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INTRODUCTION

The determination of the probable tonnage and
grade of payable ore remaining from time to timo in a mine
and the correct policy of selective mining based on such
determinations, is of vital importance to the mining engineer
and the investor of capital. It is surprising, therefore,
that more attention has not been devoted on the Wltwiter. vnd
to the scientific improvement of mine valuation methods,
which at present consist almost entirely of the application
of simple arithmetic and empirical foTulae based on practical
experience.

Experience t ~ed on intelligent observation and
piactical experimentation has, no doubt, throughout the
history of mankind provided the Lé&sls for the advancement of
all the r ieneos as well as +he necessary confidence in
approaching the multitude of problems scientific and otherwise
which have had to be faced from time to time. It is also
evident that without the found ation stone of elementary
arithmetic the so called exact sciences could not have
attained their present degice of development. Practical
experience and elementary arithmetic-have, therefore,
naturally also been indispensable in providing the background
for present mine valuation methods on the Rand.

These methods, however, ignore the additional
Information and experience which can be gained from a careful
statistical analysis of the behaviour of gold values both
individually and collectively. In the writer's opinion what
is called for in improving the present methods is, therefore,
not the discarding of the valuable experience already gained,
but the widening of such experience by approaching the subject
on a statistical basis, an approach which will in turn

inevitably/,..



inevitably lead to the adoption of improved methods of
valuation.

The science of statistics has expanded rapidly
during the last two decades and its value as an indispensable
tool i$; now recognised not only by research workers and
scientists but also, ever increasingly, by the commercial and
industrial world. This being the case it ;Is noteworthy that
in a mining field such as the Rand with its highly developed
and advanced mining methods, singularly little attention has
been paid tp the analysis of mine valuation problems on a
modern statistical basis. This omission is even more
striking when cognisance is taken of the wealth of sampling
data concerning the gold ore which is available and of the
far-reaching decisions and deductions constantly being based
on such date. Various contributions have been made from time
to time towards the application of statistics to mine
valuation on the Rand* but a systematic practical approach on
clearly defined fundamental concepts still appears to be
lacking.

The object of this paper is, therefore, to attempt
to indicate how the mine valuator can gain practical experience
in the statistical study of gold values, and how such
experience a d specialised statistical methods can be applied
profitably in solving many of the existing problems and in
improving the general standard of mine valuation on the Rand.
For this purpose, digression into the somewhat specialised
field of mathematical statistics will be necessary, but it is
hoped that the mine valuator who lacks the mathematical
background to grasp the detailed statistical reasoning fully,
will be able to appreciate the fundamental concepts and If
convinced, will be able to apply the suggested methods

intelligently/...

*Ref i, 13, 14, 15, 3, 5ft 2 - see Bibliography.
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intelligently. It is for this reason hat the writer has
attempted to explain certa A basic statistical concepts in
more derail than may appear necessary.

The writer makes no claim that any of his suggested
methods are necessarily unique nor the t-nal word in statis-
tical application, but it is his earnest hope that the
thoughts pres ,.«ted may arouse the interest of those who have
the welfare of mining at heart, and in so doing, assist in che
already overdue closing of the present gap in the mine valua-

tion branch of the science of mining.
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CHAPTER

EEfXNITIQK OF FUNDAi SriA.L. CONCEPTS

The Jrtelligent observer has no doubt often been
amazed at the regularity and order behind what at first glance,
appears to be a chaotic variation in the attributes of an
object, event or condition. The individual heights of the |j
people forming the population of a town, for example, appear
from a casual investigation to vary haphazardly, and yet wnen
such height measurements are groured according to the frequency
of occurrence of individual sizes over the full range of sizes
a surprisingly uniform and regular trend in such frequencies
will be found. Thus intelligent enervation and analysis
will generally disclose the regular pattern and definite law
behind the apparent chaos, i.e. the method behind the apparent
madness. Statistics is the branch of applied mathematics
which suitably provides the scientific aid required for such
observation and analysis.

Even an experienced mine valuator on tho Rand may
believe that the variation between gold values along a stretch
of drive, raise or stops face is haphazard. This is not the
case, however, and it follows naturally that the establishment
of the regular pattern and laws followed by such values, and
the correct interpretation thereof, must open up now avenues
of approach to the benefit rf mire valuation in general.

It is as well to stress at this stage that tho basic
problem of mine valuable 1 is that the actual gold content of a|
block of ore to be stopclJ is unknown and that it can never be
determined exactly until the ore has been mined and the gold
extracted. Even in the latter ev, nt the content can only he
inferred since it is impossible to measure the gold lost in

mining/...



mining exactly, and frc.j A practical point of view the ore
from a single block cannot generally be kept separate under-N
ground and in tne reduction works. The actual gold value of
an intact block of er| “an, therefore, only be estimated from
vne limited number of values available round its periphery,
the orthodox estimate being based on the arithmetic mean of
such a set of available values, i.e. the mean of such values
is accepted as being the indicq)/toed mean value of the block of
ore. h- object of a statistical approach to mine valuation
is to determine the reliability of such existing methods of
estimation and to develop, where possible, methods which will
on average yield closer and more reliable estimates of the
actual mean value of the ore from the limited available samp-
ling information.

Before this can be done, however, the following
fundamental statistical terms and their application to mine

valuation on the South African gold fields have to be defined!
\

1. Population.
The common concept of a ™population” is that of a
large group of persons, each V'.mber" of the population being

Identified by his or her own particular attributes such as

height, weight, age, wealth, etc. In the statistical sense,

however, the measurements of any one attribute of the
Individ al persons in such a group constitute a population
(of urements) and each such measurement Is regarded as a
member of the population.

In the case of a gold mine, the ore body can be
regarded as a single ore parcel which can bo subdivided into a
large number of small parcels of ore, each of these smaller
parcels having its own attributes, the vital one naturally
being its gold content. The aim in framing the ideal policy
of selective mining is to select for stoping purposes only

those/...



those parcels of ore which contain sufficient gold to pay for
all expenditure incurred up to and including the extraction of
this gold, and to leave intact all parcels with an insufficient
gold content to cover such costs. In practice, except in the
case of unusually wide auriferous reef bodies, this rrocass of
selection ' j effected in respect of reef "parcels" which in
each case occupy the entire width of the reef body for economic

band of reef) and the "payable" and "unpayable" parcels can
consequently be depicted on the plane of the reuf by the areas
covered by these parcels. For practical purposes, therefore,

a reef body :In a particular mine can be regarded as a large
"area" of reef consisting of smaller individual reef "areasH,
each "area" being identified in particular by the gold content
cf the ore parcel (or "volume" or tonnage of ore) it represents.
The gold contents of such individual small reef "arecas" within

a large reef "area" can from a statistical angle, consequently

be regarded as the members of a 'population , °’

The smallest "area" of reef the gold content of
which is measured in practice, is that represented by the
cross sectional area of the standard size channel cut in the
process of sampling across the width of the reef body at a
sampling section, and on average measures approximately six |
square inches. For mine valuation purposes, therefore,

*the measurements cf the goj.d. contents of all the standard size
(6 83, in.) reef "areas" which constitute a larger re”f "area"
will be regarded as a popul itlon and every such liidlvldua]
measurement will be a member f the population. The basic
populationlis comprised of the octual gold contents of these
"areas" but these can in practice only be measured by under-
ground sampling, and hence the observed population consists of

a number of neasurements of the actual gold contents concerned.



the practical caso of a hlock of ore nieasurinp”

9

say 200 ft. x 200 ft., which has been sampled at 5 foot

intervals round its periphery, the measured gold contents of

the 160 odd standard size reef "areas'* at the corresponding

number of sample sections will constitute the only known

members of the population of measurements of the gold

con . o the odd million 6 sq. in, reef "areas" constitutir’;

the entire block.

lh* goli content of any one such standard size reef
"are#" (> sq. ins.) will be measured by the assayed gold

cor; -n 01 the sample(s) obtained from the channel out at the

corresponding sampling section, i.e. by the (weighted average)

dwt/ton of the sample(s) x tonnage of sample(s). Now, since

the tonnage of the sample(s) is directly proportional to the

volume of the sample(s), and the volume is in turn directly
proportional to the overall sampled .Idth (when the cross

sectional are* of the channel cut for every sample is

identical), it follows that the measurement of the gold content
of a standard sirs reef "area" is directly proportional to

the average dwt/ton over the sampled width x the sampled

width
" total inch dwts for the sample section corresponding M

th«i area concerned,

The inch dwts of a sample section can, therefore,

atfjLilLtei. as a measurement (requiring only multiplication by
some constant factor to yield the actual number of dwts) of th#-4

gold conten- of a standard size of reef "aro.y (( si, ins.)

£0r-PspQnM nf. to this sampling section.

Where the reef width is relatively narrow the
stoping wluth is determined entirely by practical mining
considerations and i? fairly constant. In such a r tc
the inch <*vt value *' a sampling section divided by the
more -t less constant factor of the stoping width 30 as
to ; .d the dwt/ton v .ue ovc* the stoping width will
also,therefore.provide a measurement of the gold content
of the relevant standard size roof area.

Sinilnrly/...



Similarly, in the case of a wide variable reef
width having a definite influence on the stoping width,
but where neither of these widths appears on average to
be related to the corresponding inch-dwt values* the
dwt/ton value over the stoping width at a sampling
section will on average also provide a measure of the
goldcontent of the corresponding standard size reef area.

In the unusual case where there appecars to be a
definita relationship between the stoping widths and
corresponding inch-dwt values at the various sample
sections, the problem is more complicated and will not be
considered in this paper.

Fre a practical point of view, therefore, the use
of either the inch-dwt value or the dwt/ton value over the
stoping width at a sampling section can be justified and
should jlcld the same eventual answer, since the average
dwt/ton value for the tonnage of ore in a block is the quotient
of the average inc”-dwt value and the average stoping width.

For the purpose of this thesis the inch-dwt measure
will be used almost invariably and a population will therefore
be considered asbeing comprised of a number of inch-dwt
values of samplesections corresponding to 'Standard" size reef
areas, In the case of a block of ore, for example, the
population will consist of all tho theoretically possible
inch-dwt values which could bo obtained if the clock wore to
be entree cod by a process of continuous sampling.

Similarly the sam.clo values obtained from a s”-etcl
of drive, raise or $topc face can ba considered to be oouiva-
lent to that obtained from a rulatively narrow and eclongated
"area" of reef containing a population of sample section
values.

A case where the area concept is departed from is in

the analysis of the distribution of calculated ore reserve

values. In this case the population in effect comprises the
indicated moan values of a number of blocks of orec. In order,
however/...

* 1.e. where tho full range of stoping width variations is
likely to be associated with every category of inch-dwt



however, to allow for the fact that these block areas are
usually not only very divergent In size, but also insufficient
In number to reflect the proper distribution of the ore]
reserve values, :he tonnages of the varlou value categories
provide a better frequency measure. The population will
therefore in this case consist of all the individual tons of
ore in the ore reserves each at the indicated average value of

the ore block of which it fc "s part.

2. Sampling from a Population.

In the statistical sense "samplingll implies the
selection, at random, of a limited number of members of a
population, the group of selected member® constituting the so
called "sample". To the mine valuator "sampling" implies the
physical act of chiselling out a few pounds of reef (and waste)
material for assay purposes, and "samples" imply the separate
packages of reef (and waste) material obtained in "sampling".
It is, therefore, obvious that in the application of statistics
to mine valuation a clear distinction is required between the
above dual meanings of both "sampling" and "sample". Since
this thesis is primarily inteiided for the benefit of mine
valuators, the valuation interpretation of these two terms
will be maintained and the corresponding statistical terms

will be referred to in the following manner

Statistical Valuation
Term. Equivalent
"Sample" A set of sample values drawn
from a population of sample
.values.
"Sampling" The act of drawing a set of

sample values from a population
of such values.

The term sample where used in this thesis, therefore,
unless alified 1is used in the mina valuation sense and an

individual sampl value will be the inch-dwt value at a

sampling/...



sampling section, i.e. a member of a population o;' Individual

sampl3 values.

i. Random Sampling.

A considerable part of statistical theory has been
L'lilt up round the basic concept of "random' sampling
(statistical sense), i.'3. the concept cf the drawing 01 a set
of sample values (valuation sense) from a population of such
valuea in a purely random and unbiassed maimer. Briefly this
means that everv individual member of a population must have
an eoual chance Yof selection.

Consider now an area c¢? a reef body from which a set
of "random" sample values is required. It is commor sen * to
any mine valuator fiat if, for instance, 10 samples are taken
in, say, tho confined space of one corner of this reef "area,"
the values of such samples will, in all probability, not be
representative of the values in the "area" as a whole, and
since the theoretical sample values It the remainder of the
"area" had no chance of selection at all, the 10 sample
values will certainly not be '"random." To ensure, therefore,
that pil sample values have an equal chance of selection the
ideal practical mothod would apparently be to divide the "area
into ten equa] portions and to select without bias one sample
per portion, Much a method being virtually equivalent to grid
sampling on a square pattern

In practice, however, samples can only be taken
round the periphery of en ore block. The theoretical sample
values in the interior of the block, therefore, have no chance
of selection, and '"random" sampling in the ideal sense becomes
impossible. Where, however, the selection of the locations
of the drives and raises bounding a block of ore has not been
iifltranced in any way by sampling values previously known or
inferred, and where sampling round the periphery is carried out

without/,..



without bias, it is contended that the results will in general
conform to those which would be obtained from ideal "random"
sampling of the block on a grid pattern. Details of an
experimental attempt to confirm this contention will be found

in Chapter V, paragraph 1,

~e Homogeneous and Non-homogeneous Populations.
The sample values along a well defined reef horizon

(or sedimentation unit) where the original pattern of gold

.position has not subsequently bnen upset by factors such as
leaching, can be regarded from a practical point of view an
constituting a homogeneous population. Where however two
reefs merge or where the basic gold distribution has been upset
by e.g., the hydrothermal addition of gold or the leaching cut
of a proportion of the gold, the resultant population will no
longer be homogeneous and may disclose characteristics foreign
to those of the constituent or of the original populations)
respectively. In cases whore non-homogeneity is suspected,
therefore, the problems should be approached cither from the
angle of the constituent homogeneous populations (where a
mixture of populations is suspected), or of tno reconstruction
of the original homogeneous population. Such problems however
are specialise 1 and fall outside the basic concepts which

require consideration at this stage.

5. H H s and. Sieves.

The statistical analysis of a population of vi' <es
consists primarily of the segregation of such values into a
range of selected value categories. The population Is then
represented graphically by plotting the limits of the range of
values within each value category as abscissae and on each such
range of values as base, a rectangle with area in direct pro-

portion to the frequency of occurrence of the values in the

value/...



value category concerned. The resultant step diagram is
called a frequency histogram.and where the value ranges are
made sufficiently small, this step diagram will the
limiting case, merge into a smooth curve called a frequency

curve.

CHAPTER 1I1/...
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THE GENERAL CHARACTERISTICS AND APPLICATIONS
PEHE- LOGNORVAL FREQUENCY CURVE 1

Shape of the Lognormal Curve.

The fact that the gold values obtained In sampling
a reef area could be represented by a frequency histogram of
definite shape was known as far back as 1919* but it was not
until recent years that the type of frequency curve which
JUId be fitted satisfactorily to such a histogram was recog-
nised as the lognormal frequency curve.** A typical
lognormal curve is jllv.Ftrated by the curve ABC on Diagram
No. 1.%** The frequeiof occurrence of the values falling
into the value category DC are represented by the area under
the curve between the two ordinates corresponding to the values
D and G, i.e. area DEFG.

As suggested by the name "lognormal," this curve is
related uo the ”ell known "mnovral" curve of error, and can be
transformed inco the latter by plotting the abscissae on a
logarithmic scale. If, for example, the abscissae ofthe
lognormal curve ABC are plotted on a logarithmic scale,with
the retention of the frequencies in the corresponding value
categories, this curve will be transformed into a "normal"
curve of the type illustrated by the dotted curve KIH on the
diagram. For practical reasons arising out of the plotting,
these two curves have’been represented in a purely illustra-
tive manner and do not indicate the relative positions or
shapes of these two' curves in respect of the same frequency

distribution.

2. IM /...

*Ref. 13, ' **Refs, 3, ? & 2. ***See opposite,



2. The Application of the Lognormal Curve in Various FI

The lognormal frequency curve is not peculiar to the
distribution of gold values and has been found to be applicable
in a large number of widely different fielu& as the following

brief list will indicate:-

The incomes of individuals in a nation,*

The sizes of grains in samples from sedimentary
deposits.**

The sizes of sandgralns in samples from windblown
sand.***

The sizes of particles of silver in a photographic
emulsion,****

Sensitivities of animals of same species to
drugs. ®*7**

Numbers of plankton caught in different hauls with
a net.,****

Amounts of electricity used in medium class homes
in the U.S.A.%%*%*

Reaction times of human beings in a word test,****

Number of words in sentences from works of
G. B. Shew. ****

Diameters of particles of airborne dust in coal

mines,****

As far as the Witwatersrand gold field and its
extensions arc concerned, evidence from a number of the chain
of mines stretching for more than a hundred miles from
Heidelberg in the cast to the West-Wlits lino in the west as
well as from mines in the Klerksdorp Sector, indicates that it
is highly probable that the lognormal curve can be applied
throughout to all the economic reef horizons either directly
or indirectly (where the population of gold values is not
homogeneous) , An analysis of the borehole values for the
Basal, Reef in the Orange Free State field confirm the natural
expectation that these values arc also lognormally distributed

3. Suggested/...

¢Ref.5. **Refs,, 11 & 18. ***Ref. 19. ****Ref. 20.



3. Suggested Reason for tho Lcgnormal Distribution of Gold
Values.

The abov' Indications of the general applicability
of the lognormal frequency curve suggest that lognormal dis-
tributions result froin definite natural laws which cover at
least all tho fields referred to in paragraph 2 abo”o.

A reef body can be regarded as a mixture of gold and
waste particles, the relative concentration of the former per
unit reef area being measured as previously explained by the
inch-dwt value of a sample sectior. Disregarding the varia
tion in particle sizes, the mixture of gold and waste particles
can be considered analogous to a mixture of, say, £>lack and
white balls respectively, and the roof in a block of ore
analogous to a layer of such a mixture of balls covering a
corresponding area. If, now an even layer of balls was
formed by the spreading of the mixture of balls in an entirely
random manner over the area of the block concerned, it can be
shown by tho applic ition of the basic theories of probability
that tho concentrations of black balls per unit small area,
(say, 6 sq. ins.) wJM vary according to the "normal"
frequency distribution law, i.e. tho frequency distribution of
such concentrations will conform to the '"normal" frequency
curve.

If th gold particles were deposited in a random
manner, one would, therefore, naturally expect the gold
concentrations per standard size area as measured by the sample
section inch-dwts also to be distributed "normally," whereas;
in fact, the logarithms of such inch-dwt values arc "normally"
distributed.

Tho following references to Nature's use of the
linear and logarithmic scales arc, however, of particular
interest in this connectlor and may provide a partial

explanationi-



"The linear scale, since it was first cut on the wall of
an Egyptian temple, has come to be accepted by man
almost as if it were theone unique scale with which
Nature works and builds, whereas it is nothing of the
sort, Its sole value lies in giving due prominence to
the differences and sumsof quantities when these are
what we want to display. But Nature,if she has any
preference, probably takes more interest in the ratios
between quantities; she is rarely concerned with size

for the sake of size,”"*

"Linear scales are seldom acceptable to Nature. A
millimetre difference between the diameters of two
boulders is insignificant but a millimetre difference
between one sand grain and another is a large and
important inequality. The natural scale for size

classification, therefore, is logarithmic,"**

It Is, therefore, no4 surprising that the distribu-
tions of e.g., grain sizes in a sample from a sedimentary
horizon and the sizes of sand grains in naturally deposited
windblown sand deposits, tend to be "normal" when the sizes
are measured on a logarithmic scale. Without enlarging in any
way on the above quotations or endeavouring to reconcile they
observed facts with the laws controlling the settling of (»old)
particles in liquids, it appears that the fact that gold values
are distributed '"normally" only when measured on a logarithmic
scale could be explained from tho natural laws already known,
and that research in this direction will prove profitable,
bearing in mind particularly the remaining doubts as to the
origin of the gold in the Wltwetorsrand reefs,

*+ General/...

¢Ref. 19, p. 2. **Ref. 18, p. 15.
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Sinci the gold values In a homogeneous reef body can
be expected to be distributed lognormally, l.ie que-tlon
naturally arires whether this will be the case irrespective of
the size of t:-* area concerned. The selection of the bound-
aries of a m'.nc in respect of which the lognormal distribution

gold values has been observed, is generally arbitrary and
it is, therefore, natural to expect the distributions of gold
vdl iec within cortions o* such a mine also to be lognormal
irrespective of the size of such portions. This ha* been
confirmed by practical experiment for various sizes of reef
areas down to a size smaller than that of the average ore
reserve block on a mine.*

Further, since the decision Sc select samples
corresponding to reef areas of 6 sq. ins, each is also
arbitrary, the size of the sample should also not affect the
typically lognormal distribution of gold values. This is
confirmed by the observed face that in an ideal ca e** the
average values of ore reserve blocks within s ruine are also
distributed lognormally.

It is immediately evident fror Illustration of a
typical lognormal .urve (Diagram No. 3> f t the iroh-dwt
values comprising a lognormal frequency jvr/e ccv” Lhn entire
theoretical range from zero-to infinity. Coring In mind
that the area under the cur-'' corresponding to uny particular
value category is a direct i .asure of the frequency cf occur-
rence of values in this value category, it is evident that
since the curve approaches tha x-axis asymptotically in the
range of the higher value categories, the frequency of

occurrence/...

*See Chapter V,

**'Where the mine is 100? payable and the ore resarves. there-
fore, include all ore blocks; and where the natural distri-

bution has not been upset by previous mining operations,



occurrence of extremely high values is relatively small but
that it can only become zero for infinitely large values.

In drawing a set of values at random from a
population of values, the probability of drawing a value in
any particular value category is measured by the relative
frequency of occurrence of values In this category, e.t. if
10# of the total values occur in a particular value category,
the probability of drawing a value from this category will
naturally be 1 in 10, It is, therefore, evident that in the
case of a lognormal distribution of values, the probability of
iSriklra an extremely high value is slight but m u n— :
besoae nor-ojastent except X*' Infinitely large values.*

It is also evident from Diagram No, 1 that every
lognormal distribution, no matter what its mean value may be,
must comprise a mixture of values ranging tVsoretlc&lly from
zero to infinity. a distribution with a low average value
will, therefore, always contain a proportion (even if
infinitely small) of relatively high values, and vicj, versa a
distribution with a high average value will contain a propor-
tion of relatively low values. In mine vp,:*atii.n, therefore,
t&S-ogc*rgnce_of*li* v-el*hlgb_y~*iufis (even j,f only occa-
.ilPIWlyi) lh a low-grade block of ore is quite natui nd
similarly also the occurrence of low value* in a big .grade
block of ore.

Considering now the practical aspect of, say, a
block of ore or a stope face in respect of which only a limited
number of all the possible values is available, it is evident
that the possible combinations of, say, 10 sample values each,
which can be drawn from this complete distribution formed by all

the/...
¢In practice the maximum ’old va.v visible will be that cor-

responding to puro gold, i.e. rnone 583,000 dvts/ton, or say,
29 million inch-dvts for & 50-lncn stoping width.



the sample values, will be Infinite and, therefore, that the
probability of striking two identical sets of 10.values.each
is slight. Further in view of the wide range of values
covered by the parent population, the striking of a set In
whiSh all. 10 values are,identical. Is virtually Impo;g%Dbl9.
If, therefore, in sampling, say, 10 sect! 1is a )ng a stop*
face, the inch-dwt values are found to be identical ov to lie
within a very close range of values, the result is either that
of a highly improbable event or must be suspected of not being
genuine.

A further basic conclusion to be drawn from the
knowledge of the lognor al frequency distribution of gold
values 1- that the individual sample values available in
respect of a block of ore or a otope face represent only a few
known values out of a virtually infinite number of values
which can be obtained by repeated sampling. Where the few
known sample values are d'stributed over the range of values
in approximately the same proportions as the total nuaber of
possible sample values, the mean value of these few samples
will naturally correspond closely to the true mean value of all
the possible samples. In practice, however, some of the r*la-
tively few extremely high values in the parent population of
values, must at one time or another be struck in taking a set
of samples, and will in such an event appear to be out of accord
with the rest of the sample values in the set, and will raise
the average value of the set to an abnormally high figure.
Such values are generally regarded as 'anomalous," "freak,"or
the result of bad sampling, and are in practice usually "cut"
or "adjusted" by arbitrary methods in order to yield what,at
any rate, appears to be a more reliable average result. Such
apparently anomalous values are, however, genuine members of

the population of values along tha stops face or in the block
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of ore, and are, therefore, In no sense truly anomalous or
freak. The correct approach to the problem of estimating the
true mean value of the unknown population of values,(I.e. of
the stope face or ore block) from the few known members of this
population, (i.e. from the few available sample values,) is,
tnerefore, to fill in the gaps between tuese known values in
such a way as tj result in the best estimate of the parent
distribution of values, i.e. the population, without discarding
or "cutting" any one value which may appear to be anomalous.
This is basically the aim in approaching the problems of mine
valuation from a statistical angle.

It is also evident that since even adjoining sample
values cannot be exported to bo identical, a fact which has in
a practical way often beer, observed from the results of check
sampling in the same groove, any sample value cannot be regarded
as having a so called "aroa or distance of influence," except
in so far as it is related to the actual reef area previously
occupied by the sampled material, i.e. approximately 6 sq. ins.
Where sampling is done at, say, r foot Intervals, the "influence"|
of a sample value cannot, therefore, on any logical grounds be
extended for a distance of 2" ft. on either side of the rele-
vant sample section. It appears, therefore, that sampling
need not be carried out at rigidly determined, regular intervals,
ard that where such intervals are in practica, irregular (but
not such as to Introduce any obvious bias),weighting of
individual values by thoir so called "distances of influence"
cannot be upheld on scientific grounds. It also follows that
the concoction that an occasional high value encountered Ir,
sampling successive stopc faces in a low-grade block of ore is
Indicative of a patch of high-grade pro (extending halfway from
thi velevant sample section to surrounding sampling sections),

Is entirely erroneous.

CHAPIER I11/...



A MATHEMATICAL ANALYSIS OF CERTAIN PROPERTIES
OF THE LOGNORMAL DISTRIBUTION AND LOGNORMAL
CORRELATION SURFACE

Notai In this and subsequent chapters the following
references will apply

Normal curve - the normal curve of cn or on which
the major part of th-i theory of
statistics is based,*

Mean - arithmetic mean,

Sample - sample in the mining valuation
sense as distinct from "sample" in
the statistical sense< the latter
being referred to in this thesis as
a "set of sample values."

Naperian logs unless otherwise

Logarithms )
stated, i.e. logs to the bare

" "

¢,

1. General Form.

The most general mathematical expression for the
lognormal curve is based on the assumption of some lower
finite value limit for the variable "x" and no upper value
limit and involves three parameters.** In the case of the
distribution of gold values, which can range from to a

theoretical value of infinity,*** a somewhat simpler expression,

involving only two parameters, can be employed, viz:-

y . Ke—a2(log X - b)2 (1)
Where k - fit “rve)
b 4-L-
VT *6 4a2

andwhere x * the variable, e.g. geld value

al/...

+Ref, k, p.l114. **Ref. 1 4 Ref. 9, P.236

***The maximum.{)ossible value is naturally that for pure gold
which is still not equivalent to an infinite number of dwtsz
ton, but can for practical purposes be regarded as such,

kakx*kRefs. 2 % 3#
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a and b are parameters,
x +dx

and dx * area under the curve between the ordinates cor-
fy- responding to the abscissae x and (x + dx)

= frequency of occurrence of x values lying between

these ordinates

It must be stre sod that whereas the variable x,
e.g. gold value, can be plotted directly as the abscissae in
graphing this curve, the frequency of occurrence of values
being the other variable, is related to specific ranges of x
values, and cannot, therefore, be plotted directly as the
ordinates. The frequency of occurrence of values within a
specific range of values or value category is consequently
represented by the area under the curve between the values of
x forming the outer limits of the range concerned.

In statistics She total area under the curve is
usually taken as unity, i.e. total frequency * 1 or 100#, and
frequencies are then required to be expressed as fractions of
the total, and K then becomes

a
Vi -«b+ﬁ‘
2. Arithmetic Moan.
The arithmetic mean of the lognormal population

00

m xydx

’ b + -’§3
4a2 )

fl'om>hic;. b * log m -
Va2
3. Transposed/...

* Ref. 2.



3. Transposed Form.

Substituting for b and K in (1) above

-log x - »2(log Z ¢ A '2
Vlr eeecee ee (3)

n n

In this expression "a" and '"rall are the two para-
meters, and it is consequently evident that for a specific

n

value of "m," i.e. the mean value of the population, the shape

of the curve is determined entirely bj the other parameter

n

a." This aspect was investigated in sqme detail by Ross,*

4, Median and Mode.

The position of the median, i.e. the x value at
which the area under the curve is bisected and on either aide
of which 50/6 of ihe total frequency of x values will lie, is
determined from

X

y.dx = .5

from which*

bt —

x B m.e 2a

m.e
The position of the mode, i.e. the x value corres-
ponding to the maximum frequency per unit "dx" interval and
thus to the peak of the curve is defined by*

!

X - ¢€b

m.e (5)
and the height or the code by
y =k

eRef. 2.
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The relative graphical positions of the mode, median
and mean of the lognormal distribution are indicated on

Diagram No. 1,(see Chapter I1),

5. Moments and Standard Deviation.

a 2nd moment vp of the distribution about the

origin is defined as

v2 y,x2.dx which from (1) above with the total
area under the curve equal to ur/ty
X-0
03
r -b - - a2(log x - b)2
x2e he ,dx

substituting (w * a log * - ab - »

(from which dx = 2dw

( a
+b +
and X weH

this reduces to

W=4 00
JL

(,2b + ax). e-w2,dw (7)

w=- 00

-2

« e2b + a2 since the last factor in (7) is the integral
of a form of the normal curve of error

* unity since the total area under the log-
normal curve has also been taken as unity

and from (2) above

Vp “ m2e2a~ (8)
Variance» The second moment about the arithmetic mean "myl
i.e. the variance, is given by

yU 2 * second moment about the origin - (mean)"
-1,
* m2e2*N - nk
* m (e2af - 1 L« (9)
( ) The/...
* Ref. 4, p.65.



The standarsL 4eyla.tiQB, I.e.

e"u 2 em ~tT 1

The coefficient of variation. I.e.

by the arithmetic moan*

=V ®a -1

The Ird moment, v*,

defined as
00]

v
v; * /y.x*.dx, which can in
J0 used for the
JL
e m'e2a
But the ?rd moment about the
00
y* 3 ' jykx-m)Adx = -
7
!
e )
* mie2a - + 2nP
- m3(02a - 1)2(e2a +2)

And the 3rd moment about the
1.€e.

result to a pure number***

V variance

the standar] deviation divided

(10a)

of the distribution about the origin is

a manner similar to that

2nd moment be reduced to

....... (11)
mean
Jav2 * 2m"
:l?; ANor ,
.............. (12)

mean in standard unUt«

in units of (standard deviation)3 in order to reduce the

— A
«°C (62a2 . > (13)
U.
« (e2a +2) (vocff. of variation) (13a)
The/ . ..
¢Ref. 4, p.90. **Ref. , p. 672. ***Ref. 4, p. 72.



The i+th moment.

By a similar procedure it can be shown that

v4 -
-L 4 -i, A
yU 4 =nV(e2a - l)2(ea + 2e¢2a + 3e* - 3)
andOCIl » 3 (e2® - 1)(e2a2 +30" + 6¢2*2 +6) ....... (14)
2 3
* 0a2 + 2e2a”™ + 3o0*" - 3 (15)

6. Skewnesg and Kurtpals.

The skewness* of the curve is measured byOCy

(No. (13) above), and as 2_al>{" can never be mnegative for real
values of "a," :kwill always bo positive.** This means
that the mode or peak of the curve will always bo to the left
of the mean value and the curve will always have its longer
tail on the right-hand side of the mean value. It is also
evident that as "a" approaches infinity,o<3 approaches zero
and the curve thus loses its skewness, the mode then approach-
ing coincidence with the moan

The kurtosls*** of the curve is measured byoC 4 > and
is related to whether the curve if, flat-topped with filled out
shoulders or sharply peaked, the peak of the normal curve being
accepted as the criterion. T-e kurtcsls for the mormal curve
is equal to 3, for a flat-topped cur/e it is less than 3, and
for a sharply peaked curve 1: exceeds 3. From No. (15) above
it is evident thatOC 4 will always exceed3 and, therefore, the
lognormal curve is always more sharply peaked than the normal

curve and is therefore said to be leptokurtlc. It 1s also
clear/,..

¢Ref. 4, pp.73 & 111, * Ref. 8, p.11.
**In the limiting case when a *°o0 ,°C 3 * 0,

¢¢¢Ref. 4, pp.73 & HI, * Ref. 8, p.11.



clear that as "a" approaches Infinity,OC * approaches 3, I.e.
the kurtosls of the normal curve.

The values of "a" commonly encountered on the Rand
in dealing vItn the values of Individual gold sampling sections

range from approximately 0.5 to 0.8, giving the following

range of values for the skewness and kurtosl:

TABIff 1
a ¢ . A A A
Skewness,C< ~ n 21.2 9.5 6.4 4.6
Kurtosls,OC4 * 3,949 335 122 55

These values give some Idea of the extreme skewness
and peakedness of most of the curves encountered In dealing

with the distribution of gold values,
7. Curve of log xi Relation between Arjthmetlc.and

As stated Im Chapter II, the name "lognornal" curve
Implies that the logarithm of the variable x Is distributed

'

"normally," I.e. according to the "normal curve". The
lognormal curve (No. (3) above), can be '"normalised" as
followst-
From (3)
-log x - a2(log 2 + -1I*)'
ydx e f(x)dx ‘Vl'* Jdx

Substituting (z = log x
from which dx mxdz * e .d

this reduces to

z - (log

F(z)dZ e . —1 **%™ edZ eeeee ( )

Thus/,. e



Thus th*> variable z, I.e. log x is normally distributed* with

mean “mi m— * a7
1 o e i

standard deviation

andl variance
2a' (18)

But rrom No. (4) above the median of the lognormal curve

*me ‘4

and lienee the log of the median “ log m -

But, from Nc. (17) this Is the mean of the distribu-
tion of the logs of the variable '"x." Further, as the mean
of the logs of a number of values equals the log of the
geometric mean of such values, it is evident that the
Curve (No. (16)) Is symmetrical about %value equ”*Vfti*llt tB.AbS
log of the geometric mean of the parent lofinpraftl
population. ... (19)
and further, that the medlar * Kqoggefolc met.n of the IfiXr
normal population are colncldejit. 20)
Note; The normal distribution (No. (16)) above, can be reduced

to the common form, for which tables are printed in

nearly every book on statistics,

t - (log m - * 2)
by substituting v

deviations of "a" from its mean In
standard units, i.e. units of its
standard deviation.

Relation/ ..



Relation between a?lfrupetj,c trj=-C-rroaa.

From Nos. (4) and (20) above

Geometric mean * me

m(arithmetic (21)
or log of geometric log of arithmetic _ (21»)
mean mean 4*2
8. Th, glsIrl*ytion.ol A Prodnot of "x". I.e. of m Itl-

plied by a constant.
Let q “ kx (I.e. dx *

wherek e a constant
I.e. X -a
Puhstltutlon In No. (3) yields

-log(*) - a2(lo
f(q)dq

-log q - + A 1
Jdq #5*#H# (22)
WA
By comparison with No, (3)t the distrlbvtion of ¢

is, therefore, also lognormal with identical parameter "a" and
mean * mk. M ultiplication of the variable x by a constant
fACtor, therefore, has no effect on the relative shape of the
curve and merely changes the mean of the distribution in the
same proportion as the change In the individual "x “al'.e *
It follows, therefore, that the unit in which the
lognormal variable tr" is expressed has no effect on the

parameter "a" of the distribution.

,aL”?

The area under the curve, i.e. the frequency of "x"
values above an '"x" value of, say, wilx he

-r®* A -1 - a2(logd +-L-)2
X-T 0g a(ogm 4*2)

de W G .dx

X«Xi



Substituting w * 'y 2(log# +"g)

and wi =ajldog”. +

[13

v2
e Ce oy (23)

The average valuo of all 'be" values above an "x" value
Of "X ”
f *
xydx

% 1 “T8®

ydx

uhich with the same substitution As above reduews to

) 23
oy *m (23a)

vi

This can be solved by the use of standard tables of
V2

the integral of (y”pe"' ) which are av liable in almost any
textbook on statistics,
10. sampljpg (jn wthe_gtatj,at* 1 jer>3* frog a.Lgud&ml
atlon.

(a) pi*t.r*bptlon of arithmetic nogn? of gata_ .2f 3&3BI9
values» Now consider the process of drawing an inf:.nite
number of sots of N .-J*dom sample values each from * lognormal
population. The moans * such sots of valtus will in

yield/...



yield a new frequency distribution with an overall mean equal
to that of the parent population. In the case of an arbitrary
population this distribution of mean.i will have the same
general form as that of the parent population® but its variance
will be less, its skewness much less and its kurtosis very
much less than that of the parent population,* Further, as
the number of samples per set, N, is increased, the skewness
and kurtosis will approacn the corresponding values for the
normal curve. The position in the case of the lognormal
parent population can now b' examined from the knowledge of the

formulae** applicable to arbitrary populations:-

Variance -

which from No. (9)
-1,

(A)
where "m'" and "a" are the parameters of the parent popu-
lation and N = number of samples per set.

The Ird moment (ebout the mean in Standard units)

" ! mpment of Parent POPUla_U3B

If

which from No. (13)

A * r?
* 2) ##* *y  (25)

/ N'
The 4th r'C (about the mean in Standard units)

« 3 4 ~(4tb moment of parent population - 3)
which from No. (14)

* 3 4 - I)(e2a" + 3e** + 6e2a2 + 6) (20)
JL JL i-
«3 4 ea"+2e2a 43ea<r- 6) 27)

4ii analysis of formulae Nos. (24)to (27) Indicates

that the distribution of the means of sets of sample values
from/.,.

* Ref, 8, p. 108. ** Ref. 6, pp. 102/S



from a lognormal parent population i? not itself truly log-
normal, but more skew and peaked for the same variance, Tests
carried out with observedl lognormal populations have, however,
indicated that for practical purposes, the distribution of the
means of sets of sample values selected at random can be
regarded as lognormal and that No. (24) above can be emplo. id

to arrive at its theoretical variance,

i.e. m(e

The parameter "axi'" can, therefore, be calculated and
will specify the relative shape of the lognormal frequency
ctarve which closely approximates the distribution of means of
sets of N random samples drawn from the parent lognormal

population with parameter "a.”

(b) Distribution of geometric peaps of gqts pf MfflPJlg
values and of n J*lgrproved”estomata of tfre arlthmft"c me”Qi
From No. (16) it was seen that the distribution of the logarithm

of the lognormal variable "x" is '"normal" and defined by

where z * log x
Now the frequency distribution of the means (z*) of
sets of N z values each, drawn from this normal population of

the logs of x will also be normal,* with variance * ~ 5, and

the same overall mean z value, and will thus be defined by

(log m- —g)

F(1)dzl - Jdzi ..(29)

where/,..



where z* * mean of the logs of N x values In the 1tt set of
sample values
logarithm of the gevmetric mean of x,nese N '"x”
values
= log , where gr e geometric mean of 1%“ set of

sample values
arri No. (29) then, by substitution, reduces to

-Na2|log - (log m-

, L A&
(30)

Reference to Nos. (3) and (9) will indicate, there-
fore, that the geometric moans of sets ol N (lognormally
distributed) sample values each, are also logn-'.mally distri-

buted with variance - ;
= - D

and mean log m =
4a "

But in Nos. (21) and (21a) it was shown that the
geometric and arithmetic means of a lognormal population are
directly related through the parameter "a" of the population.
Thus if the "a" of the parent population is known, it is
possible to arrive at an estimate of the truo population mean
"m"' from the calculated geometric mean "gi" of a sot of sample
values from the formula . “le\5
geometric moan m (arithmetic mcan).e

Therefore taking

“A
(3D

where h® * in estimate of the true arithmetic moan
of the population derived from the 1%

sot of sample values,

Then/.
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Then from (30)
5 -Na“*(log hi - log m} - log |

rftijMhi Kj Y ~ e b ... 02)
me mean of this distribution cf h<

f(hi).hi.dhi

-Na2(log hi - log m)2

m
Substituting w * ayN(og hi - log ) -
the mean of the distribution

00
medNa (33)
The mean of the distribution of will, therefore,

always exceed the true mean "m"' of the parent population ard

eonssquently "hi," as an estimate of "m'" will be biassed, the
1
bias factor e4Na‘ only disappearing when N approaches infinity.

The bias is vory evident In the case of H* 1 when the obserwl
geometric mean must be the same as the observed arithmetic
mean, i.e. '"gt" must equal "hi," whereat "hi" then becomes

equal to
« > 5
This suggests that "hjI!' must be corrected by a

factor dependent on N and equivalent to e Ua' when N - 1 and

to/e ee



to 1 when N e0<3. Similar corrections are required in most
statistical estimates based on a limited number of sample

values, e,g. Besjel's correction.*

Division by the bias factor in No. (33)t i.e. e
provides this correcting term and the corrected estimatu of

the population mean now becomes

Bi.e

from which it is evident that when

N- 1, n# * gi

and when N— , ®i-pgi.e
As a check on the unbiassed nature of the statistic
"mi" as an estimate of '"m'" substitution In No. (30) yields

-log mi - Na“dog ffli - log m+ —
F(ffil )dmi

From No. (3) It will be seen that the distribution
of "m"" is lognormal with mean - "m,Mi.e. the true mean of ttie
parent population, and the other parameter = (corresponding

t 0 "a'l

of the parent population). The statistic la,
therefore, an unbiassed estimate of the population mean and

from No. (9) the variance of the distribution of will be

1
-m2(e® - 1) (36)

E fficiency of "fIL*"
When the variance of a normal population is known,

the maximum likelihood estimate of the population mean is the

mean of the set of sample values drawn from the population**

and/...

*Ref, 6, p. 125. **Ref. 8, p.273.



and, therefore, since the derivation of is based on the
means (g”) of sets of sample values from the normally distri-
buted variable log x * z,(see No. (28)), "¢ andwill be
maximum likelihood estimates of the means of the '"z" and "x"
populations,respectively.

The efficiency of ralative to that of the
straight mean "x"" of a set of sample values from a x “gnormal

distribution can now bo gauged as followsi-

Variance of e — =2, ... from No, (24)

Variance of m* * n2 (e2Na' - 1) ... from No. (36)
where "mVimmean of parent population
and '"a'"= parameter of parent population
Therefore when the above two variances are equal the
arithmetic mean "*i" of a set of sample values will be as
'ereliable" as the statistic ¢i," and this willoccur when
Na m the number of samples employed nn the

arithmetic mean basis

-X
n? (o2a - 13

n? (e2Nga - 1)

e2a - 1 37)

«2NS" -1
(Ng being = number of samples employed in

estimating the true mean from '"m?*.")

From No. (37) it is obvious that when N0 * 1, Ng * 1
and the two bases will thus yield the same result; and that
when Na > 1, the basis will always require a smaller
number of samples to yield results as reliable as the straight

arithmetic mean basis, i.e. Ng* N, The extent of the

4 mrtv* n t*/



improvement of the former basis on the latter is illustrated
in the following table for a range of "a‘a" commonly met in

practice.

TABIE 2

1,000 3,195 2,066 1,297

Tal ing ar exarplo fron the above table, sita of 10
sarnla values each dyavm frcii a vorulatlor hAylQg.,.an ,* g¢£
,5 vI1ll on the "m" basis yield results as '"rellable"as s«ts

of 29 sample values aach on the usual arithmetic mean basis.

The values of "all normally encountered ir the distri-
bution of individual under; round values range fro t about .5 to
.8, and thus the "mIN beelf will roughly yield results equiva-
lent to those obtained from |i to 3 times as many samples on
the custo.iary arithmetic mean basis.

The effort involved in estimating the true mean
value on the " basis is relatively small and the method

straight forward, involving only the calculation of the

* Iv 1"~
Kfpmetrlc mean and its multiplication by e , where N

is known and "a" can in many cases b letermined by experiment

as shown in Chapter V.

(r'i histributionZ
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(c) Distribution of one variance; of, *.et? of
values drawn from a lognormal population: For this purpose
only "large" sets of samples will be considered, (say*100 per
set) and the problem will be approached from the angle of the
"normal" distribution formed by the logs of the variable.

In the ease of a "normal" parent population the individual
variances of large nets of samples drawn from it, can be

regarded as normally distributed with standard deviation

+ r (variance of parent population)*
n/S? -jf

(see Ho. (18)

where N * number of samples per set
n "

A “ parameter ,"a" of parent population

and a,4 * estimate of parameter "A" from tho calculated

variance ‘/‘\“’\'."5 of tho logs of the sample values
axi

in the 1th set of samples.
For confidence limits of 0.95, i.e. if a 1 in 20 chance

of an extremely low or high value of *a" t is disregarded,

2a
JL .

%* %
+1.96

where L  wmvariance of logs of values in tho 1th set
2ixi2
of samples

from which

aXi * A (38)

V 1-
There/...

*Rof. 8, p. 289. **Rof. 8, p.290.
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There is therefore a 95%y or 19 in 20, chance of the
value of the parameter "axi" as determined (on the logarithmic
basis) from a set of N sample values drawn from a lognormal
population, lying between the limits defined by No, (38)e
The following is a table of the percentage maximum variation
in the parameter "ax"1 for 95% confidence limits and specific

values of N,

TABIf 2
1 1 / 1
P J 1 *196J1 J1 - 1.961J
30,000 99 .2% 100. 8%
20,000 99.0* 101.0%
15,000 98.9%* 101.2%*
10,000 98.6% 101,4*
7,500 98.4% 101 6*
5,000 98.1% 102. 0%
4,000 97.9% 102.3%
3,000 97.6* 102.6%*
2,000 97.0% 103.3%*
1,500 96.6%* 103.8%
1,000 95.9% 164.7*%
900 95.7% 105. 0%
600 95> % 105.3*
700 95.1% 105.7%*
600 94.6%* 106.2%
500 94.3% 106.8*
400 93.7%* 107.7%*
300 92.8%* 109.1%*
200 91.4% 111.5%
100 88.5% 117.6*

GH# G | eee



e.g., there is a 19 in 20 chance of the value of
*aXj " determined from a set of 500 samples lying
within the range of 9*+3" to 106.&% of "A, the

true parameter of the parent population.

The hypothesis that the combination of such subpopu-
latlons will itself constitute a lognormal population, %t any
rate for all practical 2SSS, has been confirmed by test
calculations which need not be reproduced here.

Consider, therefore, a parent population with para-
meter "A" and mean "M," consisting of "k" subpopulations each
with parameter "a" and with means m”, mg, ny ... which are
lognormally distributed with parameter "am' (and mean M).
Then, since
Variance of parent population

= weighted average variance within subpopulaticns +

variance between means of subpopulations®* ... (39)

¢ (e2am5 - 1)

t-) + M (e - 1)
2 2 2
But ! ¥ HAREH e * 2nd moment of "mi" about origin
_L.
* M*24® ... from No. (8)
1 1 1 —i-,
/ M2 (e2A" , D . M2e2am (,2. s %) + N (e’ m - 1)
which reduces to
(40)
129 T]m 099

*Ref. p. 101#
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12. Tl-.e Pelatj,9nsh3. Population ank
ft--.-." avn from The Lognor-

ConsldPr now the fase where an infinite number of
sets of N samples each are drawn from one of these subpopula-
tions. The means of these sets of sample values can, from
paragraph 10(a) above, be regarded as a lognormal distribution

with

h M m ts

Variance - nia(9fiﬂT "1l where mj - moan of 1th aub-
population,
and the weighted average variance of the series of distribu-
tions of means if the procedure is applied to each of the

above subpopulations will be

(e§‘ CD(m12 +n2 + ... 4()
N

Now, regarding for a moment e“ch distribution of
means as a subset and the distribution of all these means as
the parent population with parameter "a%," then from K (39)

Variance of all the means * Variance between mean., of
subsets weighted average
variance of the luoa™*" '
the subsets,

and sir so the means of the subsets are identical with the

means of the subpopulations,

1 i 1 -JL

M (e2ax2 ,, i) - 1) ¢

N(e2az2 - 2ar- _ n
and e~ - 1

But/...



39
But fr'm Of-0) abcve
[0 A ¢ YR ¢ 11
el . 1+
e2a - 1 - N@eM#x? 2A2 22 4,
whence e2a® * A~ (41)

Ne2ax" " 2X2 _ 1

4]5-#e-e*e (4ia)/

The following serves as a practical check on the
sarivation of (4la)»-

When N becomes large, a set of samples drawn from a
subpopulation will approximate the svbpopuiation itself, "&%'
vi]i then approximate "a ," and (4la) slllould merge into the

identity (40). This is evident since * approaches zero as N

approaches0 0 , and then

and hence * AN KK

’

wnich is identical with (40) when u*m” is substituted

gni¥mal_Cuy,ve: Inprc/e.agr*ts jn * -.

(a) Pitui* bv moments of observed values* The general
type of lognormal curve with tlu-ue parameters can ve fitted by

solving the equations for the mean, variance and 3rd moment

simultaneously/,.,



simultaneously.* In the case of the lognormal curve as
applied to gold values, there are, however, only two para-
meters, [.e. the moan m,” and "a." Fitting by moments would
consequently only necessitate the substitution of the observed
mean for **" in the formula, and solving for "a" in the expres-
sion for the variance,
_L

1. e. n2(e2a - 1) * observed variance.
This method will, obviously, not yield any "improvement" in
the estimate of the population mean since the mean of the
observed values is accept3d a' being equivalent to the popula-

tion mean.

(b) Fitting by moments of log? of YaWa' Since the

distribution of the logs of a lognormal variable is normal,**
It is possible to fit a normal curve to the logs of the
observed values by the customary method of equating the mean
of the set of log values, (i.e., in this case the mean of logs
of observed values), to the log population mean and equating
the calculated variance of the logs of the observed values to
the variance of the log population.*** Tne parameters of the
lognormal population can then be obtained by substitution in
formulae (17) and (16). It can be shown in the following
manner,that this method yields a considerable improvement in
the estimate cf the mean of the lognormal parent population.
The means of the logs of sets of S values each i'vi <
a lognormal population are distributed normally with variance

m—t—****where — “ variance of parent normal population.
2NA2 27

Where N Is large, U 7,>30), the variances of the
logs/...

1 **par. 7 above. ***With Bessel's correction where
1°¢ required.
****Par. 10(b) above.



3ogs of such sets of values will also be distributed approxi-

mately normally with variance

and therefore the estimates of the variance of the parent

normal population (i.e. -g) after applying Bessel's

correction, i.e. (

(where calculated variance of logs of set of values)

will also be distributed normally with variance

Una¥ (N-1)2

Referring now to No. (34) the factor

Ihl
25 2N)«

= (2L 1).normal population variance

Substituting now the estimate of the normal popula-

tion variance provided by (42a), the "atlmate rf the factor

—e=(! - v) becomes
UA2

(43)

and will be distributed normally with variance

2 (N-JLIt
4NA4 (N-1)2  4n2

Now/...

¢Ref. 8, p. 289. ** Based on Ref, 6, p.125 & Ref. 9% P.25.



Nov, the ejtimate of the mean of the lognormal

parent population provided by No. (34)

- ml - éie4%
Is lognormally distributed and therefore

log = log +r-g(l - M)

mean of logs of set of

(45)
observed values
Is normally dl trlbuted. Now, where the "AF of the parent
population Is unknown, and Is estimated Irom the logs of the
set of observed values, the estimate of the factor j-~ (1 - %)
will be distributed normally* with variance defined 'y No. (44)
above.

Since the first facto: In No. (45) above (mean o:

logs of values) Is a:sc distributed normally with variance

*

=—1- the new estimate of the log of the lognormal popula-
2NA
tlon moan "m,” I.e. log p* * log . p (from Noe. 4"5)
x1~

and (43) above)

will be normally distributed with

Variance + —nr
2NA SNA
and the corresponding estimate "Pi'" of the lognormal population

mean w ill be distributed Icgnormally with variance***

+-1f
«m2(e2N”  SNA* | 1) 47)

The statistic "pV *111 then (from No. (46))
-_L-g
(geometric moan cf sample val irs (o 1) (48)

where _ » calculated variance of logs (to the base e) of

2%%] the set of sample values.
The/...

*Provided N + large. **Par. 10(b) above. ***No. (9) above.



The relative efficiency of "Pj" can now be calculated
on the same basis as that of in paragrapn 10(b) above, by
calculating the equivalent number of sample values required on
the orthodox arithmetic mean method to yield on average as
reliable a result as the statistic "p~.® In the following
table these numbers of equivalent samples are listed for

various values of the parameter "A" c¢f the parent peculation,

TABLE V

A-.5 A- 6 A=7 A= 8 A- 9 A-1.0

NP
H, Na Na Na Na
50 77 62 57 53 52 52
100 157 126 114 108 105 103
500 799 641 574 541 527 519

1,000 1,597 1,281 1,152 1,086 1,054 11,038

Where Na * Number required on arithmetic mean basis
and Np * number required using statistic "Pj"
e.g., where "A" B ,5, 50 samples on the '"Pji'" basis will
on average yield as reliable a resuic as 77 samples on

the orthodox arithmetic mean basis.

The improvement indicated above is by no means as
marked as that obtained from "IV (paragraph 10(b) above)
when “A" is known, but is still sufficient over the range of

usually encountered, (i.e. ,5 V .8) to warrant its

employment.

The above method of fitting the lognormal curve and
of obtaining an improvem-nt in the estimate of the population
mean can naturally be applied for all values of '"N" but
Table 4 is only applicable for large values of N exceeding,

say, 30 since the derivation of (42a) is based on this

assumption. ...



assumption. Tie determination of the improvement provided
by "Pi" for smaller values of "N," falls beyond the scope of
this thesis.

Practical examples of the application of this method

are provided in Chapter VI.

(¢) Flttlw. by the Theory of Maximum Likelihood: This
method has been developed for the lognormal curve by Slchel*
and Finney*-* and is uased, as in the case of the method under
(b) above, on the calculate * mean and variance of the logs of
the set of sample values concerned. The solution provided by
the Theory of Maximum Likelihood, however, maximises the com-
bined probability of obtaining the observed mean and variance
in a set of logs of sample values, and thus provides a "better”
estima than that under (b) above.

This method requires the solution of an infinite
series wh ch involves a fair amount of calculation to arrive
at a sufficiently close result, or alternatively, the use of
tables of Bessel's functions, and the overall theoretical
improvement obtained is for all practical purposes, the same
as that under (b) above. Three examples quoted by Sichel for
sets of 10 samples each have been solved using the method
under (b) above, «nd the results obtained differed from his to
the maximum extent of only a few percent.

The use of this more complicated method appears,
therefore, not to be justified from a practical point of view,
except possibly in part. ,ular cases, e.g. borehole values,

where the time factor in calculi on is of little concequencr

14. Lognormal Corxel»U.Qile

As shown in paragraph 7 above, the distribution of

the logarithms of a lognormal variable is normal and it is,

therefore/...

*Rof. 5. 7.



therefore, evident that a normal correlation surface of the

logs of two Joint lognoimal variables can be transposed Into a

lognormal correlation surface of these two variables. The

problem of the lognormal correlation surface will consequently

be approached from the angle of the relatively simple normal

correlation surface formed by the logs of the variables, and

only

the

ideal case of the normal correlation surface with

homoscedastlc regression system* and linear regression will be

considered.

Now 1

et:-

x andy etwo Joint lognormal variables

i andt °the corrci®*undlng Joint normal variables, i.e. log x

and log y, respectively

and 7 *means of the two lognormal populations

z and € * means of the two mrmal populations of and "t"

%

ay m

& «

¢ftof.

logs of the geometric means of the two lognormal
populations of "x" and "y" (see paragraph 7)
parameter of the lognormal population of "YMand of
the normal population of "t"

parameter of the lognormal population of "x" and of
tie normal population cf "zl

parameter of the lognormal distribution formed by
each of the various arrays of "y's" in the x eete-
&ories

parameter of the normal distribution formed by each
array of "t's"

parameter of the lognormal distribution formed by
each array of "x's"

parameter of tin norm*! distribution formed by each
array of "z's"

From/...

k, p. 209.



From paragraph 7 above it is, therefore, evident

that
The mean of all the "z's" =z = log of mean of the %'s - r o,
a’o
=10g X- Ju_ ... (49)
4a
The mean of all the "t's" * € * log p - Aft (49a)

The mean of each array of "z's" ?0g of mean of corresponding

array of %'s -1-3 ...(50)

4aigy "
The mean of each array of "t's" = log of mean of corresponding
array of y's - — (5

AyX

Further, as the line cf regression 9/ "t"
is formed by the series of moms of arrays of "t's" it will

correspond to the series of (logs of the means of arrays of

yt3 . — . It is, therefore, evident that the line (or
4ayx
curve) of regression 01 "y" op_ "1 will on the logarithmic

graph of "t" on «%" plot as a straight line parallel to the

line of regression of "t" on "z" at a "vertical" distance,

(1,e. parallel to the y axis) of + from the

latter. (1)
Similarly, the line or curve pf.JOZT"sglffl @

"x" on "y" will on the logarithmic graph of "z" on "t" plot

as a straight line parallel to the line of regression of "z"

on "t" at a distance parallel to the x axis of +" 3 froa

ooooooooooooooo

the latter. * (51ft)
It should be noted at this stage that only a 45°

line on double logarithmic graph paper will convert into a

straight line on ordinary grtph paper, and that the latter

Hn« will always pass through the OYtg5n, e.g.»



4?

log y * log x +log S is a 45° lino on doable
logarithmic paper converting into
y e Sx on ordinary graph paper
where S m a constant
Any other straight line on double logarithmic paper
will convert into a curve on ordinary graph paper, e.g.,
log y BPlog x + log S (where p Bslope” *5°)

converts to

y eP log %+ log S

Jog Sep log x

= KeP * (i.e. a type of exponential curve)
Line of regression
Now consider a line of regression of "y" on "x" of

y = Sx

converting to
log y mlog x +log S

t Bz +log S

, from the conclusions reached above (No, (51)) the Illr*q Qf

regression of '"t" on will be

t =a +log S - — (%)
yX

with slope * 1
But the slope of the line of regression of "tl on "z" in

general

e Standard deviation Coefficient)*
Standard deviation Of Z

S
9 ... (from Nos. (17) and (18))

vhen/...

#Ref. 4, p. 177.



when the slope * 1, therefore, the coefficient of correlation

Line of regression z on t;
Pur.her, the general formula for the slope
line of regression of z on t Is
.rd deviation of z r *

tandare deviation of t'

a
* y.r and from No. (5V) this
X

This line of regression will, therefore, je

ay2
z “ -gwt + K e
ax

and it o.ust pass through the point z,” which, from

Nos. (49) and (49a> can be stated as

log x - —i-r , logy - —I-z
4ax?2 4ayZ

Solving for K in No. (56) yields

K * log * - ~3 »log y

and No. (56) becomes

z =-"*t +log x - *n-log y = annnns
ax a*

Now, the variance of each array of z’s

« L— » Variance of z's(l - r<) which from No.
2@xy2

« =N-n(l - N 5) e
2ax*-( axz)

Consequently, from No. (51a) above, the -4ne.,gr

regression of x ony can be obtained from

I.e. log x'

*Ref. 4, p. 177, **Hef. 4, p. 180.



2 2 2
i,o, I*g x =—1log y +log jt- -J*xlog y+-—2*(1 - 2%) ,,,« (59®)
ax ax 4ax?2 ax

and where in a special case x “y

2 2
log x * -"*log y + (log X +—2-*)(1—£%) (59b)
®x axc

It is evident, therefore, that in the case of a log-
normal correlation surface, a straight line of regression of
y on x of the type y * Sx will have a corresponding curve of
regression of x on y as defined by No. (59)s This property
finds particular application in the subsequent examination of

bias errors in mine valuation, (Chapter VI, paragiaph 3).



CHAPTER 1V

A PRACTICAL GRAPHICAL ME~'OD OF (URVE FITTING
FOR, LOGNORVAL PATRIBUTIONS

1. Transposition of the Lognormal Curve into trail

From Nc. (3) above, the lognormal frequency function

-log x - a2(loiri +
*af
F(x)dx * »dx
\B i

substituting w * a (logjjj ¢ ceweee €60

-log X - T
f(w)dv

pH#rag (M)

which is tne expression for the norsul curve symmetrical

about the line w * o.

>00
gsince when x “ o
. wom -<*
Also -'(w)dw ( and when x * 00
( w o m -
* P, f(w)dw

°
N0w1 f(w)dv is usually llstad in tables for the

normal curve as equivalent *o 0.5 since It only represents a

half/...



h»1lf of the total area under the normal curve. Also as
*1

f(w)dw, l.e the area under the curve botwsen values for

"v': of zero and of "w?,” Is measured (In these tables) from

the median (* mode = mean) of the curve, vneieas the cumula-
tive frequency on the lognormal curve Is measured from zero
"x,” I.e. the left-hand extremity of the curve, the following

frequencies will corresnond:-

Cumulative Frequency 1 Cumulative Frequency

Normal Curve Lognormal Curve
2 0 Value ot "v"
| f(w)dw 1 F(x)dx
0
-0.5 v % -00
0 508 0
+0.5 100% +00
0.3 (I.e. 0 - .3) 208 vi.e. 50$ - 30%) 84
+0.4 (i.e. 0 + .4) 90% (i.e. 50% + 409) 1.281*

The fact that when "w" * o, the cumulati'-s frequency
on the lognormal curve e 50”7, can also be Illustrated as
follow s «-

When '"W' * o, “orc No. (60)
log x log w-

1 &
X ¥ me " * median of lognormal curve (see No.(M)

e value corresponding to a 90$ cumulative

frequency.
Thus/...

¢Explanation given In subsequent discussions.

L



0
S
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11
12
13
14
15
16
17
18
19
no
21
22

23
24

M« H Cum,

#

- 00
-1.8214
-1.6450
-1.4522
-1.3299
-1.2379
-1.1631
-1.0954
-1.0436
-0.9936
-0.9481
-0.9062
-0.8673
-0.8308
-0.7965
-0.7641
-0.7329
-0.7032
-0.6747
-0.6472
-0.6208
-0.5951
-0.5702
-0.5461
-0.5225
-0.4994

25
f5
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

TABLE °
My #  Cum.F.
1t
-0.4770 51
.0.4549 52
-0.4333 53
-0.4121 54
-0.3913 55
-0.3708 56
-0.3506 57
-0.3307 56
-0.3111 59
-0.2917 60
-0.2725 61
-0.2535 62
-0.2347 63
-0.2160 64
-0.1975 65
-0.1991 66
-0.1609 67
-0.1428 68
-0.1247 69
*0.1067 70
-0.0889 71
-0.0710 72
-0.0532 73
-0.0355 74
-0.0177 75
Zo.0000 76

*V *CcymF. TwM
Jr VT
0.0177 77  0.5225
0.0355 78 0.5461
0.0532 79  0,5702
0.071G 80  0.5951
0,0889 81  0.6208
0.1067 82  0.6472
0.1247 83 0.6747
0.1428 84  0.7032
0.1609 85 0 7329
0.1791 86  0.7641
0.1975 87  0.7965
0.2160 88  0.8308
0.2347 89  0.8673
0.2535 90  0.9062
0.2725 91  0.9481
0.2917 92 0.9936
r.*ui 93  1.0436
0.3307 94  1.0994
0.3506 95 1.1631
0.3708 96  1.2379
0.3913 97  1.3299
0.4121 98  1.4522
3.4333 99  1.6450
0.4549 99,5 1.8214
0,4770 100 +0o0

0.4994

"1 I

Th
indirect mea
curve, and t
established d
Normal Curve.
Thus w “ func

aVvl

or * a iog
V2

This equation

Y = KX +
whereY "
and C =
As wi

graphical strai

2. lLoearithmii

Tabl<
frequencies COJ
of areas of th<
above.

Thu:
ordinary graph
tive frequency
as illustrated
rithioic scale
of the gold va:
frequencies as

lognormal disti

*E.g., Ref

ANSeo map po
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