
R A M R O D : A N E X P E R I M E N T A L

M U L T I - M I C R O P R O C E S S O R

Alan Errol Rabinowitz

A Thesis Submitted to the Faculty of engineering

University of the Witwatersrand» Johannesbura,

for the Degree of Doctor of Philosophy.

Johannesburg 1982.

DECLARATION
I hereby declare that this thesis is my own work

and that it has not previously been s u b m i t t e d for

a oeyLe= at any o%her university.

’
Alan Errol Rsnin
23rd Day of December , 1-82

PAGE (ili)

ABSTRACT

The computer architect of the 80's races apparently

intractable dilemma: Computer manufacturers have to conteno

with the soaring costs incurred in producing custom-made

chips, and would prefer to use commercially-available,

state-of-the art, large-scale integrated circuits. Product

users, however demand highly reliable, realistically- priced

systems which are nevertheless flexible enough to meet

changing needs.

It is generally accepted that to be reliable and flexible =

system should be conceptually simple and inherently

fault-tolerant. Further, accepting the necessity for

maintenance, it becomes clear that the architecture should

be totally modular both for hardware and for software.

This thesis is an attempt to reconcile these seemingly

conflicting demands. An architecture is proposed, based on

the freguently-used principle of closely-coupled

multiprocessors, which avoides the pitfalls of

over-complexity and too-heavy software dependence.

PAGE (iv)

The proposed system is inherenty simple, making use of <=

single, high-speed time-division multiplexed bus to provide

for communication between processors and memory,

complexity is reduced by adopting a distributed,

hardware-oriented operating system. Simplicity is enhanced

by the use of a unified memory structure, whereby the user

may freely allocate local or global memory, or a mixture of

both.

Of importance is the use throughout of

commercially-ava ilable, large- scale integrated ci. suits.

This is particularly relevant as the work was undertaken in

isolation from the centres of research into custom-made

microelectronics.

The author has developed the proposed system to prototype

level. The prototype has been subjected to a series of

performance evaluation tests , and the results obtained

prove the viability of the technique adopted, and

demonstrate its promise for the future.

PAGE (iv)

The proposed system is inherenty simple, making use of a

single, high-speed time-division multiplexed bus to provide

for communication between processors and memory. Software

comole x i ty is reduced by adopting a distributed,

hardware-oriented operating system. Simplicity is ennanced

by the use of a unified memory structure, whereby the user

may freely allocate local or global memory, or a mixture of

both.

Of importance is the use throughout of

commercially-available, large- scale integrated circuits.

This is particularly relevant as the work was undertaken in

isolation from the centres of research into custom-made

microelectronics.

The author has developed the proposed system to prototype

level. The prototype has been subjected to a series of

performance evaluation tests , and the results obtained

prove the viability of the technique adopted, and

demonstrate its promise for the future.

PAGE (v)

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to the

following people without whose help this thesis would net

have been written.

Professor M.G. Rodd, his supervisor , Head of the

Department of Electrical Engineering, University of the

Witwatersrand, for his guidance, enthusiasm, interest and

unselfish help in the writing of this thesis and advice on

solution of technical problems and for the opportunity to be

able to 'mirror 1 his thoughts.

Susan, his wife, for her patience, tolerance , enthus ^sm

and encouragement throughout his 'career as a student and

her help in preparing the diagram'.

Riva Rachel, Aviva Esther and Yona Mordechai, his children,

who helped provide a reason for completing the work

Ralph and Anne Rabinowitz, his parents, for their material

and moral support.

The technicians of the Department of Electrical Engineering

for their contribution to the technical work and 'repairs'

done to the project.

PAGE (vi)

^us Finucci and Johann Lambrechs, his colleagues, for their
help through tight spots

sue Rood for the task of making the thesis legible and
intelligable.

Finally the author wishes to thank the University of the

Witwarersrand fur the use of equipment , the CSIR for

providing a grant for purchasing components, and Perseus for

providing the author with a Research Fellowship.

PAGE (vii)

CCU

EPROM

TTL

CPA

TDM

CPU

ECL

ALU

RAM

MOS

IC

DC

VDU

ns

ma

V

nano

mil 1 i

micro

Kilo

mbytes

mega

VLSI

GLOSSARY OF TERMS AND ABBREVIATIONS

Computer Control Unit

Electrically Programmable Read Only Memory

Transistor-Transistor Logic

Central Processor Array

Time-Divis ion Multiplex

Central Processing Unit

Emitter Coupled Logic

Arithmetic and Logic Unit

Random Access Memory

Metal Oxide Silicon

Integrated Circuit

Direct Current

Visual Display Unit

nano-seconds

milli-amps 1/1000 amps

Volts

10* *-9

10**-3

10**-6

10**3

mega bytes

10**6

Very Large Scale Integrated

PAGE (viii)

CONTENTS PAGE

ABSTRACT.. (iii)

ACKNOWLEDGEMENTS.................... (v)

GLOSSARY OF TERMS AND ABBREVIATIONS......... (vi i)

LIST OF GRAPHS, TABLES AND FIGURES........... (xii)

1 INTRODUCTION....................................

1.1 The Growing Demand for Computing

Power 1-1

1.2 Distributed Control.................. 1-3

1.3 The Influence of Technology on

Architecture....... 1-15

1.4 Software................................ 1-18

1.5 Multiprocessors........................ 1-20

1.6 Ramrod: a Multiprocessor Architec'ure 1-26

1.7 Conclusion............................. 1-27

2 MULTIPROCESSORS................................. 2-1

2.1 Multiprocessor Structures............ 2-1

2.2 Interconection Strategies............ 2-4

2.3 Shared Memory.......................... 2-13

2.4 Time-Division Multiplexed Bus....... 2-14

2.5 Supervisor Control.................... 2-17

2.6 An Overview of Ramrod. 2-17

2.7 Conclusion 2-20

3 A REAL-TIME OPERATING SYSTEM FOR Ramrod 3-1

PAGE (ix)

CONTENTS ,,^2

3.1 The Role of an Ooerating System.... 3-1

3.2 Multiprocessor Operating Systems,... 3-3

3.3 The use of the Operating System

in Ramrod....... 3-5

3.4 Basic Structure of the Operating

System....... 3-7

3.5 Inter-Task Communications........... 3-12

3.6 User Task to Operating System

Communication.......... 3-16
3.7 Conclusion............................. 3-16

4 HAPTVARE STRUCTURE............................. 4-1

4.1 System Overview............... 4_-

4.2 Basic Structure of Ramrod.............. 4-g

4.3 Physical Construction.................. 4-32

4.4 Conclusion............................... 4-'35

IMPLEMENTATION' OF THE OPERATING SYSTEM...... 5-1

5.1 Operating System Kernel.............. 5-2

5.2 Local Operating System......... 5 - 5

5.3 Conclusion............................. ^_g

6 SOFTWARE STRUCTURE.............................. 6-1

6.1 Data Flow Approach................. 6-2

6.2 Task Definition......................... 6_6

6.J Inter-Task Communication............... 5-8

PAGE (x)

CONTENTS nar.r

6.4 Conclusion............................. 6-15

7 EVALUATION OF SYSTEM.......................... 7-1

7.1 Practical Limitations................ 7-2

7.2 factors Influencing the Relative

Comparison...... 7-4

Procram used in Relative Comparison. 7-6
7.4 Results................................. 7_g

7.5 Conclusion............................. 7-12

8 CONCLUSION...................................... g.j

8.1 Uniqueness of Ramrod.................. 8-2

8.2 Commercial Viability of Ramrod....... 8-4

8.3 Critical Analysis of Ramrod........... 8-5

8.4 Future Enhancements................... 6-6

8.5 Conclusion...................... c_7

CONTENTS

PAGE (xi)

PAGE

APPENDICES......................................

A Emitter Coupled Logic................... A-l

B Microprogramming Bit-Slice Technology. B-l

C The Modelling of a Circular Bus....... C-l

D Currently available Multiprocessors... D-l

E Input/Output interfacing................ E-l

F The Exoslice Development System....... F-l

G The Circuitry............................ G-l

H Marketing Costs of Ramrod H-l

I High Level Description of Programs.... 1-1

J Reliability............................... j-1

REFERENCES...................................... R-l

Index to Figures, Tables and Circuit Diagrams

Figure S 2

No. Title PAG

2.1 Typical Multiprocessor 2-3

2.2 Shared-bus 2-5

2.3 Crossbar switch 2-9

2.4 Multiport Memory 2-12

2.5 System Diagram 2-19

3.1 Slave Processor to memory segement Pairing 3-11
4.1 Ramrod block Diagram 4-3

4.2 Timing on t e Shared-Bus 4-5

4.3 Circular Construction 4-14

4.4 Microinstruction format 4-23

4.5 Master Controller 4-31

4.6 View of Ramrod 4-34

6.1 Data flow Instructions 6-5
7.1 Operating System Sequence 7-7

7.2 Execution Sequence 7-9

A-l ECL Structure A-4

A-2 Series Gating A-4

A-3 Collector Dotting A-5
A-4 10804 latch A-5
B-l Conventional and Microprogrammed Computers B-3
B-2 Typical Microprogrammed Computer 3-5

PAGE (xiii)

No. Title PAGE

C-l Thevenin Equivalent of Driving gate

C-2 Capacitor Resistor network

D-l Cyba-M

D-2 Siemens 4004/220, 230

D-3 Siemens 201

D-4 Cmmp.

D-5 The Banyan Multi-Microcompter System

D-6 The Intel 4 32 System

F-l Microinstruction execution steps

J-l Serial reliability

J-2 Parallel Reliability

J-3 Composite Reliability

J-4 Ramro5 1s Reliability

Circuit Diagrams

No. Title

G-l Microprocessor Module G-2

G-2 ECL latch Module g -4

G-3 Memory Module G-6

G-4 Control Board G-8

G-5 (a) Central Processor Array G-10

3 - 5 (b) Input/Output G-ll

G-6 (a) Computer Control Unit G-13

G-6(b) Pipeline Registers G-14

C-15

D-2

D-4

D—6

D— 8

D-10

D-l 3

F-7

J-5

J-5

J-6

J - 6

PAGE (xiv)

Graph :

No. Title

1 * Failure Rate of Components

2 Average task delay time as a

function of task Characteristics

C-l Comparison between predicted and

observed results

C-2 Comparison of rising edges for

various termination resistors.

C-3 Comparison of falling edges for

various termination resistors.

C-4 Comparison of the Voltage cross-section

on the bus at various times for

various termination resistors.

Tacles

No. Title

1.1 Cost/Performance ratio

1.2 Reliability of Components

7.1 Execution Times

PAGE

"1-8

1-21

C-7

C-9

C-10

C-l 2

1-4

1-5

7-11

CHAPTER 1

INTRODUCTION

"An I directed my heart to know wisdom, and to know madness
and folly ,but I have perceived that this also is a torture
of the spirit. For where there is much wisdom there is much
vexation, and he that increaseth knowledge increaseth oain"
[Eccelesiastes i 17,18].

This thesis proposes a technique for interconnecting a large

number of microprocessors to form a simple, inexpensive but

efficient computer system. The system ? inherently modular

thus enhancing reliability, mai :ainability, and

testability.

1.1 Tr.e Growing Demand for Comoutina Power

In order to cope with the rapid advance of technology and

the ever-increasing demands of society, particularly in

respect of automation, there is a need for the provision of

more commuting power at lower cost. One need only to look

at fields such as those mentioned below to see that the

'supercomputer' is very much in demand.

Short-range won' her Coro, n • t - r• - ; urn / •= / iccurate and

highly cc-ipl • < leather mod, I I i. Comput°r assisted

tcmogr nphy which involve; h igh-roocd signal processing

and in >g ing, i •; w ll as the i od I ling of organ such as thr

heart, no • is advanced equipment for computing at speeds

approach log 100 million floating point operations

(megnf lops) per s.-cond [Sl.\] . I) ’.cl tr fu ion researchers

could use a computer 10 0 tines faster than any existing

machine for modelling the plasma ir :tabi3 I;ie- of proposed

fusion power generators [SPG 8(A j .

One of the world's most complex undertakings in the past two

decades has boon the USA Department of Defense (DOD)

Ballistic Hi silo Program. A criti a I port of the large

research and developement inv -st nt in this program has

been the effort to develop • G .I i- ocessing hardware and

software technologies to meet the computational challenges

of this complex problem. The Ballistic Missile Program

needs a e - touting system that will deliver a throughput of

hundreds of megaflops per second, with a high degree of

confidence that correct execution will occur. This

challenges even thr- most advance t • Imologists. [DAV 80]

PAGE 1-3

The computer engineer, who takes on himself the burden of

designing such a machine faces a great challenge. He must

bear in mind that a computer is ultimately designed for the

end user, and it is the user's evaluation that counts, as it

is he who will be in the most intimate relationship with the

computer. The computer, therefore, has to be user

acceptable in terms of reliability, maintainability and
safety.

1.2 Distrrouted Contro

Amongst the many criteria which determine the choice of a

particular design, is that of overall cost. A feel for this

criteria may be established in tu.ble 1.1. In this Sugarman

compares the processor cost/performance for a particular

sample problem requiring 8 3800 flops for each iteration. It

can be seen that the AP-120B peripheral array processor is 7

times as cost-effective as its nearest rival the CRAY-1

supercomputer (SUG 80].

PAGE 1-4

Michino Mf 1 ops $/flop installation

AP-120B 5.9 .03 . 15

CRAY-1 38.4 .21 8

STAR-10 0 16.8 .48 8

VAX 11/780 .26 .77 .2

CDC 7600 3.3 .91 3

ILLI AC IV 9.1 1.1 10

CDC 6600 .63 1.59 1

IBM 370/165 .87 2.3 2

TAOL 1 I. 1 COST/Pt j!(MA':CE P \ 1 ' [SUG 80]

(A Mor; iFlop (Mf Icn) is a : i 11 ion floating point operations.)

PAGE 1-5

Of interest from the above compar is ions, is the observation

which may be made that parallel processors, which are

cheaper than supercomputers, can be used in situations such

as those mentioned previously.

1.2.1 Reliability

An essential trade-off to be considered in comouter design

is the complexi z y of the computer versus the power (or

throughput). It is common knowledge that the more powerful

a computer is, the more complex it becomes [SUG 81]. It is

also common knowledge that complex electronics, unless

highly integrated, becomes increasingly unreliable and

costly. This is easy to explain:- From table 1.2 it can be

seen (a) that the reliability of a computer board decreases

40-fold when compared to tne reliability of a single

integrated circuit because of the increase in components and

complexity, and (b) that the reliability decreases

dramatically as the number of components per system

increases.

PAGE 1-6

Order of Magnitude of Fits

Transistor

LSI component

Solder connection

Switch(percontact)

Pluq connection (per contact)

1 Board computer (25 chips) 4

— — — ---R— il i tv of Components [KOP 81]

10 to 100
100 to 10tJ0

2 to 20
30 to 300
30 to 300

000 to 40000

(1 FiT " Failure in 10**9 hours i. e. 115000 years)

PAGE 1-7

Gtiph 1 shows the characteristic curve for an electronic

device. Early failures, such as infant mortality or burn in

failures, occur at a high initial rate which decreases when

the weak units have died out. The useful life period, which

is the most important period because it is the key to

reliability prediction, is followed by the wearout period.

Wearout failure results from degradation of the strength of

a device and exposure to the environment [DOY].

f a i l u r e r a t e

INFANT
MORTALITY USEFUL LIFE

TIME

GRAPH I FAILURE RATE OF COMPONENTS

PAGE 1-5

The society in which we live is becoming very

s^*e '-‘"v0nsc^ou5' an<3 increasingly dependent on computers,

.therefore a computer which has the function of, say,

controlling production machines or on which we rely for the

handling of critical data, has to be extremely reliable.

One need only look at what happened at Three Mile Island.

The nuclear reactor at Three Mile Island was controlled by

iardwired logic and many small computers. There was no

central controlling facility nor was there communication

between the distributed control points. At the moment of

crisis the operators were faced with many indicator lights

and perhaps, if there had been an interconnection of the

control points, the near-disaster might not have occured.

r or tnis to be available, clearly a highly reliable

computing system is vital. NASA, too, has an aircraft

energy effiency research program needing ultra-reliable

computers that would counteract faults automatically. The

aircrart flies very close to the limits of stability and

therefore a computer with a fast response time is needed

(rather than a human) to control it. The probability of a

computer failure during a flight must be less than the

probability of mechanic.i structure failure during the same

period. Tnus an ultra-reliable and fast computer is needed.

PAGE 1-10

Reliability is normally defined as the "probability that a

system will function within the specified limits for at

least a specified time under specific environmental

.conditions" [KOP 81J. It is concerned with all the parts of

the system (hardware, software, printed circuit boards,

etc.) , their intet action, the inter c'-'* "tion mechanisms

between the various parts and finally, naturally, depends on

the mechanical construction.

In striving to achieve a high degree of software

reliability, problems such as software validation are

encountered. Present techniques are inadequate for

evaluating the reliability of software, and perhaps the only

way of checking software is by exhaustive testing [LAM]

Bernhard maintains that system validation problems are

primarily related to software, and that no guidelines exist

for determining software reliability [BERC]. Making the

software simple and well defined can help in solving these

problems, but the programmer can never claim with total

certainty that his program is error-free (see 1.4).

PAGE 1-11

The reliability of a computer system require, a tborouq,

investigation. Reliability involves both software and

hardware and it was decided to limit the study of

' rel- - b U l t y • ln this thesis "primarily to that of hardware
(appendix Software reliability is dealt with on the
Keep It simple and well- defined" precept.

One of tne most critical factors influencing the reliability

computer system is the interconnection structure of the

system. This is because, although the reliability of the

individual components can be maximized, the overall

reliability of the system will be related to the component

inte. connections, which are not usually duplicated and are

inherently unreliable (being mainly mechanical in nature,. '

In Practice, there are various techniques available for

attaining a high degree of reliability.
achieve reliability through either the use of inherently

ighly-reliable components or through the introduction of

reaundancy. (Redundancy here implies that the system

more resources than are absolutely necessary forrr operation ’■ Acc°cdin9 to — .to=,
■< 9 ’ y reliable systems are "systems with a structure

independent of any critical resource that has a relativelv
high failure rate."

PAGE 1-12

Lae uOoi oi increasin | La-> reliability of components

■ ic’n iovccl du-ing vi inu ■ : re, is very high. There foe e

f au 11-to I :• cam ■ * i rj normally adopted on the pt lise that it

i° moce ccon >in a a a 1 to build vedun ant systems than to strive

"

system is one which can survive multiple "aults that would

normally bring a conventional co outer to a halt [STI].

Of importance in a redundant system is the aoility to detect

an error. Error detection presupposes that the result of a

otea in a pro ' can be related to an acc -ptance criterion.

In a sysb- i with redundancy, additional resources typically

are used to form an error detection module which may be

separated from the actual active pros ssinj nodules [KOP
81] .

A key issue in fault-toloranc - design is the size of the

unit that is to be replaced in the event of a failure —

j) .
is generali/ visualised as the unit which is removed by the

service eng in- r once ho has localised a fault to a

particular unit, which is then replaced by a identical one.

It is also clear that an 5RU must be testable - specifically

tuis requires it to have well d'lined inter faces[KOP 81].The

5RU could be a resistor or transistor at one extreme or a

complete board at the other. Since the costs of electronic

components are steadily decreasing it becomes economically

PAGE 1-13

feasible to think in terms of a complete board as the SRU.

From the above it may be concluded that a well-structured

computer should therefore have inherent fault-tolerance

built into 1ts architecture, by having redundant components.

By adop . uch a design, however, it would seem th<_c

reliability is achieved at the expense of simplicity. This

thesis discusses an architecture for a computer system that

is reliable, partially fault-tolerant and (of importance)

simple and well-structured.

1.2.2 Maintainability

The user of a system is primarily concerned with the

availability of the system for his use. Ava'ilabil icy is a

function of the Mean Time Between Failure (MTBF) and the

Mean Time To Repair (MTTR). As a failure occurs, the faulty

module is replaced by the service engineer and the user can

then carry on operating the machine as if nothing had

happened. Provided the principle of fault-tolerance is

adopted, however,during the diagnosis and repair time the

user will simply experience a slight drop in performance.

PAGE 1-14

There is clearly a trade off between maintainaoility and

reliability - both being linked to the availability of the

system (see appendix J }. Maintainability, which can be

defined as the probability of repair in a given time,

implies that the system must be modular. If the SRU is

extracted for repair, the system must be able to tolerate

this removal and recover once the module is re-inserted.

A module is characterised by the function it performs. It

is essentially a 'clack box' which transforms a set of

inputs to a set of outputs. In designing systems using

modules the designer assumes that other modules, except the

one on which he is working, work to specification. Testing

is done in a similar easy fashion.

Of importance too, is the practical realisation that once a

computer system has been installed, the user inevitably

needs to increase its capacity! Enhancement of a computer

system can be achieved much more readily in a

well-structured, modular design.

PAGE 1-15

1.3 The Influence of Technology on Architecture

The advance of technology is sometimes too rapid for the

system designer, in that by the time his design is

functional there may be newer and more powerful components

available which might more easily accomplish his reauired

tasks. This problem is never more apparent than in the

world of electronics, and particularly, the digital area

where the pace of technological innovation is staggering.

The Electronic designer has three approaches available to

him when utilizing state-of-the-art digital hardware. These

may be summarized as follows:-

1. The use of Custom Designed Integrated Circuits.

The engineer designs highly complicated integrated

circuits from the transistor junction level

normally using the support of a Computer Aided

Design system (CAD). These components are then

fabricated especially to meet the required

function. Clearly cost is a problem unless volume

is high (typically > 10000 units).

2. The use of Readily available VLSI. The engineer

attempts to utilise integrated circuits which have

already been manufactured and which perform

specific functions.

PAGE 1-16

3. The use of Semi-Custom Logic (e.g. a Logic Array).

Ir. this technique the integrated circuit

manufacturer produces a chip which is complete from

fhe semiconductor point-of—view, but which lacks

the final interconnection of the various logic

iunctions that are performed by the semiconductor

junctions. Thus the designer of a circuit

typically has two to three thousand logic gates

available for his design. Using CAD techniques, he

-hen creates a system using on 1 'r the types of

components available on the particular array chip

in which he is interested. Once again, using CAD

facilities, the designer optimises the

.i.r ..erconnection of the gates to give himself a

system which meets his requirements. The final

interconnection of the components (the metalisation

process) is relatively cheap, and the approach is

is cost-effective for a medium level of production
[ROD 82].

In addition to the points mentioned a Dove, a fundamental

premise in design is that a designer should strive to

utilise state-of-the-art technology; this, of course is in

itself a situation requiring much thought. A case in point

is the Josephson Junction. Conference papers continue to be

delivered on this technology but the scientific world still

waits for a commercial computer based on Josephson

Junctions.

PAGE 1-17

Josephson devices, which are based on super conductivity and

tunnelling, are very attractive for ultra-high-performance

computers. They are extremely fast-switching (<10 pi co

seconds) h a .e extremely low power lissioation (< 500 nano

watts per circuit). However, they have to operate at near

the Absolute Zero temperature (—270 deg C), so that they can

function according to the specifications. This temperature

requirement causes undue environmental complexity as well as

additional costs for refrigeration, and inconvenience of

system debugging and servicing [ANA 30].

Therefore even though Josephson Junctions are undoubtedly

superior in most aspects to any other logic family

available, there is a natural reluctan_e amongst computer

designers not to use this technology until it has been

proven and tested.

An important factor which has to be considered is the local

situation. As the work for this thesis took place in

relative isolation from the centres where electronic

technological advances are normally made, the decision was

made to design a completely modular system based on locally

available technology. This ruled out the use of Custom

designed circuits, as well as that of logic arrays - this

latter industry being still in its infancy in South

PAGE 1-18

Africa[NOV]. However the majority of leading Integrated

Circuit Producers are represented in the country, and thus

the bulk of commercially available components could be

considered.

Finally from a maintenance point—of-view the approach

adopted appears to have much merit. One has always to

ensure that the local maintenance personnel can cope with

the technology they are servicing; also that replacement

components are readily available.

1.4 5of tware

The complicated aspect of software reliability has not been

dealt with in detail, as it is beyond the immediate scope of

this particular investigation.

However, a few general guidelines which should be adhered co

in attempting to produce reliable software have formed the

basis of all software developed in this project. These are
as follows:-

1. The specification of the program should be kept

simple and accurate and must be well documented to

allow non technical persons to understand the
software

PAGE 1-19

2. The software must be well designed with clear

meaningful documentation,in order to reduce effort

in testing and maintenance.

3. The software must preferably be organised in a tree

structure, in order to make reading and

understanding easier.

4. The software should be written in a modular

structure with loose coupling between modules, so

that any module can be extended, replaced or

removed without affecting the other modules.

5. The software should be designed in a top-down

fashion, which first describes the problem in a

very high-level way, and then proceeds to give

lower levels of description until the level is

reached which contains definitions of indivisable

functions iLAM].

Because most of the operating system has been implemented in

hardware, and only a minimal amount of software (designed

using the above principles) is reauired to complement the

operating system, it is felt that this approach ensures a

relatively high'degree of software reliability. However it

must be emphasised again that this aspect of reliability was

not considered in det.-il in this thesis.

I • 5 Mul t i j3r QC' ‘osocs

has applied the theory of traffic movement through a

telephone exchange to the analysi-: of the performance of

multitasking industrial control computers and has produced a

graph (draph 2) which mirrors the expression derived for the

mean delay experienced by a task in a queue which can form

m a multitasking computer system fROO 75]. This was done

m 0rder t0 Predict the performance of the system. As can

be seen, the delay time in the queue increases as the

average request rate increases. There are clearly various

ways to increase throughput of a system as may be deduced
front these curves:

PAGE 1-21

(S0N033S Nil ^Q) 3 0 3 0 0 Nl /,V03Q NV3y\

GRAPH 2
OF TASK CHARACTERISTICS

/

PAGE 1-22

1. Make the task length shorter, i.e. simplify tasks

oi increase speed of processing

2. Decrease the average request rate, i.e. reduce the

demands made on the processor

3. hake the computer faster, i.e. increase overall

operating speed (as wall as achieving (a) above).

4. increase the number of processors, i.e to

decentralize the processing.

powerful, large-wor d-s ize mainframe computers and

supercomputers have made high-data rate processing feasible,

out these systems are not economical for laboratory

.nvironments, data acquisition, process plants or reduction

applications. Minicomputers on the other hand are

economical, but are technically unsatisfactory because of

their limited comouting speed and smaller fixed-point

[ALE 81]. Therefore the microprocessor, which is

cheap, and which can be interconnected to form a powerful

multiprocessor computer, can fill the gap left by the two
other computer systems.

PAGE 1-23

Decentralisation of a computer system implies that there i,

a distribution of intelligence (i.e. processors,. As has

een ln '=CC"lu:'' 1'1, Parallel processors (of which the
multiprocessor is one type, compare verv well with

•supercomputers' on a cos./performance ratio. There is less

reliance on a centralised facility, and processors can be

added on a more flexible basic and in smaller increments.

Multiprocessors inherently rely heavily on parallelism to

enhance throughput and computation. Kith such a hardware

structure many elementary data routing and processing

functions can be implemented concurrently, improving total

processing speeds by 10 to 100 times over typical
minicomputers.

* mult^ r°«ssPr architecture increases productivity throug,

processing, and maximises the likelihood that i
processor will be available when it is reguested. The

system can generally be tailored to user requirements in 5

m°re fleXible manner than " n a centralised facility,
because each processor in the system can be used to perform
a separate function.

PAGE 1-24

A multiprocessor computer should also be inherently modular

and therefore the cost of increasing its processing

capability is smaller than that incurred when expanding a

large computer. Redundancy at a hardware level is naturally

easier in a multicomputer than in a monolithic central

facility as extra modules (which are added on to take an

active or passive part in the system) can take over trhe

execution of a task in the event of a processor failure.

As has been pointed out in appendix J, a multiprocessor

system that has redundant units is ideally more reliable

than a uniprocessor system. An additional factor to

consider when designing a redundant modular system is that

the system should 'gracefully degrade'. This idea is

illustrated in the following example. An on-line airline

cooking system is a distributed computer with user terminals

in each booking office and with a centralised data base.

Tne failure of any terminal should not inhibit other users

from accessing the common data base. This is usually

referred to as "graceful degradation" in that failures will

accumulatively affect the overall system performance but not

cause immediate and total system failure.

PAGE 1-25

In such a system reconfiguration is, however, necessary when

a permanent error, like a processor failure, occurs. At the

conception of a redundant system it has therefore to be

decided at what level redundancy is to be implemented - at

system level, subsystem level or at a component level (as in

the to discussion of SHU above). Therefore it is logical to

make the SRU (i.e. a complete board) the redundant
component as well.

From the previous sections it may be seen that the choice of

components of a multiprocessor is critical. As mentioned in

1.2.1 tne SRl should be a complete circuit board. A

micropt ocessor computer boar 1 will provide a convenient

basis for reconfiguration after an error and should

therefore be the SRU.

It can therefore be concluded that a multiprocessor computer

a simpler alternative to a bigger computer in most
applications.

PAGE 1-26

1.6 Ramrod: A Multiprocessor Architecture

Ramrod, as the multiprocessor structure developed in this

thesis has been named, was designed using a master-slave

approach as it was felt that there was a need to provide for

supervision of the slave processors with respect to their

intercommunication, execution of tasks and probable failure.

This is of particular importance in an experimental system

which Ramrod essentially is.

For this reason it was concl ided that the master had to be

more sophisticated and more powerful than the actual

processors. Therefore the master was designed using

bit-slice technology and the instruction set was custom

built to suit the application (see 4.2), whilst the slave

processors were selected to be simple, single-board

computers. Using bit-slice technology for the master

implies that the designer has complete control over the

architecture and many featur ; are therefore included to

provide this with properties inherent in operating systems.

PAGE 1-27

1.7 Conclusion

Many inexpensive and relatively powerful single-board

computers are currently available on the market and can

therefore form the SRU of the multiprocessor system. In the

event of a processor failure, the faulty processor board can

ne replaced by a working one, and redundancy achieved at the

same level. The multiprocessor system can have redundant

idle iPv boards ready to take over should a processor
failure occur.

This approach to architecture is currently receiving much

attention: a lead.ng German Computer Architect Wolfgang

Giloi maintains that "The distributed multiprocessor system

is the only known architectural form that can satisfy high

cost effectiveness, modular extensibility, fault tolerance

ana simplification of software production and maintenance
simultaneously" [GIL BEHR].

Any multitasking computer system has its activities

co-ordinated via an operating system. in the case of a

multiprocessor the operating system may itself bt

distributed with a part of its functions performed by the

master processor and other parts by the various slave

processors. This should result in a highly efficient

computer system as there is only partial reliance on the

master processor, and each processor shares in the execution

PAGE 1-28

of the operating system [TRAKHJ . Of interest is the

implication that the various component parts of the

operating system can themselves be executed truly in
parallel I

As will be shown in the next chapter, the preferred

interconnection strategy for a multiprocessor is a shared

bus in which the processors access common memory. As will

be shown this is an optimal solution despite claims that a

shared bus has serious bandwidth limitations.

Ramrod has such a shared-bus structure with a wide

bandwidth, this having been achieved by a technique that

appears to be novel. Ramrod has been designed, built and

tested. The prototype, although suffering from certain

timing problems, has been succesfully evaluated and the

methods used are shown to be viable. The result is a

multiprocessor system which makes use of commercial

well-understood computing elements and which is reliable,
modular and easy to maintain.

CHAPTER 2

MULTIPROCESSORS AND AN INTRODUCTION TO RAMROD

Before dealing with the actual scheme adopted in Ramrod this

chapter will provide a general background to multiprocessors

and the various possible strategies which may be used. The

interconnection philosophy of Ramrod will then be discussed
in this light.

2.1 Mu I Processor Structures

A multiprocessor typically has the following attributes:

1. The system contains two or more processors of
comparable capabilities.

2. All processors share access to common memory, but
may have local memory.

3. All processors share access to Input/Output

channels, control units and peripheral devices.

* page 2 - 2

'

on rating system. [EMLi 74]

aInnercnt in this definition is the concept of

multiprocessor system as a so-called 'tightly coupled'

distributed computer. This implies that the various

processors in the system are in close proximity to each

other and have access to a common memory and common
Input/OutPut system.

A typical multiprocessor will take the form shown in Figure

2.1. Processors (Pl_Pn) are connected to Memory Elements

(Ml-Mn) or other peripheral devices. Thus communication

between the processors and resources (mem, I/O, peripherals)

.

often referred to as the Processor/Memory switch.

PAGE 2-3

TYPICAL MULTIPROCESSORFIGURE 2.1

PAGE 2-4

The following sections provide more detailed descriptions of

the major interconnection technologies and their advantages

and disadvantages. The shared bus, the cross bar switch and

the multiport memory are compared in terms of cost,

reliability, system throughput and transfer caoacity.

Discussions of systems using these architectures are to be

found in appenndix D.

2.2 Interconnection Strategies

2.2.1 Shared Bus

The simplest switch for a multiprocessor system is a common

bus connecting the units as shown in Figure 2.2.

M E M O R Y 1 M E M O R Y n

S H A R E D BUS

P R O C E S S O R 2 PROCESSOR 3
I/O

I/O
M E M O R Y 2

P R O C E S S O R 1

MEMORY 3

PROCESSO.. n

FIGURE 2.2 SHARED BUS

rvIui

PAGE

PAGE 2-6

The shared bus can be centrally polled, i.e. the processors

only transmit when selected by the controller. Bus

contention is avoided by using schemes such as :

Fixed priorities, which allow processors with a

higher priority to gain access to the bus if

another lower priority processor presently has
access.

2. First-in-first-out : the processor which first

made the request is granted access to the bus

3. Daisy chaining: The processors are asked in turn

. whether they have made a request, and only then can

s processor be given access to the bus.

On the other hand, the bus may be interrupt driven by the

processors, which request bus usage. This scheme allows

random usage of the bus. However an interrupt system can

cause problems, if, during one processor's control of the

bus, a second processor requests the bus, access can be

granted to this second processor, and the first's data is

lost. On the other hand, should all interrupts be disabled

during a bus access then the requesting processors will have

to wait for access and processor idle time is increased.

PAGE 2-7

The bus can be a Time-Division Multiplexed (TDM) bus, where

eacr. processor is allocated a time slot, or it can be

eguency-Div i s i on Multiplexed (FDM), in which each

processor has a particular transmit/receive frequency.

The shared bus is simple to design and construct, but has

oanawiath limitations inasmuch as the number of active or

passive units connected to it is limited [WEI 81). This

reduction in bandwidth results because when more units are

connected to the bus, the bus is simply unable to keep up

with tne increase in communication which accompanies the

addition of units iZOC]. As there is only one path for all

aata transfers, the total transfer rate within the system is

limited by the speed of access of devices onto the bus and
the actual bus bandwidth.

Tne snared bus is usually connected to a common memory

(inoeed so are the other strategies) and therefore memory

contention is also an obvious problem in that there is only

one bus and one access to the memory connected on the other

side, so there is a likelihood that two or more processors

will try to access the same area of memory simultaneously.

This problem can, however, be overcome by dividing the

memcry into segments, and allowing only one processor at a
time to access a segment.

PAGE 2-8

This scheme is the least costly in terms of the hardware

used, and is also the least complex in terms of components

as the bus can be totally passive. Modification is achieved

simply by physically dding or removing functional units.

However, a single bus system is naturally unreliable in that

if the bus fails then a tote, system failure occurs.

2.2.2 Cross Bar Switch

The cross bar switch as shown in figure 2.3 has separate

paths from the processors to each memory and I/O unit. The

functional units (processors, memories and I/O) need not be

concerned with the bus interface as the switch contains all

MEM ORY nMEMORY 3MEMORY 2MEMORY 1

ESSOR

PROCESSOR

PROCESSOR

PROCESSOR

FIGURE 2.3 CROSSBAR SWITCH

toIVO

PAGE

I

PAGE 2-10

This is the most complex interconnection scheme because the

number of connections is necessarily large and because of

the extra logic needed in the switch. The complexity grows

exponentially as the number of units becomes large.

Functional units, however, are simple and inexpensive

because they do not need the extra logic to drive the

interface and the potential exists for a high data transfer

rate, since there is a separate path available to each unit.

Reliability is reasonable and can be improved by redundancy

of the units. System efficiency is high because

simultaneous transfers between processors and memory units

can be accomplished.

Clearly the switching elements are the major drawback to

such a scheme, but it must be pointed out that Intel is

about to produce an LSI circuit with a large number of

cross-bar switches for their new range of multi-processors

[ENS 74U h is will obviously reduce the cost factor as well

as the complexity discusser above.

PAGE 2-11

2.2.3 Multiport Memory

In a multiport memory system the control, switching anc

priority arbitration are concentrated at the interface to

the passive units, and not in the switch as in the cross oar

scheme. Figure 2.4 shows that each processor has a separate

port and bus connecting it to each memory and I/O unit.

P R O C ESS ORP R O C E S S O R P R O C ESS OR

; MORY 1

I/O

MEMORY 3

/O r,

MEMORY 2

MEMORY n

P R O C E S S O R

f i g u r e : 2 . 4 MULTIPORT MLMORY

PAGE 2-13

This approach is the most expensive, since multiport

memories are costly and each memory has to have contention

logic built in, in order to arbitrate between processors

competing for the resource. High data transfer rates can be

achieved, but expandability is difficult as more logic is

required to increase the number of memory ports, or to share

the existing ports amongst all the processors.

This system has its use in a system which has a limited

number of processors, but clearly becomes unwieldy as soon

as the number gets large.

2.3 Shared Memory

All of the interconnection strategies, previously mentioned,

usually use shared memory which provides for a means of

interaction between microprocessors. This interaction can

be enhanced if there is no distinction between local memory

of a single processor and global memory of the

multiprocessor system. This is clearly a unique feature

which has the advantage of being able to incorporate a truly

distributed data base, since processors can address all the

memory simultaneously. However care must be taken to ensure

security of data.

PAGE 2-14

2 • 4 T ime-D i v i s i or, Multiplexed Bus

The Time Division Multiplexed (TDf-"' shared bus offers the

best capability of all the interconnections discussed as it

is simple, cheap, easy to implement and is a passive

interconnection. The appare • r limitations of the TDM bus

are:

1. Memory Contention

2. Reduced Bandwidth

3. Bus Contention

Fortunately these can largely be overcome as outlined below.

2.4.1 Memory Contenti or

A shared bus, as mentioned previously, is usually associated

with common memory and therefore memory contention can

occur. A system that allows the programmer to use a range

of program addresses which may be different from the range

of physical memories available (known as virtual memory

addressing) may circumvent memory contention.

PAGE 2-15

2.4.2 ffandwidth Limitations

Bandwidth limitations can be overcome by using high-speed

technology to achieve a high data communication rate on the

shared bus. in addition if the speed of access to the bus

is increased then the overall bandwidth should also be

increased.

2.4.3 Bus Contention

Examining the simple time-shared bus, it is found that

contention occurs when several processors are making heavy

use of the bus and when there are no mechanisms to res'- ve

this contention (and cause processor idle time). Therefore

a model of the shared bus can be made as a master/slave

relationship (where each slave runs a single user task and

the masters provide the requested service) in order to

consider the problem of content!on.

Let the slave request rate = 1/L in secs and slaves only

process when serviced by a master.

Let

N * number of slaves

Navg = average number of slaves

M = number of masters

Mavg = average number of masters

/

PAGE 2-16

L/U, and Pi = probability of i slaves in oueue.

^avg ~ average number of total busy processors

wavg = average waiting time in queue.

Sm = 1/U expected service time of requests

wm = expected waiting time in queue

It can be shown [TOO 78} that

'av9’-P'ifcM"1N.

Wavg =wm +sm ~N~Navq
^avg•L

This simply states that the average slave waiting time

increases as more slaves become idle {N-Navg} while

waiting for service from masters.

The same conclusion can be reached by examining the bus

utilization factor, which is the fraction of the time that a

particular processor will make use of the data bus during an
instruction cvcle.

This master/slave approach reinforces the need for some sort

of control to supervise the allocation of memory to

processors and the allocation of time slots to processors

for execution of tasks. If this time slot (or bus

utilization factor) is reduced then a significant increase

in system throughput is achieved.

PAGE 2-17

2.5 Suocryj sor Co,, trol

The key to the success of a mas ter/alave multiprocessor

.

Software has boon shown to be less reliabl : than hardware

[KOP 81] and a l a r g o orogram can never really be proved

correct. Rocj [RC) 76] has shown in his investigation that

the implement it ion of m operating system kernel in hardware

has rruc'a promise. Th • us * of bit-slice technology offers

the designer a chance to design the architecture of the

.

therefore, a bit-s1ice master controller was designed to

contain several features of the kernel of an operating

system. This will b d i s e a s ' d at r later stage.

2.6 An Ov or v b w of Pi - rod

,
simplified diagram is shown in figure 2.5, was designed with

th' f o 1 1 ow in-j features :

1. Distribut'd Operating Syr Lem

2. TDM shared bus

s.

PAGE 2-18

Tightly-coupled slave processors

Common - Shared memory, with no distinction between

global and local memory.

Intelligent Input/Output Control

PAGE 2-19

I/O BUS

SLAV^pROCFSSORS /

DISK UNIT

m e m o r i e s

- PROCESSOR TO
MEMORY BUS

USER
CONSOLE l J 3

' ^ v

PRINTER

l \ ^ J:T
/ /

1 USER CONSOLE

/

OPERATING SYSTEM CONTROLLER

FIGURE 2.5 SYSTEM DIAGRAM

PAGE 2-20

2.7 Conclusion

1 '1 1 1 i comp ut or system with distributed control is

probably the only architectural form that has the potential

to satisfy all major architectural goals such as cost

-

decomposition of software complexibility [GIL BEHR]. The

multiprocessor is an interconection of uniprocessors and it

is this interconnection scheme which forms the basis of this
thesis.

.

by a bit-slice processor which has the function of a system

supervisor. inere are presently 5 slave processors each of

.

memory modules, which initially consist of 256 byte

segments, ere interfaced to the processors via a time-shared

■
(ECL).

Tne I/O section ha not been implemented in the prototype

i : 1 ' J 'Ct o a] at a.! It? 1 developoment (appendix H) .

The following chapt-r describes the hardware structure

whereas chanter 4 discusses the software in more detail.

CHAPTER 3

A REAL-TIME OPERATING SYSTEM FOR RAMROD

"Then did I see in the whole work of G OD, that a man is
not able to find out the work that is done under the
sun, inasmuch as though a man were able to toil to seek
for it he would not find it, and even if he were wise
to think to know it, he would yet not be able to find
it" [Eccl viii 17].

This chapter discusses aspects of real-time operating

systems which must be considered when providing the

supervisory control required by Ramrod. In order to

meet the objectives of speed and reliability it was

decided to place as much as possible of the operating

system in hardware rather than in software. Finally in

order to meet the criterion of reliability, it was

decided to distribute the operating system as tar as

possible throughout Ramrod.

3.1 The Role of an Ope.atina System

"n general an operating system has the prime function

of transforming raw hardware into a system more

amenable to its users! In addition, it should make the

best possible use of available hardware so as to be

generally more cost-effecive.

PAGE 3-2

An operating system has to be able to:

1. Provide maximum system reliability with a

minimum of operator interventio .

2. Exclude the user from details of

implementation i.e make the system appear to

tne user as simple as possible.

3. Give the impression that the user has the sole

use of the computer.

In general then a real-time, multi-user operating
system should be able to:

1. Perform input/output either to a peripheral
and/or to a user

2. Dispatch tasks to processors according to some

predefined algorithm

3. Perform multitasking, i.e. allow many tasks

to be executed concurrently

4. Supervise communications between tasks and/or

the operating system

5. Recognize and service i n t e r r u p t s

PAGE 3-3

3•2 Multiprocessor Operating Systems

In the system developed in this thesis, Ramrod, in

which there are many slave processors available for

executing tasks, the operating system has an extra

function to perform in scheduling the slave processors

for execution of tasks. Once a task is dispatched to a

free slave processor then the slave processor still has

to be initiated. This is a true multitasking _,r

multiprocessing environment and tasks can be said tc be

running concurrently. It must be noted that

concurrency in a parallel processor computer is true

concurrency as processors can execute tasks absolutely

simultaneously, whereas there is only 1 apparent1

concurrency in a uniprocessor compu ter (since the

so-called concurrent tasks are actually being processed

serially).

In order to have a near-linear increase in processino

power in relation tc an increase in processors, the

master controller (in which the kernel of the operating

system resides) should preferably have a cycle time

faster than that of a single processor. This ensures

the ability to control the slave processors as well as

execute the kernel of the operating system.

PAGE 3-4

A~ advantage of having some of the operating system

removed from the processing environment is that the

master can be faster than the slaves and thus have more

-.revive control over the system. Secondly, a

purp se-built hardware structure should be able to

accommodate and execute the function of an operating

.s.e„. Dtt.er than a general microprocessor. This is

largely due to the fact that the actual functions

performed by an operating system are relatively simple

ana require little data manipulation. The functions

do, however, require to be executed as fast as

possible, in order not to degrade the performance of
the actual processors.

In croer to have enough power to control many

proc or. tne one hand and to contain an operating

system on the other hand, bit-slice architecture (which

15 '"ery fast and is micr©programmable, see app B) ,
offers the opportunity of designing a purpose-built

powerful operating system processor, as mentioned in
2.4.

PAGE 3-4

An advantage of having some of the operating system

removed from the processing environment is that the

master can be faster than the slaves and thus have more

effective control over the system. Secondly, a

purpose-built hardwa* ; structure should be able to

accommodate and execute the function of an operating

system better than a general microprocessor. This is

largely due to the fact that the actual functions

performed by an operating system are relatively simple

and reouire little data manipulation. The functions

do, however, require to be executed as fast as

possible, in order not to degrade the performance of

the actual processors.

In order to have enough power to control many

processors on the one hand and to contain an operating

system on the other hand, bit-slice architecture (which

is very fast and is microprogrammable, see app E),

offers the opportunity of designing a purpose-built

powerful operating system processor, as mentioned in

2.4.

PAGE 3-5

3 3 The use of the Operating System in Ramrod

The Ramrod operating system has certain essential

functions to perform. These are summarized as

follows:-

1. Each processor in the Ramrod multiprocessor

structure must be allocated a task to execute,

and these have to be loaded into the common

memory from an external source. A segment of

memory must be assigned to each task, so that

each processor can execute a task

independently of ocher processors. A task is

considered to be an activity which provides a

function such as Input, Output or it may be an

execution of a prog-am, or segment of a

program [LIST].

2. From 1 above it may be seen that each

processor in Ramrod has to be allocated a time

slice in order that it may access memory on

the other side of the common bus. In

addition, the particular memory segment

selected has to be enabled. A processor must

be able to address any or all of the memory

segments in order that the system can be said

to contain a virtual memory. To achieve this,

PAGE 3-6

neretore, some sort of intelligent control
needed

3- A list of information pertaining to the

location of defined tasks in memory,

processors scheduled to run tasks, and the

eta,us of tasks must be monitored so that the

operating system knows the configuration of

the system at any point in time. An interface

to the system user is also required in order

that such system information may be accessed,

55 V e n a$ Providing an overall ability to

communicate with the system and its component
par ts.

hniCr‘ 11 hac been executing must b
redispatched to the next available workin
processor.

aerlnea tasks will require th
ability to communicate with others and thi

must be supervised in order that security o

information may be assured, one processor ma,

also need to draw on the results produced b,
another processor.

PAGE 3-7

in view of the above more than dedicated logic is

needed ior the total control of the system. T h e r e f o r e ,

,r, intelligent master controller must be created which,

in essence, contains some basic features of t h e k e r n e l

of an ooerating system, and may indeed implement t h e s e

facilities in hardware (see 4.2.).

As has seen pointed out in chapter 1, distribution of

the hardware improves systt a reliability a n d s i m i l a r l y

distribution of the operating system w i l l i m p r o v e

software reliability. Thus it was d e c i d e a to

distribute the operating system as much a s p o s s i b l e .

The major effect of this is to p r o v i d e f o r l i m i t e d

operation in the event of the failure of a p a r t i c u l a r

section of the system.

3. 4 Basic Structure of thr Opr rating S y s t e r ^

It has successfully been shown that a hardware-based

operating system implemented using bit slice technology

can indeed work with a high degree of efficiency

[ROD 76 1 .

PAGE 3-8

As was d e m o n s t r a t e d in Roc 11 s w o r ;

the advantage of a high operating ra> - and t .. ;nir .

relatively simple hardware St rue tut . ihî » ' ̂

aids in the d bugging)f the hardware/soltwa^e

structure. The core of an operating system is the

executive or the nucleus, and it is this that will be

nucleus concerns itself with memory management,

input/output, task dispatching, processor scheduling,

inter-task con tun cat ion and intertupt .

The ope r a t i n g system proposed for Ramrod also has t n e

highly des i r a b l e property of being partially

distributed. This increases the reliability oL t h e

system as a whole, because once a slave processor is

executing a task, it needs no assistance from t h e

master until inter-task c o m m u n ication is wante-1 or the

•

can still ca rry on e x ecuting until one of the above two

terminating conditions occur. Thi^ featur_ is

important in view of the strategic role or the

operating system construction. Clearly as appendix J

,
weak point and the failure of the master should not

cause a total syst em collapse. Therefore an effort

should be made to distribute the operating system

PAGE 5-9

wherever possible.

Thus routines related to the function of the

Input/Output module are implemented in the slave

processors while the rest of the kernel of the

operating system is incorporated in the master

bit-slice processor.

Another important consideration in the design of the

operating system is the control over memory usage.

Memory management is concerned with loading tasks into

memory, ensuring that there is place for the task to

reside and finally removing completed tasks. This can

be combined in Ramrod with task dispatching since the

memory is common to all processors, and therefore a

particular memory segment can be assigned to any

processes. A Task Control Block (TCB) table is kept to

inform the nucleus where the task reside' the state of

the task and to which processor it has been disnatched.

Thus dynamic rescheduling is achieved by allowing

another free slave processor access to the segment of

memory.

/

PAGE 3-10

Pairing a memory segment and a slave proce-^o.

accomplished by selection, by the master, of a segment

of memory simultaneously with the selection of

processor for access on the TDK common bus. A modulo n

counter (where n - number of processors! generates

consecutive addresses for reading a fast Read/Write

memory (RAM), whose output selects or deselects

processors and memory segments. The master controller

has the ability to rewrite this fast RAM, thus alio, ing

any combination of processor-memory communication.

This is illustrated in figure 3.1, which shows that the

master controller determines which devices are allowed

access onto the TDM b u s .

ROCESSORnPROCESSOR4PROCESSOR3PROCESSORS
 ^

p CESSOR]

MASTER
CONTROLLER

DIVISION MULTIPLEXED BUSt TIME-

MEMORY 3

MEMORY nMEMORY 4
MEMORY 2MEMORY 1

w1

IGURE 3.1 SLAVE PROCESSOR TO MEMORY SEGMENT PAIRING

PAGE

PAGE 3-12

3 , 5 I n t e r - P r o c e s s C o m m u n i c a t . i o n s_

In any system in which several tasks are being execute

in parallel the situation will aiways occur when

processors require to exchange data. Inter-process

communication can be defined, in this context,

message passing between processes. For example, in a

simple arithmetic calculation z = (X w Y I * (X-Y), one task

could do the addition, a second task the subtraction

and a third task the multiplication. The first two

tasks have to pass their data to the th.-d task, in

order that the multiplication rt oct r. Thus the

third task waits until it receive' sages from task 1

and task 2. Inter-process communication (IPO nas to

be co-ordinated by the operating system which must

know, amongst other things, who the partners to the

message are, so that processes can cooperate correctly

in the manipulation of data, whilst a more detailed

discussion of communications appears in Chapter 6, the

discussion which follows outlines how Inter Process

Communication (IPO is presently implemented in Ramrod.

Of importance in the consideration of IPC methodology

is the danger of deadlocks. This arises because

resources are usually allocated to processors on the

basis of their availability without any predete-mined

allocation algorithm. Deadlock can be explained as in

PAGE 3-13

the following e x a m p l e : A user task is granted the

printer for outputing data and then requests the card

reader to read in data; Another user task is using the

card reader and then requests the printer so that it

can output results. If these resources can only ce

used by one process at a t i m e , and neither process wil-

release the resource it holds, then deadlock occurs.

In order to prevent d e a d l o c k , (or deadly embrace)

Dijkstra proposed the semaphore [ul J] , as a no.,

negative integer, which apart from initialisation of

its value, can be acted upon only by the operations

Wait and Signal' [LIS]. The Wait aid Signal functions

can be summarized as follows;

Wait(s) : when s>0, decrement s

Signal (s): increment s

Thus a resource (printer etc) can only be allocated to

one process. This approach is widely used and could be

implemented in Ramrod (see section 6 .j).

Another more practical solution is, however, possible.

If a program is partioned into tasks, which are

executed sequentially, such that there is no need for

any inter-task communications until a task is

terminated, and inter-task communication only takes

place between adjacent tasks, then deadlock can never

PAGE 3-14

o c c u r ! Thus when partitioning the program, if a point

in a task is reached where communication with another

task is needed, this is the place where the user should

partition the program (see 6.2).

It is suggested that the user, who writes the programs

for his particular needs should do the partitioning of

the tasks in this manner. This clearly is possible to

implement automatically but it is beyond the scope of

this present investigation to include software which

will part ition the tasks according -c the aoo

specification. In the present system this is carried

out manually. Thus using data flow techniques (chapter

6) the only communication between one task and another

occurs either at the beginning or at the end of the

task. This highly pragmatic approach proven most

useful, and s u p n s i n g l y easy to implement. It is

however only a partial and somewhat crude solution. As

will be discussed in the next section, Ramrod has

provided many other possible hardware mechanisms which

may be used to implement Inter-Process Communication.

Thus Ramrod is a useful testbed for evaluating a

var ietv of proposals .

PAGE 3-15

3.5.1 C o m m u n i c a t i o n m e c h a n i s m s p r o v i d e d b y R a m r o d —

Ramrod provides three mechanisms through which tasKs

can communicate with each other.

1. An intelligent Input/Output controller

(Ethernet see appendix E), which allows any

processor to be connected to any peripheral,

or to any other processor.

2. A vector interrupt system to the master: A

task can suspend itself once I P C is r e q u i r e d

and be woken up at a later stage. This is

analogous to Hoare's communicating sequential

orocesses (see chapter 6).

2, Tasks communicate by passing data through

common memory (see earlier discussion on

oj ikstra ' s semaphores, which car. be

implemented via this mechanism).

However it must be pointed out that the above are only

mechanisms, and do not provide for deadlock avoidance!

They do show however the pow*r of the structure of

Ramrod as an experimental tool.

PAGE 3-16

3.6 User Task to Operating System Communication

Communication between any user task and the operating

system is effected simply by means of a 'watchdog'

timeout signal which interrupts the master controller.

A task must contain instructions which continuously

trigger a monostable multivibrator, which will time out

if the task terminates or if a failure occurs. The

interrupts of the slave processors are vectored so that

the master can identify the interrupt. .he master can

then check whether the timeout was caused by a

processor fault or task fault or if the processor has

finished executing the task.

In summary this simple mechanism is extremely powerful

and provides both for a termination indication, as well

as the ability to detect a processor failure.

3.7 Conclusion

Implementing the operating system in hardware (by

purpose designed architecture) makes the overall

system reliable and flexible, because (as stated

before) hardware is naturally more reliable than

software. In addition there is an ability to

microprogram the operating system , it is claimed that

the system is flexible, as the architecture is easily

PAGE 3-17

modified to suit the user's needs. The operating

system functions have to be complemented by the minimal

amount of software and this adds to reliabilty.

Furthermore the operating system is distributed in that

Input/Output and certain local control routines are

implemented in the slave processors. Thus the

reliability of the system as a whole is enhanced.

CHAPTER 4

SYSTEM HARDWARE

deliver those that practised" [Eccl v m 8j.

The block diagram of Ramrod was discussed m 2.6 ana

in this chapter the hardware of both the bit-slice

master processor and the multiprocessors are

outlined. A more detailed discussion of this

hardware structure is to be found in appendix G.

In order for any new architecture to have economic

relevance, it must be simple and efficient, ana meet

the needs of its potential users. In oroer to

achieve these aims it should exhibit such features as

fault-toler ance and provision of the neccessary

redundancy. The multiprocessor -tructure of Ramrod

fulfills these criterea.

PAGE 4-2

4 .i System Overview

As has been discussed previously (sect. 1.5),

distribution of work over veral conventional

processors with common storage is . one approach— to

Increasing processing speed. However, a serious

problem with common, shared-memory multiprocessor

systems is that all the memory is accessible by all

Processors, and therefore special support is required

to ensure that processors do not access the same

address simultaneously, thereby corrupting

other's data [ACER 82).

figure 4.1 shows the overall system block diagram

with the Master Controller (ME, which is in charge of

the system. The ME which is a bit slice hardware

cased real time operating system controls the

data/address latches on botn sides of

D i v i s i o n Multiplexed (TDM) bus. As the lat.hes are

ra.ntical the hardware can be said to be modular.

PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL
1 _ 2 - 3 N

5

ETHERNET BUS

5ETHERNET ETHERNET ETHERNET ETHERNET
INTERFACE INTERFACE INTERFACE '— — — — — INTERFACE

1 2 3 N

■n I ROL LINES TO
LATCHES AND
PROCESSORS

MASTER CONTROLLER
DESIGNED FROM

2900 BIT-SLICE SERIES
FAMILY

MICROPROCESSOR MICROPROCESSOR MICROPROCESSOR MICROPROCESSOR
; 1 2 3 N

DATA/
ADDRESS
LATCHES

DATA/
ADDRESS
LATCHES

z r

j
DATA/

ADDRESS
LATCHES

DATA/
ADDRESS
LATCHES

DATA AND ADDRESS BUSSES EMITTER COUPLED LOGIC u
0

-4/ 1
DATA/

---ik: x.
DATA/

v
DATA/ j,c---- V __

LATA/
ADDRESS ADDRESS ADDRESS ADDRESS
LATCH __ LATCH LATCH LATCH

RANDOM ACCESS MEMORY

FIGURE: 4.1 RAMROD BLOCK DIAGRAM

PAGC 4-4

The multiprocessor architecture proposed a.:d designed

makes use of conventional microprocessors, with their

relatively slow processing times. Of great

significance is the fact that the cycle time of a

single processor in the system is not significantly

_ . . . iwit

average cycle time for a conventional microprocessor

is approximately 1 microsecond, tl :me baing set

primarily by speed of memory access. Figure 4.2

shows how all the processors communicate with the

common memory by way of the TDM bus. While the

.

the first processor and this time is available for

use by the other processors. Each processor uses the

bus for a very short period and if there are 50

processors then this period is 20 nanoseconds. Thus

with the present system 50 microprocessors are able

to communicate with each other with almost no

degradation in performance of any of the

micronrocessors.

1 M I C R O P R O C E S S O R CYCLE
►4---

li «- *- n t:3

A D D R E S S TO MEMORY
(PROCESSOR 1)

DATA FROM MEMORY
(PROCESSOR 1)

FIGURE 4.2 TI MIN G ON THE SHARED BUS

I
U1

PAGE

PAGE 4-6

Tne cyclic operation occurs as follows: each

processor deposits data and addresses into its

latches and when these are given access to the busf

data are transferee into latches on the other side of

the bus.

It should be noted that the data can be sent to more

than one set of memory latches, thus giving the

processors access to more than one memory segment

simultaneously. In addition it should be noted that

the concept of a distr ibued data base can be

implemented easily on this type of computer system,

as a global variable with many copies can be

simultaneously updated by one processor. A

distributed data base implies that each processor in

the system has its own copy of the data base.

4 . 2 Basic Structure of Pam.roc

The following section provides an overview of the

various components of Ramrod. Full details of actual

implementation, with the circuit diagrams, appear in

Appendix G.

PAGE 4-7

4,2, I M iccoproc^r-r or Modulo

The microprocessor slave module consists of an ci.iB5

microprocessor together with memor/ an l

associated support chips. It is also provided with a

serial data channel to allow access during

devel. .ant (so that a terminal could be provided to

each slave processor an 1 hence a 1 low direct co i..ro 1) .

These slave processors have to be synchronised wi-h

the Time-Divisioa Multiplexed (TDM) bus in order that

there should be a minimal amount of processo- idle

tine (as discussed in s ction 2.4.1). In addition,

in order that tha o rating system can be

distributed, i limited number o operating system

functions mu ;t h ' present on each processor (so that

failure of th master controller is not critical in

the short term). The slave processors can therefore

continue executing th * ta '< "> dispatched to them until

the tasks suspend themselves, and thus the system can

"gracefully degrade".

The local op-rating system is implemented in a

resident Electronically Programmable Read Only Memory

(EPROM) on th' slave processor module and includes

additional software to enable the slave to be

self-test ed.

PAGE 4-8

4.2.2 TDM bus and Interface

The system designed is tolerant of processor failure

but, as with the conventional common bus, it is very

sensitive to bus failure. A catastrophic failure

occurs if the bus fails and therefore a dual,

redundant bus must be provided to minimize the

possibility of system failure due to bus failure.

The system can contain two sets of identical latches

for each processor and memory segment. Thus, when

one bus fails (which can be detected by the master

processor), its associated latches are disabled and

the second set of latches is enabled. A second

control board (see 4.2.7.8) can achieve this

switching of latches.

Most Multiprocesor systems with a common memory and

bus suffer from bandwidth limitations, since the bus

bandwidth will not increase even though more

processors are added (as has been mentioned

previously in section 2.2.1). Thus, what is needed

is a state-of-the-art design, capable of high speeds

of transfer, inexpensive and uncomplicated.

/

PAGE -4-9

Wnen choosing a logic family for the implementation

of the bus and interface there are several factors to

consider: i.e. noise immunity, logic flexibility,

speeo and some practical considerations. Obviously,

for each application the factors must have a certain

priority. In the case of the bus controller the

highest priority is given to speed, as this

determines the transfer rate across the bus. Then

the priorities are: logic flexibility, practical

considerations and noise immunity.

4.2.2.1 Speed

In order to decrease the degradation in processor

performance, the transfer rate of the bus must be

high. Unfortunately the faster the logic, the higher

the cost and the power dissipation! when considering '

high speed, the number of levels of gating becomes an

added factor, which in turn is a function of the
logic flexibility.

Gate propagation delay is perhaps the most important

measure of speed. It is defined as the time taken

for an output to appear from a gate after the signal
has been entered at the input.

PAGE 4-10

4. 2 . 2. 2 Logic P l.-x'ibi I i ty -

Reduct'on of the component count for a particular

device is dependant on the flexibility of the logic

family used. Flexibility is roughly related to the

number of different outputs the integrated circuit

(IC) has available. W Lre-ORing, the capability of

tying more than one output together also

significantly reduces component count. Other factors

to consider are:

1.
unnecce nary.

2 .

because the faster

closely a short

characteristics of

(MOT B].

driving capability,

the signal the more

line acquires the

a t •ansmiss ion line

3. Input/output interfacinq, i.e interfacing to

the bua and fron the bus to memory.

levels are not Tr in sir, tor-Trans is tor Logic

(TTL) levels.

5 . Multiple gal n;, thus reducing chip count.

PAGE 4-11

4 '^ •2•5 Practical Considerations of Logic Choice -

Before committing a design to paper, the availability

of the components has to be ascertained, and second

sourcing has to be considered. Since a budget is

normally to a project and subdived for the various

sections, the cost factor plays a part in the

selection of the component. If the logic to be used

is "unusual" then the designer has to address

problems such as what power supplies are required as

this might necessitate extra power supplies over and

above the normal single +5 volts requirement of TTL
based systems.

4 . 2 . 2 . 4 .Noise Immunity -

As a system such as Ramrod might have to operate in

an electrically noisy environment, it must have high

noise immunity (it was originally conceived for use

in process control). There are two types of noise

immunity to be considered, i.e. internal and

external. when the circuits themselves switch from

one level to another, internal noise is generated,

whereas external noise is caused by external devices.

A good measure of immunity is the voltage difference

between the two logic levels, as the greater the

PAGE 4-12

difference between leve]s the higher the noise level

must be in order to corrupt the data.

4 . 2.2.5 Compar is ions of Logic Families -

As the highest Priority is speed, only Emitter

Coupled Logic (ECL) and Advanced Schottky

Transistor-Transistor Logic (AST) were considered for

use in the bus system, as these are the only

currently available, off-the-shelf, logic families

fast enough for the application. The advantages and

disadvantages of these two families are tabulated in

the appendix.

Both ECL and AST have the same availability and

second sourcing problems in South Africa, i.e both

are difficult to obtain, and the costs are generally

the same.

The major disadvantages of using ECL are the several

power supplies required and the need for thoroughness

in testing. However, as ECL s at least twice as

fast as AST, it was chosen as the logic in which the

bus and interface were to be implemented.

p a g e 4-13

4.2.3 Bus Interface

The interface to the ECL bus is implemented via a

oidirectional logic level translating latch, which

; ovides a rapid means of converting microprocessor

or memory TTL levels to the bus' ECL levels. In

addition tne latches need ECL control signals which

are provided by simple one-way TTL to ECL

translators.

Each microprocessor and memory module has its own set

O a. latches,and as the latches on either side of the

ous are identical, there is no need to design an

cx.ra latch module. The latches, as mentioned above,

can translate in either direction and can thus be

used on both sides of the bus. Its control sionals,

which are derived from the processor and memory

boards, determine how its operating mode.

4.2.4 The Time-Division Multip lexed Bus (TPM)

The TDM bus adopted is unusual in that it is circular

and is joined at the ends! The philosophy behind the

structure is simple; to ensure minimum transmission

time of signals on the bus the physical distance

between any processor and the memory unit should be

kept at a minimum (fig 4.3).

PAGE 4-15

The use of a circular bus for ECL has not been widely

documented, although Sander son and Zoccoli [ZOC]

have designed a multiprocessor system using a

circular ECL Dus where they state the advantages of

using such a construction, but they do not, however,

go into detail. Therefore the modelling of the bus

has been the subject of an additional investigation

(Appendix C). This investigation has shown the

princple to be viable and has revealed design

parameters.

Note that there are actually two buses which th'

system uses:

a) The ECL TDM bus

b) A 7TL bus for power and control signals

4.2.5 Memory Module

In the prototype each module contained a relatively

small memory segment (2 56 Bytes Random Access Memory,

RAM) together with the logic needed to produce the

signals for reading from and writing to the latches.

This was selected partly on economic grounds - a

practical, lull scale system clearly would have

larger memory segments. The speed of this memory

need not be particularly high because the slave

PAGE 4-16

processors access this memory via the TDM bus and

have to wait their turn for a time slice.

4.2.6 Input,-'Output Module

The implementation of the input/output section

adopted is similar to the memory interface concept

developed in that it is possible to pair a device on

the I/O bus to any other device. It is advantageous

to have inter changeability amongst processors for I/O

functions just as for memory. Implementation must

also take into account possible

processor-to-processor communication as well as

processor-to-per ipheral communication. Thus the

input/output interface must be highly flexible.

In order to implement this a highly intelligent- and

fast interface is needed. The only medium found to

fulfil these criteria lies in the adaptation of a

simple but high-speed link based on the principles of

the Ethernet System. Ethernet has the highly

desirable feature that no master controller is

required. Any device wishing to use the bus simply

'listens' and seizes the bus when it is free.

Simultaneous transmissions are ignored and

retransmission takes place after a "random" wait time

(see Appendix E for more details of Ethernet).

PAGE 4-18

PAGE 4-17

However it must be pointed out that initially, m

°raer to simplify testing of the system, I/O was

achieved via dedicated processors. The software has

Identity section which can determine whether the

processor is connected to a terminal or a disk

operating system, or whether it is simply a task

processor. Work on the Ethernet controller is

currently taking place in a related project. (see
Appendix E for details).

4.2.7 Bit-Slice Master Controller

71,6 m e d eStabHshed <“ ct I-*, for a hardware
cased operating system with the following facilities:

I- An interface to the multiprocessor structure
to schedule processors

2. A sophisticated interrupt hierarchy

Interrupts may come from the processors,

after failure or task termination or from

real-time clocks. Any hardware- implemented

operating system must be able to deal with

these interrupts and respond accordingly

PAGE 4-17

However it must be pointed out that initially,

order to simplify testing of the system, I/O was

achieved via dedicated processors. The software has

an identity section which can determine whether the

processor is connected to a terminal or a disk

operating system, or whether it is simply a task

processor. Work on the Ethernet controller is

currently taking place in a related project. (see

Appendix E for details).

4.2.7 Bit-Slice Master Controller

The need was established (sect 1.4) for a hardware

based operating system with the following facilities:

1. An interface to the multiprocessor structure

to schedule processors

2. A sophisticated interrupt hierarchy.

Interrupts may come from the processors,

after failure or task termination cr from

real-time clocks. Any hardware- implemented

operating system must be able to deal with

these interrupts and respond accordingly

PAGE 4-18

3. The processor must have available a limited

amount of: high-speed storage in which it can

hold Task Control Blocks, oointecs, stacks
and constants.

,

there are two important factors which must be kept in

mlnd: speed anfl flexibility. Flexibility is

desirable so that the functions can be as universal

as possible and so that the processor can be expanded
if needed.

4.2.".I Bit-51i co Arc i itecture -

It has been shown [r o d 7CJ that bit-slice

architecture offers the best features for

.

O'-^ipnei has almost complete control over the

3r(' ‘ ' processor required, >sd in

addition the bit-slice processor is

|,V71"''' !"iS 1 raakes it superior to other

architectural techniques, it offers a greater degree

Of flexibility in specifying a computer's instruction

repertoire, while also resulting i,. considerable
simplification in the logic.

PAGE 4-19

Bit-slice microprocessors are capable of high-speed

operation since they are based on bipolar technology,

often resulting in cycle times of less than 10H

nanoseconds.

Currently the following bit-slice microprocessor

families are widely used and relatively freely

available:

1. The Intel 3000 series

2. The Motorola 10800 ECL series

3. The Advanced Micro Devices 2900 Low Power

Schottky (AMD) series

From a user's point of view the differences are few

but the main designer's criteria are local

availability and developement tools. The AMD series

was chosen because of the local support and second

sourcing and primarily because a cheap emulation tool

was available in the form of an extension to the

Motorola EXORciser (see Appendix F).

PAGE 4-20

i'urn ing to the actual design, the bit-siice processor

can be subdivided into two parts: the Computer

Control Unit (CCU, and the Central Processor Unit

B u - s l i c e architecture is essentially the

th“ 1' 01 a "OL"”al processor with one basic
difference, each functional unit has only (for

instance in the 2900 series, a 4 bit wide word and to

”eke an 8 blt two units need to be
inter-connected. Fundamental to any microprocessor

besed system is the determination of the

au/anta.-;.. that their micro-instruction set is

■
the actual architecture, the structure of the

microinstruction must b • discussed.

' ion

The principle decision which has to be made by th

designer of a microproqrammable logic system is th

.

d "t ' "' '' ' ' lt * ormat the designer has to bear it
mind the facilities required and the external control
dc<: i ' 1 '' this format .

PAGE 4-21

6 are generally two classifications of

microinstructions: Vertical or Horizontal. A

Horizontal microinstruction will control the

operation of many resources in parallel, and can be

unlimited in width but in practice is normally up to

64 bltS Wlde’ (In actual fact this is often
determined by practical issues - such as the maximum

size which a developement facility can support). m

contrast, a vertical microinstruction is similar to a

normal machine code instruction and affects only a

single primitive operation. After reviewing the

requirements of the bit-slice processor it becomes

apparent that the chosen format must be horizontal,

m order to achieve the parallelism required.

PAGE 4-22

9 deSi9natira °f fi=ld= - t h i n the chosen
1S shown in figure 4.4. This means

that in one horizontal microinstruction the following
operations may be specified;

Control of ventral Processor Array (CPA)

2. Control of next address generation

3. Control of status of flags from the CPA

C°ntr01 °£ ^Put/output functions, including
local memory control board, interrupt unit
ana microprocessors

(EN lPfv PROCESSOR
UNIT

ruwf fwirpn
s m t t K , r r N i m (B i nAWf53(retainJlAl A Ahi'* I 1

r < > » M M f ' I . NC'WIC-̂L (J ^ U M lR IF5Ti nh£f/TYl M U'f ' 'X

TP

4<. 6%
B H

S ' .>1

Bo DO

NX

jn- j) 32 3i 30 gq aa 22 JIl. -15 ?’•
JV IX D, B

■ a 70KEKQ EEEEE E EQ7E Q
FIGURE 4.-1 MICROINSTRUCTION FORMAT

PAGE 4-24

4.2.7.3 Tne Computer Control Unit (CCU) -

The major function of the CCU is the sequencing of

instructions, i.e the determination of the order in

which instruct ons are to be fetched from the

microinstruction store. Generally the n icroproqram

sequencer contains:

1. A microprogram counter register which will

increment after each clock cycle, thereby

selecting sequential addresses.

2. A condition code multiplexer whereby the

status of flags or other bits can be tested

for conditional branching.

3. A multiplexer which can select between the

counter register and a directly specifier

address.

The AMD sequencers and next address unit used allow

the addressing of 2**12 = 4096 locations with 2**4=16

next address instructions fo. the control of

conditional branching instructions. The actual

address space is organised into a 1-dimens ional

array, 1024 ty 64 bits wide. Each microinstruction

supplies 4 bits for the next address control and 12

PAGE 4-25

bits for the actual address. The scheme has an

advantage in that it allows the user to write his

instructions in a sequential fashion. In addition,

most other conventional programming techniaues can be

used (for example subrouting where return addresses

are automatically stacked and unstacked).

4.2.7.4 The Central Processor Array (CPA) -

The CPA of the bit-slice microcontroller is similar

in functional operation to that of the Arithmetic and

Logic Unit (ALU) of a conventional von-Neumann type

structure. The CPA can execute the following

operations:

1. ALU functions

2. Address and route data to and from local

memory

3. Route data to and from I/O interface to the

control board

4. Mask the inter riot control unit

5. Provide status bits to be routed to the CCU

PAGE 4-26

The AMD CPA contains 16 general-purpose registers to

hold stack pointers, memory address pointers and

system constants. A fast look ahead carry unit is

provided to make fast arithmetic computations

possible. A status and shift control unit is

included to control status and other functions

usually -ssociated with an ALU.

The logical operation of the ALU is determined by a

x /-bit control code and 6 bits de ermine the

operation of the status contol unit.

4.2.7 . 5 Input'Outout Control Uni: -

The input/output control has the following functions:

1. Local memory read/write

2. Control board read/write

3. Microprocessor memory read/write

4. Microprocessor hold and reset

5. Masking of interrupts

PAGE 4-27

The programming of the control board (4.2.7.8)

achieved by the I/O control unit. While this board

is being programmed its outouts are inhibited to

prevent unwanted processor-memory combinations from

taking place.

Upon receipt of an interrupt the input/output unit

can either hold the particular processor or reset it

to begin executing a task. In order to interrogate

the memory of any microprocessor the MC behaves like

a slave processor and simply reads the memory.

4.2.7.6 Interrupt Unit -

Ramrod accepts interrupts from each microprocessor

and can interrogate its memory to find out the type

of interrupt. Only 5 levels of interrupt are used,

although the number is theoretically expansible to

any number of levels.

A slave processor generates an interrupt request

signal which instructs the CCU to jump to the

interrupt service routine, where the identity of the

interrupting processor is determined. This is

achieved by the interrupt controller which supplies

the sequencer with an address corresponding to the

PAGE 4-27

The programming of the control board (4.2.7.8) is

achieved by the I/O control unit. While this board

is being programmed its outouts are inhibited to

prevent unwanted processor-memory combinations from

taking place.

Upon receipt of an interrupt the input/output unit

can either hold the particular processor or reset it

to begin executing a task . In order to interrogate

the memory of any microprocessor the MC behaves like

a slave processor and simply reads the memory.

4.2.7.6 Interrupt Unit -

Ramrod ac~' *-s interrupts from each microprocessor

and can interrogate its memory to find out the type

of interrupt. Only 5 levels of interrupt are used,

although the number is theoretically expansible to

any number of levels.

A slave processor generates an interrupt request

signal which instructs the CCU to jump to the

interrupt service routine, where the identity of the

interrupting processor is determined. This is

achieved by the interrupt controller which supplies

the sequencer with an address corresponding to the

PAGE 4-28

interrupt level. This is normally known as a

vectored interrupt.

4.2.7.7 Local Memory -

An operating system needs storage for tables, tasK

blocks etc. The registers in the CPA are

insufficient, and in addition scratch pad use is also

neccessary, so ordinary Metal Oxide Silicon (MOS)

memory is made available for this purpose. This is

similar to RAM in a simple microprocessor system.

4.2.7.8 Control Boa-d -

The control board consists of two identical sections

of very fast RAM which are used to enable the

microprocessor and memory modules respectively. The

Master Controller can only write the enabling signals

into this memory and the actu-_. reading of the memory

is accomplished by a modulo n counter where n is the

number of processors in the parallel array. The data

which is read from this RAM provide the enabling

signals for the latches which allow processor/memory

communication.

PAGE 4-29

4.2.7.9 Control Store -

A key factor in the design of a bit-slice

microprocessor is the cycle time of the processor.

Bit-slice timing can be calculated from the worst

time taken for data to traverse the data path. The

access time of the control store has a direc^

influence on this cycle time.

The data path begins with the instruction b=ing

fetched from memory end being presented to the

pipeline register. From there the individual sits

are available for control of the relevant parts of

the system. While the rest of the system *s

operating on this instruction, the sequencer

generates the next address, which is supplied to the

control store, the store is accessed and the

instruction is ready for entry into the pipeline

register.

Thus the read time of the control store is included

in the cycle time, which is reduced by the method of

pipelining outlined above. However there is still a

need for a fast -access memory.

PAGE 4-30

Eit-slice processors are usually designed with a

decoding PROF which accepts macroinstructions, or

normal instructions of processors, and calls

subroutines of microinstructions to implement the

macro instruction. If this PROM is dispensed

with,then the user can write his program on the

microinstruction level, thus improving speed.

A disadvantage is that the user has to write the full

64 bits rrespective of how many bits he needs. The

inner workings of the processor are also not

transparent to the user. Figure 4.5 shows the

general structure of the bit-slice processor

discussed.

PAGE 4-31

ADDRESS
BUS

PAGE 4-32

4.3 Physical Construct ion

The physical construction of Ramrod1s bus structure

is shown in figure 4.6. The latch boards plug

directly on the buses so as to ensure that the ECL

signals are generated as close as possible to the

bus. The TTL control signals and power lines go

through tie latch board to the board that is plugged

'piggy back1 fashion on to it. This 'piggy back 1

board can either be a memory or a processor board and

it then logically determines the mode in which the

latch board is to function.

The bus itself was implemented using double sided

"scotch-flex" cable with one complete side grounded.

Edge connectors were connected directly onto this

cable.

The control board which supplies the TTL control

signals plugs directly into the TTL bus and is driven

by the MC via a set of cables.

The master controller is located external to the bus

structure and, in practice, was located within an

expansion chassis associated with the EXORciser

developemer,t system.

PAGE 4-33

The slave processors, memory boards and latch modules

are cooled by a fan which is mounted on top of the

bus structure. ECL requires power supplies different

from that of TTL and thus there are five supplies

(+5, -12, +12, -5.2, -2 volts) connected and sensed

at the top of the circular construction. These

supplies are in addition to those of the bit-slice

master controller as power requirements for the

circular construction are high and if the supplies

were not duplicated then there would be a significant

power drop to the circular construction. Figure 4.6

shows a complete view of Ramrod.

4 * 4 Cone 1 us ion

PAGE 4-35

iSSS
UP tC n°W the hard— S — re has been developed

ana the f 0 U W i n 5 Cha« - describes the basis of the
sortware structure of Ramrod.

CHAPTER 5

IMPLEMENTATION OF THE OPERATING SYSTEM

"For everything there is a season; and a proper time
for every pursuit under the heavens. There is a time
to be born and a time to die; a time to plant and a
time to pluck up what hath oeen planted; a time to
kill and a time to heal ; a time a time to break down
and a time to build up; a time to weep and a tim to
laugh" [Eccl iii 1,2,3,4].

As has been stated before, the operating system of

Ramrod has been distributed amongst the various

processors in the system in order to increase the

reliability of the computer as a whole. The kernel

of the operating system is implemented in the

bit-slice master processor while most of the routines

which control input/output and- local processing are

resident in EPROMs on the slave processor boards.

Additional details of the operating system software

are to be found in appendix I and only high level

functional description are discussed in this charter.

Actual listings of the software can be obtained from

the Dept. of Electrical Engineering at the

University of the Wi 4-watersrand.

PAGE 5-2

5.1 Operating System Kerne-

The operating system has been simplified as far as

possible in order to implement only the essential

functions which are required to evaluate Ramrod. It

must be pointed out that additional features still

have to be implemented to provide a full, commercial

system.

The operating system kernel, as currently implemented

in the master controller contains the following

functions:

1. Dispatcher

A list is kept of the status of the tasks in

the system (Task Control Blocks TCB). The

dispatcher has the function of scanning the

list of TCB's and when a tasks is waiting to

be executed the dispatcher looks for an

available processor on the processor status

list.

PAGE 5-3

Scheduler

Once a task has been dispatched to a

processor, the processor has to be initiated

so as to run. The scheduler has therefore

the prime function of enabling processors.

The 'round robin1 scheme of scheduling is

actually implemented in the hardware (see

4.2.7.8) whereby processors are allowed

access to the bus, and hence to the common

memory, in turn (i.e. time slicing the

bus) .

Memory Manager

This module keeps a list of the memory

segments showing which are free or which are

occupied. Once a task has been executed its

memory segment joins the 'free' list. When

a task is loaded this module is consulted in

order to find a 'free' segment.

PAGE 5-4

Interrupt Handler

The interrupt handler determines the source

of an interrupt and proceeds to service the

interrupt after saving the volatile

environment of the interrupted routine.

When the interrupt has been serviced

execution of the interrupted routine is

resumed.

Input/Qutout Module

It is the function of the input/output

module to initiate an I/O operation, on

request. Tasks are loaded from an external

source or can be entered by the user from a

console which is connected to one of the

slave processors. This module i '-> an

interface between the nucleus of the

operating system and the routines whicu a.e

resident in the slave processors.

It should be noted that in the prototype

system, tasks were resident on the disks of

the associated EXORciser development system.

The operating system obtained tasks from

this system and loaded them into Ramrod =>

PAGE 5-5

memory as required. This technique obviated

the need for a dedicated disk controller and
disk.

5.2 Local Operating System

The component of the operating system contained in

each slave processor has the following functions:

1. It can act as an extension to the

input/o :tput module of the operating system.

2. It can function autonomously in order to

e..a .e ssl: testing of the slave processor

1 can directly control the processing

activities of the slave processor and will

only execute user tasks as requested by the

master controller

The microcomputer determines, on power up, what type

of function it is to perform. This is achieved by

the processor which writes its identity into a

location of common memory and if the orocessor is

reset then it can determine its mode of operation by

reading this location. The determination of this

PAGE 5-6

mode, in the final system, is automatic but during

development this was basically determined by

transmitting data through a Universal Synchronous

Asynchronous Receiver Transmitter (USART), and

reading immediately the data on the input. This

feature enabled direct control of each slave

processor during system testing. Once the identity

of the processor is determined its mode can only be

changed by a power down sequence or by the master

controller which can reprogram the appropriate memory

location.

5.2.1 Input/Output Extension to the Operating System

In this mode the slave processor behaves as an

intelligent terminal, and can be connected to a user

console or to a host computer. As mentioned before,

this allows a user direct access to each slave

processor - a most valuable aid during development.

For example, programs which are to be run by a slave

and which have been developed on, say, a development

system can be loaded via this routine into Ramrod's

common memory. In addition the user can view the

system on the console. This gives the user a way of

getting his programs into Ramrod's memory without

direct control from the master controller- again a

useful aid curing development.

PAGE 5-6

mode, in the final system, is automatic but during

development this was basically determined by

transmitting data through a Universal Synchronous

Asynchronous Receiver Transmitter (USART), and

reading immediately the data on 'he input. T m s

feature -enabled direct control of each slave

processor during system testing. Once the identity

of the processor is determined its mode can only be

changed by a power down sequence or by the master

controller which can reprogram the appropriate memory

location.

5.2.1 Inout/Outout Extension to the Operating System

In this mode the slave processor behaves as an

intelligent terminal, and can be connected to a user

console or to a host computer. As mentioned before,

this allows a user direct access to each slave

processor - a most valuable aid during development.

For example, programs which are to be run by a slave

and which have been developed on, say, a development

system can be loaded via this routine into Ramrod's

common memory. In addition the user can view the

system on the console. This gives the user a way of

getting his programs into Ramrod's memory without

direct control from the master controller- again a

useful aid during development.

PAGE 5-7

5.2.2 Self-Testing Routines

In order to test the microcomputer initially the

following routines are included in the slave

operating system;

1. Identify, on power up, the function the

processor is to perform (i.e. it can be a

slave processor executing tasks as set by

the master controller, a processor which

communicates with the user via a VDU, or a

processor which can load tasks om an

external source e.g. a disk operating

system).

2. Substitute or update any memory in the slave

processor's address space

3. Display contents of this memory on screen

4. Insert code into any of this memory

5. Execute program inserted by user

PAGE 5-8

5.2.3 Slave Task Processing

In this mode the slave processors execute tasks at a

specific location in the common memory address space.

This location is in the common memory area and

therefore tasks which have been loaded via the master

controller I/O module and which have been dispatched

to this particular processor are executed after a

request by the master processor. On completion the

master is notified by means of the mechanism

described in 3.6.

5 . 3 P o n d us i or.

Graceful degradation of the system is assured because

if the master fails the slave processors can continue

functioning until their tasks are completed.

As can be seen in appendix J , the hardware

reliability of Ramrod depends on duplication of the

master and the TDM common bus, whereas the software

reliability is greatly enhanced by distribution of

the operating system.

PAGE 5-9

In summary, the operating system is distributed and

contains the following:

1. Scheduler

2. Dispatcher

3. Memory Manager

4. Input/Output Manager

5. Interrupt Handler

In addition a list of information pertaining to the

status of tasks, processors and memories is

maintained by the master controller.

The distributed operating system which has been

described is essentially simple and has proved to be

most effective. It appears to be both an effective

tool and a successful combination of hardware,

firmware and software.

CHAPTER 6

APPLICATION SOFTWARE STRUCTURE

"For all this did I reflect over in my heart and to
explain all this, that the righteous, and the wise,
and their services are in the hand of GOD; that man
knoweth neither love nor hatred; it is all ordained
before them" [Eccl ix 1].

Whilst this thesis has set out to produce an

operational system and has concentrated on the

fundamental design issues, it is important to give

some attention to methods which may be used to

construct applications software.

Therefore this cnapter discusses an appropriate

method, and the techniques discussed are utilised in

a relatively simple example which will form the basis

for the practical evaluation of Ramrod.

It is common knowledge that parallel processing can

be greatly enhanced by using techniques a.lopted from

data flow languages. Computations represented by

cyclic data flow graphs can be automatically unfolded

to expose all parallelism to the underlying hardware

[AGER 82 J.

PAGE 6-2

The discussion that follows presents a pragmatic

introduction to such techniques and shows how they

may be implemented in pro luction.

6 .1 1 ja ta Flow A- nr oacri

Data iLow machines attempt to provide concurrency in

operation in order to achieve high speed of

-

allow the computer architecture to be visible to the

programmer in order to achieve parallelism. This is

unnatur 11 is the language then closely reflects the

behaviour of the computer rather than the manner in

which the programmer normally thinks [ACR]. The data

flow language approach on the other hand, directly

reflects the progra: or's thoughts whilst making the

CO nr,:! tor 1 s arch i t. ec fur > ' ran m rent.

A data flow language i ; defined as a "language based

entirely upon the notion of data flowing from one

.

concept has the adv in tag- of allowing the data f low

language program I > be repre .onted graphically.

PAG,.' 6-3

U'' a dat<a ! l ° - / language is extremely

as sub-programs can be understood entirely on the-

,

' ' " ' ' t',u n 13 altering another module's variables.

f

the modules that look independent can be executed

Independently, and modules can therefore run
concurrently [r,AV 82].

The data flow machine, which is a direct image of the

language it supports, is in contrast to the

'

computer model, and it is based on tae following two
princip.es:

"'.synchrony. All operations executed when and only

,

.

th.'.-r. re no side effects". IGAJ1

Asynchruny denotes an execution mechanism in which

data values pass through nodes in data flow graphs as

tokens, and an operation is initiated whenever all

input tokens are present at a node in the graph,

functionality implies that any two enabled operations

.

PAGE 6-4

Figure 6.1 shows how Z= (X-f-Y) * (X-Y) is graphically

represented and therefore computed. The functions +,

-f * are called actors and they reside at a node and

nodes are connected by arcs. Data flows on arcs from

one node to another in a stream of discrete tokens.

Tokens are considered carriers of data objects [DAVj.

It must be noted that an actor, or operator, cannot

be initiated before all of its tokens are available

(see chapter 7) (see Figure 6.1),

NODE

NODE

FIGURE 6.1 DATA FLOW INSTRUCTIONS

PAGE 6-6

The data flow computer is designed to recognise which

of the instructions are enabled. All such

instructions are dispatched to execution units as

soon as they are available.

The data flow concept can be extrapolated to

conventional von Neumann structures by having tne

processing elements operate simultaneously on tasks

rather than on instructions. If a more global

tlook is taken, it can be seen that the task can be

fined in a similar way to a data flow instruction

such that it is enabled if all input conditions are

met, and it is suspended when an output condition

ou

de

n i- <*■ u r s

6.2 Task Definition

The actual mechanism of automatically decomposing a

program into tasks which will fit into the above

category is beyond the scope of this i n v e s t i g a t i o n .

The program must be decomposed before entry into the

system. One solution is to write the programs in a

data flow functional language, which has inherent

properties for parallel processing (see 7.3).

PAGE 6-7

Using the data flow concept, a task in this

multiprocessor environment is defined as the smallest,

functional unit of software, which requires inputs

for execution to begin and which only terminates when

an output condition occurs. Therefore a task is

autonomous and must run to completion before any

communication with another task. This concept, is of

course, very interesting as it reflects one of the

original proposals discussed in section 3.5 to avoid

deadlock.

Inter-task communication is thus kept to a minimum

and each task has a single indivisible function.

Thus the instruction in figure 6.1 is a task which

accepts two inputs, X and Y, and produces an output

2.

However, it must be remembered (see section 3.5) that

the above approach to Inter-Process Communication

(IPC; is relatively limited, and other mechanisms

should be investigated. Ramrod is an excellent

vehicle for experimenting with these ideas. The next

section discusses various possible selected IPC

mechanisms, and it is shown how they may be

implemented in Ramrod.

PAGE 6-8

6 . 3 I nter- Ta sk Communication

A d i s t r i b u t e d m u l t i p r o c e s s o r com pu t e r s y s t e m needs a

s o p h i s t i c a t e d c o m m u n i c a t i o n m e d i u m to p r o v i d e for the

n e c e s s a r y in ter-task c o m m u n i c a t i o n . Re l i a b i l i t y ,

r e d u n d a n c y and m o d u l a r i t y (as m e n t i o n e d in 1.2.1) are

r e a u i r e m e n t s for the i m p l e m e n t a t i o n of such a medium.

T his c o m m u n i c a t i o n me d i u m is the kev to flexibl e

i m p l e m e n t a t i o n of r e d u n d a n c y and e x p a n s i b i l i t y

[M A C] .

The i nterac ti on be tw e e n tasks :rise when two

c o n c u r r e n t (truly c o n c u r r e n t r the m u l t i p r o c e s s o r

sy stem and pse udo c o n c u r r e n t in the u n i p r o c e s s o r

e n v i r o n m e n t) tasks need to e x c h a n g e d a t a .

The c o n c u r r e n t tasks have access to co m m o n m e m o r y

v ar i a b l e s wh ich rep r e s e n t the state of p h y sica l

r e s o u r c e s , and which are used to c o m m u n i c a t e data

be tween c o o p e r a t i n g t a s k s . In gene r a l the co mmo n

var iable s can rep resen t shared ob je c t s called

r e s o u r c e s , and in order to share r e so urces the

c o n c u r r e n t tasks need to be sy nchroni se d.

S y n c h r o n i s a t i o n is def in ed as an o r d e r i n g of

o p e r a t i o n s in time and in the m u l t i t a s k i n g

e n v i r o n m e n t this infers that " o p e r a t i o n s A and B must

never be e x e c u t e d at the same time ", i.e mutual

PAGE 6-9

e x c l u s i o n [BRI 73]. A more d e t a i l e d d i s c u s s i o n of

I n t e r - P r o c e s s C o m m u n i c a t i o n p r i m i t i v e s has been

u n d e r t a k e n by M a c l e o d [M A C] .

Th e t r a d i ti onal ways of h a n d l i n g the Inter Pr oc ess

C o m m u n i c a t i o n s a r e :

1. Se ma p h o r e s

a s e m a p h o r e is a s y n c h r o n i s i n g varia b l e

(flag) w h i c h inform s a task wh ether the

re sou rce it wishe s to share is a v a i l a b l e or

u n a v a i l a b l e [D.TJ] .

2. Critic al Regions

A c o n c u r r e n t task can only access common

v a riab le s wi t h i n a c r i tical region. The

task can onl y enter a crit ic al region wi t h i n

a finite time, and only one task at a time

can be inside a c r i t i c a l region. The task

can remain in the critic al region for a

finite time only [BRI 73].

PAGE 6-1(3

Communicating Sequential Processes [HOA /i]

Input/Output are basic primitives of

programming. Parallel processing using

communicating Sequential Processes (CSP) is

a fundamental program structuring method.

This Communication is considered as being

synchronised input/output.

A process communicates with another process

by naming it as its destination for output,

while at the same time the second process

names the first as a source for its input.

When both processes are ready to transfer

data the value to be output is copied from

the source to the destination. A

disadvantage of this close synchronisation

scheme is that if one of the processes

finishes before the other there will be a

certain amount of idle time by the processor

concerned, and there is also a limit on the

amount of parallelism achieved.

PAGE 6-11

Verifying programs in a uniprocessor

environment is difficult enough, and Hoare

therefore states that there is no method for

verification of programs in a multiprocessor

environment.

4. ADA [US POD]

One of the most exciting developements in

real time languages is the ADA language,

which is a project of the United States

Department of Defense. ADA is similar to

CSP in that it has a low level construct for

the synchronisation o f parallel tasks. ADA

incorporates the concept of a rendezvous, in

which two processes communicate with each

other at a specific (real) time, for

interprocess communication.

5. P r imit iv es for D i s t r i b u t e d Comp ut ing[LI SK]

An advantage of a distributed organisation

is reduced contention for a single CPU, but

this is replaced by contention for the

communication medium. Other advantages are

speed of response from the CPU's, better

PAGE 6-12

reliability, higher capability and

expansibility,

* m

The basic construct of this I PC method is

called a guardian which consists of objects

and processes. An object contains

data(integers etc.) and a process is an

execution of a sequential program.

Communication by processes in different

guardians is by means of message passing.

The guardian exists entirely at a single

node of a distributed system. Once a

message has been sent, the sending process

can proceed. Receiving messages are

associated with a timeout which is necessary

because an expected response may not arrive

due to errors or failures.

Ports, which have global names, allow

queueing of messages as they provide some

buffer space. If this buffer space is full

the message is lost. The port is a

unidirectional gateway into a guardian and

is described by the type of messages that

can be sent to it.

PAGE 6-13

6. MARS [KOP 82]

In the MARS project IPC differs for state

messages and event information. An event is

a happening at a point in time, whereas

state information deals with attribute

values of objects which are are only valid

for a certain period of time. However,

event and state information are related as a

change of state is an event.

An event message is queued at the receiver

and can only be removed by that receiver

when it is read. A state message is valid

for a specified period of tirtie and can be

read by several tasks many times. Tne IPC

mechanism is, on a high-level, a broadcast

medium with a group addressing capability

(Ethernet?).

The above mechanisms have been . own to be viable and

the author does not wish to debate their merits.

However, it is not clear how to determine which

method is most suitable for a particular case of

Inter Process Communication (IPC).

PAGE 6-14

Ramrod, in this thesis, does not set out to solve the

problem of choosing an I PC mechanism but rather

provides a vehicle for testing them. All the above

methods can be implemented in Ramrod as there are 3

ways to support IPC (see 3.5.1).

1. Via common memory. As a slave processor has

access to any other slave processor s

memory, all of the above IPC methods are

able to be implemented in Ramrod

2. Via Input/Output. As the I/O interface is

intelligent one processor can address

another processor using unique n^mes for

each processor (CSP).

3. via communication through the master using

interrupts. The master can interrogate a

slave processor and determine what it wants

and most of the methods listed aoove can be

implemented.

PAGE 6-15

6.4 Conclusion

This chapter has attempted to provide a mechanism

which may be adopted in ord< to produce application

software for Ramrod. It is suggested that Data Flow

techniques seem to be appropriate and in the next

chapter a simple program is developed on this bas .

In addition this chapter has looked at Inter Process

Communication mechanisms and it has been shown that

Ramrod is capable of implementing all of these - thus

enhancing the value of the system as an experimental

tool.

EVALUATION OF SYSTEM

"For vvh ' k n o w t h wh at is go id for in n in this life, the
number of fcho do vs of his vain life that he should spend
them as a shadow. For who can tell a man what will be after
him under the sun" [Eccl vi 12].

It has been claimed that Ramrod is more efficient than a

conventional uniproc sor, but there is a difficulty in

proving this. Ef, ici- ncy is usually defined as the ratio

between useful work per for. 1 an 1 the total work performed.

In this project, however, efficiency is evaluated on a

comparative basis b e t v e n P c o d and a uniprocessor computer

of similar po- or to on- of the Slav: processors. Evaluation

techniques (outlined by R o d [ROD 76]) can really be only

applied to one s/st ,n and cannot form the basis cf

comparision between two fundamentally different types of

computer system . R o m l‘s architecture is similar to that

of an array procvssor and therefore it should be used for

vector pr-a sing i o, b:-r to utilise it as efficiently as

possible. TL- refo. , wb n evaluating Ramrod this point must

be kept in mind and thus merely obtainin ! a run time for

/

• .

PAGE 7-2

The problem is analogous to calculating the reliability of

Ramrod, since conventional reliability theoery is really of

little significance in a fault-tolerant system (appendix J) .

Therefore it was decided to limit the evaluation of Ramrod

to using it as a simple vector processor operating on an

array of integers, while allowing a uniprocessor to do the

same operation on the array and ?n comparing the

respective performance. This compc xson is naturally not

totally valid but, more than anything else, it dees

illustrate the vital factor that the system developed has

much merit and provides an indication as to how it can be

used.

7 .1 Practica l I. ir--.at ions

As the project was by definition very large, and because

many of the ideas such as sharing common memory and time

slicing the Emitter Coupled Logic (ECU bus are almost

unique, some of the architectural features developed have

not been fully implemented in the prototype. The software,

as well, has been simplified in order that the basically

novel thoughts of Ramrod be demonstrated and proved to be

viable.

*

z

PAGE 7-3

The operating system has been simplified by allowing the

user to load his tasks via the console in addition to using

the master operating system functions to load tasks.

Purpose designing the operating system for the evaluation of

Ramrod also reduces the complexity of the operating system

i.e. all the features in a complete operational system have

not been included - only those that are absolutely necessary

to run the test program.

It must be clearly understood that the omission of. the above

features does not in any way undermine their importance and

contribution to the project. These features can easily be

incorporated into the system because of the modularity of

Ramrod.

An additional factor which is isually examined in the area

of evaluation, is the question of memory utilisation, but as

the control store is large enough for the operating system

and because tasks reside in the common memory, this

evaluation is not relevant in the present situation.

PAGE 7-4

7.2 Factors influencing the Relative Comparison

In order to synchronise the slave microprocessor to the

Time- Division-Multiplexed (TDM) common bus the "Ready" line

of the 8085 has been used. Thus for a read memory cycle the

address is first transferee! across the bus and the 8085 is

held 1 unready1 until the data returns from the memory.

Initially this double cycle seauence only applied to the

read memory cycle, but as the 8085 has a multiplexed

data/address bus it was found necessary to make the write

memory cycle a double cycle as well, thus effectively

doubling the time taken for writing data to memory. This

factor obviously influences the run time of the 8085 slave

processor and must be kept in mind when comparing the

execution figures of Ramrod and a uniprocessor system. The

Bus Enabling Signals (BES) (figure 4.2 time slots) were

originally chosen as having a period of 1 micro-second and

therefore the logic on the memory cards was designed with

this in mind to provide the read/write, select and clock

pulses using monos table multi-vibrators. It has

subsequently been determined that the BES frequency can be

increased to 2MHz, thereby significantly reducing the run

time of a task.

PAGE 7-5

The method used for interrupting the bit-slice master

processor is via the watchdog circuitry which takes 14

milliseconds to time-out. Therefore the execution time of

the task should be reduced by this time period as an

alternative method for interrupting could be designed. The

slave _ .e.sor can generate an exclusive address in c 5er

to signal the master, though the watchdog circuitry is still

needed to indicate a malfunction. Thus there would be two

interrupts from each slave.

The uniprocessor system used in the comparative studies was

one of the slave processors executing in isolation. This is

a preferred solution as it incorporates the double cycles

mentioned above, and hence provides a direct comparison in

terms of execution times.

I

PAGE 7-6

' * 3 Program Used in Relative Coinpar is ion

As was mentioned earlier, the architecture of Ramrod is

similar to that of an Array Processor so it was decided to

undertake the evaluation by making Ramrod do an exercise on
■tn array of integers.

Figure /.I illustrates how the program runs and shows how

data flow techniques are applied.

-he program calculates the maximum of an array of numbers.

The array is divided by the number of slave processors that

are present and each subdivision becomes the input for the

operators (slaves) 1, 2 and 3. The routines are initiated

by the apearance of tokens (subdivisions). They operate on

the arrays and are terminated when the output (maximum)

occurs. Operator 4 can only be iniated when all of its

tokens (maxima) are present at the input. It terminates

once the output (absolute maximum) appears.

START

p.A'i C AL CULATE
MAXIMUM

*A) (
'M

d i v i d e u p
i i n t e g e r s

s u b a r r a y CA LCULATE MAXIMUM CALCULATE
MAXIMUM; MA XIM UM z

- " 8 4 % ■...- i—■
CALCULATE
MAXIMUM

ABSOLUTE
MAXIMUM
---- j

FIGURE 7.1 OPE R A T I N G SYSTEM SEQUENCE

I

PAGE

PAGE 7-3

7.4 ResuIts

Figure 1.2 shows the execution sequence of the test program.

When several slave processors are executing identical tasks

simultaneously there is a possibility that two or more tasks

will send interrupts to the master controller

simultaneously, therefore these tasks contain uurnmy loops so

that their execution times are not similar.

MEMORIES
TO PROC4
FOR USER
TO ENTER

DATA

I NT MEMORIES
TO PROCS

-1 - 3. 5_______
PROCS GET
MAXIMAi

I NT MEMORIES
TO PROC2
PROC2 GETS
ABSOLUTE
MAXIMUM

INT MEMORIES
IP P&OCA
USER

VIEWS
DATA

FIGURE 7.2 EXECUTION SEQUENCE

PAGE 7-10

Below is a table which shows the steps for the test program

with their execution times.

PAGE 7-

Function Execution Time

1. Assign 3 memories to a

slave processor so that user

can enter array

2. User generates integers,

after insertion, which

is detected and serviced

3. These 3 memoriess are re

assigned to 3 slave processors,

for calculation of maxima

4. Slave processors calculate

their maxima

5. Three interrupts are

generated and serviced

6. These 3 memories are

assigned to another slave

processor so that it calculates

absolute maximum of array

7. This slave processor

calculates maximum of 3 numbers

8. Generation and service of

interrupt

9. Assign memories to console

slave processor so hat user

can view result

Table 7.1 Execution Times

13 microseconds

550 nanoseconds

10 microseconds

1600 microseconds

1250 nanoseconds

10 microseconds

180 microseconds

550 nanoseconds

12.6 microseconds

PAGE 7-12

Note: The time taken for the user to input the data is not

relevant, anc applies to the execution time of tne single
processor as well.

Thus the total run time for the system to calculate the

maximum of 96 integers is approximately 1.8 milli-seconds.

If one slave processor were to operate on the entire array

it would take 5.2 milli-seconds whereas a processor which

does not have any wait states inserted) takes 2.6

milli-seconds to operate on 96 integers (see figure 7.1)

7.5 Conclusion

Ramrod performs very well under the given conditions and

when the bus Enabling Signal (BES) frequency was indeed

increased the machine became even more powerful. The

results must be viewed whilst keeping this point in mind.

The fastest time for Ramrod to do the above example was in

the region of 1 milli-second thus making it 2.5 times faster

than a single processor. However one must bear in mind that

Ramrod has the ability to allow the processors to

inter—communicate and therefore its overall power is

difficult to estimate. In addition, if the operating system

were better scheduled then there would have been no need to

have a separate processor to maximise the relative maxima

and the total run cime could then be reduced by an ad led

factor of 30C micro-seconds. It is estimated that it would

PAGE 7-13

take a processor 1.3 milli-seconds to ooerate on an array of

24 integers (96/4 =24).

CHAPTER 8
CONCLUSION

"The end of the matter is, let us hear the whole; Fear GOD
and keep his commandments; for this is the whole duty of
man. For every deed will GOD bring into the judgement
concerning everything that hath been hidden whether it is
good or whether it is bad" i Eccl xii 13,14].

Very Large Scale Integrated (VLSI) microcomputer components

are highly cost-effective because of the high volume at

which they are produced, and therefore future computer

architectures must utilise this dramatic advance in

technology [GIL BEHR].

This thesis sets out to define a computer system which is

highly cost-effective and whose architecture is based on

data-flow techniques in order to provide a more efficient

way of data access than the conventional computers.

However, the architecture was also based on a high degree of

fault-tolerance, modular extensibility and simplicity.

PAGE 8-2

8.1 Uniqueness of Ramrod

The project brought out the unique features, detailed below,

in order to reconcile these seeminglv conflicting demands of

modular architecture on the one hand and simplicity and

fault-tolerance on the other hand.

1. The Time-Division Multiplexed (TDM) common bus

It was shown that a common shared bus does not

necessarily have a low bandwidth, and can indeed be

used very efficiently to time division multiplex

many devices - the key being the very short time

required by each processor to access the bus.

2. Circular Bus

The TDM bus is constructed in a circular fashion

and joined at the ends. Ramrod proves the

viability of using a circular bus to improve signal

levels and hence to decrease the maximum delay

between devices.

PAGE 8-3

3. Distributed Operating System

In order to increase the reliability of the system,

as a whole, and to provide for graceful degradation

the operating system is distributed amongst the

processors, and the kernel of the operating system

is built into the hardware of the bit-slice master

processor.

4. Local/Global Memory

Another feature of Ramrod is that it does not

differentiate between local and global memory.

This offers many useful properties such as a simple

mechanism for implementing a distributed data base.

5. Inter Process Coi.mur, i cation (I?C>

There are three methods by which Ramrod can achieve

I PC, thus making it a good test bed for developing

ideas about IPC:

(a)via the I/O module using Ethernet

(b)via the common, shared bus

(c)via the Master Processor

PAGE 8-4

6. Readily Available Components

The architecture, all though novel, uses freely

available components and thus maintainability and

extensibility are assured.

8.2 Commer cia l Vi a b i l i t y of Ramrod

Ramrod can be used in such diverse applications such as

process control on the one hand and data base management on

the other hand, and this is perhaps one its most important

contributions to technology. In addition the system is

relatively cheap but powerful. A cursory calculation shows

that the cost of developing and marketing this computer can

oe in the region of R25,00C - R35,060 thus placing it in the

lower bracket of minicomputers, with, of course, more

relative power.

The cost of software development for the purpose of testing

Ramrod has been included in the above calculations but the

cost of producing software for making the machine as

versatile as is claimed in Chapter 1 could not be

ascertained and is clearly considerable.

PAGE 8-5

8.3 Critical Analysis of Ramrod

It has been claimed that Ramrod can support 50

Microprocessors and 50 memory segments, but in view of the

investigation carried out (see appendix C) into the ability

of ECL to drive the circular bus, additional circuitry is

required and this might slow down the propogation delay

which would have an effect on the overall system throughput.

The actual operation of Ramrod was marred by problems

relating to the construction of the ECL bus. Whilst the

timing was shown to be viable, the critical nature of this

timing made it subject to temperature problems.

ECL has a very high heat dissipation problem which depends

on the level of the power supplies and the termination

resistors which in turn affect the ECL logic levels. Any

variation in ambient temperature clearly affects all the

parameters, and during hot weather tr.e system suffered from

occasional intermittent faults - attributed to timing

problems.

Finally, the choice of the actual physical bus was a poor

decision - the interconnection from the edge connectors to

the scotch-flex system proved to be unreliable and was the

source of many mechanical failures.

PAGE 8-6

8 . 4 Future Enhancements

The basic design of Ramrod is sound but there is still room

for improvement which can be achieved by:

1. Improving the present design to overcome mechanical

problems resulting from the physical bus

construction

2. The incorporation of those features mentioned in

Chapter 1 so as to permit a fully operational

vehicle which may be used in long-term experiments.

In particular the following ones required attention:

1. In order to ensure stable power supplies on each

board, regulators must be resident on each printed

circuit board.

2. The latch module needs to be redesigned so that the

ECL chips are closer to the bus.

3. Both the TTL and ECL Busses must be constructed

from a flexible printed circuit board so as to

provide a more reliable mechanical structure.

4. In order to increase the number of slave processors

PAGE 8-7

and memory segments, the loading of the ECL bus

chosen needs additions] investigation.

5. In order to include an intelligent I/O interface

the work on Ethernet needs completion.

6. Better software support is needed to develope the

microcode. A related project is investigating a

highly flexible microassembler and emulator [WILD].

7. Perhaps standard processor and memory cards could

be used instead of purpose-built hardware thus

making Ramrod universal.

8.5 Conclus ion

In summary, Ramrod has been designed and built to a

prototype stage and tests were run to show its viability.

Although it suffers from certain problems relating to the

mechanical structure and also is somewhat temperature

dependant, it has proved to oe a most successful and in many

ways unique design. In providing an extremely powerful

computer which makes use of freely available components it

has met its prime desig; 'bjectives and illustrated much

promise for future development.

APPENDIX A

EMITTER COUPLED LOGIC

A . I I n t r o d u c t i o n

A compar ision of the fastest commercially

state-of-the— art technologies (ECL and AST) as

discussion on the use of ECL is outlined in the
pages.

Emitter Coupled Logic

Advantage

Propogation delay 2-3ns

Low output impedance

Can drive transmission l.nes

Very high fan-out

Complementary outputs

High output drive capability

Slow rising edges

Wire-oring possible

available

well as a

following

Disadvantages

Has different power

supplies from standard

TTL

Has different logic

levels from standard

TTL

Extra power supply for

transmission line

All outputs need pull

down resistors

High power dissapation

large ground plane

needed

PAGE A-2

High input impedance,therefore

unused inputs go low

Advanced Schottkv TTL

advantages Disadvantages

TTL compatible Propogation delay twice

as long as ECL

i.e same levels, powe. supplies cannot drive

transmission lines
Low power consumption No wire-ORing

High noise immunity rast output transition

therefore reflections

and crosstalk

Thresholds low levels

slightly offset from TTL

Emitter Coupled Logic is a non saturating form of digita

logic which eliminates transistor storage time as a speei

limiting characteristic and permits very high spee<

operation. "Emitter Coupled" refers to the manner in whicl

the emitters of a differential amplifier within th<

integrated circuit (IC) are connected. The differentia:

amplifier provides high impedance inputs and voltage gair

within the circuit. Emitter follower outputs restore the

logic levels and provide low output impedance for good line

driving and high fanout capability.

PAGE A-3

A typical ECL gat structure is shown in figure A-l as well

?c the available separate functions.

ECL has two ground inputs which eliminate crosstalk between

Circuits ir a package. In order that unused inputs may be

left open 50 K ilo-Ohm "pinch" resistors drain input

transistor leakage current end hold these unused inputs at a

fixed logic zero level.

Typical logic levels for ECL are -0.98v which is a logic

high level and -1.75v the logic low level.

In order to increase logic flexibility, speed and power

efficiency two techniques of connecting the differential

amplifiers are used. Figure A-2 illustrates the SERIES

GATING technique which permits the generation of upto 2n

logic functions from n inputs with one current source, while

COLLECTOR DOTTING (illustrated in figure A-3) a.lows the

logic nitj function to be achieved bv interconnecting one

collector node of separate differential current switches

together. A thi rd technique, WIRE-ORing, enables the logic

OR function to be generated by tying together two or more

emitter follower transistor. A disadvantage of ECL is that

there is a limitation of the number of WIRE-OR connections

of 6. Therefore bus drivers need to be used when this limit
is exceeded.

PAGE A'

BY COURTESY OF MOTOROLA INC.

T e m p e r a t u r e
an d V o i t a v e

C o m p e n t a t e d
8 i a t N e x w o r kD i ^ f e r e n x i a l I n p u t A m p l i f i e r

C C 2

90?

220 Q6

07

0 6 ►

Q3 05

Rp
50 k < 9 8 k50 k

FIGURE A-1 ECL STRUCTURE

BY COURTESY OF MOTOROLA INC.

0 3A O-

02B »

C » 0 4 0 5 0 6 0 7

- C 3

0 2 0 3

Ol

FIGURE A-2 SERIES GATING

PAGE A-5

BY COURTESY OF MOTOROLA INC,

R1
03

Ol

60-

BE

■° V CC1

■O V c 'A ♦ B # (C+DCO » 02

DO-

FIGURE A-3 COLLECTOR DOTTING

BY COURTESY OF MOTOROLA INC.

ttl — I
•"'Oul I !----

- » - E C U ^
C** B v c m

‘

I t t l e c u
- r ~ T

J

!7

■

□ 6
E C l l Outowi
C *l*cl D neoie

M C I 0804 4 B.ts
M C I0806 6 B ill

FIGURE A-4 10804 LATCH

PAGE A-6

Using ECL for high speed logic design can result in more

problems than using AST transistor transistor logic (the

propagation delay is about 2ns, and thus delays are

introduced from the wiring). Therefore wiring lengths

should be reduced as much as possible. Using wiring with

2.0..s/ft delay means that there is approximately one gate
delay for every foot of wiring.

Transmission line principles should be employed in order to

design interconnections between ICs. Line lengths approach

the quarter wavelength of the signal and t! erefore

distortion and reflections can occur. Lines must be

properly terminated with matching impedances to avoid these
and other associated problems.

EcL designers have further minimised crosstalk by

deliberately slowing the rise and fall times to more than
3ns.

Manufacturers recommend that only one-sided printed circuit

boards be used, keeping the second side as a ground plane in

order to reduce noise generation as well.

PAGE A-7

*he characteristic impedance Zg of a single line over a

ground plane separated by a dielectric medium ,i.e.

microstrip lines, is calculated by;

ZB = 87 In {5.98h}
 * (• ;
(€,-+1. 41) **1/2 { . 8w+t}

where er = relative dielectric constant
w = width of microstrip
t = thickness of microstrip
h = thickness of printed circuit board

ECLs logic levels of -0.98v and -1.75v are derived from the

—5.2v power supply. The reason for this power suooly as

opposed to the normal +5v supply is that it helps to reduce

noise generation when the emitter foiljwers switch from one
level to the other.

ihe de^ioners of EcL circuits incorporated another useful

feature into their designs by including at least one

inverted output signal in an IC package. For example the

1Z104 quad 2 input AND gate has one inverted output i.e.

the NAND function is derived.

The 10195 HEX INVERTER/BUFFER has 6 EXCLUSIVE-OR gates with

one input commnnned. Therfore the IC can be configured as a
buffer or inverter.

PAGE A-8

A.2 Sample Data

The 10104 Quad 2 Input AND gate

Propogation delay is 2."ns typical while rise and fall times

are approximately 3ns. The power consumed per gate is
35mw(no load).

— .e. ECL/TTL Invertinc Bidirectional Transeiver with
Latch

Referring to the block diagram in figure A-4 the reader will

notice that there are four control signals needed to operate

this package. The OUTPUT DISABLE when at a logic low level

disables both the ECL and TTL output buffers, while at a

logic high level these buffers are enabled. The ECL/TTL

signai allows control of the direction of data transfer and
translation.

The LATCH BYPASS select line allows the latch circuitry to

be bypassed for fast data transfer. When it is a logic low-

level data is directed to bcth the latch input and output

buffer simultaneously, and this enhances the speed of
translation and throughput.

APPENDIX B

MICROPROGRAMMING AND BIT-SLICE TECHNOLOGY

Bit-slice technology and microprogramming are reviewed in

this appendix , in order to provide a general background of

the master controller which has been developed to control

the operation of the processors in the multiprocessor
structure.

Bit-slice microprocessor families are not revolutionary,

rather they represent a new stage in the evolution of the

design of central processing units (CPU's).

In machines designed from small scale integrated technology

wnere integrated circuits could only hold a small number of

basic components the ALU would occupy one printed circuit

boa-d, and the registers another board etc. so a complete

CPn would occupy many boards or cards. The logic was

commonly separated into n bit wide sections thus one card

would contain a small chunk of the total processing unit,and
the cards were cascadaole.

With the introduction of MSI and LSI it became economically

feasible to include more of the control logic onto one

'cmp', and eventually the single 'chip' microprocessor was
developed.

PAGE B-2

The bit-siice microprocessor represents a further stage in

the developement of microprocessor technology in that the

processor is again sliced as before, but this time each

'Chip' is a complete chunk, and can be cascaded to form a n

bit wide processor. In addition to that the Hit-slice

microprocessor has been specifically designed to be used in
microprogrammed machines.

Tne organisation of a conventional computer is shown in

figure B-l. Essentially, four major sections may be
identified:

the memory

the input/output facilities
the A L U

the control unit

The control unit or central processing unit (CPU) provides

for overall control of tb, various sections of the computer.

A n tn m e t ic

and
Logical unit

Output

FIGURE B-] CONVENTIONAL COMPUTERS

PAGE B-4

The o r g a n i s a t i o n of a m i c r o p r o g r a m m e d computer str ucture is

s h o w n in figure B-2. The essential d f f e r e n c e between the

a b o v e two s t r u c t u r e s lies in the mode of o p e r a t i o n of the

CPU. In the m i c r o p r o g r a m m e d c o m p u t e r , the control store

c o n t a i n s sets of p r i m i t i v e o p er ation c o d e s , which are termed

m i c r o i n s t r u c t i o n s . Each com po nent pa r t of a

m i c r o i n s t r u c t i o n s p e cifies an el eme n t a r y logical or

a r i t h m e t i c process to be ef fected in the computer. A

m a c h i n e co de instruction is e x e cuted by a series of

m i c r o i n s t r u c t i o n s contain ed in the control store.

PAGE B-5

Output

Miciumstrui non
memory

FIGURE B-2 TY PI C A L M I C R O P R O G R A M M E D C O M P U T E R

PAGE B-6

M i c r o p r o g r a m m i n g allows the d e s i g n e r f l e x i b i l i t y in the

d e s i g n of his instruct io n s e t . A m a c r o instr uction or

m a c h i n e code instruction is p e r f o r m e d by e x e c u t i n g several

m i c r o ins tructions in sequence. The machine c^de

in str uc tion is used a pointer to this sequence. T h e s e m ic ro

in struc ti ons are us ua ll y stored in a control m e m o r y within

the b i t- sl ice architecture.

The m i c r o - i n s t r u c t i o n word is brok en up into several f i e l d s ,

each o^ which de fine s a p a r t i c u l a r function w i t h i n the

m a c h i n e . Thus the longer the word the more is a c h ieved in

any one ins truction and the faster the c o m p u t a t i o n . The

designer nas to anal yse the t r a de- of f between the wi dth and

the depth of tne instructions. A m i c r o - i n s t r u c t i o n word is

typi ca lly 32, 56, 64 or 128 bits wide.

The s t r uctu re of the sy st em can be altered by the

o r g a n i s a t i o n of the m i c r o p r o g r a m word fields, al lo wi ng the

de s i g n to cl osel y match the functio n it must perform.

A b i t -sl ic e m i c r o p r o c e s s o r system requires a lot more

compone nt s than the two p r e v i o u s l y me n t i o n e d m i c r o p r o c e s s o r

designs, and will th erefore be more e x pensi ve and consume

more p o w e r , but. will be more p o w er fu l and faster.

PAGE B-7

A control memory, usually a programmable read only memory

(PROM), contains the microprogram words. The operation of

the sv_.err, is as follows: A sequence of micro-instructions

th^s memory is executed to fetch an instruction from

external main memory, which is then decoded and passed

through a mapping PROM to generate the address of the first

micro-instruction which is to be executed to perform the

required macro-instruction. The sequencer controls the

branch to the required address. The instructions are

fetcheo from the control memory and then other operations

such as , ALU functions,testing etc. are performed by the

rest of the system. Then a branch is made back to the

instruction fetch cycle, at which point there may oe

^ranches to other sections of micro-code.

Tnc pipeline register essentially splits the system into two

parts. it contains the micro-instruction currently being

executed. This instruction is fed to the rest of the system

Which performs the required operation while the next

instruct.. is fetched and placed in the pipeline register.

Thus the presence of this register allows the

micro-instruction fetch cycle to occur in parallel with the

data operation rather than serially, effectively doubling
the clock frequency.

APPENDIX C

THE MODELLING QF THE CIRCULAR BUS

C .1 Introduction

An investigation into the operation of the parallel ECL

circular bus was undertaken by Messrs Bradford and Hunter as

a tinal year undergraduate project and was supervised by the
author.

A preliminary literature survey showed that very little

information is available in the field of circular busses.

i o c c o I i and Sanderson [ZOC] claim that they use a circular

bus for their computer but however do not give enough

detail. It is known, as well ,that the Cray super-computers

J£e circular E^L busses but there is no information about

this for general public consumption.

therefore in order to fully understand the operation of the

bus it was decided to model the bus as well as conduct
practical experiments.

PAGE 0 2

c -2 Model of the Bus

A computer program was used to simulate the operation of the

=nd this mathematical model was compared against the

measurements observed practically. (The program can be

Obtained from the Dept. of Elec. Eng. at the University
of the Witwatersrand).

mt>del aSSUmeS that ^ e r e are no dielectric or cooper
losses and therefore the characteristic impedance of the bus
2 becomes:

2 = (L/C)**1/2

Where L = .56 micro-henry's/m

and C = 82 pico-farads/m .
therefore

2 = 8 2 Ohms/m

Eut taking into account the capacitive loading of the edge

connectors of 2 pico-farads/connect ion Z = 72 Ohms/m.
The propogation delay of the bus

T (L.C) ** 1/2 = 7.85 nano-secor ds/m

PAGE C-3

Similarly the characteristic impedance of the tracks and its

propogation delay are:

where t = thickness of the track

and w = width of the track

f L . C) * * 1/2 =17.36 nano-seconds/ it

er = relative dielectric constant

Each board in the system has a terminating r ̂ ̂ is tor to -2

vo^wS and when all of the gates are disabled the voltage on

the bus settles to -2 volts. If a transceiver is enabled to

transmit a high level (-.85V) then there is a voltage swing

or 1.15 V in 3.5 nano-seconds (propogation delay of the

gate). It must be noted that receiving gates reoresent the

same high impedance to the bus as do inactive aates. This

disabled to high level transition as well as the inverse

-ransition only are considered as the voltage swings are

large compared to the other voltage swings (.375 V).

a.j6 ^.levenin Equivalent of a driving gate is shown in figure

C.l and has a Vth= .7 V and a source impedance of 7 Ohms

irrespective of the load current.

Z t Ohms

PAGE 0 4

As the model assumes no dielectric or copper losses, direct

modelling of lumped capacitance is prevented, and the

capacitance is rather modelled <|s being distributed. The

rise and fall times are modelled as beino linear.

I

h

rAGE

Rt = 50

Rth= 7
FIGURE C

th
ZZK C Z

6 vth RtV
-2V -2V

ohms Zt = 50 ohms

ohms ^th= "0,689 Volts

-1 THEVENIN EQUIVALENT OF DRIVING GA

PAGE C-6

C •3 Resuli

Graph C.l shows a comparison of the predicted and observe,

results Oh various boards, on the bus , for a termination
resistance of 270 Ohms. It reveals a difference in the rise

and fall times of 2 - 3 nano-seconds which can be attributed
to the assumption of a lossless line.

Board i

40 ov

Board 5

redicted
bserved

Board 3

44J.

GilAPH C 1 COMPARISON BETWEEN PREDICTED AND
OBSERVED RESULTS

PAGE 0 8

Graphs C.2 and C.3 compare the rising and falling edges for

different terminating resistorr and it appears that there is

a critical resistance for a good termination.

PAGE 0 9

20V

GRAPH 0 2 COMPARISON OF RISING EDGES FOR
VARIOUS TERMINATION RESISTORS

PAGE C-10

7(v) *

- 1,0

-c,0 I

Board 1

10
-i-
20 t(ns)

7 (V)

-1,0

-1,5

*

- 2,0

GRAPH C-3

Board 3

COMPARISON OF FALLING EDGES FOR
VARIOUS TERMINATION RESISTORS

PAGE C-ll

Graph C.4 shows the cross section voltage along the bus at

various boards. The slope of the wavefront determines

whether an overshoot will occur or not.

(V) PAGE C-12

I

C oh-s

130 ohms

Board "umber

GRAPH C-4 COMPARISON OF THE VOLTAGE CROSS-SECTION
ON THE BUS AT VARIOUS TIMES FOR VARIOUS
TERMINATION RESISTORS

PAGE 0 1 3

As the signal passes each board its magnitude is decreased

end hence the slope of the voltage cross section becomes

eepcr than the critical slope and no overshoot occurs.

Decreasing the termination resistance decreases the

transmission coefficient and no overshoot is obtained. This

also increases the reflection coefficient and allows less of

the incident pulse to arrive at the gate. If this

resistance is chosen carefully enough then the reflection

coefficient can be increased to allow large reflections but

not nave too much of an overshoot, and allow enough of the

pulse to arrive at the gate for correct detection.

C .4 Corel us icn

ECL gates can drive a 50 Ohm load terminated to -2 V. For <

high level output (-.85 V, the current drawn is 23milli-a„p5

(ma) but the manufacturers claim that MECL 10,000 series car
source 50ma for surge conditions.

Once a stable steady state logic level is reached then there

is a constant flow of current and only DC conditions apply.

Thus for 10 boards there are 10 resistors connected in
parallel therefore the effective R . R / 1 0 . At t h e h l g h

level (-.85 V) the current drawn is 1.15/R/10. This current

must not exceed 50ma thus R > 230 Ohms and a 270 Ohm
termination resistance is recommended.

PAGE C-14

Tnis termination is however for a fixed number of boards and

11 tne number "aried then the current and logic levels would
be changed. r .gure C .2 shows a resistor-capacitor network

which overcomes this problem. R2 is chosen so that at

staole conditions the equivalent load is 50 Ohms and Reap

- 2d Ohms which allows the maximum 50ma surge current to

ow. The capacitance slows down the rise and fall times
but improved logic levels are introduced.

H Z y - r - a

<cap R2

-2V

FIGURE C-2 CAPACITOR REflSTOR NETWORK

PAGE 015

H Z >-[HI > -

<cap

L

■2V

FIGURE C-2 CAPACITOR RESISTOR NETWORK

a p p e n d i x d

CURRENTLY AVAILABLE MULTIPROCESSORS

-urrentlv available multi-microprocessors are reviewed

below, in order to appreciate how the author chose the
present structure of Ramrod.

D.1 CYBA-M

Cyba-M was a vehicle for research into multi-microprocessor

systems initially undertaken by Swansea University College,

and now at UMIST in Manchester. Figure (D-l, shows its

basic structure, consisting of 15 identical Processing

Elements, each of which comprises a microprocessor, a switch

and some local memory. The global memory is a 10 Mbyte/sec

memory, accessed through a 16 port switch, which determines

the highest priority request generated by the node switches

The Image memory (which provides the 1/0/ facilities), is a

distributed bus structure with a maximum data rate of 2.5

mbytes/sec. It is accessed through another 1-6 Port switch

which is functionally identical to the Global Memory Switch.

The 16th port is for use by the command console, which
exercises total system control.

C O M M A N D
C O N S O L EMEM O R Y

P E R I P H E R A L IMAGE
M E M O R Y

f i g u r e D-l C YBA-M

PAGE D-3

The disadvantages are:

The command console, similar to a Master Processor, is very

complex from both the hardware and software points of view.

The Global Memory is very fast and , being multiport, is

therefore very expensive. In addition , the priority

circuitry is complex. The switches are relatively simple

(2-1 multiplexers) but nevertheless add to the complexity of
the whole system.

D • -- .The Siemens 4004/228/230

Th. design .= cased on the star configuration and comprises

a oecicated central processor, a dedicated input/output

processor , a hard wired maintenance processor and a memory

system. All these wo,k asyochronously and exchange

information via a co-ordinator (figure 0-2).

PAGE

M E M O R Y S Y S T EM

m a i n t e n a n c e
I P R O C E S S O R ■ c e n t r a l

PROCESSOR

I/o P R O C E S S O R
C H A N N E L S

FIGURE D-2
SIEMENS 4004/220/230

-

PAGE D-5

The disadvantages are:

Each processing element is dedicated to a paticular function

and therefore if it fails, chat function can no longer be
carried out. There is no redundancy in the system to allow

for such failures, and tne system allthough it has a
maintenance processor , is not able to readily recover from

faults.

D .3 The Siemens SMS 2 n l

The SMS 201 nas a multiple Instruction Multiple Data (MIMD)

structure for high speed numerical computations. Each

processor (PR) has a dedicated Arithmetic Processing Unit

attached to it. In addition each processor has its own

program and data memory as well as a communication memory

(CM) which connects the module to other modules, and to a

main processor (MPR) via an interconnection network (ICN).

(figure D-3)

I

PAGE

ICN

PR

MPR

FIGURE D-3 SIEMENS 201

PAGE D-7

The Disadvantages are: Too much reliance is placed on the

tfain processor. The communication memory is the channel for

inter-processor communication and as such, is quite

compj icated and therefore expensive. The interconnection

network must be sufficiently intelligent to cater for

priorities and to resolve conflicts.

D.4 The Carneoie-MelIon C.mmo

The multiprocessor is comprised of 16 DEC PDP-11

minicomputers, each having its own private memory space and

own input/output device. The PDP-11 Unibus is used for I/O

as well as for inter-processor communication. There is a

large shared memory which is accessed by the processor's

address translator through a 16 by 16 crossbar switch
(figure D-4).

PAGE D-8

1 6 x 16 CR O S S B A R I N T E R C O N N E C T

P R O C E S S O R TO MEMOR'i ONLY

A D D R E S S
T R A N S L A T O RA D D R E S S

T R A N S L A T O R

I/OCOMM I/O

I N T E R P R O C E S S O R
INTE RRUPT I N T E R P R O C E S S O R I N T E R R U P T BUSC O N T R O L L E R

COMMI/O '• C O M M

FIGURE D-4 Cmmp.

PAGE D-8

16 x 16 C R O S S B A R I N T E R C O N N E C T
P R O C E S S O R TO MEMOR'i ONLY

A D D R E S S
T R A N S L A T O RA D D R E S S

T R A N S L A T O R

I/OCOMM

I N T E R P R O C E S S O R I N T E RRUPT BUS

COMM COMMI/O

INTERPROCESSOR

CONTROLLER
INTERRUPT

FIGURE D-4 Cmmp.

PAGE 0-9

The disadvantages are :

The crossbar switch is complex and expensive and the address

translator has to be able to resolve memory conflicts.

Although there is no main processor the system is not fault

tolerant, as a task on a failed processor module cannot be

re-allocated.

D .5 The Banyan Multi-microccmouter System (BMS)

The BMS is composed of 15 Z8001 processors interconnected

with 15 memory segments by a 4x4 crossbar switch. The

interconnection is fully parallel. unidirectional and is

packet switched. Overall control resides in a Vax 11/780

which accesses the rest of the system, via a Unibus adapter,

using I/O transactions.

The BMS has the disadvantage of a complex crossbar switch.

In addition there are local interfaces (I/Fn) to provide

communication between the crossbar switch (SN) to the

processors (Pn) or the memories (SMn) (see figure D-5).

PAGE D-10

%

SEPAL COWTHOLJ*nwOftK

sv. sv.

sv

FIGURE D-, THE BANYAN MULTI-MICRCOMPUTER SYSTEM [McDJ

PAGE D-ll

D.6 INTEL iAPX 422 Multiprocessor System

The iAPX 432 is a 32 bit microprocessor which has an ADA

compiler. It comprises of two chips forming a General Data

Processor (GDP). It has been designed for multiuser

applications and offers the user transparent

multiprocessing, i.e. the number of GDP's can be increased

or decreased without the software having to be rewritten.

The designer is free to choose his own bus structure and the

432 uses a standard interconnection protocol. Input/Output

is achieved through the Interface Processor (IP) which

programs a group of programmable associative memories

(window registers) to map the I/O subsystem's address space.

The 432 uses virtual addressing such that only 7% of

microprogram space is used. The 432 can operate in two

modes: In the master mode a component operates normally

whilst in the checker mode the output pins reverse

themselves and operate as special input pins. These pins

sample data and compare this data to the data that would

have been sent if the chip was operating in the master mode.

Thus a highly fault-sensitive system can be built.

PAGE D-12

Instructions can vary in length from zero to three operands,

and can thus support scalar, vector and record data types,

such as found in ADA. There are no registers and memory and

a hardware supported special stack are used for operands.

The arc tire is object-orientated, and the object

provide an identical framework from simple bytes till

messages that are sent to another processor. Objects are

stored in segments of the address space, and they are

always addressed via an object descriptor which contains

information pertaining to the type and location. An access

descriptor indicates the location of the object descriptor

which is the only way to address an object. Thus the 432

has a two level operation for memory requests.

The 4 32 has a hardware operating system and can handle

complex software applications and has many software

protection mechanisms and has an extensive hardware fault

detection mechanism. Thus it is very powerful and offers

the computer architect an ideal basis for developing a

real-time multiprocessing system (figure D-6).

PAGE D-13

T '■ ■ . • T
= 3 3 2 = E 2 3 3 E K E a a S S S S |

8 US
A R B I T R A T IO N

LOGIC

BU S
R E Q U E S T

L O G I C
A D DRESS
B U F F E R

D A T A
B U F F E R

IRC
L O G IC

BUS
R E Q U E S T

LOG IC
AD DRESS
B U F F E R

s i t
V ’' ' I ' IJ:__!_ & 5 1 g £

l T I M I N G
) C O N T R O L

LO G IC @ 6

A D D R E S S
L A T C H A N D
I N C R E M E N T

M E M O R Y
A R R A Y

O A T *
S U F F E R

A N D SW AP N

DATA
BU F F E R

. IRC
■LOGIC

2 ___
i ARX 43201

D A T A
RROCESSOR

iARX 43 20 2
DATA

RROCESSOR iARX 43201 iA R X 43 2 0 2 .A

-
• •

' Tv>
.-V

" J

FIGURE D-6 THE INTEL 432 SYSTEM [RAT]

APPENDIX L

INPUT'JPDPUT INTERFACING

The requirements of the input/output modules of Ramrod are

listed , ana a brief introduction to Ethernet is discussed,

with the view to using Ethernet as a communication medium on

the I/O side of Ramrod.

E .1 Requirements

The input/output section of the multiprocessor system is

required to handle communications between peripherals and

processors on the one hand and between processor and

processor on the other hand. Therefore the I/O bus must

have a high degree of intelligence.

The I/O bus must have the same facilities as the TDM common

memory bus discussed earlier, that is if a processor fails

then another processor must be able to 'hook' onto the now

vacant peripheral. Processors must be transparent to other

and to the peripherals, and must be able to communicate with

any device that is connected to the bus.

/

PAGE E-2

Another important feature required from the intelligent I/O

is that there be no master controller of the bus, is

that if the controller fails another device can become the

controller. This increases reliability and provides for
r edundancy.

In order to implement inter-task communication or, the 1/0

bus the message's destination will probably be another

t a s f s identity , and the bus will have to be clover enough

to determine which processor is executing this task.

The interface to the bus needs to be modular and relatively

sample so that it can fit onto one printed circuit board

Similar to the TTL/ECL interface boards, and it should be

bidirectional. If an interface board is removed the system

should not be affected, and at least 50 processors and 50

peripherals must be able to be connected to the system.

addition the software overhead for protocols which

control the information transfer between transmitting and
receiving devices must not be too high.

PAGE E-3

E. 2 _Cf:hy-1 net

E . 2 . 1 i.N T K O D l_I C T 10 N

A project involving the design of an Ethernet Controller was

undertaken by s.A. E l U s o v as an MSc project in the Dept.

ot Klee. Eng. „t the Univ. of the Hitwatersrand, with the

idea of incorporating Ethernet on the Input/Output side of
Ramrod.

Ethernet is a local area network which e v o . ’ed out of the

Aloha network it the University of Hawaii. Studies of the

Aloha network revealed a number of problems and refinements

were undertaken at the Xerox Paulo Alto Research Centre in
the mid 1970's.

• •

E . 2 . 2 . I ' . '■ t , / o r k Con f i g u r a t i o n -

Iho maximum network configuration is as follows:

1. A coaxial cable, terminated in its characteristic

impedance at each end, constitutes a cable segment.

A segment may contain a maximum of 500 meters of
coaxial cable.

PAGE E-4

A maximum of 100 station transceiver connections
may be made per segment.

3. Segments can be joined together u s i n g repeaters,

provided that the longest path between any two
transceivers is less than 1500 meters, and that

there are no more than 2 repeaters in the path
between any two stations.

4- Repeaters do not have to be located at the ends of

segments, nor is the user limited to one repeater

per segment, in fact, repeaters can be used not

only to extend the length of the channel, but to

extend the topology from one to three-dimensional.

nation on the Ethernet Network __ ___
------------- u V UiJ 1

coaxial medium via an ethernet controller. The controlle,
is loined to A transceiver, which is fixed on to the coaxial

oable by a transceiver cable, consisting o f six shielded
twisted pairs not more than 50 meters in length.

PAGE E-5

e -2.3 Message exchanging in Ethernet

£•2.3.1 The Transmitting Station -

Before broadcasting, the transmitting station must ensure

that no other station is busy using the medium. This is

acheived by "carrier sensing" whereby the transmitter of a

station is prevented from becoming active until all

transitions on the coaxial cable have ceased.

As t h e r e is nothing to prevent two or more stations from

scheduling a transmission for the same message slot,

cc iis ions will occur. Due to the ability of a station to

C a r r i e r sense", collisions will only occur at the start of

a messages. The time interval during which collisions can

occur is called the "collision window", which is long enough

to a.low for signals to propagate throughout the medium.

When a collision does occur, the transmitting station must

stop transmitting its message and start transmitting a

jam . A "jam" is a burst of noise that ensures that all

nodes will detect that a collision has taken place. After

sending the jam, the station controller will enter a binary

exponential backoff alg< ithm to randomise the re-scheduling

of the transmission. In order to take into account

increased traffic during busy periods, the backoff algorithm

increases its mean value exponentially with the number of

:

PAGE E-6

collisions of the message.

-.2.3.2 The Receiving Stations -

The receiver must continually monitor the line to detect any

broadcasts. Message packets are broaocast randomly over the

medium. In order for the receiver to extract the data from

the information stream, a synchronization burst must precede
the transmission.

Ail messages must be examined to determine their destination

address. Each station on the Ethernet can be addressed in
the following ways:

Physical Address : A unique address associated

with -he station, and distinct from the address of

any other station on any Ethernet.

2. Multicast Address : An address that can be setup

under software control that will be accepted. This

means that more than one station can use the same
address.

3. Broadcast Address : This address is accepted by

all stations on any Ethernet system. It can be

used by a station when it is connected on to the

network to indicate that it has become an active

station.

Once a message has been accepted by the receiver, it must

first perform an error check to determine if there were any

transmission errors, before handing the message packet to
the host processor.

E .2.4 Comoar ison of Ethernet

In ioken Bus [RAVj nodes are connected to a common bus in a

virtual ring. In order to transmit a node must be in

possession of the 1 token1 , and therefore the method of

access is highly organised and there is an absence of

collisions. However there is a possibility that a faulty

node could create a duplicate token or that the token could

get uoSw. inis means that extra logic is needed to prevent

these posibilities.

Ring network [RAV]on the other hand interconnects nodes in a

loop with messages travelling around the loop in one

direction. Access is deterministic and priorities can be

assigned theieby preventing collisions. However as each

node acts as a repeater , the reliability of the network

depends on the reliability of a single node. The removal of

a node from ^he network can result in messages circulating
indefinitely.

PAGE E-8

Etnernet has a major disadvantage in that as the loading

becomes heavy collisions increase snl the channel
utilisation decreases.

E.2.5 Summa r v

Etnernet ,a bit serial communication medium, can operate

upto 1C Megabits per second . A typical packet has a 64 bit

preamble, 48 bit destination and source address, 16 bit dat,"

type word, 368 to 12000 bits of data, 32 bit Cyclic

Redundancy Check and a 96 bit packet gap.[CRA] Thus an

information packet can range from 672 to 12304 bits.

Etnernet , which consists of coaxial bus segments, can be

expanded passively by adding transeivers and coaxial cable.

If needed signal strength can be buffered by connecting a
simple packet repeater.

E-2.6 Protocols

Transfering information packets from one device to another

requires methods for error correction, flow control, process

naming, security and accounting. These methods are usually

termed protocol. Ethernet has a simple error controlling

packet protocol, called Ethernet File Transfer Protocol

(ETFP), which is implemented in the interface to Ethernet.

PAGE E-9

E .3 Concljs ion

Ethernet fulfills all the above cr iterea and is therefore

the most suitable bus communication medium. However as the

hardware is not so readily available the actual design of

the Ethernet bus is being designed in a related project and

until then the I/O bus will have dedicated processors for

each peripheral.

It should be noted that until recently Ethernet

implementations were not commercially available. Intel has

announced their NDS-11 network development system [HUG].

A P P E N D I X r
Ili.2 I:XOSr,rpi- D E V E L O P M - - S Y S ? :M

An i n t c o d u c t i o n to the Motoi ol-t dzo rciser D e v e l o p m e n t sy ste m

and tne F A b r packag e, w h i c h a l l o w s a user to em ulate and

design his b). t-sl i ce hardwar ?, is d e s c r i b e d below.

i.he r.\i).;lice oit slice d e v e l o p m e n t system ha s been d e s i g n e d

1 ° 00 1 un on t^ e M 6830 EX O l c i s e r m i c r o p r o c e s s o r d e v e l op ment

system. ft al lows the us er's slice sys te m to be slaved to

tne L A O R c i s e r via P e riphera l I n te rface Adapte r(?IA) cards.

The F l e x i b l e Aid for 3 1 i c e d - p r o c e s s o r Test(FAST) mo nit or

al l o w s the d e s i g n e r to dovelope and debug programs for use
in his hardw a r e .

FYox us ed in c o n j u n c t i o n with the M o t o r o l a D i s k e t t e

O p e r a t i n g S y s t e m(MDGS) can be o p e r a t e d in a floppy disk

environment.

F . 1 ' i ' h : GxOCCis M

Ine M63'e,.l LXORci.n.-r is a s y s t e m dc vel orem n t tool used in

the d e s i g n and d e v e l o p m e n t of M6 U80 d i c r , p , o c ^ s s o r systems.

B a s i c a l l y tne E X OR ciser a s s i s t s the s y s t e m d e s igner by

a l l o w i n g d e b u g g i n g of s o f t w a r e and h a r d w a r e emulat ion .

PAGE F-2

Once the EXORciser has been loaded the user can look at the

contents of memory and perform the Motorola Active

Interface(MAID) functions as listed below.

MAID enables the user to;

i)Examine and change, if necessary, contents of a memory

location or an MPU register.

i i)Execute a program

iii)single step the program or run until a previously

inserted breakpoint is encountered.

iv)Perform decimal-octal-hexadecimal conversions as well

as calculate offsets for the relative addressing mode.

F.2 MDOS

The M6800 Diskette Operating System(MDOS) enables the user

to develope his software easily on the EXORciser. It is an

interactive operating system that interprets commands from

the operator's console.

The user can store or retrieve data, in the form of files,

on a diskette,process this data or activate other user

commands from the diskette. There are various system

commands that allow the user for example to initiate and

format diskettes and check them for errors. Command

chaining can be achieved by storing commands in a special

command file and then invoking this file. MAID is entered

PAGE F-3

once an object file has been loaded into the memory space so

that the program can be executed.

Files can be edited either by using the Co-Resident Editor

or the updated version EDIT1. The EDIT1 editor

automatically assigns line numbers to each file line, but

otherwise is faster and more efficient than the former

editor.

F.3 MASM

The Macro Assembler (MASM) has been designed for

microprogrammed bit slice processor developement.

The user must first of all define his microword size and

then the mnenomics and the format of the microword ip the

DEFINITION PHASE, which reads a definition source file and

creates an assembly source file. The definition allows for

implicit or explicit field lengths. Overlapping fields can

be achieved by using 1 dont care' fields.

Once a program has been written using the assembly language

defined in the previous phase it can assembled during the

ASSEMBLY PHASE.

iul
U

PAGE F-3

once an object file has been loaded into the memory space so

that the program can be executed.

Files can be edited either by using the Co-Resident Editor

or the updated version EDIT1. The EDIT1 editor

automatically assigns line numbers to each file line, but

otherwise is faster and more efficient than the former

editor.

F.3 MASM

The Macto Assembler (MASM) has been designed for

microprogrammed bit :lice processor developement.

The user must first of ill define his microword size and

then the mnenomics and the format of the microword ip the

DEFINITION PHASE, which reads a definition source file and

creates an assembly source file. The definition allows for

implicit or explicit field lengths. Overlapping fields can

be achieved by using 1dont care1 fields.

Once a program has been written using the assembly language

defined in the previous phase it can assembled during the

ASSEMBLY PHASE.

m

PAGE F-4

When the program has been successfully assembled then the

resulting object file can be merged with another system file

to allow it to be loaded during the execution of FAST.

A disadvantage of the macro assembler is that the user must

actually list the whole microword even though he may not

wish to use all the fields.The number of fields are limited

and therefore a long microword with too many fields will

have to have some oC its fields joined together.

F.4 EXOSLICE

Exoslice has been designed to extend the EXORCISER'S

emulating capability.Once the program has successfully been

assembled the user's bit- slice hardware can be directly

coupled to the main system. This is achieved by using the

Flexible Aid for Slice Testing (FAST) program.

The EXOslice subsystem is capable of being connected to the

ECL 10800 bit-slice family or the 2900 bit-slice family.

The subsystem is made up of the following components: (a)

Input/Output modules which feature 32 ECL output lines, 16

ECL input lines and 4 ECL output control lines. These can

be expanded to 5 modules thus allowing a 160 bit word

length. The I/O module has 3 Peripheral Inteface Adaptors

(PIA) thus allowing the EXORCISER to read and write words

PAGE F-5

greater than the 6800's 8 bit word. A decoding Programmable

Read Only Memory (PROM, allows the FAST software to

consecutively address all output lines followed by all input
lines.

(b) In order to interface to a TTL 2900 series bit slice

system an ECL to TTL module is provided for each I/O module.

ge..e. a „es control signals from the EXORCISER in order

allow the user's bit slice system to be slaved to the

EXORCISER. The user's microprogram storage is then

effectively replaced by the main system's Read/Write

storage. The EXOR Clk signal enables the user's system e
single stepped.

f a s t can als. he used without previously using the macro

assembler. Definition can be achieved during the running of
the FAST program and instruct!.-ons can be loaded, examined,
changed, inserted or deleted as in any other available
emulator.

time a new microword
ram FAST emits a clock pulse each
is put out, and the special reset
pul ses.

PAGE F-6

Figure F-l shows the functional steps during a micro

instruction execution. The line table is a Duffer which

temporarily stores all data going to or coming from the
hardware interface.

PAGE F-7

MlOxV -:am AREA

wosiT # n
UNE. TA6L£

cm FiEiJ)

FIGURE F-l m i c r o i n s t r u c t i o n e x e c u t i o n s t e p s

in
te

rf
ac

e

PAGE F-8

Similarly to MAID FAST enables the user to insert, display

or remove breakpoints for subsequent program running. The

program can be executed step by step or free run. User's

data can be manipulated as files from the diskette nd thus

previously saved or assembled programs can be loaded
directly while operating in FAST.

Once a word has been successfully defined a hardware
configuration list can be obtained

FAST unfortunately has a maximum of 11 fields and the

designer must keep this in mind when designing his
microword.

In the DEBG or MPGM modes the format of the micro word is

h»xadecimal by word and vica versa. A far better

■system woulc be to divide the word into fields defined by

the user and allow him to use the hexadecimal format for

each field. This would decrease debugging time
considerably.

A P P E N D ! '!

Till; CIRCUITRY

• ! i c o p' " ___ '. AT ■

A timer is gated into tiie RST pin oE the 3085 processor so

that the processor is reset after a power up sequence.

This cai also foe don v, iually by a RESET button or by the

Master Controller.

A m-,.-testable and D type 1 itch form the basis of the 'watch

doj' a"! arm. When a trigg r, in this case a read common

memory, is not received by the alarm, the processor is held

by the READY signal and the MC is notified and an LED is
lit.

IiiG la ten con i r o 1 signals are tri joe cd by a master

processor pulse which enables the processor to latch its

address and then its dat into ciie latches (write cycle). A

read is accomplished by 1 tening the address and holding the

processor until the next cycle wh -n the d .tn returns.(figure

PAGE G-2

-'V 'Z <3 C C c
H i l i i i I
::; " '• • .. •

11iiill -

■'*3

" " " l i m i

FI
GU
RE

G-
l

Mi
CR
P*
 O

CE
SS
OR

MO
DU

L

PAGE G-3

G .2 The ECL latch Module

This module consists of Bidirectional Translating latches

which are controlled by ECL signal translated by a TTL to

ECL tranlator. There are termination resistors on every

point of access to the ECL bus so uhat the bus is terminated

at every output (figure G-2).

/

PAGE G

A.i
A i l
Ail

S' i ;
o r,-, ■e-r-

_L
-JJ."
3

-5v

JS.

- 5 _ 2 v > 6 V

u
si,.'S.

— lOidlf
0

: v . r '
, f ! A ,

- - ^ 1 - : °

; sou.

©

— !
i m :

-y 2.

(3v|
Ai |
S.* |
A,i

'0| 'IIi «L-

— :<3

f 5v

-°>

'805

©

.t
■ 3v

j£a

Oi
=1

<• ;
«% 3

- %

- I p , _ ^ 5 v

'
,r...l h . L

/ O !
i j j 2 T : !

iosou.

10 sou.

-f—

Hid Af,
At i
A t ,

T T T F _2U_n$
I
I Aft
I -“£ *
I >
L:3f

o o j v

f -

I Of.
| £3*1

I Of I
0*1

■JLI

! U .
SZi; ccj.
f M f

1 USw
I -fr
i CeW
rot.

FIGURE G-2 ECL LATCH MODULE

PAGE G-5

G .3 The Memory module

A read/write signal is generated from the R/W signal

received the ECL bus by the monostables and a JK flip flop.

This is done in order to generate the correct width pulses

for controlling the latches on the memory side.(figure G-3)

PAGE G-6

.4

0: •

am

-*rv_00>-
rf

CCmT*?o. OF 1

:«E

Ov
5 V^ 00

Ov

FIGURE G-3 MEMORY MODULE

m

PAGE G-7

G.4 The Control Board

A modulo 5 counter, driven by an external clock , accesses

two identical sets of fast memory. The MC can write to

these memories the data desired and then the counter reads

successive locations. The output of the memories are the

master memory pulses and the master processor pulses. It

should be noted that any combination of dulses can be

obtained. (figure G-4)

PAGE G-3

i i i i n i m u H i m

iiiiiiaa ia iilamia 11a

Illll

FI
GU
RE

G-
4

CO
NT
RO
L

BO
AR
D

«
-

PAGE G-9

G .5 The Central Processor Array

Four 4 bit slices are joined to form a 16 bit ALU. The

status and fast look ahead units are included to speed up

computations. A multipl ex er enables either data from the

local memor y or from the pi pelin e r e g i s t e r s . (figure

G-5 (a))

One way latches enable the ALU to commu ni cate with local

m e m o r y , common me m o r y and other I/O.

Real time execut ion is enabled via a mul ti plexe r or

a l t e r n a t i v e l y the EXOR CI SER provides all the neccessar y

control signals. (figure G - 5 (b))

1
PAGE G-10

li ivi 111 ii i ilium

.... I ■11111*11

r!H .•;!:r'•■■'•

1

it-

^ 3 $

ir
i 1 i 15 « f

FI
GU
RE

G-
5

(a)

CE
NT
RA
!,

PR
OC
ES
SO
R

AR
RA

Y

m

ill;'-: i n - i i !
 - ' PAGE

=

5333-^^7-'

1: ’ * - '

mi im ii
M M

a Hi Sit I vi.SK ■“ i

;

.t-Nl v u

I H
i

„
..... _J

 ̂-t t ; I I 1 I •**-
PAGE G-ll

-

^ 3)\
-u —

i

M * -

Lj" Z m
' ' 3

 ̂4 ■*

mi mi ii
.< v. ,1 y»

FI
GU

RE

G-
5(

b)

IN
PU

T/
OU

TP
UT

PAGE G-12

G .6 The Computer Control Unit

Three 4 bit sequencers give 2**12-4K by 64 locations in the

control store for the microinstructions. The next address

unit enables the sequencers to function more efficiently,by

adding extra codes. A vector input to the sequencer can be

obtained from the interrupt unit circuitry, or directly from

the pipeline.

The interrupt unit can recognise an interrupt from each of

the processor modules. The interrupts however have to be

c o r r e c t l y pulsed by a set of monostables.

The next address unit also controls a 12 bit counter which

Prod. :es a signal once a preset condition has occurred.

This signal as well as status flags are routed through a

multiplexer to be tested, with polarity, by the next address

unit. The interface to the processor common memory is

derived in a similar fashion to that of the processor

modules.(figure G-6(at)

The pipeline registers are one way latches whicn collect

their data from very fas RAM (control store). This control

tore is replaced by the EXORCISER during operation of FAST,

t the RAM can be loaded from the EXORCISER for real time

processing . The control signals for the rest of the system

are derived from the pipeline registers.(figure G-6(bl)

s

DU

liiiiiiimi l i f ' f < < h i f
?<\G” G-13

— -r :

.

3

.31515 «-1 ;. r-T

■

d; 15 -M

i 11; ; 1 i' ■ | A5~ '

i i e m rtnii
u 1 < =•■ liurj? - _

®t -nU

PAGE G-14

m u titI l l l l l l l W l U l l

=3
>Z51- I.t_ , — - 1

I U 1 I 1 I I I I I I I I I I
l . . .

FI
GU

RE

G-
6(

h)

PI
PE

LI
NE

RE

GI
ST

ER
S

A P P E N D I X H

r r r i T T T ^ m s T S o f r a m r o d

The cost of marketing a product can be basically

into two a r e a s :

1. Development cost

2. P r o d u c t i o n cost

H __ i Development Costs_

The development c o s t s o f the complete Ramrod system must

take into account the following:

1. Microcoding 9R100/4 lines - R3000

2. Other software - R3000

3. Research and develo p m e n t @R250/day for 3 man years

- R320,000

4. Equipment such as Logic Analysers, Oscilloscopes,

M u l t i m e t e r s etc - R30,000

5. Emu iation on a development system costing R53,0O0

PAGE H-2

Clearly the last three items are the most c0--11
dominate the development cost ot a commercial produc

They .perhaps , overlap on the other costs .

development dost is in the region of

H . 2 P r o d u c t i o n .

P r o d u c t i o n costs include purchasing components f o r the

c

ca

omplete system and the production of a single Kamrod system

n be calculated from the following:

1. Printed circuit board layout for 4 boards - *1°°°

2. Printed circuit board manufacture - R508

3. Mechanical work and structure - M O M

4. Techn ical work (soldering etc) - R2B00

5. Integrated C i r c u i t s - R130B

6. P r i n t e d Circuit Boards - R1200

7. Miscellaneous components (Fan etc) - R5fi0

PAGE H-3

Thus it costs approximately R9000 to produce a single Ramrod

tern which consists of 5 slave processors,

processor, , memory modules and 10 latch modules.
sys

H . 3 M a r k e t i n g Cost

The selling cost of a marketable product is a function
the amortised development costs, production costs, normal

application software, sales and support necessary to

ma intain the product

/

a p p e n d i x I

HIGH LEVEL DESCRIPTION OF SOFTWARE

This section p r o v i d e s a High Level D e s c r i p t i o n of the main

routines used in the master controller and the local

operating system. The description is b a s e d on a simplified

form of Pascal.

I .1 MAIN ROUTINE
Read number of tasks to be loaded;
WHILE memsegment still free ; search memory table

Read in Tasks
IF freeProcessor found THEN ; search processor table

BEGIN
Dispatch task to processor

Schedule processor to run

END

UNTIL no tasks left.

1.1.1 INTERRUPT ROUTINE

Disable Interrupts

Read interrupt ID.

Call IntService (ID.)

Return to main routine.

IntService (IE.)

E n a b l e I n t e r r u p t s

S e r v i c e i n t e r r u p t

R e t u r n

PAGE 1-3

D i s p a t c h T a s k t o P r o c e s s o r

A s s i g n F r e e M e m t c F r e e P r o c ;

S c h e d u l e P r o c e s s o r t o R u n

A s s i g n T i m e s l o t t o P r o c ;

P r o g r a m c o n t r o l b o a r d m e m o r y

P r o g r a m c o n t r o l b o a r d m e m o r y

PAGE 1-4

I.2 Local Operating System

START: If Identity Equals slave
then Execute user task

ELSE BEGIN
set up Usart;

IF identity equals load;

THEN load tasks from disc;

ELSE BEGIN
Ask user for command

CASE of Command

1: display memory

2: Execute program

3: Test Common memory

4: Inform status of Ramrod

5: insert data into memory

6: Move data

7: Substitute data

8: Display registers

END

END

END

END

Ask User for Command

Reai Command from Console

Call Command Routine

Display Memory

REPEAT
Read start address, end address

Display address, data

UNTIL end of address

Execute Program

Read start address
Put start address in Program Counter

Execute

Test Common Memory

REPEAT
Write random data into memory

Read data and compare

UNTIL end of memory

Inform User Status of System

DO 209 times

BEGIN
yead number of processors

Display data

Read number of memories

/

PAG!

D i s p l a y d a t a

R e a d n u m b e r of T a s k s

D i s p l a y d a t a

E N D

I n s e r c D a t a

R E P E A T

R e a d a d d r e s s , d a t a

W r i t e d a t a i n t o a d d r e s s

U N T I L E n d O f C o m m a n d (E O C) C h a r a c t e r

M o v e D a t a

R E P E A T

R e a d d e s t i n a t i o n a d d r e s s

R e a d e n d a d d r e s =

R e a o s o u r c e a d d r e s s

M o v e d a t a f r o m s o u r c e t o d e s t i n a t i o n

U N T I L e n d a d d r e s s

S u b s t i t u t e M e m o r y

R E P E A T

R e a d a d d r e s s

R e a d d a t a

w r i t e d a t a i n t o a d d r e s s

U N T I L E O C

ijsolav Registers

REPEAT
Write contents of register into memory

Display "Reg" , d a t a

UNTIL no more r e g i s t e r s .

6

a p p e n d i x J

RELIABILITY [SMI]

The reliability ot a system is primarily influenced by its

complexity. The fewer the parts and the fewer the types of

materials and components involved then the greater is the

probability of an inherently reliable product. In addition

Che use of redundant parts , whose individual failure does

not cause the overall product to fail, is a common method to

achieve a higher reliability.

It is good engineering practice to satisfy reliability

requirements, but the engineer must bear in mind that the

mathematical aspects of the subject, although important,

serve only to refine requirements and do not themselves

create a reliable product.

It is clear that the cost of making a system more reliable

must be offset , in part , by a saving in maintenance to

justify it. Maintainability and reliability , together,

dictate the availability of the equipment, and are

interdependent for the following reasons:

1. If the system's reliability is partly dependant on

redundancy , it will be more reliable if the repair

time (maintainability , of an SRU is improved.

Thus maintainability can contribute directly to the

reliability.

PAGE J-2

2. The design and assurance activities to achieve both

of these parameters are , generally, the same.

3. The overall availability of the system, i.e. the

'up time' is also dependant on both these

parameters.

Availability is defined as the ratio of the up time to tip?

total time. Up time is defined as the Mean Time Between

Failure(MTBF) whereas total time is the sum of up time and

'down time'. Smith [SMI] makes a distinction between down

time and the Mean Time To Repair (MTTR) but for the purpose

of this thesis they are considered the same.

Thus Av = MTBF
MTBF+MTTR

Availability is achieved by a combination of maintainability

and reliability and there is a trade off between these two

parameters as explained in the following example:

A system which has a MTBF of 100 hours and a MTTR of 101

hours has an Av= 100/101, has the same Av as a system with

MTBF=200 hours and MTTR = 20 2 hours. Clearly the

reliability of the former case is greater than that of the

latter while the converse is true of the maintainability.

/

PAGE J-3

Reliability as mentioned above is influenced by the

complexity of a system, and thus a uniprocessor system will

probably be more reliable than a multiorocessor system.

However if the factors of redundancy and repair are

fntroduced the the multiprocessor becomes much more

reliable.

MTTRThe repair time is defined as the inverse of
Therefore if a redundant system is periodically repaired,

whether or not faults are present, each time it is repaired

the reliability calculations begin anew.

There follows calculations of the reliability and the MTEF

of various systems including Ramrod .

Figure J.l shows the reliability of a system consisting of

several parts where the failure of any block causes a system

failure (eg. a two board computer).

Thus R = Ra -Rb

Figure J .2 shows the situation where all blocks must fail in

order to cause a total system failure (eg. a redundant

processor system).
A

Thus R = Ra+Rh-RA'Rb

PAGE J-4

rigate J.3 illustrates a situatior. which is composite of J.l

and J . 2 .

Thus R = Ra -(Ra+Rb-Ra-Rb)

The reliability diagram .of Ramrod is illustrated

j.4. It will be analytically proven , and it can be seen

from the diagram as well, that failure of either the matter

or the ECL bus causes a system failure. H o w e v e r i.

noted that the system will gracefully degrade to

uniprocessor computer if the master fails ,s mentioned in

chapter 6, and unfortunately there is no way to show this in

the mathematical model. Therefore the r lability of Ramroo
is much worse than : actual reliability.

PAGE J-5

B

FIGURE J-3 COMPOSITE RELIABILITY

e c l BUSMASTER ■

PROC1

PROC2]—

i— | MEMl

«—! MEk2 --1

T P ROC3 -4 — ; MEM3_

PROC4 MEM 4

— PROC5 T|— 1 MEM5

FIGURE J-4 RAMROD'S RELIABILITY

FIGURE J-l SERIAL RELIABILITY

FIGURE J-2 PARALLEL RELIABILITY

PSiGE J-7

A uniprocessor system with L=2EO0(; FITS and z soards

<=>o

now MTEF = } P (t) d t
0

h h e r e R = e- ^ ~ = 1/2L - I. b years

for a ou intiple redundant system

Rp^ = R^-SK'i + i e R ^ - l K R ^ + SR

thus XTBF =1 - 5 + 1£ - 10 +5 = 2 0 years
10L 8L 6L 4L L

Now if Repair is introduced then

MTEF = u4

where u = 1/24 and thus u >> L

therefore

MIBF = 1C18 years.
However 'amroc has a Reliability of;

R - = a . R • i o 5 ̂
therefore MTBF = 1.3 years
Or if Ramrod is considered as 4 identical units , and

an any failure causes a system failure then

MTBF = 1/4 L = 1.4 years which is almost 1.3 vears.

PACE J-3

Thus it i?3 obvious th.at th" master a n d the CC!j bus

bottlenecks and must be dupl lea t-'-u. dow it

duplicated then lor a doubl< rr v i u n d a n t syst^.n

rtp2 = 2R ~ R‘"

then the reliability ol Ramrod is

Rp22 * Rp5‘'
therefore

: n - 1
H l 26L 24L 22L 2UL iBL loL Vi. 12L1CL dL

= 6 .7 years.

however if repair time is now introduced , then Ramrod can

be analysed as a quadruple redundant system which requires

three units to operate, because i1 one unit tails then there

is still the other identical unit which can now t, <<e over

opc ration.
Thus MTBF (Ramrod) = 7 L + u =50 x 1 ° years

12L2

are the

these are

REFERENCES

PAGE R-2

[. SPR 82] AGERWALA, T. and ARVI.NIi, “Data I lo- -Y '

IEEE Computer Vol. 11 NO. 2. Februac ■

[ALE 81] ALEXANDER, P, "Array Processor Design Concepts”;

Computer Design December 18 81.

[A N A 80] A N A C K E P . , W, " J o s e p h s o n C o m p u t e r T e c h n o l o g y : An IBM

R e s e a r c h P r o j e c t " ; I L M J . R e s . D e v e l o p . v o l 24 .

N o . 2 M a r c h 1 9 b 0 .

[A C R] A C K E R M A N , W . G , " D a t a P l o w L a n g u a g e s " C o m p u t e r

V o l . 1 5 N o . 2 F e b r u a r y 1 9 8 2 .

[A G R 7 6] A G RAWA LA , A . K , R A U S C H E R , T . G . , " F o u n d a t i o n s o f

Microprogramming A r c h i t e c t u r e , S o f t w a r e

A p p l i c a t i o n s " ; A c a d e m i c P r e s s , I n c 1 9 / 6

[A M n 1] A D V A N C E D M I C R O D E V I C E S T h e A M 2 9 0 0 F a m i x y D a t a Book.

1 9 7 9

[A M D 2] A D V A N C E D M I C R O D E V I C E S Build a Microcomputer Series.

1 9 7 9

[A L D] A L - D A B A S S , D , " M i c r o p r o c e s s o r b a s e d P a r a l l e l C o m p u t e r s

a n d t h e i r A p p l i c a t i o n t o t h e s o l u t i o n o f C o n t r o l

A l g o r i t h m s " ; C o n t r o l S y s t e m s C e n t r e R e p o r t ,

U n i v e r s i t y o f M a n c h e s t e r , J a n 1 9 7 7 .

(/

PAGE R-3

[ARD] ARDEN , B.W., GI NOG Ml, ,

Multiorocossoc/Comput -r ArchiKctuce"; I.E.E.R.

Transactions o n C o m p u t e r s , V o l . C - 3 1 , h l u - " “ a y

19B2.

[E R I 7 8] B R I N C H H A N S E N , P . , " !) i s t r i b u t o d 1 r 0 '

c o n c u r r e n t p r o g r a m m i n g c o n c e p t " ; Comm A.C.M. V o l

2 1 , M o . 1 1 N o v . 1 9 7 8 p p 9 3 4 - 9 4 1

[U L A] B L A K E , R . E . , " A d v a n t a g e s t o b e g a i n e d trom P r o c e s s

C o n t r o l b y C o m p u t e r " ; E l e c t r o n i c s a n d P o w e r , M a r c h

1 9 7 7

[B O H] B O W E N , D . A . , B U H R , R . J . A . , " T h e L o g i c a l D e s i g n of

M u l t i p l e Microprocessor S y s t e m s " ; P r e n t i c e h a l l I n c .

N e w J e r s e y 1 9 8 0

[B A R] B A R R O N , D . h . , " C o m p u t e r O p e r a t i n g S y s t e m s " , C h a p m a n a n d

H a l l L o n d o n 1 9 7 1

[B S O 1] B O S T O N S Y S T E M S O F E I C E B S O C r o s s L i b r a r i a n (NLIR)

U s e r M a n u a l . 1 5 F e b . 1 9 8 1 .

[B S O 2] B O S T O N S Y S T E M S O F F I C E B S O C t o a B - R e f e t e n c c Program

(M R H F) U s e r M a n u a l . 1 8 M a y 1 9 8 1 .

(B S O 3] B O S T O N S Y S T E M S O F F I C E B S O C r o s s L i n k a g e E d i t o r

(M L I N K) U s e r M a n u a l . 2 J u l y 1 9 8 1 .

[B S O 4) B O S T O N S Y S T E M S O F F I C E B S O R e l o c a t i n g C r o s s A s s e m b l e r

f n a n f t rM User M a n u a l . 7 J u l y 1 9 8 1 .

/

PAGE R-4

[330 5] BOSTON SYSTEMS OFFICE BSO Object File Conversion

Utility (OBJCMV) User Manual . 7 July 1981.

[BSO 6 J BOSTON SYSTEMS OFFICE BSO Simulator/Debugger

(SI8035) User Manual . 7 July 1981.

[BIS] 31SCAERI, J .,GAGO, A., "Low-Cost Multiprocessing

System"; Electronics Letters Vol 17 no. 2 4 26 Nov

1901.

[BLO] BLOOD, rt.R.Jr., " M e d System Design Handbook"; 2nd eel.

Motorola Inc,1972

[BRI 73] BRINCB—HANSEN, P., "Operating System Principles';

Prentice-Hall, 1973

[3AK] BAKER, K. "Specifying The System" Microprocessors and

Microsystems, Sept 1961' Vol. 4 No. /
i

[BAR] BARTEC, T.C."Digital Computer Fundamentals";3rd ed.

Tokyo: McGraw-Hill Kogakusha Ltd., 1972.

[BRK] BRINKMAN, E.L., " A Selection of Multi-Microcomputer

Systems"; Mini-Micro Systems, JAN 1979.

[PUH] BUHR, R.J.A., E T A L . "Why Multiple Microprocessors";

Internaliona1 f posium on Mini and Micro computers

Montreal Canada, 197/.

[BERT] BERNHARDT, D, . and SCHMITTKK, c.,.
Implementation of Fault-Tolerant Multi-Microcomputer

S ' / ;

Mo. 4 May 1981.

[BERD] BERNHARD, R,. "The 'no-downtine' computer";

I.E.E.E. Spectrum September .1977 r> - 83-37.

[CRA] CRANE, R.C., "Software pack and cor. - er link EEC

computers in an Ethernet"; Electronics Dec. 15,1981

[DOY] DOYLE, E.A.Jr., "How Parts Fail"; I.E.E.E. Spectrum

October 1981.

[DBS] DESIMONE, S.E., "Test Techniques for ECL loaded

Boards" ; Computer Design,June 1952.

[DU] DJIKSTRA, E.W., "Co-operating Sequential Processes",

reprinted in "Programming Languages", edited by

. , NATO te, A

Press, London 1968,pp 43-112.

[DAV 78] DAVIDSON, J., ET AL., "A Generalized Multiprocessor

System"; I.E.E.E 1)7 .

[DAV 82] DAVIS, A.L.,KELLER, i'.K , "Data tlow Program

Graphs"; I E E E Computer Vol. 15 Mo. 2, Fenrumy

/

PAGE IV 5

(DAV 301 DAVIS, C.G., COUCH, R.L., "Ballistic Missile

'

November 19 80

[DEN] DENNIS, J.B., "Data Flow Supercomputers"; Computer

November 1983

'

for the New SNCF Computer Systems Network" . Paper

read at the 8th ORE Colloquium , Madrid , 5 and 6 May

1981.

[ENS 80] ENGLOW, P.H. Jr. "What is a 'Distributed1 Data

Processing System?" Computer Jan 1978 Vol. 1983 pp

75-96

[ENS 74] ENSLOW, P.H.Jr. Comtre Corporation,
Multiprocessors and Parallel Processing";New

York ;John Wiley and Sons,1974

[EUR] EURGMICRO JOURNAL; Vol 5:

[PEL] FELDMAN, J.A., "High Lev 1 Programming for Distributed

Computing"; Comm. A.C.M. Vo.!. 22 No. 6, June

1979, pp 353-368.

[FAR] FARBCR, G. , "Principles and Applications

Decentralized Process Control Computer Systems";

Distributed Process Computer Sytstems.

[GIL BEHR] GILGI, W.K., BEHR, P.M., "Making Di stt. i'out.d

Multicomputer Systems Sale and Programmable ;

Internal report at the Technical University

Berlin, West Germany.

[GAJJ GAJSKI, D.D.,et al, "A Second Opinion On Data rlow

Machines and Languages"; IEEE Computer Vol. 15 do.

2, February 1932.

[HOA 78] HOARE, C.A.R., "Communicating

Processes"; Comm.A.C.M. Vol. 21, No. 8, Aug.

1978, pp 666-677.

[HOP] HOPKINS, A.L., et al ,"FTMP A Highly Reliable

Fault-Tolerant Multiprocessor for Aircraft ;

Proceedings of the I.E.E.E. , vol. 66 No. Iw Oct

1978.

[HOA 72] HOARE, C.A.R., "Towards a Theory of Parallel

Programming"; Operating System Techniques, Academic

Press, New York, 1972 pp 61-71

[HUD] HUGHES, P., DOONE, T .," Mu1ti-Processor Systems";

Microelectronics and Reliability, vol. 15 pp

281-293, Pergamon Press, 1977.

[HUG] HUGHES , J . , " Dove lopemen t Systems: Ethernet. ;

Computer Design , May 1 38 2.

PAGE R-i

M .,"Bit-slice[HIR] BIRD, D. J, ELI IQ"', 0.
their use and application ;M icropcocossor s-

Electronics and Power, vol 25, No. 4, March 1979, pp

179-184

[H O P 8 0] H O P K I N S , R . L . , "Meeting the Challenge o f A u t o m a t e d

E C L T p vnq" C o m p u t e r Design S e p t 1 9 8 0 p p 1 1 5 - 1 2 . .

[INT 1]INTEL COaFORATI01
O c t . 1 9 7 9 .

N MCS 83/85 Family users manual ,

[INT 2] INTEL CORPORATION Coir.pon nt data catal' I , 1983.

[INT 3] INTEL CORPORATION Peripheral design handbook , Aug,

1980 .

[INT 4] INTEL CORPORATION Memory Design Handbook , Jan,

1981.

[INT 5] INTEL CORPORATION SDK 5 Kit User’s Manual, .

[JOB] JOHNSON, D. , "Logic Analyser and mo Developc,.ient

System, Aid in Debugging Multiprocessing Networks";

Digital Design Nov 1980

[KAH] KAHNS, S., ET AL. , "Automated Control by Distributed

Intelligence"; Scientific American 15/ ,*.

[KART] KARTASHEV, S.P. and KARTASHEV, S.I. "Supecsystems

for the 80's"; I.E.E.E. Computer Nov 1983

I

I

PAGE R-9

[KARP] KARPLUS, W.J., AND COEKN, D., " A r c h i t e c t u r a l

Software Issues in the Design and Application of:

Array Processors"; I.E.G.E. Computer Sept.]9%l

[KER] KERGUELEN R. "Use of Micro-Computers in Distributing

Processing on the SHCF" . Paper read at the 8th ORE

Colloquium , Madrid , 5 and 6 May 1901.

[KOP 31] KOPETZ H. "Distributed Computer Control Systems" .

Course presented by The Continuing Engineering

Education Division , University °L

Wi twatersr and , 4 to 6 uov. lyol.

T e c h n i c a l U n i v e r s i t y of Berlin Report MA 82/2, April

1922.

[KOYJ KOYAMA, S., MIURA, R. , "A Multiprocessor System for

Fast On-Line Simulation of Dynamical ^Systems",

reprinted from Simulation of Systems, Delft 19/6,

North-Holland Amsterdam: 1976

[ROY] KOYAMA, S., MIURA, R., "An all-Digital Dynamical

System Simulator using Parallel Processing",

reprinted from A link between Science and

Applications of Automatic Control, New York and

nvfnrri? P'? r a n moon Pro fr>, 19 / 1

PAGE R-13

[KOY 771 KOYAMA, S., ISURUGI,*., et al,". ^ U z a t i o n o£ a
D D R System Eot C o n t i n u o u s D y n a m i c a l System simulation

w i t h a universal M u l t i m i c r o p r o c e s s o r S y s t e m ‘ H A R P S 1

", Euromicro newsletter Vol . 3, -o. 1 ''' '

[LAM] LAMBRECaS, J.S.D., ROOD, M.C,.,
S o f t w a r e f o r u s e i n S a i l - S a f e C o n t r o l " ; P r e p r i n t s o f

t h e 3 r d I F A C / T B I P S y m p o s i u m o n S o f t w a r e t o r C o m p u t e r

C o n t r o l , 5-8 Oct. 1982

[LISKl LISKOV, B., "Primitives for Distributed Computing"

Froc. 7th Symposium on Operating Systems Principles,

Pacific Grove California Doc. 1973 PP 33-42

[L I S T] L I S T E R , A . M . , " F u n d a m e n t a l s o f O p e r a t i n g S y s t e m , , ,

The M a c m i l l a n P r e s s Ltd., 1 9 7 v

[M c D j M C D O N A L D , W . C . , W A Y N E S M i T . i , R . , "■ ‘ 1 ‘ A l “ t “

for Real-Time Applications"; Computer ,Ocr. 1982 13p

2 5 - 3 9

: Distributed

Packet Switching for Local Computer networks";
1. 19, NO. 7

[H . " " !
a p p l i c a b i l i t y o f I n t e r p r o c e s s c o m m u n i c a t i o n P r i m i t i v e

P r o p o s a l s t o D i s t r i b u t e d P r o c e s s C o n t r o l " ; P r e p r i n t s

o f t h e 3 r d I F A C / I F I P S y m p o s i u m o n S o f t w a r e f o r

r n m n n i - p r C o n t r o l , 5 - 8 O c t . I) o 2

PAGE R-13

[KOY 77] SOYAM-X, S., ISURUGI ,Y. , et al, "A Roaliz j cion oi.

DBA System Eoi: Continuous Dynamical System simulation

with a Universal Multimicroprocessor System ’HARPS'

", Euromicro Newsletter Vol. •, No. 4, 1.9 77.

[LAM] LAM8RECHS, J.S.D., ROOD, M.G., "Highly Reliable

Software for use in Fail-Safe Control"; Preprints of

the 3rd I FAC/1FIP Symposium on Software for Computer

Control , 5-8 Oct. 1982

[LISK] LI3K0V, B., "Primitives for Distributed Computing"

Proc. 7th Symposium on Operating Systems :jr incip tes ,

Pacific Grove California Dec. 1979 pp 33-42

[LIST] LISTER, A.M., " Fundamentals of Operating Systems ;

The Macmillan Press ltd., 1970

[MCD] MCDONALD, W.C., WAYNE SMITH, R., "A flexible test-bed

for Real-Time Applications"; Computer ,Oct. 1982 pp

25-39

[MET] METCALFE, R.M., BOGGS, D.R., "Ethernet : Distributed

Packet Switching for Local Computer Networks";

Communications of the ACM July IS 76, Vol. 19, No. 7

[MAC] MACLEOD, I.M ., ROOD, M.G., "An Evaluation or

applicability of Interprocess Communication Primitive

Prono :t! to Distributed Process Control" ; Preprints

of the 3rd IL’AC/IFIP Symposium on Software for

Computer Control , 5-8 Oct. 198 2

[MAK] MAKING, K., KOYAMA, 3., et al., A '
Digital Simulator (UOSS) Using a Hierarchical

Distributed Multi-processor Technology", reprinted

from Simulation of Systems '7S, Sorrento 1979,

North-Kol1 and Amsterdam: 1979

[HAD MAISEY, D., "Distributed Processing for Industry";

New Electronics September 9 190..

[MIC] MICRO MEWS, A Newsletter from L'Electron s.A.

Microprocessor Division; Chnotuc o .

[MOT B] MOTOROLA INC."Hoc1 High Speed Integrated Circuits";

Series B .

[MOT 1] MOTOROLA I N C ."EXOslice User’s gu i d e ” ; Switzerland:

1977

[MOT 2] M •
Switzerland: 197 5

[MOT 3| MOTOROLA I U C ."M68MDOS3 EXORdisk 11/111 Operating

System User's Guide" ; 1st ed. , li'/o

...............
Telecommunications"; Electronics and

Instrumentation,vol 11 No.4, April 1:, 3 0 ,pu v Z 7j

PAGE R-12

[NAD] NADIR J . , McCORMIC B - "Bus Arbiter Streamlines

Multiprocessor Design" . Computer Design , June

1 9 8 9 , p n . 1 0 3 - 1 9 9 .

[NOV] NOVAK M., "Gate Arrays - fabrication, design and

economics"; MSc Research Report Dec. 1982,

University of the Witwatersrand, Johannesburg

[PAT] PATEL, J.H. "Performance of Processor-Memory

Interconnections for Multiprocessors"; I.E.E.E.

Transactions on Computers Vol. C - 3 0 No. 1 0 October

1 9 0 0 .

[POL] POLCZYNSKI, M.H., "Multip1 mp Control System raises

throughput without bus conflicts"; Electronic Design

J a n . 7 , 1 9 0 2 .

[PEB] PEBERDY, N . "Digital Electronics-Logic Families";

The Electrical Engineer.Sept 1 9 8 0 pp 1 3-20,Thompson

South Africa

[RAV] RAVASIO, P.C., et al, "Local Computer Networks";

North-Holland, Amsterdam, 1 9 0 2 .

[RA3] RABIHOWITZ, A .E ., and ROOD, M.G., "Ramrod a Multi-

Microprocessor Computer"; Proc. 2nd South African

Computer Symposium, OCT. 1901, Pretoria.

/

PAGE R-13

r.OD 76] ROOD, M.G., "Organisation of [ndustL ia'

C o m p u t e r s " PhD. Thesis, U n i v e r s i t y oC C a p e Town,

1976

[ROD 82] ROOD, M.C., " The Impact of Microelectronics on

Distributed Control Systems "? Inaugral Lecture for

the Head of the. Dept. of Electrical Engineering ,

University of the Witwatersrand, Johannesburg 2'Jth
/

October 1982.

[RAT] RATTNER, J., LATTIN, W.W., "ADA d e t e r m i n e s the

A r c h i t e c t u r e of 32 b i t M i c r o p r o c e s s o r " ; E l e c t r o n i c s ,

Feb. 24 1901.

[SUG 80] 3UGARMAN, R., " 'Superpower1 Computers"; I.E.E.E.

Spectrum April 1980.

[SMI] SMITH, ,D,J., " R e l i a b i l i t y and M a i n t a i n a b i l i t y m

P e r s p e c t i v e " ; M a c M i l l a n , 1901.

[SAT] SATYANARAYANM, M., "Commercial Multiprocessing

Systems"; Computer May 1980 pp 7^-96

[STI] STIFFLER, J,J. , "How Computers Fail"; I.E.E.E.

Spectrum October 1982.

. , E , J r . , (' ' " 1

Technology and A r c h i t e c t u r e " ; I.E.E.E. Transactions

C o m p u t e r s , Vol. C-31, No. 9 May 1982.on

PAGE R-14

[TOR] TORRERO, E.R. "They said it couldn't be done";

I.E.E . G . Spnctcum Sept. 19S--.

[TAR] TAtiAKA, Y., HI Y AS HIT A , K., e V. nl o (■
university Array Processor System): A Hew

Hierarchical Array Processor System", 2nd Euromicro

Symposium on Micro Architecture, Venice: Oct 1976

[TOO] TOONO, H.D., "Multi-Microprocessor Systems"; Siemens

Forsch-u. Entwickl.-Ber Bd 7(1973) nr.

6,Springer-Verlafj 19/ .

[TRAKH] TRAKHTENGERTS, E.A., SHURAITS, Yu.H., Software

Design for Multiprocessor Systems Computer Control";

'

Moscow, USSR.

[THE, t b b i S, D., - Array Processor Architecture"; I.E.E.E.

COMPUTER Sept. 1981.

[TEX 1, TEXAS INSTRUMENTS INCORPORATED The TTL Data Book for

Design Engineers; 1973

[TEX 2] TEXAS INSTRUMENTS INCORPORATED Supplement to the TTU

Data Book 1974

[os BOO] UNITED STATES DEPT, of DEFENCE, "Reference Manual

for the ADA programming Language, July 19 80

[VICl VICK, C.R., et al " Adaptable Architectures for

Supersystems"; Computer November 1930.

P a g e R-14

[t o r] TORRERO, E .a . "They said it couldn't b° done";

I.E.E.G. Spectcum Sept. 19S;.

[TAiJ] TAdARA, Y. , MI Y AS HIT A, K. , et al "HARPS (Hokkaido

university Array Processor System): A New

Hierarchical Array Processor System", 2nd furoraicro

Symposium on Micro Architecture, Venice: Oct 1976

[TOO] TuONG, H.D., "Multi-Microprocessor Systems"; Siemens

Forsch-u. Entwick1.-Ber Bd 7(1^ o) nr.

6,Springer-Verlag 197 G.

[TRAKH] TRAKHTENGERTS, E .A ., SHURAITS, Yu.M., "Sol two re

Design for Multiprocessor 3y ferns Computer Control";

Internal re?orc at the Institute of Control Sciences,

Moscow, USSR.

[THE] THEIS, D., " " > 1 ’

COMPUTER Sept. 1981.

[TEX 1] TEXAS INSTRUMENTS INCORPORATED The TTL Data Book for

Design Engineers; 1973

[TEX 2] TEXAS INSTRUMENTS INCORPORATED Supplement to the TTL

Data Book 19 74

[US DOD] UNITED STATES DEPT. of DEFENCE• "Reference Manual

for the AD x programme .g Language, July 19 80

[VIC] VICK, C.R., et al " a aptable Architectures for

S u p e r syste s" ; Cor;,outer November 1980.

PAGE R-15

fwcij WErTZMAG, C., "Distributed Micro/Mihicomouter Systems,

Structure, Implementation and Application";
Prentice-Hall, N.J. 1980

[WAP] WATSON, I., CURD, J., "A practical Data Flow

Computer ", I E E C o m p u t e r , February 1982

[WJLl .. I u a LS, M.V. STRINGER, j.b., "Microprogramming and the

Design of the Control Circuits in an Electronic

Digita „ Computer"; reprinted in "Computer

Structures:Readings 9

[ILD] WILD, n., "A Support System for Developement of a

Microprogrammed Controller", MSc Dissertation (in

preparation) Dec. 1932, University of the

Witwatersrand, Johannesburg

‘ " J ̂ 11 JvD' A *K •' "A Multi-Microcomputer Interface " ;
Microelectronics and Reliability Vol 19 pp

513-522:P -rgnmon Press Ltd. 1980

[7AK] ZAKS, R., WILMINK, J., HICOUD, J.D. "Microcomputer

Ai.cn j toe* urea". Euromicro Symposium. Amsterdam:
North Holland, Oct 1977.

fZOC] ZOCCOLI, M.P., SANDERSON, A.C., "Rapid Bus

I'.ii i . iprocr. nor System", Computer Design, Nov 1981, pp
189-200

Author Rabinowitz A E
Name of thesis Ramrod: an experimental multi-microprocessor

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013
LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y of t he W i t w a t e r s r an d , Johannesbu r g L i b r a r y website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University o f the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

