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ABSTRACT

The computer architect of the 80's races apparently

intractable dilemma: Computer manufacturers have to conteno

with the soaring costs incurred in producing custom-made 

chips, and would prefer to use commercially-available, 

state-of-the art, large-scale integrated circuits. Product 

users, however demand highly reliable, realistically- priced 

systems which are nevertheless flexible enough to meet 

changing needs.

It is generally accepted that to be reliable and flexible = 

system should be conceptually simple and inherently 

fault-tolerant. Further, accepting the necessity for 

maintenance, it becomes clear that the architecture should 

be totally modular both for hardware and for software.

This thesis is an attempt to reconcile these seemingly 

conflicting demands. An architecture is proposed, based on 

the freguently-used principle of closely-coupled 

multiprocessors, which avoides the pitfalls of 

over-complexity and too-heavy software dependence.
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The proposed system is inherenty simple, making use of <= 

single, high-speed time-division multiplexed bus to provide 

for communication between processors and memory, 

complexity is reduced by adopting a distributed, 

hardware-oriented operating system. Simplicity is enhanced 

by the use of a unified memory structure, whereby the user 

may freely allocate local or global memory, or a mixture of 

both.

Of importance is the use throughout of

commercially-ava ilable, large- scale integrated ci. suits. 

This is particularly relevant as the work was undertaken in 

isolation from the centres of research into custom-made 

microelectronics.

The author has developed the proposed system to prototype 

level. The prototype has been subjected to a series of 

performance evaluation tests , and the results obtained 

prove the viability of the technique adopted, and 

demonstrate its promise for the future.
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The proposed system is inherenty simple, making use of a 

single, high-speed time-division multiplexed bus to provide 

for communication between processors and memory. Software 

comole x i ty is reduced by adopting a distributed, 

hardware-oriented operating system. Simplicity is ennanced 

by the use of a unified memory structure, whereby the user 

may freely allocate local or global memory, or a mixture of 

both.

Of importance is the use throughout of

commercially-available, large- scale integrated circuits. 

This is particularly relevant as the work was undertaken in 

isolation from the centres of research into custom-made 

microelectronics.

The author has developed the proposed system to prototype 

level. The prototype has been subjected to a series of 

performance evaluation tests , and the results obtained 

prove the viability of the technique adopted, and 

demonstrate its promise for the future.
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CHAPTER 1

INTRODUCTION

"An I directed my heart to know wisdom, and to know madness 
and folly ,but I have perceived that this also is a torture 
of the spirit. For where there is much wisdom there is much 
vexation, and he that increaseth knowledge increaseth oain" 
[Eccelesiastes i 17,18].

This thesis proposes a technique for interconnecting a large 

number of microprocessors to form a simple, inexpensive but 

efficient computer system. The system ? inherently modular 

thus enhancing reliability, mai :ainability, and 

testability.

1.1 Tr.e Growing Demand for Comoutina Power

In order to cope with the rapid advance of technology and 

the ever-increasing demands of society, particularly in 

respect of automation, there is a need for the provision of 

more commuting power at lower cost. One need only to look 

at fields such as those mentioned below to see that the 

'supercomputer' is very much in demand.



Short-range won' her Coro, n • t - r• - ; urn / •= / iccurate and

highly cc-ipl • < leather mod, I I i. Comput°r assisted

tcmogr nphy which involve; h igh-roocd signal processing

and in >g ing, i •; w ll as the i od I ling of organ such as thr 

heart, no • is advanced equipment for computing at speeds 

approach log 100 million floating point operations

(megnf lops) per s.-cond [Sl.\] . I) ’.cl tr fu ion researchers 

could use a computer 10 0 tines faster than any existing 

machine for modelling the plasma ir :tabi3 I;ie- of proposed 

fusion power generators [SPG 8(A j .

One of the world's most complex undertakings in the past two 

decades has boon the USA Department of Defense (DOD)

Ballistic Hi silo Program. A criti a I port of the large 

research and developement inv -st nt in this program has 

been the effort to develop • G .I i- ocessing hardware and 

software technologies to meet the computational challenges 

of this complex problem. The Ballistic Missile Program 

needs a e - touting system that will deliver a throughput of 

hundreds of megaflops per second, with a high degree of 

confidence that correct execution will occur. This

challenges even thr- most advance t • Imologists. [DAV 80]
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The computer engineer, who takes on himself the burden of 

designing such a machine faces a great challenge. He must 

bear in mind that a computer is ultimately designed for the 

end user, and it is the user's evaluation that counts, as it 

is he who will be in the most intimate relationship with the 

computer. The computer, therefore, has to be user 

acceptable in terms of reliability, maintainability and 
safety.

1.2 Distrrouted Contro

Amongst the many criteria which determine the choice of a 

particular design, is that of overall cost. A feel for this 

criteria may be established in tu.ble 1.1. In this Sugarman 

compares the processor cost/performance for a particular 

sample problem requiring 8 3800 flops for each iteration. It 

can be seen that the AP-120B peripheral array processor is 7 

times as cost-effective as its nearest rival the CRAY-1 

supercomputer (SUG 80].
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Michino Mf 1 ops $/flop installation

AP-120B 5.9 .03 . 15

CRAY-1 38.4 .21 8

STAR-10 0 16.8 .48 8

VAX 11/780 .26 .77 .2

CDC 7600 3.3 .91 3

ILLI AC IV 9.1 1.1 10

CDC 6600 .63 1.59 1

IBM 370/165 .87 2.3 2

TAOL 1 I. 1 COST/Pt j!(MA':CE P \ 1 ' [SUG 80]

(A Mor; iFlop (Mf Icn) is a : i 11 ion floating point operations. )
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Of interest from the above compar is ions, is the observation 

which may be made that parallel processors, which are 

cheaper than supercomputers, can be used in situations such 

as those mentioned previously.

1.2.1 Reliability

An essential trade-off to be considered in comouter design 

is the complexi z y of the computer versus the power (or

throughput). It is common knowledge that the more powerful 

a computer is, the more complex it becomes [SUG 81]. It is 

also common knowledge that complex electronics, unless

highly integrated, becomes increasingly unreliable and 

costly. This is easy to explain:- From table 1.2 it can be 

seen (a) that the reliability of a computer board decreases 

40-fold when compared to tne reliability of a single

integrated circuit because of the increase in components and 

complexity, and (b ) that the reliability decreases 

dramatically as the number of components per system

increases.
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Order of Magnitude of Fits

Transistor 

LSI component 

Solder connection 

Switch(percontact)

Pluq connection (per contact)

1 Board computer (25 chips) 4

— — — ---R— il i tv of Components [KOP 81]

10 to 100
100 to 10tJ0

2 to 20
30 to 300
30 to 300

000 to 40000

(1 FiT " Failure in 10**9 hours i. e. 115000 years)
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Gtiph 1 shows the characteristic curve for an electronic 

device. Early failures, such as infant mortality or burn in 

failures, occur at a high initial rate which decreases when 

the weak units have died out. The useful life period, which 

is the most important period because it is the key to 

reliability prediction, is followed by the wearout period. 

Wearout failure results from degradation of the strength of 

a device and exposure to the environment [DOY].



f a i l u r e  r a t e

INFANT
MORTALITY USEFUL LIFE

TIME

GRAPH I FAILURE RATE OF COMPONENTS
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The society in which we live is becoming very

s^*e '-‘"v0nsc^ou5' an<3 increasingly dependent on computers, 

.therefore a computer which has the function of, say,

controlling production machines or on which we rely for the 

handling of critical data, has to be extremely reliable.

One need only look at what happened at Three Mile Island. 

The nuclear reactor at Three Mile Island was controlled by 

iardwired logic and many small computers. There was no 

central controlling facility nor was there communication 

between the distributed control points. At the moment of 

crisis the operators were faced with many indicator lights 

and perhaps, if there had been an interconnection of the 

control points, the near-disaster might not have occured. 

r or tnis to be available, clearly a highly reliable 

computing system is vital. NASA, too, has an aircraft

energy effiency research program needing ultra-reliable 

computers that would counteract faults automatically. The

aircrart flies very close to the limits of stability and 

therefore a computer with a fast response time is needed 

(rather than a human) to control it. The probability of a 

computer failure during a flight must be less than the 

probability of mechanic.i structure failure during the same 

period. Tnus an ultra-reliable and fast computer is needed.



PAGE 1-10

Reliability is normally defined as the "probability that a 

system will function within the specified limits for at 

least a specified time under specific environmental 

.conditions" [KOP 81J. It is concerned with all the parts of 

the system (hardware, software, printed circuit boards, 

etc. ) , their intet action, the inter c'-'* "tion mechanisms 

between the various parts and finally, naturally, depends on 

the mechanical construction.

In striving to achieve a high degree of software 

reliability, problems such as software validation are 

encountered. Present techniques are inadequate for 

evaluating the reliability of software, and perhaps the only 

way of checking software is by exhaustive testing [LAM] 

Bernhard maintains that system validation problems are 

primarily related to software, and that no guidelines exist 

for determining software reliability [BERC]. Making the 

software simple and well defined can help in solving these 

problems, but the programmer can never claim with total 

certainty that his program is error-free (see 1.4).



PAGE 1-11

The reliability of a computer system require, a tborouq, 

investigation. Reliability involves both software and 

hardware and it was decided to limit the study of

' rel- - b U l t y  • ln this thesis "primarily to that of hardware 
(appendix Software reliability is dealt with on the
Keep It simple and well- defined" precept.

One of tne most critical factors influencing the reliability 

computer system is the interconnection structure of the 

system. This is because, although the reliability of the 

individual components can be maximized, the overall 

reliability of the system will be related to the component 

inte. connections, which are not usually duplicated and are 

inherently unreliable (being mainly mechanical in nature,. '

In Practice, there are various techniques available for 

attaining a high degree of reliability.
achieve reliability through either the use of inherently 

ighly-reliable components or through the introduction of 

reaundancy. (Redundancy here implies that the system 

more resources than are absolutely necessary forrr operation ’■ Acc°cdin9 to — .to=,
■< 9 ’ y reliable systems are "systems with a structure

independent of any critical resource that has a relativelv 
high failure rate."
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Lae uOoi oi increasin | La-> reliability of components

■ ic’n iovccl du-ing vi inu ■ : re, is very high. There foe e

f au 11-to I :• cam ■ * i rj normally adopted on the pt lise that it

i° moce ccon >in a a a 1 to build vedun ant systems than to strive 

"

system is one which can survive multiple "aults that would 

normally bring a conventional co outer to a halt [STI].

Of importance in a redundant system is the aoility to detect 

an error. Error detection presupposes that the result of a 

otea in a pro ' can be related to an acc -ptance criterion. 

In a sysb- i with redundancy, additional resources typically 

are used to form an error detection module which may be 

separated from the actual active pros ssinj nodules [KOP 
81] .

A key issue in fault-toloranc - design is the size of the 

unit that is to be replaced in the event of a failure —

j) .
is generali/ visualised as the unit which is removed by the 

service eng in- r once ho has localised a fault to a 

particular unit, which is then replaced by a identical one. 

It is also clear that an 5RU must be testable - specifically 

tuis requires it to have well d'lined inter faces[KOP 81].The 

5RU could be a resistor or transistor at one extreme or a 

complete board at the other. Since the costs of electronic 

components are steadily decreasing it becomes economically
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feasible to think in terms of a complete board as the SRU.

From the above it may be concluded that a well-structured 

computer should therefore have inherent fault-tolerance 

built into 1ts architecture, by having redundant components. 

By adop . uch a design, however, it would seem th<_c

reliability is achieved at the expense of simplicity. This 

thesis discusses an architecture for a computer system that 

is reliable, partially fault-tolerant and (of importance) 

simple and well-structured.

1.2.2 Maintainability

The user of a system is primarily concerned with the 

availability of the system for his use. Ava'ilabil icy is a 

function of the Mean Time Between Failure (MTBF) and the 

Mean Time To Repair (MTTR). As a failure occurs, the faulty 

module is replaced by the service engineer and the user can 

then carry on operating the machine as if nothing had 

happened. Provided the principle of fault-tolerance is 

adopted, however,during the diagnosis and repair time the 

user will simply experience a slight drop in performance.
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There is clearly a trade off between maintainaoility and 

reliability - both being linked to the availability of the 

system (see appendix J }. Maintainability, which can be 

defined as the probability of repair in a given time, 

implies that the system must be modular. If the SRU is 

extracted for repair, the system must be able to tolerate 

this removal and recover once the module is re-inserted.

A module is characterised by the function it performs. It 

is essentially a 'clack box' which transforms a set of 

inputs to a set of outputs. In designing systems using 

modules the designer assumes that other modules, except the 

one on which he is working, work to specification. Testing 

is done in a similar easy fashion.

Of importance too, is the practical realisation that once a 

computer system has been installed, the user inevitably 

needs to increase its capacity! Enhancement of a computer 

system can be achieved much more readily in a 

well-structured, modular design.



PAGE 1-15

1.3 The Influence of Technology on Architecture

The advance of technology is sometimes too rapid for the 

system designer, in that by the time his design is

functional there may be newer and more powerful components

available which might more easily accomplish his reauired

tasks. This problem is never more apparent than in the

world of electronics, and particularly, the digital area

where the pace of technological innovation is staggering.

The Electronic designer has three approaches available to 

him when utilizing state-of-the-art digital hardware. These 

may be summarized as follows:-

1. The use of Custom Designed Integrated Circuits.

The engineer designs highly complicated integrated 

circuits from the transistor junction level

normally using the support of a Computer Aided 

Design system (CAD). These components are then 

fabricated especially to meet the required

function. Clearly cost is a problem unless volume

is high (typically > 10000 units).

2. The use of Readily available VLSI. The engineer

attempts to utilise integrated circuits which have 

already been manufactured and which perform

specific functions.
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3. The use of Semi-Custom Logic (e.g. a Logic Array). 

Ir. this technique the integrated circuit 

manufacturer produces a chip which is complete from 

fhe semiconductor point-of—view, but which lacks 

the final interconnection of the various logic 

iunctions that are performed by the semiconductor 

junctions. Thus the designer of a circuit 

typically has two to three thousand logic gates

available for his design. Using CAD techniques, he 

-hen creates a system using on 1 'r the types of 

components available on the particular array chip 

in which he is interested. Once again, using CAD 

facilities, the designer optimises the 

.i.r ..erconnection of the gates to give himself a

system which meets his requirements. The final 

interconnection of the components (the metalisation 

process ) is relatively cheap, and the approach is 

is cost-effective for a medium level of production 
[ROD 82].

In addition to the points mentioned a Dove, a fundamental 

premise in design is that a designer should strive to

utilise state-of-the-art technology; this, of course is in 

itself a situation requiring much thought. A case in point 

is the Josephson Junction. Conference papers continue to be 

delivered on this technology but the scientific world still 

waits for a commercial computer based on Josephson

Junctions.
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Josephson devices, which are based on super conductivity and 

tunnelling, are very attractive for ultra-high-performance 

computers. They are extremely fast-switching (<10 pi co 

seconds) h a .e extremely low power lissioation (< 500 nano 

watts per circuit). However, they have to operate at near

the Absolute Zero temperature (—270 deg C ), so that they can

function according to the specifications. This temperature 

requirement causes undue environmental complexity as well as 

additional costs for refrigeration, and inconvenience of

system debugging and servicing [ANA 30].

Therefore even though Josephson Junctions are undoubtedly

superior in most aspects to any other logic family

available, there is a natural reluctan_e amongst computer

designers not to use this technology until it has been

proven and tested.

An important factor which has to be considered is the local 

situation. As the work for this thesis took place in

relative isolation from the centres where electronic 

technological advances are normally made, the decision was 

made to design a completely modular system based on locally 

available technology. This ruled out the use of Custom 

designed circuits, as well as that of logic arrays - this 

latter industry being still in its infancy in South
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Africa[NOV]. However the majority of leading Integrated 

Circuit Producers are represented in the country, and thus 

the bulk of commercially available components could be 

considered.

Finally from a maintenance point—of-view the approach 

adopted appears to have much merit. One has always to 

ensure that the local maintenance personnel can cope with 

the technology they are servicing; also that replacement 

components are readily available.

1.4 5of tware

The complicated aspect of software reliability has not been 

dealt with in detail, as it is beyond the immediate scope of 

this particular investigation.

However, a few general guidelines which should be adhered co 

in attempting to produce reliable software have formed the 

basis of all software developed in this project. These are
as follows:-

1. The specification of the program should be kept

simple and accurate and must be well documented to 

allow non technical persons to understand the
software
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2. The software must be well designed with clear

meaningful documentation,in order to reduce effort 

in testing and maintenance.

3. The software must preferably be organised in a tree 

structure, in order to make reading and 

understanding easier.

4. The software should be written in a modular

structure with loose coupling between modules, so 

that any module can be extended, replaced or 

removed without affecting the other modules.

5. The software should be designed in a top-down

fashion, which first describes the problem in a 

very high-level way, and then proceeds to give 

lower levels of description until the level is 

reached which contains definitions of indivisable 

functions iLAM].

Because most of the operating system has been implemented in 

hardware, and only a minimal amount of software (designed 

using the above principles) is reauired to complement the 

operating system, it is felt that this approach ensures a 

relatively high'degree of software reliability. However it 

must be emphasised again that this aspect of reliability was 

not considered in det.-il in this thesis.



I • 5 Mul t i j3r QC' ‘osocs

has applied the theory of traffic movement through a

telephone exchange to the analysi-: of the performance of

multitasking industrial control computers and has produced a

graph (draph 2) which mirrors the expression derived for the

mean delay experienced by a task in a queue which can form

m  a multitasking computer system fROO 75]. This was done

m  0rder t0 Predict the performance of the system. As can

be seen, the delay time in the queue increases as the

average request rate increases. There are clearly various

ways to increase throughput of a system as may be deduced 
front these curves:
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1. Make the task length shorter, i.e. simplify tasks 

oi increase speed of processing

2. Decrease the average request rate, i.e. reduce the 

demands made on the processor

3. hake the computer faster, i.e. increase overall 

operating speed (as wall as achieving (a) above).

4. increase the number of processors, i.e to 

decentralize the processing.

powerful, large-wor d-s ize mainframe computers and

supercomputers have made high-data rate processing feasible, 

out these systems are not economical for laboratory

.nvironments, data acquisition, process plants or reduction 

applications. Minicomputers on the other hand are

economical, but are technically unsatisfactory because of 

their limited comouting speed and smaller fixed-point 

[ALE 81]. Therefore the microprocessor, which is 

cheap, and which can be interconnected to form a powerful 

multiprocessor computer, can fill the gap left by the two 
other computer systems.
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Decentralisation of a computer system implies that there i,

a distribution of intelligence (i.e. processors,. As has

een ln '=CC"lu:'' 1'1, Parallel processors (of which the 
multiprocessor is one type, compare verv well with 

•supercomputers' on a cos./performance ratio. There is less

reliance on a centralised facility, and processors can be

added on a more flexible basic and in smaller increments.

Multiprocessors inherently rely heavily on parallelism to

enhance throughput and computation. Kith such a hardware

structure many elementary data routing and processing

functions can be implemented concurrently, improving total

processing speeds by 10 to 100 times over typical 
minicomputers.

* mult^ r°«ssPr architecture increases productivity throug, 

processing, and maximises the likelihood that i 
processor will be available when it is reguested. The 

system can generally be tailored to user requirements in 5

m°re fleXible manner than " n  a centralised facility, 
because each processor in the system can be used to perform 
a separate function.
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A multiprocessor computer should also be inherently modular 

and therefore the cost of increasing its processing 

capability is smaller than that incurred when expanding a 

large computer. Redundancy at a hardware level is naturally 

easier in a multicomputer than in a monolithic central 

facility as extra modules (which are added on to take an 

active or passive part in the system) can take over trhe 

execution of a task in the event of a processor failure.

As has been pointed out in appendix J, a multiprocessor 

system that has redundant units is ideally more reliable 

than a uniprocessor system. An additional factor to 

consider when designing a redundant modular system is that 

the system should 'gracefully degrade'. This idea is 

illustrated in the following example. An on-line airline 

cooking system is a distributed computer with user terminals 

in each booking office and with a centralised data base. 

Tne failure of any terminal should not inhibit other users 

from accessing the common data base. This is usually 

referred to as "graceful degradation" in that failures will 

accumulatively affect the overall system performance but not 

cause immediate and total system failure.
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In such a system reconfiguration is, however, necessary when 

a permanent error, like a processor failure, occurs. At the 

conception of a redundant system it has therefore to be 

decided at what level redundancy is to be implemented - at 

system level, subsystem level or at a component level (as in 

the to discussion of SHU above). Therefore it is logical to 

make the SRU (i.e. a complete board ) the redundant 
component as well.

From the previous sections it may be seen that the choice of 

components of a multiprocessor is critical. As mentioned in

1.2.1 tne SRl should be a complete circuit board. A 

micropt ocessor computer boar 1 will provide a convenient 

basis for reconfiguration after an error and should 

therefore be the SRU.

It can therefore be concluded that a multiprocessor computer 

a simpler alternative to a bigger computer in most 
applications.
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1.6 Ramrod: A Multiprocessor Architecture

Ramrod, as the multiprocessor structure developed in this 

thesis has been named, was designed using a master-slave 

approach as it was felt that there was a need to provide for 

supervision of the slave processors with respect to their 

intercommunication, execution of tasks and probable failure. 

This is of particular importance in an experimental system 

which Ramrod essentially is.

For this reason it was concl ided that the master had to be 

more sophisticated and more powerful than the actual 

processors. Therefore the master was designed using 

bit-slice technology and the instruction set was custom 

built to suit the application (see 4.2), whilst the slave 

processors were selected to be simple, single-board 

computers. Using bit-slice technology for the master 

implies that the designer has complete control over the 

architecture and many featur ; are therefore included to 

provide this with properties inherent in operating systems.
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1.7 Conclusion

Many inexpensive and relatively powerful single-board 

computers are currently available on the market and can 

therefore form the SRU of the multiprocessor system. In the 

event of a processor failure, the faulty processor board can 

ne replaced by a working one, and redundancy achieved at the 

same level. The multiprocessor system can have redundant 

idle iPv boards ready to take over should a processor 
failure occur.

This approach to architecture is currently receiving much 

attention: a lead.ng German Computer Architect Wolfgang

Giloi maintains that "The distributed multiprocessor system 

is the only known architectural form that can satisfy high 

cost effectiveness, modular extensibility, fault tolerance 

ana simplification of software production and maintenance 
simultaneously" [GIL BEHR].

Any multitasking computer system has its activities

co-ordinated via an operating system. in the case of a

multiprocessor the operating system may itself bt 

distributed with a part of its functions performed by the 

master processor and other parts by the various slave 

processors. This should result in a highly efficient

computer system as there is only partial reliance on the

master processor, and each processor shares in the execution
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of the operating system [TRAKHJ . Of interest is the 

implication that the various component parts of the 

operating system can themselves be executed truly in
parallel I

As will be shown in the next chapter, the preferred 

interconnection strategy for a multiprocessor is a shared 

bus in which the processors access common memory. As will 

be shown this is an optimal solution despite claims that a 

shared bus has serious bandwidth limitations.

Ramrod has such a shared-bus structure with a wide 

bandwidth, this having been achieved by a technique that 

appears to be novel. Ramrod has been designed, built and 

tested. The prototype, although suffering from certain 

timing problems, has been succesfully evaluated and the 

methods used are shown to be viable. The result is a 

multiprocessor system which makes use of commercial 

well-understood computing elements and which is reliable, 
modular and easy to maintain.



CHAPTER 2

MULTIPROCESSORS AND AN INTRODUCTION TO RAMROD

Before dealing with the actual scheme adopted in Ramrod this

chapter will provide a general background to multiprocessors

and the various possible strategies which may be used. The

interconnection philosophy of Ramrod will then be discussed 
in this light.

2.1 Mu I Processor Structures

A multiprocessor typically has the following attributes:

1. The system contains two or more processors of 
comparable capabilities.

2. All processors share access to common memory, but 
may have local memory.

3. All processors share access to Input/Output 

channels, control units and peripheral devices.
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'

on rating system. [EMLi 74]

aInnercnt in this definition is the concept of 

multiprocessor system as a so-called 'tightly coupled' 

distributed computer. This implies that the various 

processors in the system are in close proximity to each 

other and have access to a common memory and common 
Input/OutPut system.

A typical multiprocessor will take the form shown in Figure 

2.1. Processors (Pl_Pn) are connected to Memory Elements 

(Ml-Mn) or other peripheral devices. Thus communication 

between the processors and resources (mem, I/O, peripherals)

.

often referred to as the Processor/Memory switch.



PAGE 2-3

TYPICAL MULTIPROCESSORFIGURE 2.1
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The following sections provide more detailed descriptions of 

the major interconnection technologies and their advantages 

and disadvantages. The shared bus, the cross bar switch and 

the multiport memory are compared in terms of cost, 

reliability, system throughput and transfer caoacity. 

Discussions of systems using these architectures are to be 

found in appenndix D.

2.2 Interconnection Strategies

2.2.1 Shared Bus

The simplest switch for a multiprocessor system is a common 

bus connecting the units as shown in Figure 2.2.
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FIGURE 2.2 SHARED BUS
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The shared bus can be centrally polled, i.e. the processors 

only transmit when selected by the controller. Bus 

contention is avoided by using schemes such as :

Fixed priorities, which allow processors with a 

higher priority to gain access to the bus if 

another lower priority processor presently has 
access.

2. First-in-first-out : the processor which first 

made the request is granted access to the bus

3. Daisy chaining: The processors are asked in turn 

. whether they have made a request, and only then can

s processor be given access to the bus.

On the other hand, the bus may be interrupt driven by the 

processors, which request bus usage. This scheme allows 

random usage of the bus. However an interrupt system can 

cause problems, if, during one processor's control of the 

bus, a second processor requests the bus, access can be 

granted to this second processor, and the first's data is 

lost. On the other hand, should all interrupts be disabled 

during a bus access then the requesting processors will have 

to wait for access and processor idle time is increased.
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The bus can be a Time-Division Multiplexed (TDM) bus, where

eacr. processor is allocated a time slot, or it can be

eguency-Div i s i on Multiplexed (FDM), in which each

processor has a particular transmit/receive frequency.

The shared bus is simple to design and construct, but has

oanawiath limitations inasmuch as the number of active or

passive units connected to it is limited [WEI 81). This

reduction in bandwidth results because when more units are

connected to the bus, the bus is simply unable to keep up

with tne increase in communication which accompanies the 

addition of units iZOC]. As there is only one path for all 

aata transfers, the total transfer rate within the system is 

limited by the speed of access of devices onto the bus and 
the actual bus bandwidth.

Tne snared bus is usually connected to a common memory 

(inoeed so are the other strategies) and therefore memory 

contention is also an obvious problem in that there is only 

one bus and one access to the memory connected on the other 

side, so there is a likelihood that two or more processors 

will try to access the same area of memory simultaneously. 

This problem can, however, be overcome by dividing the 

memcry into segments, and allowing only one processor at a 
time to access a segment.
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This scheme is the least costly in terms of the hardware 

used, and is also the least complex in terms of components 

as the bus can be totally passive. Modification is achieved 

simply by physically dding or removing functional units. 

However, a single bus system is naturally unreliable in that 

if the bus fails then a tote, system failure occurs.

2.2.2 Cross Bar Switch

The cross bar switch as shown in figure 2.3 has separate 

paths from the processors to each memory and I/O unit. The 

functional units (processors, memories and I/O) need not be 

concerned with the bus interface as the switch contains all
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This is the most complex interconnection scheme because the 

number of connections is necessarily large and because of 

the extra logic needed in the switch. The complexity grows 

exponentially as the number of units becomes large. 

Functional units, however, are simple and inexpensive 

because they do not need the extra logic to drive the 

interface and the potential exists for a high data transfer 

rate, since there is a separate path available to each unit.

Reliability is reasonable and can be improved by redundancy 

of the units. System efficiency is high because 

simultaneous transfers between processors and memory units 

can be accomplished.

Clearly the switching elements are the major drawback to 

such a scheme, but it must be pointed out that Intel is 

about to produce an LSI circuit with a large number of 

cross-bar switches for their new range of multi-processors 

[ENS 74U h is will obviously reduce the cost factor as well 

as the complexity discusser above.
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2.2.3 Multiport Memory

In a multiport memory system the control, switching anc 

priority arbitration are concentrated at the interface to 

the passive units, and not in the switch as in the cross oar 

scheme. Figure 2.4 shows that each processor has a separate 

port and bus connecting it to each memory and I/O unit.
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This approach is the most expensive, since multiport 

memories are costly and each memory has to have contention 

logic built in, in order to arbitrate between processors 

competing for the resource. High data transfer rates can be 

achieved, but expandability is difficult as more logic is 

required to increase the number of memory ports, or to share 

the existing ports amongst all the processors.

This system has its use in a system which has a limited 

number of processors, but clearly becomes unwieldy as soon 

as the number gets large.

2.3 Shared Memory

All of the interconnection strategies, previously mentioned, 

usually use shared memory which provides for a means of 

interaction between microprocessors. This interaction can 

be enhanced if there is no distinction between local memory 

of a single processor and global memory of the 

multiprocessor system. This is clearly a unique feature 

which has the advantage of being able to incorporate a truly 

distributed data base, since processors can address all the 

memory simultaneously. However care must be taken to ensure 

security of data.
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2 • 4 T ime-D i v i s i or, Multiplexed Bus

The Time Division Multiplexed (TDf-"' shared bus offers the 

best capability of all the interconnections discussed as it 

is simple, cheap, easy to implement and is a passive 

interconnection. The appare • r limitations of the TDM bus 

are:

1. Memory Contention

2. Reduced Bandwidth

3. Bus Contention

Fortunately these can largely be overcome as outlined below.

2.4.1 Memory Contenti or

A shared bus, as mentioned previously, is usually associated 

with common memory and therefore memory contention can 

occur. A system that allows the programmer to use a range 

of program addresses which may be different from the range 

of physical memories available (known as virtual memory 

addressing) may circumvent memory contention.
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2.4.2 ffandwidth Limitations

Bandwidth limitations can be overcome by using high-speed

technology to achieve a high data communication rate on the

shared bus. in addition if the speed of access to the bus

is increased then the overall bandwidth should also be 

increased.

2.4.3 Bus Contention

Examining the simple time-shared bus, it is found that 

contention occurs when several processors are making heavy 

use of the bus and when there are no mechanisms to res'- ve 

this contention (and cause processor idle time). Therefore 

a model of the shared bus can be made as a master/slave 

relationship (where each slave runs a single user task and 

the masters provide the requested service) in order to 

consider the problem of content!on.

Let the slave request rate = 1/L in secs and slaves only 

process when serviced by a master.

Let

N * number of slaves

Navg = average number of slaves

M = number of masters

Mavg = average number of masters
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L/U, and Pi = probability of i slaves in oueue. 

^avg ~ average number of total busy processors 

wavg = average waiting time in queue.

Sm = 1/U expected service time of requests 

wm = expected waiting time in queue

It can be shown [TOO 78} that

'av9’-P'ifcM"1N.

Wavg =wm +sm ~N~Navq 
^avg•L

This simply states that the average slave waiting time 

increases as more slaves become idle {N-Navg} while 

waiting for service from masters.

The same conclusion can be reached by examining the bus

utilization factor, which is the fraction of the time that a

particular processor will make use of the data bus during an 
instruction cvcle.

This master/slave approach reinforces the need for some sort 

of control to supervise the allocation of memory to 

processors and the allocation of time slots to processors 

for execution of tasks. If this time slot (or bus 

utilization factor) is reduced then a significant increase 

in system throughput is achieved.
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2.5 Suocryj sor Co,, trol

The key to the success of a mas ter/alave multiprocessor

.

Software has boon shown to be less reliabl : than hardware

[KOP 81] and a l a r g o  orogram can never really be proved 

correct. Rocj [RC ) 76] has shown in his investigation that 

the implement it ion of m  operating system kernel in hardware 

has rruc'a promise. Th • us * of bit-slice technology offers 

the designer a chance to design the architecture of the

.

therefore, a bit-s1ice master controller was designed to 

contain several features of the kernel of an operating 

system. This will b d i s e a s ' d  at r later stage.

2.6 An Ov or v b w  of Pi - rod

,
simplified diagram is shown in figure 2.5, was designed with 

th' f o 1 1 ow in-j features :

1. Distribut'd Operating Syr Lem

2. TDM shared bus

s.
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Tightly-coupled slave processors

Common - Shared memory, with no distinction between 

global and local memory.

Intelligent Input/Output Control



PAGE 2-19

I/O BUS

SLAV^pROCFSSORS /

DISK UNIT

m e m o r i e s

- PROCESSOR TO 
MEMORY BUS

USER 
CONSOLE l J 3

' ^ v

PRINTER

l \ ^ J:T
/ /

1 USER CONSOLE

/

OPERATING SYSTEM CONTROLLER

FIGURE 2.5 SYSTEM DIAGRAM
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2.7 Conclusion

1 '1 1 1 i comp ut or system with distributed control is

probably the only architectural form that has the potential 

to satisfy all major architectural goals such as cost 

-

decomposition of software complexibility [GIL BEHR]. The

multiprocessor is an interconection of uniprocessors and it

is this interconnection scheme which forms the basis of this 
thesis.

.

by a bit-slice processor which has the function of a system 

supervisor. inere are presently 5 slave processors each of

.

memory modules, which initially consist of 256 byte

segments, ere interfaced to the processors via a time-shared 

■
(ECL).

Tne I/O section ha not been implemented in the prototype 

i : 1 ' J 'Ct o a ] at a.! It? 1 developoment (appendix H) .

The following chapt-r describes the hardware structure 

whereas chanter 4 discusses the software in more detail.



CHAPTER 3

A REAL-TIME OPERATING SYSTEM FOR RAMROD

"Then did I see in the whole work of G OD, that a man is 
not able to find out the work that is done under the 
sun, inasmuch as though a man were able to toil to seek 
for it he would not find it, and even if he were wise 
to think to know it, he would yet not be able to find 
it" [Eccl viii 17].

This chapter discusses aspects of real-time operating 

systems which must be considered when providing the 

supervisory control required by Ramrod. In order to 

meet the objectives of speed and reliability it was 

decided to place as much as possible of the operating 

system in hardware rather than in software. Finally in 

order to meet the criterion of reliability, it was 

decided to distribute the operating system as tar as 

possible throughout Ramrod.

3.1 The Role of an Ope.atina System

"n general an operating system has the prime function 

of transforming raw hardware into a system more 

amenable to its users! In addition, it should make the 

best possible use of available hardware so as to be 

generally more cost-effecive.
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An operating system has to be able to:

1. Provide maximum system reliability with a 

minimum of operator interventio .

2. Exclude the user from details of 

implementation i.e make the system appear to 

tne user as simple as possible.

3. Give the impression that the user has the sole 

use of the computer.

In general then a real-time, multi-user operating 
system should be able to:

1. Perform input/output either to a peripheral 
and/or to a user

2. Dispatch tasks to processors according to some 

predefined algorithm

3. Perform multitasking, i.e. allow many tasks 

to be executed concurrently

4. Supervise communications between tasks and/or 

the operating system

5. Recognize and service i n t e r r u p t s
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3•2 Multiprocessor Operating Systems

In the system developed in this thesis, Ramrod, in 

which there are many slave processors available for 

executing tasks, the operating system has an extra 

function to perform in scheduling the slave processors 

for execution of tasks. Once a task is dispatched to a 

free slave processor then the slave processor still has 

to be initiated. This is a true multitasking _,r 

multiprocessing environment and tasks can be said tc be 

running concurrently. It must be noted that 

concurrency in a parallel processor computer is true 

concurrency as processors can execute tasks absolutely 

simultaneously, whereas there is only 1 apparent1 

concurrency in a uniprocessor compu ter (since the 

so-called concurrent tasks are actually being processed 

serially).

In order to have a near-linear increase in processino 

power in relation tc an increase in processors, the 

master controller (in which the kernel of the operating 

system resides) should preferably have a cycle time 

faster than that of a single processor. This ensures 

the ability to control the slave processors as well as 

execute the kernel of the operating system.
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A~ advantage of having some of the operating system

removed from the processing environment is that the

master can be faster than the slaves and thus have more

-.revive control over the system. Secondly, a

purp se-built hardware structure should be able to

accommodate and execute the function of an operating

.s.e„. Dtt.er than a general microprocessor. This is

largely due to the fact that the actual functions

performed by an operating system are relatively simple

ana require little data manipulation. The functions

do, however, require to be executed as fast as

possible, in order not to degrade the performance of 
the actual processors.

In croer to have enough power to control many 

proc or. tne one hand and to contain an operating

system on the other hand, bit-slice architecture (which 

15 '"ery fast and is micr©programmable, see app B) , 
offers the opportunity of designing a purpose-built

powerful operating system processor, as mentioned in
2.4.
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An advantage of having some of the operating system 

removed from the processing environment is that the 

master can be faster than the slaves and thus have more 

effective control over the system. Secondly, a 

purpose-built hardwa* ; structure should be able to 

accommodate and execute the function of an operating 

system better than a general microprocessor. This is 

largely due to the fact that the actual functions 

performed by an operating system are relatively simple 

and reouire little data manipulation. The functions 

do, however, require to be executed as fast as 

possible, in order not to degrade the performance of 

the actual processors.

In order to have enough power to control many 

processors on the one hand and to contain an operating 

system on the other hand, bit-slice architecture (which 

is very fast and is microprogrammable, see app E), 

offers the opportunity of designing a purpose-built 

powerful operating system processor, as mentioned in

2.4.
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3 3 The use of the Operating System in Ramrod

The Ramrod operating system has certain essential

functions to perform. These are summarized as 

follows:-

1. Each processor in the Ramrod multiprocessor

structure must be allocated a task to execute,

and these have to be loaded into the common

memory from an external source. A segment of 

memory must be assigned to each task, so that 

each processor can execute a task 

independently of ocher processors. A task is 

considered to be an activity which provides a 

function such as Input, Output or it may be an 

execution of a prog-am, or segment of a 

program [LIST].

2. From 1 above it may be seen that each

processor in Ramrod has to be allocated a time 

slice in order that it may access memory on 

the other side of the common bus. In

addition, the particular memory segment

selected has to be enabled. A processor must 

be able to address any or all of the memory 

segments in order that the system can be said 

to contain a virtual memory. To achieve this,
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neretore, some sort of intelligent control 
needed

3- A list of information pertaining to the

location of defined tasks in memory,

processors scheduled to run tasks, and the

eta,us of tasks must be monitored so that the

operating system knows the configuration of

the system at any point in time. An interface

to the system user is also required in order

that such system information may be accessed,

55 V e n  a$ Providing an overall ability to

communicate with the system and its component 
par ts.

hniCr‘ 11 hac been executing must b 
redispatched to the next available workin 
processor.

aerlnea tasks will require th 
ability to communicate with others and thi 

must be supervised in order that security o 

information may be assured, one processor ma,

also need to draw on the results produced b, 
another processor.
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in view of the above more than dedicated logic is 

needed ior the total control of the system. T h e r e f o r e ,  

,r, intelligent master controller must be created which, 

in essence, contains some basic features of t h e  k e r n e l  

of an ooerating system, and may indeed implement t h e s e  

facilities in hardware (see 4.2.).

As has seen pointed out in chapter 1, distribution of 

the hardware improves systt a reliability a n d  s i m i l a r l y  

distribution of the operating system w i l l  i m p r o v e  

software reliability. Thus it was d e c i d e a  to 

distribute the operating system as much a s  p o s s i b l e .  

The major effect of this is to p r o v i d e  f o r  l i m i t e d  

operation in the event of the failure of a  p a r t i c u l a r  

section of the system.

3. 4 Basic Structure of thr Opr rating S y s t e r ^

It has successfully been shown that a hardware-based 

operating system implemented using bit slice technology 

can indeed work with a high degree of efficiency 

[ROD 76 1 .
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As was d e m o n s t r a t e d  in Roc 11 s w o r ;

the advantage of a high operating ra> - and t .. ;nir .

relatively simple hardware St rue tut . ihî » ' ̂

aids in the d bugging )f the hardware/soltwa^e

structure. The core of an operating system is the

executive or the nucleus, and it is this that will be

nucleus concerns itself with memory management,

input/output, task dispatching, processor scheduling, 

inter-task con tun cat ion and intertupt .

The ope r a t i n g  system proposed for Ramrod also has t n e  

highly des i r a b l e  property of being partially 

distributed. This increases the reliability oL t h e  

system as a whole, because once a slave processor is 

executing a task, it needs no assistance from t h e  

master until inter-task c o m m u n ication is wante-1 or the 

•

can still ca rry on e x ecuting until one of the above two 

terminating conditions occur. Thi^ featur_ is 

important in view of the strategic role or the 

operating system construction. Clearly as appendix J

,
weak point and the failure of the master should not 

cause a total syst em collapse. Therefore an effort 

should be made to distribute the operating system
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wherever possible.

Thus routines related to the function of the 

Input/Output module are implemented in the slave 

processors while the rest of the kernel of the 

operating system is incorporated in the master 

bit-slice processor.

Another important consideration in the design of the 

operating system is the control over memory usage. 

Memory management is concerned with loading tasks into 

memory, ensuring that there is place for the task to 

reside and finally removing completed tasks. This can 

be combined in Ramrod with task dispatching since the 

memory is common to all processors, and therefore a 

particular memory segment can be assigned to any 

processes. A Task Control Block (TCB) table is kept to 

inform the nucleus where the task reside' the state of 

the task and to which processor it has been disnatched. 

Thus dynamic rescheduling is achieved by allowing 

another free slave processor access to the segment of 

memory.
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Pairing a memory segment and a slave proce-^o. 

accomplished by selection, by the master, of a segment 

of memory simultaneously with the selection of 

processor for access on the TDK common bus. A modulo n 

counter (where n - number of processors! generates 

consecutive addresses for reading a fast Read/Write 

memory (RAM), whose output selects or deselects 

processors and memory segments. The master controller 

has the ability to rewrite this fast RAM, thus alio, ing 

any combination of processor-memory communication. 

This is illustrated in figure 3.1, which shows that the 

master controller determines which devices are allowed 

access onto the TDM b u s .
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3 ,  5 I n t e r - P r o c e s s  C o m m u n  i  c a t .  i o n s_

In any system in which several tasks are being execute 

in parallel the situation will aiways occur when 

processors require to exchange data. Inter-process

communication can be defined, in this context,

message passing between processes. For example, in a 

simple arithmetic calculation z = ( X w Y I * (X-Y), one task 

could do the addition, a second task the subtraction

and a third task the multiplication. The first two 

tasks have to pass their data to the th.-d task, in

order that the multiplication rt oct r. Thus the

third task waits until it receive' sages from task 1 

and task 2. Inter-process communication (IPO nas to 

be co-ordinated by the operating system which must 

know, amongst other things, who the partners to the 

message are, so that processes can cooperate correctly 

in the manipulation of data, whilst a more detailed

discussion of communications appears in Chapter 6, the 

discussion which follows outlines how Inter Process

Communication (IPO is presently implemented in Ramrod.

Of importance in the consideration of IPC methodology 

is the danger of deadlocks. This arises because 

resources are usually allocated to processors on the 

basis of their availability without any predete-mined 

allocation algorithm. Deadlock can be explained as in
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the following e x a m p l e : A user task is granted the

printer for outputing data and then requests the card 

reader to read in data; Another user task is using the 

card reader and then requests the printer so that it

can output results. If these resources can only ce

used by one process at a t i m e , and neither process wil- 

release the resource it holds, then deadlock occurs.

In order to prevent d e a d l o c k , (or deadly embrace ) 

Dijkstra proposed the semaphore [ ul J ] , as a no., 

negative integer, which apart from initialisation of 

its value, can be acted upon only by the operations 

Wait and Signal' [LIS]. The Wait aid Signal functions 

can be summarized as follows;

Wait(s) : when s>0, decrement s

Signal (s): increment s

Thus a resource (printer etc) can only be allocated to 

one process. This approach is widely used and could be 

implemented in Ramrod (see section 6 .j ).

Another more practical solution is, however, possible. 

If a program is partioned into tasks, which are 

executed sequentially, such that there is no need for 

any inter-task communications until a task is 

terminated, and inter-task communication only takes 

place between adjacent tasks, then deadlock can never
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o c c u r ! Thus when partitioning the program, if a point 

in a task is reached where communication with another 

task is needed, this is the place where the user should 

partition the program (see 6.2).

It is suggested that the user, who writes the programs 

for his particular needs should do the partitioning of 

the tasks in this manner. This clearly is possible to 

implement automatically but it is beyond the scope of 

this present investigation to include software which 

will part ition the tasks according -c the aoo 

specification. In the present system this is carried 

out manually. Thus using data flow techniques (chapter 

6) the only communication between one task and another 

occurs either at the beginning or at the end of the 

task. This highly pragmatic approach proven most 

useful, and s u p n s i n g l y  easy to implement. It is 

however only a partial and somewhat crude solution. As 

will be discussed in the next section, Ramrod has 

provided many other possible hardware mechanisms which 

may be used to implement Inter-Process Communication. 

Thus Ramrod is a useful testbed for evaluating a 

var ietv of proposals .
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3.5.1 C o m m u n i c a t i o n  m e c h a n i s m s  p r o v i d e d  b y  R a m r o d —

Ramrod provides three mechanisms through which tasKs 

can communicate with each other.

1. An intelligent Input/Output controller 

(Ethernet see appendix E), which allows any 

processor to be connected to any peripheral, 

or to any other processor.

2. A vector interrupt system to the master: A 

task can suspend itself once I P C  is r e q u i r e d  

and be woken up at a later stage. This is 

analogous to Hoare's communicating sequential 

orocesses (see chapter 6 ).

2, Tasks communicate by passing data through 

common memory (see earlier discussion on 

oj ikstra ' s semaphores, which car. be 

implemented via this mechanism).

However it must be pointed out that the above are only 

mechanisms, and do not provide for deadlock avoidance! 

They do show however the pow*r of the structure of 

Ramrod as an experimental tool.
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3.6 User Task to Operating System Communication

Communication between any user task and the operating

system is effected simply by means of a 'watchdog'

timeout signal which interrupts the master controller.

A task must contain instructions which continuously 

trigger a monostable multivibrator, which will time out 

if the task terminates or if a failure occurs. The 

interrupts of the slave processors are vectored so that 

the master can identify the interrupt. .he master can

then check whether the timeout was caused by a

processor fault or task fault or if the processor has 

finished executing the task.

In summary this simple mechanism is extremely powerful 

and provides both for a termination indication, as well 

as the ability to detect a processor failure.

3.7 Conclusion

Implementing the operating system in hardware (by 

purpose designed architecture ) makes the overall

system reliable and flexible, because (as stated

before) hardware is naturally more reliable than 

software. In addition there is an ability to

microprogram the operating system , it is claimed that

the system is flexible, as the architecture is easily
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modified to suit the user's needs. The operating 

system functions have to be complemented by the minimal 

amount of software and this adds to reliabilty.

Furthermore the operating system is distributed in that 

Input/Output and certain local control routines are 

implemented in the slave processors. Thus the 

reliability of the system as a whole is enhanced.



CHAPTER 4 

SYSTEM HARDWARE

deliver those that practised" [Eccl v m  8j.

The block diagram of Ramrod was discussed m  2.6 ana

in this chapter the hardware of both the bit-slice

master processor and the multiprocessors are 

outlined. A more detailed discussion of this

hardware structure is to be found in appendix G.

In order for any new architecture to have economic 

relevance, it must be simple and efficient, ana meet

the needs of its potential users. In oroer to 

achieve these aims it should exhibit such features as 

fault-toler ance and provision of the neccessary 

redundancy. The multiprocessor -tructure of Ramrod 

fulfills these criterea.
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4 .i System Overview

As has been discussed previously (sect. 1.5), 

distribution of work over veral conventional

processors with common storage is . one approach— to

Increasing processing speed. However, a serious

problem with common, shared-memory multiprocessor 

systems is that all the memory is accessible by all 

Processors, and therefore special support is required 

to ensure that processors do not access the same 

address simultaneously, thereby corrupting 

other's data [ACER 82).

figure 4.1 shows the overall system block diagram 

with the Master Controller (ME, which is in charge of 

the system. The ME which is a bit slice hardware 

cased real time operating system controls the

data/address latches on botn sides of 

D i v i s i o n  Multiplexed (TDM) bus. As the lat.hes are 

ra.ntical the hardware can be said to be modular.
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The multiprocessor architecture proposed a.:d designed 

makes use of conventional microprocessors, with their 

relatively slow processing times. Of great 

significance is the fact that the cycle time of a 

single processor in the system is not significantly

_ . . .  iwit .......

average cycle time for a conventional microprocessor 

is approximately 1 microsecond, tl :me baing set 

primarily by speed of memory access. Figure 4.2 

shows how all the processors communicate with the 

common memory by way of the TDM bus. While the

.

the first processor and this time is available for

use by the other processors. Each processor uses the

bus for a very short period and if there are 50

processors then this period is 20 nanoseconds. Thus 

with the present system 50 microprocessors are able 

to communicate with each other with almost no 

degradation in performance of any of the 

micronrocessors.
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Tne cyclic operation occurs as follows: each

processor deposits data and addresses into its

latches and when these are given access to the busf

data are transferee into latches on the other side of 

the bus.

It should be noted that the data can be sent to more 

than one set of memory latches, thus giving the 

processors access to more than one memory segment 

simultaneously. In addition it should be noted that 

the concept of a distr ibued data base can be 

implemented easily on this type of computer system, 

as a global variable with many copies can be 

simultaneously updated by one processor. A 

distributed data base implies that each processor in 

the system has its own copy of the data base.

4 . 2 Basic Structure of Pam.roc

The following section provides an overview of the 

various components of Ramrod. Full details of actual 

implementation, with the circuit diagrams, appear in 

Appendix G.
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4,2, I M iccoproc^r-r or Modulo

The microprocessor slave module consists of an ci.iB5 

microprocessor together with memor/ an l 

associated support chips. It is also provided with a 

serial data channel to allow access during

devel. .ant (so that a terminal could be provided to

each slave processor an 1 hence a 1 low direct co i..ro 1) .

These slave processors have to be synchronised wi-h 

the Time-Divisioa Multiplexed (TDM) bus in order that 

there should be a minimal amount of processo- idle 

tine (as discussed in s ction 2.4.1). In addition, 

in order that tha o rating system can be 

distributed, i limited number o operating system 

functions mu ;t h ' present on each processor (so that 

failure of th master controller is not critical in 

the short term). The slave processors can therefore 

continue executing th * ta '< "> dispatched to them until 

the tasks suspend themselves, and thus the system can 

"gracefully degrade".

The local op-rating system is implemented in a 

resident Electronically Programmable Read Only Memory 

(EPROM) on th' slave processor module and includes 

additional software to enable the slave to be 

self-test ed.
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4.2.2 TDM bus and Interface

The system designed is tolerant of processor failure 

but, as with the conventional common bus, it is very

sensitive to bus failure. A catastrophic failure

occurs if the bus fails and therefore a dual, 

redundant bus must be provided to minimize the 

possibility of system failure due to bus failure. 

The system can contain two sets of identical latches 

for each processor and memory segment. Thus, when 

one bus fails (which can be detected by the master 

processor), its associated latches are disabled and 

the second set of latches is enabled. A second 

control board (see 4.2.7.8) can achieve this 

switching of latches.

Most Multiprocesor systems with a common memory and 

bus suffer from bandwidth limitations, since the bus 

bandwidth will not increase even though more

processors are added (as has been mentioned

previously in section 2.2.1). Thus, what is needed 

is a state-of-the-art design, capable of high speeds 

of transfer, inexpensive and uncomplicated.
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Wnen choosing a logic family for the implementation 

of the bus and interface there are several factors to 

consider: i.e. noise immunity, logic flexibility,

speeo and some practical considerations. Obviously, 

for each application the factors must have a certain 

priority. In the case of the bus controller the 

highest priority is given to speed, as this

determines the transfer rate across the bus. Then 

the priorities are: logic flexibility, practical

considerations and noise immunity.

4.2.2.1 Speed

In order to decrease the degradation in processor 

performance, the transfer rate of the bus must be 

high. Unfortunately the faster the logic, the higher 

the cost and the power dissipation! when considering ' 

high speed, the number of levels of gating becomes an 

added factor, which in turn is a function of the 
logic flexibility.

Gate propagation delay is perhaps the most important 

measure of speed. It is defined as the time taken 

for an output to appear from a gate after the signal 
has been entered at the input.
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4. 2 . 2. 2 Logic P l.-x'ibi I i ty -

Reduct'on of the component count for a particular 

device is dependant on the flexibility of the logic 

family used. Flexibility is roughly related to the 

number of different outputs the integrated circuit 

(IC) has available. W Lre-ORing, the capability of 

tying more than one output together also 

significantly reduces component count. Other factors 

to consider are:

1.
unnecce nary.

2 .

because the faster 

closely a short

characteristics of 

(MOT B ].

driving capability, 

the signal the more 

line acquires the 

a t •ansmiss ion line

3. Input/output interfacinq, i.e interfacing to 

the bua and fron the bus to memory.

levels are not Tr in sir, tor-Trans is tor Logic 

(TTL) levels.

5 . Multiple gal n;, thus reducing chip count.
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4 '^ •2•5 Practical Considerations of Logic Choice -

Before committing a design to paper, the availability 

of the components has to be ascertained, and second 

sourcing has to be considered. Since a budget is 

normally to a project and subdived for the various 

sections, the cost factor plays a part in the 

selection of the component. If the logic to be used 

is "unusual" then the designer has to address 

problems such as what power supplies are required as 

this might necessitate extra power supplies over and 

above the normal single +5 volts requirement of TTL 
based systems.

4 . 2 . 2 . 4  .Noise Immunity -

As a system such as Ramrod might have to operate in 

an electrically noisy environment, it must have high 

noise immunity (it was originally conceived for use 

in process control). There are two types of noise 

immunity to be considered, i.e. internal and 

external. when the circuits themselves switch from 

one level to another, internal noise is generated, 

whereas external noise is caused by external devices. 

A good measure of immunity is the voltage difference 

between the two logic levels, as the greater the
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difference between leve]s the higher the noise level 

must be in order to corrupt the data.

4 . 2.2.5 Compar is ions of Logic Families -

As the highest Priority is speed, only Emitter 

Coupled Logic (ECL) and Advanced Schottky 

Transistor-Transistor Logic (AST) were considered for 

use in the bus system, as these are the only 

currently available, off-the-shelf, logic families 

fast enough for the application. The advantages and 

disadvantages of these two families are tabulated in 

the appendix.

Both ECL and AST have the same availability and 

second sourcing problems in South Africa, i.e both 

are difficult to obtain, and the costs are generally 

the same.

The major disadvantages of using ECL are the several 

power supplies required and the need for thoroughness 

in testing. However, as ECL s at least twice as 

fast as AST, it was chosen as the logic in which the 

bus and interface were to be implemented.
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4.2.3 Bus Interface

The interface to the ECL bus is implemented via a 

oidirectional logic level translating latch, which 

; ovides a rapid means of converting microprocessor 

or memory TTL levels to the bus' ECL levels. In 

addition tne latches need ECL control signals which 

are provided by simple one-way TTL to ECL 

translators.

Each microprocessor and memory module has its own set 

O a. latches,and as the latches on either side of the 

ous are identical, there is no need to design an 

cx.ra latch module. The latches, as mentioned above, 

can translate in either direction and can thus be 

used on both sides of the bus. Its control sionals, 

which are derived from the processor and memory 

boards, determine how its operating mode.

4.2.4 The Time-Division Multip lexed Bus (TPM)

The TDM bus adopted is unusual in that it is circular 

and is joined at the ends! The philosophy behind the 

structure is simple; to ensure minimum transmission 

time of signals on the bus the physical distance 

between any processor and the memory unit should be 

kept at a minimum (fig 4.3).
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The use of a circular bus for ECL has not been widely 

documented, although Sander son and Zoccoli [ZOC] 

have designed a multiprocessor system using a

circular ECL Dus where they state the advantages of

using such a construction, but they do not, however,

go into detail. Therefore the modelling of the bus 

has been the subject of an additional investigation 

(Appendix C ). This investigation has shown the

princple to be viable and has revealed design

parameters.

Note that there are actually two buses which th'

system uses:

a) The ECL TDM bus

b) A 7TL bus for power and control signals

4.2.5 Memory Module

In the prototype each module contained a relatively

small memory segment (2 56 Bytes Random Access Memory, 

RAM) together with the logic needed to produce the 

signals for reading from and writing to the latches. 

This was selected partly on economic grounds - a 

practical, lull scale system clearly would have 

larger memory segments. The speed of this memory 

need not be particularly high because the slave
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processors access this memory via the TDM bus and 

have to wait their turn for a time slice.

4.2.6 Input,-'Output Module

The implementation of the input/output section

adopted is similar to the memory interface concept

developed in that it is possible to pair a device on

the I/O bus to any other device. It is advantageous 

to have inter changeability amongst processors for I/O 

functions just as for memory. Implementation must 

also take into account possible

processor-to-processor communication as well as 

processor-to-per ipheral communication. Thus the 

input/output interface must be highly flexible.

In order to implement this a highly intelligent- and 

fast interface is needed. The only medium found to 

fulfil these criteria lies in the adaptation of a

simple but high-speed link based on the principles of

the Ethernet System. Ethernet has the highly 

desirable feature that no master controller is 

required. Any device wishing to use the bus simply

'listens' and seizes the bus when it is free.

Simultaneous transmissions are ignored and 

retransmission takes place after a "random" wait time 

(see Appendix E for more details of Ethernet).
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However it must be pointed out that initially, m  

°raer to simplify testing of the system, I/O was 

achieved via dedicated processors. The software has 

Identity section which can determine whether the 

processor is connected to a terminal or a disk 

operating system, or whether it is simply a task 

processor. Work on the Ethernet controller is 

currently taking place in a related project. (see 
Appendix E for details).

4.2.7 Bit-Slice Master Controller

71,6 m e d  eStabHshed <“ ct I-*, for a hardware 
cased operating system with the following facilities:

I- An interface to the multiprocessor structure 
to schedule processors

2. A sophisticated interrupt hierarchy 

Interrupts may come from the processors, 

after failure or task termination or from 

real-time clocks. Any hardware- implemented 

operating system must be able to deal with 

these interrupts and respond accordingly
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these interrupts and respond accordingly
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3. The processor must have available a limited

amount of: high-speed storage in which it can

hold Task Control Blocks, oointecs, stacks 
and constants.

,

there are two important factors which must be kept in

mlnd: speed anfl flexibility. Flexibility is

desirable so that the functions can be as universal

as possible and so that the processor can be expanded 
if needed.

4.2.".I Bit-51i co Arc i itecture -

It has been shown [r o d  7CJ that bit-slice 

architecture offers the best features for

.

O'-^ipnei has almost complete control over the

3r( ' ‘ ' processor required, >sd in

addition the bit-slice processor is

|,V71"''' !"iS 1 raakes it superior to other

architectural techniques, it offers a greater degree 

Of flexibility in specifying a computer's instruction 

repertoire, while also resulting i,. considerable 
simplification in the logic.
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Bit-slice microprocessors are capable of high-speed 

operation since they are based on bipolar technology, 

often resulting in cycle times of less than 10H 

nanoseconds.

Currently the following bit-slice microprocessor 

families are widely used and relatively freely 

available:

1. The Intel 3000 series

2. The Motorola 10800 ECL series

3. The Advanced Micro Devices 2900 Low Power

Schottky (AMD) series

From a user's point of view the differences are few 

but the main designer's criteria are local 

availability and developement tools. The AMD series 

was chosen because of the local support and second

sourcing and primarily because a cheap emulation tool

was available in the form of an extension to the 

Motorola EXORciser (see Appendix F).
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i'urn ing to the actual design, the bit-siice processor 

can be subdivided into two parts: the Computer

Control Unit (CCU, and the Central Processor Unit 

B u - s l i c e  architecture is essentially the

th“ 1' 01 a "OL"”al processor with one basic 
difference, each functional unit has only (for

instance in the 2900 series, a 4 bit wide word and to

”eke an 8 blt two units need to be
inter-connected. Fundamental to any microprocessor 

besed system is the determination of the

au/anta.-;.. that their micro-instruction set is

■
the actual architecture, the structure of the 

microinstruction must b • discussed.

' ion

The principle decision which has to be made by th 

designer of a microproqrammable logic system is th

.

d "t ' "' '' ' ' lt * ormat the designer has to bear it 
mind the facilities required and the external control 
dc<: i ' 1 '' this format .
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6 are generally two classifications of 

microinstructions: Vertical or Horizontal. A

Horizontal microinstruction will control the 

operation of many resources in parallel, and can be 

unlimited in width but in practice is normally up to

64 bltS Wlde’ (In actual fact this is often 
determined by practical issues - such as the maximum 

size which a developement facility can support). m  

contrast, a vertical microinstruction is similar to a 

normal machine code instruction and affects only a 

single primitive operation. After reviewing the 

requirements of the bit-slice processor it becomes 

apparent that the chosen format must be horizontal, 

m  order to achieve the parallelism required.
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9 deSi9natira °f fi=ld= - t h i n  the chosen
1S shown in figure 4.4. This means 

that in one horizontal microinstruction the following 
operations may be specified;

Control of ventral Processor Array (CPA)

2. Control of next address generation

3. Control of status of flags from the CPA

C°ntr01 °£ ^Put/output functions, including 
local memory control board, interrupt unit
ana microprocessors
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4.2.7.3 Tne Computer Control Unit (CCU) -

The major function of the CCU is the sequencing of 

instructions, i.e the determination of the order in 

which instruct ons are to be fetched from the 

microinstruction store. Generally the n icroproqram

sequencer contains:

1. A microprogram counter register which will

increment after each clock cycle, thereby

selecting sequential addresses.

2. A condition code multiplexer whereby the

status of flags or other bits can be tested 

for conditional branching.

3. A multiplexer which can select between the

counter register and a directly specifier

address.

The AMD sequencers and next address unit used allow 

the addressing of 2**12 = 4096 locations with 2**4=16 

next address instructions fo. the control of

conditional branching instructions. The actual

address space is organised into a 1-dimens ional 

array, 1024 ty 64 bits wide. Each microinstruction

supplies 4 bits for the next address control and 12
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bits for the actual address. The scheme has an 

advantage in that it allows the user to write his 

instructions in a sequential fashion. In addition, 

most other conventional programming techniaues can be 

used (for example subrouting where return addresses 

are automatically stacked and unstacked).

4.2.7.4 The Central Processor Array (CPA) -

The CPA of the bit-slice microcontroller is similar 

in functional operation to that of the Arithmetic and 

Logic Unit (ALU) of a conventional von-Neumann type 

structure. The CPA can execute the following 

operations:

1. ALU functions

2. Address and route data to and from local

memory

3. Route data to and from I/O interface to the

control board

4. Mask the inter riot control unit

5. Provide status bits to be routed to the CCU
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The AMD CPA contains 16 general-purpose registers to 

hold stack pointers, memory address pointers and 

system constants. A fast look ahead carry unit is 

provided to make fast arithmetic computations

possible. A status and shift control unit is

included to control status and other functions

usually -ssociated with an ALU.

The logical operation of the ALU is determined by a 

x /-bit control code and 6 bits de ermine the 

operation of the status contol unit.

4.2.7 . 5 Input'Outout Control Uni: -

The input/output control has the following functions:

1. Local memory read/write

2. Control board read/write

3. Microprocessor memory read/write

4. Microprocessor hold and reset

5. Masking of interrupts
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The programming of the control board (4.2.7.8) 

achieved by the I/O control unit. While this board 

is being programmed its outouts are inhibited to 

prevent unwanted processor-memory combinations from 

taking place.

Upon receipt of an interrupt the input/output unit 

can either hold the particular processor or reset it 

to begin executing a task. In order to interrogate 

the memory of any microprocessor the MC behaves like 

a slave processor and simply reads the memory.

4.2.7.6 Interrupt Unit -

Ramrod accepts interrupts from each microprocessor 

and can interrogate its memory to find out the type 

of interrupt. Only 5 levels of interrupt are used, 

although the number is theoretically expansible to 

any number of levels.

A slave processor generates an interrupt request

signal which instructs the CCU to jump to the

interrupt service routine, where the identity of the 

interrupting processor is determined. This is

achieved by the interrupt controller which supplies 

the sequencer with an address corresponding to the
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interrupt level. This is normally known as a

vectored interrupt.

4.2.7.7 Local Memory -

An operating system needs storage for tables, tasK

blocks etc. The registers in the CPA are

insufficient, and in addition scratch pad use is also 

neccessary, so ordinary Metal Oxide Silicon (MOS)

memory is made available for this purpose. This is 

similar to RAM in a simple microprocessor system.

4.2.7.8 Control Boa-d -

The control board consists of two identical sections 

of very fast RAM which are used to enable the 

microprocessor and memory modules respectively. The 

Master Controller can only write the enabling signals 

into this memory and the actu-_. reading of the memory 

is accomplished by a modulo n counter where n is the 

number of processors in the parallel array. The data 

which is read from this RAM provide the enabling 

signals for the latches which allow processor/memory 

communication.
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4.2.7.9 Control Store -

A key factor in the design of a bit-slice 

microprocessor is the cycle time of the processor. 

Bit-slice timing can be calculated from the worst 

time taken for data to traverse the data path. The 

access time of the control store has a direc^ 

influence on this cycle time.

The data path begins with the instruction b=ing 

fetched from memory end being presented to the 

pipeline register. From there the individual sits 

are available for control of the relevant parts of 

the system. While the rest of the system *s 

operating on this instruction, the sequencer 

generates the next address, which is supplied to the 

control store, the store is accessed and the 

instruction is ready for entry into the pipeline 

register.

Thus the read time of the control store is included 

in the cycle time, which is reduced by the method of 

pipelining outlined above. However there is still a 

need for a fast -access memory.
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Eit-slice processors are usually designed with a 

decoding PROF which accepts macroinstructions, or 

normal instructions of processors, and calls 

subroutines of microinstructions to implement the 

macro instruction. If this PROM is dispensed 

with,then the user can write his program on the 

microinstruction level, thus improving speed.

A disadvantage is that the user has to write the full 

64 bits rrespective of how many bits he needs. The 

inner workings of the processor are also not 

transparent to the user. Figure 4.5 shows the 

general structure of the bit-slice processor 

discussed.
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ADDRESS
BUS
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4.3 Physical Construct ion

The physical construction of Ramrod1s bus structure 

is shown in figure 4.6. The latch boards plug 

directly on the buses so as to ensure that the ECL 

signals are generated as close as possible to the 

bus. The TTL control signals and power lines go 

through tie latch board to the board that is plugged 

'piggy back1 fashion on to it. This 'piggy back 1 

board can either be a memory or a processor board and 

it then logically determines the mode in which the 

latch board is to function.

The bus itself was implemented using double sided 

"scotch-flex" cable with one complete side grounded. 

Edge connectors were connected directly onto this 

cable.

The control board which supplies the TTL control 

signals plugs directly into the TTL bus and is driven

by the MC via a set of cables.

The master controller is located external to the bus 

structure and, in practice, was located within an

expansion chassis associated with the EXORciser

developemer,t system.
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The slave processors, memory boards and latch modules 

are cooled by a fan which is mounted on top of the 

bus structure. ECL requires power supplies different 

from that of TTL and thus there are five supplies 

(+5, -12, +12, -5.2, -2 volts) connected and sensed 

at the top of the circular construction. These 

supplies are in addition to those of the bit-slice 

master controller as power requirements for the 

circular construction are high and if the supplies 

were not duplicated then there would be a significant 

power drop to the circular construction. Figure 4.6 

shows a complete view of Ramrod.
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iSSS
UP tC n°W the hard—  S — re has been developed

ana the f 0 U W i n 5  Cha« -  describes the basis of the 
sortware structure of Ramrod.



CHAPTER 5

IMPLEMENTATION OF THE OPERATING SYSTEM

"For everything there is a season; and a proper time 
for every pursuit under the heavens. There is a time 
to be born and a time to die; a time to plant and a 
time to pluck up what hath oeen planted; a time to 
kill and a time to heal ; a time a time to break down 
and a time to build up; a time to weep and a tim to 
laugh" [Eccl iii 1,2,3,4].

As has been stated before, the operating system of 

Ramrod has been distributed amongst the various 

processors in the system in order to increase the 

reliability of the computer as a whole. The kernel 

of the operating system is implemented in the 

bit-slice master processor while most of the routines 

which control input/output and- local processing are 

resident in EPROMs on the slave processor boards. 

Additional details of the operating system software 

are to be found in appendix I and only high level 

functional description are discussed in this charter. 

Actual listings of the software can be obtained from 

the Dept. of Electrical Engineering at the 

University of the Wi 4-watersrand.
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5.1 Operating System Kerne-

The operating system has been simplified as far as 

possible in order to implement only the essential 

functions which are required to evaluate Ramrod. It 

must be pointed out that additional features still 

have to be implemented to provide a full, commercial 

system.

The operating system kernel, as currently implemented 

in the master controller contains the following 

functions:

1. Dispatcher

A list is kept of the status of the tasks in 

the system (Task Control Blocks TCB). The 

dispatcher has the function of scanning the 

list of TCB's and when a tasks is waiting to 

be executed the dispatcher looks for an 

available processor on the processor status 

list.
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Scheduler

Once a task has been dispatched to a 

processor, the processor has to be initiated 

so as to run. The scheduler has therefore 

the prime function of enabling processors.

The 'round robin1 scheme of scheduling is

actually implemented in the hardware (see 

4.2.7.8) whereby processors are allowed 

access to the bus, and hence to the common

memory, in turn (i.e. time slicing the

bus) .

Memory Manager

This module keeps a list of the memory 

segments showing which are free or which are 

occupied. Once a task has been executed its 

memory segment joins the 'free' list. When 

a task is loaded this module is consulted in 

order to find a 'free' segment.
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Interrupt Handler

The interrupt handler determines the source 

of an interrupt and proceeds to service the 

interrupt after saving the volatile 

environment of the interrupted routine. 

When the interrupt has been serviced 

execution of the interrupted routine is 

resumed.

Input/Qutout Module

It is the function of the input/output 

module to initiate an I/O operation, on 

request. Tasks are loaded from an external 

source or can be entered by the user from a 

console which is connected to one of the 

slave processors. This module i '-> an 

interface between the nucleus of the 

operating system and the routines whicu a.e 

resident in the slave processors.

It should be noted that in the prototype 

system, tasks were resident on the disks of 

the associated EXORciser development system. 

The operating system obtained tasks from 

this system and loaded them into Ramrod =>
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memory as required. This technique obviated 

the need for a dedicated disk controller and 
disk.

5.2 Local Operating System

The component of the operating system contained in 

each slave processor has the following functions:

1. It can act as an extension to the 

input/o :tput module of the operating system.

2. It can function autonomously in order to 

e..a .e ssl: testing of the slave processor

1 can directly control the processing 

activities of the slave processor and will 

only execute user tasks as requested by the 

master controller

The microcomputer determines, on power up, what type

of function it is to perform. This is achieved by

the processor which writes its identity into a 

location of common memory and if the orocessor is

reset then it can determine its mode of operation by

reading this location. The determination of this
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mode, in the final system, is automatic but during 

development this was basically determined by

transmitting data through a Universal Synchronous 

Asynchronous Receiver Transmitter (USART), and 

reading immediately the data on the input. This 

feature enabled direct control of each slave

processor during system testing. Once the identity 

of the processor is determined its mode can only be

changed by a power down sequence or by the master

controller which can reprogram the appropriate memory 

location.

5.2.1 Input/Output Extension to the Operating System

In this mode the slave processor behaves as an 

intelligent terminal, and can be connected to a user 

console or to a host computer. As mentioned before, 

this allows a user direct access to each slave 

processor - a most valuable aid during development. 

For example, programs which are to be run by a slave 

and which have been developed on, say, a development 

system can be loaded via this routine into Ramrod's 

common memory. In addition the user can view the 

system on the console. This gives the user a way of 

getting his programs into Ramrod's memory without 

direct control from the master controller- again a 

useful aid curing development.
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5.2.2 Self-Testing Routines

In order to test the microcomputer initially the 

following routines are included in the slave 

operating system;

1. Identify, on power up, the function the 

processor is to perform (i.e. it can be a 

slave processor executing tasks as set by 

the master controller, a processor which 

communicates with the user via a VDU, or a 

processor which can load tasks om an 

external source e.g. a disk operating 

system).

2. Substitute or update any memory in the slave 

processor's address space

3. Display contents of this memory on screen

4. Insert code into any of this memory

5. Execute program inserted by user
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5.2.3 Slave Task Processing

In this mode the slave processors execute tasks at a 

specific location in the common memory address space. 

This location is in the common memory area and 

therefore tasks which have been loaded via the master 

controller I/O module and which have been dispatched 

to this particular processor are executed after a 

request by the master processor. On completion the 

master is notified by means of the mechanism 

described in 3.6.

5 . 3 P o n d  us i or.

Graceful degradation of the system is assured because 

if the master fails the slave processors can continue 

functioning until their tasks are completed.

As can be seen in appendix J , the hardware 

reliability of Ramrod depends on duplication of the 

master and the TDM common bus, whereas the software 

reliability is greatly enhanced by distribution of 

the operating system.
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In summary, the operating system is distributed and 

contains the following:

1. Scheduler

2. Dispatcher

3. Memory Manager

4. Input/Output Manager

5. Interrupt Handler

In addition a list of information pertaining to the 

status of tasks, processors and memories is 

maintained by the master controller.

The distributed operating system which has been 

described is essentially simple and has proved to be 

most effective. It appears to be both an effective 

tool and a successful combination of hardware, 

firmware and software.



CHAPTER 6

APPLICATION SOFTWARE STRUCTURE

"For all this did I reflect over in my heart and to
explain all this, that the righteous, and the wise,
and their services are in the hand of GOD; that man 
knoweth neither love nor hatred; it is all ordained 
before them" [Eccl ix 1].

Whilst this thesis has set out to produce an

operational system and has concentrated on the

fundamental design issues, it is important to give 

some attention to methods which may be used to 

construct applications software.

Therefore this cnapter discusses an appropriate 

method, and the techniques discussed are utilised in 

a relatively simple example which will form the basis 

for the practical evaluation of Ramrod.

It is common knowledge that parallel processing can 

be greatly enhanced by using techniques a.lopted from 

data flow languages. Computations represented by 

cyclic data flow graphs can be automatically unfolded 

to expose all parallelism to the underlying hardware 

[AGER 82 J.
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The discussion that follows presents a pragmatic 

introduction to such techniques and shows how they 

may be implemented in pro luction.

6 .1 1 ja ta Flow A- nr oacri

Data iLow machines attempt to provide concurrency in 

operation in order to achieve high speed of 

-

allow the computer architecture to be visible to the 

programmer in order to achieve parallelism. This is 

unnatur 11 is the language then closely reflects the 

behaviour of the computer rather than the manner in 

which the programmer normally thinks [ACR]. The data 

flow language approach on the other hand, directly 

reflects the progra: or's thoughts whilst making the

CO nr,:! tor 1 s arch i t. ec fur > ' ran m  rent.

A data flow language i ; defined as a "language based 

entirely upon the notion of data flowing from one

.

concept has the adv in tag- of allowing the data f low 

language program I > be repre .onted graphically.
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U'' a dat<a ! l ° - / language is extremely 

as sub-programs can be understood entirely on the-

,

' ' " ' ' t',u n 13 altering another module's variables.

f

the modules that look independent can be executed

Independently, and modules can therefore run 
concurrently [r,AV 82].

The data flow machine, which is a direct image of the

language it supports, is in contrast to the 

'

computer model, and it is based on tae following two 
princip.es:

"'.synchrony. All operations executed when and only

,

.

th.'.-r. re no side effects". IGAJ1

Asynchruny denotes an execution mechanism in which 

data values pass through nodes in data flow graphs as 

tokens, and an operation is initiated whenever all 

input tokens are present at a node in the graph, 

functionality implies that any two enabled operations

.
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Figure 6.1 shows how Z= (X-f-Y) * (X-Y) is graphically 

represented and therefore computed. The functions +, 

-f * are called actors and they reside at a node and 

nodes are connected by arcs. Data flows on arcs from 

one node to another in a stream of discrete tokens. 

Tokens are considered carriers of data objects [DAVj. 

It must be noted that an actor, or operator, cannot 

be initiated before all of its tokens are available 

(see chapter 7) (see Figure 6.1),



NODE

NODE

FIGURE 6.1 DATA FLOW INSTRUCTIONS
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The data flow computer is designed to recognise which 

of the instructions are enabled. All such 

instructions are dispatched to execution units as 

soon as they are available.

The data flow concept can be extrapolated to 

conventional von Neumann structures by having tne 

processing elements operate simultaneously on tasks 

rather than on instructions. If a more global 

tlook is taken, it can be seen that the task can be 

fined in a similar way to a data flow instruction 

such that it is enabled if all input conditions are 

met, and it is suspended when an output condition

ou

de

n i- <*■ u r s

6.2 Task Definition

The actual mechanism of automatically decomposing a 

program into tasks which will fit into the above 

category is beyond the scope of this i n v e s t i g a t i o n .  

The program must be decomposed before entry into the 

system. One solution is to write the programs in a 

data flow functional language, which has inherent 

properties for parallel processing (see 7.3).
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Using the data flow concept, a task in this 

multiprocessor environment is defined as the smallest, 

functional unit of software, which requires inputs 

for execution to begin and which only terminates when 

an output condition occurs. Therefore a task is 

autonomous and must run to completion before any 

communication with another task. This concept, is of 

course, very interesting as it reflects one of the 

original proposals discussed in section 3.5 to avoid 

deadlock.

Inter-task communication is thus kept to a minimum 

and each task has a single indivisible function. 

Thus the instruction in figure 6.1 is a task which 

accepts two inputs, X and Y, and produces an output 

2.

However, it must be remembered (see section 3.5) that 

the above approach to Inter-Process Communication 

(IPC; is relatively limited, and other mechanisms 

should be investigated. Ramrod is an excellent 

vehicle for experimenting with these ideas. The next 

section discusses various possible selected IPC 

mechanisms, and it is shown how they may be 

implemented in Ramrod.
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6 . 3 I nter- Ta sk Communication

A d i s t r i b u t e d  m u l t i p r o c e s s o r  com pu t e r  s y s t e m  needs a 

s o p h i s t i c a t e d  c o m m u n i c a t i o n  m e d i u m  to p r o v i d e  for the 

n e c e s s a r y  in ter-task c o m m u n i c a t i o n .  Re l i a b i l i t y ,  

r e d u n d a n c y  and m o d u l a r i t y  (as m e n t i o n e d  in 1.2.1) are 

r e a u i r e m e n t s  for the i m p l e m e n t a t i o n  of such a medium. 

T his  c o m m u n i c a t i o n  me d i u m  is the kev to flexibl e 

i m p l e m e n t a t i o n  of r e d u n d a n c y  and e x p a n s i b i l i t y  

[ M A C ] .

The i nterac ti on be tw e e n  tasks :rise when two 

c o n c u r r e n t  (truly c o n c u r r e n t  r the m u l t i p r o c e s s o r  

sy stem and pse udo c o n c u r r e n t  in the u n i p r o c e s s o r 

e n v i r o n m e n t ) tasks need to e x c h a n g e  d a t a .

The c o n c u r r e n t  tasks have access  to co m m o n  m e m o r y  

v ar i a b l e s  wh ich rep r e s e n t  the state of p h y sica l 

r e s o u r c e s , and which are used to c o m m u n i c a t e  data 

be tween  c o o p e r a t i n g  t a s k s . In gene r a l  the co mmo n 

var iable s can rep resen t shared  ob je c t s  called 

r e s o u r c e s , and in order to share r e so urces the 

c o n c u r r e n t  tasks need to be sy nchroni se d. 

S y n c h r o n i s a t i o n  is def in ed as an o r d e r i n g  of 

o p e r a t i o n s  in time and in the m u l t i t a s k i n g  

e n v i r o n m e n t  this infers that " o p e r a t i o n s  A and B must 

never be e x e c u t e d  at the same time ", i.e mutual
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e x c l u s i o n  [BRI 73]. A more d e t a i l e d  d i s c u s s i o n  of 

I n t e r - P r o c e s s  C o m m u n i c a t i o n  p r i m i t i v e s  has been 

u n d e r t a k e n  by M a c l e o d  [ M A C ] .

Th e t r a d i ti onal ways of h a n d l i n g  the Inter Pr oc ess  

C o m m u n i c a t i o n s  a r e :

1. Se ma p h o r e s

a s e m a p h o r e  is a s y n c h r o n i s i n g  varia b l e  

( flag) w h i c h  inform s a task wh ether the 

re sou rce it wishe s to share is a v a i l a b l e  or 

u n a v a i l a b l e  [D.TJ] .

2. Critic al Regions

A c o n c u r r e n t  task can only access common 

v a riab le s wi t h i n  a c r i tical  region. The 

task can onl y  enter a crit ic al region wi t h i n  

a finite time, and only  one task at a time 

can be inside a c r i t i c a l  region. The task 

can remain in the critic al  region for a 

finite time only [BRI 73].
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Communicating Sequential Processes [HOA /i]

Input/Output are basic primitives of 

programming. Parallel processing using 

communicating Sequential Processes (CSP) is 

a fundamental program structuring method. 

This Communication is considered as being 

synchronised input/output.

A process communicates with another process 

by naming it as its destination for output, 

while at the same time the second process 

names the first as a source for its input. 

When both processes are ready to transfer 

data the value to be output is copied from 

the source to the destination. A

disadvantage of this close synchronisation 

scheme is that if one of the processes 

finishes before the other there will be a 

certain amount of idle time by the processor 

concerned, and there is also a limit on the 

amount of parallelism achieved.
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Verifying programs in a uniprocessor 

environment is difficult enough, and Hoare 

therefore states that there is no method for 

verification of programs in a multiprocessor 

environment.

4. ADA [US POD]

One of the most exciting developements in 

real time languages is the ADA language, 

which is a project of the United States 

Department of Defense. ADA is similar to 

CSP in that it has a low level construct for 

the synchronisation o f  parallel tasks. ADA 

incorporates the concept of a rendezvous, in 

which two processes communicate with each 

other at a specific (real) time, for 

interprocess communication.

5. P r imit iv es for D i s t r i b u t e d  Comp ut ing[LI SK ]

An advantage of a distributed organisation 

is reduced contention for a single CPU, but 

this is replaced by contention for the 

communication medium. Other advantages are 

speed of response from the CPU's, better
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reliability, higher capability and

expansibility,

* m

The basic construct of this I PC method is 

called a guardian which consists of objects 

and processes. An object contains 

data(integers etc.) and a process is an 

execution of a sequential program. 

Communication by processes in different 

guardians is by means of message passing. 

The guardian exists entirely at a single 

node of a distributed system. Once a 

message has been sent, the sending process 

can proceed. Receiving messages are 

associated with a timeout which is necessary 

because an expected response may not arrive 

due to errors or failures.

Ports, which have global names, allow 

queueing of messages as they provide some 

buffer space. If this buffer space is full 

the message is lost. The port is a 

unidirectional gateway into a guardian and 

is described by the type of messages that 

can be sent to it.
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6. MARS [KOP 82]

In the MARS project IPC differs for state 

messages and event information. An event is 

a happening at a point in time, whereas 

state information deals with attribute

values of objects which are are only valid 

for a certain period of time. However,

event and state information are related as a 

change of state is an event.

An event message is queued at the receiver

and can only be removed by that receiver

when it is read. A state message is valid

for a specified period of tirtie and can be

read by several tasks many times. Tne IPC

mechanism is, on a high-level, a broadcast 

medium with a group addressing capability 

(Ethernet?).

The above mechanisms have been . own to be viable and

the author does not wish to debate their merits.

However, it is not clear how to determine which 

method is most suitable for a particular case of 

Inter Process Communication (IPC).
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Ramrod, in this thesis, does not set out to solve the 

problem of choosing an I PC mechanism but rather

provides a vehicle for testing them. All the above

methods can be implemented in Ramrod as there are 3

ways to support IPC (see 3.5.1).

1. Via common memory. As a slave processor has

access to any other slave processor s

memory, all of the above IPC methods are 

able to be implemented in Ramrod

2. Via Input/Output. As the I/O interface is

intelligent one processor can address

another processor using unique n^mes for

each processor (CSP).

3. via communication through the master using

interrupts. The master can interrogate a

slave processor and determine what it wants 

and most of the methods listed aoove can be 

implemented.
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6.4 Conclusion

This chapter has attempted to provide a mechanism 

which may be adopted in ord< to produce application 

software for Ramrod. It is suggested that Data Flow 

techniques seem to be appropriate and in the next 

chapter a simple program is developed on this bas . 

In addition this chapter has looked at Inter Process 

Communication mechanisms and it has been shown that 

Ramrod is capable of implementing all of these - thus 

enhancing the value of the system as an experimental 

tool.



EVALUATION OF SYSTEM

"For vvh ' k n o w t h  wh at is go id for in n in this life, the 
number of fcho do vs of his vain life that he should spend 
them as a shadow. For who can tell a man what will be after 
him under the sun" [ Eccl vi 12].

It has been claimed that Ramrod is more efficient than a 

conventional uniproc sor, but there is a difficulty in 

proving this. Ef, ici- ncy is usually defined as the ratio 

between useful work per for. 1 an 1 the total work performed. 

In this project, however, efficiency is evaluated on a 

comparative basis b e t v e n  P c o d  and a uniprocessor computer 

of similar po- or to on- of the Slav: processors. Evaluation 

techniques (outlined by R o d  [ROD 76]) can really be only 

applied to one s/st ,n and cannot form the basis cf 

comparision between two fundamentally different types of 

computer system . R o m  l‘s architecture is similar to that 

of an array procvssor and therefore it should be used for 

vector pr-a sing i o, b:-r to utilise it as efficiently as 

possible. TL- refo. , wb n evaluating Ramrod this point must 

be kept in mind and thus merely obtainin ! a run time for
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The problem is analogous to calculating the reliability of 

Ramrod, since conventional reliability theoery is really of 

little significance in a fault-tolerant system (appendix J) . 

Therefore it was decided to limit the evaluation of Ramrod 

to using it as a simple vector processor operating on an 

array of integers, while allowing a uniprocessor to do the 

same operation on the array and ?n comparing the 

respective performance. This compc xson is naturally not 

totally valid but, more than anything else, it dees 

illustrate the vital factor that the system developed has 

much merit and provides an indication as to how it can be 

used.

7 .1 Practica l I. ir--.at ions

As the project was by definition very large, and because 

many of the ideas such as sharing common memory and time 

slicing the Emitter Coupled Logic (ECU bus are almost 

unique, some of the architectural features developed have 

not been fully implemented in the prototype. The software, 

as well, has been simplified in order that the basically 

novel thoughts of Ramrod be demonstrated and proved to be 

viable.
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The operating system has been simplified by allowing the 

user to load his tasks via the console in addition to using 

the master operating system functions to load tasks. 

Purpose designing the operating system for the evaluation of 

Ramrod also reduces the complexity of the operating system

i.e. all the features in a complete operational system have 

not been included - only those that are absolutely necessary 

to run the test program.

It must be clearly understood that the omission of. the above 

features does not in any way undermine their importance and 

contribution to the project. These features can easily be 

incorporated into the system because of the modularity of 

Ramrod.

An additional factor which is isually examined in the area 

of evaluation, is the question of memory utilisation, but as 

the control store is large enough for the operating system 

and because tasks reside in the common memory, this 

evaluation is not relevant in the present situation.
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7.2 Factors influencing the Relative Comparison

In order to synchronise the slave microprocessor to the 

Time- Division-Multiplexed (TDM) common bus the "Ready" line 

of the 8085 has been used. Thus for a read memory cycle the 

address is first transferee! across the bus and the 8085 is 

held 1 unready1 until the data returns from the memory. 

Initially this double cycle seauence only applied to the 

read memory cycle, but as the 8085 has a multiplexed 

data/address bus it was found necessary to make the write 

memory cycle a double cycle as well, thus effectively 

doubling the time taken for writing data to memory. This 

factor obviously influences the run time of the 8085 slave 

processor and must be kept in mind when comparing the 

execution figures of Ramrod and a uniprocessor system. The 

Bus Enabling Signals (BES) (figure 4.2 time slots) were

originally chosen as having a period of 1 micro-second and

therefore the logic on the memory cards was designed with

this in mind to provide the read/write, select and clock 

pulses using monos table multi-vibrators. It has 

subsequently been determined that the BES frequency can be 

increased to 2MHz, thereby significantly reducing the run

time of a task.
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The method used for interrupting the bit-slice master 

processor is via the watchdog circuitry which takes 14 

milliseconds to time-out. Therefore the execution time of 

the task should be reduced by this time period as an

alternative method for interrupting could be designed. The

slave _ .e.sor can generate an exclusive address in c 5er

to signal the master, though the watchdog circuitry is still

needed to indicate a malfunction. Thus there would be two 

interrupts from each slave.

The uniprocessor system used in the comparative studies was 

one of the slave processors executing in isolation. This is 

a preferred solution as it incorporates the double cycles 

mentioned above, and hence provides a direct comparison in 

terms of execution times.

I
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' * 3 Program Used in Relative Coinpar is ion

As was mentioned earlier, the architecture of Ramrod is 

similar to that of an Array Processor so it was decided to 

undertake the evaluation by making Ramrod do an exercise on 
■tn array of integers.

Figure /.I illustrates how the program runs and shows how 

data flow techniques are applied.

-he program calculates the maximum of an array of numbers.

The array is divided by the number of slave processors that

are present and each subdivision becomes the input for the

operators (slaves) 1, 2 and 3. The routines are initiated 

by the apearance of tokens (subdivisions). They operate on 

the arrays and are terminated when the output (maximum) 

occurs. Operator 4 can only be iniated when all of its

tokens (maxima) are present at the input. It terminates 

once the output (absolute maximum) appears.
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FIGURE 7.1 OPE R A T I N G  SYSTEM SEQUENCE
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7.4 ResuIts

Figure 1.2 shows the execution sequence of the test program. 

When several slave processors are executing identical tasks 

simultaneously there is a possibility that two or more tasks 

will send interrupts to the master controller 

simultaneously, therefore these tasks contain uurnmy loops so 

that their execution times are not similar.



MEMORIES 
TO PROC4
FOR USER
TO ENTER 

DATA

I NT MEMORIES 
TO PROCS 

-1 - 3. 5_______
PROCS GET 
MAXIMAi

I NT MEMORIES 
TO PROC2
PROC2 GETS
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MAXIMUM

INT MEMORIES 
IP P&OCA
USER 

VIEWS 
DATA

FIGURE 7.2 EXECUTION SEQUENCE
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Below is a table which shows the steps for the test program 

with their execution times.
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Function Execution Time

1. Assign 3 memories to a 

slave processor so that user 

can enter array

2. User generates integers, 

after insertion, which 

is detected and serviced

3. These 3 memoriess are re

assigned to 3 slave processors, 

for calculation of maxima

4. Slave processors calculate 

their maxima

5. Three interrupts are 

generated and serviced

6. These 3 memories are 

assigned to another slave 

processor so that it calculates 

absolute maximum of array

7. This slave processor 

calculates maximum of 3 numbers

8. Generation and service of 

interrupt

9. Assign memories to console 

slave processor so hat user 

can view result

Table 7.1 Execution Times

13 microseconds

550 nanoseconds

10 microseconds

1600 microseconds

1250 nanoseconds

10 microseconds

180 microseconds

550 nanoseconds

12.6 microseconds
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Note: The time taken for the user to input the data is not

relevant, anc applies to the execution time of tne single 
processor as well.

Thus the total run time for the system to calculate the 

maximum of 96 integers is approximately 1.8 milli-seconds. 

If one slave processor were to operate on the entire array 

it would take 5.2 milli-seconds whereas a processor which 

does not have any wait states inserted ) takes 2.6 

milli-seconds to operate on 96 integers (see figure 7.1)

7.5 Conclusion

Ramrod performs very well under the given conditions and 

when the bus Enabling Signal (BES) frequency was indeed

increased the machine became even more powerful. The 

results must be viewed whilst keeping this point in mind. 

The fastest time for Ramrod to do the above example was in 

the region of 1 milli-second thus making it 2.5 times faster

than a single processor. However one must bear in mind that

Ramrod has the ability to allow the processors to 

inter—communicate and therefore its overall power is 

difficult to estimate. In addition, if the operating system 

were better scheduled then there would have been no need to 

have a separate processor to maximise the relative maxima 

and the total run cime could then be reduced by an ad led 

factor of 30C micro-seconds. It is estimated that it would
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take a processor 1.3 milli-seconds to ooerate on an array of 

24 integers (96/4 =24).



CHAPTER 8
CONCLUSION

"The end of the matter is, let us hear the whole; Fear GOD 
and keep his commandments; for this is the whole duty of 
man. For every deed will GOD bring into the judgement
concerning everything that hath been hidden whether it is 
good or whether it is bad" i Eccl xii 13,14].

Very Large Scale Integrated (VLSI) microcomputer components 

are highly cost-effective because of the high volume at 

which they are produced, and therefore future computer

architectures must utilise this dramatic advance in

technology [GIL BEHR].

This thesis sets out to define a computer system which is 

highly cost-effective and whose architecture is based on 

data-flow techniques in order to provide a more efficient 

way of data access than the conventional computers.

However, the architecture was also based on a high degree of 

fault-tolerance, modular extensibility and simplicity.
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8.1 Uniqueness of Ramrod

The project brought out the unique features, detailed below, 

in order to reconcile these seeminglv conflicting demands of 

modular architecture on the one hand and simplicity and

fault-tolerance on the other hand.

1. The Time-Division Multiplexed (TDM) common bus

It was shown that a common shared bus does not 

necessarily have a low bandwidth, and can indeed be 

used very efficiently to time division multiplex 

many devices - the key being the very short time 

required by each processor to access the bus.

2. Circular Bus

The TDM bus is constructed in a circular fashion 

and joined at the ends. Ramrod proves the 

viability of using a circular bus to improve signal 

levels and hence to decrease the maximum delay 

between devices.
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3. Distributed Operating System

In order to increase the reliability of the system, 

as a whole, and to provide for graceful degradation 

the operating system is distributed amongst the 

processors, and the kernel of the operating system 

is built into the hardware of the bit-slice master 

processor.

4. Local/Global Memory

Another feature of Ramrod is that it does not 

differentiate between local and global memory. 

This offers many useful properties such as a simple 

mechanism for implementing a distributed data base.

5. Inter Process Coi.mur, i cation (I?C>

There are three methods by which Ramrod can achieve 

I PC, thus making it a good test bed for developing 

ideas about IPC:

(a)via the I/O module using Ethernet

(b)via the common, shared bus

(c)via the Master Processor
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6. Readily Available Components

The architecture, all though novel, uses freely 

available components and thus maintainability and 

extensibility are assured.

8.2 Commer cia l Vi a b i l i t y  of Ramrod

Ramrod can be used in such diverse applications such as 

process control on the one hand and data base management on 

the other hand, and this is perhaps one its most important 

contributions to technology. In addition the system is 

relatively cheap but powerful. A cursory calculation shows 

that the cost of developing and marketing this computer can 

oe in the region of R25,00C - R35,060 thus placing it in the 

lower bracket of minicomputers, with, of course, more 

relative power.

The cost of software development for the purpose of testing 

Ramrod has been included in the above calculations but the 

cost of producing software for making the machine as 

versatile as is claimed in Chapter 1 could not be 

ascertained and is clearly considerable.
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8.3 Critical Analysis of Ramrod

It has been claimed that Ramrod can support 50

Microprocessors and 50 memory segments, but in view of the 

investigation carried out (see appendix C) into the ability

of ECL to drive the circular bus, additional circuitry is 

required and this might slow down the propogation delay 

which would have an effect on the overall system throughput.

The actual operation of Ramrod was marred by problems

relating to the construction of the ECL bus. Whilst the 

timing was shown to be viable, the critical nature of this 

timing made it subject to temperature problems.

ECL has a very high heat dissipation problem which depends 

on the level of the power supplies and the termination

resistors which in turn affect the ECL logic levels. Any

variation in ambient temperature clearly affects all the

parameters, and during hot weather tr.e system suffered from

occasional intermittent faults - attributed to timing

problems.

Finally, the choice of the actual physical bus was a poor 

decision - the interconnection from the edge connectors to 

the scotch-flex system proved to be unreliable and was the 

source of many mechanical failures.
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8 . 4 Future Enhancements

The basic design of Ramrod is sound but there is still room 

for improvement which can be achieved by:

1. Improving the present design to overcome mechanical 

problems resulting from the physical bus 

construction

2. The incorporation of those features mentioned in 

Chapter 1 so as to permit a fully operational 

vehicle which may be used in long-term experiments.

In particular the following ones required attention:

1. In order to ensure stable power supplies on each 

board, regulators must be resident on each printed 

circuit board.

2. The latch module needs to be redesigned so that the 

ECL chips are closer to the bus.

3. Both the TTL and ECL Busses must be constructed 

from a flexible printed circuit board so as to 

provide a more reliable mechanical structure.

4. In order to increase the number of slave processors
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and memory segments, the loading of the ECL bus 

chosen needs additions] investigation.

5. In order to include an intelligent I/O interface 

the work on Ethernet needs completion.

6. Better software support is needed to develope the

microcode. A related project is investigating a

highly flexible microassembler and emulator [WILD].

7. Perhaps standard processor and memory cards could 

be used instead of purpose-built hardware thus 

making Ramrod universal.

8.5 Conclus ion

In summary, Ramrod has been designed and built to a 

prototype stage and tests were run to show its viability. 

Although it suffers from certain problems relating to the 

mechanical structure and also is somewhat temperature 

dependant, it has proved to oe a most successful and in many 

ways unique design. In providing an extremely powerful 

computer which makes use of freely available components it 

has met its prime desig; 'bjectives and illustrated much 

promise for future development.



APPENDIX A 

EMITTER COUPLED LOGIC

A .  I  I n t r o d u c t i o n

A compar ision of the fastest commercially 

state-of-the— art technologies (ECL and AST) as 

discussion on the use of ECL is outlined in the
pages.

Emitter Coupled Logic 

Advantage

Propogation delay 2-3ns

Low output impedance

Can drive transmission l.nes

Very high fan-out

Complementary outputs 

High output drive capability 

Slow rising edges 

Wire-oring possible

available 

well as a 

following

Disadvantages

Has different power 

supplies from standard 

TTL

Has different logic 

levels from standard 

TTL

Extra power supply for 

transmission line 

All outputs need pull 

down resistors 

High power dissapation 

large ground plane 

needed
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High input impedance,therefore 

unused inputs go low

Advanced Schottkv TTL

advantages Disadvantages

TTL compatible Propogation delay twice

as long as ECL 

i.e same levels, powe. supplies cannot drive

transmission lines 
Low power consumption No wire-ORing

High noise immunity rast output transition

therefore reflections 

and crosstalk 

Thresholds low levels 

slightly offset from TTL

Emitter Coupled Logic is a non saturating form of digita 

logic which eliminates transistor storage time as a speei 

limiting characteristic and permits very high spee<

operation. "Emitter Coupled" refers to the manner in whicl 

the emitters of a differential amplifier within th<

integrated circuit (IC) are connected. The differentia: 

amplifier provides high impedance inputs and voltage gair 

within the circuit. Emitter follower outputs restore the 

logic levels and provide low output impedance for good line

driving and high fanout capability.
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A typical ECL gat structure is shown in figure A-l as well 

?c the available separate functions.

ECL has two ground inputs which eliminate crosstalk between 

Circuits ir a package. In order that unused inputs may be 

left open 50 K ilo-Ohm "pinch" resistors drain input 

transistor leakage current end hold these unused inputs at a 

fixed logic zero level.

Typical logic levels for ECL are -0.98v which is a logic 

high level and -1.75v the logic low level.

In order to increase logic flexibility, speed and power 

efficiency two techniques of connecting the differential 

amplifiers are used. Figure A-2 illustrates the SERIES 

GATING technique which permits the generation of upto 2n 

logic functions from n inputs with one current source, while 

COLLECTOR DOTTING (illustrated in figure A-3) a.lows the 

logic nitj  function to be achieved bv interconnecting one 

collector node of separate differential current switches 

together. A thi rd technique, WIRE-ORing, enables the logic 

OR function to be generated by tying together two or more 

emitter follower transistor. A disadvantage of ECL is that 

there is a limitation of the number of WIRE-OR connections 

of 6. Therefore bus drivers need to be used when this limit 
is exceeded.
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Using ECL for high speed logic design can result in more 

problems than using AST transistor transistor logic (the 

propagation delay is about 2ns, and thus delays are

introduced from the wiring). Therefore wiring lengths 

should be reduced as much as possible. Using wiring with 

2.0..s/ft delay means that there is approximately one gate 
delay for every foot of wiring.

Transmission line principles should be employed in order to 

design interconnections between ICs. Line lengths approach 

the quarter wavelength of the signal and t! erefore 

distortion and reflections can occur. Lines must be 

properly terminated with matching impedances to avoid these 
and other associated problems.

EcL designers have further minimised crosstalk by

deliberately slowing the rise and fall times to more than 
3ns.

Manufacturers recommend that only one-sided printed circuit 

boards be used, keeping the second side as a ground plane in 

order to reduce noise generation as well.
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*he characteristic impedance Zg of a single line over a 

ground plane separated by a dielectric medium ,i.e. 

microstrip lines, is calculated by;

ZB = 87 In {5.98h}
   * (• ;
(€,-+1. 41) **1/2 { . 8w+t}

where er = relative dielectric constant 
w = width of microstrip 
t = thickness of microstrip 
h = thickness of printed circuit board

ECLs logic levels of -0.98v and -1.75v are derived from the 

—5.2v power supply. The reason for this power suooly as 

opposed to the normal +5v supply is that it helps to reduce 

noise generation when the emitter foiljwers switch from one 
level to the other.

ihe de^ioners of EcL circuits incorporated another useful 

feature into their designs by including at least one 

inverted output signal in an IC package. For example the 

1Z104 quad 2 input AND gate has one inverted output i.e. 

the NAND function is derived.

The 10195 HEX INVERTER/BUFFER has 6 EXCLUSIVE-OR gates with 

one input commnnned. Therfore the IC can be configured as a 
buffer or inverter.
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A.2 Sample Data

The 10104 Quad 2 Input AND gate

Propogation delay is 2."ns typical while rise and fall times 

are approximately 3ns. The power consumed per gate is 
35mw(no load).

— .e. ECL/TTL Invertinc Bidirectional Transeiver with
Latch

Referring to the block diagram in figure A-4 the reader will

notice that there are four control signals needed to operate

this package. The OUTPUT DISABLE when at a logic low level

disables both the ECL and TTL output buffers, while at a

logic high level these buffers are enabled. The ECL/TTL

signai allows control of the direction of data transfer and 
translation.

The LATCH BYPASS select line allows the latch circuitry to 

be bypassed for fast data transfer. When it is a logic low- 

level data is directed to bcth the latch input and output 

buffer simultaneously, and this enhances the speed of 
translation and throughput.
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MICROPROGRAMMING AND BIT-SLICE TECHNOLOGY

Bit-slice technology and microprogramming are reviewed in

this appendix , in order to provide a general background of

the master controller which has been developed to control

the operation of the processors in the multiprocessor 
structure.

Bit-slice microprocessor families are not revolutionary, 

rather they represent a new stage in the evolution of the 

design of central processing units ( CPU's).

In machines designed from small scale integrated technology 

wnere integrated circuits could only hold a small number of 

basic components the ALU would occupy one printed circuit 

boa-d, and the registers another board etc. so a complete 

CPn would occupy many boards or cards. The logic was 

commonly separated into n bit wide sections thus one card 

would contain a small chunk of the total processing unit,and 
the cards were cascadaole.

With the introduction of MSI and LSI it became economically

feasible to include more of the control logic onto one

'cmp', and eventually the single 'chip' microprocessor was 
developed.
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The bit-siice microprocessor represents a further stage in 

the developement of microprocessor technology in that the 

processor is again sliced as before, but this time each 

'Chip' is a complete chunk, and can be cascaded to form a n 

bit wide processor. In addition to that the Hit-slice 

microprocessor has been specifically designed to be used in 
microprogrammed machines.

Tne organisation of a conventional computer is shown in 

figure B-l. Essentially, four major sections may be
identified:

the memory

the input/output facilities 
the A L U

the control unit

The control unit or central processing unit (CPU) provides 

for overall control of tb, various sections of the computer.
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FIGURE B-] CONVENTIONAL COMPUTERS
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The o r g a n i s a t i o n  of a m i c r o p r o g r a m m e d  computer str ucture  is 

s h o w n  in figure B-2. The essential d f f e r e n c e  between the 

a b o v e  two s t r u c t u r e s  lies in the mode of o p e r a t i o n  of the 

CPU. In the m i c r o p r o g r a m m e d  c o m p u t e r , the control store 

c o n t a i n s  sets of p r i m i t i v e  o p er ation c o d e s , which are termed 

m i c r o i n s t r u c t i o n s .  Each com po nent pa r t  of a

m i c r o i n s t r u c t i o n  s p e cifies an el eme n t a r y  logical or 

a r i t h m e t i c  process to be ef fected  in the computer. A 

m a c h i n e  co de instruction is e x e cuted by a series of 

m i c r o i n s t r u c t i o n s  contain ed  in the control store.
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Output
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FIGURE B-2 TY PI C A L  M I C R O P R O G R A M M E D  C O M P U T E R
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M i c r o p r o g r a m m i n g  allows the d e s i g n e r  f l e x i b i l i t y  in the 

d e s i g n  of his instruct io n s e t . A m a c r o  instr uction or 

m a c h i n e  code instruction  is p e r f o r m e d  by e x e c u t i n g  several 

m i c r o  ins tructions  in sequence. The machine c^de 

in str uc tion is used a pointer to this sequence. T h e s e  m ic ro 

in struc ti ons are us ua ll y stored in a control m e m o r y  within 

the b i t- sl ice architecture.

The m i c r o - i n s t r u c t i o n  word is brok en  up into several f i e l d s , 

each o^ which de fine s a p a r t i c u l a r  function w i t h i n  the 

m a c h i n e . Thus the longer the word the more is a c h ieved in 

any one ins truction and the faster the c o m p u t a t i o n . The 

designer  nas to anal yse the t r a de- of f between the wi dth and 

the depth of tne instructions. A m i c r o - i n s t r u c t i o n  word is 

typi ca lly 32, 56, 64 or 128 bits wide.

The s t r uctu re  of the sy st em can be altered by the 

o r g a n i s a t i o n  of the m i c r o p r o g r a m  word fields, al lo wi ng the 

de s i g n  to cl osel y match the functio n it must perform.

A b i t -sl ic e m i c r o p r o c e s s o r  system requires a lot more 

compone nt s than the two p r e v i o u s l y  me n t i o n e d  m i c r o p r o c e s s o r  

designs, and will th erefore be more e x pensi ve  and consume 

more p o w e r , but. will be more p o w er fu l and faster.
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A control memory, usually a programmable read only memory 

(PROM), contains the microprogram words. The operation of 

the sv_.err, is as follows: A sequence of micro-instructions

th^s memory is executed to fetch an instruction from 

external main memory, which is then decoded and passed 

through a mapping PROM to generate the address of the first 

micro-instruction which is to be executed to perform the 

required macro-instruction. The sequencer controls the 

branch to the required address. The instructions are 

fetcheo from the control memory and then other operations 

such as , ALU functions,testing etc. are performed by the 

rest of the system. Then a branch is made back to the 

instruction fetch cycle, at which point there may oe 

^ranches to other sections of micro-code.

Tnc pipeline register essentially splits the system into two 

parts. it contains the micro-instruction currently being 

executed. This instruction is fed to the rest of the system 

Which performs the required operation while the next 

instruct.. is fetched and placed in the pipeline register. 

Thus the presence of this register allows the 

micro-instruction fetch cycle to occur in parallel with the 

data operation rather than serially, effectively doubling 
the clock frequency.



APPENDIX C 

THE MODELLING QF THE CIRCULAR BUS

C .1 Introduction

An investigation into the operation of the parallel ECL 

circular bus was undertaken by Messrs Bradford and Hunter as 

a tinal year undergraduate project and was supervised by the 
author.

A preliminary literature survey showed that very little 

information is available in the field of circular busses. 

i o c c o I i and Sanderson [ZOC] claim that they use a circular 

bus for their computer but however do not give enough 

detail. It is known, as well ,that the Cray super-computers 

J£e circular E^L busses but there is no information about 

this for general public consumption.

therefore in order to fully understand the operation of the 

bus it was decided to model the bus as well as conduct 
practical experiments.
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c -2 Model of the Bus

A computer program was used to simulate the operation of the 

=nd this mathematical model was compared against the 

measurements observed practically. (The program can be

Obtained from the Dept. of Elec. Eng. at the University 
of the Witwatersrand).

mt>del aSSUmeS that ^ e r e  are no dielectric or cooper 
losses and therefore the characteristic impedance of the bus 
2 becomes:

2 = (L/C)**1/2 

Where L = .56 micro-henry's/m 

and C = 82 pico-farads/m . 
therefore

2 = 8 2  Ohms/m

Eut taking into account the capacitive loading of the edge 

connectors of 2 pico-farads/connect ion Z = 72 Ohms/m.
The propogation delay of the bus

T (L.C) ** 1/2 = 7.85 nano-secor ds/m
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Similarly the characteristic impedance of the tracks and its 

propogation delay are:

where t = thickness of the track 

and w = width of the track

f L . C ) * * 1/2 =17.36 nano-seconds/ it 

er = relative dielectric constant

Each board in the system has a terminating r ̂ ̂  is tor to -2 

vo^wS and when all of the gates are disabled the voltage on 

the bus settles to -2 volts. If a transceiver is enabled to 

transmit a high level (-.85V) then there is a voltage swing 

or 1.15 V in 3.5 nano-seconds (propogation delay of the 

gate). It must be noted that receiving gates reoresent the 

same high impedance to the bus as do inactive aates. This 

disabled to high level transition as well as the inverse 

-ransition only are considered as the voltage swings are 

large compared to the other voltage swings (.375 V).

a.j6 ^.levenin Equivalent of a driving gate is shown in figure 

C.l and has a Vth= .7 V and a source impedance of 7 Ohms 

irrespective of the load current.

Z t Ohms
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As the model assumes no dielectric or copper losses, direct 

modelling of lumped capacitance is prevented, and the 

capacitance is rather modelled <|s being distributed. The

rise and fall times are modelled as beino linear.

I

h
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C •3 Resuli

Graph C.l shows a comparison of the predicted and observe,

results Oh various boards, on the bus , for a termination
resistance of 270 Ohms. It reveals a difference in the rise

and fall times of 2 - 3 nano-seconds which can be attributed 
to the assumption of a lossless line.



Board i
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GilAPH C 1 COMPARISON BETWEEN PREDICTED AND 
OBSERVED RESULTS
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Graphs C.2 and C.3 compare the rising and falling edges for 

different terminating resistorr and it appears that there is 

a critical resistance for a good termination.
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20V

GRAPH 0 2  COMPARISON OF RISING EDGES FOR
VARIOUS TERMINATION RESISTORS
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Graph C.4 shows the cross section voltage along the bus at 

various boards. The slope of the wavefront determines 

whether an overshoot will occur or not.
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GRAPH C-4 COMPARISON OF THE VOLTAGE CROSS-SECTION
ON THE BUS AT VARIOUS TIMES FOR VARIOUS
TERMINATION RESISTORS
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As the signal passes each board its magnitude is decreased 

end hence the slope of the voltage cross section becomes 

eepcr than the critical slope and no overshoot occurs. 

Decreasing the termination resistance decreases the 

transmission coefficient and no overshoot is obtained. This 

also increases the reflection coefficient and allows less of 

the incident pulse to arrive at the gate. If this 

resistance is chosen carefully enough then the reflection 

coefficient can be increased to allow large reflections but 

not nave too much of an overshoot, and allow enough of the 

pulse to arrive at the gate for correct detection.

C .4 Corel us icn

ECL gates can drive a 50 Ohm load terminated to -2 V. For < 

high level output (-.85 V, the current drawn is 23milli-a„p5 

(ma) but the manufacturers claim that MECL 10,000 series car 
source 50ma for surge conditions.

Once a stable steady state logic level is reached then there

is a constant flow of current and only DC conditions apply.

Thus for 10 boards there are 10 resistors connected in 
parallel therefore the effective R . R / 1 0 .  At t h e  h l g h

level (-.85 V) the current drawn is 1.15/R/10. This current 

must not exceed 50ma thus R > 230 Ohms and a 270 Ohm
termination resistance is recommended.
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Tnis termination is however for a fixed number of boards and 

11 tne number "aried then the current and logic levels would 
be changed. r .gure C .2 shows a resistor-capacitor network 

which overcomes this problem. R2 is chosen so that at 

staole conditions the equivalent load is 50 Ohms and Reap 

- 2d Ohms which allows the maximum 50ma surge current to 

ow. The capacitance slows down the rise and fall times 
but improved logic levels are introduced.
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FIGURE C-2 CAPACITOR REflSTOR NETWORK



PAGE 015

H Z >-[HI > -

<cap

L

■2V

FIGURE C-2 CAPACITOR RESISTOR NETWORK



a p p e n d i x  d 

CURRENTLY AVAILABLE MULTIPROCESSORS

-urrentlv available multi-microprocessors are reviewed

below, in order to appreciate how the author chose the 
present structure of Ramrod.

D.1 CYBA-M

Cyba-M was a vehicle for research into multi-microprocessor 

systems initially undertaken by Swansea University College, 

and now at UMIST in Manchester. Figure (D-l, shows its 

basic structure, consisting of 15 identical Processing 

Elements, each of which comprises a microprocessor, a switch 

and some local memory. The global memory is a 10 Mbyte/sec 

memory, accessed through a 16 port switch, which determines 

the highest priority request generated by the node switches 

The Image memory (which provides the 1/0/ facilities), is a 

distributed bus structure with a maximum data rate of 2.5 

mbytes/sec. It is accessed through another 1-6 Port switch 

which is functionally identical to the Global Memory Switch. 

The 16th port is for use by the command console, which 
exercises total system control.





C O M M A N D
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f i g u r e  D-l C YBA-M
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The disadvantages are:

The command console, similar to a Master Processor, is very

complex from both the hardware and software points of view.

The Global Memory is very fast and , being multiport, is

therefore very expensive. In addition , the priority

circuitry is complex. The switches are relatively simple

(2-1 multiplexers) but nevertheless add to the complexity of 
the whole system.

D • -- .The Siemens 4004/228/230

Th. design .= cased on the star configuration and comprises 

a oecicated central processor, a dedicated input/output 

processor , a hard wired maintenance processor and a memory 

system. All these wo,k asyochronously and exchange 

information via a co-ordinator (figure 0-2).
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The disadvantages are:

Each processing element is dedicated to a paticular function 

and therefore if it fails, chat function can no longer be 
carried out. There is no redundancy in the system to allow 

for such failures, and tne system allthough it has a 
maintenance processor , is not able to readily recover from 

faults.

D .3 The Siemens SMS 2 n l

The SMS 201 nas a multiple Instruction Multiple Data (MIMD) 

structure for high speed numerical computations. Each 

processor (PR) has a dedicated Arithmetic Processing Unit 

attached to it. In addition each processor has its own 

program and data memory as well as a communication memory 

(CM) which connects the module to other modules, and to a 

main processor (MPR) via an interconnection network (ICN). 

(figure D-3)

I
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The Disadvantages are: Too much reliance is placed on the

tfain processor. The communication memory is the channel for 

inter-processor communication and as such, is quite 

compj icated and therefore expensive. The interconnection 

network must be sufficiently intelligent to cater for 

priorities and to resolve conflicts.

D.4 The Carneoie-MelIon C.mmo

The multiprocessor is comprised of 16 DEC PDP-11 

minicomputers, each having its own private memory space and 

own input/output device. The PDP-11 Unibus is used for I/O 

as well as for inter-processor communication. There is a 

large shared memory which is accessed by the processor's 

address translator through a 16 by 16 crossbar switch 
(figure D-4).
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1 6  x  16  CR O S S B A R  I N T E R C O N N E C T  
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FIGURE D-4 Cmmp.
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16 x 16 C R O S S B A R  I N T E R C O N N E C T  
P R O C E S S O R  TO MEMOR'i ONLY
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T R A N S L A T O R

I/OCOMM

I N T E R P R O C E S S O R  I N T E RRUPT BUS

COMM COMMI/O

INTERPROCESSOR

CONTROLLER
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FIGURE D-4 Cmmp.
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The disadvantages are :

The crossbar switch is complex and expensive and the address 

translator has to be able to resolve memory conflicts. 

Although there is no main processor the system is not fault 

tolerant, as a task on a failed processor module cannot be 

re-allocated.

D .5 The Banyan Multi-microccmouter System (BMS)

The BMS is composed of 15 Z8001 processors interconnected

with 15 memory segments by a 4x4 crossbar switch. The 

interconnection is fully parallel. unidirectional and is 

packet switched. Overall control resides in a Vax 11/780 

which accesses the rest of the system, via a Unibus adapter, 

using I/O transactions.

The BMS has the disadvantage of a complex crossbar switch. 

In addition there are local interfaces (I/Fn) to provide 

communication between the crossbar switch (SN) to the 

processors (Pn) or the memories (SMn) (see figure D-5).
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FIGURE D-, THE BANYAN MULTI-MICRCOMPUTER SYSTEM [McDJ
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D.6 INTEL iAPX 422 Multiprocessor System

The iAPX 432 is a 32 bit microprocessor which has an ADA 

compiler. It comprises of two chips forming a General Data 

Processor (GDP). It has been designed for multiuser 

applications and offers the user transparent

multiprocessing, i.e. the number of GDP's can be increased 

or decreased without the software having to be rewritten.

The designer is free to choose his own bus structure and the 

432 uses a standard interconnection protocol. Input/Output 

is achieved through the Interface Processor (IP) which 

programs a group of programmable associative memories 

(window registers) to map the I/O subsystem's address space.

The 432 uses virtual addressing such that only 7% of 

microprogram space is used. The 432 can operate in two 

modes: In the master mode a component operates normally

whilst in the checker mode the output pins reverse 

themselves and operate as special input pins. These pins 

sample data and compare this data to the data that would 

have been sent if the chip was operating in the master mode. 

Thus a highly fault-sensitive system can be built.
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Instructions can vary in length from zero to three operands, 

and can thus support scalar, vector and record data types, 

such as found in ADA. There are no registers and memory and 

a hardware supported special stack are used for operands.

The arc tire is object-orientated, and the object 

provide an identical framework from simple bytes till

messages that are sent to another processor. Objects are

stored in segments of the address space, and they are 

always addressed via an object descriptor which contains 

information pertaining to the type and location. An access 

descriptor indicates the location of the object descriptor 

which is the only way to address an object. Thus the 432 

has a two level operation for memory requests.

The 4 32 has a hardware operating system and can handle 

complex software applications and has many software

protection mechanisms and has an extensive hardware fault 

detection mechanism. Thus it is very powerful and offers 

the computer architect an ideal basis for developing a

real-time multiprocessing system (figure D-6).
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APPENDIX L 

INPUT'JPDPUT INTERFACING

The requirements of the input/output modules of Ramrod are 

listed , ana a brief introduction to Ethernet is discussed, 

with the view to using Ethernet as a communication medium on 

the I/O side of Ramrod.

E .1 Requirements

The input/output section of the multiprocessor system is 

required to handle communications between peripherals and 

processors on the one hand and between processor and 

processor on the other hand. Therefore the I/O bus must 

have a high degree of intelligence.

The I/O bus must have the same facilities as the TDM common 

memory bus discussed earlier, that is if a processor fails 

then another processor must be able to 'hook' onto the now 

vacant peripheral. Processors must be transparent to other 

and to the peripherals, and must be able to communicate with 

any device that is connected to the bus.
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Another important feature required from the intelligent I/O 

is that there be no master controller of the bus, is 

that if the controller fails another device can become the

controller. This increases reliability and provides for 
r edundancy.

In order to implement inter-task communication or, the 1/0 

bus the message's destination will probably be another 

t a s f s  identity , and the bus will have to be clover enough 

to determine which processor is executing this task.

The interface to the bus needs to be modular and relatively 

sample so that it can fit onto one printed circuit board 

Similar to the TTL/ECL interface boards, and it should be 

bidirectional. If an interface board is removed the system 

should not be affected, and at least 50 processors and 50 

peripherals must be able to be connected to the system.

addition the software overhead for protocols which 

control the information transfer between transmitting and 
receiving devices must not be too high.
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E. 2 _Cf:hy-1 net 

E . 2 . 1 i.N T K O D l_I C T 10 N

A project involving the design of an Ethernet Controller was

undertaken by s.A. E l U s o v  as an MSc project in the Dept.

ot Klee. Eng. „t the Univ. of the Hitwatersrand, with the

idea of incorporating Ethernet on the Input/Output side of 
Ramrod.

Ethernet is a local area network which e v o . ’ed out of the

Aloha network it the University of Hawaii. Studies of the

Aloha network revealed a number of problems and refinements

were undertaken at the Xerox Paulo Alto Research Centre in 
the mid 1970's.

• •

E .  2 .  2  .  I  ' .  '■ t , / o r  k  Con f  i g u  r  a  t  i o n  -

Iho maximum network configuration is as follows:

1. A coaxial cable, terminated in its characteristic

impedance at each end, constitutes a cable segment.

A segment may contain a maximum of 500 meters of 
coaxial cable.
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A maximum of 100 station transceiver connections 
may be made per segment.

3. Segments can be joined together u s i n g  repeaters,

provided that the longest path between any two
transceivers is less than 1500 meters, and that

there are no more than 2 repeaters in the path 
between any two stations.

4- Repeaters do not have to be located at the ends of 

segments, nor is the user limited to one repeater 

per segment, in fact, repeaters can be used not 

only to extend the length of the channel, but to 

extend the topology from one to three-dimensional.

nation on the Ethernet Network __ ___
-------------   u  V  UiJ 1

coaxial medium via an ethernet controller. The controlle, 
is loined to A transceiver, which is fixed on to the coaxial 

oable by a transceiver cable, consisting o f  six shielded 
twisted pairs not more than 50 meters in length.



PAGE E-5

e -2.3 Message exchanging in Ethernet 

£•2.3.1 The Transmitting Station -

Before broadcasting, the transmitting station must ensure 

that no other station is busy using the medium. This is 

acheived by "carrier sensing" whereby the transmitter of a 

station is prevented from becoming active until all 

transitions on the coaxial cable have ceased.

As t h e r e  is nothing to prevent two or more stations from 

scheduling a transmission for the same message slot, 

cc iis ions will occur. Due to the ability of a station to 

C a r r i e r  sense", collisions will only occur at the start of 

a messages. The time interval during which collisions can 

occur is called the "collision window", which is long enough 

to a.low for signals to propagate throughout the medium.

When a collision does occur, the transmitting station must 

stop transmitting its message and start transmitting a 

jam . A "jam" is a burst of noise that ensures that all

nodes will detect that a collision has taken place. After

sending the jam, the station controller will enter a binary 

exponential backoff alg< ithm to randomise the re-scheduling 

of the transmission. In order to take into account 

increased traffic during busy periods, the backoff algorithm 

increases its mean value exponentially with the number of
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collisions of the message.

-.2.3.2 The Receiving Stations -

The receiver must continually monitor the line to detect any 

broadcasts. Message packets are broaocast randomly over the 

medium. In order for the receiver to extract the data from 

the information stream, a synchronization burst must precede 
the transmission.

Ail messages must be examined to determine their destination 

address. Each station on the Ethernet can be addressed in 
the following ways:

Physical Address : A unique address associated

with -he station, and distinct from the address of 

any other station on any Ethernet.

2. Multicast Address : An address that can be setup

under software control that will be accepted. This 

means that more than one station can use the same 
address.

3. Broadcast Address : This address is accepted by

all stations on any Ethernet system. It can be

used by a station when it is connected on to the

network to indicate that it has become an active 

station.



Once a message has been accepted by the receiver, it must 

first perform an error check to determine if there were any 

transmission errors, before handing the message packet to 
the host processor.

E .2.4 Comoar ison of Ethernet

In ioken Bus [RAVj nodes are connected to a common bus in a 

virtual ring. In order to transmit a node must be in

possession of the 1 token1 , and therefore the method of

access is highly organised and there is an absence of 

collisions. However there is a possibility that a faulty

node could create a duplicate token or that the token could

get uoSw. inis means that extra logic is needed to prevent 

these posibilities.

Ring network [RAV]on the other hand interconnects nodes in a 

loop with messages travelling around the loop in one 

direction. Access is deterministic and priorities can be 

assigned theieby preventing collisions. However as each 

node acts as a repeater , the reliability of the network 

depends on the reliability of a single node. The removal of 

a node from ^he network can result in messages circulating 
indefinitely.
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Etnernet has a major disadvantage in that as the loading

becomes heavy collisions increase snl the channel
utilisation decreases.

E.2.5 Summa r v

Etnernet ,a bit serial communication medium, can operate 

upto 1C Megabits per second . A typical packet has a 64 bit 

preamble, 48 bit destination and source address, 16 bit dat," 

type word, 368 to 12000 bits of data, 32 bit Cyclic 

Redundancy Check and a 96 bit packet gap.[CRA] Thus an 

information packet can range from 672 to 12304 bits.

Etnernet , which consists of coaxial bus segments, can be 

expanded passively by adding transeivers and coaxial cable. 

If needed signal strength can be buffered by connecting a 
simple packet repeater.

E-2.6 Protocols

Transfering information packets from one device to another 

requires methods for error correction, flow control, process 

naming, security and accounting. These methods are usually 

termed protocol. Ethernet has a simple error controlling 

packet protocol, called Ethernet File Transfer Protocol 

(ETFP), which is implemented in the interface to Ethernet.
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E .3 Concljs ion

Ethernet fulfills all the above cr iterea and is therefore 

the most suitable bus communication medium. However as the 

hardware is not so readily available the actual design of 

the Ethernet bus is being designed in a related project and 

until then the I/O bus will have dedicated processors for 

each peripheral.

It should be noted that until recently Ethernet

implementations were not commercially available. Intel has 

announced their NDS-11 network development system [HUG].



A P P E N D I X  r 
Ili.2 I:XOSr,rpi- D E V E L O P M - - S Y S ?  :M

An i n t c o d u c t i o n  to the Motoi ol-t dzo rciser  D e v e l o p m e n t  sy ste m 

and tne F A b r  packag e, w h i c h  a l l o w s  a user to em ulate and 

design his b). t-sl i ce hardwar ?, is d e s c r i b e d  below.

i.he r.\i).;lice oit slice d e v e l o p m e n t  system ha s been d e s i g n e d  

1 ° 00 1 un on t^ e M 6830 EX O l c i s e r  m i c r o p r o c e s s o r  d e v e l op ment 

system. ft al lows the us er's slice sys te m to be slaved to 

tne L A O R c i s e r  via P e riphera l I n te rface Adapte r(?IA)  cards.

The F l e x i b l e  Aid for 3 1 i c e d - p r o c e s s o r  Test(FAST) mo nit or  

al l o w s  the d e s i g n e r  to dovelope and debug programs for use 
in his hardw a r e .

FYox us ed in c o n j u n c t i o n  with the M o t o r o l a  D i s k e t t e  

O p e r a t i n g  S y s t e m( MDGS) can be o p e r a t e d  in a floppy disk 

environment.

F . 1 ' i ' h :  GxOCCis M

Ine M63'e,.l LXORci.n.-r is a s y s t e m  dc vel orem n t tool used in 

the d e s i g n  and d e v e l o p m e n t  of M6 U80 d i c r , p , o c ^ s s o r  systems. 

B a s i c a l l y  tne E X OR ciser a s s i s t s  the s y s t e m  d e s igner by 

a l l o w i n g  d e b u g g i n g  of s o f t w a r e  and h a r d w a r e  emulat ion .
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Once the EXORciser has been loaded the user can look at the 

contents of memory and perform the Motorola Active 

Interface(MAID) functions as listed below.

MAID enables the user to;

i)Examine and change, if necessary, contents of a memory 

location or an MPU register. 

i i)Execute a program

iii)single step the program or run until a previously 

inserted breakpoint is encountered.

iv)Perform decimal-octal-hexadecimal conversions as well 

as calculate offsets for the relative addressing mode.

F.2 MDOS

The M6800 Diskette Operating System(MDOS) enables the user 

to develope his software easily on the EXORciser. It is an 

interactive operating system that interprets commands from 

the operator's console.

The user can store or retrieve data, in the form of files, 

on a diskette,process this data or activate other user 

commands from the diskette. There are various system

commands that allow the user for example to initiate and 

format diskettes and check them for errors. Command 

chaining can be achieved by storing commands in a special 

command file and then invoking this file. MAID is entered
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once an object file has been loaded into the memory space so 

that the program can be executed.

Files can be edited either by using the Co-Resident Editor 

or the updated version EDIT1. The EDIT1 editor 

automatically assigns line numbers to each file line, but 

otherwise is faster and more efficient than the former 

editor.

F.3 MASM

The Macro Assembler (MASM) has been designed for

microprogrammed bit slice processor developement.

The user must first of all define his microword size and 

then the mnenomics and the format of the microword ip the 

DEFINITION PHASE, which reads a definition source file and 

creates an assembly source file. The definition allows for

implicit or explicit field lengths. Overlapping fields can

be achieved by using 1 dont care' fields.

Once a program has been written using the assembly language 

defined in the previous phase it can assembled during the 

ASSEMBLY PHASE.
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When the program has been successfully assembled then the 

resulting object file can be merged with another system file 

to allow it to be loaded during the execution of FAST.

A disadvantage of the macro assembler is that the user must 

actually list the whole microword even though he may not 

wish to use all the fields.The number of fields are limited 

and therefore a long microword with too many fields will 

have to have some oC its fields joined together.

F.4 EXOSLICE

Exoslice has been designed to extend the EXORCISER'S 

emulating capability.Once the program has successfully been 

assembled the user's bit- slice hardware can be directly 

coupled to the main system. This is achieved by using the

Flexible Aid for Slice Testing (FAST) program.

The EXOslice subsystem is capable of being connected to the 

ECL 10800 bit-slice family or the 2900 bit-slice family.

The subsystem is made up of the following components: (a)

Input/Output modules which feature 32 ECL output lines, 16 

ECL input lines and 4 ECL output control lines. These can

be expanded to 5 modules thus allowing a 160 bit word

length. The I/O module has 3 Peripheral Inteface Adaptors 

(PIA) thus allowing the EXORCISER to read and write words
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greater than the 6800's 8 bit word. A decoding Programmable 

Read Only Memory (PROM, allows the FAST software to

consecutively address all output lines followed by all input 
lines.

(b) In order to interface to a TTL 2900 series bit slice 

system an ECL to TTL module is provided for each I/O module.

ge..e. a „es control signals from the EXORCISER in order

allow the user's bit slice system to be slaved to the

EXORCISER. The user's microprogram storage is then

effectively replaced by the main system's Read/Write

storage. The EXOR Clk signal enables the user's system e 
single stepped.

f a s t can als. he used without previously using the macro

assembler. Definition can be achieved during the running of 
the FAST program and instruct!.-ons can be loaded, examined,
changed, inserted or deleted as in any other available 
emulator.

time a new microword
ram FAST emits a clock pulse each
is put out, and the special reset
pul ses.
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Figure F-l shows the functional steps during a micro

instruction execution. The line table is a Duffer which 

temporarily stores all data going to or coming from the 
hardware interface.
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Similarly to MAID FAST enables the user to insert, display 

or remove breakpoints for subsequent program running. The 

program can be executed step by step or free run. User's 

data can be manipulated as files from the diskette nd thus 

previously saved or assembled programs can be loaded 
directly while operating in FAST.

Once a word has been successfully defined a hardware 
configuration list can be obtained

FAST unfortunately has a maximum of 11 fields and the

designer must keep this in mind when designing his 
microword.

In the DEBG or MPGM modes the format of the micro word is

h»xadecimal by word and vica versa. A far better

■system woulc be to divide the word into fields defined by

the user and allow him to use the hexadecimal format for

each field. This would decrease debugging time 
considerably.
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Till; CIRCUITRY

• ! i c o p' " ___ '. AT ■

A timer is gated into tiie RST pin oE the 3085 processor so 

that the processor is reset after a power up sequence. 

This cai also foe don v, iually by a RESET button or by the 

Master Controller.

A m-,.-testable and D type 1 itch form the basis of the 'watch 

doj' a"! arm. When a trigg r, in this case a read common 

memory, is not received by the alarm, the processor is held 

by the READY signal and the MC is notified and an LED is 
lit.

IiiG la ten con i r o 1 signals are tri joe cd by a master 

processor pulse which enables the processor to latch its 

address and then its dat into ciie latches ( write cycle). A 

read is accomplished by 1 tening the address and holding the 

processor until the next cycle wh -n the d .tn returns.(figure
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G .2 The ECL latch Module

This module consists of Bidirectional Translating latches

which are controlled by ECL signal translated by a TTL to 

ECL tranlator. There are termination resistors on every

point of access to the ECL bus so uhat the bus is terminated

at every output (figure G-2).
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G .3 The Memory module

A read/write signal is generated from the R/W signal 

received the ECL bus by the monostables and a JK flip flop. 

This is done in order to generate the correct width pulses 

for controlling the latches on the memory side.(figure G-3)
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G.4 The Control Board

A modulo 5 counter, driven by an external clock , accesses 

two identical sets of fast memory. The MC can write to 

these memories the data desired and then the counter reads 

successive locations. The output of the memories are the 

master memory pulses and the master processor pulses. It 

should be noted that any combination of dulses can be 

obtained. (figure G-4)
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G .5 The Central Processor Array

Four 4 bit slices are joined to form a 16 bit ALU. The

status and fast look ahead units are included to speed up 

computations. A multipl ex er enables either data from the 

local memor y or from the pi pelin e r e g i s t e r s . (figure 

G-5 (a))

One way latches enable the ALU to commu ni cate with local 

m e m o r y , common me m o r y  and other I/O.

Real time execut ion is enabled via a mul ti plexe r or 

a l t e r n a t i v e l y  the EXOR CI SER provides all the neccessar y 

control signals. (figure G - 5 (b ) )
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G .6 The Computer Control Unit

Three 4 bit sequencers give 2**12-4K by 64 locations in the 

control store for the microinstructions. The next address 

unit enables the sequencers to function more efficiently,by 

adding extra codes. A vector input to the sequencer can be 

obtained from the interrupt unit circuitry, or directly from 

the pipeline.

The interrupt unit can recognise an interrupt from each of 

the processor modules. The interrupts however have to be 

c o r r e c t l y  pulsed by a set of monostables.

The next address unit also controls a 12 bit counter which 

Prod. :es a signal once a preset condition has occurred. 

This signal as well as status flags are routed through a 

multiplexer to be tested, with polarity, by the next address 

unit. The interface to the processor common memory is 

derived in a similar fashion to that of the processor 

modules.(figure G-6(at)

The pipeline registers are one way latches whicn collect 

their data from very fas RAM (control store). This control 

tore is replaced by the EXORCISER during operation of FAST, 

t the RAM can be loaded from the EXORCISER for real time 

processing . The control signals for the rest of the system 

are derived from the pipeline registers.(figure G-6(bl)

s

DU
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A P P E N D I X  H

r r r i T T T ^  m s T S  o f  r a m r o d

The cost of marketing a product can be basically 

into two a r e a s :

1. Development cost

2. P r o d u c t i o n  cost

H __ i Development Costs_

The development c o s t s  o f  the complete Ramrod system must 

take into account the following:

1. Microcoding 9R100/4 lines - R3000

2. Other software - R3000

3. Research and develo p m e n t  @R250/day for 3 man years 

- R320,000

4. Equipment such as Logic Analysers, Oscilloscopes, 

M u l t i m e t e r s  etc - R30,000

5. Emu iation on a development system costing R53,0O0
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Clearly the last three items are the most c0--11 
dominate the development cost ot a commercial produc 

They .perhaps , overlap on the other costs . 

development dost is in the region of

H . 2 P r o d u c t i o n .

P r o d u c t i o n  costs include purchasing components f o r  the

c

ca

omplete system and the production of a single Kamrod system 

n be calculated from the following:

1. Printed circuit board layout for 4 boards - *1°°°

2. Printed circuit board manufacture - R508

3. Mechanical work and structure - M O M

4. Techn ical work (soldering etc) - R2B00

5. Integrated C i r c u i t s  - R130B

6. P r i n t e d  Circuit Boards - R1200

7. Miscellaneous components (Fan etc ) - R5fi0
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Thus it costs approximately R9000 to produce a single Ramrod

tern which consists of 5 slave processors, 

processor, , memory modules and 10 latch modules.
sys

H . 3 M a r k e t i n g  Cost

The selling cost of a marketable product is a function 
the amortised development costs, production costs, normal 

application software, sales and support necessary to

ma intain the product
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a p p e n d i x  I

HIGH LEVEL DESCRIPTION OF SOFTWARE

This section p r o v i d e s  a High Level D e s c r i p t i o n  of the main 

routines used in the master controller and the local 

operating system. The description is b a s e d  on a simplified

form of Pascal.

I .1 MAIN ROUTINE
Read number of tasks to be loaded;
WHILE memsegment still free ; search memory table

Read in Tasks
IF freeProcessor found THEN ; search processor table 

BEGIN
Dispatch task to processor 

Schedule processor to run 

END

UNTIL no tasks left.

1.1.1 INTERRUPT ROUTINE 

Disable Interrupts 

Read interrupt ID.

Call IntService (ID.)

Return to main routine.



IntService (IE.)

E n a b l e  I n t e r r u p t s  

S e r v i c e  i n t e r r u p t  

R e t u r n
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D i s p a t c h  T a s k  t o  P r o c e s s o r  

A s s i g n  F r e e M e m  t c  F r e e P r o c ; 

S c h e d u l e  P r o c e s s o r  t o  R u n

A s s i g n  T i m e s l o t  t o  P r o c ;

P r o g r a m  c o n t r o l  b o a r d  m e m o r y

P r o g r a m  c o n t r o l  b o a r d  m e m o r y



PAGE 1-4

I.2 Local Operating System 

START: If Identity Equals slave
then Execute user task

ELSE BEGIN
set up Usart;

IF identity equals load;

THEN load tasks from disc;

ELSE BEGIN
Ask user for command 

CASE of Command

1: display memory 

2: Execute program 

3: Test Common memory 

4: Inform status of Ramrod 

5: insert data into memory 

6: Move data 

7: Substitute data 

8: Display registers 

END 

END

END

END



Ask User for Command

Reai Command from Console 

Call Command Routine

Display Memory 

REPEAT
Read start address, end address 

Display address, data 

UNTIL end of address

Execute Program 

Read start address
Put start address in Program Counter 

Execute

Test Common Memory 

REPEAT
Write random data into memory 

Read data and compare 

UNTIL end of memory

Inform User Status of System 

DO 209 times 

BEGIN
yead number of processors

Display data

Read number of memories
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D i s p l a y  d a t a

R e a d  n u m b e r  of T a s k s

D i s p l a y  d a t a

E N D

I n s e r c  D a t a  

R E P E A T

R e a d  a d d r e s s , d a t a  

W r i t e  d a t a  i n t o  a d d r e s s  

U N T I L  E n d  O f  C o m m a n d  ( E O C )  C h a r a c t e r

M o v e  D a t a  

R E P E A T

R e a d  d e s t i n a t i o n  a d d r e s s  

R e a d  e n d  a d d r e s =

R e a o  s o u r c e  a d d r e s s

M o v e  d a t a  f r o m  s o u r c e  t o  d e s t i n a t i o n  

U N T I L  e n d  a d d r e s s  

S u b s t i t u t e  M e m o r y  

R E P E A T

R e a d  a d d r e s s  

R e a d  d a t a

w r i t e  d a t a  i n t o  a d d r e s s  

U N T I L  E O C



ijsolav Registers 

REPEAT
Write contents of register into memory 

Display "Reg" , d a t a  

UNTIL no more r e g i s t e r s .
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a p p e n d i x J

RELIABILITY [SMI]

The reliability ot a system is primarily influenced by its 

complexity. The fewer the parts and the fewer the types of 

materials and components involved then the greater is the 

probability of an inherently reliable product. In addition 

Che use of redundant parts , whose individual failure does 

not cause the overall product to fail, is a common method to 

achieve a higher reliability.

It is good engineering practice to satisfy reliability

requirements, but the engineer must bear in mind that the 

mathematical aspects of the subject, although important, 

serve only to refine requirements and do not themselves

create a reliable product.

It is clear that the cost of making a system more reliable 

must be offset , in part , by a saving in maintenance to 

justify it. Maintainability and reliability , together, 

dictate the availability of the equipment, and are 

interdependent for the following reasons:

1. If the system's reliability is partly dependant on 

redundancy , it will be more reliable if the repair

time (maintainability , of an SRU is improved.

Thus maintainability can contribute directly to the

reliability.
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2. The design and assurance activities to achieve both 

of these parameters are , generally, the same.

3. The overall availability of the system, i.e. the 

'up time' is also dependant on both these 

parameters.

Availability is defined as the ratio of the up time to tip? 

total time. Up time is defined as the Mean Time Between 

Failure(MTBF) whereas total time is the sum of up time and 

'down time'. Smith [SMI] makes a distinction between down 

time and the Mean Time To Repair (MTTR) but for the purpose 

of this thesis they are considered the same.

Thus Av = MTBF
MTBF+MTTR

Availability is achieved by a combination of maintainability 

and reliability and there is a trade off between these two 

parameters as explained in the following example:

A system which has a MTBF of 100 hours and a MTTR of 101 

hours has an Av= 100/101, has the same Av as a system with 

MTBF=200 hours and MTTR = 20 2 hours. Clearly the

reliability of the former case is greater than that of the 

latter while the converse is true of the maintainability.
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Reliability as mentioned above is influenced by the 

complexity of a system, and thus a uniprocessor system will 

probably be more reliable than a multiorocessor system. 

However if the factors of redundancy and repair are 

fntroduced the the multiprocessor becomes much more

reliable.

MTTRThe repair time is defined as the inverse of
Therefore if a redundant system is periodically repaired, 

whether or not faults are present, each time it is repaired 

the reliability calculations begin anew.

There follows calculations of the reliability and the MTEF 

of various systems including Ramrod .

Figure J.l shows the reliability of a system consisting of 

several parts where the failure of any block causes a system 

failure ( eg. a two board computer).

Thus R = Ra -Rb

Figure J .2 shows the situation where all blocks must fail in

order to cause a total system failure ( eg. a redundant

processor system).
A

Thus R = Ra+Rh-RA'Rb
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rigate J.3 illustrates a situatior. which is composite of J.l 

and J . 2 .

Thus R = Ra -(Ra+Rb-Ra-Rb)

The reliability diagram .of Ramrod is illustrated 

j.4. It will be analytically proven , and it can be seen 

from the diagram as well, that failure of either the matter 

or the ECL bus causes a system failure. H o w e v e r  i. 

noted that the system will gracefully degrade to

uniprocessor computer if the master fails ,s mentioned in 

chapter 6, and unfortunately there is no way to show this in 

the mathematical model. Therefore the r lability of Ramroo
is much worse than : actual reliability.



PAGE J-5

B

FIGURE J-3 COMPOSITE RELIABILITY

e c l BUSMASTER ■

PROC1

PROC2 ]—

i— | MEMl 

«—! MEk2 --1

T P ROC3 -4 — ; MEM3_

PROC4 MEM 4

—  PROC5 T|— 1 MEM5

FIGURE J-4 RAMROD'S RELIABILITY



FIGURE J-l SERIAL RELIABILITY

FIGURE J-2 PARALLEL RELIABILITY
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A uniprocessor system with L=2EO0(; FITS and z soards 

<=>o

now MTEF = } P ( t ) d t  
0

h h e r e R = e- ^ ~ = 1/2L - I. b years

for a ou intiple redundant system 

Rp^ = R^-SK'i + i e R ^ - l K R ^  + SR

thus XTBF =1 - 5 + 1£ - 10 +5 = 2 0  years
10L 8L 6L 4L L

Now if Repair is introduced then 

MTEF = u4

where u = 1/24 and thus u >> L 

therefore

MIBF = 1C18 years.
However 'amroc has a Reliability of;

R - = a . R • i o 5 ̂
therefore MTBF = 1.3 years
Or if Ramrod is considered as 4 identical units , and

an any failure causes a system failure then

MTBF = 1/4 L = 1.4 years which is almost 1.3 vears.
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Thus it i?3 obvious th.at th" master a n d  the CC!j bus 

bottlenecks and must be dupl lea t-'-u. dow it 

duplicated then lor a doubl< rr v i u n d a n  t syst^.n

rtp2 = 2R ~ R‘"

then the reliability ol Ramrod is

Rp22 * Rp5‘' 
therefore

: n -  1
H l 26L 24L 22L 2UL iBL loL Vi. 12L1CL dL 

= 6 .7 years.

however if repair time is now introduced , then Ramrod can 

be analysed as a quadruple redundant system which requires 

three units to operate, because i1 one unit tails then there 

is still the other identical unit which can now t, <<e over

opc ration.
Thus MTBF (Ramrod) = 7 L + u =50 x 1 ° years

12L2

are the 

these are



REFERENCES



PAGE R-2

[. SPR 82] AGERWALA, T. and ARVI.NIi, “Data I lo- -Y '

IEEE Computer Vol. 11 NO. 2. Februac ■

[ALE 81] ALEXANDER, P, "Array Processor Design Concepts”; 

Computer Design December 18 81.

[ A N A  80] A N A C K E P . ,  W, " J o s e p h s o n  C o m p u t e r  T e c h n o l o g y :  An IBM

R e s e a r c h  P r o j e c t " ;  I L M  J .  R e s .  D e v e l o p .  v o l  24 .

N o .  2  M a r c h  1 9 b 0 .

[ A C R ]  A C K E R M A N ,  W . G ,  " D a t a  P l o w  L a n g u a g e s "  C o m p u t e r

V o l .  1 5  N o . 2  F e b r u a r y  1 9 8 2 .

[ A G R  7 6 ]  A G RAWA LA , A . K ,  R A U S C H E R ,  T . G . ,  " F o u n d a t i o n s  o f  

Microprogramming A r c h i t e c t u r e ,  S o f t w a r e

A p p l i c a t i o n s " ; A c a d e m i c  P r e s s ,  I n c  1 9 / 6

[ A M n  1 ]  A D V A N C E D  M I C R O  D E V I C E S  T h e  A M 2 9 0 0  F a m i x y  D a t a  Book. 

1 9 7 9

[ A M D  2 ]  A D V A N C E D  M I C R O  D E V I C E S  Build a  Microcomputer Series. 

1 9 7 9

[ A L D ]  A L - D A B A S S ,  D ,  " M i c r o p r o c e s s o r  b a s e d  P a r a l l e l  C o m p u t e r s  

a n d  t h e i r  A p p l i c a t i o n  t o  t h e  s o l u t i o n  o f  C o n t r o l

A l g o r i t h m s " ;  C o n t r o l  S y s t e m s  C e n t r e  R e p o r t ,

U n i v e r s i t y  o f  M a n c h e s t e r ,  J a n  1 9 7 7 .

(/



PAGE R-3

[ARD] ARDEN , B.W., GI NOG Ml, ,

Multiorocossoc/Comput -r ArchiKctuce"; I.E.E.R.

Transactions o n  C o m p u t e r s ,  V o l .  C - 3 1 ,  h l u - " “ a y  

19B2.

[ E R I  7 8 ]  B R I N C H  H A N S E N ,  P  . , " ! ) i s t r  i b u t o d  1 r 0 '

c o n c u r r e n t  p r o g r a m m i n g  c o n c e p t " ;  Comm A.C.M. V o l  

2 1 ,  M o . 1 1  N o v .  1 9 7 8  p p  9 3 4 - 9 4 1

[ U L A ]  B L A K E ,  R . E . ,  " A d v a n t a g e s  t o  b e  g a i n e d  trom P r o c e s s  

C o n t r o l  b y  C o m p u t e r " ;  E l e c t r o n i c s  a n d  P o w e r  , M a r c h

1 9 7 7

[ B O H ]  B O W E N ,  D . A . ,  B U H R ,  R . J . A . ,  "  T h e  L o g i c a l  D e s i g n  of 

M u l t i p l e  Microprocessor S y s t e m s " ; P r e n t i c e  h a l l  I n c .

N e w  J e r s e y  1 9 8 0

[ B A R ]  B A R R O N ,  D . h . ,  " C o m p u t e r  O p e r a t i n g  S y s t e m s " , C h a p m a n  a n d  

H a l l  L o n d o n  1 9 7 1

[ B S O  1 ]  B O S T O N  S Y S T E M S  O F E I C E  B S O  C r o s s  L i b r a r i a n  (NLIR)

U s e r  M a n u a l  . 1 5  F e b .  1 9 8 1 .

[ B S O  2 ]  B O S T O N  S Y S T E M S  O F F I C E  B S O  C t o a B - R e f e t e n c c  Program

( M R H F )  U s e r  M a n u a l  .  1 8  M a y  1 9 8 1 .

( B S O  3 ]  B O S T O N  S Y S T E M S  O F F I C E  B S O  C r o s s  L i n k a g e  E d i t o r

( M L I N K )  U s e r  M a n u a l  . 2  J u l y  1 9 8 1 .

[ B S O  4 )  B O S T O N  S Y S T E M S  O F F I C E  B S O  R e l o c a t i n g  C r o s s  A s s e m b l e r  

f n  a n f t rM  User M a n u a l  . 7 J u l y  1 9 8 1 .



/

PAGE R-4

[330 5] BOSTON SYSTEMS OFFICE BSO Object File Conversion 

Utility (OBJCMV) User Manual . 7 July 1981.

[BSO 6 J BOSTON SYSTEMS OFFICE BSO Simulator/Debugger

(SI8035) User Manual . 7 July 1981.

[BIS] 31SCAERI, J .,GAGO, A., "Low-Cost Multiprocessing 

System"; Electronics Letters Vol 17 no. 2 4  26 Nov

1901.

[BLO] BLOOD, rt.R.Jr., " M e d  System Design Handbook"; 2nd eel. 

Motorola Inc,1972

[BRI 73] BRINCB—HANSEN, P., "Operating System Principles'; 

Prentice-Hall, 1973

[3AK] BAKER, K. "Specifying The System" Microprocessors and 

Microsystems, Sept 1961' Vol. 4  No. /
i

[BAR] BARTEC, T.C."Digital Computer Fundamentals";3rd ed. 

Tokyo: McGraw-Hill Kogakusha Ltd., 1972.

[BRK] BRINKMAN, E.L., " A Selection of Multi-Microcomputer

Systems"; Mini-Micro Systems, JAN 1979.

[PUH] BUHR, R.J.A., E T A L .  "Why Multiple Microprocessors";

Internaliona1 f posium on Mini and Micro computers 

Montreal Canada, 197/.



[BERT] BERNHARDT, D, . and SCHMITTKK, c.,.
Implementation of Fault-Tolerant Multi-Microcomputer

S ' / ;

Mo. 4 May 1981.

[BERD] BERNHARD, R,. "The 'no-downtine' computer";

I.E.E.E. Spectrum September .1977 r> - 83-37.

[CRA] CRANE, R.C., "Software pack and cor. - er link EEC 

computers in an Ethernet"; Electronics Dec. 15,1981

[DOY] DOYLE, E.A.Jr., "How Parts Fail"; I.E.E.E. Spectrum 

October 1981.

[DBS] DESIMONE, S.E., "Test Techniques for ECL loaded 

Boards" ; Computer Design,June 1952.

[DU] DJIKSTRA, E.W., "Co-operating Sequential Processes", 

reprinted in "Programming Languages", edited by 

. , NATO te, A

Press, London 1968,pp 43-112.

[DAV 78] DAVIDSON, J., ET AL., "A Generalized Multiprocessor 

System"; I.E.E.E 1)7 .

[DAV 82] DAVIS, A.L.,KELLER, i'.K , "Data tlow Program

Graphs"; I E E E  Computer Vol. 15 Mo. 2, Fenrumy



/

PAGE IV 5

(DAV 301 DAVIS, C.G., COUCH, R.L., "Ballistic Missile

'

November 19 80

[DEN] DENNIS, J.B., "Data Flow Supercomputers"; Computer 

November 1983 

'

for the New SNCF Computer Systems Network" . Paper 

read at the 8th ORE Colloquium , Madrid , 5 and 6 May

1981.

[ENS 80] ENGLOW, P.H. Jr. "What is a 'Distributed1 Data 

Processing System?" Computer Jan 1978 Vol. 1983 pp

#  75-96

[ENS 74] ENSLOW, P.H.Jr. Comtre Corporation,
Multiprocessors and Parallel Processing";New 

York ;John Wiley and Sons,1974

[EUR] EURGMICRO JOURNAL; Vol 5:

[PEL] FELDMAN, J.A., "High Lev 1 Programming for Distributed 

Computing"; Comm. A.C.M. Vo.!. 22 No. 6, June

1979, pp 353-368.

[FAR] FARBCR, G. , "Principles and Applications

Decentralized Process Control Computer Systems"; 

Distributed Process Computer Sytstems.



[GIL BEHR] GILGI, W.K., BEHR, P.M., "Making Di stt. i'out.d 

Multicomputer Systems Sale and Programmable ; 

Internal report at the Technical University 

Berlin, West Germany.

[GAJJ GAJSKI, D.D.,et al, "A Second Opinion On Data rlow 

Machines and Languages"; IEEE Computer Vol. 15 do. 

2, February 1932.

[HOA 78] HOARE, C.A.R., "Communicating

Processes"; Comm.A.C.M. Vol. 21, No. 8, Aug. 

1978, pp 666-677.

[HOP] HOPKINS, A.L., et al ,"FTMP A Highly Reliable 

Fault-Tolerant Multiprocessor for Aircraft ; 

Proceedings of the I.E.E.E. , vol. 66 No. Iw Oct 

1978.

[HOA 72] HOARE, C.A.R., "Towards a Theory of Parallel 

Programming"; Operating System Techniques, Academic 

Press, New York, 1972 pp 61-71

[HUD] HUGHES, P., DOONE, T .," Mu1ti-Processor Systems";

Microelectronics and Reliability, vol. 15 pp 

281-293, Pergamon Press, 1977.

[HUG] HUGHES , J  . , " Dove lopemen t Systems: Ethernet. ;

Computer Design , May 1 38 2.



PAGE R-i

M .,"Bit-slice[HIR] BIRD, D. J, ELI IQ"', 0.
their use and application ;M icropcocossor s- 

Electronics and Power, vol 25, No. 4, March 1979, pp

179-184

[ H O P  8 0 ]  H O P K I N S ,  R . L . , "Meeting the Challenge o f  A u t o m a t e d  

E C L  T p  vnq" C o m p u t e r  Design S e p t  1 9 8 0  p p  1 1 5 - 1 2  . .

[INT 1]INTEL COaFORATI01 
O c t .  1 9 7 9 .

N MCS 83/85 Family users manual ,

[INT 2] INTEL CORPORATION Coir.pon nt data catal' I , 1983.

[INT 3] INTEL CORPORATION Peripheral design handbook , Aug, 

1980 .

[INT 4] INTEL CORPORATION Memory Design Handbook , Jan, 

1981.

[INT 5] INTEL CORPORATION SDK 5 Kit User’s Manual, .

[JOB] JOHNSON, D. , "Logic Analyser and mo Developc,.ient 

System, Aid in Debugging Multiprocessing Networks"; 

Digital Design Nov 1980

[KAH] KAHNS, S., ET AL. , "Automated Control by Distributed 

Intelligence"; Scientific American 15/ ,*.

[KART] KARTASHEV, S.P. and KARTASHEV, S.I. "Supecsystems 

for the 80's"; I.E.E.E. Computer Nov 1983

I

I



PAGE R-9

[KARP] KARPLUS, W.J., AND COEKN, D., " A r c h i t e c t u r a l

Software Issues in the Design and Application of: 

Array Processors"; I.E.G.E. Computer Sept. ]9%l

[KER] KERGUELEN R. "Use of Micro-Computers in Distributing 

Processing on the SHCF" . Paper read at the 8th ORE 

Colloquium , Madrid , 5 and 6 May 1901.

[KOP 31] KOPETZ H. "Distributed Computer Control Systems" .

Course presented by The Continuing Engineering 

Education Division , University °L

Wi twatersr and , 4 to 6 uov. lyol.

T e c h n i c a l  U n i v e r s i t y  of Berlin Report MA 82/2, April 

1922.

[KOYJ KOYAMA, S., MIURA, R. , "A Multiprocessor System for 

Fast On-Line Simulation of Dynamical ^Systems", 

reprinted from Simulation of Systems, Delft 19/6, 

North-Holland Amsterdam: 1976

[ROY] KOYAMA, S., MIURA, R., "An all-Digital Dynamical

System Simulator using Parallel Processing",

reprinted from A link between Science and

Applications of Automatic Control, New York and 

nvfnrri? P'? r a n  moon Pro fr>, 19 / 1



PAGE R-13

[KOY 771 KOYAMA, S., ISURUGI,*., et al,". ^ U z a t i o n  o£ a 
D D R  System Eot C o n t i n u o u s  D y n a m i c a l  System simulation 

w i t h  a universal M u l t i m i c r o p r o c e s s o r  S y s t e m  ‘ H A R P S 1 

", Euromicro newsletter Vol . 3, -o. 1 ''' '

[LAM] LAMBRECaS, J.S.D., ROOD, M.C,.,
S o f t w a r e  f o r  u s e  i n  S a i l - S a f e  C o n t r o l " ;  P r e p r i n t s  o f

t h e  3 r d  I F A C / T B I P  S y m p o s i u m  o n  S o f t w a r e  t o r  C o m p u t e r  

C o n t r o l  , 5-8 Oct. 1982

[LISKl LISKOV, B., "Primitives for Distributed Computing" 

Froc. 7th Symposium on Operating Systems Principles, 

Pacific Grove California Doc. 1973 PP 33-42

[ L I S T ]  L I S T E R ,  A . M . ,  "  F u n d a m e n t a l s  o f  O p e r a t i n g  S y s t e m , ,  , 

The M a c m i l l a n  P r e s s  Ltd., 1 9 7 v

[ M c D j  M C D O N A L D ,  W . C . ,  W A Y N E  S M i T . i ,  R . ,  "■ ‘ 1 ‘ A l “ t “

for Real-Time Applications"; Computer ,Ocr. 1982 13p

2 5 - 3 9

: Distributed

Packet Switching for Local Computer networks";
1. 19, NO. 7

[H . "  " !
a p p l i c a b i l i t y  o f  I n t e r p r o c e s s  c o m m u n i c a t i o n  P r i m i t i v e  

P r o p o s a l s  t o  D i s t r i b u t e d  P r o c e s s  C o n t r o l " ;  P r e p r i n t s  

o f  t h e  3 r d  I F A C / I F I P  S y m p o s i u m  o n  S o f t w a r e  f o r  

r n m n n i - p r  C o n t r o l  , 5 - 8  O c t .  I ) o 2



PAGE R-13

[KOY 77] SOYAM-X, S., ISURUGI ,Y. , et al, "A Roaliz j cion oi.

DBA System Eoi: Continuous Dynamical System simulation 

with a Universal Multimicroprocessor System ’HARPS' 

", Euromicro Newsletter Vol. •, No. 4, 1.9 77.

[LAM] LAM8RECHS, J.S.D., ROOD, M.G., "Highly Reliable

Software for use in Fail-Safe Control"; Preprints of 

the 3rd I FAC/1FIP Symposium on Software for Computer 

Control , 5-8 Oct. 1982

[LISK] LI3K0V, B., "Primitives for Distributed Computing"

Proc. 7th Symposium on Operating Systems :jr incip tes ,

Pacific Grove California Dec. 1979 pp 33-42

[LIST] LISTER, A.M., " Fundamentals of Operating Systems ; 

The Macmillan Press ltd., 1970

[MCD] MCDONALD, W.C., WAYNE SMITH, R., "A flexible test-bed 

for Real-Time Applications"; Computer ,Oct. 1982 pp

25-39

[MET] METCALFE, R.M., BOGGS, D.R., "Ethernet : Distributed

Packet Switching for Local Computer Networks"; 

Communications of the ACM July IS 76, Vol. 19, No. 7

[MAC] MACLEOD, I.M ., ROOD, M.G., "An Evaluation or

applicability of Interprocess Communication Primitive 

Prono :t! to Distributed Process Control" ; Preprints 

of the 3rd IL’AC/IFIP Symposium on Software for 

Computer Control , 5-8 Oct. 198 2



[MAK] MAKING, K., KOYAMA, 3., et al., A '
Digital Simulator (UOSS) Using a Hierarchical 

Distributed Multi-processor Technology", reprinted 

from Simulation of Systems '7S, Sorrento 1979, 

North-Kol1 and Amsterdam: 1979

[HAD MAISEY, D., "Distributed Processing for Industry"; 

New Electronics September 9 190..

[MIC] MICRO MEWS, A Newsletter from L'Electron s.A. 

Microprocessor Division; Chnotuc o .

[MOT B] MOTOROLA INC."Hoc1 High Speed Integrated Circuits"; 

Series B .

[MOT 1] MOTOROLA I N C ."EXOslice User’s gu i d e ” ; Switzerland: 

1977

[MOT 2] M •
Switzerland: 197 5

[MOT 3| MOTOROLA I U C ."M68MDOS3 EXORdisk 11/111 Operating 

System User's Guide" ; 1st ed. , li'/o

...............
Telecommunications"; Electronics and

Instrumentation,vol 11 No.4, April 1:, 3 0 ,pu v Z 7j



PAGE R-12

[NAD] NADIR J . , McCORMIC B - "Bus Arbiter Streamlines

Multiprocessor Design" . Computer Design , June 

1 9 8 9  , p n . 1 0 3 - 1 9 9 .

[NOV] NOVAK M., "Gate Arrays - fabrication, design and 

economics"; MSc Research Report Dec. 1982, 

University of the Witwatersrand, Johannesburg

[PAT] PATEL, J.H. "Performance of Processor-Memory

Interconnections for Multiprocessors"; I.E.E.E. 

Transactions on Computers Vol. C - 3 0  No. 1 0  October 

1 9 0 0 .

[POL] POLCZYNSKI, M.H., "Multip1 mp Control System raises 

throughput without bus conflicts"; Electronic Design 

J a n .  7 ,  1 9 0 2 .

[PEB] PEBERDY, N . "Digital Electronics-Logic Families";

The Electrical Engineer.Sept 1 9 8 0  pp 1 3-20,Thompson 

South Africa

[RAV] RAVASIO, P.C., et al, "Local Computer Networks"; 

North-Holland, Amsterdam, 1 9 0 2 .

[RA3] RABIHOWITZ, A .E ., and ROOD, M.G., "Ramrod a Multi- 

Microprocessor Computer"; Proc. 2nd South African 

Computer Symposium, OCT. 1901, Pretoria.



/

PAGE R-13

r.OD 76] ROOD, M.G., "Organisation of [ndustL ia'

C o m p u t e r s "  PhD. Thesis, U n i v e r s i t y  oC C a p e  Town,

1976

[ROD 82] ROOD, M.C., " The Impact of Microelectronics on

Distributed Control Systems "? Inaugral Lecture for 

the Head of the. Dept. of Electrical Engineering , 

University of the Witwatersrand, Johannesburg 2'Jth
/

October 1982.

[RAT] RATTNER, J., LATTIN, W.W., "ADA d e t e r m i n e s  the 

A r c h i t e c t u r e  of 32 b i t  M i c r o p r o c e s s o r " ;  E l e c t r o n i c s ,  

Feb. 24 1901.

[SUG 80] 3UGARMAN, R., " 'Superpower1 Computers"; I.E.E.E. 

Spectrum April 1980.

[SMI] SMITH, ,D,J., " R e l i a b i l i t y  and M a i n t a i n a b i l i t y  m  

P e r s p e c t i v e " ;  M a c M i l l a n ,  1901.

[SAT] SATYANARAYANM, M., "Commercial Multiprocessing

Systems"; Computer May 1980 pp 7^-96

[STI] STIFFLER, J,J. , "How Computers Fail"; I.E.E.E. 

Spectrum October 1982.

. ,  E ,  J  r . ,  (  ' ' "  1

Technology and A r c h i t e c t u r e " ;  I.E.E.E. Transactions 

C o m p u t e r s , Vol. C-31, No. 9 May 1982.on



PAGE R-14

[TOR] TORRERO, E.R. "They said it couldn't be done"; 

I.E.E . G .  Spnctcum Sept. 19S--.

[TAR] TAtiAKA, Y., HI Y AS HIT A , K., e V. nl o (■
university Array Processor System): A Hew

Hierarchical Array Processor System", 2nd Euromicro 

Symposium on Micro Architecture, Venice: Oct 1976

[TOO] TOONO, H.D., "Multi-Microprocessor Systems"; Siemens 

Forsch-u. Entwickl.-Ber Bd 7(1973) nr.

6,Springer-Verlafj 19/ .

[TRAKH] TRAKHTENGERTS, E.A., SHURAITS, Yu.H., Software

Design for Multiprocessor Systems Computer Control";

'

Moscow, USSR.

[THE, t b b i S, D., - Array Processor Architecture"; I.E.E.E.

COMPUTER Sept. 1981.

[TEX 1, TEXAS INSTRUMENTS INCORPORATED The TTL Data Book for 

Design Engineers; 1973

[TEX 2] TEXAS INSTRUMENTS INCORPORATED Supplement to the TTU 

Data Book 1974

[os BOO] UNITED STATES DEPT, of DEFENCE, "Reference Manual 

for the ADA programming Language, July 19 80

[VICl VICK, C.R., et al " Adaptable Architectures for 

Supersystems"; Computer November 1930.



P a g e  R-14

[t o r ] TORRERO, E .a . "They said it couldn't b° done"; 

I.E.E.G. Spectcum Sept. 19S;.

[ TAiJ ] TAdARA, Y. , MI Y AS HIT A, K. , et al "HARPS (Hokkaido 

university Array Processor System): A New

Hierarchical Array Processor System", 2nd furoraicro 

Symposium on Micro Architecture, Venice: Oct 1976

[TOO] TuONG, H.D., "Multi-Microprocessor Systems"; Siemens 

Forsch-u. Entwick1.-Ber Bd 7(1^ o) nr.

6,Springer-Verlag 197 G.

[TRAKH] TRAKHTENGERTS, E .A ., SHURAITS, Yu.M., "Sol two re

Design for Multiprocessor 3y ferns Computer Control"; 

Internal re?orc at the Institute of Control Sciences, 

Moscow, USSR.

[THE] THEIS, D., " " > 1 ’

COMPUTER Sept. 1981.

[TEX 1] TEXAS INSTRUMENTS INCORPORATED The TTL Data Book for 

Design Engineers; 1973

[TEX 2] TEXAS INSTRUMENTS INCORPORATED Supplement to the TTL 

Data Book 19 74

[US DOD] UNITED STATES DEPT. of DEFENCE• "Reference Manual 

for the AD x programme .g Language, July 19 80

[VIC] VICK, C.R., et al " a aptable Architectures for

S u p e r syste s" ; Cor;,outer November 1980.



PAGE R-15

fwcij WErTZMAG, C., "Distributed Micro/Mihicomouter Systems, 

Structure, Implementation and Application"; 
Prentice-Hall, N.J. 1980

[WAP] WATSON, I., CURD, J., "A practical Data Flow 

Computer ", I E E C o m p u t e r , February 1982

[WJLl .. I u a LS, M.V. STRINGER, j.b., "Microprogramming and the 

Design of the Control Circuits in an Electronic 

Digita „ Computer"; reprinted in "Computer 

Structures:Readings 9

[ ILD] WILD, n., "A Support System for Developement of a 

Microprogrammed Controller", MSc Dissertation (in 

preparation) Dec. 1932, University of the 

Witwatersrand, Johannesburg

‘ " J ̂  11 JvD' A *K •' "A Multi-Microcomputer Interface " ;
Microelectronics and Reliability Vol 19 pp

513-522:P -rgnmon Press Ltd. 1980

[7AK] ZAKS, R., WILMINK, J., HICOUD, J.D. "Microcomputer 

Ai.cn j toe* urea". Euromicro Symposium. Amsterdam: 
North Holland, Oct 1977.

fZOC] ZOCCOLI, M.P., SANDERSON, A.C., "Rapid Bus

I'.ii i . iprocr. nor System", Computer Design, Nov 1981, pp 
189-200





Author Rabinowitz A E
Name of thesis Ramrod: an experimental multi-microprocessor 

PUBLISHER:
University of the Witwatersrand, Johannesburg 
©2013
LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y  of  t he W i t w a t e r s r an d ,  Johannesbu r g  L i b r a r y  website 
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise 
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or 
educational non-commercial use only.

The University o f the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.


