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Spectroscopy and femtosecond laser performance
of Yb3+:YAlO3 crystal
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We report what we believe to be the first demonstration of cw and passively mode-locked Yb3+:YAlO3
(Yb:YAP) laser operation under diode pumping. Spectroscopic properties of a 0.6 at.% Yb3+-doped YAP single
crystal were investigated. Output power up to 1.2 W with slope efficiency of 64.5% in the cw regime and
225 fs pulse duration with average power of 0.8 W from a mode-locked Yb:YAP laser were demonstrated.
© 2008 Optical Society of America
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Present widespread use of efficient InGaAs laser di-
odes and favorable electronic structure of ytterbium
ions stimulate interest in Yb3+-doped solid-state ma-
terials for diode-pumped high-power lasers emitting
in the spectral range near 1 �m. Broad gain band-
width of these media has stimulated their applica-
tions for generation of ultrashort pulses in mode-
locked regime.

So far, the highest average output power of 60 W
with ultrashort pulses has been obtained with a thin-
disk Yb:YAG laser, passively mode-locked with a
semiconductor saturable-absorber mirror (SESAM)
[1]. The thermal conductivity of YAG is about
13 W/ �mK�. However, the emission bandwidth of
Yb:YAG limits the pulse duration to only 700–800 fs
in a thin-disk laser, or to 340 fs in a bulk laser [2].
Much shorter pulse durations were reported for a
number of crystals with broader emission bands,
such as Yb-doped YVO4, CaGdAlO4, Y2SiO5,
KGd�WO4�2, KY�WO4�2, KLu�WO4�2, SrY4�SiO4�3O,
Ca4GdO�BO3�3, Sr3Y�BO3�3, etc. [3–12], as well as
phosphate and silicate glasses [13]. However, these
materials have low thermal conductivity of approxi-
mately 2–5 W/ �mK�, which limits their potential for
high-power operation. With Yb-doped CaF2, which
has thermal conductivity of 9.7 W/ �mK�, average
power up to 880 mW with pulses as short as 150 fs
was reported [14]; however, a rather low absorption
cross section of this crystal makes it not suitable for
thin-disk lasers. Sesquioxides, such as Lu2O3 and
Sc2O3, that have high thermal conductivity of more
than 12 W/ �mK� are particularly promising materi-
als to date. 370 fs pulses with 20.5 W average power
with a mode-locked Yb:Lu2O3 thin-disk laser were
recently demonstrated [15]. Here we publish results
on spectroscopy and efficient cw and mode-locked la-
ser operation of a Yb3+:YAlO3 single crystal as prom-
ising material for thin-disk laser applications.

Perovskite-like yttrium aluminate, YAlO3 (YAP), is
16
a biaxial crystal with the orthorhombic D2h space
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group. It has high thermal conductivity of
11 W/ �mK� [16]. Some spectroscopic properties as
well as an energy-level diagram of Yb:YAP crystals
with Yb3+ concentration of 2 at.% were reported al-
ready in 1971 [17]. Unpolarized absorption and emis-
sion spectra of ytterbium-doped yttrium aluminate
and comparison with other ytterbium-doped materi-
als were made in [18]. More recently, comparison of
spectroscopic parameters of Yb3+-doped YAP and
YAG single crystals was carried out, and self-
absorption phenomena was studied [19,20]. It was
shown that Yb3+�15 at.% � :YAP crystal is a potential
candidate for compact, efficient thin-chip lasers; in
addition, its broad emission band allows the genera-
tion of ultrashort pulses. The latest description and
analysis of Yb:YAP crystal growth, structural charac-
terization, and spectroscopic properties were pub-
lished in [21]. In this study, Boulon et al. reported ex-
perimental decay-time dependence on Yb3+-dopant
concentrations, and room-temperature absorption
and emission cross section spectra along the a axis
were given. Radiative lifetime of an upper-laser level
was estimated there to be 0.6 ms, which has a large
discrepancy with the decay time published in [19].

In our study polarized absorption spectra of
Yb3+�0.6 at.% � :YAP at room temperature were mea-
sured by a Varian CARY-5000 spectrophotometer.
The content of ytterbium ions in crystal was mea-
sured by means of a Tescan VEGA II LMU scanning
electron microscope with Oxford INCA Energy 350
energy dispersive x-ray analyzer and was estimated
to be 1.17�1020 cm−3. The cross-section spectra for
three polarizations are shown in Fig. 1. Strong ab-
sorption is found for E �c light polarization. A peak
absorption cross-section at 978.2 nm is about 6.6
�10−20 cm2, however, with comparatively narrow
bandwidth of about 4 nm. For a and b polarizations
maximal absorption cross sections near 978.5 nm are
0.97�10−20 cm2 and 1.38�10−20 cm2, respectively.
The stimulated emission cross sections are also given

in Fig. 1. They were calculated by use of a modified
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reciprocity method [22]. Lifetime measurements
were carried out with fine powdered
Yb�0.6 at.% � :YAP crystal immersed in glycerol in or-
der to suppress reabsorption [23]. The sample was
excited by about 20 ns pulses at 982 nm. The emitted
luminescence was measured with the use of a 0.3 m
monochromator, fast Ge-photodiode with a rise time
of �20 ns and a 500 MHz digital storage oscilloscope.
All the samples exhibited single exponential decay
(see inset in Fig. 2). With the decrease of weight con-
tent of crystalline powder in suspension measured
lifetime also decreased (see Fig. 2). After considerable
dilution of the powder and thus elimination of self-
trapping effect the emission lifetime of ytterbium ex-
cited state in YAP crystal was determined to be
500±10 �s. This value is even smaller than the re-
sults published in [21] �0.6 �s�, which is to our belief
owing to more careful reduction of reabsorption influ-
ence.

Fig. 1. Polarized absorption and stimulated emission
spectra of Yb�0.6 at.% � :YAlO3 crystal.

Fig. 2. Measured lifetime for different weight content of
Yb:YAP crystalline powder in glycerol suspension. Inset, ki-

netics of luminescence decay.
For a cw laser, experiments set up with a folded
cavity design were used. It consisted of two curved
mirrors with 100 mm and 300 mm radii of curvature,
a plane output coupler (OC), and a plane end mirror
highly reflecting at 1020–1100 nm. For the experi-
mental assessment a 3-mm-long 0.6 at.% Yb:YAP
Brewster-angled crystal cut perpendicular to the
crystallographic a axis was used and was oriented in
the cavity for polarization parallel to the b axis,
where the stimulated emission cross section is
slightly higher than that for c polarization (Fig. 1).
For heat dissipation a gain medium was mounted
onto a copper heat sink kept at 20°C. A cw fiber-
coupled (�=105 �m, NA=0.15) InGaAs laser diode
with a maximum output power of about 6 W at
980 nm wavelength was used for longitudinal pump-
ing of the gain medium through the mirror with
100 mm radius of curvature. The pump beam was fo-
cused inside a Yb:YAP laser crystal into a 105 �m
spot with a confocal length of about 2.5 mm. The
cavity-mode diameter for TEM00 transversal mode at
the active element was calculated to be 98 �m.

Input-output diagrams for the Yb:YAlO3 CW laser
with OC transmissions of 3.5% and 5.5% are pre-
sented in Fig. 3. Maximum output power of about
1.2 W at 1040 nm for TEM00 mode with a slope effi-
ciency of 64.5% with respect to the absorbed pump
power was obtained with 5.5% OC. For the laser with
OC transmission of 3.5% the slope efficiency de-
creased to 58% with output power of 1.12 W at
1041 nm. Laser thresholds for the 3.5% and 5.5% out-
put couplers were determined to be 0.85 W and
1.05 W of the absorbed pump power, respectively.

For the experiments in a mode-locked regime the
same cavity design was used with a SESAM having
modulation depth of 1.6% and saturation fluence of
30 �J/cm2 substituted for a high-reflecting mirror
and two chirped mirrors, each providing second-order
dispersion of nearly −920 fs2 in the spectral range
from 1030 to 1065 nm, for obtaining negative group-
delay dispersion in the cavity (Fig. 4). Stable cw
mode locking was obtained for OC transmission of
3.5%. Average output power up to 0.8 W at 1041 nm
with pulse duration of 225 fs and pulse repetition

Fig. 3. Average output power of cw Yb:YAP laser versus
absorbed pump power for output couplers with different

transmissions.
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rate of 70 MHz occurred, resulting in peak power as
high as 44.5 kW. Intensity autocorrelation with a
sech2 fit and optical spectrum of the mode-locked
Yb:YAP laser are presented in Fig. 5. During autocor-
relator scanning a time range of 130 ps occurred af-
ter laser pulse, and no other pulses were observed.
They were not also seen on the oscilloscope with time
resolution less than 1 ns. The time-bandwidth prod-
uct was estimated to be 0.32, which was very close to
the transform limit for soliton pulses ��p��=0.315�
[24].

In conclusion, for the first time, to our knowledge,
efficient cw and mode-locked laser operation with
Yb3+:YAlO3 single crystal was demonstrated. Polar-
ized absorption and stimulated emission cross-
section spectra and luminescence lifetime of Yb:YAP
were determined. The cw operation of a Yb:YAP laser
at 1040 nm with 1.2 W output power and slope effi-
ciency as high as 64% with respect to the absorbed
pump power were achieved. In a mode-locked regime
soliton-like pulses with duration of 225 fs and aver-
age power as high as 0.8 W around 1041 nm were re-
alized. We believe that the increase of output power
and pulse shortening could be achieved by optimiza-
tion of Yb-dopant concentration and group-velocity
dispersion compensation in the cavity. It is prospec-
tive to grow samples with higher Yb ions doping con-
centration and find out the maximum doping level for
YAP. Yb:YAlO3 looks very promising for thin-disk ul-
trafast lasers owing to high thermal conductivity,
strong absorption at 985 nm, and comparatively
broad emission bandwidth. In the future it also is in-
teresting to measure its nonlinear refractive index
and determine the possibility of using Yb:YAP for

Fig. 5. Intensity autocorrelation (left) with a sech2 -fit and
optical spectrum (right) of the mode-locked Yb:YAlO3
laser.

Fig. 4. Experimental setup of passively mode-locked
diode-pumped Yb3+:YAP laser.
Kerr-lens mode-locked ultrashort Yb lasers.
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