172  OPTICS LETTERS / Vol. 35, No. 2 / January 15, 2010

Femtosecond pulse operation of a Tm,Ho-codoped
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We demonstrate, for the first time to our knowledge, femtosecond-regime mode locking of a Tm,Ho-codoped
crystalline laser operating in the 2 um spectral region. Transform-limited 570 fs pulses were generated at
2055 nm by a Tm,Ho:KY(WO,), laser that produced an average output power of 130 mW at a pulse rep-
etition frequency of 118 MHz. Mode locking was achieved using an ion-implanted InGaAsSb quantum-well-
based semiconductor saturable absorber mirror. © 2010 Optical Society of America
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In recent years crystalline bulk and amorphous fiber
media with Tm?3* and/or Ho?* dopant ions have been
shown to be excellent candidate gain materials for
high-power and broadly tunable 2 um lasers that can
also be wused for ultrashort pulse generation.
Ultrafast laser sources around 2 um are of particular
interest for applications in time-resolved spectros-
copy, nonlinear frequency upconversion to the mid-
and far-IR spectral regions [1], mid-IR supercon-
tinuum generation [2], optical communications, and
photomedicine [3]. Moreover, ultrafast 2 um lasers
can be used for 3-D microstructuring [4] of semicon-
ductor materials where standard 1 um sources based
on Ti:sapphire or Yb-doped lasers are not appropri-
ate. Despite the earlier demonstrations of mode-
locked thulium-fiber lasers, these systems still oper-
ate at relatively low average powers, usually in the
range of few tens of milliwatts where stable mode
locking is achievable [5-7]. Only recently, a Tm-
doped fiber laser producing 1.7 ps pulses at an aver-
age power of 178 mW was demonstrated using an
additive-pulse mode-locking technique [8] and, alter-
natively, 108 fs pulses at 1980 nm with an average
power of 3.1 W were produced after amplification of
Raman-shifted Er-doped fiber laser in a Tm-doped fi-
ber [9].

By contrast, Tm>*-doped and Tm?*,Ho?*-codoped
crystalline gain media offer attractive alternative de-
sign strategies for high-power ultrashort pulse gen-
eration in the 2 um spectral region [10-12]. Such la-
sers can be pumped directly by well-developed high-
power laser diodes around 800 nm or, in case of Ho-
doped gain media, can be in-band pumped using Tm-
based crystalline or fiber lasers [13]. Although a
number of such high-power and broadly tunable la-
sers have been reported for cw operation, relatively
few have been employed for ultrashort pulse genera-
tion. Specifically, with active mode locking, pulses of
35 ps and 100 ps duration were generated from
Tm:YAG [14] and Tm-Ho:BaYyFg [15] lasers
having average powers of 20 mW and 70 mW,
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respectively. More recently, passively mode-locked
Tm:KLu(WO,), [16] and Tm,Ho:KY(WO,),
(Tm,Ho:KYW) [17] lasers have been demonstrated
using carbon nanotubes and InGaAsSb-based satu-
rable absorbers, and these produced 9.7 ps and 3.3 ps
pulses near 1950 nm and 2060 nm, respectively.

Here we report further progress in the develop-
ment of ultrashort-pulse 2 um lasers. Specifically, a
Tm,Ho:KYW laser that delivers transform-limited
570 fs pulses at 2055 nm has been demonstrated. An
average output power up to 130 mW was produced in
stable mode locking at a pulse repetition frequency of
118 MHz.

The assessments of this laser were performed with
a Tm(5 at. %),Ho(0.4 at. %)-codoped KYW crystal
[18]. This gain element, having a Brewster-cut geom-
etry, was 1.5 mm in length and was oriented in the
cavity for optical propagation along the b(IV,)-axis
and for a polarization along the N,, crystallo-optic
axis. An asymmetric z-fold resonator was configured
with two folding mirrors M; and M, having radii of
curvature of 75 mm and 100 mm, respectively, an
output coupler (OC) with 1% transmission around
2 pum, and a high-reflectivity mirror (HR) or semicon-
ductor saturable absorber mirror (SESAM) (Fig. 1).
The laser beam mode radii inside the gain crystal
were calculated to be 23 X46 um. A Ti:sapphire laser

Fig. 1. (Color online) Setup of the Tm,Ho:KYW mode-
locked laser. M; and Ms, plano-concave high-reflector mir-
rors (r{=-75 mm, ro=-100 mm); OC, output coupler (T
=1% at 2000 nm); HR, plane high-reflector mirror; F'S, pair
of IR fused-silica prisms.
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producing 1.2 W of output power at 802 nm was used
as a pump source, and its beam was focused into the
gain medium via a 50 mm focal length lens to a spot
radius of 23.5 um (1/e? intensity) measured in the
air at the location of the gain crystal. During cw op-
eration this laser produced a maximum output power
of 472 mW at 2057 nm and operated with a slope ef-
ficiency of 41%. When two fused-silica prisms were
inserted into the long arm of the cavity, the output
power reduced to 330 mW. A prism pair was used for
intracavity dispersion control through a glass mate-
rial dispersion of ~-113 fs?/mm at 2060 nm.

The SESAM structure used for the initiation and
stabilization of passive mode locking in the
Tm,Ho:KYW laser was similar to that described in
[17] and incorporated a GaSb/AlAsSb distributed
Bragg reflector having a high reflectivity at
~1930-2150 nm and 2XInGaAsSb quantum wells
as the absorber. In our previous work we demon-
strated 3.3 ps pulses centerd on 2057 nm from a
Tm,Ho:KYW laser using this as-grown SESAM. How-
ever, it was found that no significant variations in
pulse durations or spectral widths were observed for
different values of intracavity pulse energy or net
cavity group-velocity dispersion, and we attributed
this type of mode-locking regime to the relatively
long recovery time (>100 ps) and low self-amplitude
modulation in the as-grown SESAM. To decrease the
carrier recombination time [19,20], the SESAM
samples were irradiated with 4 MeV As* ions at
doses ranging from 5% 101 cm™2 to 5 X 10! cm™2. As
the implantation dose increased, we observed a
damage-induced reduction of the overall reflectivity
as depicted in Fig. 2. For the sample irradiated with
a 5x10% cm2 dose, we estimate this loss to be
around 1%.

When the SESAM structure, which was implanted
with a 5% 10 ¢cm~2 dose, was inserted into the short
arm of the cavity, where the calculated mode radius
was 140 um, the laser produced up to 150 mW of av-
erage output power. Following suitable subsequent
minor adjustment of My mirror position, stable mode
locking was realized at 2055 nm with a maximum av-
erage output of 130 mW and a pulse repetition fre-

Fig. 2. Reflectivity curves of the implanted and non-
implanted SESAM structures.
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quency of 118 MHz. This stable ultrashort-pulse op-
eration was observed when the Tm,Ho:KYW laser
produced average powers throughout the range of
31-130 mW, whereas @-switched mode locking be-
came evident at lower intracavity powers, specifi-
cally, when the fluence on the SESAM was below
42.7 ud/ecm? (Fig. 3). The pulse durations varied from
2.64 ps at the mode locking threshold to 570 fs at the
maximum output power of 130 mW [Figs. 4(a) and
4(b)]. The pulses were near-transform-limited with
time-bandwidth products in the 0.31-0.32 range. Fig-
ure 4(c) shows the pulse durations as a function of
the intracavity pulse energy E, at a constant nega-
tive dispersion D in the laser cavity of —1950 fs? per
round trip. It can be seen that the measured pulse
duration decreased inversely in proportion to E, ac-
cording to the expression

2D|
7,=1.7627——,

ok,
where &; is the self-phase modulation (SPM) coeffi-
cient, as predicted from a soliton mode-locking model
[21]. The best fit to the experimental data applied
when §;,=1.2X10"7 W1, This value in good agree-
ment with that obtained (8,=1.16x10"" W) from
the measurements of pulse duration as a function of
the intracavity dispersion, which was varied by in-
creasing the insertion of one prism at constant intra-
cavity pulse energy of 95 nJ, when d7,/d|D| param-
eter was found to be 0.32 fs™!. The data deduced for
the SPM coefficient can provide an estimate for the
nonlinear refractive index, n,, of the gain medium ac-
cording to the expression

21 2Lg
6L =Ny )
N TAg

where \ is the laser wavelength, L, is the length of
the gain medium, and A is the mode area in the la-
ser crystal. The ny of Tm,Ho:KYW at 2055 nm was
thus calculated to be 1.57 X 1071%cm?/W. Previously,
the nonlinear refractive index of Yb®*:KYW was
measured to be 8.7 X 107 cm?/W at 1080 nm [22].

Fig. 3. (Color online) Input-output characteristics of the
mode-locked Tm,Ho:KYW laser at 2055 nm.
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Fig. 4. (Color online) (a) Intensity autocorrelation and (b)
spectrum of the shortest pulses obtained from the mode-
locked Tm,Ho:KYW laser. (¢) Dependence of the pulse du-
ration on the intracavity pulse energy. The solid (blue on-
line) curve is a fit to 1/E,,.

It is noteworthy to state that similar mode-locking
parameters were obtained using an SESAM that had
been ion implanted at a higher dosage level of
10! cm~2. The key difference was that of a lower out-
put power of 90 mW that implies higher nonsat-
urable losses in the absorber.

In conclusion, we have demonstrated a passively
mode-locked Tm,Ho:KYW laser operating around
2055 nm. Pulse durations in the range of
2.64—0.57 ps were generated with corresponding av-
erage output powers of 31-130 mW at a pulse repeti-
tion frequency of 118 MHz. Soliton mode locking was
achieved by deploying an ion-implanted InGaAsSb
quantum-well-based SESAM and a pair of fused-
silica prisms for the dispersion control. Ongoing work
is being concentrated on the development of diode-
pumped Tm,Ho-codoped femtosecond lasers using
SESAMs having better optimized macroparameters
for efficient femtosecond mode locking in the 2 um
spectral region.
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