ОСОБЕННОСТИ ФОРМИРОВАНИЯ БОРИДНЫХ ПОКРЫТИЙ ИЗ КОМПОЗИЦИОННЫХ МЕТАЛЛОТЕРМИЧЕСКИХ ПОРОШКОВЫХ СРЕД

Кандидаты техн. наук ГАЛЫНСКАЯ Н. А., КУХАРЕВА Н. Г., НИСС В. С., инж. ПЕТРОВИЧ С. Н

Белорусский национальный технический университет

Среди процессов химико-термической обработки особое место занимает борирование. Повышенный интерес к процессу борирования обусловлен возможностью получения в поверхностной зоне обрабатываемых изделий моно- или многофазных боридных слоев, характеризующихся уникальным комплексом физикохимических свойств и его приемлемостью для обработки широкой гаммы конструкционных и инструментальных сталей и сплавов. Улучшение эксплуатационных характеристик борированных изделий путем оптимизации режимов обработки возможно лишь до определенного уровня, ограниченного свойствами боридов, образующихся на данном материале. В частности, для низколегированных углеродистых сталей этот уровень будет определяться свойствами боридов FeB и Fe₂B. Превышение предельного уровня свойств достижимо либо при легировании боридного покрытия с сохранением его типа, либо при получении покрытия с качественно отличными фазовым составом боридов и, естественно, свойствами. Поэтому для создания таких покрытий разработка и исследование процессов получения композиционных порошков на основе боридов хрома, железа, циркония, никеля и вольфрама методом внепечной металлотермии, проходящих по принципу СВС-процессов, для химико-термической обработки конструкционных и инструментальных сталей являются актуальной задачей.

На основании предварительно проведенных исследований [1, 2] установлено, что ответственным фактором для получения того или иного типа покрытия является главным образом вид борсодержащего вещества, а не массовая доля бора в насыщающей среде. Более детальный анализ механизмов фазо- и структурообразования в различных процессах синтеза соединений возможен при использованием термодинамического моделирования.

В данной работе моделировали CBC-процессы алюмотермического восстановления многокомпонентных систем, содержащих оксид бора и оксид хрома в качестве основных компонентов с добавками других оксидов.

Расчеты проводили с использованием программы АСТРА-4 (разработка МГТУ имени Баумана), включающей базу данных неорганических соединений [3, 4]. Расчет СВС-процесса осуществляли в адиабатических условиях при постоянном давлении $p = 0.98 \cdot 10^5$ Па (1-я техническая атмосфера). При расчетах определяли адиабатические температуры горения T_{ad} и оценивали равновесные составы реагирующих систем при T_{ad} и охлаждении ниже точек кристаллизации продуктов, которые имеются в жидком состоянии [5–7].

Проведенное термодинамическое моделирование синтеза порошковых смесей для борирования позволило оценить механизмы взаимодействия в волне СВС в данных многокомпонентных многофазных системах и определить вещества, которые могут являться источниками бора при проведении последующего термодиффузионного насыщения из исследуемых смесей. Эти вещества для каждой исследуемой системы и состав исследуемых смесей представлены в табл. 1.

Параллельно с термодинамическими расчетами были проведены режимы диффузионного борирования из смесей исследуемых составов на стали 20 при одинаковых условиях (температура насыщения составляла 950 °С время – 4 ч). Металлографические и рентгеноструктурные исследования показали, что боридные покрытия, полученные из синтезируемых металлотермических смесей, имеют различный фазовый состав: однофазные, состоящие из низкобористой фазы Fe₂B, и двухфазные (FeB + + Fe₂B). Микроструктуры исследуемых диффузионных слоев представлены на рис. 1.

Таблица 1

	влияние состава насыщающей обрирующей смеси на фазовый сос	тав диффузионного сло	Я
№	Исходный состав насыщающей смеси, мас. %	Источники бора	Фазовый состав слоя
1	$21\ \%\ Al_2O_3 + 15\ \%\ Cr_2O_3 + 26\ \%\ B_2O_3 + 28\ \%\ Al + 6\ \%\ NiO + 3\ \%\ ZrO_2$	CrB ₂ , Ni ₄ B ₃ , AlB ₁₂	$FeB + Fe_2B$
2	$24 \% Al_2O_3 + 15 \% Cr_2O_3 + 25 \% B_2O_3 + 27 \% Al + 5 \% Ni + 3 \% ZrO_2$	CrB ₂ , Ni ₄ B ₃ , AlB ₁₂	$FeB + Fe_2B$
3	$8 \% Al_2O_3 + 8 \% Cr_2O_3 + 23 \% B_2O_3 + 22 \% Al + 10 \% Ni + 25 \% Fe + 3 \% ZrO_2$	CrB ₂ , Ni ₄ B ₃	Fe ₂ B
4	11 % $Al_2O_3 + 9$ % $Cr_2O_3 + 23$ % $B_2O_3 + 22$ % $Al + 6$ % $CuO + 25$ % $Fe + 3$ %	FeB, CrB	Fe ₂ B
	ZrO ₂		
5	$23\ \%\ Al_2O_3 + 15\ \%\ Cr_2O_3 + 25\ \%\ B_2O_3 + 28\ \%\ Al + 5\ \%\ WO_3 + 3\ \%\ ZrO_2$	CrB, AlB ₁₂	$FeB + Fe_2B$
6	$23 \% Al_2O_3 + 15 \% Cr_2O_3 + 25 \% B_2O_3 + 28 \% Al + 5 \% Fe_2O_3 + 3 \% ZrO_2$	FeB, CrB, CrB ₂ , AlB ₁₂	$FeB + Fe_2B$
7	$21 \% Al_2O_3 + 15 \% Cr_2O_3 + 26 \% B_2O_3 + 6 \% CuO + 28 \% Al + 3 \% ZrO_2$	CrB_2 , AlB_{12}	$FeB + Fe_2B$
8	$23 \% Al_2O_3 + 15 \% Cr_2O_3 + 25 \% B_2O_3 + 28 \% Al + 5 \% MoO_3 + 3 \% ZrO_2$	CrB_2 , AlB_{12}	$FeB + Fe_2B$

Рис. 1. Микроструктуры боридных слоев, формирующихся в исследуемых насыщающих смесях, ×300

Сравнительный анализ проведенных термодинамических расчетов и результатов экспериментальных данных (табл. 1) показал, что двухфазные боридные покрытия (FeB + Fe₂B) формируются в системах, содержащих соединение AlB₁₂, а именно в системах № 1, 2, 5–8.

При отсутствии данного соединения в насыщающих системах (№ 3, 4) формируются монофазные покрытия (Fe₂B).

Толщина слоя и соотношение фаз в двухфазных покрытиях зависят от состава насыщающей смеси. Боридные слои, образованные в разработанных смесях, в 1,2–1,8 раза превосходят по толщине слои, полученные в традиционных алюмотермических смесях и смесях на основе карбида бора.

Особый интерес представляют результаты дюрометрического анализа исследуемых диффузионных слоев (табл. 2). Твердость двухфазных боридных слоев, получаемых в традиционных алюмотермических смесях, изменяется скачкообразно на границе фаз от 13500–16800 МПа (FeB) до 10000–13500 МПа (Fe₂B).

Таблица 2

Влияние состава порошковых сред на толщину, микротвердость и соотношение фаз в боридных слоях

No		Фазовы	й состав и толщи	на слоя, мкм
JNO	Состав реакционной смеси, мас. 76	Общая	FeB	Fe ₂ B
1	21 % Al ₂ O ₃ + 15 % Cr ₂ O ₃ + 26 % B ₂ O ₃ + <u>28 % Al + 6 % NiO + 3 % ZrO₂</u>		60	140
	Микротвердость, МПа	200	(12900–18900)	(11700-16800)
2	24 % Al ₂ O ₃ + 15 % Cr ₂ O ₃ + 25 % B ₂ O ₃ + <u>27 % Al + 5 % Ni + 3 % ZrO₂</u>		60-80	180–160
	Микротвердость, МПа	240	(10200–18900)	(11700-17800)
3	$8 \% \text{Al}_2\text{O}_3 + 8 \% \text{Cr}_2\text{O}_3 + 23 \% \text{B}_2\text{O}_3 + 22 \% \text{Al} + 10 \% \text{Ni} + 25 \% \text{Fe} + 22 \% \text{Al} + 10 \% \text{Ni} + 25 \% \text{Fe} + 23 \% \text{Cr}_2\text{O}_3 + 23 \% \text{Cr}_2\text{O}$			
	<u>+ 3 % ZrO₂</u>		0	140-160
	Микротвердость, МПа	140-160		(10600-15100)
4	$11 \% Al_2O_3 + 9 \% Cr_2O_3 + 23 \% B_2O_3 + 22 \% Al + 6 \% CuO + 25 \% Fe +$			
	<u>+ 3 % ZrO₂</u>		0	140-160
	Микротвердость, МПа	140-160		(11700-18900)
5	23 % Al ₂ O ₃ + 15 % Cr ₂ O ₃ + 25 % B ₂ O ₃ + <u>28 % Al + 5 % WO₃ + 3 % ZrO₂</u>		40	200
	Микротвердость, МПа	240	(15100–17800)	(10200-18900)
6	$23 \% Al_2O_3 + 15 \% Cr_2O_3 + 25 \% B_2O_3 + 28 \% Al + 5 \% Fe_2O_3 + 3 \%$		120-160	200-160
	ZrO ₂		(12900–15100)	(10000-18200)
	Микротвердость, МПа	320		
7	21 % Al ₂ O ₃ + 15 % Cr ₂ O ₃ + 26 % B ₂ O ₃ + <u>6 % CuO + 28 % Al + 3 % ZrO₂</u>		220-300	80-180
	Микротвердость, МПа	380-400	(12900-20100	(13100-20100)
8	23 % Al ₂ O ₃ + 15 % Cr ₂ O ₃ + 25 % B ₂ O ₃ + <u>28 % Al + 5 % MoO₃ + 3 %</u>		120	140-200
	ZrO ₂		(11700–21400)	(13800–18900)
	Микротвердость, МПа	260-320		

Значение же микротвердости покрытий, формирующихся в разработанных смесях, на границе фаз практически не изменяется, оставаясь на уровне значения высшего борида.

Введение используемых добавок в составы насыщающих сред оказывает влияние и на коррозионную стойкость формирующихся покрытий – обработанные образцы не меняют своего цвета, т. е. не окисляются на воздухе.

С использованием микрорентгеноспектрального анализа исследовано распределение бора

в диффузионных слоях. Результаты исследований представлены на рис. 2. Практически на всех спектрограммах содержание бора в слоях превышает его содержание в высшем бориде FeB. Из анализа диаграммы Fe–B [8] (рис. 3) следует, что в данной системе в области содержания бора более 50 ат. %, что соответствует 16,2 мас. % [9], образуется ряд высокобористых твердых растворов на основе решетки β-ромбического бора [8–10] (табл. 3).

17

1 2 3 4	1 2	1
.19 17.80 17.52 -	16,19 17,80	% 16,19
		17,00 I

Рис. 2. Распределение бора, мас. %, по толщине боридного слоя (см. также с. 18)

Окончание рис. 2

№ 7

Спектр	1	2	3	4	5
В, мас. %	18,99	23,27	20,33	17,62	—

Nº 8

Рис. 2. Окончание

Таблица 3

5

Составы композиций Fe–B и результаты их исследований по данным [9]

Содержание бора		Темпе плавле	ратура ния,°С	Фазовый состав по данным рент-	Микрострук-
ат. %	мас. %	Начало	Конец	геноструктурно- го анализа	тура
21,65	5,00	1200	1240	$Fe_2B + \alpha \cdot Fe$	$\Im_{BT.}+Fe_2B$
25,00	5,80	1200	1240	$Fe_2B + \alpha \cdot Fe$	$\Im_{BT.}+Fe_2B$
30,00	7,60	1200	1300	-	Fe ₂ B+ эвт.
33,40	8,83	1400	1420	Fe ₂ B	Fe ₂ B
36,40	10,00	1430	1540	Fe ₂ B	_
39,80	11,40	1420	1480	Fe ₂ B+ FeB	Fe ₂ B+ FeB
45,00	13,70	1410	1610	Fe ₂ B+ FeB	Fe ₂ B+ FeB
47,90	15,00	1530	1600	FeB	Fe ₂ B+ FeB
50,00	16,20	-	1650	FeB	FeB
53,00	17,90	1520	1620	FeB	FeB+ эвт.
56,40	20,00	1510	1600	FeB	FeB+ эвт.
60,00	22,50	1500	1600	-	FeB+ эвт. (~2 %)
63,50	25,00	1480	1510	FeB	Эвт.
65,00	26,50	1510	1580	FeB	Эвт.
68,50	30,00	1510	1700	FeB	Эвт.+ FeB

main main pcan, main a potential main potential matrix $main potential$	Металлургия.	Металлооб	работка. 1	Машиностроение
---	--------------	-----------	-------------------	----------------

73,50	35,00	1500	1820	FeB	FeB _n эвт.
75,00	37,20	1540	1750	FeB	FeB _n эвт.
77,00	40,00	1500	1840	FeB	FeB _n эвт.
80,70	45,00	1520	1900	FeB	FeB _n эвт.
83,70	50	1520	2050	FeB	FeB _n эвт.
86,30	55	1540	2000	$FeB(FeB_n)$	FeB _n эвт.
88,60	60	_	2080	$FeB(FeB_n)$	FeB _n эвт.
90,80	65	1950	2030	FeB_n (FeB)	FeB _n эвт.
92,40	70	1980	2050	FeB_n (FeB)	FeB _n эвт. (1 %)
93,90	75	1980	2100	FeB_n	FeB _n
95,30	80	1980	2140	FeB_n	FeB _n
96,70	85	2130	2180	FeB_n	$FeB_n + B$
97,90	90	—	2150	FeB_n	В
98,90	95	-	2150	$\beta - B$	В

Рис. 3. Диаграмма состояния системы Fe-B [8]

Микротвердость соединений FeB_n превышает 20000 МПа [9]. На основании тщательного кристаллохимического изучения твердых раст-

воров металлов в боре [11–13] показано, что в структуре β-ромбического бора имеются по крайней мере восемь кристаллографических положений, представляющих пустоты, достаточные по размерам, чтобы в них могли разместиться атомы металлов. Таким образом, существует возможность образования таких структур, наличием которых в некоторых случаях можно объяснить повышение твердости получаемых боридных покрытий.

Для исследования влияния вводимых добавок на интенсификацию процесса диффузионного насыщения был проведен микрорентгеноспектральный анализ насыщающей смеси № 7. На рис. 4 представлены спектрограммы, снятые с различных ее составляющих. Как видно из представленных данных, в смеси зафиксировано наличие меди, оксид которой входил в состав исходной шихты. Термодинамические расчеты смесей, в состав которых вводился оксид меди (\mathbb{N} 4 и \mathbb{N} 7), также показывают наличие меди в составе конденсированных фаз при охлаждении после CBC. Наличие меди может приводить к образованию временной жидкой фазы, что может способствовать ускорению массопереноса при XTO.

Спектр В С О Al Si Cr Fe Cu Zr

1		25,16	44,97	29,70	0,17				
2		11,60	53,12	35,28					
3	31,05	27,32	9,30	2,70		19,48	4,42	0,50	5,23
4		33,02	40,86	23,95		2,17			
5	16,11	15,35	49,72	17,98	0,10	0,65	0,10		
6		11,36	16,80	56,88		14,95			

Рис. 4. Результаты микрорентгеноспектрального анализа синтезированной борирующей смеси № 7 В Ы В О Д Ы

1. Проведенное термодинамическое моделирование синтеза порошковых смесей для борирования позволило оценить механизмы взаимодействия в волне СВС в данных многокомпонентных многофазных системах и определить вещества, которые могут являться источниками бора при проведении последующего термодиффузионного насыщения из исследуемых смесей.

2. Небходимым условием формирования двухфазных боридных слоев является наличие в насыщающей системе соединения AlB₁₂.

3. Боридные слои, образованные в смесях, содержащих чистые металлы и их окислы, в 1,2–1,8 раза превосходят по толщине слои, полученные в традиционных алюмотермических смесях и смесях на основе карбида бора. Интенсифицирующим воздействием на насыщающую способность вводимых добавок может служить образование временной жидкой фазы, способствующей ускорению массопереноса при XTO.

4. Использование разработанных синтезированных насыщающих сред повышает атмосферную коррозионную стойкость боридных покрытий.

5. Микротвердость покрытий, формирующихся в разработанных смесях, на границе фаз практически не изменяется, оставаясь на уровне значения высшего борида.

ЛИТЕРАТУРА

1. **Кухарев, Б. С.** Диффузионные модели образования новых фаз при борировании железа / Б. С. Кухарев, С. П. Фисенко, С. И. Шабуня. – Минск: АНК «ИТМО им. А. В. Лыкова», 1992. – 27 с.

2. Получение и исследование свойств однофазных диффузионных покрытий / Б. С. Кухарев [и др.]; Беларус. гос. политехн. акад. – Минск, 1999. – С. 8 – Деп. в ВИНИТИ 14.01.00. № 49-В00 // Указатель деп. рукописей 03.49В0027.

3. **Применение** ЭВМ для термодинамических расчетов металлургических процессов / Г. Б. Синярев [и др.]. – М.: Наука, 1982.

4. Ватолин, Н. А. Термодинамическое моделирование металлургических процессов / Н. А. Ватолин, Г. К. Моисеев, Б. Г. Трусов. – М.: Металлургия, 1994.

5. Мержанов, А. Г. Самораспространяющийся высокотемпературный синтез / А. Г. Мержанов // Физическая химия: современные проблемы; под ред. Я. М. Колотыркина. – М.: Химия, 1983. – С. 6–45.

6. **Мержанов, А. Г.** Научные основы, достижения и перспективы развития процессов твердопламенного горения / А. Г. Мержанов // Известия Акад. наук. Сер. химич. – 1997. – № 1. – С. 8–32.

7. **Munir, Z. A.** Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion / Z. A. Munir, U. Anselmi-Tamburini // Materials Science Reports. -1989. – Vol. 3, N_{\odot} 7/8. – P. 277–365.

8. **Портной, К. И.** Бинарные диаграммы состояния ряда элементов с бором / К. И. Портной, В. М. Ромашов // Порошковая металлургия. – 1972. – № 5. – С. 48–56.

9. Портной, К. И. Диаграмма состояния Fe-B / К. И. Портной, М. Х. Левинская, В. М. Ромашов // Порошковая металлургия. – 1969. – № 8. – С. 66.

10. Структура сплавов системы Fe–B / Л. Г. Ворошнин [и др.] // Металловедение и термическая обработка металлов. – 1970. – № 9. – С. 14.

11. Andersson, S. The Crystal Structure of MnB_4 / S. Andersson, J. Karlsson // Acta chem. Scand. – 1970. – Vol. 24, No 5. – P. 1791–1794.

12. Andersson, S. The Crystal Strycture of CrB_4 / S. Andersson, T. Lundstrom // Acta chem. Scand. – 1968. – Vol. 22. – P. 3103–3110.

13. Carlsson, J. O. The Solution Hardening of β -Rhombohedral Boron / J. O. Carlsson, T. Lundstrom // J. Less-Common Met. – 1970. – Vol. 22. – P. 317–320.

Поступила 27.09.2010