ χ) = ↑φ →̇ ↑χ. Thus, all we have to show is that
↑Γ;ψ ` ↑h(↑vf) [:] ↑φ follows from Γ ` f [:] φ. By Lemma 2.7.1, we have
that ↑Γ ` ↑vf [:] ↑φ. Then our goal follows from the weakening lemma
(2.7.2).

The following theorem, stating that � preserves types, follows directly from
Theorem 2.16.1. The proof proceeds by structural induction on the proposition
d� e.

Theorem 2.16.2 (Subject Reduction (�))

(d� e)→ (Γ ` d [:] φ)→ (Γ ` e [:] φ)

2.17 Conclusion and Future Research

We described a formalisation of natural deduction for intuitionistic first-order
logic in Coq. This formalisation provides an object language amenable to the
manipulation of formulas and of proof objects, which is the objective of this
study. In the meta-theory we are able to reason about these syntactical objects.
The example of a proof reduction relation demonstrates how proof terms can be
subject to manipulation and to reasoning. Via the soundness (Theorem 2.11.1)
of the deduction system of hypothetical judgements (Definition 2.6.1), we are
also able to lift object level proof terms to actual proof terms inhabiting propo-
sitions of type ∗p. Thus we can reflect upon the first-order fragment of ∗p.
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We plan to use the described formalisation for a syntactical proof of con-
servativity of the Axiom of Choice over first-order intuitionistic logic without
equality (see [63] and [30]). Also, proving termination of permutative conver-
sions (along the lines of [42] or [59]) is challenging.
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Chapter 3

λ

We make the notion of scope in the λ-calculus explicit. To that end, the syntax
of the λ-calculus is extended with an end-of-scope operator λ, matching the
usual opening of a scope due to λ. Accordingly, β-reduction is extended to the
set of scoped λ-terms by performing minimal scope extrusion before performing
replication as usual. We show confluence of the resulting scoped β-reduction.
Confluence of β-reduction for the ordinary λ-calculus is obtained as a corollary,
by extruding scopes maximally before forgetting them altogether. Only in this
final forgetful step, α-equivalence is needed. All our proofs have been verified in
Coq.

Authors: Dimitri Hendriks and Vincent van Oostrom

3.1 Introduction

Performing a substitution M [x:=N ] in the λ-calculus can be decomposed into
two subtasks: replicatingN an appropriate number of times, and renaming inM
in order to prevent unintended capture of variables of N . Indeed, the defining
clauses of Curry’s definition of substitution, see e.g. C.1 Definition of [4],
can be neatly partitioned into those dealing with replication (the variable and
application clauses) and those dealing with renaming (the abstraction clauses).
In this chapter we will focus on trying to understand the latter subtask. We do
so, by extending λ-calculus with an explicit operator representing the (end of
the) scope of a name, while leaving replication implicit.

Abstractions in the λ-calculus can be viewed as being composed of two parts:
one part which is dual to application, and another which causes the opening
of the scope of the bound variable. The scope of the binder λx in λx.M is
(implicitly) assumed to extend to the whole of M . Hence to make the notion
of scope explicit, it suffices to introduce an operator expressing the end of the
scope of λx. This operator is denoted by λ(adbmal). λx.M expresses that
the scope of x is ended ‘above’ M . For instance, in the λ-term λx. λx.x the
underlined occurrence of the variable x is free, since the binding effect of the
λx is undone by the subsequent λx. For another example, only the underlined

49
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occurrence of x is free in λx.x( λx.x)x; the first and third occurrences of x are
in scope of the λx (see Figure 3.1).

Definition 3.1.1 The set (M,N,P ∈) Λof λ-terms is defined by:

Λ::= V | λx. Λ| λx. Λ| ΛΛ

where (x, y, z ∈)V is a collection of variable( name)s with decidable equality:

Axiom 3.1 (Names with decidable equality) x = y∨x 6= y, for all x, y : V

We stress that Definition 3.1.1 is an inductive one without any reference to α-
equivalence. That is, we do not assume the variable convention (2.1.13 of [4]).
In fact, we don’t need it, since in the process of β-reduction, we will not rename
offending binders to avoid capturing of free variables. Instead, λs will be inserted
in an appropriate way, as will become clear in the sequel.

We adopt the usual notational conventions for the λ-calculus [4] (but not the
variable convention), treating λanalogously to λ. We use the notation λX.M
and λX.M where X is a stack of variables x0, . . . , xn, to denote λx0 · · ·xn.M
resp. λx0 · · ·xn.M .

Remark 3.1.1 One way in which the usefulness of the λ-calculus is shown,
is by deriving confluence of the standard λ-calculus from confluence of the λ-
calculus. One way to do this would be to define standard λ-terms as λ-terms
without occurrences of λ, and then prove some kind of conservativity result. In-
stead, in our Coq implementation λ-terms are defined separately from λ-terms
and we use a canonical embedding from the former to the latter. In this way
we hope to make it clear that it is really the standard λ-calculus we are proving
confluent, and also to take away any suspicion of cheating (e.g. employing no-
tions for λ-terms in the λ-calculus). In order to improve readability, mention
of the function embedding λ-terms into λ-terms will be suppressed.

In order to extend the notions of α-equivalence and β-reduction, we should
first try to make some semantic sense of λs. Thinking of λx and λx as (named)
opening ‘[x’ and closing ‘]x’ brackets,1 it is clear that λ-terms may come in dif-
ferent degrees of balancedness. For instance, scopes could seemingly be crossing
one another as indicated by the boxes in:

P = λx. λy. λx. λy. Q

This would obviously cause semantical problems (try to define substitution).
To overcome this problem we assume a simple minded jump semantics: an oc-
currence of λx.M implicitly ends the scopes of all (non-matching) λs inbetween
that occurrence and its matching λx, just as the occurrence of the variable x in
λx.λy.x can be thought of as implicitly ending the scope of the λy. Hence P is

1But note that brackets (parentheses) usually apply ‘horizontally’ to the textual repre-
sentation of terms, whereas λ and λapply ‘vertically’ to their abstract syntax trees (where
brackets do not even occur).
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Figure 3.1: λx. λx.x, λx.x( λx.x)x, λx.λx.x, λx.λx. λx.x, λx. λx.λx. λx.x, and
λx.λy.x.

semantically equivalent to λx.λy. λy. λx. λy.Q. Our definitions of α-equivalence
and β-reduction and hence our definition of substitution, as will be presented
below, are meant to reflect this intuitive (operational) semantics.

Apart from such jump terms we identify the useful subclasses of scope-
balanced and balanced terms, both of which are closed under α-equivalence
and β-reduction. Balanced terms can be used to represent nameless λ-terms
using De Bruijn indices, by using only a single name (see the discussion in
the paragraph on related work below). Ordinary λ-terms are not (necessarily)
balanced, however they always are scope-balanced.

Definition 3.1.2 A term is scope-balanced if it is scope-balanced under some
stack X. A term M being scope-balanced under a stack X is denoted by 〈X〉M
and defined by:

〈X〉x
〈xX〉M
〈X〉λx.M

〈X〉M
〈xX〉 λx.M

〈X〉M 〈X〉N
〈X〉MN

Balancedness is defined as scope-balancedness restricting the first clause to

〈xX〉x

Here xX is the result of pushing x on the stack X.

For instance, λx.λy. λx.M is not scope-balanced (λy not closed before λx), λy.x
is scope-balanced but not balanced (λy not closed before x), and λx. λx.M and
λx.x are balanced (if M is in the former case).

It is easy to see that closed λ-terms are scope-balanced under any stack,
hence in particular under the empty stack 2. Scopes in balanced λ-terms can be
neatly visualised as boxes in their abstract syntax tree, as shown in Figure 3.1.2

Vice versa, in the term representation of a box, only its ‘doors’ are kept. That
is, λs and λs are used to demarcate all places where the boundary of the box
is crossed by the abstract syntax tree. In fact, there is a strong similarity
(see Figure 3.1) between balanced terms and the context-free string language of
matching brackets as presented by the grammar:

P ::= ε | [P ] | PP
2Scopes in non-balanced terms can be drawn as floorless boxes (λx.λy.x in Figure 3.1).
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• Scopes can be nested (similar to [P ]). In the λ-term λx.λx.x, the oc-
currence of x is implicitly assumed to be bound by the rightmost λx.
Similarly, the scope of the rightmost λx is ended by the λx in λx.λx. λx.x.

• Scopes can be concatenated (similar to PP ). In the λ-term λx. λx.λx. λx.x,
the scopes of the two λxs do not have overlap/are not nested, in spite of
the latter being ‘to the right’ of the former.

Indeed, the set of balanced λ-terms can be generated by a so-called context-free
term grammar, where context-free term grammars are the natural generalisation
of context-free string grammars, see e.g. Section 2.5 of [23]. A difference between
matching bracket strings and balanced λ-terms is that, due to the branching
structure of terms, several λ’s may match the same λ as in λx.( λx.x)( λx.x),
with both underlined occurrences of x free.

Related work This chapter is the full version of [34], and is under consid-
eration for publication in the Journal of Functional Programming. Compared
to [34] the results in the present chapter are more general, in particular the
key substitution lemmas. Moreover, we have supplied more formal definitions
and some typical proof ideas. For the complete proof development we refer the
reader to [35].

When application of λx is restricted to variables (and end-of-scopes), it
corresponds to Berkling’s lambda-bar [11], which is in turn seen to be a named
version of the successor operator in De Bruijn’s nameless (more precisely: single
name) calculus [19]. Their calculi do not allow successions of boxes, only nestings
of boxes. This corresponds to the sublanguage of the language of matching
brackets (see above) generated by the grammar: B ::= ε | [B].

Restricting to a single name, i.e. to De Bruijn indices, λx corresponds to the
shift substitution [↑] in the λ-calculus with explicit substitutions λσ of [1], or
the shift operation Shi of [21]. The earliest generalisation of De Bruijn indices
seems to be due to Paterson [56]. The idea is to allow the successor S to appear
on subterms, instead of just on indices; as it is written in [15]:

Substitution on de Bruijn terms transforms arguments as well as func-
tion bodies, thus precluding sharing. Consider the example term from
Section 1, with the variables written in unary notation:

λ.0 (λ.S0 0 (λ.SS0 S0 0))

If this term is applied to the term λ.0 S0, the result is

(λ.0 S0) (λ.(λ.0 SS0) 0 (λ.(λ.0 SSS0) S0 0))

where the three versions of the argument are underlined. There is a gen-
eralisation of de Bruijn notation in which S can be applied to any term,
not just a variable (Paterson, 1991). Its effect is to escape the scope of the
matching λ. With this looser representation of terms, one can avoid trans-
forming arguments while substituting. In the above example, substitution
yields

(λ.0 S0) (λ.S(λ.0 S0) 0 (λ.SS(λ.0 S0) S00))

In effect, we have postponed pushing the S’s down to the variables.
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where the ‘example term from Section 1’ is the λ-term λx.x (λy.x y (λz.x y z))
which translates to λ0. (λ.1 0 (λ.2 1 0)) in (their) De Bruijn notation. Applying
the λ-term to a named version, say λx.xy of λ.0 S0, yields (see Subsection 3.4.2)
(λx.xy) (λy.( λy.λx.xy) y (λz.( λz. λy.λx.xy)) y z). So obviously λcorresponds
to the successor S in De Bruijn notation.

Bird and Paterson go on to show that in the balanced (single name) case
the term language of the λ-calculus is context-free by presenting it by means of
the following context-free term grammar:

Term a ::= Var a | App(Term a,Term a) | Abs(Term(Incr(Term a)))
Incr a ::= Zero | Succ a

the idea being that Terms are balanced by generating Incrs, i.e. variables
(Zeros) or end-of-scopes (Succs), at the same time as their matching Abs (ab-
straction).3

When restricting to the balanced case, our boxes correspond closely to boxes
in MELL proof nets for linear logic, see e.g. [46]. In fact, in our optimal imple-
mentation (see Section 3.5) λx disintegrates into a λ (a par in MELL) and (part
of the boundary of) an x-box ((Asperti’s version of) a box in MELL), upon
encountering an application. One can think of these two phases of abstraction
as turning a free variable x into a bound one by closing it off from the outside
world inside an x-box, but providing a handle to x to the outside world again in
the form of the λ. Many proposals for decomposing abstraction into more ele-
mentary notions can be found in the literature, a recent one being [5]. Similarly,
notions of enclosure abound. Analogous to the conflation of the enclosure with
the enclosed as found in (the etymology of) words such as town, garden, park
and paradise, these formalisations may or may not make the boundary explicit,
see e.g. [20, 55, 16] for some recent ones.

In the area of dynamic semantics for natural language, a stack-based seman-
tics for a variant of predicate logic is presented in [37]. Although, the exact
relationship is not clear to us yet, a difference seems to be that in their seman-
tics every variable has its own stack, whereas we have a single stack. However,
also in [11] variables have their own stack.

Implementation All results informally presented here are formalised in Coq.
The source files are available from [35]. The size of the development is 9543 lines
of Coq-code, 259160 bytes; 324 lemmas are proved. The Coq proofs and the λ-
calculus were developed concurrently. The total development time is estimated
one man-year approximately.

Outline The outline of the rest of this chapter is as follows. In Section 3.2 we
define some preliminary notions on abstract rewriting systems. We provide sev-
eral definitions of α-equivalence for λ-terms in Section 3.3, extending classical

3This does not work (directly) for non-balanced terms in the many-variable case.
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definitions as found in the literature on the λ-calculus, prove them to be decid-
able congruence relations, and show them to be equivalent. Then we present
a definition of β-reduction for λ-terms in Section 3.4, extending the usual def-
inition for the λ-calculus, and prove this notion of reduction to be confluent
without α-equivalence. In both (α and β) cases it is shown how the results on
the λ-calculus entail the corresponding results for the ordinary λ-calculus, e.g.
confluence of β-reduction up to α-equivalence. Applications are presented in
Section 3.5. Finally, in Section 3.6, we conclude, and discuss upon the rela-
tionship of the λ-calculus to explicit substitution calculi having the property of
preservation of normalisation.

Acknowledgments We would like to thank the participants of the TCS sem-
inar at the Vrije Universiteit Amsterdam, PAM and the 7th Dutch Proof Tools
Day both at CWI, Amsterdam, ZIC at the Technische Universiteit Eindhoven,
the CS seminar at the University of Leicester, and the TF lunch seminar at
the Universiteit Utrecht, for feedback. Eduardo Bonelli, Marko van Eekelen,
Joost Engelfriet, Stefan Kahrs, Kees Vermeulen, Albert Visser, and the CADE
referees provided useful comments and pointers to the literature.

3.2 Preliminaries

Definition 3.2.1 We define the n-fold composition →n of a binary relation →
as the smallest relation satisfying the following clauses:

x→0 x
reflexivity

x→ y

x→1 y
embedding

x→n y y →m z

x→n+m z
transitivity

The reflexive–transitive closure x→∗ y of → is defined as ∃n.x→n y. The
equivalence closure ↔∗ of → is defined as ∃n.x↔n y, where ↔n is defined
inductively by the former three clauses (replacing all occurrences →k with ↔k)
plus the following one:

y ↔n x

x↔n y
symmetry

Definition 3.2.2 A binary relation R on a set A has the diamond property,
if for all a, b, c : A, a R b and a R c implies there exists d : A, such that c R d
and b R d. R is confluent if its reflexive–transitive closure R∗ has the diamond
property. We say R has the diamond property up to S if for all a, b, c : A, a R b
and a R c implies there exist d, d′ : A, such that c R d, b R d′, and d S d′. R is
confluent up to S if R∗ has the diamond property up to S.

Note that the ordinary diamond property is equivalent to the diamond property
up to identity.

Definition 3.2.3 We say R transits S if R ⊆ S ⊆ R∗, where R1 ⊆ R2 is
defined by ∀xy.x R1 y ⇒ x R2 y.
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Lemma 3.2.1 If R has the diamond property, then it is confluent.

Proof. (See, for example, [67].) By induction on the complexity of the diverging
steps, loading it by: converging steps have the same complexity as opposite
diverging steps. Here we express the complexity by the number of R-steps. The
following statement is proved by induction on the diverging steps:

x Rn y ∧ x Rm z ⇒ ∃u.y Rm u ∧ z Rn u

Lemma 3.2.2 If R transits S and S has the diamond property, then R is con-
fluent.

Proof. By monotonicity (if R ⊆ R′, then R∗ ⊆ R′∗), idempotence (R∗∗ = R∗)
of ∗, and the first assumption, we have R∗ ⊆ S∗ ⊆ R∗. We conclude from the
previous lemma and the second assumption.

3.3 α

We present three distinct definitions of α-equivalence for the λ-calculus known
from the literature, in historical order. We then compare these notions, present
our adaptations of each of them to the λ-calculus, and prove them to be equiv-
alent. For this the existence of fresh variables is required:

Axiom 3.2 (Fresh variable) For any given (finite) stack of variables, there
is a variable not among these, i.e. a fresh variable, ∀X.∃x.x 6∈ X.

3.3.1 λα

Church

Our first notion of α-equivalence is the usual one based on Church’s Postulate I
for the λ-calculus [22], which reads (page 355):

If J is true, if L is well-formed, if all the occurrences of the variable x in
L are occurrences as a bound variable, and if the variable y does not occur
in L, then K, the result of substituting Sx

y L| for a particular occurrence of
L in J, is also true.

where SX
Y U| represents the formula which results when we operate on the formula

U by replacing X by Y throughout, where Y may be any symbol or formula but
X must be a single symbol, not a combination of symbols (page 350 of [22]).

Due to Curry, Postulate I is nowadays known as the α-conversion rule. An α-
conversion step is obtained from the α-conversion rule by allowing its application
to any subterm of a term. An α-conversion consists of a sequence of α-conversion
steps. Finally, a term is said to be α-equivalent to another one, if there exists
an α-conversion relating the former to the latter.
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An advantage of this definition is that it is operational and fine-grained; each
α-conversion step itself is easy to understand since it does only little work. A
disadvantage of this fine-grainedness is that it is at first sight not clear whether
structural properties such as symmetry and decidability of α-conversion hold.
Moreover, it needs the Fresh variable axiom due to the Extra-hand principle: if
both your hands are full, you need a third hand in order to swap their contents.4

Example 3.3.1 The terms λx.λy.xy and λy.λx.yx are α-equivalent. However,
both α-conversion steps replacing x by y and vice versa are forbidden. Hence,
an α-conversion needs to introduce a third, fresh, variable, say z, first:

λx.λy.xy →α λz.λy.zy →α λz.λx.zx→α λy.λx.yx

where we have underlined in each term the variables that are converted in the
subsequent step.

Schroer

In order to prove symmetry and decidability of α-equivalence as defined in the
previous paragraph, one may try to find a strategy for α-conversion such that
the number of α-conversion steps needed in a conversion from s to t is bounded
by, say, the sum of the sizes of s and t. An obvious way to bound the number
of steps is by restricting α-conversion by:

Never rename twice.

However, from Example 3.3.1 we immediately see that this is too strict a re-
striction; the leftmost λ-abstraction needs to be renamed twice. Hence renaming
once is not enough, but, as the example suggests our assumption may be re-
placed by:

Never rename thrice.

Such an idea appears at least as early as Schoer’s PhD thesis, see page 384 of
his [62]:

Scholium 3.44. The proof of Theorem 3.44 below

has as its germ the following procedure to determine of

A,B ε Wocc whether or not A adj B: Let Z1, Z2,... be

singleton expressions of the alphabetically earliest

variables not occurring at all in either of A,B ,

enumerated without repetitions. In each of A,B , change

quantifiers from left to right, replacing the given variables

by the Z’s in order. There will result A’,B’ such that

A adj A’ . B adj B’ , and such that A adj B . ≡ . A’ = B’ .

where adj is his notion of α-equivalence and Theorem 3.44 states decidability.
4There is the well-known way to swap the contents of two registers in situ by perform-

ing three exclusive-or’s (xor); in Java: r1 ^= r2; r2 ^= r1; r1 ^= r2 where op1 ^= op2 is
equivalent to op1 = op1 ^ op2 and ^ is bitwise xor. Here, we will not assume the structure
needed for this, e.g. a Boolean ring on the variables.
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Example 3.3.2 Applied to Example 3.3.1 Schroer’s procedure yields:

λx.λy.xy →α λz1.λy.z1y →α λz1.λz2.z1z2 ←α λz1.λx.z1x←α λy.λx.yx

Of course, to prove that this is an α-conversion one needs to prove that the last
two backward α-steps are forward α-steps as well; they are.

Symmetry of a definition based on Schroer’s procedure is trivial, decidability and
reflexivity are also not too difficult, but now transitivity is not so simple because
of the choosing of the alphabetically earliest variables not occurring
at all in either of A,B which may differ for A,B and B,C, when proving A
adj C.5 Also note that the procedure is not very parsimonious; it allocates as
many fresh variables as there are λ-abstractions (quantifiers) in a term, where a
single one (one extra hand) would suffice, as noted, e.g., by [27]. This fact may
be seen by proceeding in a top-down fashion, the only interesting case being
abstraction:

(abstraction) Suppose s = λx.s′ and t = λy.t′, such that the variables ‘above’
them have already been made identical. We proceed by first converting
every x in s into z. Next, every y is converted into x and finally, every
z is converted into y, resulting in, say, ŝ. Now ŝ and t have the same
initial binder, and we proceed on the respective subterms. To prove that
this procedure is correct, one uses that y does not occur free in s′ since
otherwise s and t would not be α-equivalent. Symmetrically, x does not
occur free in t′.

Example 3.3.3 α-converting, say, λx1x2x3.x1x2x3 into λx2x3x1.x2x3x1 using
this procedure proceeds as follows. First, we swap, using a fresh variable y, x1

with x2 yielding λx2x1x3.x2x1x3. Hence the first variable has been appropriately
renamed, and we may proceed on the respective subterms. In order to α-convert
λx1x3.x2x1x3 into λx3x1.x2x3x1, we swap, using the same y, x1 and x3 in the
former yielding the latter and we are done (formally one needs to continue with
twice the subterm λx1.x2x3x1, but nothing ‘happens’ anymore.)

Kahrs

Both the problem of showing transitivity and the need for the Fresh variable
axiom can be overcome by making renaming implicit. That is, instead of explic-
itly relating terms by explicitly renaming variables, one may set up an (implicit)
correspondence between their respective variables. For instance, the two terms
in Example 3.3.1 are shown α-equivalent by letting x and y in the first cor-
respond to y and x in the second. However, the correspondence needs more
structure than just a bijection between the sets of variables in both terms.

Example 3.3.4 The terms λx.xλy.y and λx.xλx.x are α-equivalent, but this
cannot be shown by means of a bijection between variables.

5Compared to Church’s α-conversion Schroer’s procedure needs variables to be alphabeti-
cally sorted. Here, we will not assume the structure needed for this (e.g. a well-order) on the
collection of variables.
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ε ` x = x Γ, x = y ` x = y

v 6= x y 6= z Γ ` v = z

Γ, x = y ` v = z

x, y ∈ Var Γ ` x = y

Γ ` x ≡ y
F ∈ Sym

Γ ` F ≡ F

Γ, x = y ` t ≡ u

Γ ` [x]t ≡ [y]u

Γ ` A ≡ C Γ ` B ≡ D

Γ ` AB ≡ CD

Figure 3.2: Proof rules for α-congruence [43].

To define α-equivalence inductively, one has to set up a correspondence between
stacks of variables. Such an idea appears in Kahrs’ paper [43]; to quote from it:

We also define a notion of α-congruence for our terms. It is the usual one,
but we shall use it in a slightly more general setting, based on proof rules.

Definition 11. Sentences are of the form Γ ` t ≡ u or Γ ` x = y, where
x and y are variables, t and u are terms of the same type and arity, and
Γ is an environment. An environment is a list x1 = y1, · · · , xn = yn

of equations between variables. We write ε for the empty environment
(n = 0). A sentence holds, if it can be derived by the proof rules in
figure 2.

where we present the proof rules of ‘figure 2’ in Figure 3.2. It is to be understood
that two terms A and B are α-equivalent, if ε ` A ≡ B can be derived by the
proof rules in Figure 3.2. One easily proves by induction that α-congruence
defined in this way, has all the desired structural properties, e.g. transitivity
and decidability. But, of course, it is less clear how to decompose α-equivalence
into ‘atomic’ renaming steps.

3.3.2 λα

We show that each of the three definitions of α-equivalence can be straightfor-
wardly extended from λ-terms to λ-terms. In each case, we highlight the key
aspect of our formalisation in Coq. We start with some necessary technicalities.
Apart from the ‘renaming of boxes’ (Definition 3.3.2), these may be skipped by
the experienced reader who is referred to page 61.

We shall need to test whether a variable is fresh with respect to a term.

Definition 3.3.1 The relation x ∈ M , saying whether x occurs in M (free or
bound) is defined by:

x ∈ y, if x = y
x ∈ λy.M , if x = y or x ∈M
x ∈ λy.M , if x = y or x ∈M
x ∈MN , if x ∈M or x ∈ N

We say x is fresh for M if x 6∈M .
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As usual, α-conversion is defined using a renaming function to identify ex-
pressions that differ only in the names assigned to their bound variables. For
λ-terms this means the renaming of boxes (viz. Figure 3.1). Renaming the

(outer) x-box in λx.M into a y-box, means to replace λx by λy and to re-
place all matching occurrences of variables x and end-of-scopes λx in M by y
and λy respectively. The first argument of renaming (x:=y) is fixed (as usual).
Matching is performed using a stack (the second argument of renaming, ini-
tially empty) to record the binders encountered while descending recursively; it
is pushed upon when passing an abstraction, and popped from when meeting
an end-of-scope:

Definition 3.3.2 Renaming the outer x-box in λx.M into a y-box, λy.M [x:=y],
is defined using M [x:=y] = M [x:=y,2], where M [x:=y, Z] is defined by the fol-
lowing recursive equations:

z[x:=y, Z] = z, if z ∈ Z or z 6= x (1)
z[x:=y, Z] = y, if z 6∈ Z and z = x (2)

(λz.M)[x:=y, Z] = λz.M [x:=y, zZ] (3)
( λz.M)[x:=y,2] = λy.M , if x = z (4)
( λz.M)[x:=y,2] = λz.M , if x 6= z (5)

( λz.M)[x:=y, z′Z] = λz.M [x:=y, Z], if z = z′ (6)
( λz.M)[x:=y, z′Z] = ( λz.M)[x:=y, Z], if z 6= z′ (7)
(M1M2)[x:=y, Z] = M1[x:=y, Z]M2[x:=y, Z] (8)

In clause (5) λz implicitly closes the scope of x; therefore, in the result, we can
think of λz as implicitly closing the scope of y.

Example 3.3.5 (x λx.x)(λx.(x λx.x))[x:=y] = (y λy.x)λx.(x λx.y)

In case of ordinary λ-terms the stack Z only grows during renaming, rendering
the variable to be renamed inaccessible once it is abstracted from again:

Lemma 3.3.1 If M is a λ-term, then (λx.M)[x:=y] = λx.M .

Proof. Note that (λx.M)[x:=y] = λx.M [x:=y, x]. One proves by induction on
the λ-term M , that if x occurs in X, then M [x:=y,X] = M .

The following two properties of renaming will be needed in the proof of
commutation of β-reduction and α-equivalence. The first states commutativity
of renaming:

Lemma 3.3.2 M [x:=z,XyY ][y:=z′, X] = M [y:=z′, X][x:=z,Xz′Y ], if z fresh
for y,M,X and z′ fresh for M,X.

Secondly, renaming x into z, followed by renaming z into z′, amounts to the
same as directly renaming x into z′:

Lemma 3.3.3 M [x:=z,X][z:=z′, X] = M [x:=z′, X], if z 6∈M,X.

When we project β-reductions in the λ-calculus to β-reductions in the λ-calculus
(Section 3.4.4), we need to reason about the set of free variables of a term:
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Definition 3.3.3 The set of free variables of a term M , FV(M), is defined as
FV(M,2), where FV(M,X) is defined by the following recursive equations.

FV(x,X) = {x} −X (1)
FV(λx.M,X) = FV(M,xX) (2)
FV( λx.M,2) = FV(M,2) (3)

FV( λx.M, x′X) = FV(M,X), if x = x′ (4)
FV( λx.M, x′X) = FV( λx.M,X), if x 6= x′ (5)

FV(MN,X) = FV(M,X) ∪ FV(N,X) (6)

Note that, in clause (5), λx implicitly closes the scope x′, which is therefore
popped from the stack of currently open scopes.

Remark 3.3.1 Note that if M is balanced under X we have FV(M,X) = ∅.
This implies that terms balanced under the empty stack are closed.

In the sequel it will sometimes be useful to forget about the binding structure
of terms. To that end, we map terms to first-order terms by simply forgetting
names (equivalently: mapping all names to a single one):

Definition 3.3.4 First we define a set T of first-order terms:

T ::= � | λT | λT | @TT

The skeleton [M ]skel of an λ-term M is such a first-order term defined induc-
tively by:

[x]skel = �
[ λx.M ]skel = λ[M ]skel
[λx.M ]skel = λ[M ]skel
[M1M2]skel = @[M1]skel[M2]skel

For instance, the proof of Lemma 3.4.20 proceeds by induction over the skeleton
of a term, using the fact that renaming preserves skeletons:

Lemma 3.3.4 [M [x:=y]]skel = [M ]skel.

Unary contexts are used to express congruences.

Definition 3.3.5 Unary contexts are typed Λ→ Λand built from

[ ], C ◦ C ′, λx.[ ], λx.[ ],M [ ], [ ]M

where C,C ′ are unary contexts. We write C[M ] to denote the result of filling
the hole in C by term M ; (C ◦ C ′)[M ] = C[C ′[M ]].

Now that we have defined some technical preliminaries, we are ready to
extend the three notions of α-equivalence given in Subsection 3.3.1 to the λ-
calculus.
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Church

The notion of α-conversion is extended to the λ-calculus.

Definition 3.3.6 The α-rule is λx.M → λy.M [x:=y] if y 6∈ M . Single-step
α-renaming, →α, is defined as the compatible closure of the α-rule:

(M,N) ∈ α
M →α N

M →α N

λx.M →α λx.N

M →α N

λx.M →α λx.N

M →α M
′

MN →α M
′N

N →α N
′

MN →α MN ′

The relation =c
α, which we define as ↔∗

α, i.e. the equivalence closure of →α, is
called α-conversion.

The clause dealing with λis just a compatibility clause, cf. 3.1.1. Definition
of [4], since at the time one comes across an λ, all the (renaming) work has
already been performed by its matching abstraction. Due to Lemma 3.3.1, our
definitions of α-step and α-conversion coincide with that of [4] in the case of
λ-terms.

Schroer

Our definition of α-equivalence à la Schroer makes use of an auxiliary stack Z
which records the variables chosen thusfar for renaming.

Definition 3.3.7 α-equivalence à la Schroer, M =s
α N , is defined as ∃Z.M =Z

α

N , where M =Z
α N is defined by:

M [x:=z] =Z
α N [y:=z] z 6∈M,N,Z

λx.M =zZ
α λy.N

x =Z
α x

M =Z
α N

λx.M =Z
α λx.N

M =Z
α M ′ N =Z

α N ′

MN =Z
α M ′N ′

Again all the work is performed in the clause for abstraction. Compared to
α-conversion =c

α above, the variable chosen for renaming is now much fresher:
not only must it be fresh for M , but also for N and for the variables Z chosen
thusfar. The clause dealing with λis just a compatibility clause, as above.

Kahrs

Our definition of α-equivalence à la Kahrs reads as follows. It makes use of two
auxiliary stacks (both initially empty), to set up the correspondence between
the variables in M and N mentioned above.
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Definition 3.3.8 We define M =k
α N , if 〈2〉M =k

α 〈2〉N , where for stacks of
variables X and Y , 〈X〉M =k

α 〈Y 〉N is inductively defined as follows:

〈2〉x =k
α 〈2〉x

〈xX〉x =k
α 〈yY 〉y, if |X| = |Y |

〈x′X〉x =k
α 〈y′Y 〉y, if x′ 6= x, y′ 6= y, and 〈X〉x =k

α 〈Y 〉y
〈X〉λx.M =k

α 〈Y 〉λy.N , if 〈xX〉M =k
α 〈yY 〉N

〈2〉 λx.M =k
α 〈2〉 λx.N , if 〈2〉M =k

α 〈2〉N
〈xX〉 λx.M =k

α 〈yY 〉 λy.N , if 〈X〉M =k
α 〈Y 〉N

〈x′X〉 λx.M =k
α 〈y′Y 〉 λy.N , if x′ 6= x, y′ 6= y and 〈X〉 λx.M =k

α 〈Y 〉 λy.N
〈X〉M1M2 =k

α 〈Y 〉N1N2, if 〈X〉M1 =k
α 〈Y 〉N1 and 〈X〉M2 =k

α 〈Y 〉N2

where |X| denotes the length of stack X.

The variable, abstraction and application clauses in the definition above can
easily be seen to be corresponding to the clauses in Figure 3.2. The end-of-
scope clauses are analogous to the clauses for variables. Unique reading holds
up to α-equivalence:

Lemma 3.3.5 If 〈X〉M =k
α 〈Y 〉N , then

• M and N have the same skeleton: [M ]skel = [N ]skel.

• X and Y have the same length: |X| = |Y |.

• M and N have the same set of free variables: FV(M,X) = FV(N,Y ).

As a consequence we have conservativity of α-equivalence over the λ-calculus
(Lemma 3.3.7). Note that the third end-of-scope clause of Definition 3.3.8 ex-
presses that ending the scope of some variable x automatically ends the scope
of the variables which were bound later than x. By conservativity of =k

α, this
clause can be omitted for scope-balanced terms. For balanced terms we can do
with only four clauses:

〈x〉x =k
α 〈y〉y

〈xX〉 λx.M =k
α 〈yY 〉 λy.N

〈X〉λx.M =k
α 〈Y 〉λy.N , if 〈xX〉M =k

α 〈yY 〉N
〈X〉M1M2 =k

α 〈Y 〉N1N2, if 〈X〉M1 =k
α 〈Y 〉N1 and 〈X〉M2 =k

α 〈Y 〉N2

If 〈X〉M =k
α 〈Y 〉N holds, then the pair of stacks (X,Y ) can be seen as an update

on the identity relation (which obviously is a bijection) on variable names, the
result of which is a bijection between the ‘free’ variables of M and N . Indeed,
as stated by the following lemma, inserting the same variable on the bottom
of both stacks is irrelevant. This lemma is needed, e.g., to show that =k

α is a
congruence (abstraction case).

Lemma 3.3.6 〈X〉M =k
α 〈Y 〉N iff 〈Xz〉M =k

α 〈Y z〉N
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Proof. The proof is by induction on the derivations. The only interesting cases
are the variable and end-of-scope cases, which are similar. So, suppose M = x
and N = y.

(⇐) By induction on stack X, and inversion6 of the instances of 〈Xz〉x =k
α

〈Y z〉y.

– If X = 2, then Y = 2 (by Lemma 3.3.5), and 〈2〉x =k
α 〈2〉y follows,

since either x = z = y or x 6= z 6= y.

– IfX = x′X ′, then Y = y′Y ′ (by Lemma 3.3.5). Inverting 〈x′X ′z〉x =k
α

〈y′Y ′z〉y gives two possibilities. Either x = x′, y = y′ and |X ′z| =
|Y ′z|, then 〈x′X ′〉x =k

α 〈y′Y ′〉y follows by application of the second
clause; or x 6= x′ and y 6= y′, then our goal follows by application of
the third clause of =k

α and the induction hypothesis.

(⇒) – Case 〈2〉x =k
α 〈2〉x. If x = z, then we conclude by application of

the second defining clause of =k
α. If x 6= z, then 〈z〉x =k

α 〈z〉x follows
from the third clause of =k

α and the assumption.

– Case 〈xX〉x =k
α 〈yY 〉y with |X| = |Y |; so |Xz| = |Y z| and 〈xXz〉x =k

α

〈yY z〉y follows from application of the second clause of =k
α.

– Case 〈x′X〉x =k
α 〈y′Y 〉y, where x 6= x′ and y 6= y′; then 〈x′Xz〉x =k

α

〈y′Y z〉y follows from application of the third rule of =k
α and the

induction hypothesis.

Results on α-equivalences

Theorem 3.3.1 All three notions of α-equivalence are equivalent:

=c
α = =s

α = =k
α

Note that to prove that λ-terms which are α-equivalent à la Kahrs are α-
equivalent according to the other two definitions, one essentially uses the Fresh
variable axiom. (It is not needed in the other direction.)

Theorem 3.3.2 α-equivalence is a congruent equivalence relation.

Proof. Taking the inductive definition of Kahrs, the results are all proven by
straightforward inductions on the definition, loading them appropriately with
stacks.

Lemma 3.3.7 α-equivalence preserves λ-terms, scope-balancedness, balanced-
ness, and λ-terms.

6Inverting a statement P (t), where P is an inductive predicate, means to derive for each
possible constructor ci : A1 → · · · → An → P (t) all the necessary conditions A1, . . . , An that
should hold for the instance P (t) to be proved by ci.
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Preservation of λ-terms implies that also for the ordinary λ-calculus, the three
notions of α-equivalence are equivalent (in the way we have formalised them),
yielding as far as we know the first formal such results, e.g. of transitivity and
decidability (only assuming decidability of equality of names).

Remark 3.3.2 Proving the three definitions of α-equivalence to be equivalent
served mainly as sanity check for our extension of α-equivalence from λ- to
λ-calculus. We do not (cl)aim to have covered all definitions of α-equivalence

in the literature, see e.g. [68], but, based on the above, we strongly believe that
the notion we have captured is the proper one. During proof development, (the
generalisation of) Kahrs’ definition was by far the easiest to work with, because
of it being defined inductively. Note that his definition ‘works’ directly for the
infinitary λ-calculus as well (defined, say, analogously to Chapter 12 of [67]).

3.4 β

We extend β-reduction to λ-terms, and show it to be confluent without renam-
ing. Confluence of β-reduction up to α-equivalence is obtained as a corollary,
by defining suitable projections and liftings of their respective reductions.

3.4.1 λβ

In Chapter 3 of [4], the binary relation →β on Λ is defined as the compatible
closure of the notion of reduction β = {((λx.M)N,M [x:=N ])|M,N ∈ Λ}. The
substitution M [x:=N ] in the right-hand side of β is the naive one, i.e. up to
α-congruence which is denoted by ≡α. The naive approach is in turn justified by
showing α-congruence to be a congruence for Curry’s definition of substitution:

Let M , N ∈ Λ. Then M [x:=N ] is defined inductively as follows (even if
the variable convention is not observed).

M M [x:=N ]

x N
y 6≡ x y
M1M2 M1[x:=N ]M2[x:=N ]
λx.M1 λx.M1

λy.M1, y 6≡ x λz.M1[y:=z][x:=N ]
where z ≡ y if x 6∈ FV(M1) or y 6∈ FV(N),
else z is the first variable in the sequence
v0, v1, v2, . . . not in M1 or N .

Our notion of substitution on Λ differs from Curry’s in several ways.7

The first difference is ‘under the hood’. Curry’s definition is not a recursive
one (to Coq) because of its final clause. Instead, we base our recursive definition
on the skeleton [M ]skel (Definition 3.3.4).

The second difference is more important and serves to ‘make α-congruence
explicit’. The point is that the last clause in Curry’s definition of substitution

7Apart from that we do not assume variables to be ordered, as mentioned above.



3.4. β 65

is neither perspicuous nor technically convenient. On the one hand, it encodes
several cases at once relying on the ‘coding trick’ thatM [y:=y] equalsM , in case
x 6∈ FV(M1) or y 6∈ FV(N). On the other hand, renaming of bound variables
is not incorporated in a modular way. Our definition addresses both issues by
performing renaming first on λy.M1 in case there is the threat of confusion of
variables. The definition is recursive (to Coq) if one decrees ‘threat of confusion
of variables’ larger than ‘no confusion’.

Definition 3.4.1 Substitution on λ-terms is defined as above, except for the
clauses of λ-abstraction, which are to be replaced by:

λy.M1 λy.M1[x:=N ]
if x 6= y and y 6∈ FV(N)

λy.M1 (λz.M1[y:=z])[x:=N ]
otherwise, with z such that λy.M1 =α λz.M1[y:=z],
x 6= z, and z 6∈ FV(N).

Despite the apparent differences, this definition is seen (proven) to be more
liberal than Curry’s (it does not need the variables to be linearly ordered).

Remark 3.4.1 The proviso that names are ordered linearly only serves to make
Curry’s definition definite. However, the definiteness assumption doesn’t cause
β-reduction to be definite. That is, different β-reductions possibly result in α-
different normal forms, as in the following example from [36]; abbreviate M =
(λx.(λy.λx.xy)x)y:

M →β (λx.λz.zx)y →β λz.zy
M →β (λy.λx.xy)y →β λx.xy

Thus, the definiteness of Curry’s definition still gives an arbitrary choice. Even
stronger, as no definite α-renaming scheme would cause β-reduction to be def-
inite, we don’t assume definiteness. Of course, for implementation purposes
often a choice function is needed.

3.4.2 λβ

We present the definition of β-reduction and the salient points of its proof of
confluence. Compared to the ordinary λ-calculus, the β-rule must now take
care of an arbitrary number of λs which are ‘inbetween’ the application and the
abstraction. In such cases, the scopes of the λs are extruded in a minimal way so
as to contain the scope of the abstraction, after which β-reduction proceeds as
usual (see Figure 3.3, where it is irrelevant where scopes are in N). In order to
perform all these operations in one go, our notion of substitution as employed
by β-reduction has three arguments, of which the second corresponds to the
usual one.
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Figure 3.3: β-reduction: scope extrusion, rewiring and x-box removal, and repli-
cation.

Definition 3.4.2 The β-rule is ( λX.λx.M)N →M [X,x:=N,2]. The relation
→β is the compatible closure of the β-rule:

(M,N) ∈ β
M →β N

M →β N

λx.M →β λx.N

M →β N

λx.M →β λx.N

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

The third argument of substitution, which initially is the empty stack, serves
to determine whether an occurrence of x in M matches with the x to be sub-
stituted for. In particular, during substitution this stack is pushed upon when
encountering an abstraction, and popped from when meeting an end-of-scope:

Definition 3.4.3 Substitution M [X,x:=N,Y ] is defined by:

y[X,x:=N,Y ] = y, if y ∈ Y (1)
y[X,x:=N,Y ] = λY.N , if y 6∈ Y , x = y (2)
y[X,x:=N,Y ] = λY. λX.y, if y 6∈ Y , x 6= y (3)

(λy.M)[X,x:=N,Y ] = λy.M [X,x:=N, yY ] (4)
( λy.M)[X,x:=N, JyY ′] = λy.M [X,x:=N,Y ′], if y 6∈ J (5)

( λy.M)[X,x:=N,Y ] = λY. λX.M , if y 6∈ Y , x = y (6)
( λy.M)[X,x:=N,Y ] = λY. λX. λy.M , if y 6∈ Y , x 6= y (7)

(M1M2)[X,x:=N,Y ] = M1[X,x:=N,Y ]M2[X,x:=N,Y ] (8)

Capture of free variables in the argument N is avoided by closing all open scopes
Y , as expressed in clause (2). In case λX is to be put, the open scopes Y have
to be closed first (3, 6, 7), as will be explained below. Important clauses are
(6) and (7), which explain the end-of-scope. Basically they say that if we have
reached an end-of-scope, which matches (6) or jumps (7) the variable x to be
subtituted for, then we can just throw the argument N away; this is safe since
we know that x does not occur free in M .

To explain clauses (5, 6, 7), consider an initial call:

( λy.M)[X,x:=N,2]
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Firstly, note that jumps within the body M remain untouched. To see this,
imagine a recursive call:

( λy.M ′)[X,x:=N, JyY ′]

on a subterm λy.M ′ of M , and suppose y 6∈ J . According to our jump seman-
tics, λy implicitly ends the scopes J ; this implicitness is kept in the resulting
λy.M ′[X,x:=N,Y ′] (clause (5)).

Secondly, in order for minimal scope extrusion of the X (originating from
a β-redex) to be safe, the opened scopes J in ( λy.M ′)[X,x:=N, J ] have to
be closed explicitly in case y 6∈ J , i.e. in case λy ends the scope of some λy
outside the body M . In that case, jump semantics prescribes that the scope of
the substitution variable x is closed either explicitly (x = y, (6)) or implicitly
(x 6= y, (7)) by λy and we want to put the λX. Now if we do not put the λJ
first, there is the threat that X explicitly closes J , which is unintended. This
point is demonstrated by the following example:

Example 3.4.1 Consider the term P = ( λz.λy.(λx. λy.M)N)L and note that
both scopes of the abstractions λx and λy are closed in front of M , as λy implic-
itly closes λx. Therefore both N and L vanish when reducing P , as shown by the
following two reduction paths from P . Substitutions are written out explicitly;
the numbers stacked above ‘=’ refer to the clauses in Definition 3.4.3. Assume
x 6= y. The sequence starting with contraction of the inner redex of P runs as
follows:

P →β ( λz.λy.( λy.M)[2, x:=N,2])L
7= ( λz.λy. λy.M)L
→β ( λy.M)[z, y:=L,2]

6= λz.M

The sequence starting with contraction of the outer redex of P runs as follows:

P →β ((λx. λy.M)N)[z, y:=L,2]
8,4
= (λx.( λy.M)[z, y:=L, x])N [z, y:=L,2] = P ′

6= (λx. λx. λz.M)N [z, y:=L,2]
→β ( λx. λz.M)[2, x:=N [z, y:=L,2],2]

6= λz.M

Focus on the underlined substitution in the second sequence:

( λy.M)[z, y:=L, x] = λx. λz.M

and note that it would be wrong to forget that λy implicitly closes the λx in
front, and put ( λy.M)[z, y:=L, x]

wrong!
= λz.M . That this is wrong shows up if,
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by coincidence, x = z. We would then get:

P ′ wrong!
= (λx. λz.M)N [z, y:=L,2]
→β ( λz.M)[2, x:=N [z, y:=L,2],2]

6= M(assuming x = z)

and confluence would be broken: λz.M 6= M .

Remark 3.4.2 The defining clauses (5, 6, 7) for ( λy.M)[X,x:=N,Y ] are ex-
haustive, because if y ∈ Y , then Y = JyY ′ for some J, Y ′ such that y 6∈ J . The
implementation actually uses a nested recursion on Y with an auxiliary stack
J (initially empty) recording the opening scopes in Y that are jumped (and
closed) by λy (thus, the invariant is: y 6∈ J). Define ( λy.M)[X,x:=N,Y ] =
( λy.M)[X,x:=N,Y ](2), where ( λy.M)[X,x:=N,Y ](J) is defined as follows.

( λy.M)[X,x:=N,2](J) = λJ. λX.M , if x = y (J1)
( λy.M)[X,x:=N,2](J) = λJ. λX. λy.M , if x 6= y (J2)

( λy.M)[X,x:=N, zY ](J) = λy.M [X,x:=N,Y ], if y = z (J3)
( λy.M)[X,x:=N, zY ](J) = ( λy.M)[X,x:=N,Y ](Jz), if y 6= z (J4)

Note that z is inserted at the bottom of J in clause (J4), to maintain the original
order of scopes. The clauses for λy.M in Definition 3.4.3 are derived from these
J-clauses.

Confluence of λ-calculus

We discuss our formalised proof of confluence of →β . Our proof strategy is the
usual Tait and Martin-Löf proof [4], hence is essentially based on the so-called
substitution lemma on page 27 of [4]:

2.1.16. Substitution Lemma. If x 6≡ y and x 6∈ FV(L), then

M [ x:=N ][ y:=L] ≡ M [ y:=L]
h

x:=N [ y:=L]
i

which arises when computing the critical pair for the λ-term (λy.(λx.M)N)L.
Interestingly, in our case the substitution lemma splits into three lemmas: the
closed substitution lemmas arise when the scope of y is ended (either explicitly
or implicitly) in front of the λx; the open substitution lemma is the usual one,
enriched with scoping information. We will comment on this below. Otherwise,
the proof is entirely standard, (inductively) introducing multi-steps, proving
that multi-steps have the diamond property and that β-reduction transits multi-
steps.

What is interesting to note is that no α-conversion is needed. One might say
that this is no surprise, since explicitly dealing with end-of-scopes constitutes
a renaming mechanism in itself. Still, it is in our opinion surprising that the
minimal scope-extrusion mechanism works nicely on non-balanced terms (cf. the
discussion of confluence of MELL proof net reduction in [46]).
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Adapting the substitution lemma to our calculus, we end up simplifying
expressions of the shape ( λX.M)[Z, x:=N,Y ]. First, to get an understanding
of what is going on, consider the case of scope-balanced terms. Suppose that
λX.M is scope-balanced under Y xW . Then we know, since end-of-scopes X

‘balance’ (a part of) Y xW , that X and Y are overlapping, that is, either:

• Z exceeds Y , X = Y xX ′, then ( λX.M)[Z, x:=N,Y ] = λY ZX ′.M ; or:

• X is part of Y , Y = XY ′, then ( λX.M)[Z, x:=N,Y ] = λX.M [Z, x:=N,Y ′].

Jump terms demand extra care and we need a different (more general) notion
of comparison between opening scopes Y and closing scopes X. Consider, once
more, ( λX.M)[Z, x:=N,Y ]. We distinguish three cases.

1. End-of-scopes X close more scopes than opened by Y , thus X includes the
scope of the substitution variable x, which is closed either

(a) explicitly; or
(b) implicitly.

2. End-of-scopes X close some (possible all) of the open scopes Y .

To formalise this case distinction, we define scope subtraction. Subtraction Y−X
results in a pair of stacks, of which the first is either negative (item 1) or positive
(the complementary case, item 2). The second stack of the pair computed by
Y − X is a stack J used only if the first stack is negative, say −zX ′. In that
case the substitution variable x is either matched (item 1a) or jumped (item 1b)
by z, as will be shown below.

Definition 3.4.4 Define Y −X = Y −2 X, where X −J Y is defined by the
following clauses.

Y −J 2 = (Y, J) (1)
2 −J xX = (−xX, J) (2)
yY −J xX = Y −2 X, if x = y (3)
yY −J xX = Y −Jy xX, if x 6= y (4)

The auxiliary stack J (initially empty) consists of the scopes in Y jumped by
the current top of X. This can be inferred by clause (4), where y is inserted at
the bottom of J , to maintain the original order of scopes. The argument J is
reset to 2 in case the top of X matches the top of Y (clause (3)). It’s easy to
see that if Y −X is positive, then J is the empty stack.

Note that the idea of an auxiliary stack J is similar to the idea in Re-
mark 3.4.2, only in a more general form to cope with λX instead of λy. Indeed,
clauses (5, 6, 7) of Definition 3.4.3 can also be defined using scope-subtraction:

( λy.M)[Z, x:=N,Y ] =

 λy.M [Z, x:=N,Y ′], if Y − y = (Y ′,2)
λY. λZ.M , if Y − y = (−y, Y ), x = y
λY. λZ. λy.M , if Y − y = (−y, Y ), x 6= y

To see the equivalence, note that:
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• if y ∈ Y , then Y = JyY ′ for some J, Y ′ such that y 6∈ J , and JyY ′ − y =
yY ′ −J y = (Y ′,2);

• if y 6∈ Y , then Y − y = (−y, Y ).

If X and Y are overlapping, clause (4) in Definition 3.4.4 never applies
(cf. the case distinction for scope-balanced terms on page 69):

Lemma 3.4.1

Y1Y2 − Y1 = (Y2,2) (Y ≥ X,Y = Y1Y2, X = Y1)
X1 −X1xX2 = (−xX2,2) (Y < X, Y = X1, X = X1xX2)

For arbitrary stacks X,Y , we can decide whether the outcome of subtracting
X from Y is positive or negative:

Lemma 3.4.2 The result Y −X of scope-subtracting X from Y is either

(Y2,2), and then Y = Y1Y2; or
(−zX2, J), and then X = X1zX2.

Proof. By appropriately loaded induction over Y . We refer to our Coq formali-
sation for more details.

Now we are ready to simplify expressions ( λX.M)[Z, x:=N,Y ] based on the
case distinction mentioned above.

Lemma 3.4.3 If Y −X1zX2 = (−zX2, J) and x = z, then

( λX1zX2.M)[Z, x:=N,Y ] = λX1JZ. λX2.M

Lemma 3.4.4 If Y −X1zX2 = (−zX2, J) and x 6= z, then

( λX1zX2.M)[Z, x:=N,Y ] = λX1JZzX2.M

Lemma 3.4.5 If Y1Y2 −X = (Y2,2), then

( λX.M)[Z, x:=N,Y1Y2] = λX.M [Z, x:=N,Y2]

Let us now present the substitution lemmas. We use the notation S− to
denote the reversal of a stack S, i.e. if S = x0 . . . xn, then S− = xn . . . x0. In
general, we want to compute the critical pair(s) from:

P = ( λZ.λy.λY −.( λX.λx.λW−.M)N)L

Inside-out reduction, P →2
β Pin,out, gives:

Pin,out = λY −.λW−.M [X,x:=N,W ][Z, y:=L,WY ]

First β-reducing the outer redex, gives:

Pout = λY −.( λX.λx.λW−.M)[Z, y:=L, Y ]︸ ︷︷ ︸
Q

N [Z, y:=L, Y ]

We distinguish three cases for Pout →β Pout,in:
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• X = X1zX2, Y −X = (−zX2, J) and y = z, then, by Lemma 3.4.3:

Q = λX1JZX2.λx.λW
−.M ; and we get:

Pout,in = λY −.λW−.M [X1JZX2, x:=N [Z, y:=L, Y ],W ].

Then, Pin,out = Pout,in by Lemma 3.4.6.

• X = X1zX2, Y −X = (−zX2, J) and y 6= z, then by Lemma 3.4.4:

Q = λX1JZzX2.λx.λW
−.M ; and we get:

Pout,in = λY −.λW−.M [X1JZzX2, x:=N [Z, y:=L, Y ],W ].

Then, Pin,out = Pout,in by Lemma 3.4.7.

• Y = Y1Y2 and Y −X = (Y2,2); then, by Lemma 3.4.5:

Q = λX.λx.λW−.M [Z, y:=L,WxY2]; and we get:
Pout,in = λY −.λW−.M [Z, y:=L,WxY2][X,x:=N [Z, y:=L, Y1Y2],W ].

Then, Pin,out = Pout,in by Lemma 3.4.8.

The closed substitution lemmas arise when the scope of y is ended by some
(possibly implicit) λy in front of the λx, e.g. in (λy.( λy.λx.M)N)L.

Example 3.4.2 As an illustration, we compute the critical pair arising from
P = (λy.( λy.λx.M)N)L. If we start with the inner redex, we get:

P →β (λy.M [y, x:=N,2])L
→β M [y, x:=N,2][2, y:=L,2]

Performing the outer redex first:

P →β (( λy.λx.M)N)[2, y:=L,2]
= ( λy.λx.M)[2, y:=L,2]N [2, y:=L,2]
= (λx.M)N [2, y:=L,2]
→β M [2, x:=N [2, y:=L,2],2]

Note that the substitution for y in M has disappeared from the right-hand side,
corresponding to the erasing effect of the λy in front of it. Indeed,

M [y, x:=N,2][2, y:=L,2] = M [2, x:=N [2, y:=L,2],2]

follows from Lemma 3.4.6.

If the scope of the substitution variable y is ended explicitly by some λy in front
of the λx, the following lemma springs up.

Lemma 3.4.6 (Closed substitution lemma (match))

M [X1zX2, x:=N,W ][Z, y:=L,WY ]
= M [X1JZX2, x:=N [Z, y:=L, Y ],W ], if Y −X1zX2 = (−zX2, J), y = z
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Remark 3.4.3 By the previous lemma and Lemma 3.4.1 we obtain:

M [X1yX2, x:=N,W ][Z, y:=L,WX1]
= M [X1ZX2, x:=N [Z, y:=L,X1],W ]

which is applicable when proving the multi-step substitution lemma for scope-
balanced terms.

If the scope of the substitution variable y is ended implicitly by some λz in front
of the λx, the following lemma springs up.

Lemma 3.4.7 (Closed substitution lemma (jump))

M [X1zX2, x:=N,W ][Z, y:=L,WY ]
= M [X1JZzX2, x:=N [Z, y:=L, Y ],W ], if Y −X1zX2 = (−zX2, J), y 6= z

The open substitution lemma arises when the scope of y is not ended by
some end-of-scope in front of the λx. Then we obtain the usual substitution
lemma, appropriately enriched with scoping information.

Lemma 3.4.8 (Open substitution lemma) If Y1Y2 −X = (Y2,2), then

M [X,x:=N,W ][Z, y:=L,WY1Y2]
= M [Z, y:=L,WxY2][X,x:=N [Z, y:=L, Y1Y2],W ]

Remark 3.4.4 By the previous lemma and Lemma 3.4.1 we obtain:

M [Y1, x:=N,W ][Z, y:=L,WY1Y2]
= M [Z, y:=L,WxY2][Y1, x:=N [Z, y:=L, Y1Y2],W ]

which is applicable when proving the multi-step substitution lemma for scope-
balanced terms.

We introduce multi-steps that contract all β-redexes in a given term simul-
taneously.

Definition 3.4.5 Multi-steps ◦−→ are defined by:

M1 ◦−→ N1 M2 ◦−→ N2

( λX.λx.M1)M2 ◦−→ N1[X,x:=N2,2]

x ◦−→ x

M1 ◦−→ N1 M2 ◦−→ N2

M1M2 ◦−→ N1N2

M ◦−→ N
λx.M ◦−→ λx.N

M ◦−→ N
λx.M ◦−→ λx.N
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In a multi-step from M , multiple β-redexes in M may be contracted. In partic-
ular, β-redexes occurring in the parallel branches M1 and M2 of any application
subterm M1M2 of M , may be contracted ‘simultaneously’ (cf. the single ‘paral-
lel’ compatibility clause for application of ◦−→ to the two ‘sequential’ compati-
bility clauses for application of →β of Definition 3.4.2). All β-redexes occurring
nested inside the body M1 or argument M2 of a redex subterm M ′ of M , may
be contracted ‘at the same time’ as M ′ itself. (cf. the ‘nested’ β-redex inference
rule of ◦−→ to the β-redex axiom of →β .) Finally, note that the number of
β-redexes may be zero, i.e. M ◦−→M for any term. As it turns out, it is enough
to assume this for variables only (cf. the clause x ◦−→ x).

Remark 3.4.5 Note that the relation ◦−→ is not transitive. Contraction might
create redexes not yet present in the starting term. e.g. we have I3 ◦−→ I2 ◦−→ I,
but not I3 ◦−→ I.

The reason for the switch from single steps to multi-steps is that the former do
not have the diamond property whereas the latter do. This is because contrac-
tion of a β-redex may replicate other redexes. Hence, for a notion of reduction
extending β to possess the diamond property it must be ‘closed under repli-
cation’. Multi-steps are just the least extension of single steps fitting the bill.
At the technical level, closure under replication corresponds to the so-called
substitution lemma:

Lemma 3.4.9 (Multi-step substitution lemma)

M ◦−→M ′ ∧N ◦−→ N ′ ⇒M [Z, y:=N,Y ] ◦−→M ′[Z, y:=N ′, Y ]

Proof. By induction on M ◦−→ M ′. In case M = ( λX.λx.M1)M2, the proof
obligation is:

( λX.λx.M1)[Z, y:=N,Y ]M2[Z, y:=N,Y ] ◦−→M ′
1[X,x:=M

′
2,2][Z, y:=N ′, Y ]

where M1 ◦−→M ′
1, M2 ◦−→M ′

2 and N ◦−→ N ′. The proof proceeds distinguish-
ing cases in a similar way as on page 70, where we computed the general form of
critical pairs and application of the substitution lemmas 3.4.6, 3.4.7 and 3.4.8.

Lemma 3.4.10 (Multi-step diamond property) Multi-steps satisfy the di-
amond property.

Proof. By induction on the diverging steps. All cases are trivial, except for the
so-called coherence case when the starting term is a redex ( λX.λx.M)N , and
at least one step is a β-step.

• If both are β-steps, the result follows from the induction hypothesis, using
the multi-step substitution lemma (Lemma 3.4.9).

• If only one of them is a β-step, then the results are M1[X,x:=N1,2]
and ( λX.λx.M2)N2 respectively, for M ◦−→ Mi and N ◦−→ Ni. By the
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induction hypothesis Mi ◦−→ M ′ and Ni ◦−→ N ′ for some M ′ and N ′.
Hence the result follows since

M1[X,x:=N1,2] ◦−→M ′[X,x:=N ′,2]

by the multi-step substitution lemma (Lemma 3.4.9), and

( λX.λx.M2)N2 ◦−→M ′[X,x:=N ′,2]

by definition of ◦−→.

Lemma 3.4.11 →β transits ◦−→.

Proof. By induction on the definitions of →β and ◦−→, respectively. The ◦−→ ⊆
→∗

β part follows from simulating inside-out developments of ◦−→. For this one
needs congruence of →∗

β : if M →∗
β N , then C[M ]→∗

β C[N ], which is proved by
induction on unary contexts C.

Theorem 3.4.1 (Confluence of →β) →β is confluent on Λ.

Proof. From Lemmas 3.2.2, 3.4.11 and 3.4.10.

3.4.3 α and β

We prove that α and β commute on scope-balanced terms, which is enough for
present purposes. We are confident that commutation of α and β holds for all λ-
terms, but leave this for future work. In particular, this would require more gen-
eral formulations (using scope subtraction) of the substitution/renaming lemmas
(Lemmas 3.4.16 and 3.4.17).

During the proof development, we experimented with all three α-equivalences
=c

α, =s
α, and =k

α. For the commutation lemma of →β and =α (Lemma 3.4.20),
we took =s

α for =α. We first present some lemmas used in the proof of that
lemma. If we rename the free occurrences of a variable x (and the match-
ing occurrences of λx) in α-equivalent terms M and N , the results are still
α-equivalent:

Lemma 3.4.12 M =Z
α N ⇒M [x:=z, Y ] =Z

α N [x:=z, Y ] if z fresh for M,N,Z.

Proof. By induction on M =Z
α N , using Lemma 3.3.2 in the abstraction case.

In renaming expressions M [x:=z] it is safe to replace z by a z′ just as fresh:

Lemma 3.4.13 M [x:=z] =Z
α N [y:=z]⇒M [x:=z′] =Z

α N [y:=z′], if z fresh for
M,N and z′ fresh for M,N,Z.

Proof. Let z 6= z′ (the statement trivially holds if z = z′), then z′ 6∈M [x:=z, Y ]
and z′ 6∈ N [y:=z, Y ]. By the previous lemma we obtain

M [x:=z, Y ][z:=z′, Y ] =Z
α N [y:=z, Y ][z:=z′, Y ]

Conclude by rewriting Lemma 3.3.3 twice.
The relation =Z

α depends on the ‘freshness’ of Z and on Z being sufficiently
long only:
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Lemma 3.4.14 If |Z2| ≥ |Z1|, Z2 fresh for M,N,Z1, and all elements of Z2

are distinct, then: M =Z1
α N ⇒M =Z2

α N .

Proof. By induction over M =Z1
α N and Lemma 3.4.13.

Lemma 3.4.14 solves the difficulty of proving transitivity of =s
α mentioned

on page 57.

Lemma 3.4.15 The relation =s
α is transitive.

Proof. First prove that, for given Z, =Z
α is transitive (*). Then, given M =Z1

α

N =Z2
α P , choose Z3 of length max(|Z1|, |Z2|) fresh for Z1, Z2,M,N, P . Then,

by Lemma 3.4.14 we obtain M =Z3
α N =Z3

α P . Finally M =Z3
α P follows from

(*).
Next, we present the substitution/renaming lemmas:

Lemma 3.4.16 (Open substitution/renaming lemma)

M [X1, y:=N,X0][x:=z,X0X1X2]
= M [x:=z,X0yX2][X1, y:=N [x:=z,X1X2], X0]

if z fresh for y,M,X0.

Lemma 3.4.17 (Closed substitution/renaming lemma)

M [X1xX2, y:=N,X0][x:=z,X0X1]
= M [X1zX2, y:=N [x:=z,X1], X0]

Note that, for balanced terms, as we have that M [x:=y,X] = M [y, x:=y,X],
Lemmas 3.4.16 and 3.4.17 follow from Lemmas 3.4.6 and 3.4.8.

It is safe to rename in β-reductions:

Lemma 3.4.18 If z 6∈M and M is scope-balanced under Y xW , then M →β N
implies M [x:=z, Y ]→β N [x:=z, Y ].

Proof. Consider the case ( λX.λx.M1)M2 →β M1[X,x:=M2,2]. Because of
the assumption 〈Y xW 〉( λX.λy.M1), either X exceeds Y , and then the closed
substitution/renaming lemma applies, or X is part of Y , and then the open
substitution/renaming lemma applies.

If λx.M and λy.M ′ are α-equivalent (so also the outer (x- resp. y-)boxes
have the same shape) and N and N ′ are α-equivalent, then the β-contractum
of ( λX.λx.M)N is α-equivalent to the β-contractum of ( λX.λy.M ′)N ′:

Lemma 3.4.19

M [x:=z, Y ] =Z1
α M ′[y:=z, Y ] ∧N =Z2

α N ′

⇒ ∃Z3.M [X,x:=N,Y ] =Z3
α M ′[X, y:=N ′, Y ]

if Z1 fresh for X,Y, Z2,M,M ′, N,N ′, and z fresh for M,M ′.
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On scope-balanced terms, β-reduction and α-equivalence commute (Schema
E in Figure 3.4). Here, we take =s

α for =α.

Lemma 3.4.20 If 〈X〉M , M →β N , and M =Z
α M ′, then there exists a term

N ′ and a stack Z ′ such that M ′ →β N
′ and N =Z′

α N ′.

Proof. By induction on the skeleton of M . We show some interesting cases.
Recall that renaming doesn’t alter the skeleton of a term and that scope-
balancedness is closed under =α.

• Case λx.M0 →β λx.N0. By inverting λx.M0 =Z
α M ′, we obtain M ′ =

λy.M ′
0 and Z = zZ0 such thatM0[x:=z] =Z0

α M ′
0[y:=z] for z 6∈M0,M

′
0, Z0.

By Lemma 3.4.18, we have M0[x:=z] →β N0[x:=z]. Then, by the induc-
tion hypothesis, there exist P and Z ′0 such that M ′

0[y:=z] →β P and
N0[x:=z] =Z′

0
α P . We are able prove that, for some N ′

0, P = N ′
0[y:=z]

and M ′
0 →β N ′

0. Choose z′ fresh for N0, N
′
0, Z

′
0 (the Fresh variable ax-

iom (Axiom 3.2) guarantees the existence of z′). From Lemma 3.4.13,
we obtain N0[x:=z′] =Z′

0
α N ′

0[x:=z
′] (→β doesn’t introduce new names,

therefore z 6∈ N0, N
′
0 follows from z 6∈ M0,M

′
0). Then, N ′ = λy.N ′

0 and
Z ′ = z′Z ′0 witness the goal ∃N ′.∃Z ′.λy.M ′

0 →β N
′ ∧ λx.N0 =Z′

α N ′.

• Case M1M2 →β N1M2. So M1 →β N1, M ′ = M ′
1M

′
2, M1 =Z1

α M ′
1,

and M2 =Z1
α M ′

2. By the induction hypothesis, there exist N ′
1 and Z2

such that M ′
1 →β N ′

1 and N1 =Z2
α N ′

1. By Lemma 3.4.14, we obtain
∃Z ′.M ′

1M
′
2 =Z′

α N ′
1M

′
2.

• Case ( λX.λx.M1)M2 →β M1[X,x:=M2,2]. DeriveM ′ = ( λX.λy.M ′
1)M

′
2,

M1[x:=z] =Z
α M ′

1[y:=z], and M2 =zZ
α M ′

2 with z 6∈M1,M2, Z. Choose Z0

fresh for M1,M2,M
′
1,M

′
2, X, Z and such that |Z0| = |Z| (apply the Fresh

variable axiom (Axiom 3.2) |Z0| times). Then Z0 is provably fresh for
M1[x:=z] andM ′

1[y:=z] as well. By Lemma 3.4.14 we obtainM1[x:=z] =Z0
α

M ′
1[y:=z] Take N ′ = M ′

1[X, y:=M
′
2,2] as witness for the existential state-

ment we are proving. Finally, by Lemma 3.4.19, there exists Z ′ such that
M1[X,x:=M2,2] =Z′

α M ′
1[X, y:=M

′
2,2].

3.4.4 Confluence of λ-calculus

As a corollary we obtain confluence of the ordinary λ-calculus (see Figure 3.4).
The exposition of the proof proceeds in a top-down fashion, forward referring to
lifting and projection lemmas. We use→λβ and→ λβ to distinguish β-reduction
in the λ-calculus from β-reduction in the λ-calculus, respectively.

Theorem 3.4.2 →λβ is confluent up to =α.

Proof.

1. Consider two diverging λβ-reductions M →∗
λβ N and M →∗

λβ P .
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2. Lift these stepwise to diverging λβ-reductions M →∗
λβ N

′ and M →∗
λβ P

′

(Lemma 3.4.27). (Note that M being a λ-term, it is a scope-balanced
λ-term.)

3. By confluence of λβ-reduction, we can find some λ-term Q′ such that
N ′ →∗

λβ Q
′, P ′ →∗

λβ Q
′ (Theorem 3.4.1).

4. Projecting N ′ →∗
λβ Q

′ and P ′ →∗
λβ Q

′ back to λβ-reduction yields N →∗
λβ

Q1 and P →∗
λβ Q2 (Lemma 3.4.28), for some α-equivalent λ-terms Q1 and

Q2 (Corollary 3.4.1), establishing the desired confluence of λβ up to α-
equivalence.

Remark 3.4.6 As far as we know the only formalised proof of confluence of β-
reduction modulo α, in our setting, i.e. with a single variable space is [68]. How-
ever, their proof technique is entirely different, uniquely renaming all variables,
before performing β-steps, whereas our schema, which works via the λ-calculus,
only performs the necessary updates (in the sense of [25]).

Lifting and Projection of β-reduction

Projection of λ-terms to λ-terms is the composition of first performing an α-
equivalence step followed by a so-called ω-step removing all λs in one go.8 For
instance, no ω-step is possible from λx. λx.x since removing λx would turn the
free variable x into a bound variable in λx.x. Obviously, uniquely renaming
all variables would guarantee that an ω-step could be performed. However, we
rename only if necessary.

Definition 3.4.6 We define M •−→ω N , if 〈2〉M •−→ω N , where 〈X〉M •−→ω

N is defined by the following clauses.

〈X〉x •−→ω x

〈xX〉M •−→ω M
′

〈X〉λx.M •−→ω λx.M
′

〈X〉M1 •−→ω N1 〈X〉M2 •−→ω N2

〈X〉M1M2 •−→ω N1N2

〈X〉M •−→ω M
′ x 6∈ FV(M)

〈xX〉 λx.M •−→ω M
′

Thus, ω-steps are maximal, in the sense that one ω-step removes all λs in
one go. We write 〈X〉M =k

α 〈Y 〉N •−→ω P to abbreviate 〈X〉M =k
α 〈Y 〉N ∧

〈Y 〉N •−→ω P , and, conversely, we write 〈X〉M •−→ω N =k
α 〈Y 〉P to abbreviate

〈X〉M •−→ω N ∧ 〈X〉N =k
α 〈Y 〉P . Note that the source of the •−→ω is, by

definition, forced to be scope-balanced:

〈X〉M •−→ω N ⇒ 〈X〉M

Also note that •−→ω doesn’t alter the set of free variables:

〈XY 〉M •−→ω M
′ ⇒ FV(M,X) = FV(M ′, X)

8ω could be decomposed itself by first pushing λs to the variables, i.e. performing maximal
scope extrusion before omitting λs.
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forgetful ω-step (Def. 3.4.6)

α-equivalence (Def. 3.3.8)

λβ-step (Def. 3.4.2)

lifting up to α of λβ to λβ (Lem. 3.4.27)

confluence of λβ up to α

lifting λβ to λβ (Lem. 3.4.24)

projecting λβ to λβ (Lem. 3.4.26)

projection up to α of λβ to λβ (Lem. 3.4.28)

confluence of λβ (Thm. 3.4.1)

commutation of α and λβ (Lem. 3.4.20)

λβ-step (Def. on page 65)

projection preserves α-equivalence (Cor. 3.4.1)

Figure 3.4: Confluence of λ-calculus implies confluence of λ-calculus.
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Example 3.4.3 If we first rename the bound xs in λx. λx.x, by some x′ 6= x,
then it is safe to forget the λx′: 〈x〉λx. λx.x =k

α 〈x〉λx′. λx′.x •−→ω λx
′.x.

Example 3.4.4 It is incorrect to forget end-of-scopes in the jump calculus, as
witnessed by the λ-term λx.λy. λx.y. The variable y is free in this term since
λx implicitly closes the scope of y. However, forgetting this end-of-scope would

yield the λ-term λx.λy.y where y is bound. The easiest way to proceed seems to
be to insert as many λs as are needed to make the λ-term scope-balanced:

scb(x,X) = x

scb(λx.M,X) = λx.scb(M,xX)
scb( λx.M,2) = scb(M,2)

scb( λx.M, yX) = λx.scb(M,X) if x = y

scb( λx.M, yX) = λy.scb( λx.M,X) if x 6= y

scb(M1M2, X) = scb(M1, X)scb(M2, X)

Indeed, for all terms M and stacks X, scb(M,X) is scope-balanced under X.
Applied to the example, we first obtain scb(λx.λy. λx.y,2) = λx.λy. λy. λx.y.
Now we see that in order to omit the λy, we have to rename it first, say to z
yielding λx.λz. λz. λx.y. Forgetting end-of-scopes now yields the (correct) λ-term
λx.λz.y.

Remark 3.4.7 In λβ-reduction renamings are performed, as soon as there is a
confusion threat. However, such a threat may turn out to be innocuous, as in:

(λy.λx.(λz.I)yx)x→ λx′.(λz.I)xx′ → λx′.Ix′

The renaming is caused by the substitution for the variable x which is erased
later anyway. On the other hand, no renaming takes place during λβ-reduction:

(λy.λx.(λz.I)yx)x→ λx.(λz.I)( λx.x)x→ λx.Ix

Observe that despite the final term of this λβ-reduction being an ordinary λ-
term, α-conversion is needed to project it (see Lemma 3.4.28).

The relation •−→ω preserves α-equivalence:

Lemma 3.4.21 N •−→ω 〈X〉M =k
α 〈X ′〉M ′ •−→ω N

′ implies 〈X〉N =k
α 〈X ′〉N ′.

Proof. By induction on the proposition 〈X〉M =k
α 〈X ′〉M ′. We show the case

〈xX〉 λx.M =k
α 〈yX ′〉 λy.M ′. Then, 〈X〉M •−→ω N , x 6∈ FV(M), 〈X ′〉M ′ •−→ω

N ′, and y 6∈ FV(M ′). Inversion gives 〈X〉M =k
α 〈X ′〉M ′. By the induction

hypothesis we have 〈X〉N =k
α 〈X ′〉N ′, which, by the following lemma, implies

the goal, 〈xX〉N =k
α 〈yX ′〉N ′, because N,N ′ are free of λs.

Corollary 3.4.1 Schema D in Figure 3.4, stating that Q′ =α Q′
1 •−→ω Q1

and Q′ =α Q′
2 •−→ω Q2 imply Q1 =α Q2, now easily follows: first show that

Q′
1 =α Q′

2 (by symmetry and transitivity of =α) and then apply the previous
lemma.
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Lemma 3.4.22 If M is a λ-term, that is, M contains no λs, and x 6∈ FV(M),
then

〈xX〉M =k
α 〈yY 〉N implies 〈X〉M =k

α 〈Y 〉N and y 6∈ FV(N)

Conversely, if x 6∈ FV(M) and y 6∈ FV(N), then

〈X〉M =k
α 〈Y 〉N implies 〈xX〉M =k

α 〈yY 〉N

Given a sequence of •−→ω-steps and α-steps, the •−→ω-steps can always be post-
poned until the α-steps are performed:

Lemma 3.4.23 〈X〉M •−→ω P =k
α 〈Y 〉N ⇒ ∃Q.〈X〉M =k

α 〈Y 〉Q •−→ω N .

Proof. By induction on the definition of •−→ω. Consider case 〈xX〉 λx.M •−→ω

P =k
α 〈yY 〉N . Then x 6∈ FV(M) and 〈X〉M •−→ω P . Because •−→ω doesn’t

change the set of free variables, we have that x 6∈ FV(P ). By Lemma 3.4.22,
we get 〈X〉P =k

α 〈Y 〉N and y 6∈ FV(N). By the induction hypothesis, we
have Q such that 〈M〉X =k

α 〈Y 〉Q •−→ω N . y 6∈ FV(Q) follows and we obtain
〈xX〉 λx.M =k

α 〈yY 〉 λy.Q •−→ω N .
Both projection and lifting of reductions are performed stepwise. That is, a

single λβ-step lifts to a single λβ-step and vice versa (not to reduction sequences,
as in calculi with explicit substitutions). Lifting of →λβ to → λβ (Schema A′ in
Figure 3.4) is stated as follows.

Lemma 3.4.24 If M →λβ N and 〈X〉M ′ •−→ω M , then there are N1, N2 such
that:

〈X〉N1 =k
α 〈X〉N2 •−→ω N and M ′ → λβ N1

Proof. As an illustration, consider the case M = (λx.M1)M2, and M ′ = L1L2.
We have 〈X〉L1 •−→ω λx.M1 and 〈X〉L2 •−→ω M2. By inversion, we obtain
L1 = λX1.λx.L

′
1, X = X1X2, X1 ∩ FV(λx.L′1) = ∅ and 〈xX2〉L′1 •−→ω M1. The

proof obligation is

∃N1, N2.〈X〉N1 =k
α 〈X〉N2 •−→ω M1[x:=M2] ∧ ( λX1.λx.L

′
1)L2 → λβ N1

Take N1 = L′1[X1, x:=L2,2]. The following lemma (Lemma 3.4.25) guarantees
the existence of an λ-term P such that

〈X〉L′1[X1, x:=L2,2] =k
α 〈X〉P [X1, x:=L2,2] •−→ω M1[x:=M2]

The witnessing N2 = P [X1, x:=L2,2] solves our goal.
The following lemma states projection of λ-substitution to λ-substitution.

Lemma 3.4.25

〈xZ〉M1 •−→ω M

∧ 〈XZ〉N ′ •−→ω N

∧ X ∩ FV(λx.M1) = ∅
⇒ ∃P : Λ.〈XZ〉M1[X,x:=N ′,2] =k

α 〈XZ〉P [X,x:=N ′,2] •−→ω M [x:=N ]



3.5. APPLICATIONS 81

Proof. The difficult part was to find the right induction loading:

〈Y1xZ〉M1 =k
α 〈Y2xZ〉M2 •−→ω M

∧ 〈XZ〉N ′ •−→ω N

∧ X ∩ FV(M1, xY1) = ∅
∧ Y2 ∩ ({x} ∪ FV(N ′)) = ∅
⇒ ∃P : Λ.〈Y1XZ〉M1[X,x:=N ′, Y1] =k

α 〈Y2XZ〉P [X,x:=N ′, Y2]
•−→ω M [x:=N ]

Once appropriately loaded, the proof is a straightforward induction over M1,
the only interesting lemma used being Lemma 3.4.23.

Projecting → λβ to →λβ (Schema C ′ in Figure 3.4) is stated as follows.

Lemma 3.4.26 If M → λβ N and 〈X〉M •−→ω M
′, then there are N1, N2 such

that:
〈X〉N =k

α 〈X〉N1 •−→ω N2 and M ′ →λβ N2

Proof. The β-rule case calls Lemma 3.4.25 again.
Lifting of λβ-reduction sequences to λβ-reduction sequences (Schema A∗ in

Figure 3.4) is stated by the following lemma.

Lemma 3.4.27

M1 →∗
λβ M2 ∧ P1 =k

α Q1 •−→ω M1

⇒ ∃P2, Q2 : Λ.P2 =k
α Q2 •−→ω M2 ∧ P1 →∗

λβ P2

Proof. By Lemmas 3.4.24 and 3.4.20 single λβ-steps can be lifted to single λβ-
steps (Schema A in Figure 3.4). The result for sequences follows by reflexively,
transitively closing the single step case.

Projection of λβ-reduction sequences to λβ-reduction sequences (Schema C∗

in Figure 3.4) is stated by the following lemma.

Lemma 3.4.28

P1 →∗
λβ P2 ∧ P1 =k

α Q1 •−→ω M1

⇒ ∃M2 :Λ.∃Q2 : Λ.P2 =k
α Q2 •−→ω M2 ∧M1 →∗

λβ M2

Proof. By Lemmas 3.4.26 and 3.4.20 single λβ-steps can be lifted to single λβ-
steps (Schema C in Figure 3.4). The result for sequences follows by reflexively,
transitively closing the single step case.

3.5 Applications

We think that the λ-calculus provides an intuitive understanding of scoping in
the λ-calculus. We claim it can provide solutions to problems which are known
to be hard for the λ-calculus.
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Expressing free variable conditions In the λ-calculus one often has use
for free variable conditions. Not only are these necessary to express e.g. the
η-rule:

λx.Mx→M , if x 6∈ FV(M),

but knowing that x does not occur in the free variables of M would also speed
up reduction of the β-redex (λx.M)N ; in that case one may simply erase N .
Rather than reifying the negative concept of a variable not occurring free in a
subterm, cf. e.g. [28], our λ-operator makes the positive concept of the ending
of the scope of a variable explicit. Using it, the free-variable condition of the
η-rule can be expressed in the object language as:

λx.( λx.M)x→M ,

and the β-redex becomes (λx. λx.M)N , which indeed executes more efficiently.
In [25] some statistical evidence is presented that this is a frequently occurring
situation, i.e. that it is worthwhile to retain scoping information when evaluating
ordinary λ-terms.

In the next section we present some further evidence to the usefulness of the
λ-calculus.

3.6 Conclusion and Discussion

The reification of scopes provides a fundamental understanding of scoping mech-
anisms of named9 terms. Our results can be summarised as follows.

• Confluence of the λ-calculus without α-conversion.

• Scope information is retained, possibly speeding up β-reduction.

• Free variable conditions are expressable in the object language.

• Unintended capture of free variables in the substituens by binders in the
substitution body is avoided, not by renaming the binders, but by prefixing
the substituens by λs ending the scope of those binders. Because the λs are
not pushed to the variables (we don’t perform maximal scope extrusion,
that is), the transformation of arguments during substitution is avoided;
thus, they can still be subject to sharing.

• α-conversion is a decidable congruent equivalence.

Restricting to a single name, the λ-calculus corresponds to the λ-calculus for-
malised using a generalisation of De Bruijn indices, with the shift substitution
[↑] (cf. λ) as explicit term constructor (see the paragraph on related work in
Section 3.1).

9Names are more pleasant for human beings (e.g. for debugging purposes), and we want
our pen-and-paper proofs to be formalisable in a direct way. Moreover, to be user-friendly,
implementations must use names, either internally or just for parsing and printing.
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By lifting β-reduction of the λ-calculus to β-reduction of the λ-calculus, and
projecting back, we can analyse more precisely renamings performed ‘on the
fly’ by β-reduction in the λ-calculus. Confluence (up to α) of the λ-calculus is
obtained as a derived result.

We conclude this chapter by discussing two potential applications of the λ-
calculus we are currently investigating. In fact, it were these two applications
which have led us to the discovery of the calculus.

Explicit substitution calculi The first part of this work arose from trying to
understand Chapter 4 of [17] on perpetuality in David and Guillaume’s calculus
with explicit substitutions λws, in a named setting, cf. [26], and in an atomic
way. David and Guillaume introduce the λw-calculus as:

We avoid the counter-example to the PSN property of the λse-calculus by
adding to the usual syntax a new constructor that we call a label and which
represents an updating information. The term t with label k (denoted by
〈k〉t) corresponds to the term t where all free indices have been increased
by k (i.e. φk

0(t) in λse).

In the terms we are finally interested in, two successive labels are not
allowed. We first define preterms without this restriction.

Definition 3.1. We define the set of λw-preterms by the following gram-
mar:

t ::= n | λt | (t t) | 〈k〉t with n, k ∈ N

Observing that labels can be seen as repetitions of successors should make the
relationship to the λ-calculus clear.10 In [26] a named version of λw is presented
having sets of names as labels. Our approach is more elementary as their labels
are added only after α-conversion (not in their abstract syntax, but in their
calculus), so they cannot get confluence of β-reduction without it.

Application: Preservation of Strong Normalisation The λws calculus
was introduced as a calculus having, among other desirable properties, the
preservation of strong normalisation (PSN) property. From [25] we understand
that λws arose in a seemingly ad hoc way from barring counterexamples to PSN
for existing calculi with explicit substitutions. We think the λ-calculus offers an
easy insight as to why the calculus works as follows.

The problem with PSN arises when one tries to orient, as a reduction rule,
the critical pair arising from (an explicit version of) the substitution lemma.
(see page 68). The problem with orienting the ensuing critical pair from right
to left is that the resulting rule is non-left-linear (L occurs twice in its left-
hand side), causing non-confluence, which is undesirable. However, orienting
the critical pair from left to right is also problematic since the resulting rule is
non-terminating, just by itself, since the left-hand side can be embedded into

10The relationship is not entirely trivial since in their λw calculus, David and Guilaume
make use of commutativity and associativity of addition of natural numbers, whereas we are
only allowed to manipulate stacks of names. However, one may reformulate their rules such
that commutativity and associativity are not needed.
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the right-hand side. (Note that this orientation corresponds to transforming
from inside-out to outside-in (standard) order of contraction of the β-redexes.)

The key insight is that in the λ-calculus, we can recognise the fact that we
are already in outside-in order: consider the substitution lemma above oriented
from left to right and enriched with end-of-scope information (but for the mo-
ment forgetting the first component of λ-substitutions which are empty in this
example):

M [x:=N,2][y:=L,2]→M [y:=L, x][x:=N [y:=L,2],2]

Now we recognise that the two underlined xs in the right-hand side match with
one another, hence that these substitutions are already in standard order. For-
bidding further applications of the rule in such situations, should break the
infinite reduction and regain PSN (roughly speaking the maximal length of a
reduction can be bounded by the length of a standard reduction, in the spirit
of [44]). Applying this idea to the closed and open substitution lemmas (Lem-
mas 3.4.6 and 3.4.8) should give rise to named versions of the following two λws

rules, see e.g. page 65 of [17]:

M [k/N, l][[i/P, j]] →lc1 M [k/N [[i− k/P, j]], j + l − 1] k ≤ i < k + l
M [k/N, l][[i/P, j]] →lc2 M [[i− l + 1/P, j]][k/N [[i− k/P, j]], l] k + l ≤ i

which should yield a named version of λws having PSN.

Localising scope extrusion The second part of this work arose from trying
to understand Coppola’s PhD thesis [24] on the (complexity of) an optimal
implementation of the λ-calculus. The idea is to view the boxes featuring in
that work as our boxes, i.e. as representing scoping information, and to view
their optimal implementation as a local implementation of our (minimal) scope
extrusion.

Application: optimal reduction Lamping provided in [47] the first imple-
mentation of the λ-calculus which was optimal in the sense of Lévy [48]. His
implementation was based on a translation of λ-terms to graphs having nodes
(fan-in and fan-out) for both explicit sharing and unsharing. In order for sharing
and unsharing nodes to match up properly (the ‘oracle’), he had to introduce
two further types of nodes, the control nodes (square bracket and croissant).
These control nodes had an ad hoc justification and their definitive understand-
ing was considered to be the main open problem of this technique according to
Chapter 9 of [3].

We claim that the oracle can be understood to arise from making β-reduction
in the λ-calculus local in the sense of [45]. That is scope extrusion and x-box
removal as in Figure 3.3 are to be made local (replication is dealt with by the
sharing nodes). A way in which this can be implemented is shown on the left
in Figure 3.5. In fact, a key insight (cf. the second step of Figure 3.5) is that
x-box removal is superfluous as long as scopes can always be moved out of
the way (of a β-redex). We have a working optimal implementation of the λ-
calculus based on rules achieving just that, such as the zheh-rule in Figure 3.5 for



3.6. CONCLUSION AND DISCUSSION 85

@

@

@

λ λ

@

@

@

@

@
zhehx x x

N N

xxx

x x

xx

N

Figure 3.5: Left: β-reduction: local scope extrusion and rewiring. Right: scope
fusion.

fusing two adjacent scopes. The implementation performs well on the examples
in [3], without the need for either their safe nodes or heuristics (we have only
one control node). E.g. computing their most complex example, (f ten) in
Figure 9.23 of [3], takes us roughly 5 times as many interactions (compared to
BOHM 1.1).11

11The difference might be explainable by that we do not employ compound nodes.
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Samenvatting

Hoofdstuk 1: Automated Proof Construction in
Type Theory using Resolution

We incorporeren resolutielogica in typentheorie. Een vertaling van resolutiebe-
wijzen naar bewijstermen in een typentheoretisch systeem levert een verificatie-
procedure voor die bewijzen. Bovendien komt de kracht van automatische
stellingbewijzers die zijn gebaseerd op resolutielogica beschikbaar in bewijsas-
sistenten die zijn gebaseerd op typentheorie. Een en ander wordt gëıllustreerd
door de implementatie van een ‘tool’ die het gebruik van de stellingbewijzer Blik-
sem binnen de bewijsassistent Coq mogelijk maakt. Het clausificatie-algoritme
is geformaliseerd en correct bewezen in Coq. Het checken van de bewijsobjecten
die het resultaat zijn van de vertaling gebeurt per keer. De vertaling van resolu-
tiebewijzen naar λ-termen is zodanig dat de representatie van resolutiestappen
lineair is in de grootte van de premissen. Hiertoe definiëren we een nieuw for-
maat clauses in minimale logica.

Hoofdstuk 2: Proof Reflection in Coq

We formaliseren natuurlijke deductie voor intüıtionistische eerste-orde logica
met expliciete bewijstermen in het systeem Coq. We laten zien dat ons aflei-
dingssysteem correct is met betrekking tot de logica van Coq. Middels reflec-
tie kunnen we zodoende redeneren over een deel van de meta-taal zelf. Als
voorbeeld van de manipulatie van bewijzen als objecten definiëren we Prawitz’
bewijsreductie met permutatieve conversies. De formalisatie van dit stuk the-
orie kan als basis dienen voor het bewijzen van meta-theoretische stellingen
over de eerste-orde logica (denk bijvoorbeeld aan een syntactisch bewijs van
de conservativiteit van het keuzeaxioma), alsook voor het automatiseren van
stellingbewijzen.

Hoofdstuk 3: λ

We maken de notie van scope (bereik) in de λ-calculus expliciet. Daartoe breiden
we de syntax van de λ-calculus uit met een operator λdie het afsluiten van een
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scope representeert. Het idee is dat λx correspondeert met λx erboven (in de
termboom). De noties van α-equivalentie en β-reductie worden overeenkomstig
uitgebreid. We laten zien dat de resulterende λ-calculus confluent is zonder
gebruik te maken van α-equivalentie. Confluentie van β-reductie in de λ-calculus
wordt verkregen als een afgeleid resultaat, door het hernoemen van variabelen
en het weglaten van λs. Alle bewijzen zijn geverifieerd in Coq.
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