88 / AMTLE M METAAAYAFMA 1 (64), 2012

The basic mechanisms of the process of silicon restoration from alumina-matrix composite ligatures on the basis of quartz sand are established. The mathematical models, describing influence of temperature, an alloy preparation time and quantities of silica in alumina-matrix composite ligatures on silicon output in synthetic alloy, are presented.

И. В. РАФАЛЬСКИЙ, А. В. АРАБЕЙ, БНТУ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ СИЛУМИНОВ С ИСПОЛЬЗОВАНИЕМ МЕТОДА РЕГРЕССИОННОГО АНАЛИЗА

В последние десятилетия значительный научный и практический интерес исследователей связан с разработками новых способов получения синтетических силуминов. Под термином «синтетические силумины» понимают сплавы системы алюминий-кремний, полученные без применения шихтового кремния, т. е. в качестве кремнийсодержащего вещества используется кремнезем, а восстановителем является расплав алюминия. Литейные технологии получения синтетических силуминов наиболее перспективны из-за простоты технологического процесса, малого времени подготовки производства.

Возможность получения синтетического силумина методом прямого восстановления кремния из его оксидов алюминием в плавильных печах, используемых в литейном производстве, при относительно низких температурах (до 800–900 °C) представляется перспективным и экономичным способом прямого синтеза этих сплавов. Разработка и использование такой технологии позволит сократить затраты на закупку импортируемого кристаллического кремния, а также получать силумин в замкнутом производственном цикле литейного производства при сравнительно низких энергозатратах.

Синтетические сплавы системы Al-Si получали из алюмоматричных композиционных лигатур (АКЛ) на основе кварцевого песка марки 2к2 02 03 со средним размером зерна 0,3 мм и алюминия технической чистоты марки A7 в соответствии с методикой, представленной в работах [1, 2].

По предварительно полученным экспериментальным и теоретическим данным было установлено, что на процесс восстановления кремния из АКЛ влияют химический и фракционный состав вводимых частиц оксида кремния, количество вводимой фракции наполнителя, состояние поверхности раздела контактирующих фаз [3].

Фракционный состав кварцевого песка и результаты его влияния на процесс восстановления кремния алюминием из АКЛ приведены на рис. 1, 2. Количество вводимого в АКЛ кварцевого песка различной фракции составляло 20% от массы алюминия.

Из рис. 2 видно, что оптимальным размером частиц кварцевого песка, обеспечивающем высокие показатели содержания кремния в синтезируемом сплаве, являются фракции 0,1–1,0 мм.

Цель настоящей работы – проведение регрессионного анализа зависимости между температурно-временными параметрами приготовления сплава из АКЛ, количеством вводимого кремнезема (независимые переменные) и выходом кремния (зависимая переменныя). Задачей анализа являлось построение математических моделей влияния температурных, временных параметров приготовления сплава из АКЛ и количества кремнезема в АКЛ на выход кремния с целью определения оптимальных параметров процесса получения синтетического силумина.

При проведении регрессионного анализа использовали модель «черного ящика». Значения на входах и выходах «черного ящика» можно наблюдать и измерять, его содержимое неизвестно. Задача состоит в том, чтобы, зная множество значений на входах и выходах, построить модель, т. е. определить функцию отклика, по которой вход преобразуется в выход.

Для исключения возможности появления систематической ошибки, которая может быть след-

УДК 621.74

AUTEG U MGTAAUPFUA / 89

Рис. 1. Кварцевый песок с размером фракции: *a* – 1–1,6 мм; *б* – 0,63–1,0; *в* – 0,4–0,63; *г* – 0,315–0,4; *д* – 0,2–0,315; *e* – 0,16–0,2; *ж* – 0,1–0,16; *u* – 0,063–0,1; *к* – 0,05–0,063 мм; *л* – менее 0,05 мм. x10

ствием совместного влияния независимых переменных на функцию отклика, регрессионный анализ проводили для системы с одним входом по данным спланированных экспериментов при зафиксированных значениях остальных факторов в случайной последовательности [4–6]. Для компен-

Л

сации влияния случайных погрешностей каждый опыт повторяли несколько раз.

На первом этапе обработки экспериментальных данных проводили поиск и исключение грубых погрешностей (брак при повторных опытах) на основе критерия Н. В. Смирнова [5, 6]: **0** / AMTLE IA METAAABPEUA 1 (64), 2012

Рис. 2. Влияние размера фракции кварцевого песка в процессе восстановления кремния алюминием из АКЛ на содержание кремния в сплаве

$$\frac{y_{ij} - \overline{y_j}}{s} \ge u_{\alpha n}, \qquad (1)$$

где y_{ij} – значение параметра оптимизации, вычисленное по модели для условий *j*-го опыта; *n* – число повторных опытов; y_j – среднее арифметическое значение параметра оптимизации:

$$\overline{y_j} = \frac{1}{n} \sum_{i=1}^{n} y_{ij} \,. \tag{2}$$

Значения квантилей $u_{\alpha n}$ выбирали для уровня значимости 95% ($\alpha = 0,05$) [6]. Опыт считался бракованным, если экспериментальное значение критерия $u_{\alpha n}$ по модулю больше табличного 1,46.

С целью оценки отклонений параметра оптимизации от его среднего значения вычисляли дисперсию s_j^2 по данным четырех параллельных опытов:

$$s_j^2 = \frac{1}{n-1} \sum_{i=1}^n (y_{ij} - \overline{y_j})^2$$
(3)

и ошибку *s_i*:

$$s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_{ij} - \overline{y_j})^2} .$$
 (4)

Исходные данные для регрессионного анализа и построения математических моделей приведены в табл. 1–3.

Таблица 1. Исходные данные для построения математической модели влияния температуры приготовления сплава из АКЛ на выход кремния

Значения входной и выходной переменных		_		2		$v - \overline{v}$
$x_1(T, {}^{\mathrm{o}}\mathrm{C})$	y (Si,%)	У	$(y_i - y_i)^2$	S_j^2	s_j	<u> </u>
	0,0		0,766			1,325
720	1,0	0.0	0,016	0.426	0.660	0,189
/30	1,6	0,9	0,526	0,430	0,000	1,098
	0,9		0,001			0,038
	7,3		0,016			0,298
750	8,0	7 /2	0,331	0.176	0.410	1,371
/30	7,4	/,43	0,001	0,170	0,419	0,060
	7,0		0,181			1,014
	8,5		0,016			0,200
800	9,2	0.20	0,681	0.280	0,624	1,322
800	8,0	0,20	0,141	0,389		0,601
	7,8		0,331			0,922
850	8,7		0,014	0,500	0,707	0,141
	9,0		0,043			0,283
	7,9	0,0	0,813			1,273
	9,6		0,645			1,131
	8,0	7,75	0,063	0,310	0,557	0,449
000	8,3		0,303			0,988
900	7,0		0,563			1,347
	7,7		0,003			0,090
	7,0		0,093	0,460	0.679	0,442
050	6,5	7.2	0,644			1,180
930	7,7	/,5	0,161		0,078	0,590
	8,0		0,493			1,032
	4,2		0,723			1,126
1000	5,2	5.05	0,023	0.570	0,755	0,199
	6,0	3,05	0,903	0,370		1,258
	4,8		0,063			0,331
	2,0		0,251	0,207	0,455	1,100
1100	2,4	25	0,012			0,220
1100	2,5	2,5	0,0			0
	3,1		0,361			1,320

П р и м е ч а н и е. Содержание кремнезема в АЛК – 20%; время приготовления силумина – 40 мин.

<u>ALITER LA LAGTAAN PARTA 1 (64), 2012</u>

Значения входной и выходной переменных		_		- 2		$v - \overline{v}$
<i>x</i> ₂ (т, мин)	y (Si,%)	У	$(y_i - y_i)^2$	S_j^{-}	Sj	5
	6,2		0,160			1,095
	6,4	((0,040	0,133	0,365	0,548
20	6,8	0,0	0,040			0,548
	7,0		0,160			1,095
	8,8		0,526			1,452
40	7,8	8,1	0,076	0,249	0,499	0,551
	8,0		0,006			0,150
	7,7		0,141			0,751
	8,1		0,000			0,0
60	8,4	0 1	0,090	0.127	0.256	0,843
00	7,6	0,1	0,250	0,127	0,330	1,405
	8,3		0,040			0,562
	6,1		0,810			1,411
80	5,1	5,2	0,010	0.407	0.629	0,157
	5,0		0,040	0,407	0,038	0,314
	4,6		0,360			0,941

Таблица 2. Исходные данные для построения математической модели влияния времени приготовления сплава из АКЛ на выход кремния

П р и м е ч а н и е. Содержание кремнезема в АЛК – 20%; температура приготовления силумина – 800 °С.

Таблица	3.	Исходные данные для построения математической модели влияния количества вводимого
		в АКЛ кремнезема на выход кремния

Значения входной и выходной переменных		_	_	2		$v - \overline{v}$
x ₃ (SiO ₂ ,%)	y (Si,%)	У	$(y_i - y_i)^2$	S_j^{-}	S_j	<u> </u>
	5,3		0,023	0,097	0,311	0,482
15	5,6		0,023			0,482
15	5,1	5,5	0,123			1,126
	5,8		0,123			1,126
	8,3		0,003			0,124
20	8,0		0,063	0.163	0,404	0,619
20	7,9	8,25	0,123	0,105		0,866
	8,8		0,303			1,361
	10,0	9,9	0,010	0,113	0,337	0,297
25	10,3		0,160			1,188
25	9,8		0,010			0,297
	9,5)	0,160			1,188
	12,7	12,88	0,031	0,109	0 330	0,530
30	13,2		0,106			0,984
50	13,1		0,051		0,550	0,681
	12,5		0,141			1,135
	13,5		0,076			0,601
35	13,7	12 225	0,226	0.200	0 4573474	1,039
55	12,7	15,225	0,276	0,207	0,+373+74	1,148
	13		0,051			0,492
	11,3		0,076			0,316
40	12	11 575	0,1801	0.756	0 8603868	0,489
40	10,5	11,575	1,156	0,750	0,0075000	1,237
	12,5		0,856			1,064

П р и м е ч а н и е. Время приготовления силумина – 40 мин; температура приготовления силумина – 800 °С.

Однородность ряда дисперсий в каждом эксперименте проверяли по критерию Кохрена [5, 6]. При одинаковом числе параллельных опытов критерий Кохрена равен отношению максимальной дисперсии к сумме всех дисперсий:

$$G = \frac{s_{\max}^2}{s_1^2 + s_2^2 + \dots + s_K^2} = \frac{s_{\max}^2}{\sum_{j=1}^K s_j^2}.$$
 (6)

Расчетные значения *G*-критерия для экспериментальных данных (табл. 1–3) соответственно составляют 0,19, 0,44, 0,52 и меньше критических значений, принятых для уровня значимости 95% ($\alpha = 0,05$).

На следующем этапе анализа проводили выбор типа математической модели. Анализ одномерных зависимостей проводили для линейной ($y = b_0 + b_1 x$) и нелинейных моделей различного типа ($y = b_0 + b_1/x$; $y = 1/(b_0 + b_1 x)$; $y = x/(b_0 + b_1 x)$; $y = e^{(b_0 + b_1 x)}$; $y = b_0 x^{b_1}$; $y = b_0 + b_1 \ln(x)$; $y = b_0 + b_1 x^2$).

Выбор типа модели осуществляли на основе расчетных значений коэффициента линейной парной корреляции (*R*) между входным и выходным параметрами:

$$R_{l} = \frac{\sum_{j=1}^{K} (x_{j} - \bar{x})(y_{j} - \bar{y})}{\sqrt{\sum_{j=1}^{K} (x_{j} - \bar{x})^{2} \sum_{j=1}^{K} (y_{j} - \bar{y})^{2}}},$$
(7)

где R_l – коэффициент парной корреляции для l-го типа модели; x_j , y_j – значения входного и выходного параметров в j-м эксперименте, преобразованных к линейному типу l-й модели; K – число экспериментов.

Расчет значений *R*₁ для моделей нелинейного типа проводили после преобразования модели к линейному виду.

Адекватность модели проверяли с помощью *F*-критерия. Для каждой модели проводили расчет дисперсии адекватности $s^2_{\rm адекв.}$, дисперсии воспроизводимости экспериментов $s^2_{\rm воспр.}$ и *F*-критерия:

$$s_{\text{алекв.}}^2 = \frac{\sum_{j=1}^{K} (y_j - \overline{y_j})^2}{f},$$
 (8)

$$s_{\text{востр.}}^2 = \frac{1}{K} \sum_{i=1}^K s_j^2,$$
 (9)

$$F = \frac{s_{\text{allekb.}}^2}{s_{\text{BOUID.}}^2},$$
 (10)

где f – число степеней свободы (для одномерных зависимостей f = K - 2).

Результаты расчетов $s^2_{\text{адекв.}}$, $s^2_{\text{воспр.}}$, *F*-критерия приведены в табл. 4.

Из таблицы видно, что в рассмотренных однофакторных моделях корреляционная связь между функцией отклика (выход кремния) и отдельными предикторами (температура, время) является слабой, между количеством вводимого в АКЛ кремнезема и выходом кремния – достаточно сильной. Однако рассчитанные значения *F*-критерия для всех рассмотренных моделей превышают критические, это свидетельствует о том, что гипотезу об адекватности моделей следует отвергнуть.

В связи с этим анализ исследованных зависимостей в дальнейшем проводили с использованием полиномиальных моделей второго и более высокого порядков (табл. 5). Выбор наилучшего уравнения регрессии осуществляли шаговым регрессионным методом с помощью критерия *R* (коэффициент множественной корреляции) путем включения в уравнение регрессии аддитивных членов до тех пор, пока уравнение не станет удовлетворительным [4].

Для полиномиальных моделей с целью определения критерия *R* проводили преобразование нелинейных моделей к линейному виду методом замены переменных ($Z_1 = x$; $Z_2 = x^2$; ..., $Z_m = x^m$) и рассчитывали коэффициент множественной корреля-

Таблица 4. Значения F-и R-критериев для однофакторных математических моделей выхода кремния из АКЛ

Вид модели	$\%$ Si = $F(\tau)$				%Si = $F(%$ SiO ₂)		Si = $F(T)$			
	R	<i>F</i> -расчетное	<i>F</i> -табличное	R	<i>F</i> -расчетное	F-табличное	R	<i>F</i> -расчетное	F-табличное	
$y = b_0 + b_1 x$	-0,389	63,591	3,9	0,868	11,412	2,9	-0,172	31,895	2,5	
$y = b_0 + b_1 / x$	0,048	57,855	3,9	-0,944	5,073	2,9	0,072	27,393	2,5	
$y = 1/(b_0 + b_1 x)$	0,485	65,238	3,9	-0,844	34,755	2,9	-0,283	45,501	2,5	
$y = x/(b_0 + b_1 x)$	-0,159	109,181	3,9	0,957	13,472	2,9	0,362	53,662	2,5	
$y = \mathrm{e}^{(b_0 + b_1 x)}$	-0,438	131,726	3,9	0,865	17,193	2,9	0,050	40,415	2,5	
$y = b_0 x^{b_1}$	-0,262	44,497	3,9	0,923	11,372	2,9	0,097	30,715	2,5	
$y = b_0 + b_1 \ln(x)$	-0,209	23,738	3,9	0,918	7,288	2,9	-0,122	26,440	2,5	
$y = b_0 + b_1 x^2$	-0,543	74,589	3,9	0,801	83,085	2,9	-0,219	35,601	2,5	

Таблица 5. Значения *F*-и *R*-критериев для полиномиальных математических моделей выхода кремния из АКЛ

D	$\%$ Si = $F(\tau)$		%Si = $F(%$ SiO ₂)			Si = F(T)			
Вид модели	R	<i>F</i> -расчетное	<i>F</i> -табличное	R	<i>F</i> -расчетное	<i>F</i> -табличное	R	<i>F</i> -расчетное	<i>F</i> -табличное
$y = b_0 + b_1 x + b_2 x^2$	0,991	0,475	4,8	0,977	2,822	3,16	0,792	11,658	2,6
$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3$							0,904	7,161	2,8
$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4$							0,936	6,488	3
$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$							0,979	3,232	3,4

ED / BUTGYAAATOM N DJTUA

ции между функцией отклика и преобразованными параметрами $Z_i(x^i)$ модели.

Коэффициенты множественной корреляции определяли через матрицу парных коэффициентов корреляции:

$$R_{yz_1 z_2 \dots z_m} = \sqrt{1 - \frac{\Delta r}{\Delta r_{11}}} . \tag{11}$$

Определитель матрицы парных коэффициентов корреляции рассчитывали по формуле:

$$\Delta r = \begin{vmatrix} 1 & r_{yz_1} & r_{yz_2} & - & r_{yz_m} \\ r_{yz_1} & 1 & r_{z_1z_2} & - & r_{z_1z_m} \\ r_{yz_2} & r_{z_1z_2} & 1 & - & r_{z_2z_m} \\ - & - & - & - & - \\ r_{yz_m} & r_{z_1z_m} & r_{z_2z_m} & - & 1 \end{vmatrix} .$$
(12)

Определитель матрицы межфакторной корреляции рассчитывали по формуле:

$$\Delta r_{11} = \begin{vmatrix} 1 & r_{z_1 z_2} & - & r_{z_1 z_m} \\ r_{z_1 z_2} & 1 & - & r_{z_2 z_m} \\ - & - & - & - \\ r_{z_1 z_m} & r_{z_2 z_m} & - & 1 \end{vmatrix} .$$
(13)

Коэффициенты полиномиальных моделей определяли, решая в матричной форме систему из (m + 1)уравнений с (m + 1) неизвестными:

$$\begin{cases} b_0 k + b_1 \sum_{j=1}^k x_j + b_2 \sum_{j=1}^k x_j^2 + \dots + \sum_{j=1}^k x_j^m = \sum_{j=1}^k y_j, \\ b_0 \sum_{j=1}^k x_j + b_1 \sum_{j=1}^k x_j^2 + b_2 \sum_{j=1}^k x_j^3 + \dots + \sum_{j=1}^k x_j^{m+1} = \sum_{j=1}^k x_j y_j, \\ \dots \\ b_0 \sum_{j=1}^k x_j^m + b_1 \sum_{j=1}^k x_j^{m+1} + b_2 \sum_{j=1}^k x_j^{m+2} + \dots + \sum_{j=1}^k x_j^{2m} = \sum_{j=1}^k x_j^m y_j. \end{cases}$$

$$(14)$$

Результаты расчета *F*-критерия и коэффициента множественной корреляции для полиномиальных моделей представлены в табл. 5.

Согласно результатам, приведенным в таблице, для описания зависимостей $\%Si = F(\tau)$ и $\%Si = F(\%SiO_2)$ были выбраны полиномы второго порядка, для функции %Si = F(T) – полиномы пятого порядка, так как коэффициенты множественной корреляции очень близки к единице, что свидетельствует о наличии сильной связи, а значения критерия Фишера не превышают критических.

Таким образом, на основе экспериментальных данных о процессе синтеза силуминов из АКЛ методом регрессионного анализа были получены следующие математические модели, адекватно описывающие влияние температуры, времени приготовления сплава и количества кремнезема в АКЛ на выход кремния в сплаве:

 математическая модель выхода кремния как функция от времени приготовления сплава из АКЛ:

$$Si,\% = 2,56875 + 0,2525625\tau - 0,00273\tau^2;$$
 (16)

2) математическая модель выхода кремния как функция от температуры приготовления сплава из АКЛ:

$$Si_{,}\% = -75049,4906 + 416,0198536T - -0,918878226T^{2} + 0,0010109T^{3} - (17) -5,53906 \cdot 10^{-7}T^{4} + 1,2091 \cdot 10^{-10}T^{5};$$

 математическая модель выхода кремния как функция от количества вводимого в АКЛ кремнезема:

$$Si,\% = -10,8110714 +$$

-1,35567857C_{SiO2} - 0,01961C²_{SiO2}. (18)

Полученные экспериментальные и расчетные зависимости влияния параметров процесса синтеза силуминов из АКЛ на выход кремния показаны на рис. 3.

Рис. 3. Экспериментальные и расчетные зависимости влияния параметров процесса синтеза силуминов из АКЛ на выход кремния: *а* – влияние времени приготовления сплава из АКЛ на выход кремния; *б* – влияние количества вводимого в АКЛ кремнезема на выход кремния; *в* – влияние температич приготовления силара на АКЛ на виход кремния.

туры приготовления сплава из АКЛ на выход кремния

94/AUTUE IA METRAA POPUA 1 (64), 2012

Установленные закономерности процесса восстановления кремния из АКЛ свидетельствуют о сложном, нелинейном влиянии исследованных параметров на содержание кремния в сплаве. При этом оптимальное содержание исследованного в работе кварцевого песка в композиционной лигатуре для получения синтетического силумина с содержанием кремния 13,0–13,7% (рис. 3) составляет 30–35% от массы алюминия. Увеличение объема наполнителя свыше 35% приводит к его избыточному содержанию в лигатуре и соответственно к дефициту алюминиевой основы, выход кремния при этом уменьшается. Наличие температурной области, характеризующейся максимальным выходом кремния из композиционной лигатуры при взаимодействии частиц упрочняющей фазы с матричным расплавом алюминия, объясняется следующим. С повышением температуры до 800–850 °С происходит увеличение реакционной способности алюминия и интенсификация диффузионных процессов в расплаве. При дальнейшем повышении температуры протекают процессы, сопровождающиеся появлением силикатных образований, что препятствует протеканию восстановительной реакции кремнезема с алюминием.

Литература

1. А р а б е й А. В., Р а ф а л ь с к и й И. В. Синтез алюминиево-кремниевых сплавов методом прямого восстановления кремния с использованием алюмоматричных композиционных лигатур // Литье и металлургия. 2011. № 3. С. 19–25.

2. Рафальский И.В. Получение литейных композиционных материалов из алюминиевых сплавов в гетерофазном состоянии с дисперсными наполнителями // Литье и металлургия. 2011. № 3. С. 26–31.

3. Рафальский И. В., Арабей А. В. Фазовые превращения в металлооксидных композициях на основе алюминия и оксида кремния // Литье и металлургия. 2010. № 4. С. 100–104.

4. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. В 2-х кн. Кн. 2. / Пер. с англ., 2-е изд., перераб. и доп. М.: Финансы и статистика, 1987.

5. С и д н я е в Н. И. Теория планирования эксперимента и анализ статистических данных: учеб. пособ. М.: Изд-во «Юрайт», 2011.

6. С п и р и н Н. А., Л а в р о в В. В. Методы планирования и обработки результатов инженерного эксперимента: Конспект лекций. Екатеринбург, 2004.