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ABSTRACT

A Cluster-Bethe-Lattice model is fcumulated which approaches noo-stoichio- 

oetric transition metal hydrides from the viewpoint of local atomic 

environment and incorporates the short-range order characteristic of such 

systems. Analytic expressions for the Local Densities of States are 

derived, facilitating detailed examination of the band structure of the 

hydride as veil as extensive charge and electronic energy calculations.

This approach is developed to provide a physically sound and computationally 

practical alternative to existing theoretical techniques, which usually 

fall into one of two categories, viz. excessively simplistic on the one 

hand and physically inappropriate and computationally restrictive on 

the other. Our model is applied to non-stoichiometric palladium hydride 

(PdH^, 0 < x < 1), where good agreement is found between our computed 

Local Densities of States and sophisticated band structure calculations 

and photoemission experiments. Heats of onsation evaluated using our 

Local Densities of States agree fairly well with experiment for x ? 0.5 

but not for lower concentrations. We thereiore extend our model to a 

two-phase formalism which not only substantially improves upon our heats 

of formation for x s 0 .S, but which also qualitatively predicts the 

higher concentration phase transition of the hydride. The physical 

validity of the two-phase model is confirmed by the fact that it 

signif icantly improves upon our original formalism in the experir entally- 

established two-phase region of the hydride (0 .0 1 < x < 0 . 6 at room 

temperature). Consideration of the underlying physical assumptions of
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our models indicates that the 8-phase hydride (x i 0 .6 ) cunsists of a random 

distribution of hydrogen in the palladium lattice whereas the two-pnase region is 

characterized by phase segregation at a microscopic level.

Finally, both our formalisms are employed to model the pressure-composition 

isotherms of the palladium-hydrogen system. The one-phase model is only suc

cessful for x i 0,7, that is well within the 8 -phase region, whereas the two- 

phase formalism produces isotherms in good qualitative agreement with 

experiment for x i 0 .2 , that is over most of the two-phase region in 

addition to the 0-phase regime.
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C H A P T E R  1 

INTRODUCTION, LITERATURE REVIEW AND AIMS

I.t INTRODUCTION

The literature review which follows this introduction will focus mainly 

on the key words of the title of this work, viz. "electronic nature",

"non-stoichiometric" and "metal hydrides". We have decided from the 

outset to concentrate our attention on palladium hydride, for the 

following reasons

1 ) it is fundamentally non-stoichiometric (PdH^, 0 < x < 1);

2 ) there is a rich theoretical literature for the electronic 

nature of both Pd and PdH (PdHx with x » 0 and 1 respectively), 

which gives us two well-known extreme cases as reference 

points for a truly non-stoichiometric theory;

3) to quote Wicke and Brodowsky1 '1  ̂ P* 7 3 :"Palladium hydride

represents one of the most transparent and instructive 

models for a metaL-hydrogen system from structural, thermo

dynamic, and kinetic points of view... Nevertheless, there 

are quite a number of 'details in the mechanism of hydrogen 

diffusion as well as in ft* o/ awtea

in this system net yet fully undea'stood" (our italics).

i tom this we appreciate the fact that a successful model for the palladium- 

hydrogen system is likely to give us important guidelines for understanding
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a variety of other metal hydrides. It is also noteworthy that despite 

the considerable literature on the electronic nature of palladium 

hydride, there is still a distinct need for further contributions 

in this area.

It is for these reasons, in particular the understanding of palladium 

hydride as a "test case" for other metal hydrides, that we have been 

reluctant to entitle this work "Theoretical study of the electronic 

nature of non-stoichiometric palladium hydride" \ we believe that the 

techniques developed here can easily be extended to other metal hydrides, 

at least to those of transition metals such as nickel and titanium. We 

nevertheless choose here to confine ourselves to palladium hydride so 

as not to obscure the main thrust of this work with excessive detail.
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i.2 LITERATURE REVIEW

1.2.1 Introduction: A Polarization of Approaches

Interest in palladiam hydride (PdH^) goes back to the 1860s when 

palladium metal became available in sufficient quantities for experiment

ation. Graham1,2) soon discovered that Pd absorbed large quantities 

of hydrogen. Since then a considerable experimental literature has 

accumulated concerning the absorption of hydrogen by palladium, with 

a particular interest being shown in hydrogen pressure versus hydrogen 

concentration (x) isotherms. These results have tended to be interpreted 

within simple semiempirical formalisms, and with the aid of physically 

transparent but rather simplistic electronic theories such as the Rigid 

Band Model (to be discussed below).

At the other extreme there is also a large theoretical literature, which 

approaches Pd and PdH (and occasionally, fairly simple intermediate cases, 

for example PdHo.g) mainly from the viewpoint of sophisticated band 

structure calculations. These techniques are sole to generate accurate 

band structure, charge and energy data for the limited cases of hydrogen 

concentration to which they are applied. Howaver, three problems arise 

concerning band structure calculations: firstly, they require considerable compu

tational resources; secondly, they make use of large numbers of fitting 

parameters which lack clear physical meaning; and thirdly, they are based 

on periodic crystal potentials and Bloch's theorem, which are physically 

inappropriate for non-stoichiometric (and hence essentially disorder&d) 

materials. This last drawback can to some extent be compensated for by 

using Bloch-like functions with finite decay-lengths 1•3), but this 

enhances the computational difficulties. The second problem will be



- 4 -

discussed in detail in Section 3.3 and Appendix 1; it is due in 

essence to the fitting of a large number of parameters to energy levels 

generated by, for example, the APW method. These energy parameters 

are by no means unique, and often bear little resemblance to atomic 

parameters (such as ionisation potentials and electron affinities).

Another theoretical approach involves the study of fin isolated hydrogen 

"impurity'* in the palladium lattice by means of c screened Coulomb or 

similar potential centred on the impurity. These techniques eiaphasize 

the localized electrostatic features of the system, and hence free one 

of the requirement of a periodic potential, but have limitations of their 

own: they are only good approximations for low concentrations of hydrogen 

(since the impurity is taken to be isolated); and they are highly sensitive 

to the techniques used in evaluating the screening parameter. Further, 

an accurate determination of this parameter can lead to a computationally- 

expensive self-consistent calculation.

In summary, then, we note a polarization in the theoretical study of

PdH^, with semiempirical and often simplistic theories being used on the 

one hand ind sophisticated but cumbersome and often opaque techniques 

being applied on the other. In the light of this we can more fully 

appreciate a theory with the following attributes: it takes advantage 

of sophisticated calculations by incorporating a few simple parameters 

generated by them; it is based c.t a formalism which does not require a 

periodic lattice, with the result that it copes with non-stoichiometric 

compounds as naturally as with stoichiometric ones; it is more sophisticated 

:han models such as the Rigid Band Model, yet: simple enough to use for 

extensive energy calculations which can be compared directly with 

experiment. These are all features of the model which we will develop in 

subsequent chapters.
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The literature review that follows is intended to provide the reader with 

a clear appreciation of the strengths and weaknesses of a selection of 

theoretical (mainly electronic) approaches that have been applied to 

PdHx; the aim throughout is to emphasize the above-mentioned polarization 

of these approaches into essen:ially two camps. The topics and papers 

reviewed are for the most part in chronological order so as to give a 

-eel for trends in the research; they have been chosen because of their 

relevance to the present work (themes to be taken up and foundational

information). The relevant experimental papers have not been reviewed,

but can easily be followed up through the references.

1.2.2 Senrienfpiriaal Kleatronia Mode Is

Possibly the simplest me.! 1 of the Pd/H svstem is the pseudo-silver 

hypothesis proposed by 0xleyll4> aud Vogt1-5*, based on the observation 

of similar decreases in the magnetic susceptibility of Pd as a function 

of both (substitutional) silver content and (interstitial) hydrogen 

content. Hence, this approach approximates a Pd/H pair to a single Ag 

atom (the Pd/H pair and tho Ag atom being isoeiectronic). The approximation 

is supported by certain X-ray crystallographic studies1*6*, and by 

evidence that hydrogen solubility in Pd/Ag decreases linearly with Ag

content under certain circumstances1*7\  However it has been shown1*7*

that this observation of linear dependence breaks down seriously over 

vide ranges of hydrogen pressure. In addition, Faulkner1'8* has shown 

usi ig his Coherent-Potential Approximation (CPA) calculations that 

the density of states of the (substitutional) Pd/Ag alloy is markedly 

different to that of the corresponding (interstitial) Pd/H system.

A modification of the pseudo-silver hypothesis is the so-cal!ed proton 

'voiel. This model assumes that the hydrogen is centrally situated in 

interstitial sites in the Pd lattice, so that a hydrogen atom cannot be 

considered bound to any single Pd atom; rather, the hydrogen atoms
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donate their- electrons to • :'u ban. as a whole, leaving interstitial 

pro tons, The re  ̂ some exper.u-ontal evidence that hydrogen is present 

in a p sitive y-rharged

the proton model leads in a natural manner to the Band

(KRM). This is based on the observation that a number of electronic 

properties of PdH undergo significant changes for x ~ 0.6, for example 

the disappearance of paramagnetism^'' at this hydrogT concentration.

The interpretation originally given to this phenomenon was that the Pd 4d 

band had 0 . 6 holes n it, so that by applying the proton model the 4d band 

would be filled at * * 0.6. The Rigid Rand Model was then introduced to 

further quanrify his concept; in the RAM formalism Pd is assumed to 

have two w*leere Ttands in its DOS, a high-density &d band overlapping with 

a low-density  ̂ sand at higher energies. It is further assumed that

:hese hands do iut change shape with addition of hydrogen elertrona,

that is. the bands are taken to be "rigid"'. As electrons are added, the

Fermi energy increases, at first slowly (in the high-denaity 4d

band) and hen rapidly I onee enters the low-density 5s band at x ~ 0.6). 

Howeve , measurements of the de Haas-van Alphen effect on pure Pd 

performed r.y Vu. 1 lemm and Priest ley - have shown that the 4d band 

contains only 0.16 - 0.01 holes. This finding firstly undermines the 

proton model, as the following argument will reveal. Faulkner's CPA 

calculat icr..” ‘ 1 «how t h;*r earh hydrogen electron added to the palladium

lattice is divided between a palladium and a hydrogen atom in the ratio of 

3 to 2 respectively and that this ratio remains fairly constant with x. 

Therefore each Pd atom in PdH t gains roughly ’■), c- electrons, and hence 

each Pd in PdH-  ̂ gains approximately 0.6 x 0.6 - 0.36 electrons, in 

agreement with experiment‘‘1 ; it thus 'earns reasonable to assume that
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Faulkner's 3:2 split of charge between Pd and H is a good approximation.

We note however that the proton model requires that the entire electron 

be donated to Pd, that is it assumes a 1:0 split of charge between Pd and 

H, and hence this model becomes at leaet quantitatively incorrect.

Secondly, the occurrence of only 0.36 holes in the 4d band presents a 

problem for the RBM, which was formulated on the assumption of 0.6 hole 

in the palladium 4d band. By considering screening effects the RBM can be 

adapted to allow for this discrepancy1,1^ ;  the adaptation involves 

having a 5s band which is shifted downwards with increasing charge, so 

that this band "absorbs" the extra 0.24 (that is, 0.60 - 0.36) electron.

In the resulting model the bands are no longer rigid relative to each 

other, so we now have a SaT^a&ning-Indiioed Band-Shift1 '1) P '13 3 Mode I 

(SIBSM).

Although the SIBSM has had some success in explaining certain resistiviLy1 * 15 * 

and electronic heat capacity1,16) experiments on Pd/Ag alloys, the CPA 

calculations of Faulkner1,8) and the APW calculations of Switendick1*17) 

and others have shown conclusively that not only do the palladium bands 

undergo distinct changes of shape with the addition of hydrogen electrons, 

but also that a hydrogen-induced band begins to form beneath the 4d band.

Thus both the RBM and SIBSM are physically oversimplistic, as is reflected 

by their limited ability to consistently explain experimental data.

Summary: Semienpirical Electronic Models

We are led to the conclusion that the elec onie structure of PdH^ requires 

more complex models than the four semiempirical approaches so far 

discussed. We shall therefore review some of the less phenomenological 

approaches that have been used.
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We start with Switendick* s APW calculations for palladium and some of 

its hydrides. He takes Pd to have the structure 4d9 5s* as opposed to 

the 4di05sn configuration favoured by Mueller et so as to

model the partially-filled 5s band (4d9 *G4 5a3*36) revealed by experiment1 ' 13 

Pd metal has the fee structure, and he uses the lattice constant 

a * 3.89 %. The usual Muffin-Tin (MT) approximation is used for the 

potential, with the MT spheres touching. He obtains a fairly narrow 

4d band (about 5 eV across) for pure Pd, overlapped by and hybridized 

with a wide plane-wave-like 5s-p band (■ 10 eV across), with in a 

high DOS region near the top of the d band. For PdH he makes the usual 

assumption of an NaCl-type stru^ure (see Section 1.2.7) with 

a 1 4.03 X (the lattice constant for 6-pAase palladium hydride: see 

Section 1.2.4). The palladium MT spheres are no longer taken as touching 

in the stoichiometric hydride, since this would leave insufficient 

space for the hydrogen MTs; the Pd and It MT# are instead taken as touching, 

and have respective radii of 65% and 35% of the Pd/H separation. The 

resulting calculations reveal that the palladium d band is only slightly 

affected by hydride formation, whereas the s-p band changes significantly; 

in particular, states which allow s-like character in the hydrogen MT 

sphere are lowered considerably in energy, so that an s-like band is 

formed below the d bands.

Thirdly, Switendick has applied his APW model to the ordered structure 

PduHg; this is to approximate the behaviour ot PdHo.7 5 , which in reality 

'-as random hydrogen occupation of the available interstitial sites. The 

difficulty here relates back to our observation in Section 1.2..' concerning
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the inapplicability of BS calculations to random (and hence disordered) 

systems; as Switendick comments:"we have assumed an ordered arrangement, 

since the disordered calculation is beyond any reasonable computational 

means"1•17)P*538. In the same context he also indicates his belief in 

the importance of nearest-neighbour atoms (that is, local environment) 

in the determination of energy states; this is an important issue which 

will emerge more clearly later. For the case of Pdi+Hg and then Pdt,H 

he again finds that states which are s-like around the hyd.ogen site 

are lowered, though less in the case of Pdi»H. On the basis of this 

he suggests that for infinite dilution oart of an added hydrogen electron 

helps fill the d band and part goes to the lowered states.

S wmar : Suitendiak (1972)

In his conclusion Switendick emphasizes that the significant qualitative 

differences he obtains in his various DOS show that the RBM does not apply.

On the basis of the sophistication of his model we take this to be an

accurate comment; however, we note in the context of model complexity 

(Section 1.2.1) that his approach makes use of 29 parameters which are 

used to fit 46 APW states (evaluated at high-synsnetry points), in 

addition to MT radius parameters. Switendick points out that his 

calculations assume an ordered topology for PdH^, since the disordered 

calculation would net be computationally feasible. He also comments on 

the importance of the local environment in determining the energy states 

of the system. A striking feature of his BS results is the appearance

in the hydr.'de of an s-like band below the d bands.



].2.4

Wa next consider Faulkner's CPA calculations for Pd, PdH and a number of 

substoichiometric compounds (PdK^, 0 < x < 1). He notes the essential 

randomness of the *ydrogen sublattice at the outset; the CPA is in fact 

used because of its efficacy in modelling a class of essentially random 

systems viz. binary alloys1* * .  Nevertheless, his model is still based 

on a peiriodi-o Hamiltonian; specifically, he has made use of the elaborate 

first-principles BS calculations of Papaconstantopoulos and Klein1,20)

(viz. self-consistent APW calculations including relativistic corrections). 

As is common practice, these BS calculations were carried out only for 

high-symmetry points in the Brillouin zone, and Faulkner thus follows the 

usual procedure of setting up an interpolation scheme between these points; 

sp. cifically, he applies the well-known tight-binding scheme of Slater and 

Koster1,21) (Switendick'a 29 parameters mentioned above are ti a consequence 

of a related interpolation method). Faulkner uses 13 interpolation 

parameters for Pd and 1/ for PdH, roughly half the number used by 

Switendick. The sacrifice of detail is to facilitate the CPA calculations, 

which require iterative solutions to a set of matrix equations.

His results confirm those of Switendick1s in their essential features: 

firstly, a narrow (* 5 eV), high-denaity d band for pure Pd and its 

hydrides; secondly, the lowering of the lowest-lying band in Pd to what

Faulkner calls a palladium-hydrogen bonding band; and thirdly, falls 

in a range uf high DOS (at least in the cases below x 3 0.7). Specifically, 

he points out from his DOS plots that no single band in his BS can be 

thought of as a purely hydrogenic band; also that the DOS is clearly



a function of hydrogen concentration. Hence he establishes the point 

(already emphasized by Switendick) that no RBM is acceptable for the

Pd/'H system.

He further addresses the issue of the two-phase nature of PdH^: for 

0 . 6  < x 5 1 this compound is in the so-called 6-phase, which is usually 

described as having the NaC£ structure, the vacancies being randomly- 

distributed on the hydrogen sublattice. His model is built upon this 

random one-phase concept; however, for x ; 0 .6 , the 6-phase is in 

equilibrium with the (much more dilute) a-phase, that is, we have a 

tvo-phase system. Faulkner concedes that his model is therefore 

suspect over this range of concentrations.

Surmary: Faulkner (1976)

We see then that Faulkner's work has introduced the concept of randomness 

through application of the CPA, but that it is still bound within the 

framework of BS formalism and hence an implicitly ordered lattice. He 

addresses the issue of multiple phases in the Pd/H system, pointing out 

that strictly his model only holds in the 6-phase region (x & 0.6). He 

has produced useful results for a range of Pd/H compounds, though we note 

again the large number of parameters (13 to 17) required by the BS 

interpolation scheme alone, as wrill as the need for iterative solution 

of the CPA equations ir order to obtain the DOS. With specific reference 

to the application of the CPA to the disordered hydrogen sublattice, we 

note that Faulkner's forrializMO avoids the necessity of dealing with off- 

diagonal disorder**22). We note however that the system does in fact 

have this kind of disorder, and hence a model which could comfortably



include it in its formalism would have enhanced physical value. It 

will be seen in subsequent chapters that our formalism results in just 

such a model.

Finally, Faulkner finds that in the hydride a band develops below the 

d bands, which he relates to the bonding of the hydrogen to the palladium ; 

this finding agrees closely with Switendick's results.

1.2 5 Papaconatantopouloa et a l * (±978)

This work is an extension of Faulkner's CPA study (Section 1.2.4). Tne 

authors apply Faulkner's CPA technique as in his own work, but make better 

use of it by implementing a more sophisticated Slater-Koster Hamiltonian 

(see Section 3.3) with which to fit their APW band structure calculations

for Pd and PdH.

They use the same basis functions as Switendick1' ,  viz. five d orbitals, 

three p orbitals and one s orbital for Pd, plus an extra hydrogen s orbital 

for PdH, but increase the sophistication and consequently the accuracy 

of the Slater-Koster interpolation scheme by including third-nearest 

neighbour interactions (cf Switendick, who considered second-nearest 

neighbours, and Faulkner, who only considered nearest neighbours). The 

consequence for PdH is that the number of parameters is increased from 29 

in Switendick's case and 17 in Faulkner’s case to 4i in theii Using

these 41 parameters the authors solve their CPA equations and hence 

generate the total DOS. They then drop the three Pd-H overlap parameters 

and find that the DOS change by no more than a few percent, so that they 

are left with 38 parameters for PdH (and 32 for pure Pd). The parameters 

are evaluated using a nonlinea.- least-squares technique, in which the
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authors fit 111 and 127 energy values from their APW calculations for Pd 

avi PdH respectively.

An important finding of this work is that the constituent DOS (s, p and 

d) are highly sensitive to the particular APW energy states fitted by the 

Slater-Koster scheme (though the total DOS is found to be much less 

sensitive in this regard). More specifically, they note the need for 

compatibility between the basis orbitals chosen and the APW stares fitted; 

for example, the presence of higher-energy p orbitals in the basis set 

requires that the energies fitted include p states which are high in 

energy.

The authors calculate the constituent and total DOS, as well as the 

Fermi energy (Ef), for x - 0.0, 0.1, 0 . 2 , ,  1.0; they also present 

a table of the various DOS, calculated at Ep, for these eleven x values.

A striking feature is that the total DOS at ia dominated by contributions 

from the d bands, with the DOS of the s and p bands at being small 

by comparison; in other words, Ep falls in an energy region of predominantly 

d-like character. This result is expected for pure transition metals, 

and hence their calculations indicate that even in the stoichiometric 

hydride the metallic behaviour dominates at Ep. The constituent and 

total DOS are also plotted as functions of energy for the cases 

x » 0.6, 0.8 and 1.0. As with both Switendick and Faulkner, we see 

the emergence of a hydrogen-related band below the palladium d bands.



- 1 4 -

The authors also comment on the subject of phases; they are confident 

of the accuracy of their model in the high-concentration, single-phase 

region (8-phase, x 2 0.6). However they are less confident in the lower- 

concentration two-phase regime, for .vo reasons: firstly, they expect 

the two-phase regime to be dominated by short-range order phenomena, 
that is, by effects of local environment (cf their band structure 
approach, which is built on the principle of long-range order as found 
in crystals); and secondly, as x becomes stialler, the use of the PdH} 

Slater-Koster parameters becomes increasingly less valid.

Summary: Papaeonstan topoutoe et at (19?8)

This paper is an extension of Faulkner's work and hence the summarizing 

comments at the end of Section 1.2.4 also apply here. The authors' 

results are more accurate thau those of Faulkner, although we note 

that the number of energy parameters is more than doubled (38 parameters 

for PdH;, as opposed to 17 in Faulkner's case).

The authors further extend Faulkner's work by calculating the constituent

DOS (s, p and d) of PdH^ for x ■ 0.0, 0.1, 0 . 2 , 1 . 0 .  in particular, 

they tabulate the various DOS values at Ep, which gives us the result that 

falls in a part of the band structure dominated by d bands. This is 

significant since it indicates that the electronic ptvpgrtias cf the 

hydride at Ep are dominated by metallic contributions.

The two-phase behaviour of the hydride is also commented on, with a 

reminder that this model is only strictly valid in the high-concentration, 

single-phase regime. There are two reasons for this: firstly, the two- 

phase region is characterized by shert-ranoe (and hence localized) order
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phenomena,whereas their BS-based approach assumes long-range crystalline 

order; and secondly, the use of the PdHi Slater-Koster parameters becomes 

increasingly less valid as x decreases.

We now move on to the study of various transition metal hydrides by 

Gelatt et al, in which the authors focus their attention on Pd,

?dHi and various substoichiometric compounds PdĤ , (0 < x < I). As

with Switendick they use the APW method (though only for the metals

and their stoichiometric hydrides), and like Faulkner and Papaconstantopoulos

et al they treat the non-stoichiometric hydrides as disordered alloys

with hydrogen distributed randomly over the one fee sublattice, the

other sublattice being entirely occupied by palladium atoms. Instead of

the CPA they use the Average T-Matrix Approximation1*25  ̂ (ATA) for the

non-stoichiometric cases, in conjunction with the Korringa-Kohn-Rostoksr

(KKR) BS method (see Appendix 1.1 for a brief comparison of the CPA

and ATA techniques). They note in this regard that although the correct

random calculations could have been performed in the non-stoichiometric

cases this would have resulted in an unwarranted increase in computational

complexity.

Their results aie similar to those of Switendick, Faulkner and 

Papaconstantopoulos et al; in particular, we note the following points: 

firstly, for small values of x a new band appears oelow the Pd d bands, 

which they associate with the formation of a Pd/H bond (this new band 

is in fact flat, that is it represents a discrete energy level, which
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would show up as a delta function on a DOS plot. As x increases the 

level "broadens" into a true band); and secondly, the d bands are largely 

unaffected by increasing x, except that they are shifted slightly down

wards in energy.

Gelatt et al are the first to have done damping-of-states calculations 

for the Pd/H system. Damping is essentially the "blurring" or broadening 

of energy bands as a result of electronic scattering from the randomly- 

occupied hydrogen sublattice. They observe that states having s-like 

symmetry about the interstitial hydrogen atom/proton (that is, the basis 

orbitals have finite amplitude at this point) are strongly damped, as 

well as shifted in energy, whereas orbitals with a node at this site are 

largely unperturbed by the introduction of hydrogen. This intuitively- 

sensible result is in agreement with Switendick*s findings discussed 

above, and shall be further verified in Chapter 3.

This paper also contains work on the heats of formation (6H) cf 

stoichiometric monohydrides, including PdH, where the aim is to 

reproduce trends across the 3d and 4d rows of the periodic table rather 

than to give precise results. They use the following equation:-

where E(H2 > ■ -2.266 Ryd (hydtogen ionisation energy), and for PdH,

AHl - AEi - | E(H2) (I.I)

(1.2)

"<CLBH''n *S the avera9e ener8y of the lowest band (LB) of PdH,
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is the average energy of Che four remaining d-bands of PdH 

(two electrons per band) and "e^" is an absolute number giving the 

contribution due to the addition of a hydrogen electron at (this 

last term makes the resultant AHi values very sensitive to the choice of the 

crystal potential zero). Equations (1.1) and (1.2) successfully model the 

trends for AHi across the 3d and 4d rows, giving a reasonable estimate 

for PdHi•

In addition, Gelatt et al made Coulomb corrections to these AH} values, 

and theugh these are considerable for the early transition metals such 

as Y, Zr and Nb (due to the presence of more than one electron per 

hydrogen site), the correction for PdH is minimal.

Stiimary: QeUxtt &t at (1978)

Like Faulkner and Papaconstantopoulos et al, Gelatt et al have appreciated 

the random nature of the Pd/H system but 'tave nevertheless modelled it 

within the framework of BS (aid hence ordered) theory; they also remind 

us of the computational restrictions on a truly random non-stoichiometric 

BS calculation, even with application of a non-self-consistent disorder 

model such as the ATA. Their calculations of the heats of formation 

of stoichiometric monohydrides, incluiing PdHi, are based on a physically 

transparent model which makes use of an average-energy concept; they have 

not here evaluated the heats of formation for non-stoichiometric hydrides. 

Again the formation of a new band below the d bands is reported, and 

again it is related to Pd/H bonding. It is further noted chat for 

low concentrations x this band is flat, which give;# rise to a delta 

function (bound state) in the DOS.
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1.2.7 Sholl and Smith1 •z^ - 1’2^  (1977-78)

We turn now to isolated-impurity models for the Pd/H system, in which 

the hydrogen is treated as an isolated interstitial impurity in the 

host Pd lattice; such models take electroetatio effect** into account, 

which are nor considered in BS methods. We shall consider the work of 

Sholl and Smith1•26)~1.28)f which also takes BS considerations into 

account; their model is based on the Green's function technique of 

Riedinger2 • and the BS interpolation scheme of Hodges et ^ V s30)„ 

Prior to Sholl and Smith all the applications of these techniques were 

to substitutional impurities in noble and transition metals; the 

extension to interstitial impurities gives a more complex formalism 

which requires further approximations1,27 .̂

Sholl and Smith stait by applying the parameterized expressions of 

Ehrenreich and Hodges1*31) to the APW BS calculations of Mueller et 

al1 *‘8) and Switendick1*17) for pure Pd metal. The consequence in 

each case is a 14-parameter interpolation scheme, from which the 

integrated DOS (proportional to charge) of fie p&rturb&d system is 

determined by statistical techniques. By appropriate manipulation 

of the integrated DOS1,26*, the change in BS ^mrgy (6E^) due to 

addition of the isolated hydrogen impurity, is calculated. They proceed 

to derive an expression for AE^'26 ,̂ the change in eleatrostatvc energy 

due to addition of chis impurity. This requires knowledge of Ap(r), 

the change in charge density at the interstitial, and v(r), the 

Coulomb potential energy due to the addition of the impurity. Ap(r) 

and v(r) are related via Poisson's equation, viz:
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V 2v(r) " - 4tt Ap (r) (1.3)

Shell and Bmitn point out that equation (1.3) should be solved self- 

consistently to obtain both v(r) and A p C r ) ,  but remark that chis would 

not be computationally feasible. Hence they have approximated v(r) 

to a screened Coulowb potential1•26^»1• 7 ,̂ viz:

where 8 is the inverse screening length and is evaluated*• so as to 

satisfy . oth the Friedel Sum Rule (whiza is essentially a charge conservation 

requirement) and the assumption that ttae hydrogen only interacts with 

its nearest neighbours (that is, 6 must be sufficiently large to 

"kill off" the potential before secoW—mmrest neighbours are reached).

Their third and final en#rgy-cban*e a#promimmcma tk* chagg## in

correlation aam to iatr*#uctio* of

hydrogen; its complexity is beyond the .came this discuamiom.

We thus see that they express the <«ij , . *î rgy (&E) of the imter- 

stitial aite aa a aim of three comeribmtiomm, or more apecificelZy, 

eight terma of comparable magnizude \  Cancellatiom dme to iga 

differences playa an important -ole in obtaining the fine! AE **iums; 

hence this model ia senaitively dependmat on accurnt# eveiuation of 

several terras. The largest of these is -e^g/4, so that che accuracy 

of the model depends largely <m the validity of the ti value used, or 

more fundamentally, the physical correctness of the screened Coulomb

v(r) ■ e exp (-Br)/r (1.4)
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potential. Sholl and Smith point out that their value of 8 is largely 

insensitive to the underlying Pd 3S calculation used1,26). They neverthe

less note that the aare&ned proton model formula*, d by Ebisuzaki and 

O'Keeffe*•32  ̂ gives a 6 value about half the size of theirs; it can thus 

be seen that this important parameter needs ro be calculated with great 

caution. The considerable computational effort made by Sholl and Smith 

co determine 8 self-con#latently^'26  ̂ shows they have appreciated this 

point.

Before considering their energy calculations, we first comment on 

their integrated DOS curves1,26). Though the presence of hydrogen 

strongly perturbs the Pd valence band, they do not obtain the flat 

hydrogen-related band found by Gelatt et al for low hydrogen concentration 

(PdH0ios). They attribute the absence of this band to the fact that 

they do not consider hydrogen-hydrogen interactions.

The main thrust of Sholl and Smith's energy calculations is to test 

their theory by the values it gives for AE. It has been well-established 

by NMR , neutron scattering* • and neutron diffraction* • 3S) >1, 36  ̂

experiments that hydrogen occupies the sites in Pd which have octahedral 

symmetry. The only other likely site is that with tetrahedral symmetry1,27); 

hence they calculate AE for both the octahedral and tetrahedral con- 

figuracions, and find (in agreement with experiment.) Ui*t thi fonscr ccsc 

has che lower energy. For a quantitative comparison with experiment, 

they evaluate the heat of formation AH, using the relation:-

6H - AE - 1 E(H2) (1.5)



where Ed);) is given by equation (1.1). Their values for AH fluctuate 

considerably in sign and magnitude, depending on the underlying BS 

calculation used1*2'') and other details1*28). This inaccuracy is 

largely a consequence of cancellation effects in equation (1.5), which 

consists of the difference between two nearly-equal terms.

Swmary; Sttoll a?td Smith (1977-78)

As with Faulkner and Gelatt et a Sholl and Smith have modelled the 

Pd/H system within a BS formalism, which in their case requires the 

use of 14 interpolation parameters. They have also considered electro

static interactions which are sensitively dependent on the screening 

parameter. Their integrated DOS is obtained by a cooputationally- 

intensive statistical approach; it lacks the low-lying hydrogen bonding 

band which characterizes the DOS of Faulkner and Papaconstantopoulos 

et al. Their expression for the heat of formation on addition of 

hydrogen to the Pd lattice is more sophisticated than that of Gelatt 

et al, and correctly predicts occupation of the octahedral interstitial 

sites by hydrogen; however, the corresponding values of the heat of 

formation are highly sensitive to the Bf> calculation used. Another 

limitation of their model is tlat it only holds for low concentrations 

of hydrogen; this is the case for all models of this class. Finally, we 

note that Sholl and Smith model the elactrost.it U  contribution to the 

heat of formation within a nearest-neighbour formulism.
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We finally consider a review by Oates, which provides us with a link 

between some of the electronic models described above and the thermo

dynamics of the Pd/H system. He reviews semiempirical theoretical 

models of the pressure-compos it ion isotherms of Pd/H. These models are 

all based on the following equation:-

chemical potential of hydrogen and sj rndm to zero for small 

x; the first term on the right is the configurational entropy contri

bution i'b is of order unity), and RT is the usual thermal eneigy 

factor. Equation (1.6) is convenient for comparison with experimental 

data, vhich are often expressed as isotherms ot tn versus x. Moat

of the theoretical work on equation (1.6) has to do with modelling 

correctly; this quantity has been experimentally determined as s 

function of x by Kuji et al5'38). This excess potential can be 

analysed in various ways: for example it can be expressed in its 

explicitly thermodynamic form, viz. - V sjj; the experiments of

Kuji et al1 •38) strongly indicate that Sjj, the excess partial entropyf 
is dominated by its configurational part (that is, vibrational and other 

contributions are small). This result, taken in conjunction with 

equation (1.6), would suggest that the total entropy of the Pd/H 

system is essentially ^onfijurational, and will be of use to us in 

Chapter 6.

o E
(1.6)

where is the hydrogen pressure, | is the change

in chemical potential of hydrogen at infinite dilution and is the
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One of the first theoretical applications cf equation (1.6) was that 

of Lacher1« 39),1. -+0)̂  whose model considers interactions between 

dissolved (interstitial) hydrogen atoms only; assuming a constant, 

nearest-neighbour interaction energy this model gives Mg ■ x/b.

However, the experimental results of Kuji et al clearly indicate that 

is strongly nonlinear.

Wagnei‘ was the first to successfully model the nonlinearity of 

4  8y assuming the proton model for PdH^, he expressed as a sum 

of a protonic term (w^) and an electronic term (y^); then by applying 

the Rigid Band Model (RBM) to obtain y®. and assuming a linear decreaci- 

in with x, he obtained the correct form for yj|j. Brodowsky1 '42) 

developed Vagner's model by replacing the linear y^+ term with one 

derived using che Quasi-Chemical Approximation1* (QCA). He evaluated 

the electronic contribution y^ by subtracting y ^  from experimental 

values for u^, and found that the results were in agreement with the 

RBM- In addition he identified the protonic interaction in Lacher's

model) as being a short-range elastic interaction (note that the distance 

between H atoms in PdH^ is roughly 4 & i-27), compared to the inter

atomic separation of the Ha molecule of about 1 %; hence we do not 

expect to have a significant electronic contribution).

Oates points out a number of weaknesses in the Wagner-Brodowsky models: 

firstly, is inadequately described by a nearest-neighbour formalism

(Lacher's approximation MH+™UH”,WHHX^b * the Qca1 * ̂  an<̂  an exact 

calculation using Monte Carlo techniques1 *4 all give phase diagrams 

that disagree with experiment); secondly, dilation of the lattice by
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hydrogen is ignored; thirdly, is assumed constant, though one would 

expect it to change with increasing x (as the H atoms are forced closer 

together); and fourthly, both the protonic model and the RBM are too 

simplistic, as we have seen before.

In addressing some of these problems, the following refinements have 

been made to the Wagner-Brodowsky models:firstly, the other two possible 

(pairwise) interactions have been included, viz. W ^ ^  and 

secondly, these interaction parameters have been given x-dependence; 

and thirdly, lattice-expansion terms have been included, giving rise to 

a near-neigVvuur contribution to yjj (as opposed to solely nearest- 

neighbour term). One such improved model is that formulated by 

Homer and Wagner1*1*6), which is the basis for Monte Carlo calculations 

performed by Dietrich and Wagner11 . These calculations are ia fair

agreement with experimental isotherms, though noticeable shortcomings 

show up in the phase diagram (which is basically a plot of temperature 

versus concentration). The Horner-Wagner model is essentially pheno

menological ; two of its shortcomings are that it lacks configuration- 

independent terms (the existence of which are predicted by first- 

principle calculations), and that it does not take into account change 

of electronic structure as a function of x. It and similar models 

are often able to provide satisfactorv results for low and high x, but 

not for intermediate ranges of concentration. This implies that they 

are essentially one-phase models, and hence not very effective in the 

two-phase region of the Pd/H phase diagram.
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Surrm ary: O a te s  ( 1 9 8 2 )

The models reviewed by Oates are basically phenouenological, relying 

on experimental observations and ideal-case theory. The non-ideal 

(real) behaviour of the Pd/H rystea is approximated by the excess 

chemical potential u^, which has been modelled with varying degrees 

of success; the approach has generally been to reproduce the experimentally- 

known Ug isotherms via semiempirical theories, rather than to provide 

a fundamentally-correct model.

Because it is known that has a significant electronic contribution 

(u“), these theories constitute a link between easily-measurable thermo

dynamic quantities (such as the pressure-composition isotherms) and 

less-accessible electronic features; they hence provide at least a 

qualitative means of testing electronic models (bearing in mind that 

the non-elect nic contributions to yjj are also imperfectly known).

In conclusion, we note firstly that these models are all based on 

nearest- or near-neighbour formalisms (that is they emphasize the 

importance of the local environment of an atom in PdH^); and secondly, 

that they only give accurate results in the one-phase regions of the 

Pd/H system.
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1.3 SUMMARY OF LITERATURE REVIEW AND AIMS OF PRESENT WORK 

The following points have emerged from this reviaw:-

electronic theories for tend either to be too ai.mplist'Co

on the one hand or computationally restrictive on the other;

- the more sophisticated theories are almost invariably locked 

within ordered-oryatal formalisms which are physically incorrect 

for substoichiometric (and hence disordered) systems such as 

PdHx- In particular the concensus of opinion is that such 

formalisms make the correct modelling of disorder aomputationaIly 

impractical;

the importance of nearest neighbours in modelling electronic 

properties has been a recurring theme;

- heats of formation have been theoretically estimated for 

stoichiometric palladium hydride and for palladium containing 

very low concentrations of hydrogen, but not for the wide range 

of concentrations between these limits;

- the multiphase} nature of the Pd/H system is widely accepted; 

however, semiempirical approaches are unable to model, this 

feature with clarity and accuracy; furthermore, multiphase 

modelling is computationally prohibit've from the point of 

view of band structure techniques, while being beyond the 

range of physical applicability in the case of isolated- 

impurity models.
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The aim of the present work is to provide more flexible alternatives 

to the above-mentioned shortcomings of existing models, and thereby 

to investigate the applications which up to now have been computationally 

unfeasible. We proceed as follows: in Chapter 2 we present a formalism 

which approaches a binary solid in a way radically different to hand 

structure techniques; in Chapter 3 we provide links that will allow this 

formalism to make use of existing band structure results for Pd and 

PdHi; then in Chapter 4 the model is applied in detail to PdHx, leading 

up to a on£~pha8& model for the heat of formation of this system; in 

Chapter 5 ve rectify the anticipated shortcomings of the one-phase 

approach by developing a physically more correct Wo-phase model, which 

we again apply to the heat of formation; in Chapter 6 our models are 

further applied, this time in a semi-qualitative manner, to examine 

some important thtizmadyrusnie aspeot& of the Pd/H system; and finally 

in Chapter 7 we sursarize our findings and provide direction for the 

development of our formalism.



- 28 -

APPENDIX I. I

THE CPA AND ATA1-25)

These are two of the principal approximations used in the calculation 

of electronic properties of binary alloys (which are disordered systems). 

They are both derived via a general multiple scattering formalism, 

with configurational averages of physical observables (such as the 

total energy) playing a vital part in the theory. Expressions for 

these averages are most easily obtained using Green's function techniques 

from which the DOS can be obtained directly, by taking the imaginary 

part of the trace of the Green's function matrix.

However, useful results can only be obtained once certain approximations 

are made, the raost important being the "single site" approximation: 

this involves the decoupling of a particular site from its neighbours in 

an average/effective medium. Because this effective medium is described 

by a non-Hermitian Hamiltonirn, the eigenvalues are complex, with the 

imaginary part related to the lifetimes of single-electron states. From 

this effective Hamiltonian one is then able to calculate the self

energy in one of two ways: self-conslatently, which gives the CPA; 

and non-self-consistently, which gives inter alia the ATA.

The CPA is a mean field theory, analogous to the Random Phase Approxi

mation (RPA) which models Coulomb interactions in a many-electron system. 

Although these models are strictly only applicable for limited ranges 

of their characteristic parameters, they are nevertheless often effective
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well outside these strict limits, making them quite versatile approxi

mations. The lack of self-consistency makes the ATA less accurate than 

the CPA; but it gains on the CPA because of its greater simplicity and 

hence lower computational demands. The ATA has another advantage, viz. 

the convenience with which it can be formulated in terms of the 

Muffin-Tin approach to band theory.

We therefore conclude that the CPA and ATA are complementary techniques, 

the choice between them being made on the basis of the accuracy require

ments of a particular problem, the structure of the formalism and the 

computational resources available.
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C H A P T E R  2 

CLUSTBR-8ETBB-LATTICE TECHNIQUE

2.I INTRODUCTION

In this chapter we will present a formalism which is fundamentally 

different in concept to band structure (BS) techniques. The latter 

ar d essentially methods for the solution of the one-electron Scarodinger 

equation vith a periodic potential; chey have proved highly successful 

in obtaining the energy levels and hence Densities of States (DOS) of 

nerfect crystalline solids. This success is due to the physical 

compatibility of the periodic model potential and the potential of the 

actual crystal. However, when we consider a substoichiometric hydride 

such as PdH^, in which one crystal sublattice is mnd&mly occupied, 

wi: realize that the real system can no longer be described in terms 

o: a periodic potential. In physical terms, the solid ceases to bave 

tie long-range order which is a L^adamental requirement for a successful 

band structure calculation. It is still possible to moiel such a 

system within a band structure formalism by using finite decay lengths 

or the lattice wave functions, but the problem becomes physically 

opaque and computationally unwieldy.

It is physically sounder to search for a formalism which suito this 

random, disordered state of affairs rather than to adapt a proven tool 

to tasks unsuited to it. An alternative approach to BS techniques would 

most logically consider che random solid from the viewpoint of local
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environmentf since there is now no motivation for looking at the solid 

as a whole (because of the lack of long-range order). Having taken 

this fundamental conceptual step, it would seem sensible to deal with 

as small a local environment as can give physically meaningful results.

At this point we are encouraged by the continual emphasis in Chapter i 

of the importance of near-neighbour interactions in understanding the 

behaviour of PdH^.

The most immediately obvious idea is to consider a finite aluater of 

atoms in the solid, with some sort of bound "try condition to allow for 

the surrounding atoms. This approach has been applied in practice2,^ , 

ana experience shows tnst it has one major drawback, vie. that targe 

clusters must be considered before physically realistic results are 

obtained.

kzxOtur:: concept that has been implemented approximates the random solid 

by mesas of infinite, branching chains of atoms whi-'.h lack periodicity; 

examples of this technique are the Husumi cacti metheu2,2) and the 

Cayley tree or Bethe lattice approach (see below). Although this is 

not a localized concept, it certainly overcomes the problem of periodicity, 

and has the added advantage of producing analytically soluble models. 

However, this approach has an important limitation, viz. it genet es 

DOS whicn tend to be rather featureless ard hence unhelpful,

In the present work we consider a formalism which is basically a hybrid 

of the above two approaches and which incorporates the best features 

ff both: a cluster of atoms is removed from the solid as in the finite 

cluster approach, but instead of using standard boundary conditions the
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dangling bonds on the surface of the cluster are attached to infinite 

Bethe lattices. This is the Clu3t@r-Beths-~LattiQ& (CBL) approacht 

developed by Yndurain and coworkers2•3)-2.5). it generates the detail 

of che finite cluster approach, but with considerably smaller clusters; 

it also has the important attribute of the Bethe Lattice approach of 

being analytic ally soluble.

The rest of this chapter is divided up as follows: in Section 2.2 we 

define the Bethe Lattice more precisely, and expand briefly upon its 

appeal from a physical point: of view; ia the following three sections 

(2.3 - 2.5) we provide insight into the CBL formalism by considering 

two extreme cases and one intermediate case. More specifically, in 

Section 2.3 we consider a CBL consisting of only one type of atom 

(referred to as the homopolar caae2‘3^), which will reveal the essential 

features of the CBL technique; then in Section 2.4 we examine the 

opposite extreme, viz. a CBL consisting of two atomic species present 

in equal amounts (the heteropolar case2, ); and thirdly in Section 2.5 

we look at the case midway between these extremes (the random <?asf2*5)); 

in the next section of the chapter. Section 2.6, we tie together the 

expresi_ons resulting from the special cases by means of suitable inter

polation formula**2,5 ,̂ leaving us with a highly versatile analytical 

expression for the Local Density of States (LDOS). This will allow us 

to evaluate the LDOS for any ratio of the two types of atom, and thus to 

study non-stoichiometric binary alloys. Finally in Section 2.7 we 

summarize some of the important findings of this chapter.
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2.2 aHE BETHE LATTICE

This consists of an infinite "tree" of atomic chains, branching in such 

a way that no rings of bonds are formed: see Figure 2.1. It can also 

be seen from this figure that the coordination of every atom in the tree 

is constant, allowing us to model local or short-range order to some 

degree. We use Bet'-eLattices in place of more traditional boundary 

conditions for the following three reasons

- firstly, they give rise to Densities of States (DOS) which 

are analytically soluble;

- secondly, they are physically appealing because they 

maintain the connectivity and coordination of the rsal 

system;

- and thirdly, the DOS of the Bethe Lattice is smooth and 

featureless, so that it does not impose upon the electronic 

structure of the cluster itself.
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2.3 FIRST EXTREME CASE: HOHOPOLAR LATTICE

2. 3.1 Basic Topogr'aphy

Wo start by removing a cluster of atoms from the complete lattice 

(represented by the symbols a^, i - 0 _ *  * in Figure 2.2). We then 

attach each "dangling" bond to a Bethe Lattice (represented by in 

Figure 2.3). Now that we have the topography of the homopolar CBL, 

we need suitable mathematical tools to take advantage of it.

2.3.2 Dyson’s Equation and Local Density of States

With reference to Figure 2.2, let us denote the wave function of the

central atom by |aQ>, and that of each atom in near-neighbour shell 

i by | a . let us assume that these wave functions form an ortho

normal basis set {ja^>}. Let H be the Hamiltonian of the system and 

e the associated eigenenergy. We can then define the Green’s function 

to be:-

Thus G(e-K) ■ I and so

cG « I ♦ IfG (2.1)

When 3Kpressed in terms of the set of basis functions {|a.>}, equation 

(2.I) becomes:-

c < i j G I j > * < i ! j + < i | HG | j > ,

t h a t  iss:-

(2.2)
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FiguAe. 2.2 Schematic representation of the environment about atom 
"do" in a homopolar lattice. Atoms within broken curve 
are removed to form a cluster centred on atom "dy" (see
Figure 2.3).
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F^gu/12 Z.Z SchemiCic representation of the environment about atom
'’do" in a homopolat lattice. Atoms wi' in brok^.i curve 
are removed to form a cluster centred on atom "do" (sea
Figure 2 . 3 ) .
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FiguA.iL 2.3 Homopolar cluster with Bethe Lattices ^ attached 
to the dangling bonds.
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which is a form of Dyson18 equation. The Density of States (DOS) is 

given by the following standard expression:-

n(e) = - % I m T r G

<i10 1i> (2.3)

We are now able to give concrete meaning to the useful concept of

Local Density of States (LDC ,). This is the DOS of a particular atom a^, 

and is defined at follows:-

au(c) • - ~  la <i|G|i> (2.4)

It follows from equations (2.3) and (2.4) that:-

n (or DOS) * % n ^  (or LDOS)

In the next section we shall examine the LDOS of the central atom in 

our cluster.

2.3.3 LOOS at the centre of ih& Cluster

2.3.3.I Parametrization

We introduce the following notation to simplify our expressionsz-

{U for i ■ j

V for i f j (nearest neighbours)

0 for i i* j (2nd, 3rd,... neighbours)

Let the coordination of each atom be m (that is, each atom has m nearest

neighbc s).
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2.3.3.2 Lattice Equations; Transfer Matrix Technique

We now apply equation (2.2) to Figure 2.2 to obtain the following 

set of equations:-

(e-U)<a0|G|ao) w 1 * mV <aj|G|ao>,

(c~U)<ai|G|ao> " V <aolG|ac> * (nr 1)V <a2|c|ao>.

( e ~ U ) | G | a o > • V <ai|G|ao> ♦ (nrl)V <43|g|ao>,

(e-U)<a3 |G|ao> » V <az|g|a q> * (orl)V <a#Ig|ao>, (2.5a)

(c-U)<aa |G|a0> * V <an„l|G|a0> + (nr 1)V <aQ+i|G|ao^,

We now make use of the trwiefer matrix technique1' ^  by defining he 

following ratio:-

The transfer matrix T is a useful construct which will allow us to 

model the connection of our finite central cluster to the infinite 

Beths Lattices. We will s<e its purpose once we have substituted 

equation (2.6) into equations (2.5a). We do so bearing in mind that 

for N 2 2 equation (2.6) gives us:-
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Hence equations (2.5a) become:*

H ■ 0 : (c-U)<so|G|ao> • I + mV <*i|c|»o>,

H • I : (e-0)<ai|g |ag> - V <ag|G|ao> ♦ (m-l)V <a2|c|ao>»

M ■ 2 : (e-0)<a2|c|ao> - V <aiIg|ao> ♦ (m-l)VT <a2 |G|ao>,

N « 3 : (K-0)T<a2|c|ag' - V .azlclao* + (m-j)VT̂ <a2|c|a,»
: : (2.3b)

N - n : (a D)T<a^_jG|ao> - V <a^_Jc|ao» + (m-UVT*.# |G|a,>

or more a imply r-

N - 0 ; (c-U)<a0|c|ao> * 1 + mV <a1|Gjao>,

N • I : (E-U)<al|G|ao> * V <ao|c|ao> ♦ (m-I)V <a2 lc|ao>,

H • 2 : (c-U)<a2 |c|ao> • V <ai|c|ao> + (m-!)VT <a2 |c|ag>,

M » 3 : («-0)T « V +

Thus we see that the condition N > 2 in equation (2.6) fur the intro

duction of the transfer matrix T causes the central atom to be equally 

affected by all nearest-neighbour shell* from the third outwards. That 

is, the "true" lattice is removed from tnird-nearest neighbours outwards, 

leaving us w ‘th a cluster including only first-and second-nearest 

neighbours of the central atom.

We next consider the cases N > I and N >  3 in equation (2.6), and 

write down the resulting equations to bring out an important feature 

of the transfer matrix Technique.
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aV

N ■ 0 : 

N * ' : 

H i 2 i

b)

N - 0 

N * I 

N « 2 

H - 3 

N > 4

<aN |G|a0> N > 1 gives:-

(e-U)<»0lG|ao> * 1 ♦ mV <a[|o|ao>.

(c-U)<a1|G|ao> - V <a0 |G|ao> ♦ (m-l)VT <at|G|a0>, 

(e-U)t - V ♦ (b -I)VT2

(2.7a)

N i 3 gives

(c-U)<ao|g |ao> " 1 ♦ mV <si|G|*o>,

kC-U)<ai|G|ag> - V <eolc|*0> * (nr 1)V <a2|G|ao>»

(c-U)<a2 |G|ac> - V -aiIcfao* + (arl)V 'agjclao^,

(e-U)<a3 |G|ao> - V <a2|g|ao> + (m-l)VT <a3|G(ao>.

(e-U)T » V ♦ (tn-l)VT2

(2.7b)

The important feature is that the Bethe Lattice contribution is 

modelled by the same equation for all cluster sizes. Thus the effect 

of increasing the cluster size is reflected in the cluster equations 

only, which is a physically reasonable and indeed pleasing feature.

Specifically, we note that the complexity of the cluster's mathematics 

is increased by one equation ^er addition of one near-neighbour shell; 

else that th* equations are analytically soluble for <ag[C j *Q>, and 

hence the LDOS can be derived analytically provided *’'at T as well as 

the parameters m, U and V are known.
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2.3.3.3 Cluster Size

We should now briefly address the issue of cluster size before proceeding 

with the formalism. Appendix 2.I contains details of a .first-nearest 

neighbour cluster, the salient feature of which is a lack of interesting 

structure. A cluster extending to the second-nearest neighbours of 

the central atom does however produce quite rich structure in the LDOS. 

Going to third-nearest neighbours would create even richer structure, 

but it will be appreciated from Section 2.6.3 and also from later 

chapters that this would lead to s computationally intractable problem.

The spirit of this work has been to derive an analytical LDOS function 

which can be conveniently and rapidly employed in a variety of charge 

and energy calculations, lather than to obtain excellence of detail of 

the LDOS, which has been the emphasis of other workers2,5). We have 

thus settled for the case implied by equation (2.6), viz. a seoondr 

neareat neighbour aluater*,

2.3.3.4 Solution of Transfer Matrix Equation

We now consider the last of equations (2.5c), (3.7a) and (2.7b), viz:-

(e-U)T - V ♦ (a-l)VT2 (2.8)

We note that the equation is quadratic in T; we will discuss the 

choice of the physically-correct root below. The solutions of equation 

(2.8) are:-

T - 2 [jc-U) t /(c-U): - 4(=-l)V2'^ (2.9)
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We recall that the LDOS is given by - l/ir Im <ao |G | a0>. Examining 

equations (2.5) and (2.7) we see that they contain no explicitly 

imaginary terms, but that they uo have T as a variable. Hence we will 

introduce imaginary terms by rewriting equation (2.9) as follows:-

Now the criterion fo choosing the correct root is clarified: we will 

choose the sign of the imaginary part of T such that the LDOS is

'positive*

me are now in a position to crystallize out a physical concept which 

will save us much tedious application of the transfer matrix technique 

in deriving equations for binary and other Cluster-Bethe-Lattices.

2.3.3.5 Physical Insights into Transfer Matrix

Consider the last cluster equation in equations (2.5c):-

(e-U) < '"'io> ■ V <a;|c|aq> * (arl)VT <sz |cjao>

The factor VI is seen to represent the link between the cluster and 

the Bethe Lattice. By considering the corresponding equations in 

equations (2.7a) and (2.7b) we obtain the following genetal equation 

for the outern.fSt shell of a given cluster:-

(2.10)

(e-U) < j G|a o> ■ V <aN _ l lGia0> 1 (m-l)VT <a^|G|ao>
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where N is the number of the outermost shell. We recall that V is 

the interatomic interaction parameter (V - <a^|K|aj> for nearest 

neighbours* V ■ 0 otherwise). Hence we see that VT is a modified 

interaction parameter, representing the interaction between an atom 

on the outer surface of the cluster and its corresponding Bethe Lattice.

For convenience we shall call this parameter so that equation (2.10) 

becomes:-

0 - VT - [(e-U) t iA(m-l)V2 - (e-U)2'j (2.12)

and equation (2.11) becomes:-

(£-U)<aN |c|ao> - V <aN_1|c|ao> + (m-1)^ <a^|c|ao> (2.13)

where N ■ 2 in our case.

Because $ represents the interaction of an entire Bethe Lattice with 

a cluster surface atom, we shall henceforth refer to it as the mean 

field function, that is, the mean external field experienced by the 

surface atom. Figure 2.3 provides a schematic representation of the 

homopolar CBL system.

We are now in a position to evaluate an expression for the LDOS of a 

homopolar lattice within our CBL formalism.
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2.3.3.6 I .DOS

form:-

s the first three

e ISO * ; + mVgl

el8l ■ vg0 + nVg2

M  82 ■ Vg. ♦ n*g2

ei = e -V

(2.14)

where

n  = nr* 1

= <a.|C|ao> 

Solving for go gives:-

80
E i -------SY--------  (2.15)

nV2£1 ei - n4

Equation (2.15) is in the form of a trunaated eonti'iued. fraction.

Notice that it is truncated at the third level of "nesting" by means 

of the mean field function 4* If we were to have one more near-neighbour 

"shell" in our cluster it would also be terminated by $, only one 

levt1 lower down. As can be seen from Appendix 2.1, go for a first- 

nearest neighbour cluster follows the same mathematical trend.

We now evaluate the LDOS (n(e)) at the centre of our cluster; this is 

done by writing 5 - Re* + i Im *, and then evaluating Im go, where go 

is given by equation (2.15). We obtain the following formulae:-
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and

6 ■ E], - mV2g
2 * ^2

r, - nV2 (*i-nt«») 
a2

n2V2 Im »
„2

(ci - n it* *)2 ♦ (n Im ♦J2

" " - i S r r

We note that the only place where la * does not appear in the form 

(Im *)2 is . s a factor in the nu8»rator of n(e) (see equations (2.16))i 

hence our choice of the positive sign in front of the Im * expression. 

We are now able to consider a more cost..ex CBL topology.

.16a)

.16b)

.16c)

.16d)
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2.4 SECOND EXTREME CASE: HETEROPOLAR LATTICE

2. 4.1 Baaio Topography

In this case our lattice consists of two atomic species in equal 

quantities, and with bonds only between unlike atoms. We shall label 

the two species with subscripts a and b. We again remove a cluster 

of atoms from the real lattice, and attach the dangli:\ bonds to Bethe 

Lattices. The latter are represented by the mean fields and 

depending on whether they are linked to a- or b- type atoms respectively 

(cf Figure 2.3). It is clear that there are now two types of cluster 

to consider, viz. atom a at the centre and utom b at the centre.

2.4.2 Mean Field

Bearing in mind the concept of the mean field function for a homopolar 

Bethe Lattice (Section 2.3.3.5) we are now in a position to extend this 

concept to a keteropolar Bethe Lattice fflL). As in the case of the 

heteropolar cluster, each atom in the heteropolar BL is surrounded 

eni-irely by atoms of the other kind, as illustrated in Figure 2.4; 

the coordination o is kept the same for both kinds of atom (m * 4 in 

our figures). We determine the mean field functions by considering 

four "cuttings" from our Bethe Lattice (Figures 2.5), two with a-type 

and two with b-type atoms at the centre.

Consider firstly Figure 2.5a : here we have removed an a-type atom 

and its m neighbouring b-type atoms from the BL. We now proceed to 

reattach this "cutting" to the BL by treating it as a cluster. We 

obtain the following equations:-

(e-U)<aolc|ao> - 1 + mV <bi|G|a0> (2.17a)

(e+tJ)<bl |G)a(}> * V <ao|G|ao> + (m~l)V <a2 |G|a0> (2.17b)
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Ftgu/lCA 2.5a-d Four "cuttings” from heteropolar Bethe Lattice of 
Figure 2.4. Brr indicate the bonds broken
in the "cutti. Figures 2.5a and b: a-type
atom at centre o. .g; Figures 2.5c and d: b-type
atom at centre of cutting.
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We notice that the a2 atoms are outside the "cluster" and hence we can 

proceed along the lines of Section 2.3.3.2 by introducing a suitable 

transfer matrix, viz.:-

':»2|C|«0>
Tb "  < b i | c | . r  " . ' 8 )

so that equation (2.17b) becomes:-

(£+U)<b], |G|ao> * V <ag|G|ao> ♦ (sr-l)VT^ <bilG|ao> (2.17c)

which is an equation in the form of equation (2.11). By comparing equations

(2.17c) and (2.11) we can write * VT^, where *b is the mean 

field function which links a b-type "surface" atom to its BL.

We next consider Figure 2.5b; again an a-type atom is removed from 

the BL, but this time with only (m-1) of its nearest neighbours.

The "reattachment" equations i this case are:-

(c-U)<mo|c|a„) - I + |c|m„> + FT. <ao|C|a,» (2.19a)

(e*U)<bi |g| ao> - V <ao | c | ai)» < im-1)VT. <b| |c|a;» (2.19b)

cbi|c|ao.

These two cases leave us with three equations, which we express in our 

simplified notation (Table 2.1) as follows:-
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Quantity Symbol

nr 1 n

E-U ei

G+0 E2

<bi|G|*0> \
Table 2.1 Abbreviations used in CBL equations.

Matrix element Parameter

+U

<b.|H|b.» ■ -u

both <a.|Hjbj»

and <b^|H|a.> ^0 for

V for near, st neighbours 
nd -rd neighbours

Table 2.2 Parameters for the neter. Car CBL.
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ei g 

E2 *
ao

el *a(, ‘ 1 + nV*'

^ * "*b »b.

'bt a =a0

(2.20)

solving equations (2.20) gives 

V2

where:-

a e2-nba

<bllG|a0>
a <ao | G| aq >

<»2lG l*0>
b ^ b  V <bj [G!ao>

(2.21)

(2.22)

The above process is now repeated for" c u t t i u g s "  with b-type atoms 

at the centre (see Figures 2.5 c and (*). This gives rise to the 

following results:-

where:-

b ei-nb

<b2|c|b|,> 
^ a  " ^ <ai|c|bo>

<ai jc! b‘>>
*b "  ^ b  "  ^  < b ;, |G |b ;;)

1

j

(2.23)

(2.24)

4/ is the mean field function which connects an a-type "surface" 

cluster atom to its BL, and similarly 4^ connects a b-type atom 

to its BL. Now we have seen for the .iomopolar lattice that the 

mean field is independent of the cluster details (Section 2.3.3.2);
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transferring this concept to our heteropolar lattice, we are then able 

to say that:-

+.

This amounts to the physics M y  sensible concept that an a-type 

atom on the surface of a cluster experiences a mean tie Id due to 

its BL, gardless of whether the atom at the centre of the cluster 

is a-type or b-type. Hence we arc left with the fo'lowing pair M  

equations (equations (2.21) and (2.23))i-

The solutions are:-

Te-uT

(2.25)

(2.26)

(2.27)

cf equation (2.12) for the homopolar lattice (a-type atoms)

* - i T R n T  ^.,2)
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From equations (2.27) we see that $a and differ only in the sign 

of the paraatoter U.

2.4.3 LDOS

Consider an infinite heteropotar lattice (cf Figure 2.2), and remove a 

suitable clurter of atoms (cf Figure 2.3). Now "saturate" the "dangling" 

bonds with mean field functions, as in Figure 2.6. Recalling 

equation (2.2), viz.:-

c<i|c |j> <i|N|k»<k|c|j» (2.? '
^  k

and referring to Table 2.2, we are able to write down the following 

cluster equations.*-

(e-U)<ao |G| ao> - 1 ■* mV <bi |G| ao>

(e+U)^bi|G|ao> - V <ao;G :ao> + (m-1)V <a2 lG|ag> ^  (2.28)

(e-U)<a2 |Giao> - V <b]|G|ao> ♦ (o-l)V cb3 lGjao>

that is, 3 equations in 4 unknown matrix elements. So we return to 

the first of equations (2.22): -

<biiGia0>

With reference to equation (2.6) and the arguments that follow it 

(Section 2.3.3.2), we may reasonably extend equation (2.22a) to a 

more general form:-
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Figu/ic 2.6 Heceropolar clueter with B#Ch« Latcic## attached
to the dangling bonds.
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N+l 1
' V 7: jcr.o) ' * * =)

In Che ease of the last of equations (2.28) we have n ■ 2. Thus we 

may rewrite equations (2.28) (in the condensed notation of Table 2.1] 

as:-

' "V*bi 

"  «b. ' "'.o * " " . 2

'1 '.2 " * " V . 2

Solving equations (2,30) for g gives:-

= 1
e i-n$

Then using n^(e) - - ^ Im we obtain tl.i LDOS for the case of 

heteropolar system (with a-type atom at centre of cluster)

n V (e j - nRe»a)
(t j-nReif)̂ ) ̂

n2V2Im»
(ei-nRe^)2 + n2Im$2

1

j

(2.29)

(2.30)

(2.31)

(2.32m)

(2.32b)

(2.32c)



- 6 0 -

£ 1 - E - U 

C 2 - E  + U

For the case of a b-type atom at the centre of the cluster, an 

expression for the LDOS (n^(e)) can be obtained by interchanging 

the symbols a and b. and by replacing U with -U. The total LDOS 

will then be

(2.32d)

The two LDOS are given the same weight in the sura because atoms of 

types a and b occur in equal concentrations. We will now proceed 

to our third and final "special case".
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2.5 INTERMEDIATE CASE: RANDOM LATTICE

2,5.1 Introduction

In this case ve examine a purely random lattice, that is, where an 

a-type atom has the same probability of having an adjacent b-type atom as it 

does of having another a-type atom next to it. It can thus be seen that this 

situation corresponds to the "halfway mark" between the two extreme cases of 

the homopolar and the heteropolar lattices; as a result the coordination 

aumber m will refer to m/2 atcaxs jf the "same" type and m/2 of the "other" 

type. An immediate consequence of having neighbours of different 

cy;es is that a single interatomic energy parameter V is no longer 

sufficient. In fact we now require thme parameters viz. V , V ^ 

and Vbl>: see Table 2.3 for definitions.

Parameter Physical Description

<ajjHia^>, ifj, i.e. a-type atom 
interacting with (neighbouring) a-type atom

V . <a.|H1b .> and <b.lM|a.> i.e. interactionab
between a-type and (neighbouring) b-type 
atom

v,. <b.|H|b.>, ifj, i.e. b-type atom*■ j
interacting with (neighbourly^) b-type atom

Table 2. 3 Parameters for the random and gt-iieral-case CBL.

2.5.2 Mean Field

As in the heteropolar case (Section 2.4.2) we will again take "cuttings" 

from our Bethe Lattice(BL), typical examples of which are illustrated in



Figure-; 2.7. Two of the equations resulting from Figure 2.7a are:-

(c-U)<,o|G|*o> <bi|G|#i» (2.33a)

(c-U)<»i |G|mo> - <*o|C|#o> + (y-l) «az|Gi*q> <bz|C|#o>

(2.33b)

and one of those resulting from Figure 2.7b is:-

(e-U)<ao |G|ao> ™ 1 + (® - 1) <ai |G|ao> + J  ^ab < >̂I lG ! aC> +

+ (2.33c)

Proceeding as in Section 2.4.2 we define the following transfer matrices:"

and:~

|G|«o»
<»Z |G|*o>

<c, |Gl#c>

|G|«0»

for equation <2.33b)

T - --- :— :---  >  for equation (2.33c)

Using these definitions and the abbreviations defined by Table 2.1, 

we rewrite equations (2.33) as follows:-
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a, ' b,

\l/

fig.Z.7m

/ | \
* I X
»a

\ I ' / 'V / 0

\i/'
do

Fig.2.7b

Fig in Z./qfb Two "cuccinga" from a random Bethe Laccice.
Figure 2.7a: j-cype atom with its tour nearest
n e i g h b o u r s ;  F i g u r e  2 . 7 b ;  a - t y p e  p.tom w i t h  t h r e e  

of its iiuarcst ndiKhbours.
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We now define T as folluvt:-

(2.34)

Equation ^2.34) states in effect that an a-type atom on the surface 

of the cluster will experience only one type of interaction (represented 

by Ta) with its attached BL, rather than two separate types (represented 

by Taa and T^^). That is, the interaction experienced will truly be 

a mean field. Combining equations (2.33a) and (2.33c), and using 

equation (2.34) leaves us with the following pair of equations:-

(2.35.)

2 * \b| (2.35b)

We next define a mean interaction parameter V

\  - * i:.. * -.bj

We note chat (him ia a epecial caae (x^ - " 0.3) of

(2.36a)

aa * V a b (2.36b)

where equation (2.36b) is known as the Virtual Crystal Approximation 

(VGA)2,7)*2’6K  We note that in order to have a completely random 

alloy we require equal concentrations of a- and b-type atoms that 

is xa - xb - 0.5. Hence it is physically correct for us to state 

that our me-*n parameter of equation (2.36a) represents the VGA. 

Combining equations (2.35) and (2.36a', leaves us with:-

(2.37)
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We now to ; " equation (2.37) in th# mame form as the

corresponuing eqt.aL "'n# for tht extreme CBL case* (me# equation (2. J)).

we du this by extending oui applir at t ',n of the VGA as follows: -

V = V (2.38a)aa a

From equation (2.36a) we see that equation (2.38a) ia ' ^ood approximation 

provided that:-

' v.b (2.3%)

Sow equation (2.38b) im known ts be a criterion for the #ucce##ful 

aoplicacio^ of the VGA in general^*); we are therefore in a phymically 

ronazateac pomition provided that the condition of equation (2.38b) 

is me: aamuming thia to be the caae, we may proceed to apply the VGA

proviwt: we almo incorporate one further pre-reqiimite of tbi# 

auprutLxmation, viz. :-

(2.39)

Rscaliing that we have choeen " »U and U. - -U, we #ee that our 

paramecera are consistent with the requirements of equation (2.39);

E1 " C; » C

Having met all the necessary requirements we apply the VCA to 

equation (2.37) no obtain the following approximation:-

c + (m-l) (2.40)

the solution to which ia:-
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T  ---- ----  e ± i
3 2(m-l)Va L  8

and so we can write down our mean field function in the usual manner, 

viz.

\   ̂ / * ( " - ' )vj| -

where

%  - 1

By interchanging the sya6>ols a and b we also obtain an expression 

for the mean field experienced by an atom of type b situated on the 

"surface" of the cluster:-

+b " V b  ' R F 1 T  ' 1 T T ^ T T  - (=

where r

^b - 1 C[bb * "

2.5. J LDOS

The cluster equations are more complex for the random alloy than for 

either of the two extreme cases. Because they at a obtained in a very 

natural manner as special cases of the generalized cluster equations 

to be discussed in the next section, we choose not to carry through 

the LDOS formalism in this case.

(2.41)

(2.42a)

(2.36a)

(2.42b)
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2.6 GENERAL CASE: INTERPOLATION BETWEEN SPFUAL CASES

2. S. 2 Baaic Ccnoepta

We are now ready to extend our LDOS expressions thus far obtained to 

a general form which will allow us to do useful calculations on 

metal hydride systems. We will again consider a- and b-type atoms 

(Section 2.4) but now we will allow them to be present in different 

amounts and respectively. Ir will be more convenient to work in 

terms of eonamtrations rather than the absolute numbers N^ and N^; 

hence we define:-

vhere and are the respective concentrations of a- and b-type 

atoms.

An immediate consequence of differing concentrations is a complication 

of our coordination parameter m. Consider for example the case 

xa > XV  We can build up a straightforward heteropolar lattice 

(Section 2.4) until our supply of b-type atoms is exhausted; we 

would then have the problem of incorporating the excess a-type atoms. 

They could be accounted for by building up an a-type homopolar lattice 

(Section 2.3) in addition to the heteropolar one, but in the context of 

an alloy this would clearly be a wrong picture physically. The only



sensible alternative then is to "squeeze" the extra atoms into the 

heteropolar lattice, which would result in a-type atoms having soye 

a-type neighbours. Let k be the average number of these neighbours

of the same type. We ran thus say -

m - k("sarae type") + (m-k]("ether type") (2.44)

On the basis of equation (2.44) we can now introduce another physically- 

meaningful parameter X, defined as follovs:-

X * (probability of "other type" neighbour)

- (probability of "same type" neighbour) 
m-k k

-2k

Table 2.4 reveals the physical significance of equation (2.45).

(2.45)

k X Physical Description

-1 All of neighbours are "same type" i.e. homo- 
polar lattice C'segregaticn")

2 0 Half of neighbours are "same type" ("random
alloy")

0 >1 No "same type" neighbours, i.e. heteropolar 
lattice ("perfect binary alloy")

^able 2.4 Physical significance of the parameter X (equation (2.45)).



2. €. 2 Mean Field

So far we have derived the mean fi-̂ ld functions for the honopolar 

random and heteropolar lattices, represented by equations (2.12), 

(2.42a) and (2.27a) respectively:-

' *a " T R T I T  *  ̂T ^m'-T y  - [2 (2.42a)a

Heteropolar: +, - JTZTT) 1 1 T i T ^ J  /  "  * (e f y )  "  Ce"U)2 (2*2?a)

where - J jv^ + and is the coordination of an a-type atom.

We now require a more general expression for $ , which will reduce 

to equations (2.12), (2.42a) and (2.27a) under the appropriate 

conditions. Recall that the parameter X (equation (2.45); we will 

call it in this context) has the values -!, 0 and +1 for the cases 

of equations (2.12), (2.42a) and (2.27a) respectively (see Table 2.4); 

it wo'«ld thus seem sensible to incorporate into a general formula 

for + . We consider the interpolation formulae used by Falicov and 

Yndurain in their work on binary alloys2,^ .

Firstly, examination of equations (2.12), (2.42a) and (2.27a) reveals

that we need a generalized interaction parameter ^ ( X ^ )  which will

reduce to V , i IV + V and V , for X equal to -1, 0 and +1 aa ' i_ aa abj ab a 1
respectively. A slight modification of the formula used by Falicov 

and Yndurain2* g i v e s :-



- 70 -

(2 .46)

which satisfies the above three conditions.

We can now write down a slightly modifi&j form of Falicov and

Yndurain's formula for $a2,5\  viz.:-

(t ♦ *au)

(2.47#)

This reduces to equation (2. 12) for X - -I, to equation (2.42a) for 

A - 0 and to equation (2.27a) for * +1, as required. By considering 

equation (2.27b) and the "rules" used to obtain it from equation (2.27a) 

(a -» b, +U -» -U) we obtain:-

b in equation (2.46) (remembering that ■ V ^ ) •

2.6.3 LDOS

With reference to Figure 2S  we see that we now have a more complex 

cluster than in both the homopolar and heteropolar cases. This occurs 

because we need to distinguish between two categories of seaond'- 

neareat neighbours, viz. those attached to a fIrst-nearest neighbour 

(1st n.n.) of type a anH those linked to b-type 1st n.n.s. We denote

(c *|\|0) , ,
 ̂ /  (« - \C) - (E*l\|0)'

(2.47b)

where and ^(X^) is obtained by interchanging a and
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\  Z
/ n  z \

F-igaAC 2.I Chemically-disordered ("general-case") cluster with 
Bethe Lattices and attached to the dangling 
bonds.
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atoms in the first category with superscript "V' (Figure 2.8). By 

again applying equations (2.2) and (2.11), and making use of our 

concise notation (Table 2.1), we are left with the following set 

of linear equations:-

"

S .  ' .b'^, * * V b b ^ z

^

"  " \b:., * ("b-')*b%

\b*b. *

^  %  " 'bbS, * ("b-')*b»bz

We have seven equations in seven unknowns (the Green's function

matrix elements). Solving for gives:-

V L  (".'V*Ib
(l " '2

(k.-l)vL
where

and

f 1 - El ci-<na-l)^~ f 1)»b

V b b  ( " b - v ^ i b
e2-(tnb-'I)0b c1“(ma“ l)^a

Again note the continued fraction form of g (equation (2.49)),a0
truncated at the third level of "nesting" by the functions <p and

cf equations (2.15) and (2.31) for the homopolar and heteropolar

(2.48)

(2.49)
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cases respectively.

We now evaluate the LDOS for the generalized second-nearest neighbour

cluster with an a-type atom at the centre, using the formula n^(c) -

- 1/tr I mg . The final result isz- 
ao

o,(.) rTTnT (

A  - Cl -

where in turn:-

O ■ €1

Y - £2 -

a2*82 Y2 ♦ 6Z 1

( V ' ) ' L ' ( " . - \ ) ^ b S

V b b ' b ( " b - v ^ i b ' .

"4 * :b "i * ^

\^bb^b

(

<

.50*)

.50b)

.50c)
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S  ': V + b

: b - V " * b

(2.50d)

It can now be appreciated from a brief study of equations (2.50) that 

the formulae for the LDC. resulting from a third-nearest neighbour 

cluster would be unpractically complicated for use in the very large 

number of charge and energy calculations we wish to perform (see

Section 2.3.3.3).

As with the heteropolar lattice, we must also consider the case of 

a cluster centred on a b-type atom. The resulting LDOS (n^(e)) is 

obtained as before by interchanging the symbols a and b, and by 

replacing +U with -U. The total LDOS thus obtained is given by

where the a- and b-type LDOS (n#(c) and n^(c) respectively) are 

weighted according to the concentrations of the a- and b-type atoms

(x^ and respectively). Equation (2.51) provides the theoretical 

basis for the electronic energy calculations which will constitute 

the essence of this work.

(2.51)
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2.7 SUMMARY OF CHAPTER 2

We have started with the observation that in a non-stoichiometric metal 

hydride the long-range order of a perfect crystalline system is absent 

and hence there is no longer any motivation to analyse the solid as a 

whole (cf band structure techniques). This observation, coupled with 

the emphasis on local environment in Chapter i, has led us to break away 

from band structure techniques. We have started by considering the solid 

from the viewpoint of a finite cluster of atoms; however the literature 

reveals that this approach, using standard boundary conditions at the

surface of the cluster, requires a cluster which is impractically large.

Secondly, we have commented on a quite different approach to disordered 

systems, viz. tne Bethe Lattice method, in which the whole solid is 

represented by an infinite, branching "tree" of atoms with no long-range 

order. The Bethe Lattice model has the following attractive features: 

the connectivity of the solid is maintained; the local order of the 

system is retained through a constant coordination number; and the 

equations for the Local Density of States are analytically soluble. The 

main drawback of the Bethe Lattice method is that it produces rather 

featureless Local Densities of States and so is not very helpful.

In the present work we have employed a formalism which is essentially a 

hybrid of the above two approaches; this is the so-called viu8ter-Bethe- 

Lattice (CBL) model, which consists of a small ctusier cf atoms with the 

surface boundary conditions being replaced by Bethe Lattices attached to

the "dangling bonds" on the surface of the cluster. The consequent
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equations for the Local Density of States (LDOS) are still analytically 

soluble, but now give rise to rich structure in the LDOS; the Cluster- 

Bethe-Lattice approach thus incorporates the best features of its 

constituent models.

The CBL model is formulated in terms of the Green's functions of the 

system because of the convenient mathematical link between these functions 

and the Local Density of States. We have derived expressions for the LDOS 

for three phymically well-defined apfctaZ viz. a Aawpo&ir

a par/dJt binary alloy and a allay, which we have myncbeaized into

a general expression for the LDOS by implementing the interpolation scheme 

of Falicov and Yndurain2•5). This scheme is formulated in terns of a 

physically meaningful order p<2rameter, in such a way that our expression 

for the LDOS reduces to the above three special cases for appropriate 

choices of this parameter.

In the next chapter we will evaluate suitable enei'gy parameters for our 

CBL model, and in Section 4.2 we will write down appropriate formulae for 

the order pcuww&fr and related quantitiea.



77

APPENDIX I

LDOS OF THE HOMOPOLAR "SINGLE SHELL” CLUSTER

Here we consider a Cluster-Bethe-Lattice model for a homopolar lattice, 

consisting of atoms of type a only. Specifically, we choose a cluster 

consisting of a central atom and only one shell of neighbouring atoms, 

that is the cluster only extends to nearest neighbours of the central 

atom. Henc* we see that the Transfer Matrix must remove the lattice 

from second-nearest neighbours outwards so that, in line with 

equation (2.6), we obtain:-

yith reference so equations (2.7a) and Table 2.1 we can then write 

down the following "single shell" cluster equations

(A2.I.2)

(A2.I.3)

Solving equations (A2.I.2) and (A2.1.3) for g gives

(A2.I.4)

e i -n<$>

Comparison w:.th equation (2.15) reveals that the mean field function 

4> truncates the continued fraction (equation(A2.1.4)) one level
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sooner in the present case. We now use equation (A2.1.4) to obtain 

an expression for the LDOS for this cluster, viz.:-

^here:-

- ej - (ei - nRe*)

(A2.!

/e? - 4sV‘
 ^ 5 —

N« cm chac in Chi# ca## w# choose the sign :a froat of la*

so as to keep the LDOS positive.

A compari#on of equation# (AZ. 5) and aquaciona (2.16) r*v#als a 

richer mathematical atructur* tor :n# aeubla shall" clustar model; 

wa therefore expect the lat:er to prov^ae a more detailed p.-Lure 

of the LDOS than the "single shell approach.

.5b)

.5c)
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C H A P T E R  3 

PARAMETRIZATION

3.1 INTRODUCTION

In Chapter 1 we expressed the need for a non-periodic, localized

model for non- jtoichionetri tans ion metal hydrides, in particular

that of palladium. Chapter 2 laid the foundation for just such a

model by developing a formalism for a noc-stoichiometric binary alloy

with a variable order parameter X (see equation (2.45)). In this

chapter we will begin to apply this model to PdH^ by evaluating

physically-sensible expressions for the three interaction parameters

V , V . ana V., and for the energy-level parameter U. Section 2.3.3.! <ia ab bb
and Table 2.2 remind us that these energy parameters are simply 

matrix elements of the Hamiltonian of the system. So we firstly 

want a simple, physically-transparent Hamiltonian which is neverthe

less compatible with standard band structure parametrizations for 

Pd and PdH; and secondly, we require simple approximations (based 

on a semiempirical understanding of the electronic properties of 

transition metals in general) to take advantage of this compatibility.

This chapter it; broken up as follows: in section 3.2 we give thought 

to a suitable Hamiltonian, with particular attention paid to stripping 

away all but the most important terms; Section 3.3 is devoted to a 

review of the classic paper by Slater and Koster concerning the
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parameterization of band structure calculations; this will provide 

sufficient information for the appreciation of Section 3.4, in 

which we derive an approximate expression for the palladiunr 

palladium interaction p# ameter; in Section 3.5 we apply Molecular 

Orbital Theory and information from Section 3.3 to obtain a similar 

formula for the palladiuarhydrogen interaction parameter; Section 3-6 

considers the hydrogen-hydrogen and energy-level parameters; in 

Section 3.7 we choose values from a suitable BS parametrization, 

from which we derive a table of parameters to be used in subsequent 

chapters; and finally Section 3.8 contains a sussarry of the important 

features and results of this chapter.
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3.2 CHOICE OF HAMILTONIAN

Palladium is a transition metal acd kence its valence bands are 

expected to be predominantly d-type. This ia confirmed by BS 

calculations in which we invariably find that the Fermi energy Ep 

falls in an energy range dominated by the d-bands3*1 ;̂ further, 

we have seen already (Sections 1.2.3 and 1.2.4) that the DOS is 

high at Ep, which would not be the case for s- or p-type valence 

bands. Since the electronic properties of a metal are largely 

determined by the nature of its valence bands, we shall assume 

from the outset that the palladium-palladium interaction is purely 

between the d-orbitals. Thus, if we take the a-type atom of 

Chapter 2 to be palladium, we row have:-

(3.1)

This equation is nevertheless only an approximation: we recall from 

Section 1.2.2 the experimental finding that the palladium valence 

bands contain 0.36 electron in the 5s orbitals; thus equation (3.1)

should strictly contain a contribution of the form Vg^. However, 

due to the compatibility of BS calculations performed for both 

4d^5s1 and 4d105s° configurations of palladium (Section 1.2.3), 

we shall assume from here on that equation (3.1) is an adequate 

representation of the palladium-palladium interaction.

The so-called Tight-Binding (TB) model his proved particularly 

effective in describing metals with predominantly d-type valence 

states3 , 35, and hence it seems sensible to choose a TB Hamiltonian
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for our formalism. The TB approach is a particular case of the 

LCAO (Linear Combination of Atomic Orbitals) technique and hence 

we expect these two methods to be compatible; this is important 

because in subsequent sections we shall be applying an LCAO-baaed 

technique to obtain expressions for our interaction parameters.

Our Hamiltonian will have to include terms to account for the 

presence of hydrogen in the palladium lattice; these must be given 

the same Tight-Binding form am the pure metal terms. The b-type 

atoms of Chapter 2 are now taken to be hydrogen, and following 

equation (3.1) we can write:-

(3.2a) 

(3.2b)

It fellows that the pa;^meters describing the energies of the a and b 

states in Chapter 2 are given by:-

Vbb * Vhh

(3.3a)

(3.3b)

We now substitute equaliuus (3.i)-(3.3) into the T5 Hzr-iltcnian 

used by Falicov and Yndurain3,3 ,̂ to obtain a Hamiltonian suitable 

for our purposes:-

H - I U. (3.4)
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where

|i> is the wave function of thr atom at site i;

is either or depending on whether there is a 

palladium or a hydrogen atom at site i; 

the sum over i and j is restricted to nearest neighbours only 

and is either V^, or V^, depending on whether the ith

and atoms are both palladium, both hydrogen, or one 

of each.

The rest of this chapter is concerned with finding expressions

and values for the parameters V\j and tL,



3.3 THE SLATER-KOSTER INTERPOLATION SCHEME

'6.5.1 Introduction

Although band structure (BS) techniques are usually highly accurate, 

they are nevertheless only computationally feasible at points of 

high symmetry in the Brillouin zone (where the secular determinant 

is considerably simplified, leading to degenerate states). To obtain 

a continuous plot of the energy bands of a crystalline solid it is 

therefore necessary to fit curves to the calculated points. This 

could be achieved with least-squares or cubic spline fits, but the 

polynomial coefficients would have no physical significance. In 

their classic paper of 1954, Slater and Koster3,1*̂  introduced an 

interpolation scheme vhich generates coefficients which do have 

physical meaning; this paper is reviewed in some detail in Appendix 1.

Section 3.3.2 is a summary of this review, and will provide the 

reader with an adequate working knowledge of the Slater-Koster (SK) 

scheme and its by-products to appreciate the rest of this chapter.

3. 3. 2 Outline of the Scheme

Slater and Koster start by developing an LCAO (Linear Combination 

of Atomic Orbitals) for a crystalline solid. This approach

assumes that the wave functions of the solid can be built up from 

atomic orbitals; this procedure is carried out in two main steps:

firstly, a given atomic orbital where ^  is a lattice site,

is "delocalized" by summing it over a large number of sites ^ ;
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weighting factors e1^ are used, where ^ is the crystal momentum 

vector. The result is a so-called Bloch sum * jT e1^ 

and secondly, a linear combination of these Bloch sums is taken, 

giving the complete LCAO approximation to the wave function.

The next step is to evaluate the energy matrix element <B7|H|B^,> 

between any two Bloch sums and this turns out to be a linear

combination of a large number of complicated integrals, of the form 

Ttie Hamiltonian H in turn contains a sum of spherically- 

syneaetric potential wells situated on all S atoms of the system; introducing 

orthogonalized atomic orbitals (see Appendix !) we have that <B^|H|p^,>

consists of a linear combination of energy integrals of the following form:-

where H contains terms like v(^-|L„), which is the potential well associated 

with the atom at Thus we see that the right-hand side of equation (3.5)

is a three-centre i n i e g x ^ a l (referring to atoms at jjtj , JjL ,, ^jn)» which the 
authors describe as being computationally intractable, both because of 

their complexity and number.

It is at this point that Slater and Koster introduce their ingenious 

parametrization scheme by simply replacing these integrals with 

disposable constants; in other words, we are provided with an inter- 

pola ion scheme in which the coefficients represent the physically-

significant integrals {E^ ^,) of equation (3.5). The definition of
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,, must be extended to allow explicitly for interactions between 

nearest, second-nearest and third-nearest neighbours; this is done 

for convenience rather than for physical reasons: we require a 

mechanism for generating as many constants (E^ } as we need.

Hence we write:-

t l , V  " E Z,l'(nlj* n 2 j ’ n 3j) (3'6>

where n j, n^j, n^j are integers such that for lattice constant " 

we have ^  * n^a^ ♦ n2ja 4  * n 3jafe» we recall that Ĵj is the vector 

linking s given atom to a particular atom in its j**1 near-neighbour 

shell. It follows immediately that these (jU vectors are determined 

by the crystal structure of the lattice (for example fee in the case 

of palladium metal). Hence the energy matrix elements may finally 

be expressed as:-

| n,j. .,j) (3.7)

where the second summation which would have been present cancels with

the normalization constant, and where we note that can be

expressed as ak^n^j + ak^n^j + ak^n^j. Equation (3.7) contains the essence

of the Slater-Koster (SK) scheme: the energies are known for

certain values of (k^, kir, k^) from BS calculations, the (E^ ) are

the energy parameters to be evaluated, and the factors

(e*a^kxnlj ^yn2j>^zn3j^} enture that the (E^ ^,} will be expressed

in terms of the general vector (k^, ky, k^).
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As mentioned above, the SK scheme allows us to increase the number of 

£,} parameters by considering more distant neighbours. But what 

if we are required to reduce the number of ^,s? This question 

led Slater and Koster to introduce the Two-Centre Approximation (TCA) 

into their scheme; consider equation (3.5) above: for the off- 

diagonal case (J»j ^ the integral on the right-hand side can

belong to one of two classes, either j* , #< ^ „ (three-centre 

integral) or ^  ^ Ij1 * 8j” * 8j or 8j' (fvo'centre integral). By 

orbital-overlap considerations it can be seen that three-centre 

integrals will be smaller than two-centre integrals; the underlying 

assumption of the TCA is that the three-centre integrals are in 

fact

The TCA thus models interatomic interactions in a way similar to that 

employed for diatomic molecules, with atomic-like orbitals space- 

quantized about the interatomic axis consequently, the

associated two-centre energy integrals will be directed along this 

axis. Slater and Koster represent these integrals by the parameters 

(mnl)., where m,n are s,p,d states, A is a,it,6 and i ■ 1,2,3 refers 

to nearest, second-nearest, and third-nearest neighbours respectively. 

The parameters {E. ^,) can be expressed as linear combinations of the 

parameters ((ngkA).} (see Table Al.I for examples), and the appropriate 

substitutions made in equafion (3.7). The most important feature of 

such a substitution is that it almost invariably reduces the number 

o f  fitting parameters, as required (see Appendix 1 for details).
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Once the number of parameters equals the number of energy states which 

ere to be fitted, equations like equation (3.7) can be solved for these 

energy parameters; although they will have some physical significance, 

we note that they are by no means unique, depending as they do on the 

number of states fitted as well as on the BS technique used to generate 

these states.

m  subsequent sections we shall make use of the SK interpolation scheme, 

and in particular the Two-Centre Approximation, to obtain suitable 

interaction parameters for our model.
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3.4 THE PALLADIUM-PALLADIUM INTERACTION PARAMETER (VdA)

3.4.1 Introduction

We are now in a position to evaluate an expression for V^, using the

same approach as Lovther3, ̂  ; we first take up the analysis of Heine3"^?' 57ff

to obtain an approximate link between the two-centre integral (ddo)

and the width of the d bands of transition metals; and secondly, we

refer back to Chapter 2 to find an expression for the width of the

palladium d band in terms of our parameter V^. We are finally left

with an approximate expression for in terms of the single tvo-centre

integral (ddo), which we shall choose from a suitable BS parametrization

in Section 3.7.

3. 4.2 Link batmen T m - C m t m  Integrals and Band Widths

Heine3" 58 and Papaconstantopoulos at al3" ^  remind us that the d 

bands of a transition metal cover a relatively narrow energy range, 

and that they overlap the broad s and p bands. The orbitals associated 

with the d bands have the expected TB structure, whereas those associated 

with the s and p bands have plane wave (PW) form (as expected of 

broad bands). The radial part of the Schrodinger equation for the d 

orbitals contains a repulsive c e n r r i f b a r r i e r  which tends to 

confine d electrons within their host atoms (hence the TB concept), 

but they can tunnel out. Such tunnelling causes the d states to 

reronate with plane wave states of similar energy; an interaction 

of this type can be approached from the viewpoint of resonance theory, 

from which one may extract an approximate expression related to the 

width of the d bands; this is given by3•^ -



j;(K^r)V(r)*(r)rZdr-j
2

(3.8 )

where

Kq • /JfF , Eo being the energy at resonance and hence at 

the centre of the resonance band; 

s is the atomic radius;

jg(K^r) is the spherical Bessel function of order 2 and 

represents a component of a plane wave interacting via 

the potential V(r) with the radial part #(r). of the d orbital. 

More precisely, #<>} - u(r,Ep), where u(r,B) is the radial 

wave function for any energy E.

Thus W models the interaction between TB and PV orbitals; in terms 

of the uncertainty principle we have that tl/W is the time required 

for a d electron to escape into the PM states outside the atom. By 

expanding r) to lowest order in KQr (that is, taking

j2(K^r) * (KQr)2/15) equation (3.8) becows:-

V - 2K^ M2/225 (3.9a)

Vfrl̂ Crlr̂ dr (3.9b)

Using another lowest-order expansion, he well-known expression for the 

radial wave function3 , reduces to:-
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We muse bear in mind that equation (3.10) refers to the d states only.

By applying suitable boundary conditions to equa.ion (3.10) we are

able to find expressions for both the lowest energy (Em£ ) and

highest energy (E ) of the d bands; 6 * E . - Z . can then be max max ntin
taken as an approximate measure of the width of the d bands of a 

transition metal. We eventually obtain:-

a " (3.ii)

We notice that dependence on the resonance energy has been 

cancelled out in the derivation of equation (3.11); & is thus seen

to depend only on atomic orbitals, the atomic potential and the 

-Comic radius. That is, L is essentially an intra-atomic parameter; 

this would appear to be physically incorrect, since the band width 

is generally understood to be an interatomic effect. To resolve this 

paradox we consider an integral cf the two-centre type (cf Section 3.3.2) 

between a pair of d orbitals and ,, located on atoms at Jlj and jjt̂ , 

respect.vely:-

The major contribution to this integral is not from the region midway 

and would bo the case for s-p bonding), fh# reason

being that d orbitals peak vary close to their parent atoms (for 

example at about 9% of the interatomic distance in copper). Hence 

the dominant contribution to the integral in equation (3.12) comes 

from deep inside the atom at fL ,, where the effects of the d orbital 

located at are hardly felt at all. We are thus left with an 

interatoirie integral which nevertheless has essentially intra-atomic 

features, and the paradox is at least qualitatively resolved.
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Thus a feature emphasized by this analysis is -he essentially localized 

nature of transition metal d orbitals, which confirms our findings 

concerning the imoortance of near-neighbour atoms (Section 1.2.8).

With the basic physical concepts of the width 6 of the i band 

established, we now seek to combine equation (3.11) for A with the 

two-centre approach of equation (3.12). Because the biggest contribution 

to bonds between like orbitals is due to o-overlap, we sake the rough 

assumption that the d-d interaction can be expressed in terms of the 

single two-centre integral (ddo). Because a d orbital has at most 

four lobes, we can only have about four ddo bonds per transition metal 

atom. With reference to equations (3.8), (3.9a and b), and (3.12) we 

see that M corresponds to a fwo-cantra integral; if we associate M with 

four ddo bonds per atom then A « |M2 consists roughly of )(*)% ■ 8 (ddo) 

integrals, so that:-

A ~ -8(ddo) (3.

where the sinus sign is taken because (ddo) is expected to be negative.

We now wish to test the validity of this highly intuitive derivation. 

Using a more rigorous approach, Heine obtains the following expression:-

(d,iu) - -6MZ/5R' (3.

where R is the interatomic spacing; for nearest neighbours in the fee 

structure, Heine gives the relation s - 0.5526R so that equation (3.14a) 

becomes:-

13)

14a)

(ddo) = -1.2(0.5526)5 (3.146)
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Substituting equation (3. I4b) into equation (3.11) gives us:-

6 - |!;2/s5 * ----- ------ - (ddo) 3 -8. I (ddo) (
1.2 (0.5526)5

leaving ur with the remarkable reeult that equation (3.13) i# 

accurate to about 1%, and therefore quite acceptable for our purpose*.

3. 4. 3 Link b-etuteen our d Band ^idth and

We wish to use one of our LDOS expressions in Chapter 2 to obtain an 

expression for the d band width in terms of V^. For this purpose 

we consider pure palladium metal, that is, the case of a homopolar 

lattice. The LDOS for such a lattice is given by equations (2.16), 

into which we substitute for V and for II. We notice that 

the numerator n of this LDOS expression is proportional to the 

quantity ?, which in turn is proportional to I»4>, where:-

" 27W  / - "d)' (

Thus we have:-

(LDOS of d-k#ld) « /^(rDv' - (t - U.)^ (

It follow, from equation (3.16b) that th, maximum *nar*y of th# d band, 

i, given by " Dy - 2^m-l („,uming V < 0), and that

the minimum energy, i» given by t + 2/m-1 V . Hence

the bend width i» A » c - c . . giving u, the reeult:-

.15)

6e)

. 16b)



A - V

We now combine equations (3.13) and (3.1?) to give us a formula for 

Vdd in terms of the two-centre integral (ddo). The final result is:

(3.17)

(3.18)

We proceed now Co evaluate Che pa 1ladiuarhydrogen interaction parameter
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3.5 THE PALLADIUM-HYDROGEN INTERACTION PARAMETER ( V ^ )

3.5.2 Introduatt on

We shall approach Che evaluation of the parameter V from the localized 

viewpoint of Molecular Orbital Theory (MOT), again following Lowther 

(1982)3* we recall the importance of local environment in the Pd/H 

system, and hence feel justified in using MOT. We found in Section

1.2.7 that a hydrogen atom occupies the octahedral interstitial site 

in palladium; this results in PdH^ having the NaC£ structure, that is 

two fee lattices superimposed on each other. We thus see that the 

hydrogen and palladium sites are symmetrically identical, so that we 

can correctly think of a palladium atom as being in an octahedral 

"interstitial site" of the hydrogen lattice. This viewpoint will be 

convenient for the application of MOT, where it is ouch simpler to 

have a metal central atom survot 4rd by hydrogen ligands than vice versa. 

The MOT approach will require us to represent these hydrogen ligands 

by means of a "molecular" orbital, this being an appropriate linear 

combination of the hydrogen s states on the six sites surrounding the 

palladium atom (see Figure 3.1). The assumption is that all six 

octahedral sites are occupied, corresponding to PdH% (cf our evaluation 

of the parameter V ^ ,  which was done on the basis of pure Pd metal).

3.5.2 Intuitive Approach

We began with an intuitive approach to this MOT calculation; firstly, 

we assume that the palladium atoms has only d-type valence orbitals, 

in keeping with our choice of Hamiltonian in Section 3.2. There are
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t

S

Kigu/lC 3.J Numbering of hydrogen atoms ocfahedrally coordinated 
about a palladium atom (after Lowther3*5^ ? 900).



- 98 -

five d orbitals, and from Figure 3.2 we see that geometrically they 

fall into two <._stinct classes: the xy, yz, zx orbitals have nodes 

in the direction of the Cartesian axes, whereas the 3z2-r2, x2-y2 

orbitals have lobes in the direction of the axes. Now we see from 

Figure 3.1 tnat the hydrogen atoms are situated on the axes in our 

case of octahedral symmetry; hence we do not expect the first class 

of orbitals (d^) to interact with the hydrogen s states at all, whereas 

the second class of orbitals (d^) should interact with these s states, 

presumably forming hybrid orbitals. These observations can be proved 

rigorously using Group Theory, and we can thus exclude the three d^ ̂  

orbitals from our discussion; further, the two d^ orbitals can be shown 

to be energetically degenerate (a group-theoretical consequence of 

their belonging to the same symmetry class), sc that our picture of 

the d orbitals is greatly simplified.

Superimposing a orbital from Figure 3.2 onto Figure 3.1 immediately 

reveals a directed bonding structure, such as one would expect to 

find in a diatomic molecule for instance; hence ve immediately see 

the possibility of using the two-centre approximation discussed in 

Section 3.3.2. Ignoring the (sdw) and (sdd) integrals (cf our neglect 

of the (dd™) and (dd6) integrals in Section 3.4.2), we are left with 

the single integral (sdo) with which we wish to model the palladiunr 

hydrogen Interaction V^.

To obtain an approximate expression tor V^, we must appreciate that 

the simple Hamiltonian we have chosen (equation (3.4)) requires us to 

approximate the sum of orbitals on the palladium atom by a single 

wave function |i>; because the form given to this wavs function in 

equation (3.4) is identical to that ol the hydrogen orbital, we 

conclude that an s-like composite d orbital is implied by this 

formalism. Such an approximation can be intuitively seen to be nor 

too bad by superimposing the various d orbitals of Figure 3.2, noting



FiguAC 3.Z Schematic r#pre#aacaCio= of ch* five a orbital# of 
tran.iicion metal (after Watanjbe^' ^P- .
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that d lobes will "fill in" d_ nodes, and vice versa. We can thus e t2
express in terms of an s-like orbital on palladium nteracting

with an s-like hydrogen molecular orbital, and the detailed analysis 

to follow will reveal that this is sufficient for obtaining a link 

between V^d and (sdo), as required.

5 ).J Rigorous Approach

We recall from the previous section that only the orbitals of 

palladium interact with the adjacent hydrogen s orbitals for the 

case of octahedral symmetry in PdH*. W' also commented on the 

degeneracy of the dg orbitals and the possibility of describing their 

interaction with the nearest-neighbour hydrogen orbitals in terms of 

the single two-centre integral (sdo); and lastly we made some comments 

regarding the s-like nature of our single Hamiltonian, which will 

allow us to link with (sdo).

We now quantify these ideas by considering three different hydrogen 

molecular orbitals, uctahedrally coordinated about a central palladium 

atom; the first two have symaetries compatible with d^ orbitals on the 

palladium atom, and the symmetry of the third is compatible with an 

s-like palladium orbital. In each case we evaluate the energy matrix 

element between the particular palladium and molecular orbitals, using 

the Slater-Koster scheme to express these in terms of two-centre 

integrals. The first two matrix elements will be identical, as 

expected of degenerate states; if we assume that these are also degenerate 

with the third matrix element then our expression for follows 

immediately.

The following three equations describe the above-mentioned hydrogen 

molecular orbitals, and are taken from work by Watani.be3,
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*x2_y2 • I (»1 ~ *2 'l' *4 * *5) (3.19a)

•#3z?„t2 * (* Si " 82 + 2S3 - Si, - S5 + 2s6) (3.19b)

*, + + + + 's) (3 19c)

where the hydrogen s orbitals are as in Figure 3.1. To construct 

energy matrix elements using equations (3.19a-c) we need the following 

SK parameters, taken from Table Al.1:~

e x2_,,2 a ■ i A  (^2-m2) (sdo) (3.20a)

EJz2-r2 s. " [”2 ” 1 * m2)J (sdo) (3.20b)

E - (sso) (3.20c)
" "i

With reference to equations (3.19a-c), (3.20a-c) and Figure 3.1 

we obtain Table 3.1

s. (l.B.n) Ex2-y2,»i E3z2-r2.»^

81 (1.0.0) i^fsdo) -1(ado)

»2 (0.1.0) -|/3(«do) -j(sdo)

"3 (0.0.1) 0 (sdo)

«4 (-1.0.0) |/3(«do) -|(sdo)

*5 (0.-I.0) -|/3(»do) -!(sdo)

"6 (0.0.-1) 0 (sdo)

Table 3.1 Slater-Koster parameters for the six 

hydrogen s orbitals.

L< the coefficients of the s orbitals in equations (3. 19) be 

represented by the set (a^(& )), where v - x2-y2, 3z2-r2.s. It
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*^2 2 - I (»1 - »2 * ll, - 15) (3.19*)

+ ] , 2 _ r 2 " / Y ^  (" H  ' 12 + ^13 - lit - 15 + Zie) (3.19b)

^  (n  + 12 + 13 * 11, + i( ^ is) (3.19c)

where the hydrogen s orbitals s. are as in Figure 3.1. To construct 

energy matrix elements using equations (3.19a-c) we need the following 

SK parameters, taken fron Table 41.1

E^2_y2 , ' | /5 (^-«:)(id5) (3.20m)

"3,:-,z.ii " ^  - I O' * ^)](idc) (3 .2 0 b )

E - (ssa) (3.20c). 1 .

With reference to equations (3.19a-c), (3.20a-c) and Figure 3.1 

we obtain Table 3.1:-

(z, n)

n (1.0.0) |/3(ldo) -|(ido)

.2 (0.1.0) -l/Z(.do) -|(.do)

.3 (0,0,!) 0 (idc)

(-1.0.0) l^ddo) -|(ido)

15 (0.-I.0) -l-'T(idc) -|(ido)

(0.0.-1) 0 (ido)

Table 3.1 Slater-Koster parameters for the six 

hydrogen s orbitals.

Let the coefficients of the s orbitals s . in equations (3.19) be 

represented by the set {a ^ ^ ) ), where v - x2-y2, 3z2~r2,s. It



'C'-:y4

- 102 -

Chen follows from the SK scheme v at the energy matrix elements are 

given by:-

where |v> refers to the palladium atomic orbital and ] i|#y> to the 

corresponding hydrogen molecular orbital.

Using equations (3.19a and b) and Table 3.1 we find that equation (3.21) 

gives us:-

<x2-y2 |H|*x2„y2 > * <2z2-r2 SHi#3jE2.r2> * ^( sd o) (3

where we have the expected degeneracy ot the two dg orbitals, and by 

making use of equations (3. 19c) and (3.20c) in equation (3.21) we 

obtain:-

<s|H|tl>a > - /6{ssa) (3

Because our Hamiltonian H is s-lika (see Section 3.5.2) we expect 

equation (3.23a) to give us the best physical picture of the palladium-

hydrt en interaction parameter V^. In deriving equation (3.23a) 

from equation (3.21) we have the following intermediate steps.-

.21)

.22)

23a)
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6
s|HU > - I a. (* ) (sso)

9 i-l 1 8
, 6

m /T I l.(sso) 
i-l

- V^(S80)

The second-last step indicates that it is quite reasonable to

approximate by (sso), so that equation (I.23a) becomes:-

The Zinal step is to assume that the matrix element of equation (3.23b) 

is equal to those of equation (3.22); this is physically reasonable 

since the s- like palladium wave function |s> is supposed to approximate 

khe behaviour of the more complicated d orbitals which are present

in the real metal. Hence combining equations (3.22) and (3.23b) 

we finally obtain:-

.23b)

.24)

W« n.ac m.k. mom. cimmamt# on th. par***t«r# and 0.
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3.6 THE HYCROGEN-HYDROGEN AND ENERGY-LEVt ■ :■ * IETERS (V, , AND u)  —   nil--

Racher than derive independent expressions for these parameters, ve 

shall instead take them from the BS parametrization vhich ve decide 

to use for evaluating and (via equations (3.18) and (3.24) 

respectively). We can however make certain qualitati observations 

regarding and U, and these will in fact assist us in choosing 

a suitable BS parametrization.

Firstly, we recall our comments ot Section 1.2.8 concerning the 

hydfogen-hydrogen electronic interaction, namely that we expect it 

to be small (because the hydrogen-hydrogen separation in octahedral 

interstitial sites of the palladium lattice is roughly 4 X, as 
compared to the interatomic separation of roughly 1 X in the hydrogen 

molecule). Thus we wish to find a BS parametrization for which (sso) 

is small or ?ero for the hydrogen-hydrogen interaction.

Secondly, we refer to tn» photoelectron spectroscopy experiments 

performed by Schlapbach and Burger3* o n  PdHo.g; they find a band at

about 8 eV (»0.6 8yd) below E^, which they associate with hydrogen- 

induced states. We know that Ep is in the d bands (Section 3.2), in 

fact near the top of them (because of the 4d9,64 configuraeion); also 

that th d bands are roughly 5 eV wide (Sections 1.2.3 and 1.2.4).

Hence we might expect the centre of gravity ut lueae bauds to be 

roughly 2 eV below Ep, giving a separation between the d and hydrogen- 

induced bands of approximately 6 eV (=0.44 Ryd). We recall that the 

separation between the centres of gravity of the d and hydrogen- 

related bauds is simply 2U (where U - i I I )• Thus we are looking 

for a parameter U of the order of 3 eV (=0.22 Ryd).
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Reference Mueller et al (I970)3"9) Switendick (1972)3'l0)

Electronic configuration 4d95e'
(HFS)*

4d °5e»
(HFS)*

4d105»°
(HF)**

4d95s3

(ddo) -0.0427 -0.0447 -0.0497 -0.0484*

% 0.2484 0.3062 0.3972 0.4346

0.2458 0.3064 0.3920 0.3117

Table 3.2 Slater-Koster parameters for palladium (in Ryd) 

*Hartree-Fock-Slater 

**Hartree-Fock

Reference Faulkner (1976)3* u) Switendick (I972)3'ig) Papaconstantopoulos 
et al (1978b)3-

(ddo) 494 -0.04301" -0.0401*

(sdo) u.1200 0.1141 0.0005

(sso) 0.0 -0.0234 0.0208

Ud 1.3700 0.4557 0.3538

Udt i.";oo 0.3661 0.3883

Uh 1.00 0.7482 1.0839

Table 3.3 Slater-Koster parameters for palladium hydride (in Ryd)

^Taking (ddo) -
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3.7 EVALUATION OF PARAMETERS

We again follow Lowther3 , in our choice of Slater-Koster (SK) parameters; 

Tables 3.2 and 3.3 are taken from his Tables 1 and 2.

We see immediately from Table 3.3 that Faulkner's parametrization

satisfies the semi-quantitative requirements of Section 3.6; firstly,

the hydrogen-hydrogen interaction parameter (sso) is zero; secondly,

the centroid of the hydrogen band, is lower in energy than that of

the d bands; and thirdly, we have U ■ Hu^-U^l - 11 1.37-1.001 Ryd - 0.185 Ryd

(cf our rough prediction of U = 0.22 Ryd). Hence we will use Faulkner’s

values as the basis of our parameter sets. We notice that his values

imply degeneracy of the d^ and d t states; though we would not expect to

find this degeneracy in the real system, neither do we expect the large

splitting of states implied by Switendick’s parameters (Table 3.3).

The calculations of Papaconstantopoulos et al (Table 3.3) indicate only

a small separation between dg and dc states (roughly 0.035 Ryd, less

than a tenth of Faulkner's hydrogen-palladium band separation of

20 - 0.37 Ryd). Furthermore, Mueller’s results for palladium (Table 3.2)

show a negligible difference between the parameters and 0^ for the
e t

pure metal. Hence we shall make the assumption 0. ■ 0, ■ U. .
4 4. ""c

Wc recall from Section 3.4 that we need the integral (ddo) for the 

case of pure palladium metal, and from Section 3.5 that (sdo) is needed 

for the stoichiometric hydride. Thus Faulkner's value fo- (ddo) in 

Table 3.3 is not strictly appropriate; however, its small deviation 

from the values for pure palladium metal (Table 3.2) suggests that



we can use Faulkner's results for all our parameters, thus retaining 

a certain consistency and simplicity in our approach.

Because palladium metal has the fee structure, the coordination of 

an atom in the Pd lattice is given by m - 12. Hence, using Table 3.3 

and equation (3.18), we obtain an approximate numerical value for 

our palladiuo-palladium interaction parameter, viz;-

Vdd ~ '0-0298 (3.25)

Similarly we obtain from equation (3.24) our pallsuiua-hydrogen 

interaction parameter, viz:-

Vhd 3 *0'08485 Ryd (3.26)

where the minus sign has been introduced on the physically-intuitive 

basis of an attractive palladium-hydrogen interaction. Table 3.4 contains 

what shall henceforth be referred to j»« "parameter set (a.l)" or 

"pra*set (a.1)":-

Parameter Value (Ryd)

vdd -0.0296

Vhd -0.08485

Vhh 0.0

ud ™ +u >0. 185

"h - -u...
-0.185

Table 3.4 Parameter set (a.l).
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Set Vhd Subset vhh

a. 1 0.0

V a.2 ♦V/IO.O

a. 3 - v / i o o

b.l 0.0

b Si v b.2 ♦V/IO.O

b.3 -V/IO.O

c. 1 0.0

v/Si c. 2 ♦V/IO.O

c. 3 - v / i o . o

V - -0.08485 Ryd

Table 3.5 Parameter sets used for present calculations. The

choice of the factor /2 follows from equation (3.24)

The non-zero values have been chosen arbitrarily 

Vdd 21 -0.0298 Ryd and U ■ 0.185 Ryd are used in all 

cases.



In the following chapters we shall keep V ^ and U constant, as in 

Table 3.4; we are hence left with only two parameters to vary, viz. those 

associated with the palladium-hydrogen interaction (V^) and the 

hydrogen-hydrogen interaction ( V ^ ) . Because of the form of equation

(3.24), we arbitrarily choose to vary Vhd by the factor /2; and 

because is small, we i rbitrarily let it take on the values "V^/IO,

0.0, * w^ere is only allowed the value given it in

parameter set (a.l) (Table 3.4). We now use these arbitrary choices 

to generate the rest of the parameter sets to be employed in the 

present work; the sets chosen are displayed in Table 3.5.

We emphasize the fact that we are dealing with an underlying model with only 

two variable interaction parameters; in fact, since v% shall focus most 

of our attention on the case ■ 0.0 (implied by Faulkner), we are 

essentially left with an electronic model with only one interaction parameter.
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3.8 SUMMARY Of CHAPTER 3 

In this chapter we have:-

- chosen a simple Tight-Binding (TB) Hamiltonian which

is compatible with both the localized nature of the Pd/H 

system (with particular reference to the d orbitals) and 

with the Slater-Koster (SK) interpolation scheme;

- review the key features of the SK scheme, with a particular 

emphasis on the physically transparent and highly useful two- 

centre approximation;

- combined TB and band width arguments with the SK two-centre 

approximation to obtain an expression for the palladium- 

palladium interaction parameter (equation <3.18));

- applied Molecular Orbital Theory azid the two-centre approxi

mation to derive a formula for the palladium-hydrogen inter

action parameter V (equation (3.24));

- applied intuitive considerations of the hydrogen molacule 

and used the photoelectron spectroscopy experiments of 

Sc.ilapbach and Burger3,8  ̂ to provide ssou-quantitative 

guidelines for choosing the hydrogen-hy- ■ interaction 

parameter and the hydrogen-band-pa1iadium-band separation 

2U respectively;

tabulated the SK parametrirations of various BS calculations 

in terms of two-centre integrals, and found Faulkner's 

values3,11) to be most consistent with both experiment and 

qualitative considerations;



substituted Faulkner's parameters into equations (3.18) and

(3.24) to generate our parameter set (a.l) (Table 3.4), and 

hence, by sensible though arbitrary changes, tabulated a 

number of other parameter sets to be used in subsequent 

chapters (Table 3.5);

- noted that we are essentially left with a single-parameter 

electronic model, the parameter being V^.

We are now in a posiv'on to make a detailed application of our CBL
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C H A P T E R  4 

ONE-PHASE MODEL

4.1 INTRODUCTION

In this chapter we apply our formalism for the LOOS of a disordered 

binary system (Chapter 2) to making use of the parameters obtained

in Chapter 3. We provide plots of LDOS versus energy for various 

hydrogen concentrations and make semi-qualitative observations and 

comparisons to provide insight into the useful Matures of our CBL 

model. These LDOS plots have the Fermi energies (E^) marked on them, 

and we proceed to show how is calculated. Once is known we 

are able to evaluate the toiai and constituent charges of the system 

as functions of x, and plots of both Ê , and charge versus x provide 

further insight into our model. We t en proceed to evaluate the total 

electronic energy (E**t)„ noting that ■t has no physical significance 

as an absolute number because the parameter U results in our LDOS 

having an arbitrary zero of energy. lence *n implementing our E®*c 

calculations we will always work w i h e  following relative quantity:-

fO*tot . t

This is the change in electronic y on formation of PdH^, which

does have physical significance, bcin-< an important term in our 

expression for the heat of formati m  (AH) of PdH^. Because AH is 

known as a function of x from experiment, we have investigated this 

quantity using our theory; we find that our ZsH values are in remarkably



- 114-

good agreement with experiment over the range 0.5 s x < I, but that 

they disagree for 0 < x < 0.5. Part of the reason for this disagreement 

is clear from numerical considerations; we also comment that although 

E®oC<x) is of the order of 1.5 Ryd the quantity AH is very small by 

comparison (t -0.02 Ryd), so that the calculation of AH is highly 

sensitive to cancellation effects (a problem common to such calculations: 

see for example Section 1.2.7). However the magnitude of the discrepancies 

for low x indicates that there might also be problems in the physics 

for this range of x values. We obtain an important clue from a somewhat 

unexpected source viz. the thermodynamics of the system. We recall 

from Section 1.2.4 that for x & 0.6 PdH^ consists of only one phase 

(the 8-phase), and consequently we infer that our present model provides 

a good description of the high oncentration, one-phase hydride, though 

it fails for lower x. Hence we choose retrospectively to designate the 

title "One-Phase Model" to the present formalism, bearing in mind that 

we shall extend this to obtain a "Two-Phase Model" in the next chapter.

The contents jf the present chapter are as follows:-

Section 4.2 deals with our pararaetrization of the PdH^ system 

from the viewpoint of c'orrelation (cf electronic parametrization 

of Chapter 3); we find that our coordination and order parameters 

can all be expressed in terms of the single parameuet a , 8ivir.g

rise to a "quasi-local" appro * h to the Pd/H system;

Section 4.3 provides us with expressions for the LDOS of PdH^

in terms of the formalism of Chapter 2 and in terms of the 

parametrizations of Chapter 3 and Section 4.2. These are
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followed by plots of LDOS versus energy for different x values 

and parameter sets, with accompanying comments on important 

features;

Section 4.4 furnishes us with equations for the evaluation 

of the Fermi erwvgy and charges of the system; plots of 

these quantities versus x follow, and jome comments and 

comparisons are made;

In Section 4.5 we firstly provide expressions for the 

numerical evaluation of E*^t(x), along with suitable plots; 

vs implement our knowledge of (%) by next deriving an 

expression for the heat of formation &H, which we proceed 

to plot as a function of x for a variety of parameter sets.

We then compare our curves with experimental i— suits;

And finally in Section 4.6 we summarize the important 

findings of this chapter.



4.2 COORDINATION AND CORRELATION PARAMETERS

4.2.1 "Quast-Local" Approach

We recall from Section 1.2.7 chat it is generally accepted that 

hydrogen atoms occupy the octahedral interstitial sites of the fee 

palladia lattice. Because there is only one octahedral interstitial 

site per palladium atom, we have that the probability of such a site 

being occupied in PdHi is unity; hence the average site occupation 

probability for PdH^ is simply given by x. For computational simplicity 

we shall use this average occupation probability when considering 

the local environment, so that we are left with a "quasi-local" 

rather than strictly local model.

4. 2. 2 Coordination Parameters

We now consider the parameters m and k, w h e n  m is the coordination 

of a given atom and k is the number of neighbours of the same type 

as the central atom (Section 2.6.I). The parameter m is strictly 

the number of nearest neighbours only (Section 2.6.1); this concept 

works in Chapter 2 because there we consider a substitutional alloy, 

which allows us the possibility of neighbouring atoms of both kinds. 

However, PdH^ is an interstitial alloy, which has near-neighbour 

shells of alternating atomic type; for example, in Pan* a palladium 

atom has six nearest-neignbour hydrogens, twelve second-nearest 

neighbour palladiums and so on. Hence we adapt the original substitutional 

formalism by defining our interstitial m value as the number of nearest- 

2 nd second-nearest neighbour atoms; it follows that- k in this inter- 

st'tial scheme is simply the number of second-nearest neighbours.
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As in Chapter 3 we let palladium be the a-type and hydrogen the b-type 

atom. We recall that PdHi has the NaCf structure and hence both 

sublattices have identical m values, viz. 6+12 * 18. For the case of 

PdHx* however, we recall our comments on site-occupation in Section

4.2.1 and hence we write

ma “ md “ 6x(hydrogens) + !2(psliadiums) (4.1a)

ka " kd " I2(palladiimts) (4.1b)

- 6(palladiuas) * i2x(hydrogens) (4.2a)

- l2x(hydrogens) (4.2b)

4.2.Z Order Parameters

With reference to equation (2.45), we can now generate the two order 

parameters:-

"h ' " S  6-12% 
 ^  ' b T T H

We recall that a was introduced in Section 2.6.1 as pat. L uC the 

Falicov-Yndurain interpolation scheme and that its three special 

cases of -1, 0, +1 have important physical significance from the 

viewpoint of correlation and local environment (see Table 2.4).

(4.3b)



4.2.4 Summary of Section 4.2

We see from equations (4. \ )-(k. 3) that all the coordination and 

correlation parameters depend solely on the average occupation 

probability x, emphasizing both the "quasi-local" nature and the 

physical transparency of our model.
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4.3 LDOS OF PD1L

J. J . 2 DgtorZgcf Czprgaaione

The final product of Chapter 2 was the following general expression for 

the total LDOS of a substitutional binary alloy (equation (2.51)):-

where n^(e) and (c) are the LDOS of a- and b-type atoms respectively, 

and xa and x. are the respective concentrations of the two atomic 

species.

We must now adapt equation (4.4a) for fhe case of an interstitial 

alloy, where we only have one variable concentration. Hence, taking 

a and b to refer to palladium and hydrogen respectively, and defining 

x. * x, we have:-

(4.4b)
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Furthermore we recall from Chapter 3 that our Tight-Binding Hamiltonian 

models the behaviour of palladium using only its ten 4d electrons, four 

of which (the d electrons) are affected by the presence of hydrogen, 

and the other six of which (the electrons) are unperturbed by 

hydrogen. In other cords, the palladium dc electrons are not perturbed 

to a first approximation by the hydrogen electron at all; hence in 

their case we take x always to be zero in equations (4.1)-(4.3), no 

matter what the concentration of hydrogen actually is. Consequently 

we need to split into two contributions, viz. n. (x,e) and
(e) ,  ar.d we thus have:-

where n , (e) - n , (0,e)
"'t ^

Finally we require the explicit forms of (x,e) and c^(x,c). These 

are obtained by substituting equations (4.1) and (4.2) into equation 

(2.49), to give us the following express ions:-

t

n (x.r) - 4n^ (x,c) + 6n (c) + xn.
e t

(4.5)

(4.6a)

where

fl " (e-U) (c-U)-(H+6*)$ (4.6b)
d h

h ( e - U ) - ( 11+6x)$d
(4.6c)



r- 12xV^ 6V^ ~|-i
nh (x^ ) “ " v  tm ' “ f T 2 “ — J

where:-

^  - ( c - u H u + W * j

*j and * in equations (4.6) and (4.7) are obtained by substituting 

equations (4.1)-(4.3) into equations (2.47), that is:-

r(4W2*x)^(A.)(c-|X.|D) -|
'(-I'dl") - ̂  E & & -  —*d^*^ " 22+12% _ L.

(from equmtion (2.46))

(from equation (4.3#))

, r ( 2 0 + 4 8 , ) * Z u  ) ( c + | l  |U) -1,
V "  " (([*I\|U) - i [2-----(Z Û)------- (c+|\|U)y
whmr#:-

h'^hh * 'h'"hd̂  eyu.Liwu *.46))

(4.7«)

(4.7b)

(4.7c)

)

(4.8a)

(4.8b)

(4.8c)

}
(4.9.)

(4.%)

, . 6-12%
h 6+12x ifron equation 4.3b)) (4.9c)



We have chosen to write these LDOS expressions in the form of 

equation (2.49) for the sake of clarity. In our computer programmes 

they are of course written as in equation (2.50).

4. J.2 Results and Diacuasion

In Figure 4.1 we display the simplest LDOS curves that we can generate, 

viz. those for pure palladium metal. This corresponds to the case 

x * 0, for which equation (4,5) is:-

ntot(°’e) " 10 nd (0»e) (4-10>

It can be seen from equation* (4.6) that n^ (0,e) does not depend on 

Vhd or on (as expected for the pure metal) and hence it does not 

vary with the choice of parameter set (Table 3.5). The full curve 

in Figure 4.1 is a plot of equation (4.10), whereas the broken curve

represents the quantity 6n̂ , (e) which remain* constant for all x 

values and for all parameter sets.

We note that both these bands are centred on e ■ *U * 0.185 Ryl and 

that they have the width & * -4 /TT  ̂0.40 Ryd (see equations (3.17) 

and (3.25)), as expected. In addition we note the smoothness ol the 

bands, that is, the lack of structure (cf DOS for palladium metal 

obtained using BS calculations, for example Faulkner"* *' and 

Papaconstantopoulos et alH•2)). Our n^ (0,e) has a shape clearly 

reminiscent of that of the d band in the RBM, as can be seen by 

comparing Figure 4.1 with Figure 4.2 (after Wicke and Brodowsky4* 76).
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1 Local Density of States for r" re Pd. Full curve: total 
LDOS; broken curve: LDOS for dt states.
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S s-b a n d
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2 Density of States for PdH^ according to Rigid Band Model 
(after Wicke and Brodovsky4 , 7 6 ).
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We recal' from Section. ! 2.2 that the RBM is of only Limited applicability, 

and it, Section 1 * 3 we i m p l i e d  that our model would provide a more 

realistic band structure chan chat of the RBM. A cursory examinacion 

of equations (4.6) and (4 .7) reveals a strong x-dependence in both our 

palladium and hydrogen bands; that is, we expect not only the Fermi 

energy (E_) tr change with addition of hydrogen to the palladium lattice 

but also Che shape# af the bands themselves, in agree*ant with more 

sophiscicated BS techniques'* Our model is therefore expecced

to be more realistic Chan the MM, chough figure 4.1 shows that we do 

retain some of Che appealing simplicity of the RBM.

In F i a r e  -4.3 we display n ^(x,c) for the three cases x - 0.0, 0.6, 1.0, 

using prm.set (a.l). We at once notice fundamental departures from

the RBf Figure 4.2) in two main features: firstly, the considerable 

o/ z&d d bzfkia, as expected; and secondly, the

JTJ-'wr c:fL. in the vicinity of c * -U. This new band and the shoulder

on tne :igh-energy side of the d band are both products of our hydrogen 

LDOS, that is n.(x,f j; this point is clcczly brought out by Figure 3 

of the work of Lowther'*"'*). The appearance of this low-energy hydrogen- 

induced band in our model is in agreement wich one of Che findings 

of Chapter I, viz. the consistent appearance of a .'*7.7

rtav. in BS calculation* on the Pd/H system. Our model further

more agrees with the ezperLmerr ;/ reakfta of Schlapbach

and Burger**' ̂  for PdHg, g : they obtain hydrogen-related emission it

about 0.59 Ryd below E_ while in &. ur f)OS we see that for % " 0.6 the

hydrogen-induced band peaks at approximately 0.58 Ryd below E_. In
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addition, they obtain a slight increase in emission at roughly 0.22 Ryd 

below Ep, which is exactly the same position a t  which we find a peak 

in our PdHo.6 d band.

The high-energy low-LDOS shoulders appearing in Figure 4.3 remind 

us somewhat of the low-DOS 5s band emerging from the high-DOS 4d band 

in the RBM (Figure 4.2). We notice in particular that the shoulder 

extends upwards in energy as x increases, reminiscent cf the manner 

in which rises higher in the 5s band of the RBM with increasing x 

This behaviour provides a second point of similarity with the RBM.

We recollect from Section 1.2.6 that a strictly localized state is 

represented by a dilta function in a DOS plot (for example the DOS 

of an isolated hydrogei. atom in its ground state consists of a delta 

function at an energy of -I Ryd). We further recall from Section 1.2.6 

that the hydrogen-related energy level found below the d bands for 

low x broadens into a band for higher values of x. On tne basis of 

these two observations we expect a narrow, highly peaked hydrogen- 

related band in a solid to broaden as the interactions between the 

hydrogen and its surroundings are increaaed. The physical credibility 

of our LDOS functions must now be tested in terms of this physically- 

fundamental broadening phenomenon. We do this by replotting Figure 4.3 

for different parameter sets, viz. set (b. 1) (greater V^; Figure 4.4) 

and set (&.2) (nonzero ; Figure 4.5). In both cases the broadening 

and diminished intensity of the hydrogen band is immediately obvious, 

and the d band also lessens in intensity. Thus Figures 4,4 and 4.5 

confirm yet again the physical validity of our model.
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We further point out the physically qualitative expectation that 

hydrogen-related bands should become narrower as the value of x decreases; 

this is because in the low x cace a given hydrogen interstitial is further 

separated from other hydrogen atoms, as well as its mean separation 

from the palladium atoms being greater. We recall from Seccion 1.2.6 

that band structure results confirm this expectation.

By referring back to Figures 4.3 - 4.5 and in particular by looking 

ahead to Figures 5.1 and 5.2 we can see that our model satisfies this 

criterion as well. To obtain an insight into the mechanics of this 

effective x-dependence of our interaction parameters, the reader is 

referred to equations (4.6) - (4.9) in which it can be seen that the 

coefficients of these parameters are usually simple functions of x.

Another clearly-discernible feature in Figures 4.3 - 4.5 is the movement 

of both the hydrogen- and d-band peaks away from the origin as x 

increases; this results in a broadening of the peak separation by 

several percent in going from PdHg.g to PdHj.o* This behaviour is a 

direct consequence of our application of the Virtual Crystal Approximation 

in Chapter 2, which required us to take U ■ 0 for the case of a 

completely random alloy. Hence we see that the interpolation formulae 

for the mean field functions (equations (4.8a) and (4.9a)) have a 

factor X or |> | in front of the "peak separation" parameter U, giving 

rise to an effective peak separation which varies with x.



4. 3.3 Suvmary of Section 4.3

In this section we have derived expressions for the LDOS of PdH 

which have the following appealing features:-

they have closed, analytical form;

they deal equally naturally with the stoichiometric (x*l) and 

noir-stoichiometric (x< I) hydrides;

they retain some of the simplicity and clarity of the RBM;

and they are in good agreement with both experimental findings 

and computationa1ly-intensive BS calculations.
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4.4 FERMI ENERGY AND CHARGE

4.4.1 Introduction

In this section we provide expressions for the evaluation of the Fermi 

energy (Ep) of the Pd/H system, using the model developed in Chapter 2 

and Sections 4.1 - 4.3. We note from the start that the numerical 

values of our Ep are only meaningful relative to our "ccntre-of-states" 

parameter U. Once we have as a function of x for a given parameter 

set, we are able to evaluate the corresponding charges of palladium 

and hydrogen atoms, and consequently of the PdHx "unit". The 

advantage of using the Local Density of States is that it is physically 

meaningful to speak in terms of a single PdH^ unit, consisting of a 

single, localized palladium atom and the fraction x of a hydrogen 

atom associated with it. Although we will not be using the concept 

of charge in the rest of our work, we nevertheless examine it briefly

because it provides another physically-meaningful criterion for testing 

our formalism.

Evaluation of Ep and the charge require us to integrate our LDOS 

expressions; because this is done numerically, we will from here on be 

carrying a non-physical thread in our argument, which we will not always 

be able to separate from the central physical themes. The reader might 

therefore enquire as to the possibility of analytical integration, a 

topic which we discuss in Appendix 4.1.

In Section 4.4.2 we evaluate and comment on E^; then in Section 4.4.3 

we use Ep to calculate the various charges associated with a single PdH^ 

"unit", and we summarize our findings in Section 4.4.4.
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4.4.2 Evaluation of the Fermi Energy

4.4.2. 1 Method

Out LDOS is defined as the number of electronic states between energies 

c and e + de, so that integrating over all e gives us the total number 

of electronic states. In our PdH^ unit we have ten palladium 4d states 

and 2x hydrogen Is states. We therefore expect to find:-

At the absolute zero of temperature (T * OK), the Fermi energy (E^) is 

the energy of the highest occupied state of the system, with all the 

states below Ê . also being occupied (a co.isequence of Fermi-Dirac 

statistics: see Appendix 4.2). Thus if we integrate the LDOS over all 

energies up to Ep we obtain the total number of occupied states for 

T * OK (in Appendix 4.2 we show thaw che calculation at absolute 

zero is adequate for our purposes). In our case we have 10 occupied 

palladium states and x occupied hydrogen states per PdHx unit, and 

we thus expect the following aquation to ho Id:-

- 10 + 2x (4.11)

(4.12)

Combining equations (4.11) and (4.12) gives us:-

tot (4.13a)

(4.13b)
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It is clear from our LDOS plots (for exampi3 Figure 4.4) that we can 

replace the limits of integration -ao and by numbers of the order 

-0.6 Ryd and +0.6 Ryd respectively. We are then able to evaluate the 

right-hand side of equation (4.13b) numerically* for a given value 

of the parameter x, and hence determine Ep numerically by means of a 

bisection method (see Appendix 2 for details).

We comment that equations (4.11) and (4.12) give us the result that 

both sides of equation (4.13a) are unity; because we are integrating

numerically we do not however expect this to be the case for our

calculated numbers. We thus do not e equation (4.13a) (and hence 

equation (4.13b)) on the assumption that equations (4.11) and (4.12) 

hold numerically, but instead on the assumption that they contain the 

same percentage error. This is a reasonable approximation when one 

considers the similarity of equations (4.11) and (4.12).

4.4.2.2 Results and Discussion

We recall from Section 4.3.2 that our LDOS for the case x * 0.0 do 

not depend on the parameter set used; hence E_ (x - 0.0) will be the 

same for ail our parameter sets. With reference to equat'^n (4.13b) 

we can see that E? (x - 0.0) is evaluated simply by finding the point 

at which the upper edge of our d band cuts the energy axis, that is 

by finding the larger root of n (0,c) ■ 0. The solution is:-

E (Pd metal) ' 0.3859 Ryd (4.14)

In Figure 4.b we show plots of E_ vs x for prm.sets (a.l) and (b. 1).

The most striking feature in both cases is that E_, is seen to deweaee over 

certain ranges of concentration in contrast to theTKMoWnic increafe with x

which is a fundamental feature t the RBM. This highlights the fact that



parameter set (a.I); broken curveFiquAZ 4.6 Fermi energy vs x. Full curve 
parameter set (b.l).
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cur model does not have rigid bands, which makes possible this decrease 

o f  E p  with x. However, the B S  calculations of Gelatt et al4 , , 

Faulkner4* ̂  and Papaconstantopoulos et al4*2) all show a slight overall 

increase of with x, in agreement with the RBM; see Table 4.i for 

ro ;gh values.

Source 3_(Pdm) - E_(Pd)] 
(Ryd)"

present work, prm.set (a.l) -0.03

Gelatt et al4"*) +0.02

Faulkner4* ̂ ♦0.04

Papaconstantopoulos et al4*2) +0.06

Table 4.1 Difference in the Fermi energy of palladium and 

its stoichiometric hydride, according to various 

sources.

Although the trend of our values for prm.set (a.l) is different to that found 

in BS calculations, we notice that the values in Table 4.1 are only a few 

percent of the overall width of the PdHx band structure (about 0.8 Ryd 

in our case), and so we do not expect this discrepancy to be significant.

We note that our calculated values of E-, for prm.sets (a.2) and (a.3) 

would be barely distinguishable from the values for prm.set (a.l) on 

the energy scale of Figure 4.6, In a similar manner our values of E^ 

calculated for prm.seto (b.2) and (b.3) would almost coincide with the 

curve for prm.set (b.l) if plotted on Figut . 4.6. Hence we see that 

our Fermi energy is insensitive to changes in over the range of 

Vhh values we have employed, although it is clear from Figure 4.6 

that it has strong dependence.
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We will now make use of our values for E_ to evaluate the charge on 

each atomic species and hence the total charge of the average PdH unit.

V. -. / ,Jy /.r-f'

4.4.3.I Method

We recall from equation (4.12) that the total number of occupied 

electronic states per PdH unit is obtained by integrating n (x,c) 

up to the Fermi energy E , and that this number is expected to be 10+x

for a given x. This integral therefore represents a number of electrons, 

and multiplying it by the electronic charge a ~ 1.602 x 10 

consequent iv gives us the electronic charge of the PdH^ valence electrons 

in Coulombs. For convenience we choose e-1, so that we may than write:-

(4.15a)

q.(x) - |&n, (r) + &n (4.15b)

(4.15c)

4.4.3.2 Results and Discussion

In Figure 4./ we show plots 1 tot(x) vs x for prm.sets (a.l) and (b.l). 

In both cases we have that q (0) ' 9.999, that is almost exactly 

the expected value of !0.0; chis accuracy is a direct consequence



10.25

F-iguAe. 4,7 Total charge vs x. Full curve * psrameter set (a. i i 
broken curve: parameter set (b.l).



of the smooth, featureless LDOS we have for the case x = 0.0 (Figure

4.1). However, we see that the accuracy begins to drop off with 

increasing x; we quantify this in Table 4.2.

x 10+x
Calculated Charge Percentage difference

Prm.set (a.l) Prm.set (b.l) Prtii.set (a.l) Prm.set (b.l)

0.0 10.0 10.0 10.0 0.0 0.0

0.2 10.2 10.0 9.85 2.0 3.4

0.4 10.4 9.84 9.62 5.4 7.5

0.6 10.6 9.7? 9.59 8.3 9.5

0.8 10.8 9.70 9.57 10.2 11.4

1.0 I 1.0 9.9S 9.78 9.5 11.1

Table 4.2 Charge deviations for prm.sets (a.l) and (b.l).

It cpn be seen from Table 4.2 that the loss of accuracy is not linear 

in x, the worst error being in the region of x = 0.8. These errors are 

almost certainly purely numerical in nature; that i s,they do not reflect 

a weakness in our physics, but rather reveal the numerical difficulties 

associated with integration of a highly-peaked function. More specifically, 

we take note of two competing error effects involved in integrating the 

LDOS, viz. one due to the diminishing smoothness of the d band and 

another due to the sharpness of the lower hydrogen-induced band. The 

fi-mt effect witn x whereas the second with x, and
Table 4.2 reveals that the combined effect is worst in the high x region.



- 139 -

that is, the d-ba>id error term dominates in charge calculations. It 

will be seen in the following section that for energy calculations the 

hydrogen -band error contribution dominates. We take up the theme of 

numerics in a more quantitative maunsr in Appendix 2.

In Figures 4.8 and 4,9 we show respectively the plots of qd (x) vs x 

and qh (x) vs x which correspond to the r Jt(x) values plotted in 

Figure 4.7. In Figures 4.10 and 4.H d again show q^Cx) and q^(x) 

for prm.set (a.l), as well as their "scaled-up" values F W q^(x) and 

F(x)qh(x), where F(x) is simply a scaling factor given by:-

F(x) - <10*x)/qeot(x) (4.16)

From equations (4.15a) and (4.16) we see that the sms [i(x)q^fx) +

F(x)qh (x)3 equals the physically-anticipated charge value of (10+x).

Hence the "scaled-up" curves are essentially physical corrections to 

our numerically-evaluated charges.

We see from Figures 4.3 and 4.10 that the palladium atom in the PdH^ 

unit loses charge with increasing x, even in tie scaled-up case. This 

effect is most transparent for the stoichiometric hydride (x»1) »we 

display the various scaled charges for the case x-1 in T̂ .ble 4.3.
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10.4

10.0

9.6

T3
"  9.2

8.8

8.4

F-cgote 4.8 Palladium charge vs x. Full curve: parameter 
set (a.l); broken curve: parameter set (b.l).
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X

F-iguAg. 4,9 Hydrogen charge vs x. Full curve: parameter 
«et (a.l); broken curve: parameter set (b,I).



F-ijuAe 4.10 Palladium charge vs x for parameter set (a.l). Full curve 
unsealed; chained curve: scaled.



FXgu/tfc 4.11 Hydrogen charge vs x for parameter set (a.l). Full curve 
unsealed; chained curve: scaled.
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Parameter Set q„(!) V ' )

a. 1 9.484 1.516 11.000

b, 1 9.573 1.427 11.000

Table 4.3 Charges for PdHi, scaled '.y the correction 

factor F (equation (4.16)).

We note from Table 4.3 that the increase in of approximately 40%

in going from prm.set (a.l) to set (b.l) causes only a 1% change in 

the charge distribution of the stoichiometric hydride, with the 

larger value (prm-set (b.l)) giving the larger palladium charge.

Consequently our formalism results in charge transfers "hich are more 

akin to those of the so-called ionic mod&l than to the proton model 

discussed in Section 1.2.2. The ionic model for transition metal 

hydrides is based on the assumption that hydrogen exists in the Fetal 

lattice in the form of the negative ion H ; although this model is 

diametrically opposed to the proton model there is nevertheless some 

evidence in its favour4,7 ;̂ we also recall that the proton model 

is itself of only limited applicability (Section 1.2.2).
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4.4.4 Sumvary of Section 4. 4

In this section we have developed and applied suitable equations for 

the numerical evaluation of the Fermi energy of PdH^; we have also 

provided and applied expressions for the numerical determination of 

the constituent and total charges of t is system, noting that these 

expressions depend on the values of E^. We find that our Fermi energies some

times decrease with x, as opposed to RBM and SS calculations which show a 

consistent increase of Ep with x. However the change in the Fermi energy 

is in all cases seen to be only a few percent of the total width 

of the DOS, and hence V4 do not see this deviation as being of any 

great significance in the context of integration of the DOS.

Our chargt calculations are highly accurate for the case of pure 

palladium, though they develop inaccuracies of several percent for 

higher x; this apparent loss of charge is understood to be a 

numerical effect and not a reflection on the underlying physics. We 

have applied a cc-ling correction to our charge values and found that 

our formalism favours an anionij rather than a protonic view of the 

Pd/H system.

We will not attempt to use scaling factors in the energy calculations

vhirh fnl Inu. n n r  Vnnwl erloo nf rhe i n*rr urar i <eq in our rharoe val m p *

(Table 4.2) is therefore helpful because these deviations give us a 

rough indication of the percentage errors we are likely to make in 

evaluating the total electronic energy. Appendix 2 deals with the 

issue of numerical errors in a more quantitative manner.



'Tyf-

146 -

4.5 TOTAL ELECTRONIC ENERGY AND HEAT OF FORMATION

4. 5. J JMtrodwcCtorz

The eva lu a ti on  of Che total electronic energy ( E * ^ )  of PdH^, using 

our LDOS expressions, is of central importance because the results are 

n ecessary for the calculation of the heat of formation whi ch  follows.

The e va luation of is along similar lines to the charge calculations

of Section 4,4 because we  use previ o us ly - ca l cu la t ed  values of Ep and 

numerical integration of a continued fraction expression.

4.5.2 Total Zlfctrontc Ehargy

The total electronic energy (at the absolute zero of temperature, see 

Appendix 4.2) is determined by means of the following expressions

E " ' / : )  -  *  E ^ ( % )  ( 6 . 1 7 # )

where

E ® £ (x ) -* | F [6nd (e) + 4n^ (x,e)]tde ( 4. 17b)

and

E^(x) -  J  F 2xnh (x, £)edfc (4, 17c)

cf equations (4.15) for the various charge contributions. In Figure 

4.12 we display curves of (x) vb x for prm. sets (a.l), (b.l) and

(a.2). In all three eases we have (0) • (0) ■ 1.8505 Ryd and

E^ (0) - 0. 0; Table 4.4 contains various energies calculated for the 

stoichiometric hydride.



P-iguAC 4.12 Total electronic energy vs x. Full curve: parameter set (a.l) 
broken curve: parameter set (b.l); chained curve: parameter 
s e t  ( a . 2 ) .



.. ...... . .... .
Parameter Set E * \ n

(Ryd) (Ryd) (Ryd) (Ryd)

1.5452 -0.2370 1.3082 -0.5423

b. 1 1.5870 -0,2592 1.3278 -0.5227

a.2 1.5024 -0,2757 1.2268 -0.623d

Table 4.4 Electronic energies and energy changes for Pdhi, using 

(0) - 1.8505 Ryd.

We note that for all three parameter sets decreases with x; this

decrease is essentially monotonic (and in fact approximately linear up to 

% T 0.5 if Che curves are suitably smoothed). Table 4.4 reveals Chat Che 

electronic energies drop by roughly 30% in going from pur# Pd to PdH;.

We recall that our values have no s ignificance as absolute numbers

because they pre evaluated in terms of the parameter U, which gives

an i t 'b i tr a iry zero of energy for our LDOS; hence we  will work in terms 

of the difference in energy between palladium and a given hydride, 

viz, (x) - K£^t(0)* which doeo have physical significance and which

we will implement in the next section.

f. A. / //eut f'urrMLn/H

4.5.3.I Formal ism and Calculations

The heat of formation (AH) is the total energy difference between Che

metal hydride on the one hand and the pure metal lattice and hydrogen 

molecules from which it is formed on the other. Thus for nWf'.'/iinme&rt..'
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pal la d iu m  hydride we h a v e :-

A H  - E (P dH i ) - E(Pd) - iE(Ha ) 

w he re  E{PdHj) is the total energy of PdH].

Following Stull and S mi th 5*' we identify EfH^) as the ionization energy 

of the h ydrogen molecule, that is the energy required to s eparate the 

m ol ec u le  into its constituent protons and electrons; the v al ue  of this 

c o n s t a n t 4 *5  ̂ is E(Hz) 3 -2.266 Ryd. G en er a li zi n g  e quation (4.18a) to 

aliov for the duhatciahiometria hydride PdH ^  leads us to the following 

expression:-

m(~) - flE(x) - jxE(H2)

where

dE(x) - E <P dH x ) - E(Pd)

The p resence of hydrogen atoms in the p al la d iu m  lattice causes strains 

to be set up and hence we expect an elastic contribution to AE in

addition to the electronic component AE e *e C . Gelatt et al (1975)4 " 

estimate an elastic energy of roughly -0.01 Ryd for P d H i , while the 

analyses of Vagner and Horner'*-'0) and H ar ad a 4 , 1 ̂  indicate that the 

elastic contribution varies linearly w i t h  hydrogen concentration; we can 

thus write:-

(4.18a)

(4.18b)

(4.18c)

where
c - -0.01 Ryd



- 150 -

We note further that Gelatt et ai (1978)4 , record a  decveaas of 

roughly 0 04 Ryd in the average energy of the d bands in going from 

Pd to PdHi. Assuming that che d-band shift for concentration x is 

given by 6(x), the aorreai-.. i total electronic energy can be approximated 

to as follows4*12)

We see from this equation that the correction term is (10+x)6(x).

Now 6(x) must be zero at x*0 and laust increase with x; the simplest 

function that satisfies these conditions is 6 ( x )  - xA, where & is a 

constant. Thus our correction term becomes simply (10>x)xA, and 

collecting together the various contributions to the heat of formation 

we finally obtain4'^2)._

J%Tcorrected
«)((-<(%))<!(

(419)

6H(%) - - Z*g[(0) - - IxEfH;) + c% (4.20)

where

E f \ < x ) i s  g i v e n  b y  e q u a t i o n s  ( 4 . 1 7 )

E"^(0)  ̂ 1.8505 Ryd

E(H2 ) - -2.266 Ryd

A a n d  c are u n k n o w n  p a r a m e t e r s .



W e  e x p e c t  A  ~ 0 . 0 4  R y d  f r o m  G e l a t t  e t  al () 9 7 9) ^  at d  c - - 0 . 0 1  H y d

f r o m  G e l a t t  e t  a l  ( ! 9 7 5) 4 ' ^ . F o l l o w i n g  t h e  p r o c e d u r e  o f  o u r  f i r s t  

p a p e r 4 * 1 '  ̂» we  e v a l u a t e  t h e  p a r a m e t e r s  A  a n d  c b y  f ittii.g t h e m  to 

e x p e r i m e n t a l  r e s u l t s .  S h o l l  a n d  S m i t h 4 , 8 ) q u o t e  t h e  e x p e r i m e n t a l  

v a l u e  o f  A H, d e t e r m i n e d  b y  G i l l e s p i e  a n d  H a l l 4 - for l o w  h y d r c g e n  

c o n c e n t r a t i o n  ( x  ^ 0 . 0 2 ) ,  a s  b e i n g  - 0 . 0 0 9 6  R y d .  If w e  m a k e  the c r u d e  

a p p r o x i m a t i o n  thit t h e  e m p i r i c a l  A H  f u n c t i o n  is sy m m e t t . c  a r o u n d  

x  * 0 . 5  ( t h e  r e s u l t s  o f  K u j 1 e t  a l 4 - i 4 ) a n d  H a r a d a 4 * 1 ^  l e n d  s o m e  

c r e d e n c e  t o  s u c h  a n  a s s u m p t i o n ,  e s p e c i a l l y  if w e  take the a v e r a g e  of 

their values), then we have that AH if also - 0 . 0 0 9 6  Hyd v e r y  close to 

the stoichiometric case. Hence we make the following approximation: 

A H (x * 1) ' -0.0096 Ryd. Stoll and Smith use Gillespie and Hall's 

AH value to obtain the corremponding change in anargy,

viz. AE eXp • -1.123 Ryd. AEeXp is equal to our A E * * ( I)(corrected 

according to equation 4. 9) so that by applying our approximation 

AH(x= 1) A H (low x) we can w r i t e : -

AE"(I) . - IIA - -1.123 Ryd

and hence:-

A " Ryd

T able 4.5 contains values of A used with four of our parameter sets.



Parameter Set A (Ryd)

a. 1 i.3082 0.0528

b. 1 1.3278 0.0546

a.2 1.2268 0.0454

a.3 1.3130 0.0532

Tab! e 4 , 5  Values ot" { I) and the band-shif t coefficient

A for different parameter set#.

Wa ### fro* this cable that our value# of A &T# con#i#t#nt with the 

ahift of Approximately 0.04 Ryd recorded by Gelatt et ai"*' . To

evaluate the parameter c we note that for the case of stoichiometric 

palladium hydride equation (4.20) can be rewritten in the following
form.* -

AHd) - AE^(I) - |E(h^) + c

where (I) - AEexp ■ -1. 123 Ryd

Henre we obtain c. ■' -0.0196 Ryd for all parameter sets. We now 

substitute our values of h and c into equation (4.20) and in Figeie 4.13 

we plot AH as a function of x for the four parameter .sets of Table 4.5.

A comparison between our calculated values and Che experimental results 

of Harada4* 11) is shown in Figure 4. ! 4. We notn that our AH expression 

refers to one mole of hydrogen utoms, and hence we have halved Harada ’ s 

original results which referred to one mole of hydrogen molecules. In
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seta: full curve, set (a.l); broken curve: set (b.l); 
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FiguAe. 4.14 Comparison of calculated heats of formation (full curve, 

parameter set (a.l); broken curve, parameter set (b.l)) 
with the experimental results of Harada4,1^  (full curve 
with ful1 circles ).
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addition we have shifted Che origin of Harada's curve so as Co compare
if with our calculations which are based on the definition AH(O) * 0 

(see equacion (4.20)).

4.5. 5.2 Discus si on

Figure 4.13 reveals the following trends in our AH curves:-

firsCly, chey are largelv negacive, implying a o&z6Ze hydride

(in agreement with experiment: see Figure 4.14);

secondly, our AH values are typically a /bcior o/ /t/ty 

smaller than our total electronic energy values (compare 

Figures 4.12 and 4.13),implying that we have significant 

and subtle txmcelWttnn d/ygcta in equation (4.20). W#

recall that Sholl and Smith (Section 1.2.7) found similar 

effects in their theoretical moH-l•

thirdly, we have the physically-sensible finding that the 

l-.xrjer1 choice of lvhdU  f°r < 0 (pm. set (b.l)), gives 

a Zoutr AH curve ard henca a more atoLZd than does
the smaller |V^| value (v^^ < 0) of prm. net 'a.l) (recalling

that both sets (a 1) and (b.l) have » 0.0);

fourthly, we observe Chat a neivitiiw V ^ makes the

hydride Zdm; stable (prm.set (a.2)) while the corresponding 
positive quantity (prm.set (a.3)) results in a more stable 

hydride; this finding is consistent with the
to he discussed in Chapter 6;
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and fifthly, considerable numerical instability is apparent, 

particularly for x 5 0.5. examination of equation (4.20) 

reveals that these fluctuations can only be due to instabilities 

in our calculation of E ^ t(x). With reference to the 

discussion of errors in Section 4.4.3.2, we see that the 

dominant error term in the case of E ^ t must be that due to 

the sharpness of the low x hydrogen bands.

Moving on to Figure 4.14, we see that the two parameter sets having 

zero Vhh are in quite good agreement with the experimental results of 

Harada4,11' for x t 0.5; in fact Harada1s curve is "sandwiched" 

between our two curves for most values of x. We recall from Section

4.2 that our model is built on the underlying physical assumption 

of an averaged bur nevertheless random distribution of hydrogen atoms 

throughout the palladium lattice, and hence the fair agreement with 

experiment which we find for x 2 0.5 implies that our physical 

picture is correct for larger x. The disagreement with expeiiment 

at lower x is no doubt partly due to the numerical instability 

reflected in the large fluctuations in our AH values for the x < 0.5 

regime. However, even taking this into account, the very marked 

disagreement with experiment at lower values of x makes us suspicious 

of the underlying physical validity of our present model in this 

concentration range.

An important clue to the shortcomings of our model is the well- 

established multiphase nature of PdH^ which was emphasized in 

Chapter 1; the various phases have been described in some detail from
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a macroscopic, thermodynamic viewpoint (especially via pressure- 

concentration isotherms), but a thorough microscopic, electronic 

model for the phases does not exist. Our results suggest that the 

high-concentrat ion g-phase (x g 0.6) can be associated with a random 

distribution of hydrogen throughout the lattice, whereas other phases 

may not share this random nature. We take up this theme in the next 

chapter, where we adapt our present model to allow for the :-<JO'-pha3e 

nature of PdH^.

4.5.4 Swrmary of Section 4.5

I*"tot is found to decrease with x in an essentially monotonic fashion, 

and in fact almost linearly up to x 15 0.5; it plays an important role 

in our formula for AH, being the only x-dependent contribution to AH 

from our model. Although certain rough approximations are made in 

evaluating the band-shift and elastic contributions to AH, and although 

most of the terms in our AH expression are individually over an order of 

magnitude larger than empirical values for AH, we nevertheless obtain 

a remarkable agreement with experiment for x % 0.5.
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4.6 SUMMARY OF CHAPTER 4

In this chapter we have firstly imdelled the correlation-related 

aspects of PdH^ within a "quasi-local", interstitia1-alloy formalism 

which requires the hydrogen concentration x at’ its only parameter.

On the basis of this formalism detailed expressions for the Local 

Densities of States of PdHx and its constituent atoms have been 

formulated; these have several appealing features, including a closed, 

analytical form and direct applicability to non*"stoichiometric hydrides, 

as well a.-; p ucing bands which are in good agreement with both 

experimental results and band structure calculations.

The total LDOS are then integrated numerically to find Che Fermi 

energy and hence the various charge and electronic energy contributions 

as functions of x. Although Che charge calculations are highly 

accurate for the case of pure palladium metal, the numerical integrations 

start generating errors for x > 0 which are manifested as spurious 

charge losses. The percentage error is not monotonic in x but maximizes 

ai x - 0.8; this is because there ate two competing a- Jr effe^.s viz. 

Chat due to the sharp peaks in the hydrogen band for low x, and that 

due to the development of peaks in the d band at high x. The second 

im dominanC in the charg# calculation: whaieam the first 

dominates the electronic energy coropuL .l J .

Having made allowances to. elastic energy contribution and shifts 

in the d band as a tunction of hydiogau concentration, we have finally 

formulated an expression for the heat or formation of non-stou biometric
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palladium hydride and plotted this as a function of x for several 

parameter sets. Our values are in fairly good agreement with experiment 

in the region x 2 0.5, especially for those parameter sets with no 

interaction between hydrogen atoms. Although the lack of agreement 

for x s 0.j is partly numerical in origin it is significant enough 

for us to doubt the physical validity of our model in its present form 

for lower values of x. Our suspicion is substantiated by the fact 

that our results agree with experiment in t1 high x, 8 phase region 

(x i 0.6), though not in the regions of lower x. We recall that our 

mode 1 is based on the ajsumption of a random distribution of hydrogen 

in the palladium lattice, and hence an implication of our results is 

that the PdH^ B-phase is essentially random in nature, whereas the 

other phases may not be disordered to the same extent. In the following 

chapter wc modify our present formalism so that we can explore the 

physics of the low x regime-
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1NTEGRATION OF LOGS

APPENDIX 4.1

We attempted to integrate the general LDOS expression of equations 

(2,50) analytically, using the simplifying assumptions j | -  

and j Ah ! * (it can be seen from equations (4.3a) and (4.3b) that 

the first assumption is tiue for all allowed x, that is 0 < x ^ I, 

whereas the second only holds for x > 0.5). To do this we first re

expressed the LDOS in terms of a rational function (as opposed to the 

original continued fraction format). The result isl

and g(x,e) is a function of Q(e10).

We note that V mentioned in connection with f(x,c) is one of

Without presenting details, we can make the following general comments

specifically, the terms of these fnnrHona consist of products 

of non-negative, integral powers of e and irreducible quadratics in e;

the coefficients of these terms are rational functions of x.

Because of the high powers of e as well as the presence of irreducible 

quadratics in e it can be appreciated that analytic integration of

(A4.1.1)

where f(x,e, is a function of 0(V2e7)

regarding the functions f(x,c) and g(x,c)

although they are of finite order in e, they are not polynomials



equation (M, 1.1) is out of the question, even in this simplified case 

of | |  « and | I  * We are thus obliged to turn to numerical

quadrature techniques. It will be appreciated from plots of the LDOS 

(for example Figure 4.3) that we are dealing with a sharply-peaked 

integrand, and hence we suspect that application of a simple technique 

such as Simpson's rule will probably be inadequate or inefficient for 

our purposes. We take this matter up in more detail in Appendix 2.
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APPENDIX 4.2

FERMI-DIRAC STATISTICS FOR PDH

The Fermi-Dirac distribution function for electrons and other fermions 

is given by:-

(At.2.I)

where T is the absolute temperature.

We see that:-

lim f(c,EL,T)
1 for e

(At.2.2)

0 for £ >

For the general case T 2 0 the number v of oooupied states per PdK 

unit is given by:-

v(T) - J ntot(x,e)f(e,EF ,T)de (A4.2.3)

If we now substitute equations (A4.2.2) into equation (A4.2.3) we 

obcain:-

v(0) (A4.2.4)



In Sections (4.4.2) and (4.4.3) we have used the approximation 

v(T) - v(0), and we have made a similar assumption in Section (4.5.2). 

The validity of this approximation can be appreciated at an intuitive 

level by examining Table A4.2.1 in which we compare values of 

f(e ,Ef ,T) for T « OK and T - 300K.

€ - £ 
(Ryd)'

T - OK T * 300K

-0.02 i .000 1.000

-0.01 1.000 0.995

-0.001 i .000 0.629

0.0 0.500 0.500

0.001 0.000 0.371

0.01 0.000 0.005

0.02 0,000 0.000

Table A4,2.1 Values of *(e,E ,T), according to 

equation (A4.2.1).

We firstly note from this table that f(e, , 300K) would only affect

equation (A4.2.4) over the range -0.01 Ryd t c-F S +0.01 Ryd, this

being only 2.5% of the total uDOS energy distrioution of about

0.8 Pyd; and secondly we see that for a given energy c ir the above

range,f(c,E_,300K) would cause a slight decrease in v(0) to the laft

of E_ and o slight tKcreaa* to the riynt of E^, resi .ting in a cancellation

effect.
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In co: elusion ther we can say that the error introduced bv making 

the approximation v(T) ~ v(0) is negligible, and hence we implicitly 

use this and similar approximations in calculating our Fermi energies 

charges and total electronic energies.

The approximation E_ = p can also be justified qualitatively by 

considering the relationship between these two quantities obtained 

from the free electron model, viz.4‘1^ -

where T is the F?rmi temperature of the metal.

T = OK. We reccll from Section 1.2.2 that silver ic-tal and 

stoichiometric palladium hydride have certain electronic features 

in common, and from Section 2.2.5 that the behaviour of the non- 

stoichiometric hydride is essentially metallic at E_. Approxi

mating the Fermi temperature of PdH to that of silver metal 

(Tp = 6 .38  x 10" K ), we readily obtain p ~ 1.000E_ at 300K 

by using equation (A4.2.5). Henve we conclude that the approxi-

(A4.2.5)
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C H A P T E R  5 

TWO-PHASE MODEL

5.i INTRODUCTION

Our two-phase model incorporates the same fundamental Cluster-Bethe- 

Lattice (CBl) formalism as its one-phase counterpart (Chapter 4) 

except that it makes fuller use of the rich structural possibilities 

of the CBL approach. Specifically, we construct Local Densities of 

States (LDOS) which consist of linear combinations of single-phase 

LDOS of the type developed in the previous chapter. In keeping with 

the specifically twa-pJiase nature of the hydride and so as not to 

obscure the essential features of our LDOS, we consider linear combi

nations consisting of only two terms weighted in a physically sensible 

manner.

We then evaluate Fermi energies, charges, total electronic energies

and heats of formation in the same manner as in Chapter 4, except

that we now implement our more sophisticated LDOS formalism as well

as an energy minimization technique; the consequence of this approach

is a marked improvement in our AH curves. In addition we introduce a simple

ac&veg'":ivu parameter which giver us insights int-o phase transition

phenomena of the hydride.

This chapter consists of the following sections:-

Section 5.2, in which we introduce and develop our two-phase 

formalism for the LDOS, substitute it into the various charge
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C H A P T E R  5

TWO-PHASE MODEL

5.1 INTRODUCTION

Our two-phase model incorporates the same fundamental Cluster-Bethe- 

Lattice (CBL) fommlism as its one-phase counterpart (Chapter 4) 

except that, it ma «s fuller use of the rich structural possibilities 

of the CBL approach. Specifically, we construct Local Densities of 

Stages (LDOS) which consist of linear combinations of single-phase 

LDOS of the type developed in the previous chapter. In keeping with 

the specifically two-phase nature of the hydride and so as not to 

obscure the essential features of our LDOS, we consider linear combi

nations consisting of only two terms weighted in a physically sensible 

manner.

We then evaluate Fermi energies, charges, total electronic energies

and heats of foimation in the same manner as in Chapter 4, except

that we now implement our more sophisticated LDOS formalism as well

as an energy minimization technique; the consequence of this approach

is a marked improvement in our AH curves. In addition we introduce a simple

phenomena of the hydride.

This chapter consists of the following sections:-

Sect.'on 5.2, in which we introduce and develop our two-phase 

forma,ism for the LDOS, substitute it into the various charge



and energy-related expressions developed in Chapter 4, and 

define and explain the purpose of the segregation parameter;

Section 5.3 which is essentially a comparison of the results 

obtained using the one- and two-phase models;

Section 5.4 in which we examine the segregation parameter and 

other features of the two-phase model for all our parameter sets

and Section 5.5 which s marizes some important findings of this 

chapter.
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5.2 TWO-PHASE THEORY

6.2. , LDOS

We follow the approach outlined in our second paper5*1), that is 

we assume chat for a given value of x there are two phases present 

in the hydride, wit' fractional hydrogen concentrations of p and q 

respectively. We further assume that the phase of concentration p 

constitutes a fraction a of the total hydride, so that the other pnase 

present in a fractional amount (1-a). This can be expressed in terms 

of a chemical reaction equation as follovs:-

PdH - aPdH ♦ (l-a)PdH x p q

Comparison of coefficients reveals that the palladium contribution 

drops out of this equation, which is physically correct because we 

have an unvarying Pd sublattice (our model only takes the expansion 

of the Pd lattice into account via the empirical parameter c in the 

expression for AH: see equation (4.20)). Hence by comparing 

coefficients or the hydrogen atoms in equation (5.1) ve are left with 

the following equation:-

x * ap + (*-a)q or q - (x-op)/(I-a)

Recalling that 0 ^ x 3  1 for PdH^, we assume that the two constituent 

phases are subject to the same restrictions, viz. 0 < p < 1 and 

0 < q < 1. With reference co equation (5.2) this second inequality 

becomes:-

(5.1)

(5.2)
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0 ^ (x - op)/(I-a) £ 1

which in turn gives rise to the following set of inequalities

p £ I and p < x/o

Fot given values of x and a we then generate values of p subject to 

equations (5.3) and hence we evaluate the parameter q ■* (x-op)/(l-o)

(equation (5.2)).

We see that q depends solely on x, a and p and hence that we have 

only introduced two extra independent parameters into our two-phase 

formalism. Taking the two phases to be independent of each other 

we evaluate the total LDOS for each one according to equation (4.5), 

viz:-

0 < a < I

p Z 0 and p > (x ♦ a - «)/a (5.3)

ntot<P,E) * 4nd tp,e* * 6nd + pn^(p,e)

and (5.4)

e t

and hence we evaluate the total LDOS Jo-phase model according

to the following equation:-

(5.5)
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We can now implement our two-phaae expression for the LDOS by applying 

it to the various charge-and energy-related expressions developed 

in Chapter 4.

S. 2.2 Energies* Charges ard Heat of Formatton

The two-phase Fei*mi energies are now calculated by solving the

following equation for (Z)._

(5.6)

which corresponds exactly to equation (4.13b) for the one-phase model, 

except that the total LDOS is now given by equation (5.5) instead of 

equation (4.5). Hence we obtain the two-phase charges by analogy with 

equations (4.15):-

(2)

K (e) (p,c) ♦ (l-o)n^ (q,e) llde 
e "*

M )

2%(un̂ (p,c) + (l-v.'v'n.Oldc

(5.7m)

(5.7b)

(5.7c)

Similarly, by analogy with equations (4.17) we obtain the  ̂U  

energies for the two-phabc model:-

(5.8m)



where E<2)

ge!(2)̂ , . | [kij (e) + (r.̂ ) + C-*)=d (q,e))j«lG

and

E * l *2 '(x) - I 2x{<toh(p,e) ♦ (l-a)tih (q,e)}Ed£

Finally we can write down an expression for the heat of formation 

of the two-phase hydride by adapting equation (4.20) to the 

following form:-

A B ^ W  - - (io*«)%A^^ - M C z )  +

where E(H2) * -2.266 Ryd.

We see from Appendix 5.1 chat n^2^(0,E) • n (0,t) and 

ntot<1 ’e> " ntot<'-E>> which follow I e^ 2' (0) * £*^(0) and

■ E * 2 t (l) respectively, and suhs. iti.ting these energy 

equations into equation (4.21) gives us v2' * &. We also recall 

from Section 4.5.3 that the elastic ene > parameter c depends

solely on fixed empirical data and so i * constant, leading to
(2)

c ■ c. Equation (5.9a) can thus be : -»ritten as follows:-

^x) - E®^2 (̂x) - E^t(0) - (It y ?̂ - ixE(H2) + cx

(5.8b)

(5.8c)

(5.9a)

(5.9b)

It is thus clear that our two-phase evi,-rt s^ion for the heat of formation 

differs from its on — phase counterpart solely in the total electronic
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Equation (5.9b) can be rewritten as follows:-

AH^Ci.c.p.q) - E'^C.c.p.q) + f(%)

where

P(«) - - (10+%)^- l%E(Bz) + ci

We choose the parameters (<x,p,q) which minimize AH for a particular x 

value, this being the physically correct (election criterion at the 

absolute zero of temperature. In our case this minimization is carried 

out numerically by evaluating for a large number of (a,p,q) values ,

x being kept constant during the proc aurc; it is clear from equations 

(5. 10) that rain'-ization of for .$ fixed x also minimizes at

that x value.

5.2.3 Segregation Parameter

Once we have found the parameters (cx,p,q) which minimize AH for a 

given value of x, we can evaluate our segregation parameter (r) which 

we define a* follows:-

r “ min(p,q)/roax(p,q) (5.1

(5.10a)

l5.IOb)

where min(p,q) is the smaller of p and q 

and max(p,q) is the larger of the two.
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It can be seen from this equation that r»I implies p-q, which in turn 

indicates a om-phaee system (x - p ■ q in equation (5.1)). Recalling 

the experimental finding that PdH^ is a single-phase hydride for 

x a 0.6 (refer to Figure 6.1), we expect to find r * i for x i 0.6; 

this gives us one criterion for evaluating the relative physical 

correctness of our various parameter sets.

o.2. 4 Swjnary of Section S. 2

In this sect . we have firstly laid the foundation for our two-phase 

model by expressing it in lenas of a chemical reaction equation, on 

which we have imposed phyeically-sensible bounder'/ conditions. Secondly, 

we hive implemented this formalism by deriving two-phase expressions 

for the LDOS in terms cf our new two-phase parameters and the one-phase 

ID IS equations. Thirdly, the formulae for the Fermi energy, charges, 

t tal electronic energy and heat of formation follow immediately by 

substituting the two-phase LDOS expressions into the appropriate one- 

phase charge and energy formulae. And lastly, two of the new parameters 

have be-sn used to define a segregation parameter which will help us 

detect phase transitions in the hydride.
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5.3 COMPARISON OF ONE- AND TWO-PHASE RESULTS

5.3.1 LDOS

Figures 5.1 and 5.2 provide a comprehensive comparison between our one- 

and two-phase LDOS (equations (4.5) and (5.5) respectively), with 

Figures 5.1 being plotted using pro.set (a.i > and Figures 5.2 making 

use of prm. set (a.2 ); the parameters (ct,p,q) employed for the two-phase 

results are those which minimize for a given x. We take note of

the following features:-

the two-phase LDOS are generally richer in structure than their 

one-pi.ase counterparts, and usually have d-band peaks centred at 

higher energies than the corresponding single-phase peaks;

the higk-erwrgy shoulders discussed in Section 4.3 are also present 

in the two-phase LDOS, including at lower values of x where they 

do not appear in the one-phase model. However, the twe-phase 

shoulders are of lower intensity than those of the one-phase 

formalism for intermediate values of x;

the most dramatic differences are observed in the hydrogen-related 

peaks below the d band. We see that in general the two-phasa 

LDOS have noticeably lees structure than those of the single-phase 

model for low x, whereas for intermediate values of x the two-phase 

structure is distinctly richer. If we compare Figures 5.1 and 5.2 

we observe that these hydrogen-related peaks both broaden and 

diminish in intensity very considerably in going from prm. set (a.1) 

to prm. set (a.2). Now the only difference between these two



FiguieA 5.1. J-5.J.4 Total LDOS for prm.set (a.1), x * 0.0-0.3. Full curves:
1-phase model; broken curves: 2-phase model; vertical lines: E^o.
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Ftqwiw 5.1. 5-5. I.: Tofl LDOS (or prm.ieL (m.l). x - 0.4-0.7. Full curve#:
I-phase model; broken curves: 2-phase mode 1; vertical lines: E^s.



FiguAiU 5.?.9-5.I.11 Total LDOS for prm.set (a.I), x - 0.8-1.0. full curves:
1-phase model; broken curves: 2-phase model; vertical lines: K_».
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FignAZA 5.2.1-5.1.4 Total LDOS for prm.set (a.2), x * 0.0-0.3. Full curves:
(-phase model, broken curves: 2-phase model; vertical lines • E^s.



5. 2. 5- 5, 2. 8 Total LDOS for prm. set (a.2), x = 0.4-0.7. Full curves: 
1-phase model; broken curves: 2-phase model; vertical lines: E s



Figatu 5.2.9-5.2.11 Tofal LDOS for prm.set (a.2), x = 0.8-1.0. Full curves:
!-phase model; broken curves: 2-phase model; vertical lines- E^s .
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parameter sets is that the former has « 0.0 whereas the latter 

has Vhh -*V^/10.0 3 ' 0,0084^ Ryd, and hence we see that a 

relatively small change in has a considerable effect on the 

low-lying hydrogen-related peaks;

and finally, we observe that for x > 0.7 the dramatic differences 

between the one- and two-phaae LDOS found for low and intermediate 

x have all but disappeared. This feature is particularly encouraging 

since it shows that our two models become almost indistinguishable 

in the high-concentration 6-phase regime, which is precisely what 

we wish to see. Specifically, we observe from the footnotes of 

Figures 5.1 and 5 2 _nat in # L ‘s h ' b- .jncentration region the p and q 

values of the two-phase model are mostly sir'lar in size to their 

associated x value, so that for x > 0.7, our two-phase model is 

seen to converge on one of its special cases, viz. the one-phase 

model.

Having observed the important differences between our one- and wo-phase 

node1s, we now oroceed to find out what effects these differences have 

on our charge and energy formalisms.

5.3.2 Energies, ChargeB and Heat of Formation

In th.s section we compare one- and two-phase results3‘i  ̂ for prm.set (a. I), 

We display the Fermi energies as a function of x in Figure 5.3, plotted 

according to equations (4.13b) and (5.6); we note that the two-phase 

values are lower than the single-phase curve up to x -0.25 and slightly 

higher for 0.3 s x 0.8; on the scale of Figure 5.3 the results for the
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0.41

0.40

0.36

0.35
0.2 0 .4 0.6 0.80.0 1.0

FiguJie. 5.3 Fermi energy V8 x for psrameter set (a.l). Full cur>j: 
one-phase tuuuai, broksa curve, tvo-phsse model.
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two models coincide for x & 0.8, as is to be expected from the findings 

of the previous section. Figures 5.4 to 5.6 show plots of the various 

charges versus x, obtained via equations (4.15) and (5.7); we find that 

the two-phase values are very similar > their one-phase counterparts, 

the main difference being that they exhibit greater oscillation than 

do the one-phase charges. This behaviour is due to an increase in 

numerical instability, which in turn is a consequence of the richer 

structure in the LDOS of the two-phase formalism.

A comparison between the total eleotronia energies appears in Figure 5.7, 

for which we have used equations (4,17) and (5.8); the following features 

are apparent: firstly, the two-phase energies are always less than or 

equal to the one-phase values, in accordance with our minimization 

procedure; secondly, the two-phase curve exhibits greater instability 

than the one-phase curve in the region 0.2 s x 5 0.6, again because of 

numerical considerations; and thirdly, the curves for the two models 

coincide on the scale of this particular figure for most of x z 0.8.

In Figure 5.9 we display plots of our one- and two-phase heats of 

formation versus x, together with Harada's experimental values5,2).

These three curves agree substantially for x i 0.7, whereas for most 

x s 0.7 thti one- and two-phase plots encompass the experimental curve.

Our tuo-phase model tor the neat of formation (A H ^ ) i& seen tu be 

superior to the corresponding one-phase model (6H) for the following 

reasons: firstly, is noticenbV closer in akape to the

experimental curve than AH; and secondly, A H ^  remains negative 

for almost all x values, again in better agreement with the entirely 

exctherrmo experimental curve.



F-cqu/te 5.4 Total charge vs x for parameter set (a.l). Full curve 
one-phase model; broken curve: two-phase model.



10 .4

10.0

9 .6

•o
9 .2

8.8

8 .4
0 .40.0 0.2 0.6 0.8 1.0

Figafte 5.f> Palladium charge vs % for parameter set (a.l).
Full curve: one-phase model; broken curve: two-



F-iguAg. 5.6 Hydrogen charge vs x for parameter set (a.l).
Full curve: one-phase model; broken curve: two- 
phase 2od*l



F-iguAZ 5.7 Total electronic energy vs x for parameter set (a.l). Full curve: 
one-phase model; broken curve: two-phase model.
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0 .0 3 0 .4 0.80.6 1.00.20.0

X

F-cguAe 5.8 Comparison of heats of formation for parameter set (a.!) (full curve: 
one-phase model; broken curve: two-phase model) with the experimental 
results of Harada5*2  ̂ (full curve with full circles).
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In particular we observe that the region where the two-phase model for 

the heat of formation improves the most markedly on its one-phase counter

part coincides to a large extent with the experimentally well-established ttio- 

phase region* viz. 0.01 s x < 0.6 at room temperature5,^  (cf Figure 6.1).

The good agreement between the two models for higher x values is seen to 

coincide with the experimentally-established eingle-phase nature of the hydride 

for x z 0.6 (see Figure 6.1). These improvements to the heat of formation 

indicate that our two-phase model has some physical validity, leading 

us to infer that in the two-phase region the microBaopia structure of 

PdHx is a non-homogeneous distribution of hydrogen, consisting of 

segregated forms of each phase.

We recall from equations (4.20) and (5.10) that our one- and two-phase 

heat of formation expressions differ only in their total electronic 

energy terms, which we have already compared in Figure 5.7. The total 

electronic energy is in turn a function of the Fermi energy (Figure 5.3). 

However, a comparison of Figures 5.3 and 5.7 reveals that the differences 

in total energies between the rwo models correlate only slightly tc the 

positions of the respective Fermi energies. We must therefore attribute 

the differences between the heats of formation largely to other features 

of the band structure, for example the shift in the position of the 

hybridized d^-band peak, which Figures 5.1 and 5.2 reveal to be higher 

in energy for the two-phase LDOS.



5.3.3 Summary of Ssotion 5.3

We have compared results for our one- and two-phase models and found that 

they are substantially the same for x & 0.8 and in close agreement for 

x 2 0.7; this is in keeping with the experimentally-establishei fact 

that PdHx is indeed a single-phase hydride for x a 0.6. The noticeable 

differences between our models for x $ 0.7 manifest themselves specifically 

in the heats of formation, which we are employing as the experimentally- 

verifiable test of these models; a distinct deepening and also a smoothing 

of the 6H curve occurs in moving from our single-phase to our two-phase 

formalism (see Figure 5.8). We are left with a two-phase curve which exhibits 

a smoothness and exothermic nature in keeping with experiment, though 

we notice from Figure 5.8 that the magnitudes of the experimental data 

are "sandwiched" between our on - and two-phase results for prra.set (a.l).

Having established the superiority of the two-phase formalism, we now 

proceed to implement it in further detail.
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5.4 DETAILED APPLICATION OF TWO-PHASE MODEL

5.4.1 Introduction

This section is based on the results and discussion incorporated in our 

third paper5*1*), and serves to establish our two-phase concepts by 

calculating the segregation parameters, related LDOS and heats of 

formation for all nine parameter sets given in Table 3.5 and repeated 

in Table 5.1. Instead of thinking in terms of nine separate parameter 

sets we prefer rather to consid three groups of three set?» where only 

the first set in each group is in keeping with our original choice of 

hydrogen-hydrogen interaction parameter (Section 3.7).In effect we are 

considering only three key parameter sets (a.l, b.l, c.l), each one 

complemented by two arbitrarily-perturbed sets (a.2 and a.3, b.2 and b.3, 

c.2 and c.3 respectively). The three key sets differ only in their 

choice of hydrogen-palladium interaction strength V^; set a.l incorporates 

the Vhd value derived in Section 3.7, white for sets b.l and c.l 

are respectively bigger and smaller by the arbitrary factor chosen 

for convenience in accordance with equation (3.24). Our results for 

each physical quantity are presented in the form of three adjacent figures, 

referring to parameter sets a, parameter sets b and parameter sets c 

respectively.
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Set "hd Subset

a. 1 0.0

V a.2 ♦V/10.0

a.3 -v / io . o

b. 1 0.0

b •/2V b.2 ♦ v / 1 0 . 0

b.3 - v / io .o

c. 1 0.0

V,/2 c.2 ♦V/10.0

c. 3 -v / io .o

V - - 0.08485 Ryd

Table 5.I Parameter sets used for present calculations. The

choice of the factor /2 follows from equation (3.24). 

The non-zero values have been chosen arbitrarily. 

Vdd " "0.0298 Ryd and U - 0.185 Ryd are used in all
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S.4.2 Segregation Parconeter Results

Curves of r versus x, plotted according to equation (5,11), appear

in Figures 5.9a-5.9c. We see immediately that we do indeed have the

desired behaviour of r for higher values of x, viz. r -*■ I at some

"critical” x value (x , ) and r = 1 for x > x . . The abruptness crit crxw
of the upswing in v and the maintenance of large r values for x > xce.£C 

indicate that the two-phase formalism is qualitatively successful in 

modelling the transition of the hydride into the 8-phase at higher 

concentrations of hydrogen. The only parameter set which gives a 

quantitatively accurate transition concentration is set (a.3) for which 

xcrit * 57 (cf the experimentally-predicted value of *cr£t = 0.6: see

Figure 6.1); for the other sets we have 0.73 s xcrit s 0.94, though 

the upper limit is probably pessimistically large due to oscillations 

caused by numerical instabilities in the calculations with sets c (this 

instability is apparent from our results for the heats of formation below).

We now proceed to evaluate the LDOS for the various parameter sets 

"  " ' 'criC

m a s

In Figures 5.10a-5.10c we display plots of the two-phase total LDOS, each

evaluated for x - x^^, and for parameters (ct,p,q) which minimize

AH*  ̂ at xcr£t* The value of x * xcr^t was chosen to give us insight 

into the electronic behaviour of the h>_&ride at its high-concentration 

phase boundary, bearing in mind the physical importance of such boundaries.
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In comparing Figures 5.!Oa-c ve must bear in mind that the corresponding 

curves differ for two reasons, viz. the respective values of and

employed; we must therefore be careful to distinguish between these 

two effects. We firstly confine our attention to the case ■ 0.0

in each of Figures 5.lOa-c; for these plots the x . values are roughly 

0.78, 0.81 and 0.92 respectively. The first two values are

sufficiently close for us not to expect any significant effects in the 

LDOS due to their difference (compare with the same range of x values 

in Figures 5.1). We can thus safely state that the broadening and 

diminished intensity of the hydrogen peak in going from Figure 5.10a to 

5.10b is due to the increased magnitude of V ^ ,  in accordance with our 

findings of Section 4.3.2. Furthermore we observe that the hydrogen 

m d  perturbed palladium states are particularly sharply peaked in the 

case of Figure 5.10c; this sharpness of the hydrogen band is particularly 

surprising because of the high x value employed for this plot 

(xcrit ~ 0.92), recalling that we have previously associated high x 

values vi'h 1 «c><2d! hydrogen bands (see Figures 5.1). The effect can only 

be due to the small magnitude of used; this is physically sensible 

because we expect the hydrogen band to '‘condense" into a localized state 

when the interaction between the interstitial hydrogen and its various 

neighbours becomes sufficiently small. We also notice the expected sharpening 

of the d-banti peaks with decreasing magnitude of V^, a feature which in 

conjunction with the hydrogen band 'peakiness" just diseased gives rise to 

numerical instabilities in [he integration of the LDOS of Figure 5.10c.

We now examine the effact of "switching on" the interaction . It is 

seen that for a given value of the hydrogen bonding peak is broadened,
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diminished in intensity and lowered in energy when i-s made negative, 

while che opposite effects occur for positive V^, suggesting that the 

hydride should be most stable fcr the case < 0.0. However we have 

already seen in Section 4.5.3 and will see again below that this is not 

the case; hence we deduce that the upward shift of the hybridized d-band 

peak observed for the case <0.0 causes an increase in Che total

electronic energy which offsets the tergy reduction due to the downward

shift of ths hydrogen states. The d-band peak is in the range (2.5±0.5)eV 

below Ep f°r all parameter sets employed, so that ve again have the 

agreement with the experimental results of Schlapbach and Burger5,5) found 

in Section 4.3.2 (we recall that these workers found a slight -increase 

in the d-band DOS of PdHo 6 at 3 e" below Ê ,). Furthermore our lower, 

hydrogen-related peak is centred between 7.6 and 9.0 eV below E^, again 

consistent with Schlapbach and Burger's result of approximately B eV5*5).

Ine Fermi energy is seen to fall in a region where the LDOS is changing 

rapidly, particularly for parameter sets a and c, and we notice that the

LDOS at the Fermi energy drops with increasing V^. We observe the

expected shoulder in the LDOS above for sets a, which partially resolves

into a peak for sets b but which is absent for sets c.

Having gained some insight into the electronic structure of PdH^ for the 

various parameter sets, we ate n uw iu a positi-H. w appreciate mere fully

the corresponding heats of formation.
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5.4.4 Heat of Formation Results

We have agiin plotted  ̂ versus x ace >rding to equations (5. 10) and 

the results appear in Figures 5.11a to 5.1ic, where we also show the 

experimental curves of Harada5*2) and Kuji et al5 , We observe that 

sets c.1 and c.3 give rise to curves which oscillate considerably, 

this being indicative of instabilities in the numerical quadrature 

procedure employed. However, the remarkably smooth curve obtained for 

parameter se" c.2 suggests that this instability might not be purely 

numerical in nature, possibly reflecting the reaction of the modt1 to 

physically-unacceptable parameter sets. If this is the case then the 

dist: smoothing out of the curves for larger nu s m i t u d e s  of would

indicate that the parameter sets with the larger values are 

physically more correct.

We observe that for the energetically and numerically more stable 

parameti* sets a and b the positive value makes the hydride

energetically more stable whereas the negative value has the opposite 

effect; some of the electronic features contributing to this behav-our 

were discussed in Section 5.4,3. It can be seen that our plots of 

 ̂ versus x are in qualitative agreement wit*- experiment, both as 

far as shape and exothermal properties are conLcmed. However our A H ^  

minima are two to three times larger in magnitude than the experimental 

ones. Because our LDOS are consistent with experimental photoelectron 

results5,5  ̂ and with the essential features of detailed band structure 

calculations^"G),5.7),5.d) £t wou^d appear that the electronic 

contributions to from our formalism are not seriously at fault,

but rather our modelling of the band-shift and elastic terms; we note
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that difficulties in accomodating the elastic energy have been experienced 

by other workers5,^ .

S. 4.5 Summary of Section S.4

In this section we hava applied our two-phase formalism in some depth, 

making use of all our parameter sets. We have firstly evaluated the 

segregation parameter r as a function of x and in all cases have found 

a sharply-defined "critical" hydrogen concentration (xcr£t) at which r 

increases very rapidly to values close to unity; is in the range

0.57 i x i U.'A, and we have r 3 I for x > In terns of our

definition of r this means that our model gives rise to a phase transition 

at xcr£t, with a single phase being present for x > x^.^. This is in 

good qualitative agreement with the experimentally-established phase 

transition at x = 0.6, with only the 6-phase being present for x > 0.6.

In order to obtain insight into the electronic properties of the hydride 

at the phase transition we have also plotted the LDOS for each parameter 

set at x - xcr.t> finding inter alia that these LDOS become narrower 

and more sharply-peaked for smaller magnitudes of V^. We have finally 

given plots of the heats of formation for the various parameter sets, 

finding that a weik metal-hydrogen interaction (small absolute value 

of V^) results in a shallow and osci1 ating curve for the heat of 

formation, whereas larger absolute values of give rise to smoother, 

more exothermic curves. The oscillatory behaviour for small magnitudes 

of is a direct consequence of the narrow, sharply-peaked bands found 

in the LDOS for such values.
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at the phase transition we have also plotted the LDOS for each parameter

set at x - *cr£t* finding inter alia that these LDOS become narrower 

and more sharply-peaked for smaller magnitudes of V^. We have finally 

given plots of the heats of formation for the various parameter sets, 

finding that a weak metal-hydrogen interaction (small absolute value 

of results in a shallow and oscillating curve for the heat of

formation, whereas larger absolute values of give rise to smoother, 

more exothermic curves. The oscillatory behaviour for small magnitudes 

of Vhd is a direct consequence of the narrow, sharply-peaked bands found

in the LDOS for such V , values.



5.5 SUMMARY OF CHAPTER 5

In this chapter we have introduced and demonstrated the superiority of a 

model which accommodates the two-phase characteristics of PdH^. This 

two-phase model is based on the assumption that the hydride consists 

of two segregated, non-interacting phases, each with the essentially 

random nature of the one-phase model developed in Chapter 4. The more 

sophisticated two-phase formalism requires that we implement a numerical 

energy-minimization technique which results in a more computationally- 

intensive method for evaluating the correct electronic energies of the 

system; we nevertheless consider the marked improvement in our heats of 

formation to be ample justification for implementing the two-phase 

approach.

A further benefit of this improved formalism is that it allows us to 

evaluate a suitable segregation parameter, which successfully predicts 

the highcr-concentration phase transition in PdH^.

These successes in describing aspects of the phase behaviour of the 

hydride encourage us to apply our two-phase model to the thermodynamics 

of the system, even if only in a semi-qualitative manner.

t
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APPENDIX 5.I

EQUIVALENCE OF ONE- AND TWO-PHASE MODELS FOR X - 0 AND I 

Wo recall equations (5.2) and (5.3a) respectively:-

x * ap + (\-a)q

Solving equation (A5,1.I) for a and applying equation (A5.1.2) 

we obtain:-

0 < JCS < Ip-q

Assuming p > q, it firstly follows from equation (A5.1.3) that:-

x - q < p - q 

x < p

and secondly that:-

x - q > 0

x > 4

Equations (A3.1.4) and (A5.I.5) together give us q < x < p, or mor 

fully:-

0 < q < x < p i l

(A5.1.1)

(A5.1.2)

CAS.1.3) 

(A5.1.4)

(A5.1.5)

(A5.I.6)



For the case x -*• 0 equation (A5.I.6) gives q -♦ U, which when substituted 

into equation (A5. 1,1) results in p -*■ 0 (recalling that u > 0). Hence 

we have p -» q -+ x -» 0, proving that the two-phase model reduces to the 

one-phase model as x -*■ 0.

For the case x -*• 1 we obtain p -*• 1 from equation (A5.1.6) which we also 

substitute into equation (A5.1.I) to obtain the result q ■* 1. So we 

are left with p -» q -» x -» 1, which proves that the two models are also 

equivalent as x * 1.

Similar arguments can be used for the case p < q.
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C H A P T E R  6 

THERMODYNAMIC CONSIDERATIONS

6.1 INTRODUCTION

Most of the thermodynamic models for PdHx are expressed in terms of a 

semiempirical partial predsnre equation (Section 1.2.8) so as to facilitate 

direct comparison with experimentally-known pressttre-composition isotherms. 

This equation is characterized by a aorr&ation term (the so-called 

excess ahemiaal potential) for modelling the nan-ideal behaviour of the 

system, and we wish to determine how effective our one- and two-phase 

formalisms are in describing this non-ideal contribution. To do this 

we divide the excess chemical potential into its enthalpic and entropic 

contributions, for each of which we develop one- and two-phase models; 

we then incorporate these terms in the underlying partial pressure 

equation, thereby obtaining our own one- and two-phase expressions for 

the partial pressure. We are then able to compare both our formalisms 

with experimental isotherms in order to ascertain which is more 

applicable to the palladium-hydrogen system.

In Section 6.2 the semiempirical partial pressuri equation is derived 

and discussed, with an emphasis on the enth«*ipic at: entropic parts of

the correction term; in Sections 6.3 and b.*f we develop suitable models 

for the enthalpic and entropic contributions respectively to the 

correction term; in Section 6.5 we generate pressme-composition isotherms 

using both our partial pressure equations, enabling us to compare our 

models with experiment and with each other; and finally the important 

findings of this chapter are summarized in Section 6 .6 ,



6.2 SEMIEMPIRICAL MODELS

6.2.1 Underlying Formaliam

The following is a fundamental thermodynamic equation for a metal hydride 

in equilibrium with an atmosphere of molecular hydrogen6•1)p •75.„

"a " I %  (*-'>

where and are the partial Gibhe free energies of atomic hydrogen 

dissolved in the lattice and molecular hydrogen gas in the surrounding 

atmosphere respectively.

For the case of an ideal solution (that is very low concentration) 

Sieverts' Law6'1)p•75 holds for the dissolved hydrogen gys, giving rise 

to the following approximation for x << I

^  (6.2)

where y° is the standard ahemiaal potential of hydrogen in the lattice 

(that is the chemical potential at infinite dilution of hydrogen), R is 

the universal gas constant (Boltzmann*s constant kg multiplied by 

Avogadro* s number N^), I is the absolute temperature of the system and 

b is a site-availability parameter (see Appendix C.l).

Assuming that the molecular hydrogen can be modelled by an ideal gas
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where is the chemical potential for the hypothetical case of 

infinitely-dilute molecular hydrogen, and p ^  is the partial pressure 

of the molecular hydrogen gas in atmospheres; both these are experimentally- 

acceusible quantities.

Because we are interested in all concentrations 0 < x < I and not merely 

the ideal case x << I * we must add an x-dependent correction term (the 

excess chemical potential, to the right-hand side of equation (6.2), 

giving rise to the following more general equation:-

'-H * "H * RTtn * UH (6,4)

Substituting equations (6.3) and (6.4) into equation (6.1) gives us 

the following parrial pressure equation, commonly used in the application 

of semiempirical formalisms6,

o E

wh.r. ^  - I %  .

Kuji et al6,3) express the excess chemical potential in the following 

manner:-

fg " wj) - TSg (6.6)

where and sjjj are the partial excess enthalpy and entropy respectively.

Now the term £n x/tb-x) in equation (6.5) is also entropic in nature 

(Appendix 6.1) and hence equation (6.5) contains tuo entropic contributions.
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Substituting equation (6-6) into equation (6.5) gives us:-

^ ( P ^ / aCm) (6.7)RT R

where the entropic terms are grouped together in square brackets. The 

left-hand side of equation (6.7) is known from experimentally-determined 

pressure-composition isotherms (for example Figure 6.1) and so the success 

of a given semiempirical foimaUsm is determined by the accuracy with 

which the right-hand side of equation (6.7) reproduces the experimental 

trends.

In modelling the right-hand side of equation (6.7) we make use of the

values provided by Kuji et al6,3); the specific values used are uisplayed 

in Table j.1 (see Section 6.5). In the following two sections we derive 

expressions for tî /RT and for the aorribimd entropic contribution viz.

[sjj/R - Jinx/ (b-x)-] , employing both our one- and two-phace models.

6.2.2 Surrmary of Section 6. 2

In this section we have applied standard thermodynamic equations to the 

PdH^ system in equilibrium with an environment of molecular hydrogen.

The equation describing the partial Gibbs free energy of hydrogen in 

PdH^ strictly applies only to low hydrogen concentrations; hence a

corr-eation term, referred to as the excess chemical potential, is added 

to make this equation physically acceptable at higher values of x. The 

correct modelling of this non-ideal correction term is the key challenge 

to electronic and other formalisms applied to these simple underlying 

thermodynamic equations. For convenience we have followed the asual 

procedure of combining the equations into a single eq - .ibrium equation
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for the partial pressure of molecular hydrogen gas, bearing in mind that 

the pressure-composition isotherms are known from experiment. We 

have followed Kuji et al6*3) in separating the excess chemical potential 

into its enthalpic and entropic parts, paving the way for the analyses 

in the next two sections.
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6.3 PARTIAL EXCESS ENTHALPY

6. 3. 1 Similarities between and our Formalism

The only enthalpy-related quantity in our formalism is the heat of 

formation (AH), and we demonstrate in a semi-quantitative manner 

that the partial excess enthalpy (H^) can be modelled using our 

heat of formation expressions. Firstly, we see from Kuji et al5*3) 

that Hy is an excess quantity in the sense that it tends to zero with x; 

both our one- and two-phase heat of formation expressions have the 

same property (see equations (4.20) and (5.9b) respectively). Secondly, 

we see from Figures 5.11 that Kuji et al's values and our two-phase 

AH curves are similar in shape and exothermicity. Now Figures 5.11 also 

reveal that the minimum of Kuji et al's curve is similar in magnitude 

to the minimum of Harada's heat of formation curve5*4), and we recall 

from Figure 5.8 that Harada*s values fall roughly midway between our one- 

and two-phase AH results; hence also falls in this range, making it 

comparable in magnitude to our AH model or most values of x.

6. 3. 2 Sumnry of Section 8.3

We have found that is compatible with our two-phase AH curve shown 

in Figure 5.8 (parameter set (a.I)), both in shape and exothermicity, 

and that it hs? vhiVh fa 11 hofwoen our one- and two-phase curves;

further, and our AH functions are all excess quantities. On the basis 

of these similarities we choose to model H^ by moans of both our one- 

and two-phase heat of formation expressions (equations (4.20) and (5.9b) 

respectively).

We now consider the entropic contributions to the system.



6.4 ENTROPY CONTRIBUTIONS

6.4.1 Formulae and Results

In Appendix 6.1 we derive the following expression for the integral ideal

configurational entropy per mole of metal atoms:-

S(x)/R " - [x in x - b £n b + (b-x)2.n(b-x)J (6.8)

By taking the derivative of S(x) with respect to x we then obtain the 

following expression for the partial ideal configurational entropy per 

mole of hydrogen atoms:-

S'(:)/K - - in ̂  (6.9)

which corresponds to the second entropy term in equation (6.7) Because 

S(r) and S' (x) are functions of x only and not of (a,p,q) we rxay think 

of them as one-phase quantities. Ideally we would have b-1 for the case 

where atomic hydrogen occupies the octahedral interstitial sites in 

palladium metal. It is however usually found that semiempirical models 

of the type describ d by equation (6.7) only concur with experiment for 

values of b < 1 6,< An entropic expression which requires b < I is 

consistent with the so-called blocking model**' concept, in which short- 

range electronic repulaiom between hydrogen atoms prevent the total 

number of interstitial sites from being occupied. This assumed existence 

of repulsive hydrogen-hydrogen interactions suggests that the blocking 

model corresponds most closely to those of out parameter sets which 

have V.^ > 0. However we should note at this point that the blocking 

concept (b < 1) is of only limited applicability to PdH^ because the
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stoicniometric hydride, for which we require h-i, is in fact experimentally 

obtainable. In the present analysis we will make the simplifying assumption 

that blocking effects are absent altogether, and will thus work with the 

original set of parameters derived in Chapter 3, viz. prm.set (a.l), 

for which * 0.0. Neglect of the blocking model allows us to occupy 

all the interstitial hydrogen sites, that is we can choose b-1; 

substituting this into equations (6.8) and (6.9) results in the 

following expressions for our oiie-phase entropies:~

where we now place the minus sign on the left-hand side for more convenient 

comparison with equation (6.7).

configurational in nature; they refer to this dominant term as the non-ideal 

configurational entropy. Hence the combined entropic contribution to 

equation (6.7) is essentially in nature, consisting

chiefly of one ttkal and one non-ideaZ configurational entropy term.

On the basis of this observatic- we will firstly approximate the comcinea 

entropy terms of equation (6.7) by means of our one-phase configurational 

formalism (equation (6.11)), and secondly by means of a purely configurational 

two-phase entropy formalism which we will now derive.

-S^(x)/R - (x In x ♦ (l-x)ln(l-x)] (6.10)

and

(6.11)

We next consider the other entropy contribution to equation (6.7) viz. S^. 

Kuji - al6*3  ̂ have carried out a detailed analysis of their experimentally- 

measured s!% values and conclude that the dominant contribution to S» is
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We recall from Section (5.2) that our two-phase model is based on the 

following reaction equation:-

where p and q are the concentrations of the two constituent phases 

and a and (l-a) are the respective fractional amounts of these two 

phases.

In Appendix 6.2 we apply combinatorial arguments to the two-phase model 

and thereby obtain the following expression for the integral two-phase 

configurational entropy

-S^2)(a,p,q)/R - a [p in p + (i-p) in( l-pf] + (l-a) Q; in q +

Taking the appropriate partial derivatijee and allowing for the mathematical 

singularities at p-q, p,q=0 and p,q*l (Appendix 6.2)$ we obtain the 

following expressions for the partial two-phase configurational entropy 

of hydrogen:-

PdH - a PdH + (I-a)PdH x p q (6.12)

•* (l-q)in(l-q>3 + a in a > (l-a)in(l-a) (6.13)

(6.14a)

where 5^. (p) ■ p in p > (l-p)in( i-p)

and S ^ ( q )  » q in q * ( f-q) in( I-q)
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1 -x (6. 14b)
or p,q-l

For our plots of -S^2^(a,p,q)/R and -Sj2^(a»p,q)/R versus x we employ 

the same (a,pfq) values as were used to obtain the two-phase total 

electronic energy curve in Figure 5.7.

In Figure 6.2 we show plots of the integral configurational entropies

(multiplied by -I) versus x for our one- and two-phase models (equations

(6.10) and (6.13) respectively). We observe that the one-phase curve

is symmetrical about x ■ 0.5, whereas this is not so for the two-phase

curve which reaches a minimum just below x - 0.5 (cf Figure 9 of Kuii et al6,3),

in which their ideal integral configurational entropy is symmetrical

about x * 0.5 whereas their total integral entropy curve lacks this

synsnetry).

Plots of our one- and two-phase partial configurational entropies 

(multiplied by -1; see equations (6.11) and (6.14) respectively) appear 

in Figure 6.3, where we note Chat the one-phase curve is an odd function 

about x - 0.5 whereas the two-phase curve lacks any such symmetry; 

we do however observe that both curves pass through zero at x - 0.5.

The two-phase values are generally greater in magnitude than the one- 

phase values by roughly a factor of three; the significance of the 

greater nagnitude of the two-phase values will become evident in 

Section 6.5.
a
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b r o k e n  c u r v e  with stars; t w o - p h a s e  m o d e l .
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3.4.2 Surmary of Section 6. 4

In this section we have derived one- and two-phase entropy expressions 

with which to model the combined entropy contribution to the semiempirical 

partial pressure equation (equation (6.7)). We are able to approximate 

the combined entropy by means of our purely configuretionaI one- and 

two-phase formalisms because we have seen that the entropy of Pdll̂  is 

predominantly configurational in nature. The integral two-phase entropies 

are found to be asymmetric about x » 0.5 (in qualitative agreement with 

the experimentally-derived results of Kuji et al6,3'*), while the partial 

two-phase entropies are fmmd to be larger in magnitude than the 

corresponding one-phase v.xlues by roughly a factor of three, the 

significance of which will be appreciated in Section 6.5.

We are now in a position to write down our one- and two-phase partial 

pressure equations.
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6.5 APPLICATION OF OUR MODELS TO THE SEMIEMPIRICAL EQUATION

6,5.1 Partial pressure Equations

We recall that in Section 6.2 the following semiempirical partial pressure 

equation was derived:-

„E

RT
I 4--Er * 5T " s-1 (6.7)

where we have chosen a b-value of unity and where Patm s 101.3 kPa 

(the various energy terms on the right-hand side being expressed in kJ).

We now substitute the results of Sections 6.3 and 6.4 into equation (6.7) 

to obtain one- and two-phase partial pressure equations, viz.

ONE-PH.
ln(pH2>J - £n(101.3)

AllH
RT" RT R (6.15)

TWO-PHASE;-
(6.16)

where AH* ^(x) and AH* ^ (a,p,q) are given by equations (4.20) and (5.9b) 

respectively and where Sj {  ̂(x) and SJ2) (cifp,q) are given by equations 

(6.1') and (6.14) respectively For the partial entropies we employ 

the values displayed in Figure 6.3, and the heat of formation values are 

the same as those appearing in Figure 5.8. Our Au° data are displayed

Table 6.1 and are taken from Kuji et al6*3).
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T(K) 'kJ moVlH)

300 7.05

350 9.68

400 12.26

450 14.30

500 17.35

Table 6.1 Ay° values used in the present study (from Kuji et al6*3)).

6.S. 2 Results and coniparison with c'zp&riment

It is clear from equations (6.15) and (6. 16) that each of our partial 

pressure formalism? requires us to provide both enthalpic and entropic 

terms. In order to evaluate the relative importance of these contributions, 

we plot the isotherms of each model for the case of zero partial 

entropy in addition to S' i* 0. The case of zero entropy (as opposed 

to zero enthalpy) is considered because eotropic considerations are 

introduced for the firrt time in this chapter and it is thus of interest 

to examine their particular contribution.

In Figures 6.' a-o we present the one-phase results; specifically,

Figure 6.4a is obta ned from equation (6.15) for the case (x) - 0

end Figure 6.4b for the case of Sj^(x) # 0, while Figures 6.4c and d 

are simply numerically-smoothed versions of Figures 6.4a and b respectively 

(a combined spline-least-squares fitting routine was employed6,6)). The 

two-phase isotherms (equation (6. 16)) are similarly presented in Figures 

6.5a-d, where Figure 6.5a represents the case for which (a,p,q) - 0,
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Fig. 6.4a
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Fig. 6.4b X

r-iguAed 6.4a.£b Pressure-composicion isotherms for the one- 
phase model, using prm.set (a.l).
Fig.6.4s: zero entropy;
Fig.6.4b: non-zero entropy.
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Fig.6.4d x

r^guACS 6.4c£d Pressure-composition isotherms for the one- 
phase model, using prm.set (a.l).
Fig.6.4c: zero entropy (smoothed isotherms);
Fig.6.4d: non-zero entropy (smoothed isotherms).
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F.igu/i&6 6.5a$.b Pres sure-compos it ion isotherms for the 
phase model, using prm.set (a.l).
Fig.6.5a: zero entropy;
Fig.6.5b: non-zero entropy.
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FiquAeA 6.5cXd Pressure-compos ition isotherms for the two- 
phase model, using prm.set (a.l).
Fig.6.5c: zero entropy (smoothed isotherms); 
Fig.6.5d: non-zero entropy (smoothed isotherms).
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Figure 6.5b the case for which s j2  ̂(ct*P»cl) t °» an(i where Figures 6.5c 

and d are the respective smoothed isotherms.

Comparison of Figures 6.4 with the experimental isotherms displayed in 

Figure 6.1 reveals that the one-phase model breaks down for x 5 0.7, 

that is over the entire two-phase region (0.01 S x < 0.6) , as w< would 

expect of a single-phase formalism. We notice that for x s 0.7 the non

zero entropy contribution results in steeper (and hence more acceptable) 

isotherms than the ■ 0 case, thus confitning the validity of

including an entropic contribution in our one-phase model.

In contrast to the one-phase findings, we observe from Figures 6.5 

that the two-phase isotherms are in substantial qualitative agreement 

with experiment for x & 0.2. More specifically we note that the non

zero entropy contribution ( S ^  in this case, see Figure 6.3) again 

improves the shape of the isotherms, giving a slightly steeper rise for 

higher x; it also lowers the isotherms in the region x s 0.5, making 

cher more compatible with the plateau region clearly discernible in 

Figure 6.1. With reference to the case f 0 we have qualitative

agreemei.;. '-ith experiment in the following specific features:-

fairly flat agions (known as plateaus) in the isotherms 

for intermediate x values (correspcnd_ng to the tvo-phase 

region of the hydride), followed by snarp rises at uighei 

concentrations;

the isotherms do not cross, and the higher-temperiture 

isotherms always remain above the lower temperature ones;
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- the spacing between the isotherms decreases with increasing 

temperature.

The chief quantitative differences between our two-phase isotherms and 

experiment have to do with the depth, width and absolute position of the 

plateau region, and the behaviour for x % 0.2:-

- depth of plateau regioA. By "depth" we me-a the separation 

be’-vefcn the 300 and 500 K isotherms in the plateau region 

(x 3 0.5). By comparing Figures 6.5 and 6.1 we see that 

our two-phase depth is greater than the experimental one by 

roughly a factor of two, a difference which is largely 

attributable to the factor two deviation in our two-phase 

heats of formation (see Figure 5.8). A comparison of Figures

6.5a and b reveals that the entropic contribution has very

little effect on the depth of our two-phase plateau region, 

confirming that the discrepancy is chiefly enthalpic in 

origin. To keep this deviation in its proper perspective

we should bear in mind that the agreement of our two-phase 

heats of forma*ion with experiment to within a factor of two

or three (Section 5.4.4) is in fact a remarkable uclu' : » nt

in the light of the considerable cancellation effect . involved 

(Section 4.5.3).

- width of plateau region. This remains constant for all our 

isotherms whereas the experimental plateau t~gion diminishes 

with increasing temperature, disappearing at a well-defined 

critic:! temperature. Our model lacks this feat.re because

both our enthalpy and entropy terms are independent of temperature 

resulting in isotherms of unvarying shape.



absolute positions of isotherms in the plateau region. Taking 

our isotherm values at x - 0.5 as the rough plateau positions 

we observe that our plateaus do not coincide with the experimental 

ones; this is partly a consequence of the greater depth of out 

plateau region discussed above, which causes our isotherms to be 

more spread out than the empirical ones. The fact that our 

plateaus are not completely flat is a further source of error 

in that the actual plateau position cannot be unambiguously 

defined; we note from a comparison of Figures 6.5a and b that 

the entropy term has a considerable influence on the flatness 

of the plateaus (although we have seen that it does not 

significantly affect the depth of the plateau region). ye finally 

point out that our theoretical isotherms need to be lowered by a 

eonstafit term (in(PaCni)̂  ™ 2.31, see equation (6.16)) when comparing 

them with the experimental isotherms of Figure 6.1.

behaviour at lav x. Figures 6.5 indicate that our two-phase 

model breaks down for x s 0.2 in that it does not predict the 

sharp downswing in the isotherms at ow x revealed by experiment 

(Figure 6.1). Comparison of Figures 6.5c and d (or Figures 6.5a 

and b ) shows that Che presence of the non-zero two-phase entropy 

term noticeably improves our model at low x, suggesting that the 

enthalpic contribution is at fault in this concentration range. 

Indeed it is clear from Figure 5.8 f' igh our two-phase

heat of formation model is distL. than Its one-phase

counterpart, it nevertheless exhibits ..datable instabilities 

at low x, including physically-incorrect endothermic behaviour 

for certain concentrations. Thus the partial pressure isotherms



simply highlight the fact that our heat of formation models 

are least successful in the low-concentration regime.

f. J. J Th&vmud^namia stability of two-phase Model

Finally we briefly report on some observations related to the stability 

of PdHx as a function of temperature. Our two-phase theory (see equation 

(6.16)) gives us:-

A W g . A ^  + a i l O - T S '  (6.17)

In Figures 6.6 we show smoothed isotherms of 6#^ versus * calculated using 

equation (6.17) and with prm.set (a.l); we recall from Section 3.7 that 

this set constitutes the best choice of interaction parameters. In 

particular we compare for the case of aero two-phase entropy (Figure 

6.6a) with that of non-zero two-phase entropy (Figure 6.6b).

The important point is that the system is exothermic (and hence stable) 

when Apy < 0 while being endothermic (am therefore unstable) for > 0.

We are thus interested in concentrations which Ay^ ■ 0; these can 

readily be obtained from Figures h.6 and a&u displayed in Table 6.2 along 

with some experimental values deduced from ? i i et al5** *).

Our theoretical results indicate firstly that the hydride becomes less 

stable with increasing temperature (that is the iscH erms become less 

negative, see Figures 6.6) and secondly that the highest concentration

attainable decreases with increasing temperature (Figures 6.6 and leV • 6.2); 

both these observations are physically sound because ws expect that for 

a given value of x the hydride will become less stable as its tl.jrroal energy 

(which is proportional to temperature) increases. Furthermore, our
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F-cguAea 6.6a.ib Tsotherms of Gibbs energy vs x for the 
two-phase model, using prm.set (a.!).
Fig.6.6a: zero entropy (smoothed isotherms);
Fig.6.6b: non-zero entropy (smoothed isotherms).



x (&tiH - 0)

I (K) 2-phase theory, prm. set (a.!) Experiment

(Kuji «t .1* 3), Fig.*)

300 M . O 0.91 ■vO.8

350 0,97 0.87 -

400 0.94 0.82 M3.6

450 0.90 0.76 -

500 0.87 0.70 -

Table 6.2 Concentrations (x > 0.5 only) below which tin PdHx system

is exothermic, as a function of temperature.

theoretical predictions are in reasonable agreement with the experimental 

results of Kuji et al6*3  ̂ (see their Figure 4 and our Table 6.2), our 

non-zero two-phase entropy model again proving superior to our zero- 

entropy formalism (Table 6.2). Our two-phase theoretical model is thus 

once again consistent with experiment.

6. S. 4 Summary of Section 6. 5

We have derived one- and two-phase paitiai pressure equations, finding 

that the one-phase formalism generates incorrect isotherms over the 

entire two-phase concentration region, while the two-phase modal is 

qualitatively correct for x * 0.2. Specifically, t’ue two-phase isotherms 

have a fairly flat plateau region followed by a sharper rise at higher

values of x, and the iiso-herms do not cross but ’>9cvme more closely

packed with increasing temperature.
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For both one - and two-phase models the isotherrs were also plotted for 

the case of z e ro  configurational entropy, resulting in a shallower rise 

at high concentrations and an elevation of the isotherms for lower x; 

because both these changes lead to physically less-satisfactory results, the 

present calculations reveal that the configurational entropy plays an important 

part in our partial pressure models.

The two-phase formalism is quant'C ta t'C veZy inaccurate in the following 

respects: firstl>, its plateau region is too deep by a factor of two, 

corresponding closely to a simili- discrepancy in our two-phase heat 

of formation curve; secondly, its plateau region is constant in width 

(instead of diminishing as temperature increases) because our heats 

of formation and entropies are temperature-independent; thirdly, the 

absolute positions of the isotherm plateaus are incorrect because our 

two-phase heat of formation curve differs from experiment in both shape 

and depth, and possibly also because of inaccuracies in the concentration- 

independent terms of our two-phase equation; and fourthly, the two-phase 

model bveakr down for x s 0,2 as a consequence of instabilities in the 

corresponding heat of formation in t’ • low x regime.

Finally, we find that the temperature dependence of the stability of the 

hydride follows experimentally-established trends.
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6.6 SUMMARY OF CHAPTER 6

We have successfully employed our two-phase model for the heat of formation 

of PdHx (described in Chapter 5) to obtain pressure-composition isotherms 

in substantial qualitative agreement with experiment. This was achieved 

by applying our formalism to a standard thermodynamic equation for the 

partial pressure of hydrogen gas in equilibrium with specifically,

we were required to provide enthalpic and entropic contributions for this 

expression.

We firstly demonstrated a number of similarities between our heats of 

formation and the enthalpy results employed by Kuji and coworkers in 

their partial pressure formalism; hence we chose to model the enthalpic 

contribution to the partial pressure equation by means of our one- and 

two-phase heats of formation.

We next established that the entropic contribution is predominantly 

configurational in nature, and so proceeded to derive one- and two-phase 

configurational entropy expressions to model this contribution.

To complete our models we made use of standard chemical potential data 

provided by Kuji and coworkers.

We have found that our one-phase partial pressure equation produces 

incorrect isotherms for x $; 0.7, that is, over the entire two-phase region 

of the hydride, as would be expected for a single-phase formalism. However 

cur two-phase results are in qualitative agreement with experiment for 

% ) 0.2. In particular we notice that the presence of the configurational 

entropy term improves the shape of Che isotherms at high and low x. The



quantitative shortcomings of the two-phase isotherms are closely related 

to discrepancies between the depth and shape of our two-phase heat of 

formation curve and the experimental results, and also to the lack of 

temperature dependence in both our heat of formation and entropy expressions. 

The breakdown in the two-phase model for x S 0.2 correlates closely to 

instabilities in the corresponding heats of formation for this concentr ition 

range.

Finally, the temperature dependence of the thermodynamic stability of 

the hydride is found to follow experimental trends.

In this chapter we have demonstrated the qualitative applicability of 

both our two-phase heat of formation model ami our two-phase configurational 

entropy expression to the experimentally well-known pressure-composition 

isotherms of PdH^; we have also confirmed that our two-phase formalism 

is of wider applicability than its one-phase counterpart.
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APPENDIX 6.I

IDEAL CONFIGURATIONAL ENTROPIES

Consider a metal hydride MH consisting of one mole of metal atoms, 

with b interstitial sites available per atom (we assume b > x). This 

gives us $Ab interstitial sites with hydrcgen atoms available to 

occupy them (where is Avogadro’s number). The total number of 

possible configv ations is obtained in the usual combinatorial manner 

as follows

where kg is Boltzmann's constant.

Further, for large integers n we obtain the following simplifying 

equation via Stirling's approximation:-

" : (ly o :

The ideal configurational entropy is given by:-

S - in V (A6.I.2)

ln(n!) 3 n In n - n (A6.I.3)

Substituting equation (A6.1.1) into equation (A6.1.2) and using equation 

(A6.1.3) gives us the following entropy expression:-



S « kg [(N^b)ln(N^b) - (N^b) - (N^b - N^x)ln(N^b - +

* (\b - + (N^)]

« - [x 2n x - b <n 1 * (b-x) ?.n(b-x)3 (A6.1.4)

Noting that the ideal gas constant R - kgN^ we rewrite equation (A6.1.4) 

as follows to obtain our expression for the ideal integral configurational 

entropy per mole of metal atoms

S(x)/R 3 - [x In x - b in h ♦ (b-x) ln(b-x)3 (A6.1.5)

We finally evaluate the ideal partial configurational entropy per mole

of hydrogen atoms by taking the derivative of S(x) with respect to x, 

giving us the following expression:-

S'(x)/* - - In (A6.I.6)
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APPENDIX 6.2

TWO-PHASE CONFIGURATIONAL ENTROPIES

In deriving our two-phase entropy expression we use the combinatorial 

approach of Appendix 6.1 in conjunction with the following equation from 

our two-phase model:-

PdHx - a PdHp * (l-a)PdHq (A6.2.1)

which ij equivalent to:-

x - ap * (l-a)q (A6.2.2)

We start by assuming that the parameter b of Appendix 6.1 has the value 

b-l, as expected for an ideal fee palladium lattice with only octahedral 

interstitial sites available for occupation; thus for a mole of palladium 

atoms there are interstitial sites available for occupation by N^x 

hydrogen atoms.

We must now evaluate the total number of ways of distributing these 

hydrogen atoms between the two phases of concentrations p and q as well as 

amongst the available sites.

Firstly, with reference to equations (A6.2.1) and (A6.2.2) we see that 

the number of ways of partitioning the sites between the two phases



- 237

*  [_(l - a ) N j  ! [aN j  I

where we have dropped the subscript from N .

Secondly, the number of ways of distributing np"-phase atoms amongst 

the aN sites available to this phase is obtained as follows:-

(A6.2.3)

,<* N. _ (aN) I_______
apN ja(1-p)^I(apNYT (A6.2.4)

and similarly, the number of ways of distributing the "qM-phase atoms 

amongst the (t-o)N sites available to this phase is given by:-

, ( l - a ) N  x _  R ' - q ) * ! : _ _ _ _ _ _ _ _ _ _ (A6.2.5)

With reference to equations (A6.2.3), (A6.2.4) and (A6.2.5) we obtain the 

following expression for the total number of ways of distributing "p"-phase 

and "q"-phaae atoms amongst the N available sites:-

n :
(apN) ! [a( I-p)?{] I [T!~ci)qN] ! [(1-a) (l-q}N] ! (A6 2.6)

Hence

inW = ln(Nl) - {I n ( a p N ) ! + i n  [a(l-p)Nj!

in [U-ayqHj . Jt_V ‘“ v*/ v • H) (A5.2.7)

Now by Stirling's approximation we have:-

—  j l n ( a p N ) ! « a p  in a p  - a p  +  a p  £ n  N (A6.2.8)
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so that by substituting equation (A6.2.8) and similar expressions into 

equation (A6.2.7) we obtaim-

g  in W = fcn H - I - [op In ap + a(1-p) in a (1-p) +

* (l-a)q in (l-a)q + (1 -a) (1 ~q) In (l-aXl-qJJ 

- jjsp + a(t-p) + (l-a)q + (l-a) (1-q)3 (in N-!) (A6.2.9)

Now ap + a(l-p) + (l~a)q + (?-a)(l-q) » a + * I (A6.2.I0)

Substituting equation (A6.2.10) into equation (A6.2.9) a W  simplifying the 

resultant expression gives us the following formula for our two-ph&se 

integral configurational entropy per mole of palladium atoms:-

S(2 )(a,p,q)/R - - (a[p in p * (1-p)in( 1-p)] *

+ (l-a)[q in q + ( I-q) in( 1-q)J + a in a + ( I -a) ln( I-a)}

(A6.2.11)

We observe that equation (A6.2.H) consists of a weighted sum of one-phase 

entropy terms in p and q (each term being analogous to equation (A6.1.by 

for the case b-f), as well as a similar expression in a.

As in Appendix 6.1 we next evaluate the partial entropy per mole of

hydrcgen atoms, by taking the derivative of S^(a,p,q) with respeot 

to x:-

i " .  (31) fil) + (I") (12) * (If.) (M)3* do p,qx3x F.q 9p a,q 3x a,q Bq a,p 3x a,p

(A6,2.12)
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where we have dropped the subscript from S(2) '

By referring to equation (A6.2.2) we obtain the following partial 

derivatives:-

<&p.q - r "

which vHien substituted into equation (A6.2.12) give

—  - — (— ) » 1  (— ) . ,3x p-q 3a p,q a )p a,q I-a Lq a,p (A6.2.I3)

where we assume p ^ q.

How we refer to equation (A6.2.11) to evaluate the following partial 

derivatives:-

<-|“)p q/R ■ - < fp In p (l-p)&n(l-p)] - £q Ip q + (I-q) En t l-q)] +

-if;

We substitute these into equation (A6.2.13) to obtain the following 

expression:-



£n > £n for P ^ q (A6.2.I4)

where S^^Cp) - p In p ♦ (l-p)ln(l-p)

and ) (q) - q Is q * (1-q) tn( 1-q) (A6.2.I5)

Bo# equation (At.2.2) *ivam ua%-

(A6.2.16)

We see from trdLs equation that a and hence the two-phase model is not 

well-defiaed for p»q. However, it is clear from equation (A6.2.I) that 

p-c correswands to our one-phase model, for wliich the partial 

ccmfigurat3-3aal entropy is known (Appendix 6.1).

Using -he notation S'^^(a,p,q) - 3s/3x, we can now rewrite and extend 

equation (A6.2,14) to give us our final expression for the two-phase 

pmtia: configurational entropy per mola uz L/drogan atoma:-

[s^)(=.p.q)/R|p^q_p
p.qi'i

- S ^ ( q )
p-q

£n —E— + in -r̂ — } 1-p l-q (A6.2.I7a)

whare S^^(p) and S^.(q) ara givan by equationa (A6.2.I5);

p.q^i
where we have used equation (6.11); and 
[S(2)(a.P.q)/l(l

l-x

Jp,q*0 or
p»q=i

S'^(x)/R . - Zn ^

(A6.2.:7b)

(A6.2.17c)



We comment that equation (A6.2.17c# is defined purely for computational 

convenience; however it is not physically sound, because both a 

hydrogen-free phase (say p»0) and a stoichiometric phase (say p-1) would 

for general x (say 0 < x < 1) result in a two-phase hydride (p < x < q 

for the p-0 case and ■* < x < p for the p-1 case). For prm.set (a.l) we 

have p-0 for x*0.0 and 0.025 and p-1 for all our x values between 0.85 

ami 1.0 inclusive; hence the first star and the last six stars on the 

broken curve of Figure 6.3 should strictly be ignored. A rough estimate 

of the true derivatives at these points can be obtained by taking the 

gradient of the broken curve in Figure 6.2 at the same x values.

In examining Figures 6.5 we should therefore bear in mind that the first 

data point (corresponding to x - 0.025) and the data points for x > 0.85 

are not strictly correct. Specifically, by examining the gradient at these 

x values in Figure 6.2, we expect the first point to be somewhat lower 

and the points for x % 0,9 to be somewhat higher, but we comment tb*t 

any »uch corrections would make very little difference to the overall 

trend of the data.
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C H A P T E R  7 

CONCLUSION

We have noted that the various theoretical approaches to non-stoichio- 

mecric palladium hydride usually belong to one of two distinct categories, 

namely aemiempiriaaI formatiams on the one hand and bond structure techniques 

on the other. In the first category we have models characterized by 

physically-transparent simplifying assumptions and based on fetperioemal 

results (for example the so-called gid Band Model); their chief 

shortcoming is that they are in general oversiaplistic and hence have 

only 1 v .ited ranges of physical validity. At the other extreme we have 

the band structure methods (for example the APW and KKR techniques) in 

which the one-electron Schrodinger equation is accurately solved for 

the case of a periodic crystal potential; these approaches have three 

important shortcomings: firstly, they require very considerable computational 

resources; secondly, their results are expressed in terms of interpolation 

schemes which require large numbers of fitting parameters; and thirdly, 

they are based on the assumption that the solid has a perfect crystalline 

structure (that is, long-range order), which is not the case for random 

systems such as non-stoichiometric metal hydrides.

In response to these physical shortcomings and computational restrictions 

we have formulated a Cluster-Bethe-lattiee model for non-stoichiometric 

metal hydrides which incorporates the following appealing features: 

firstly, it models the hydride from the viewpoint of local environment 

and short-ru^^e order instead of long-range order; secondly, it results
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in closed* analytical expressions for the Local Densities of States 

which give us considerable insight into the >and structure of the 

hydride as well as facilitating extensive electronic energy calculations; 

thirdly, it requires only a few phye-Coal'ly-meaningfUl parameters; and 

fourthly, the model allows us to develop a physically-transparent formalism 

for the multiphase nature of the hydride. Our Local Densities of States 

are found to be in good agreement witn the essential features of both 

hand structure calculations and photoemission spectroscopy results, 

giving us confideace in the physical applicability of our model.

In the present work we have concentrated on evaluation of the experimentally- 

accessible heat of formation of PdHx (0 < x < 1), thereby retaining 

the emphasis of our pavers on this metal hydride**' 12),5.1),5.3),

Specifically, we have found that our one-phase ntodtfl**-* generates 

heats of lormation which agree quite well with experiment for x 2 0.5 

though not for x s 0.5. However our two-phase heats of formation5,^  

are seen to improve on the one-phase results for x s 0.5, while remaining 

substantially the same for x i 0.7. It is important to recall at this 

stage that at room temperature PdH^ consists of two coexisting phases 

for 0.0! s x s 0,6 and of only one phase (the 8-phase) for x Sr 0.6.

Now ve have found that our one- and two-phase models for the heat of 

formation are in good agreement with each other and with experiment in the 

B-pliase region, while only the two-phase model is successful over the 

two-phase concentration range; we thus infer that our models are consistent 

with experiment.
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Further, our one-phase model is based on the assumption that hydrogen 

is randomly distributed in the palladium lattice4, 12^, and its success 

for higher concentrations suggests that the 6-phase exhibits randomness 

in its rrtiaroaaopia structure. Similarly, tha applicability of the 

two-phase model for intermediate values of x suggests that the microscopic 

structure of the hydride in the two-phase regime is characterized by 

some sort of ordering process, possibly resulting in segregated forms 

of each phase.

A aggregation parameter5’ has also been defined in the context of our 

two-phase model, and this gives a qualitatively successful prediction 

of the phase transition at the lower end of the 0-phase.

We have concluded the present work with an application of our formalisms 

to the thermodynamics of non-stoichiometric palladium hydride. One- 

and two-phase configurational entropy expressions have *een derived and 

substituted, together with the corresponding heats of formation, inco a 

semiempirical partial pressure equation. It is found that our one-phase 

model is only successful in the high-concentration 8-phase regime, 

breaking down in the two-phase region as would be expected of a single

phase approach. However our two-phaae partial pressure isotherms are in 

substantial qualitative agreement with experiment for x i 0.2, the 

breakdown at lower x being closely linked to instabilities in our two- 

phase heat of formation curve for x s 0.2. We have established that our 

entropy contributions play an important role in producing isotherms of 

the correct shape, particularly at the higher and lower extremes of 

concentration.



Our two-phase model for the thermodynamic stability of palladium hydride 

is also found to generate isorherms in reasonable agreement with 

experimental trends, in particular presenting some indication of the 

concentrations at which the hydride becomes unstable.

In short the inclusion of temperature dependence has confirmed that 

our two-phase formalism is of wider applicability than its one-phase 

counterpart, and has also revealed the importance of entropic effects.

Despite the notable successes already achieved in the present work 

there are nevertheless opportunities for the improvement and extension 

of our two-phase model. For examp1 our present formalism seems to 

break down for x s 0.2; if this shortcoming could be rectified we would 

be in a position to examine the miarosaopia nature of the v-phase 

(0 < x s 0.0! at room temperature). Another potential refinement is 

the inclusion of vibrational terms in our entropy theory and maybe even 

in our heat of formation expressions. Further, it should be possible 

to extend our model to other non-stoichiometric transition metal hydrides 

(such as nickel hydride), and perhaps to refractory metal carbides.

In summary, we have employed the Cluster-Bethe-Lattice technique, 

to model various electronic features of non-sroichiometrie palladium 

hydride, finding in particular that our two-phase formalism generates 

Local Densities of States, heats of formation and pressure-composition 

isotherms all in substantial qualitative agreement with experiment.



APPENDIX \

REVIEW OF SLATER-KOSTER INTERPOLATION SCHEME (See Section 3.3)

Slater and Roster^ 1•1  ̂work within an LCAO (Linear Combination of 

Atomic Orbitals) formalism, which is based on the assumption that 

wave functions in a periodic solid can be well approximated to by 

linear combinations of the isolated atomic wave functions. Specifically, 

consider a set of atomic orbitals {^? (^ -jitj)}, wher - I refers to the 

orbital type (for example 4d) and JjL indicates the position of the 

particular atom; we note that these are strictly localized states, 

and hence that the LCAO approximation has inherently local properties.

To remove the localization associated with $ £ ) ,  we take the 

so-called Bloch sum Bt

where the sum is strictly over the entire lattice, that is, B is 

highly delocalized. Secondly we take a weighted sum of all the 

Bloch sums to obtain the LCAO wave function in its fullest form.

*LCAoW -  ̂ (%)

*LCA0(t> " J. ( M j )

(Al.2a) 

(A1.2b)
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