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INTRODUCTION

During the 11th International Conference on
Magnetic Fluids, Dr. R.E. Rosensweig paid attention
to the fact that after the complete stoppage of a high�
speed magnetofluid shaft seal (MFSS), radial flow is
seen at a free surface, but the cause of it is not clear [1].
It is well known that magnetic fluid in the MFSS is
strongly heated due to viscous friction. The tempera�
ture distribution in the fluid volume is nonuniform.
The magnetic field in the MFSS is also nonuniform
and the strength gradient is very high (~109 A/m2).
Under these conditions, in the magnetic fluid volume,
there must appear very intense thermomagnetic con�
vection that can be the cause of magnetic fluid flow at
the free surface in spite of a motionless shaft. Of fun�
damental importance is the question: what is the value
of the convective flow velocity and can it be registered
when observing the free surface of the magnetic fluid
in the MFSS.

GOVERNING EQUATIONS

Let R be the shaft radius and a be the width of the
gap between the shaft and the pole of the MFSS. As for
the MFSS, where usually R � a, an axisymmetrical
flow in the plane r–z could be considered as plane. It
is possible to use a stream function ψ as νr = –∂ψ/∂z,

νz = ∂ψ/∂r and a vortex ω = curl . Then, the system
of dimensionless equations for axisymmetric flow and

ν

temperature in the meridional plane in Boussinesq
approximation can be written as:

(1)

(2)

(3)

where ν/a, T0 = 1K, and a are used as scales for veloc�
ity, temperature, and distance, Pr = ν/κ is the Prandtl
number, Grm = μ0βρT0H0MSa2/ρ0ν2 is the magnetic
Grashof number, μ0 is the magnetic permeability of
vacuum, βρ is the coefficient of fluid thermal expan�
sion, ν, ρ0, and κ are viscosity, density, and thermal
diffusivity of the magnetic fluid, H0 is the maximum
strength of a magnetic field under the pole of the
MFSS, M = M(H, T) is the magnetic fluid magnetiza�
tion, the state equation is assumed to be M(H, T) =
M*(H)[1 – βρ(T – T*)], M*(H) = MSH/(HT + H), the
equilibrium values are marked by symbol “*”, MS is
the magnetic fluid magnetization saturation, and HT is
the experimental value of the magnetic field strength
at which fluid magnetization is equal to half of the
magnetization saturation (for magnetic fluids used in
MFSS HT ≈ 50 – 100 kA/m).

The problem was studied numerically in the geom�
etry as presented in [2, 3] for the shape of the pole of
the MFSS described by a hyperbola with an angle
between asymptotes 2β. For an adequate description
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Abstract—Convective flow is investigated in the high�speed (linear velocity of the shaft seal is more than
1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous
friction in the moving seal. After the seal has been stopped, nonuniform heated fluid remains under the action
of a high�gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomag�
netic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscos�
ity of 2 × 10–4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size
of 1 mm can attain a value of 10 m/s.
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of the problem one used the system of η, ξ coordinates
of the elliptic cylinder so that the coordinate line η =
β coincided with the pole surface, the line η coincided
with the shaft surface, and the coordinate lines ξ were
normal to them (Fig. 1). A finite�difference scheme
based on the control volume method is used for the
solution of Eqs. (1)–(3). In the frames of this method
the linear interpolation function was used for the
stream function and exponential Patankar function [4]
for the vortex, which gives one the possibility to take
into account both the direction and intensity of flow in
the control volume.

The analysis used the typical values of magnetic
fluid properties and MFSS parameters: a = 2 × 10–4 m,
angle between the pole surface and plane symmetry
β = 45°, thermal diffusivity κ = λ/ρ0cp = 0.2/(1.2 ×
103 × 1.7 × 103) = 10–7 m2/s, coefficient of thermal
expansion βρ = 10–3 K–1, maximum magnetic field
strength in the MFSS gap H0 = 2 × 106 A/m, magnetic

fluid magnetization saturation  = 4 × 104 A/m, and

density of magnetic fluid ρ0 = 1.2 × 103 kg/m3.

The viscosity of magnetic fluids used in the
MFSS is in the range from 3 × 10–5 to 1.5 ×
10⎯ 3 m2/s. Calculations were made on the grid with
251 × 151 nodes only for viscosities greater than or
equal to 2 × 10–4 m2/s, for which steady temperature
fields in the seal with the moving shaft, are found in
[3]. These temperature fields were used as boundary
conditions when solving Eq. (3). The examples of the
temperature distribution for one of the versions are

MS*

illustrated in Figs. 2 and 3. Here, the temperature T is
the difference of the absolute temperature and the
cooling system temperature. So, the temperature on
the solid boundaries of the magnetic fluid volume
was assumed to be defined and was taken from the
calculations of high�speed MFSS with the rotating
shaft [3]. The heat flux through the magnetic fluid free
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Fig. 2. Temperature variation along the shaft of the MFSS.
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Fig. 3. Temperature variation along the pole of the MFSS.
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surface and plane symmetry was assumed to be equal
to zero.

RESULTS

Numerical solutions to Eqs. (1)–(3) show that in
the calculation domain two convective cells are
formed with the flow in the small cell being much
more intense than in the large one (Fig. 4). The largest
velocity of convective flow is observed in the small cell
in the vicinity of the pole tip. The intensity of fluid
flow is so high that isotherms are essentially distorted
(Fig. 5), though usually thermal conductivity prevails
in the volume of the small part of a millimeter size and
isotherms coincide with volume boundaries. It could
be seen from the presented pattern that the fluid moves
counter clockwise in the inner cell and clockwise in
the outer one; i.e., the external observer has to see the
fluid movement at the free surface from shaft to pole.
The flow velocity at the free surface is minimal near
the shaft and the pole and has a maximum. Figure 6
plots the maximum fluid flow velocity in the volume
and the maximum velocity at the fluid surface as a
function of maximum overheating temperature of the
shaft surface. As it should be expected, the intensity of
the convective flow increases with growing overheating
temperature. Calculations were made for the viscosity
values of ν = 15 × 10–4 m2/s (Fig. 6), ν = 5 × 10–4 m2/s
(Fig. 7), and ν = 2 × 10–4 m2/s (Fig. 8). Of the greatest
interest are the values of the surface velocity of a mag�

netic fluid drop that can be compared to the experi�
mental data. It is seen that at T = 50 K the maximum
velocity at the free surface of the magnetic fluid varies
with decreasing viscosity from 0.15 mm/s for the vis�
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Fig. 4. Convective flow streamlines. Pr = 2040, Grm =

0.0838, ν = 2 × 10–4 m2/s, Tmax = 47 K. ψmax = 0.0369,
ψmin = –0.00225. The same flow structure exists for all vis�
cosities.

20

18

16

14

12

10

8

6

4

2

0
2 4 6 8 10 12 14

z

r

35

30

25

20

15

Fig. 5. Temperature profiles in the magnetic fluid volume.
Pr = 2040, Grm = 0.0838, ν = 2 × 10–4 m2/s, Tmax =
42.7 K.
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cosity ν = 15 × 10–4 m2/s to 16 cm/s for the fluid vis�
cosity ν = 2 × 10–4 m2/s.

Thus, natural thermomagnetic convection in the
volume of the magnetic fluid, due to its heating during
the operation of high�speed MFSS, can appear to be
the cause of the motion of this fluid after the MFSS
has been stopped.

CONCLUSIONS

The magnetic fluid in the high�speed MFSS is
strongly heated due to viscous friction. After the seal
has been stopped, nonuniform heated fluid is under
the action of a high�gradient magnetic field. Numeri�
cal analysis has revealed that in this situation, intense
thermomagnetic convection is initiated. The velocity
of the magnetic fluid depends on its viscosity. For the
fluid with viscosity of 2 × 10–4 m2/s the maximum flow
velocity within the volume of magnetic fluid in the
MFSS with a characteristic size of 1 mm can attain a

value of 10 m/s, and the free surface velocity attains a
value about 30–50 cm/s and could be seen visually.
Thus, natural convection in the volume of the mag�
netic fluid due to its heating during the operation of
high�speed MFSS can appear to be the cause of the
motion of this fluid after the MFSS has been stopped.
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