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KEY  PO I  NTS  Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, commonly described by
cell-of-origin (COO) molecular subtypes. We sought to identify novel patient subgroups

through an unsupervised analysis of a large public dataset of gene expression profiles from
newly diagnosed de novo DLBCL patients, yielding 2 biologically distinct subgroups char-
acterized by differences in the tumor microenvironment. Pathway analysis and immune
deconvolution algorithms identified higher B-cell content and a strong proliferative signal
in subgroup A and enriched T-cell, macrophage, and immune/inflammatory signals in
subgroup B, reflecting similar biology to published DLBCL stratification research. A gene
expression classifier, featuring 26 gene expression scores, was derived from the public
dataset to discriminate subgroup A (classifier-negative, immune-low) and subgroup B
(classifier-positive, immune-high) patients. Subsequent application to an independent
series of diagnostic biopsies replicated the subgroups, with immune cell composition
confirmed via immunohistochemistry. Avadomide, a CRL4CRBN E3 ubiquitin ligase modu-
lator, demonstrated clinical activity in relapsed/refractory DLBCL patients, independent of 

COO subtypes. Given the immunomodulatory activity of avadomide and the need for a patient-selection strategy, we 
applied the gene expression classifier to pretreatment biopsies from relapsed/refractory DLBCL patients receiving 
avadomide (NCT01421524). Classifier-positive patients exhibited an enrichment in response rate and progression-free 
survival of 44% and 6.2 months vs 19% and 1.6 months for classifier-negative patients (hazard ratio, 0.49; 95%
confidence interval, 0.280-0.86; P 5 .0096). The classifier was not prognostic for rituximab, cyclophosphamide, 
doxorubicin, vincristine, prednisone or salvage immunochemotherapy. The classifier described here discriminates 
DLBCL tumors based on tumor and nontumor composition and has potential utility to enrich for clinical response to 
immunomodulatory agents, including avadomide. (Blood. 2020;135(13):1008-1018)

Introduction
Diffuse large B-cell lymphoma (DLBCL) is a clinically and
genetically heterogeneous disease.1-3 DLBCL is commonly
described as having 2 molecular subtypes, defined by gene
expression profiling: activated B-cell (ABC) DLBCL and germinal
center B-cell (GCB) DLBCL, which display characteristics similar
to their normal cell counterparts.1,4 Cell-of-origin (COO) classi-
fication is based on B-cell phenotype: where ABC and GCB
DLBCL subtypes have different pathogenic mechanisms and
different clinical outcomes.3,5 Recent studies have adoptedmore
comprehensive strategies by integrating genomic and tran-
scriptomic data, such as mutations, copy number alterations,
epigenetic features, and structural variants, to further refine

molecular subtypes in DLBCL.2,6 The COO classification has
been shown to be prognostic with respect to immunochemo-
therapy regimens, with worse outcomes for ABC DLBCL
patients.1,7,8 Some drugs have shown improved prognosis for
patients with ABC DLBCL, including lenalidomide8,9 and agents
targeting B-cell receptor signaling pathways, such as BTK inhibitors10

and proteasome inhibitors.11 Several gene expression–based assays
have been developed to distinguish patients based on COO
classification.12,13

Avadomide (CC-122) is a small molecule cereblon modulator
that recruits Aiolos and Ikaros, lymphoid-specific transcription
factors involved in B- and T-cell biology, to the cereblon cullin4
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Materials and methods
DLBCL samples
Diagnostic FFPE biopsy samples collected from newly diag-
nosed DLBCL patients (including high-grade B-cell lymphoma)
were commercially sourced (Avaden Biosciences, Seattle, WA).
DLBCL tumor biopsies collected from R/R patients, excluding
transformed patients, enrolled in the University of Iowa/Mayo
Clinic Lymphoma Molecular Epidemiology Resource database
were provided for analysis.20 Pretreatment (diagnostic, archival,
or screening) biopsies collected from patients enrolled in
clinical trial CC-122-ST-001 (NCT01421524)16 were analyzed
retrospectively.

Public gene expression data for phenotype
discovery
Gene expression data (Affymetrix) from diagnostic biopsies of
414 patients with newly diagnosed DLBCL were downloaded
from the Gene Expression Omnibus (GSE10846).7 Dataset di-
mensionality was reduced from ;20 000 genes to 2 phenotypic
components using an unsupervised in silico deconvolution method,
based on nonnegative least-squares constraints, which was
designed for analysis of heterogeneous tissue samples.21 Un-
supervised hierarchical clustering (Ward algorithm, as imple-
mented in hclust function using R statistical software, v.3.0.0) was
applied to subset the original patient cohort according to the
relative proportion of each phenotype.

Feature selection and creation of a clinically
applicable classifier
Predictability of transcriptional subgroups in the GSE10846
dataset was assessed via training and testing a recursive feature
elimination (RFE) support vector machine (SVM) with linear
kernel function across 10 repetitions of nested fivefold cross-
validation, using the inner loop for parameter optimization and
the outer loop for estimation of predictive performance. Pre-
dictive performance was assessed using Matthews correlation
coefficient, sensitivity, specificity, positive predictive value, and
negative-predictive value. Matthews correlation coefficient was
used for parameter optimization. The RFE-SVM was implemented
via functionality of the pathClass R library.22

A minimal gene subset for future classifications was obtained via
application of an RFE-SVM with linear kernel function to classify
transcriptional subgroups in the GSE10846 dataset. Algorithmic-
free parameters, tolerance to noise, and RFE-stopping criterion
were optimized via estimation of predictive accuracy across
a class-stratified fivefold cross-validation. Matthews correlation
coefficient was used for parameter optimization.

The gene subset obtained via application of an RFE-SVM to
the GSE10846 dataset was used to define expression patterns
(templates) for the nearest template prediction (NTP) method.23

To build a classifier applicable beyond the Affymetrix gene
expression platform used for feature selection and predictability
analysis, a linear discriminant analysis decision boundary was
derived via application to anNTP template distance transformation
of the Affymetrix training dataset and applied subsequently to
classify custom NanoString gene expression profiles (see sup-
plemental Materials andmethods for full details, available on the
Blood Web site).

E3 ligase complex, resulting in their ubiquitination and sub-
sequent proteasomal degradation. Degradation of Aiolos and 
Ikaros results in apoptosis of malignant DLBCL cells and acti-
vation of T cells in vitro.14,15 Preclinical studies have demon-
strated that avadomide is active in ABC and GCB DLBCL cell 
lines, suggesting that its activity is independent of COO.15,16 

Indeed, in patients with relapsed and/or refractory (R/R) DLBCL, 
administration of avadomide monotherapy results in potent 
immune modulation and clinical activity in ABC and GCB 
subtypes.16,17

The use of biomarkers for patient selection in registrational 
trials requires prospective analysis. Although the low number of 
patients frequently enrolled in early-phase trials impedes ro-
bust predictive biomarker discovery, it remains possible to 
apply an existing patient-segmentation strategy with biology 
that is aligned with the known mechanisms of action of a novel 
compound that is being tested in the clinic. Multiple assays 
exist to determine COO in DLBCL, capturing the cellular 
phenotype of tumor cells. Previous efforts in DLBCL patient 
stratification have described prognostic signatures or biomarkers 
to predict response to rituximab, cyclophosphamide, doxorubi-
cin, vincristine, prednisone (R-CHOP) immunochemotherapy7,18 

or for identifying novel biological phenotypes, including 
stromal signatures, immune infiltration, and metabolic and 
B-cell receptor signaling pathways.7,19 These important studies 
have provided a foundation for the biology of DLBCL, de-
scribing tumor and nontumor components, which underpins 
the work described herein. Although these prior studies de-
scribe multiple characteristics associated with the DLBCL tumor 
microenvironment, none describe a clinically applicable cross-
platform classifier and its application to enrich for patient re-
sponse in a contemporaneous early-phase clinical trial. The 
dearth of multivariate gene expression classifiers used in the 
clinic reflects the complex technical difficulties that need to be 
addressed to ensure stability and persistence of such classifiers. 
The work described here reflects a model through which it 
is possible to leverage public data to identify robust and 
biologically meaningful patient subpopulations, align their bi-
ology with known action of a novel drug to generate a patient-
selection hypothesis, and contemporaneously develop a 
classifier on a diagnostic platform to predict phenotypes of 
interest and accelerate clinical development in early-phase 
clinical trials. Through this approach, a tumor subgroup was 
identified with high immune cell infiltration that was hypoth-
esized to be susceptible to the robust immunomodulatory 
activity that forms part of avadomide’s dual mechanism of 
action.

A platform-independent gene expression classifier for this 
subgroup was constructed exclusively from a public dataset of 
newly diagnosed DLBCL patient gene expression profiles and 
demonstrated replicability of prevalence, pathways, and immune 
cell–type enrichment in an independent cohort of diagnostic 
DLBCL biopsies. When applied retrospectively to gene expres-
sion profiles from formaldehyde-fixed paraffin-embedded (FFPE) 
samples collected in a phase 1 trial of avadomide mono-
therapy in R/R DLBCL (CC-122-ST-001, NCT01421524), de-
scribed in a companion article by Carpio et al,16 the classifier 
demonstrated the ability to identify a subgroup of patients 
with improved response rates and prolonged progression-free 
survival (PFS).



Classification of DLBCL samples by COO
COO classification was assigned to Affymetrix gene expression
profiles in the GSE10846 dataset using the method of Wright
and colleagues.7,12 The NanoString-based lymphoma subtyping
test was used to assign COO classification to FFPE samples in an
independent series of commercially sourced DLBCL tumor bi-
opsies, as previously described.13

Statistical analysis
Principal component analysis (PCA) and heat maps were pro-
duced using R statistical software. PFS was analyzed by the
Kaplan-Meier method. Demographics were summarized de-
scriptively. Comparison between groups was carried out using an
independent Student t test and theMann-Whitney nonparametric
test. Univariate analysis was performed using Cox proportional
hazards regression. Differences in immune cell densities were
evaluated using the unpaired Student t test.

This study was conducted in accordance with the Declaration
of Helsinki and was approved by multiple review boards. See
supplemental Materials and methods for the full list of review
boards, plus additional information.

Results
Identification and characterization of DLBCL
patient subgroups
A publicly available set of gene expression profiles of diagnostic
fresh-frozen tumor biopsies from 414 patients with newly di-
agnosed DLBCL (GSE10846), the demographics of which are
shown in Table 1, was analyzed for this study.7 Nonnegative
matrix factorization was used to decompose the gene expres-
sion data from Lenz et al7 into 2 components used subsequently
for an unsupervised analysis that identified 2 major tumor
subgroups (subgroup A, n 5 152; subgroup B, n 5 262). PCA
confirmed orthogonality between COO and the 2 new sub-
groups (Figure 1A), suggesting that these classifications are
based on different aspects of tumor biology than those de-
scribed by COO. The heat map in Figure 1A (left panel) shows
the expression of genes identified by supervised analysis to be
associated with subgroups A and B. The distributions of ABC,
GCB, and unclassified DLBCL subtypes were similar among
subgroup A and subgroup B tumors (Figure 1A, right panel).
Samples from the GSE108467 dataset included 262 (63%) from
subgroup A (48% ABC DLBCL, 43% GCB DLBCL, and 9% un-
classified) and 152 (37%) from subgroup B (28% ABC, 46% GCB,
and 26% unclassified) (supplemental Figure 1A). Although there
may be other numbers of components or cluster sizes that ex-
plain higher proportions of the variance in the data or describe
individual aspects of disease biology at a higher level of reso-
lution, our component size of 2 and cluster size of 2 provide the
most reproducible segments based on our evaluation (supple-
mental Figures 2 and 3).

To characterize the underlying biology represented by the
2 subgroups, gene set enrichment analysis (GSEA), using gene
ontology biological processes and canonical pathways from
the Molecular Signatures Database, was applied to GSE10846
gene expression profiles. A visual representation of the most sig-
nificantly differentially expressedbiological processes (adj.P, .001),
created using EnrichmentMap,24 is presented in Figure 1B.

Subgroup A profiles were associated with pathways involved in
DNA replication and repair, cell cycle and mitosis, and RNA
processing, generally indicative of a proliferative signal expec-
ted to be from malignant B cells in DLBCL. Subgroup B profiles
were enriched in immune and inflammatory response path-
ways, consistent with an immune cell infiltration. The number of
genes deemed significantly differentially expressed was high, as
expected, given that these subgroups were identified using
gene expression profiles. Among the genes more highly ex-
pressed in subgroup A are CDK1, phosphoprotein phosphatase
activity proteins (CDC25A, CDC25C, CDKN3), minichromosome
maintenance complex (MCM2, MCM3, MCM4), and replication
factor C subunits (RFC2, RFC3, RFC4). DNA repair, including
Fanconi anemia complementation group (FANCA, FANCD2,
FANCI), mismatch repair system (PMS2P1, PMS2P5), and DNA-
repair proteins (RAD18, RAD51), were also identified as being
more highly expressed in subgroup A. Among the top differ-
entially expressed genes in subgroup B are genes annotated to
extracellular matrix. This observation was previously made by
Lenz et al7 in association with stromal signatures. One of those
genes is SPARC, which was reported to be localized in infiltrated
histiocytic cells.7 Additionally, numerous collagen proteins
(COL11A1, COL14A1, COL18A1, COL1A1, COL1A2, COL3A1,
COL4A1, COL4A2, COL5A1, COL5A2, COL6A2, COL6A3,
COL8A2) and cytokine-mediated signaling and inflammatory
response, represented by interferon-g IFNG, C-C chemokines
(CCL18, CCL19, CCL4, CCL5, CCL8, CCR1, CCR5), C-X-C
chemokines (CXCL11, CXCL12, CXCL13, CXCL2, CXCL9), and
interleukins and interleukin receptors (IL13RA1, IL15, IL1R1,
IL1R2, IL2RB, IL32, IL6R, IL7R), were more highly expressed in
subgroup B. A complete list of significant processes, pathways,
and differential gene expression identified in this analysis can
be found in supplemental Tables 1 through 5. Application of
4 computational deconvolution methods to the gene expression
data was used to understand the cellular composition in tumors
in each of the 2 subgroups. Figure 1C presents the intratumoral
immune cell distributions that were significantly associated with
subgroup B vs subgroup A, estimated by the LM22 method.25

Subgroup A was characterized by a predominance of B cells in
the tumor, supporting the strong proliferative signal detected by
GSEA, whereas subgroup B was associated with an abundance
of macrophages, various T-cell subsets, and natural killer (NK)
cells. These results were consistent across 4 distinct deconvo-
lution algorithms, each with its own set of defined markers
applied independently to the data (Figure 1C; supplemental
Figure 4; supplemental Materials and methods). Association
between the 2 subgroups and clinical outcome of those patients
who received treatment with R-CHOP immunochemotherapy
(n 5 220) was tested in the GSE10846 dataset. No association
between clinical outcome and subgroup status was found, in-
dicating that the subgroups are not prognostic to R-CHOP
therapy in the setting of newly diagnosed DLBCL (P 5 .716)
(Figure 1D).

Development of gene expression classifier
A gene expression classifier was created to reproducibly dis-
tinguish the 2 subgroups in independent DLBCL datasets. The
objective was to build a strong predictor of subgroup mem-
bership fromgenome-wide Affymetrix gene expression data that
was also able to function when transferred to a different gene
expression technology for use in clinical settings. Creation of the
classifier was performed in 2 stages, gene selection and classifier



trained and assessed by iterative class-stratified cross-validation,
in which 20% of profiles were withheld from training to estimate
generalization performance on unseen data. Algorithmic-free
parameters and stopping point for optimal feature subset were
selected via predictive accuracy estimated on an additional cross-
validation performed within each training fold (supplemental
Materials and methods). Estimated future performance evalu-
ated across the withheld validation folds of 10 independent
cross-validation runs was high: Matthews correlation coefficient,
0.84; positive predictive value, 0.91; negative predictive value,
0.94; sensitivity, 0.89; and specificity, 0.95. Having ascertained
that a linear decision threshold, applied to a function of a small
subset of gene expression scores, was able to distinguish the
2 DLBCL subgroups, the procedure was run for a final time on
all 414 GSE10846 profiles to fix the minimal gene set that was
subsequently used to develop a clinically applicable assay for
identification and membership prediction of subgroups A and B
in future DLBCL patient cohorts. The final subset of 26 genes
contained 4 genes that were downregulated and 22 genes that
were upregulated in classifier-positive vs classifier-negative tu-
mors (Figure 2B; supplemental Table 6).

The 26 genes identified above were included in the design of a
NanoString Custom CodeSet panel to enable measurement of
their expression levels in future clinical settings. Measurement
of gene expression via technologies suited to focused clinical
application, such as NanoString13 or next-generation sequenc-
ing, can render decision thresholds derived from genome-wide
gene expression microarrays inapplicable to new patient profiles
without extensive normalization and standardization.23 Distinct
transcriptional referencing mechanisms and associated signal
dynamics may alter the shape of the DLBCL patient profile
distribution in the multivariate space wherein the original de-
cision threshold resides, despite measurement of the same
genes.26 To overcome this challenge, the NTP23 framework was
adapted to create a classifier and associated decision threshold
that could be transferred from the exploratory genome-wide
platform on which it was trained, for future application to patient
profiles assayed on distinct technology platforms. The gene
expression profiles from GSE10846 were standardized (sup-
plemental Methods and materials . Analysis of public gene
expression data). The NTP cosine transform was applied to these
standardized profiles using binary templates of differential ex-
pression between subgroups A and B across the 26 gene subset,
and linear discriminant analysis27,28 was applied in this new
space to create a simple linear decision boundary between the 2
subgroups (supplemental Figure 5). This same decision boundary
was applied to classify any new patient profile, following stan-
dardization, and is referred to hereafter as a “classifier.” Now in
the presence of a classifier and the 2 subgroups on which it is
based, subgroup A and subgroup B refer to the 2 patient classes
derived from the discovery dataset by unsupervised exploration.
The terms classifier-positive and classifier-negative refer to classes
assigned to patients in validation datasets by applying the clas-
sifier trained to distinguish subgroups A and B in the discovery
dataset. Classifier-positive denotes prediction of patients into
subgroup B, whereas classifier-negative denotes prediction of
patients into subgroup A.

Validation of the assay/classifier
Application of the gene expression classifier to NanoString
profiles generated from an independent set of commercially

Table 1. Demographics of patients in public dataset
(GSE10846)

Subgroup A
(n 5 262)

Subgroup B
(n 5 152) P

Age, y
#60 119 (45) 69 (45) 1
.60 143 (55) 83 (55)

Sex
Female 108 (41) 64 (42) .834
Male 143 (55) 81 (53)
NA 11 (4) 7 (5)

IPI
#2 204 (78) 124 (82) .383
.2 58 (22) 28 (18)

Risk
High risk 58 (22) 28 (18) .517
Low risk 161 (62) 95 (63)
NA 43 (16) 29 (19)

No. of extranodal sites
#1 166 (63) 100 (66) 1
.1 19 (7) 11 (7)
NA 77 (30) 41 (27)

Stage
.2 262 (100) 152 (100) NA

ECOG PS
#2 226 (86) 130 (85) .345
.2 24 (9) 9 (6)
NA 12 (5) 13 (9)

COO: ABC vs GCB
ABC 125 (48) 42 (28) .011
GCB 113 (43) 70 (46)
Unclassified 24 (9) 40 (26)

COO: GCB vs non-GCB
GCB 113 (43) 70 (46) .608
non-GCB 149 (57) 82 (54)

LDH
#1 102 (39) 71 (47) .045
.1 124 (47) 54 (35)
NA 36 (14) 27 (18)

All data are n (%).

ECOG PS, Eastern Cooperative Oncology Group performance status; IPI, International 
Prognostic Index; LDH, lactic acid dehydrogenase; NA, not available.

creation, as shown in Figure 2A. The first stage was to identify a 
minimal gene subset as a surrogate for subgroup identity and 
prediction in future patient populations. To this end, a super-
vised machine learning approach was applied to the same 414 
genome-wide expression profiles in the GSE10846 dataset and 
used to identify a minimal gene set that enabled robust 
prediction of subgroup membership (subgroup A [n 5 262] and 
subgroup B [n 5 152]) (supplemental Figure 5; supplemental 
Materials and methods). The base classification algorithm, a 
linear support vector machine with recursive feature elimination, 
was
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Figure 1. Identification of 2 subgroups with different immune infiltration patterns in a public dataset from newly diagnosed DLBCL patients. (A) Gene expression
profiles (Affymetrix) of screening biopsies from 414 DLBCL patients downloaded from the Gene Expression Omnibus (GSE10846)7 were transformed by nonnegative matrix
factorization, followed by unsupervised clustering, revealing 2 subgroups. The heat map (left panel) shows expression of top discriminating genes (n 5 260) between the
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between the 2 subgroups and COO classification (right panel). Principal component 1 segregates the 2 new subgroups identified, whereas principal component 2 shows
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These results demonstrate classifier applicability to data derived
from 2 assay platforms (genome-wide Affymetrix and custom
NanoString panel, Figure 2B and C, respectively) and the per-
sistence of subgroups A and B, as predicted in frontline DLBCL
patient biopsies.

Multiplex immunofluorescence was used to validate hypotheses
regarding the biology that drives subgroup A and B phenotypes
based on the deconvolution analysis and confirm classifier ability
to separate tumorswith distinct cellular content. Immunohistochemistry

B

ABC
GCB
Unclassified

Subgroup A
Subgroup B

COO
4

2

0

–2

–4

Subgroup

Cell of origin
Subgroup
ZNF215
CCDC88C
SPC25
UTP4
XAF1
IFI44
CPVL
PHACTR2
C1RL
EPB41L3
CSF1R
VSIR
THEMIS2
SERPING1
CTSB
ULK1
CLU
MEGF6
NOL4L
TCIM
MEIS1
TPSAB1
CILP
LRP11
PLAT
FBXO32

C

4

2

0

–2

–4

ABC
GCB
Unclassified

Classifier-negative
Classifier-positive

COO

Classification

ZNF215
CCDC88C
SPC25
UTP4
XAF1
IFI44
CPVL
PHACTR2
C1RL
EPB41L3
CSF1R
VSIR
THEMIS2
SERPING1
CTSB
ULK1
CLU
MEGF6
NOL4L
TCIM
MEIS1
TPSAB1
CILP
LRP11
PLAT
FBXO32

Cell of origin
Classification

1L DLBCL
(Affymetrix; n

= 414)a
Transformed data
(2 components)

2 subgroups
(n=262 Subgroup A vs.

n=152 Subgroup B) 

Gene list
(26 genes)

NTP Transformed
data 

Classifier

Data
transformation

Unsupervised
analysis 

NTP transformation

Model building (LDA)

Classifier-positive vs.
Classifier-negative

Classification

Gene selection

NTP
Transformed

data  

Independent 1L
DLBCL samples

(Nanostring; n = 245)

NTP
transformation

Replication

Discovery
A

Figure 2. Classifier discovery. (A) Schematic diagram showing the strategy used to develop classifier on a public dataset (GSE10846) from newly diagnosed DLBCL patients
(Discovery) and to classify new DLBCL specimens from an independent set of commercially sourced diagnostic/archival biopsies from frontline patients (Replication). Gene
selection-steps are shown in pink, and classifier creation steps are shown in yellow. Heat maps showing the results of clustering of samples (Affymetrix) in the public dataset
(n 5 414) based on subgroup (B) and independent commercially sourced samples (NanoString) (n 5 245) based on the classifier (C). Segregation according to the subgroup/
classifier is shown in the lower bar above the heat map, whereas lack of segregation by COO is shown in the upper bar.

sourced FFPE tumor biopsies from newly diagnosed DLBCL 
patients yielded similar subgroup prevalence and directional 
expression of the 26 classifier genes (Figure 2C). The prevalence 
of classifier-positive samples in frontline DLBCL was 37% in the 
public gene expression “training” set and 43% in the NanoString 
“replication” set of commercially sourced FFPE tumor biopsies. 
Among the independent set of commercial DLBCL samples, the 
140 (57%) classifier-negative samples included 52% GCB vs 
48% non-GCB, and the 105 (43%) classifier-positive samples in-
cluded 54% GCB vs 46% non-GCB (supplemental Figure 
1B).



staining for markers of B cells, T cells, NK cells, macrophages,
and dendritic cells was performed on a subset of the replication
DLBCL tumor series (n 5 105) to explore immune cell compo-
sition differences between classifier-positive and classifier-
negative DLBCL. Figure 3A shows representative fields from
classifier-negative (predicted subgroup A) and classifier-positive
(predicted subgroup B) biopsies, illustrating characteristic dif-
ferences in the tumor microenvironment. Classifier-positive tu-
mors showed relatively higher densities of T cells, macrophages,
and dendritic cells compared with classifier-negative tumors
(Figure 3A). Quantitative assessments of the cellular composi-
tion in the 2 sample groups (Figure 3B) also revealed signifi-
cantly higher densities of CD31 T cells (median, 3921 vs 2172
cells per mm2; P , .0001), CD81 T cells (median, 1065 vs 631
cells per mm2; P 5 .0001), CD11c1 dendritic cells (median,
3331 vs 1729 cells per mm2; P , .0001), CD31FOXP31 T regu-
latory cells (median, 85 vs 55 cells per mm2; P 5 .0133; data not
shown), and a trend toward higher numbers of CD1631 macro-
phages (median, 733 vs 358 cells per mm2; P5 .1216) in classifier-
positive tumor specimens.

Expression of checkpoint molecules PD-1 and PD-L1 have been
associated with T-cell dysfunction and may be associated with
prognosis in B-cell lymphoma.29,30 Approximately half of all
dendritic cells were positive for PD-L1 expression, with higher
densities of CD11c1PD-L11 dendritic cells in classifier-positive vs
classifier-negative tumor biopsies (median, 2415 vs 634 cells per
square millimeter; P , .0001; supplemental Figure 6). No ap-
parent differences existed in CD1631PD-L11 macrophages in
the 2 groups. In contrast, a significantly higher density of CD201

B cells, presumed to be malignant B cells (median, 5478 vs 3985
cells per mm2; P 5 .0032), was observed in classifier-negative
specimens (data not shown). There were no significant differ-
ences in CD32CD561 NK cells (median, 45 vs 27 cells per mm2;
P5 .8661) and CD1631CMAF1M2macrophages (median, 11 vs
10 cells per mm2; P 5 .3654) in the 2 groups (data not shown).

These results confirm earlier interpretations of computational
biology analysis of GSE10846 DLBCL gene expression profiles
(Figure 1C) and demonstrate that characteristics of the tumor
microenvironment vs the presence of malignant B cells are the
distinguishing features of classifier-positive vs classifier-negative
DLBCL tumors. The results also demonstrate the ability to rep-
licate and predict membership of these phenotypic DLBCL sub-
groups using a weighted combination of 26 gene expression
scores to represent complex cellular biology.

Association between the gene classifier for
avadomide and chemotherapy clinical outcomes
The classifier was subsequently applied to NanoString expres-
sion profiles of pretreatment biopsies from R/R DLBCL patients
enrolled in a phase 1 clinical trial of avadomide monotherapy
(CC-122-ST-001, NCT01421524) described by Carpio et al.16

Classifier output was evaluated to test the hypothesis that
subgroup B corresponds to patients having enriched positive
outcomes in response to avadomide treatment. This R/R patient
cohort exhibited gene expression patterns that were similar
(Figure 4A) to those observed in the frontline DLBCL cohorts
described earlier in this article (Figure 2B-C). Classifier-positive
patients displayed an overall response rate of 46% and median
PFS (mPFS) of 6.1 months vs an overall response rate of 21% and
mPFS of 1.6 months for classifier-negative patients (mPFS hazard

ratio, 0.490; 95% confidence interval, 0.280-0.857; log-rank test
P5 .0096) (Figure 4B). As expected, COO classification using the
NanoString-based lymphoma subtyping test did not correlate
with subgroup classifier status in the same patients, and COOwas
not significantly associated with response to avadomide.16

Analysis of GSE10846 (Figure 1D) above suggests that the
DLBCL subgroups that underpin the classifier are not prognostic
for standard of care. This analysis was expanded to the R/R
setting by NanoString profiling of an independent cohort of
biopsies from R/R DLBCL patients treated with rituximab-containing
chemotherapy salvage regimens (rituximab, ifosfamide, carbo-
platin, etoposide [R-ICE]; rituximab, dexamethasone, cytarabine,
cisplatin [R-DHAP]; or rituximab, gemcitabine, oxaliplatin [R-GemOx])
from the Mayo Clinic/Iowa SPORE MER cohort (Figure 4C). No
significant differences in event-free survival were observed in
classifier-positive vs classifier-negative R/R DLBCL patients, sug-
gesting that the classifier is not globally prognostic in the R/R
DLBCL setting (P 5 .734).

Discussion
Identifying the right drug for the right patient is a universal
challenge in cancer drug development. Despite some successes
with targeted agents, such as crizotinib, trastuzumab, and
enasidenib in anaplastic lymphoma kinase–positive non–small
cell lung cancer, HER2-overexpressing breast cancer, and IDH2-
mutated R/R acute myeloid leukemia, respectively, frequent
failures in randomized all-comers controlled phase 3 trials highlight
a continued need for new patient-selection strategies.31-33 Focusing
on well-defined patient subgroups is a means to address disease
heterogeneity and improve outcome, in particular for cancers like
DLBCL, which are clinically and biologically heterogeneous and
characterized by genomic variability. However, many promising
drugs target cancer susceptibilities that are not related to single-
gene alterations in the tumor cells, which complicates this ap-
proach. In this context, gene expression–based signatures that
can capture combined expression from a mixture of cells and/or
the phenotypic results of multiple genetic alterations may better
define molecular subsets of patients who have the potential to
derive greater benefit from a new drug. Attempts to date have
been hampered by reliance on gene signatures and thresholds
derived solely from responder/nonresponder outcomes in initial
trials that do not validate further in prospective studies.

To overcome such challenges, we used the following approach
for implementing a patient-selection strategy in early-phase drug
development: (1) application of unsupervised stratification to
publicly available data to identify robust molecular patient sub-
groups, (2) detailed characterization and laboratory-based
validation of the intrinsic biology of each patient subgroup to
enable the association of $1 subgroup to drug mechanism of
action, (3) construction of a platform-independent classifier(s)
to predict patient membership in subgroups of interest, (4)
design and validation of a clinically applicable assay based on the
established classifier(s), and (5) application of the clinical assay
in early-phase trials to monitor enrichment of response or other
clinical characteristics of interest in a target subgroup. In this
study, preclinical knowledge of avadomide was connected to a
DLBCL patient subgroup identified independently and charac-
terized by high immune cell infiltration, resulting in classifier-
defined patients exhibiting a better clinical outcome compared
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Figure 3. Immunofluorescence analysis of tissue speci-
mens from DLBCL patients. (A) Representative fields
(median) from images of classifier-negative and classifier-
positive specimens stained for CD31 and CD81 T cells,
CD201B cells, CD1631macrophages, andCD11c1dendritic
cells (magnification,320). (B) Quantitative analysis of immune
cell populations is shown as cell density (cells per mm2).



with their classifier-negative counterparts. Biological interpre-
tation of the subgroups leveraged to create this classifier
reflected themes of the DLBCL tumor microenvironment biol-
ogy that have been described in the literature, adding to the
likelihood that they are biologically relevant and persistent in fu-
ture patient populations. For example, the classifier-positive sub-
group was found to be associated with the stromal-1 and
stromal-2 signatures reported by Lenz et al,7 supporting the
observation of an infiltrated tumor microenvironment by en-
dothelial cells and cells of themonocytic lineage (Wilcoxon P, .001;
supplemental Figure 7). Furthermore, the classifier-positive
subgroup was found to be associated with the host response
consensus cluster reported by Monti et al19 (Wilcoxon P, .001;
supplemental Figure 8).19 These associations reflect the strong
and established disease properties on which the classifier is
based and prompt consideration of potential for broader ap-
plication to enrich patient response for other agents that target

the tumor microenvironment, such as CD47/SIRPa-targeting
checkpoint-blockade antibodies and anti-CD19 chimeric anti-
gen receptor T-cell therapy.

Increasingly, substantial efforts to create disease landscapes
from large collections of patient molecular profiling and clinical
data are producing new insights into disease landscape, risk, and
progression in what continues to be an area of intense research
effort toward understanding and treating lymphoma.34-36 This
study seeks to demonstrate that the outcome of early-phase
clinical studies may be better understood when interpreted
through the lens of a comprehensively stratified disease.
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