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A B S T R A C T

Women have a higher risk of developing stress-related disorders compared to men and the experience of a 
stressful life event is a potent risk-factor. The rodent literature suggests that chronic exposure to stressors as well 
as 17β-estradiol (E2) can result in alterations in neuronal structure in corticolimbic brain regions, however the 
translation of these data to humans is limited by the nature of the stressor experienced and issues of brain 
homology. To address these limitations, we used a well-validated rhesus monkey model of social subordination 
to examine effects of E2 treatment on subordinate (high stress) and dominant (low stress) female brain structure, 
including regional gray matter and white matter volumes using structural magnetic resonance imaging. Our 
results show that one month of E2 treatment in ovariectomized females, compared to control (no) treatment, 
decreased frontal cortex gray matter volume regardless of social status. In contrast, in the cingulate cortex, an 
area associated with stress-induced emotional processing, E2 decreased grey matter volume in subordinates but 
increased it in dominant females. Together these data suggest that physiologically relevant levels of E2 alter 
cortical gray matter volumes in females after only one month of treatment and interact with chronic social stress 
to modulate these effects on brain structure.

1. Introduction

Women are two times more vulnerable to develop stress-related
psychological disorders than men (Kessler, 2003), and the experience of
stressful life events often precipitates impaired emotional regulation
and emergence of mood and anxiety disorders and other adverse health
outcomes (Kendler et al., 1993). One possibility for these sex differ-
ences is an interaction between chronic stress and ovarian hormone
signaling, such that 17β-estradiol (E2) may exacerbate the negative
effects of stress hormones, such as glucocorticoids (GCs), in women
(Seeman, 1997). Corticolimbic regions involved in socioemotional
processing, including the prefrontal cortex (PFC), cingulate cortex,
amygdala, and hippocampus, express high levels of both GC and es-
trogen receptors (Morimoto et al., 1996; Sánchez et al., 2000; Shughrue
et al., 1997), making them sensitive to effects of stress and E2. A better
understanding of how chronic stress interacts with E2 to modify these
structures may provide insight into the etiology of and treatment for

stress-related disorders in women.
Prolonged stress has been shown to have damaging effects on rodent

corticolimbic brain regions including the PFC, cingulate cortex, amyg-
dala, and hippocampus (Joels et al., 2007). In the hippocampus, chronic
stress or GC exposure reduces neuronal dendritic arborization and
length as well as spine density (McEwen, 1999). Chronic stress also
decreases dendritic arborization in the medial (m)PFC (Radley et al.,
2013) while it has opposite effects on the amygdala, increasing den-
dritic arborization (Rosenkranz et al., 2010). These structural altera-
tions are associated with increased fear and anxiety-like behavior.
However, these studies focused mainly on males and may not be
translatable to females. Although ovariectomized females without E2
treatment show stress-related dendritic retraction in hippocampal
neurons similar to males (McEwen, 1999; McLaughlin et al., 2010),
they do not show the stress effects reported in male PFC (Garrett and
Wellman, 2009). Indeed, in ovariectomized females receiving E2
treatment, chronic restraint stress results in the opposite: increased
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apical dendritic length (Garrett and Wellman, 2009) and spine density 
in mPFC neurons projecting to the amygdala (Shansky et al., 2010). 
Structural effects are seen even in the absence of stress, as mPFC neu-
rons show dendritic retraction following ovariectomy (Wallace et al., 
2006) and growth following E2 (Shansky et al., 2010), suggesting that 
chronic restraint stress could act to potentiate E2′s neurotrophic effects 
in the female rodent mPFC. Stress and E2 have a different interaction 
effect in the hippocampus, such that E2 protects against stress-related 
atrophy, increases spine density, and facilitates hippocampal-depen-
dent cognitive tasks (e.g. Morris water maze) (McLaughlin et al., 2010). 
This is consistent with a large body of literature supporting E2-depen-
dent neurotrophic effects in hippocampal neurons, although sometimes 
region-specific (Gould et al., 1990), and it suggests that chronic stress 
acts to modify E2′s trophic effects in the rodent hippocampus. In the 
amygdala, elevated levels of E2 and progesterone during proestrus have 
been associated with decreased spine density (Rubinow et al., 2009) 
although the specific interaction of stress and E2 was not examined. 
Overall, the literature on the interaction of stress and E2 on brain 
structure has been sparse, limited to rodent models, and using chronic 
stress paradigms that are difficult to relate to human females.

Our understanding of the neurobiological effects of stress and E2 on 
human brain structure is limited by several methodological factors. 
First, experimental manipulation of exposure to chronic stress is not 
possible in humans. Data from adult individuals with stress-related 
psychopathology are confounded by both experience of early life stress 
and comorbid clinical features of the disease (e.g., post-traumatic stress 
disorder, depression). Second, to determine the specific effects of E2, 
experimental manipulation of endogenous hormones is necessary and 
involves either chemical ovarian suppression or ovariectomy. Third, 
examination of structural changes (dendritic arborization, length, and 
spine density) via post-mortem histological analyses is not feasible for 
conducting randomized studies of either stress or E2 exposure. 
However, non-invasive measures of gray and white matter volume by 
structural magnetic resonance imaging (sMRI) are commonly used and 
thought to reflect alterations in dendritic arborization, length, and sy-
naptic density (Kassem et al., 2013). To address these limitations, we 
chose to use a rhesus monkey model to investigate the specific impact of 
chronic psychosocial stress and its interactions with E2 on brain 
structure using sMRI. Social subordination in adult female macaques is 
a well-established and highly translational animal model used to ex-
amine the consequences of chronic exposure to psychosocial stress in 
women (Michopoulos et al., 2012a; Wilson, 2016). Subordinate social 
status in female rhesus monkeys results in myriad stress-related phe-
notypes including reduced rates of prosocial behaviors (Michopoulos 
et al., 2012a; Reding et al., 2012), a dysregulated stress axis 
(Michopoulos et al., 2012a; Michopoulos et al., 2012b), reduced neu-
rotrophin levels (Michopoulos et al., 2012a), stress-induced over-
eating, and obesity (Godfrey et al., 2018; Michopoulos et al., 2012c; 
Shively et al., 2009). Furthermore, the use of ovariectomized monkeys 
allows us to experimentally control exposure to E2 and stress and ex-
amine the effects of both, either alone or combined, on the female 
primate brain. Thus, by using the rhesus monkey model, we can ex-
amine the interaction of chronic stress and E2 on brain structure in an 
animal model more closely related to human females.

The aim of the current study is to identify the specific structural 
impact of social subordination (stress) and E2 (with or without stress) 
on hippocampus and amygdala and both gray and white matter vo-
lumes in the PFC, cingulate, and frontal cortices. We hypothesized that 
subordinate social status (high stress) would result in reduced hippo-
campal, PFC, frontal, and cingulate volumes, but in increased amygdala 
volume (at least based on the existing reports in males). Furthermore, 
we hypothesized that E2 treatment would increase cortical and hip-
pocampal volumes and decrease amygdala volumes. Lastly, we hy-
pothesized that E2 replacement in combination with chronic stress 
would be protective because of the neurotrophic effects reported in 
cortical and hippocampal brain regions, but detrimental in the

amygdala. Understanding whether stress attenuates or exacerbates E2′s 
structural alterations in primate corticolimbic regions can increase our 
understanding of its potential role on increased vulnerability to stress-
related pathology and disorders such as anxiety and depression in adult 
women.

2. Methods

2.1. Subjects

Subjects were 20 ovariectomized adult female rhesus monkeys 
(Macaca mulatta), socially-housed and maintained at the Yerkes 
National Primate Research Center (YNPRC) Field Station. Subjects were 
classified by social status, either the most dominant (DOM, Rank 1, N = 
10) or the most subordinate (SUB, Rank 4 or 5, N = 10) females in each 
of ten groups of 4–5 females housed with one resident adult male. 
Subjects were housed in indoor - outdoor enclosures that measured 20 
× 15 × 8 feet each. Animals were fed a standard commercial low-fat 
high-fiber monkey chow diet (Ralston Purina Company, St. Louis MO) 
ad libitum supplemented daily with seasonal fruits and vegetables. All 
procedures were approved by the Emory University Institutional 
Animal Care and Use Committee (IACUC) in accordance with the 
Animal Welfare Act and the U.S. Department of Health and Human 
Services “Guide for Care and Use of Laboratory Animals.”

Social groups containing the subjects had been established as pre-
viously described (Jarrell et al., 2008). Briefly, middle ranking, ovar-
iectomized females were removed from their natal breeding groups 
(> 100 animals each) and introduced to one another to form new 
smaller groups of five unrelated, unfamiliar females and one adult male 
each. Females were added sequentially, and dominance hierarchies 
were established based largely on order of introduction, with the final 
female often assuming the lowest rank. Since group formation, subjects 
have been included in several studies in which all females received 
periodic replacement therapy with E2 lasting approximately 2–4 weeks 
and/or progesterone for similar durations (Michopoulos et al., 2009, 
2011; Reding et al., 2012). During the course of data collection for this 
study, two DOM females were unable to complete both treatment 
conditions, and were therefore excluded from the analysis, bringing the 
sample size to 18 females. In the final sample, animals were 14 ( ± 2) 
years of age with no significant age difference between groups (DOM = 
14 ± 2; SUB = 14 ± 3; F1,16 = .02, p = .90, ηp2 < .01). Furthermore, 
all females were ovariectomized 6 ( ± 2) years prior to the start of the 
study with no significant difference between DOM and SUB females 
(DOM = 5 ± 2; SUB = 7 ± 2; F1,16 = 2.54, p = .13, ηp2 = .14). Finally, 
there was no difference in the age of ovariectomy between DOM 
(8.1 ± 2.3 years) and SUB females (6.4 ± 4.1 years, F1,16 = 1.14, p = 
.30, ηp2 < .07).

2.2. Social subordination

Rhesus monkey social groups are structured in linear dominance 
hierarchies that are maintained by both contact and non-contact ag-
gressive behavior from more DOM females to more SUB females 
(Bernstein et al., 1974; Michopoulos et al., 2012a). Thus, frequency of 
aggressive, affiliative, and submissive behaviors are status dependent, 
with SUB females receiving the most aggression, often random and 
unpredictable, from more DOM animals as well as exhibiting the 
highest rates of submissive behaviors directed toward more DOM ani-
mals to attenuate the aggression (Silk, 2002). Previous studies from our 
lab demonstrated that SUB females have increased behavioral, meta-
bolic, and neuroendocrine markers of a chronic stress phenotype in 
comparison to the highest-ranking DOM females. Specifically, our lab 
has documented that subordinate social status is a potent chronic 
stressor (Wilson, 2016), including in this specific group of female rhesus 
monkeys (Michopoulos et al., 2012a, b), based on hypothalamic-pitui-
tary-adrenal (HPA) axis function assessments (e.g. impaired negative



feedback), and stress-related behavioral phenotypes. Thus, social sub-
ordination in female rhesus monkeys provides a well-validated trans-
lational model to further explore the consequences of exposure to
chronic stressors in both non-human primates and women
(Michopoulos et al., 2012a; Wilson, 2016).

2.3. Estradiol treatment

All females were studied during an E2 replacement and a control, no
treatment, condition as previously described (Asher et al., 2013). The
order of treatment was counterbalanced across female social status. In
the E2 condition, treatment was administered via E2-filled continuous-

Fig. 1. Images depict the AutoSeg (version 2.6.2) automatic parcellation of brain tissue (Wang et al., 2014). (A–B) Parcellations of gray matter (green), white matter
(red), CSF (blue), subcortical tissue (yellow), (C) amygdala, and (D) hippocampus were manually adjusted to ensure accurate neuroanatomical delineation. Seg-
mentations of lobar volumes (E, image courtesy of (Short et al., 2010)) prefrontal (light green), (B) frontal (yellow), and cingulate (light purple) were used to
delineate both gray and white matter within each subdivision.



cortical lobes and subcortical regions, as well as automatically seg-
mented into gray matter, white matter, and CSF as previously published
(Styner et al., 2007). For this study, automatic parcellations and seg-
mentations of lobar volumes (gray matter and white matter) corre-
sponding to the PFC, cingulate, and frontal cortices (Fig. 1E), as well as
the subcortical hippocampus and amygdala ROIs (Fig. 1C–D) were
manually adjusted to ensure accurate neuroanatomical delineation by
two raters who remained blind to experimental groups and using
published anatomical criteria for the macaque brain (Paxinos et al.,
2000; Saleem and Logothetis, 2006). Lobar segmentations corre-
sponding to the PFC, cingulate, and frontal cortices were defined as
follows (for more details see Fig. 1E and Knickmeyer et al., 2010,
supplemental material). The PFC anterior and lateral boundaries were
defined by CSF, medially by the interhemispheric fissure, and poster-
iorly by the arcuate sulcus. Moving anterior to posterior, the inferior
boundary was initially CSF, then the sylvian fissure, and finally the
arcuate sulcus. This parcellation included Brodmann’s areas (BA) 8–14,
32, 45, and 46. The frontal lobe anterior boundary was defined by the
PFC, laterally by the CSF, medially by the interhemispheric fissure, and
posteriorly by the central sulcus. Moving anterior to posterior, the in-
ferior boundary was the sylvian fissure, then the white matter between
the central sulcus and the inferior extent of the corpus callosum. This
parcellation included BA 4, 6, and 44. The cingulate cortex anterior and
superior boundaries were defined by the cingulate sulcus, inferiorly by
the callosal sulcus and corpus callosum, and medially by the inter-
hemispheric fissure. Moving anterior to posterior, the lateral boundary
was initially a straight line across the white matter, connecting the
depths of the cingulate and callosal sulci, then a straight line connecting
the splenial sulcus to the tip of the lateral ventricle, and finally the
splenial sulcus. This parcellation included BA 23–25, and 31.

The hippocampus was defined with the horn of the lateral ventricle
as the dorsal and lateral boundary and the white matter separating the
hippocampus from the entorhinal cortex as the ventral border (Rosene
and Hoesen, 1987). The hippocampus was further divided into an
anterior and a posterior portion, with the boundary delineated after the
last coronal slice to include the uncus (Willard et al., 2011). The
amygdala was defined following additional anatomical landmarks
published for the macaque (Price et al., 1987) with the hippocampus as
the posterior boundary, the beginning of the periamygdaloid cortex as
the anterior boundary, the CSF as ventral border, white matter as
ventrolateral boundary, and when this was not available due to low
contrast, the rhinal fissure defined the ventromedial border. Intra and
inter-rater reliability of volumes were assessed using intraclass corre-
lation coefficients (ICCs). Using a subset of five subjects, two raters
(K.M.R, C.F) manually adjusted the gray matter, white matter, and
hippocampus segmentations with the following inter-rater reliability
ICCs: gray matter (r = .99), white matter (r = .99), ICV(r = .99), and
hippocampus (r = .67). Intra-rater reliability using the same subset of
five subjects was assessed for both raters with the following ICCs: gray
matter (r = .99; r = .93), white matter (r = .99; r = .99), ICV (r = .99;
r = .99), hippocampus (r = .74; r = .71), and amygdala (r = .55).

2.5. Statistical analysis

Total brain volume, or intracranial volume (ICV), was calculated for
each individual at both treatment conditions by adding total gray
matter, white matter, and CSF volumes. In order to control for potential
group differences in total ICV, all ROI volumes (cortical and sub-
cortical) were adjusted for ICV volumes (e.g. gray matter/ICV). ICV-
adjusted ROI volumes were analyzed using repeated measures analysis
of variance (rmANOVA) to test for between subject effects of social
status (DOM; SUB), and the within subject effects of E2 treatment (E2;
Control) and hemisphere (right; left). Additionally, for each cortical
ROI (PFC, cingulate, frontal cortex) gray matter/ white matter ratios
(GM/WM) were also calculated and analyzed using rmANOVA due to
their relevance in understanding cortical neuropathological changes

release Silastic® capsules placed between the scapulae under an-
esthesia, to yield serum levels corresponding to the mid- to late folli-
cular phase in this species (Wilson et al., 1982) for an average of 31 
( ± 3) days. To verify Silastic capsule efficacy and E2 levels in both 
conditions, serum samples (200 μl) were collected during week 2 of 
each condition (E2 treatment and control) and at the time of capsule 
removal or approximately 4–6 weeks after the start of the control 
condition (26). E2 levels were measured using a modification of a 
previously validated commercial assay (Siemens/DPC, Los Angeles, CA, 
USA). The assay kit has a sensitivity of 5 pg/ml and an intra- and inter-
assay coefficient of variation (CV) of 5.2 % and 11.1 %, respectively. 
During the E2 condition, there were no differences in serum levels (pg/
ml) between DOM (95.1 ± 6.9) and SUB (91.5 ± 6.2; F1,16 = 0.15, p = 
.70, ηp2 ≤.01) nor between week 2 of treatment (90.6 ± 5.3) and just 
prior to capsule removal (96.0 ± 6.1; F1,16 = 0.64, p = .44, ηp2 = .04). 
In addition, there were no significant differences between DOM and 
SUB females in duration of time females were treated with E2 at the 
time of the scan (DOM = 33 ± 12 days; SUB = 33 ± 11 days; 
F1,16 < .001, p = .99, ηp2 < .01). During the control condition, serum 
E2 was consistently below assay detectability (< 5 pg/ml) in both 
DOMs and SUBs, and the interval of time between the previous E2 
treatment and the scan (mean of 43 ( ± 13) days) did not vary sig-
nificantly based on status (DOM = 43 ± 14 days; SUB = 44 ± 12 days; 
F1,16 = .07, p = .78, ηp2 < 0.01).

2.4. Neuroimaging protocol

2.4.1. Structural MRI acquisition
All females were scanned twice: during the E2 treatment and the 

control condition, in counterbalanced order. Subjects were transported 
from their social group to the YNPRC MRI Center the day before the 
scans. All scans were acquired on a 3 T Siemens Magnetom TRIO system 
(Siemens Med. Sol., Malvern, PA, USA) and using an 8-channel phase 
array coil. Two structural scans (T1- and T2-weighted MRI) were con-
ducted during each session. The T1-MRI scan was acquired using a 3-
dimensional (3D) magnetization-prepared rapid gradient-echo (3D-
MPRAGE) parallel imaging sequence (TR/TE/TI = 3000/3.52 ms/950 
ms, voxel-size = 0.5mm3, isotropic, 6 averages). A T2-weighted MR 
scan was collected in the same direction as the T1 (TR/TE = 7900/125 
ms, voxel size = 0.5 × 0.5 × 1.0mm3, 10 averages) in order to aid 
with delineation of regions of interest (ROIs) by improving the contrast 
of grey matter, white matter, and cerebrospinal fluid (CSF) borders 
(Knickmeyer et al., 2010). All animals were scanned supine in the same 
orientation, achieved by placement and immobilization of the head in a 
custom-made head holder via ear bars and a mouth piece. A vitamin E 
capsule was taped on the right temple to mark the right side of the 
brain. Scans were acquired under isoflurane anesthesia (1–1.2 % to 
effect, inhalation), following initial induction with Telazol (5 mg/kg, 
i.m.). Animals were fitted with an oximeter, ECG, rectal thermistor and 
blood pressure monitor for physiological monitoring, an i.v. catheter to 
administer dextrose/NaCl (0.45 %) to maintain normal hydration and 
an MRI-compatible heating pad. Upon completion of the scans and full 
recovery from anesthesia, each female was returned to their social 
group.

2.4.2. MRI data processing and analysis
Structural data were analyzed using an automatic atlas-based seg-

mentation program, AutoSeg (version 2.6.2), an open-source software 
pipeline developed at the Neuro Image Research and Analysis 
Laboratories of the University of North Carolina at Chapel Hill (Wang 
et al., 2014). AutoSeg is used to automatically parcellate brain tissue 
(Fig. 1A–E) including gray matter, white matter, CSF, cortical lobes, 
and subcortical structures in the rhesus macaque as described pre-
viously (Knickmeyer et al., 2010). Briefly, the subjects’ MRI images 
were registered to a T1-MRI rhesus atlas image and then automatically 
parcellated based on the subject’s T1- and T2-weighted scans into



(e.g. during aging). Finally, raw volume data (ICV unadjusted) were
analyzed using the same rmANOVA models. Results are summarized as
unadjusted ICV, gray matter, white matter, and subcortical volumes
(mm3± S.E.).

3. Results

3.1. Total brain volume

There was no significant effect of status (F1,16 = .05, p = .83,
η2p< .01), E2 treatment (F1,16 = .42, p = .52, η2p = .03), or a status by
E2 treatment interaction (F1,16 = .29, p = .60, η2p = .02), on total brain
volume (Table 1).

3.2. Lobar volumes

3.2.1. Gray matter volume
Results and raw data are listed in Table 1. There was a main effect of

treatment on gray matter volume in the frontal cortex (F1,16 = 11.19, p
= .004, η2p = .41, Fig. 2A). Specifically, E2 replacement reduced frontal
gray matter volume compared to the control condition (no E2), but
there were no effects of status (F1,16 = 1.77, p = .20, η2p = .10) or
status by treatment interaction effect (F1,16< .001, p> .99, η2p< .01).
There was a significant status by treatment by hemisphere interaction
(F1,16 = 5.24, p = .036, η2p = .25) on cingulate cortex gray matter
volume, but no main effects of status (F1,16< .001, p = .97, η2p< .001)
or treatment (F1,16 = .27, p = .61, η2p = .02) were found. Supporting
this three-way interaction in cingulate gray matter volume, there was
also a main effect of hemisphere (F1,16 = 9.35, p = .008, η2p = .37) and
an interaction effect of status by treatment (F1,16 = 8.65, p = .010, η2p
= .35). As shown in Fig. 2 (B) cingulate gray matter volumes in the
right hemisphere were differentially affected by status and treatment,
as DOMs had greater gray matter volume in the E2 condition compared
to control treatment (p = .012) and SUBs had decreased gray matter
volume during the E2 condition compared to the control treatment (p
= .010). Post hoc tests showed no significant status difference between

Table 1
Regional brain volumes. Total intracranial volume (ICV), cortical and subcortical regional volumes are listed by hemisphere, status, and treatment. (a,b) Main effect of
E2 treatment, a’s> b’s, p< .05. (c,d) Main effect of hemisphere c’s> d’s, p< .05. (e,f) Interaction of status and treatment, such that within each status e’s> f’s,
p< .05. (*) Interaction of status, treatment, and hemisphere, post hocs were significant only in the right hemisphere, p< .05. Data are summarized by unadjusted
volumes (mm3±S.E.).

Region Hemisphere Dominant Subordinate

Control Estradiol Control Estradiol

Total
ICV NA 89449.7 ± 2062.3 88987.8 ± 2030.6 88641.1 ± 1844.6 88595.9 ± 1816.3

Prefrontal
Gray Matter R 2463.4 ± 87.4 d 2501.5 ± 98.2 d 2557.6 ± 78.2 d 2539.7 ± 87.9 d

L 2539.8 ± 94.8 c 2555.8 ± 100.4 c 2604.9 ± 84.8 c 2604.4 ± 89.8 c

White Matter R 1076.5 ± 37.6 1101.3 ± 38.1 1105.7 ± 33.7 1110.3 ± 34.0
L 1088.4 ± 38.6 1093.6 ± 41.1 1079.1 ± 34.6 1075.5 ± 36.8

Frontal
Gray Matter R 2980.3 ± 64.1 a,c 2914.4 ± 70.7 b,c 2902.1 ± 57.3 a,c 2838.4 ± 63.2 b,c

L 2959.3 ± 72.1 a,d 2868.9 ± 74.2 b,d 2821.8 ± 64.5 a,d 2758.0 ± 66.4 b,d

White Matter R 1645.3 ± 43.7 1628.6 ± 53.8 1617.5 ± 39.1 1626.5 ± 48.2
L 1612.9 ± 54.1 1561.4 ± 40.0 1599.3 ± 48.4 1592.5 ± 35.8

Cingulate
Gray Matter R 872.6 ± 27.3 c, f,* 905.2 ± 24.4 c,e,* 903.3 ± 24.5 c,e,* 868 ± 21.8 c,f,*

L 843.9 ± 30.2 d,f 838.5 ± 32.6 d,e 842.9 ± 27 d,e 828.1 ± 29.2 d,f

White Matter R 220.9 ± 8.4 231.0 ± 11.7 230.3 ± 7.5 220.3 ± 10.4
L 233.0 ± 8.4 239.2 ± 9.7 225.0 ± 7.5 228.9 ± 8.7

Hippocampus
All R 433.0 ± 10.8 439.1 ± 10.1 455.2 ± 9.6 445.3 ± 9.0

L 435.2 ± 13.2 433.2 ± 12.9 463.1 ± 11.8 447.9 ± 11.5
Posterior R 222.0 ± 8.2 217.4 ± 7.4 230.6 ± 7.3 225.3 ± 6.7

L 231.7 ± 8.4 215.8 ± 7.3 231.1 ± 7.5 223.8 ± 6.5
Anterior R 210.9 ± 8.6 221.7 ± 8.3 224.6 ± 7.7 220.0 ± 7.5

L 203.5 ± 9.7 217.3 ± 11.2 232.0 ± 8.7 224.1 ± 10
Amygdala
All R 323.7 ± 10.1 d 331.2 ± 12.5 d 309.6 ± 9.1 d 302.9 ± 11.2 d

L 345.9 ± 10.5 c 352.9 ± 11.8 c 321.8 ± 9.4 c 331.8 ± 10.6 c

Fig. 2. (A) Main effects of E2 treatment on
frontal gray matter volume (p = .004), E2
decreased gray matter volume independent of
status. (B) Status by Treatment by Hemisphere
effect on cingulate gray matter volume (p =
.036), post-hoc analyses showed DOMs in-
creased gray matter volume between the con-
trol and E2 conditions (p = .012) and SUBs
decreased gray matter volume between the
control and E2 conditions (p = .010). Data are
reported as unadjusted mean volume changes
(mm3)± SEM.



right hemisphere volumes during the E2 treatment (p = .26) or the no
treatment condition (p = .28). In addition, there were significant ef-
fects of hemisphere detected on both frontal gray matter (F1,16 = 6.94,
p = .018, η2p = .30) and PFC gray matter volumes (F1,16 = 9.07, p =
.008, η2p = .36). Frontal gray matter volumes were larger in the right
hemisphere while PFC gray matter volumes were larger in the left
hemisphere. Similar results were seen for data unadjusted for ICVs.

3.2.2. White matter volumes
Results and raw data are listed in Table 1. There were no main or

interaction effects of status, E2, or hemisphere on PFC, frontal, or cin-
gulate white matter volumes.

3.2.3. Gray Matter/White matter ratio
Results and raw data are listed in Table 2. There were significant

hemispheric lateralization effects in GM/WM ratios in the PFC (F1,16 =
62.71, p< .001, η2p = .80) and cingulate cortex (F1,16 = 12.82, p =
.002, η2p = .45). The PFC showed an increased GM/WM ratio (gray
matter>white matter) in the left compared with the right hemisphere
(Right = 2.30± .05; Left = 2.38± .04) while the cingulate cortex
showed the reverse pattern, with an increased GM/WM ratio in the
right compared with the left hemisphere (Right = 3.97± .08; Left =
3.64± .07). Furthermore, there was an interaction effect between
status and hemisphere in the PFC (F1,16 = 7.81, p = .013, η2p = .33).
Post hoc analysis, however, did not detect any significant interactions.
GM/WM ratios were bigger in the left than in the right hemisphere in
both DOMs (p = .003; Right = 2.29± .07; Left = 2.35± .07) and
SUBs (p< .001; Right = 2.30± .06; Left = 2.42± .06), and there
were no GM/WM ratio differences between SUBs and DOMs in either
the left hemisphere (p = .43) or right hemisphere (p = .92). Similar
results were seen for data unadjusted for ICVs.

3.3. Hippocampus

No main or interaction effects were observed in the hippocampus.
There was no effect of status (F1,16 = 2.51, p = .13, η2p = .14), treat-
ment (F1,16 = .17, p = .69, η2p = .01), or a status by treatment inter-
action (F1,16 = .79, p = .39, η2p = .05) on total hippocampal volumes.
Furthermore, when divided into anterior and posterior hippocampus,
no effects of status (anterior: F1,16 = 1.23, p = .28, η2p = .07; posterior:
F1,16 = .84, p = .37, η2p = .05), treatment (anterior: F1,16 = .48, p =
.50, η2p = .03; posterior: F1,16 = 2.44, p = .14, η2p = .13), or status by
treatment effects were detected on these volumes (anterior: F1,16 =
3.20, p = .09, η2p = .17; posterior: F1,16 = .07, p = .79, η2p = .01).
There were no effects of hemisphere (total: F1,16 = .34, p = .57, η2p =
.02; anterior: F1,16 = .02, p = .89, η2p< .01; posterior: F1,16 = .36, p =
.58, η2p = .02), or status by hemisphere (total: F1,16 = 1.13, p = .30, η2p
= .07; anterior: F1,16 = 3.51, p = .08, η2p = .18; posterior: F1,16 = .36,
p = .56, η2p = .02), treatment by hemisphere (total: F1,16 = 1.17, p =

.30, η2p = .07; anterior: F1,16 = .01, p = .91, η2p< .01; posterior: F1,16
= 2.07, p = .17, η2p = .12), or status by treatment by hemisphere
interaction effects (total: F1,16 = .04, p = .84, η2p< .01; anterior: F1,16
= .57, p = .46, η2p = .03; posterior: F1,16 = .91, p = .36, η2p = .05).
Similar results were seen for data unadjusted for ICVs. Results and raw
data are listed in Table 1.

3.4. Amygdala

There was a main effect of hemisphere (F1,16 = 30.53, p< .001, η2p
= .66), such that left amygdala volumes were larger than the right.
There were no main effects of status (F1,16 = 2.54, p = .13, η2p = .14)
or treatment (F1,16 = 1,28, p = .27, η2p = .07) and no interaction ef-
fects including status by treatment (F1,16 = .58, p = .46, η2p = .04),
status by hemisphere (F1,16 = .03, p = .87, η2p< .01), treatment by
hemisphere (F1,16 = 1.54, p = .23, η2p = .09), or status by treatment by
hemisphere (F1,16 = 1.58, p = .23, η2p = .09)). Similar results were
seen for data unadjusted for ICVs. Results and raw data are listed in
Table 1.

4. Discussion

Our findings demonstrated that both E2 and subordinate social
status were associated with region-specific structural changes in the
adult female brain. In particular, one month of E2 treatment in ovar-
iectomized adult female macaques caused significant decreases in
frontal cortex gray matter volume. Furthermore, E2 altered structure in
the right cingulate cortex, depending on social status, increasing gray
matter volume in DOMs, but decreasing it in SUBs. These data suggest
that a background of chronic social stress interacts with E2 to alter
brain structure.

We hypothesized that subordinate social status would be associated
with reduced hippocampal, PFC, frontal and cingulate volumes and
increased amygdala volumes, however, our data showed no such effects
on any regional or total brain volumes, independent of E2 treatment.
These findings are contradictory to the nonhuman primate (Sallet et al.,
2011; Sanchez et al., 1998; Spinelli et al., 2009) and rodent stress lit-
erature described in the introduction. There are at least three possible
factors that may have resulted in our negative findings. First, although
Sallet et al., reported reduced gray matter density in the rostral PFC in
subordinate compared to higher ranking young adult males (Sallet
et al., 2011), social subordination is a different experience of chronic
stress for macaque males and females (Wilson, 2016). Thus, the con-
sequences of subordination on brain structure are likely sex dependent
and may be modified by sex steroid hormones, as demonstrated by the
effects of chronic stress in rodents as well as in our findings. Second,
Sallet et al., measured structural changes using deformation-based
morphometry (DBM), a method more sensitive to small changes in gray
matter volume compared to our methods, which measured larger

Table 2
Gray matter/ white matter ratios, adjusted for ICV and listed by hemisphere, status, and treatment. Data are reported as ratios of adjusted gray matter to white matter
volume± SEM (a,b) Main effect of hemisphere a’s> b’s, p< .05. (c,d) Interaction of status and hemisphere, such that within each status c’s> d’s, p< .05. Data are
summarized by unadjusted volumes (mm3± S.E.).

Region Hemisphere Dominant Subordinate

Control Estradiol Control Estradiol

Prefrontal
R 2.30 ± 0.07 b,d 2.28 ± 0.07 b,d 2.32 ± 0.06 b,d 2.29 ± 0.07 b,d

L 2.35 ± 0.06 a,c 2.35 ± 0.07 a,c 2.41 ± 0.06 a,c 2.42 ± 0.06 a,c

Frontal
R 1.82 ± 0.04 1.80 ± 0.07 1.8 ± 0.04 1.75 ± 0.06
L 1.84 ± 0.05 1.84 ± 0.05 1.77 ± 0.04 1.74 ± 0.05

Cingulate
R 3.96 ± 0.13 a 3.97 ± 0.16 a 3.95 ± 0.11 a 3.98 ± 0.14 a

L 3.64 ± 0.12 b 3.55 ± 0.14 b 3.76 ± 0.11 b 3.62 ± 0.13 b



The data from the present study demonstrated that approximately

one month of treatment with a physiologically relevant dose of E2 both
reduced frontal gray matter volume and interacted with social sub-
ordination to reduce cingulate gray matter volume in SUBs and increase
it in DOMs. We had hypothesized, based on the rodent literature, that
E2 treatment would increase cortical gray matter in the absence of
stress and chronic stress could further potentiate these effects.
However, our findings of decreased gray matter volumes may be related
to E2 treatment duration, which did not mimic paradigms used in ro-
dent studies or naturalistic changes across the menstrual cycle (but was
comparable to short-term estrogen replacement therapy [ERT]). The
effects of chronic versus acute E2 treatment on neuronal morphology
have not been systematically compared, particularly across species. For
example, in the hippocampus, previous studies have demonstrated that
E2′s protective effect on spine density were seen 24 h following acute
E2 treatment and persisted for up to 9 days (Gould et al., 1990).
Likewise, chronic E2 administration (approximately 5 weeks) resulted
in increased hippocampal dendritic arborization and spine density
(McLaughlin et al., 2010). Less is known about the effect of chronic or
acute E2 treatment in rodent PFC and amygdala dendritic morphology,
however, the data presented in the introduction varied from one week
(Shansky et al., 2010) to approximately two weeks (Garrett and
Wellman, 2009), which also exceeded the typical rodent estrus cycle of
four to five days. In the literature on post-menopausal women, the ef-
fects of ERT are thought to be moderated by age and/or timing of
treatment following menopause, among other factors, wherein the
beneficial effects of ERT on brain structure and cognition are only seen
if treatment is initiated very soon after menopause (Wnuk et al., 2012).
Delays in ERT after menopause enhanced structural atrophy in the
prefrontal cortex and increased cognitive impairment (Resnick et al.,
2009). These disparate effects of ERT that are related to treatment
timing may be because estrogen’s protective effects can quickly turn to
apoptotic in stressed or damaged cells (Brinton, 2008). In general, E2′s
effects on neural morphology and brain structure in adulthood, and the
effect of treatment duration, appear to function in a region-specific
manner and more data are needed to determine its effects within spe-
cific cortical regions.

Due to the literature on the impact of delayed ERT in post-
menopausal women, we must consider the possibility that chronic
stress, aging, or the lack of estrogen itself for a critical period of time,
can all damage neuronal integrity, and thus, the reintroduction of E2 to
compromised neurons may change their effects from beneficial to da-
maging. However, we do not think this is the case in our study and
believe that our finding of differential impact of E2 on the cingulate
cortex of DOM and SUB females is most likely due to the impact of
chronic stress, and not of age or timing of E2 treatment following
ovariectomy. There are several reasons for our interpretation. First, in
the current study, all females were ovariectomized for ∼ 6 years and
were approximately 14 years of age at the time of their scans, com-
parable to middle age premenopausal women. In other words, there
were no social status differences in age at ovariectomy or time from
ovariectomy. Second, and importantly, since ovariectomy, the subjects
had intermittent exposure to E2 lasting approximately 2–4 weeks and/
or progesterone for similar durations (Michopoulos et al., 2009, 2011;
Reding et al., 2012). In these previous studies, there were robust effects
of E2 treatment on outcome measures including sociosexual behavior
(Reding et al., 2012), hypothalamic pituitary gonadal (HPG) axis ne-
gative feedback (Michopoulos et al., 2009), and serotonergic function
(Michopoulos et al., 2011). Thus, although it is likely that there are
differences in exposure to estrogens between gonadally intact females
and the ovariectomized females in our sample, we believe that our
experimental design allowed us to address the impact of chronic stress
on the effects of E2 (independent of the ovarian cycle and thus addi-
tional effects of progesterone) on brain structure after a short treatment
period (4–6 weeks). Therefore, we believe that the current findings
suggest that the effects of E2 on cingulate cortex are social status-de-
pendent and due to E2′s negative effects (e.g. reduced synaptic density

regional volumes. It may be that the structural brain changes associated 
with subordinate social status in female rhesus monkeys are smaller in 
area than our methods allowed us to detect. Third, the majority of gross 
regional alterations in rhesus monkey brain volumes associated with 
stress have been reported mainly in studies of stress exposure during 
development, when brain organization is still underway, including 
prenatal and early-life exposure (Godfrey et al., 2013; Sanchez et al., 
1998; Spinelli et al., 2009). In these studies, chronic stress or GCs were 
associated with decreased corpus callosum in males (Sanchez et al., 
1998), decreased frontal and cingulate cortical volumes in both males 
and females (Spinelli et al., 2009), and increased amygdala volumes in 
juvenile females (Godfrey et al., 2013). In the current study, our goal 
was to examine the specific structural effects of subordinate social 
status imposed during adulthood, actually controlling for exposure to 
early life stress by using adult females that were born and raised into 
middle ranking matrilines within their natal groups (Jarrell et al., 
2008). Thus, we suspect that subordinate social status may have larger 
regional effects when experienced during development and into adult-
hood and suggest that future analyses examining the impact of chronic 
stress during adulthood use methods that allow for detection of small 
local changes in brain volumes.

A critical finding in our data was the modifying effect of subordinate 
social status on E2′s impact on the right cingulate cortex, wherein 
chronic social stress and E2 reduced cortical gray matter volume. 
However, these findings were contrary to our hypothesis that physio-
logical relevant levels of E2 treatment in the context of subordinate 
social status (high stress) would result in increased cortical gray matter 
in the PFC, frontal, and cingulate cortices. Our original hypothesis was 
based primarily on histology studies of neuronal morphology in rodents 
(Garrett and Wellman, 2009; Shansky et al., 2010), while our methods 
examined averaged changes in gray matter volumes across large lobar 
parcellations. Therefore, it is possible that the granular changes ob-
served in rodent studies do no readily scale to changes observable in 
structural MRI scans. However, our results demonstrated that E2 and 
chronic social stress can have deleterious effects on the broader cin-
gulate cortex. Findings from our lab in this same model of social sub-
ordination demonstrated social status dependent alterations in cingu-
late (subgenual) resting-state functional connectivity (FC) with the 
amygdala following E2 treatment, suggesting that the structural 
changes identified may have functional correlates (Reding et al., 2019). 
Right amygdala-subgenual FC was greater in DOMs than SUBs during 
the control (no treatment) condition, and E2 treatment resulted in in-
creased SUB FC and decreased DOM FC. Thus, both the structural and 
functional data showed an interaction with status and E2 in the cin-
gulate cortex, suggesting high sensitivity of the underlying neuro-
biology to their combined effects in this region.

Although the implication of our findings for behavior, and ulti-
mately stress-related phenotypes in women, are beyond the scope of our 
study, our data do provide some evidence that the cingulate cortex may 
have a specific vulnerability to chronic stress in females (or may be a 
substrate that is involved in an adaptation to chronic stress) that sub-
sequently alters E2s effects to produce changes in brain function and 
resultant behavior. In humans, reductions in cingulate cortical volume 
have been linked with post-traumatic stress disorder (Karl et al., 2006), 
and reductions in subgenual cingulate volume are characteristic al-
terations in individuals with major depressive disorder (Drevets et al., 
2008), although they are not always detected (Hamani et al., 2011). 
Data on normally cycling women without psychopathology have also 
demonstrated negative correlation between circulating E2 and anterior 
cingulate volumes across the menstrual cycle (Catenaccio et al., 2016). 
It is possible that our finding of E2-induced changes in cingulate vo-
lumes dependent on chronic stress in female rhesus monkey can explain 
some of the disparities in the human literature regarding the cingulate 
volume effects seen in clinical populations with stress-related pheno-
types.



In conclusion, social subordination and E2 treatment in adult female

rhesus monkeys both induced changes in cortical gray matter volumes.
This study presents novel data supporting the plasticity of the adult
female primate brain in response to social experience and changing
hormonal environments. Our data suggest that exposure to chronic
stress imposed during adulthood by subordinate social status alters
subsequent structural effects of E2 on specific cortical regions.
Importantly, social status effects on brain volumes are not detected
without concomitant treatment with E2, suggesting that subordinate
social status has profound, yet dichotomous, effects on E2. Importantly,
the E2- and status-related structural changes reported here are striking,
as they are visible following only one month of E2 treatment in ovar-
iectomized females and are found despite periods of time without en-
dogenous ovarian hormones. Together these results underscore the
plasticity of the female primate brain and shed light on effects of sub-
ordinate social status and E2 treatment on it, providing insights into
possible mechanism of adaptation to the social and hormonal en-
vironments that may exacerbate risk of developing stress-related phe-
notypes and disorders in women.
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