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ABSTRACT

A Cluster-Bethe-Lattice model is formulated which approaches non—-stoichio~
metric transition metal hydrides from the viewpoint of local atomic
enviroament and incorporates the short-range order characteristic of such
systems. Analytic expressions for the Local Demsities of States are
derived, facilitating detailed examination of the band structure of the
hydride as well as extensive charge and electronic energy calculations.
This approach is developed to provide a physically sound and computationally
practical altermative to existing theoretical techniques, which usually
fall into one of two categories, viz. excessively simplistic on the one
hand and physically inappropriate and computationally restrictive on

the other. Our model is appiied to non-stoichiometric palladium hydride
(Pdﬂx, G < x ¢ 1), where good agreement is found between our computed
Local Densities of States and sophisticated band structure calculations
and photoemission experiments. Heats of ‘ormation evaluated using our
Local Densities of States agree fairly well with experiment for x » 0.5
but not for lower concentrations. We thereiore extend our model to a
two-phase formalism which not only substantially improves upon our heats
of formation for x s 0.3, but which also qualitatively predicts the
higher concentration phase transition of the hydride. The physical
validity of the two-phase model is confirmed by the fact that it
significantly improves upon our original formalism in the experirentally-

established two-phase reaion of the hydride (0.0l¢ x ¢ 0.6 at room

temperature). Consideration of the underlying phvsical assumptions of



)

our models indicates that the f-phase hydride (x 2 0.6) cunsists of a random
distribution of hydrogen in the palladium lattice whereas the two-pnase region is

char:cterized by phase segregation at a microscopic level.

Finally, both our formalisms are employed to model the pressure-composition
isotherms of the palladium-hydrogen system. The one-phase model is only suc-
cessful for x 2 0.7, that is well within the B-phase region, whereas the two-
phase formalism preduces isotherms in good qualitative agreement with
experiment for x 2 0.2, that is over most of the two-phase region in

addition to the B-phase regime.
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CHAPTER i

INTRODUCTION, LITERATURE REVIEW AND AIMS

1.1 INTRODUCTION

The literature review which follows this introduction will focus mainly

on the key words of the title of this work, viz. "electronic nature",

"non-stoichiometric" and "metal hydrides". We have decided from the

outset to concentrate our attentiom on palladiwm hydride, for the

following reasons:-

1)

2)

3

it is fundamentally non~stoichiometric (Pdﬁx, 0<xz 1);

there is a rich theoretical literature for the electronic
nature of both Pd and PdH (Pdﬂx with x = 0 and 1 respectively),
which gives us two well~known extreme cases as reference

points for a truly non-stoichiometric theory;

to quote Wicke and Brodowsky!'!) P+73:"palladium hydride
represents one of the most transparent and instructive
models for a metal-hydrogen system from structural, thermo-
dynamic, and kinetic points of view... Nevertheless, there
arg guite a number of detqile in the mechanism of hydrogen
diffusion as well as Tn the behaviowr of electronic atates

in this system not yet fully widerstood” (our italics).

& J

ifrom this we appreciate the fact that a successful model for the palladium-

hydrogen system 1s likely to give us important guidelines for understanding




& variety of other metal hydrides. It is also noteworthy that despite
the considerable literature on the electronic nature of palladium
hydride, there is still a distinct need for further contributions

in this area,

It is for these reasons, in particular the understanding of palladium
hvdride as a ""test case” for other metal hydrides, that we have been
reluctant to entitle this work "Theoretical study of the electronic
nature of non-stoichiometric palladiwn hydride"; we believe that the
techninues devzloped here can easily be extended to other metal hydrides,
at least to those of transition metals such as nickel and titanium, We
nevertheless choose here to confine ourselves to palladium hydride so

as not to obscure the main thrust of this work with excessive detail.




1.2 LITERATURE REVIEW

1.2.1 Introduction: A Polarization of Approaches

Interest in palladium hydride (Pde) goes back to the 1860s when
palladium metal became available in sufficient quantities for experiment-
ation. oraham!*2) scon discovered that Pd absorbed large quantities

of hydrogen. Since then a considerable experimental literature has
accumulated concerning the absorption of hydrogen by palladium, with

a particular interest being shown in hydrogen pressure versus hydrojyen
concentration (x) isotherms. These results have tended to be interpreted
within simple scmiempirical formalisms, and with the aid of physically
transparent but rather simplistic electronic theories such as the Rigid

Band Model (to be discussed below).

At the other extrcme there is also a large theoretical literature, which
approaches Pd and PdH (and occasionally, fairly simple intermediate cases,
for example PdHy, ) mainly from the viewpoint of sophisticated band
structure calculations. These techniques are avle to generzte accurate
band structure, charge and energy data for the limited cases of hydrogen
concentration to which they are applied. Howaver, three problems arise
concerning band structure calculations: firstly, they require considerable compu-
tational resources; secondly, they make use of large num.ers of fitting
parameters which lack clear physical meaning; and thirdiy, they are based
on periodic crystal potentials and Bloch's theorem, which arxe physically
inappropriate for non-stoichiometric (and hence essentially disordered)

materials. This last drawback can to some extent be compensated for by

using Bloch-like functions with fin.te decay-lengthsl'3). but this

enhances the computational difficulties. The second problem will be

l

——



discussed in detail in Section 3.3 and Appendix 1; it is due in
essence to the fitting of a large number of parameters to energy levels
generated by, for example, the APW method. These energy parameters
are by no means unique, and often bear littie resemblance to atomic

parameters (such as ionisation potentials and electron affinities).

Another theoretical approach involves the study of #n isolated hydrogen
“impurity" in the palladium lattice by mean: of = screened Coulomb or
similar potential centred on the impurity. These techniques emphasize

the localized electrostatic features of the system, and hence free one

of the requirement of a periodic potential, but have limitations of their
own: they are only good approximations for low concentrations of hydrogen
(since the impurity is taken to be isolated); and they are highly sensitive
to the techniques used in evaluating the screening parameter. Further,

an accurate determination of this parameter can lead to a computationally-

expensive self-consistent calculation.

In summary, then, we note a polarization in the theoretical study of
Pde, with semiempirical and often simplistic theories being used on the
one hand 1nd sophisticated but cumbersome and often opaque techniques
being applied on the other. In the light of this we can more fully
appreciate a theory with the following attributes: it takes advantage

of sophisticated calculations by incorporating a few simple parameters
generated by them; it is based c¢u a formalism which does not require a
periodic lattice, with the result that it copes with non-stoichiometric
compounds as naturally as with stoichiometric ones; it is more sophisticated
than models such as the Rigid Band Model, yet simple enough to use for
extensive energy calculaiione which can be compared directly with
experiment. These are all features of the model which we will develop in

subsequent chapters.




The literature review that follows is intended to provide the reader with
a clear appreciation of the strengths and weaknesses of a selection of
theoretical (mainly electronic) approaches that have been applied to
Pde; the aim throughout is to emnhasize the above-mentioned polarization
of these approaches into essen:ially two camps. The topics and papers
reviewed are for the most part in chronological order so as to give a
leel for trends in the research; they have been chosen because of their
relevance to the present work (themes to be taken up and foundational

information). The relevant experimental papers have not been reviewed,

but can easily be followed up through the references.

4

1.2.2 Gemiempirioal ¥leotronic Models

Possibly the simplest mo?:1 of the Pd/H svstem is the peeudo-at lver
hypothesis proposed by Oxley!*“) aud Vogt!*5), based or the observation
of similar decreases in the magnetic susceptibility of Pd as a function
of both (substitutional) silver content and (interstitial) hydrogen
content. Hence, this approach approximates a Pd/H pair to a single Ag
atom (the Pd/H pair and the Ag atom being isoeiectronic). The approximation
is supported by certain X-ray crystallographic studies!-®), and by
evidence thar hydrogen solubility in Pd/Ag decreases linearly with Ag
content under certain circumstances!'-?'. However it has been shown!:?)
that this observation of linear dependence breaks down seriously over
wide ranges of hydrogen pressure. In addition, Faulkner'-8) has shown
usiig his Coherent-Potential Approximation (CPA) calculations that

the density of states of the (substitutional) Pd/Ag alloy is markedly

different to that of the corresponding (interstitial) Pd/H system.

A modification of the pseudo-silver hypothesis is the so-called proton

¢l. This model assumes that the hydrogen is centrally situated in
interstitial sites in the Pd lattice, so that a hydrogen atom cannot be

considered bound to any single Pd atom; rather, the hvdrogen atoms

B NN

..



donate their electrons to - Pu ban. as a whole, leaving interstitial
protons. There ‘s some experiwental evidence that hydrogen is present

in a p sitiveiy-charged form' - %),

The proton model leads in a naturul manner to the Rigid Band Mode Lt 10)
(KBM). This is based on the observation that a number of electronic
properties of Pde undergo significant changes for x ~ 0.6, for example

the disappearance of p&ramﬁgﬂatiaml'l'>&;'lz) at this hydrogen concentration.
The incerpretation originally given to thig phenomenon was that the Pd 4d
band had 0.6 holes .n it, so that by applying the proton model the 4d band
would be filled at x = 0.6, The Rigid Band Model was then introduced to
further guantify this concept; in the REM formalism Pd is assumed to

have two wal

e sands in its DOS, a high-density 4d band overlapping with

a low-density and at higher energies. 1t is further assumed that
chese nands do wt change shape with addition of hydrogen electrons,

that is, the bawds are taken to be "rigid”. As electrons are added, the

Fermi emerzy (E.) increasses, at first slowly (in the high-density &d

band) amit .hen rapidly (once E, enters the low-density 5s band at x = 0.6).

¥
Howeve , mesasurements of the de Haas~van Alphen effect on pure Pd

performed by Vu:llemin and Priestley’-!?) have shown that the 4d band
contains only .36 ¢ 0.0! holes. This finding firstly undermines the
proton model, as the following argument will reveal. Faulkner's CPA

L
aleularieanled)
calculaticns

show that each hvdrogen electron added to the palladium
lattice is divided between a palladium and a hydrogen atom in the ratio of
3 to 2 respectively and that this ratio remaine fairly constant with x.
Therefore each Pd atom in PdH gains royphly 0.4 electrons, and hence

each Pd in PdH; 4 gains approximately 0.6 x 0.6 = 0.36 electrons, in

agreement with experimen&i‘lw); it thus ~eems reasonable to assume that




Faulkner's 3:2 split of charge between Pd and H is a good approximation.
We note however that the proton model requires that the entire electron
be donated to Pd, that is it assumes a !:0 split of charge between Pd and

H, and hence this model becomes at leart quantitativaly incorrect.

Secondly, the occurrence of only 0.36 holes in the 4d band presents a
problem for the RBM, which was formulated on the assumption of 0.6 hole

in the palladium 4d band. By considering screening effects the RBM can be
adapted tc allow for this discrepancyl'l“); the adaptation involves

having 2 5s band which is shifted downwards with increasing charge, so
that this band "absorbs” the extra 0.24 (that is, 0.60 -~ 0.36) electron.
In the resuylting model the bands are no lunger rigid relative to each
other, so we now have a Screening~Induced Band-shift!‘l) P-133 Model

(S1BSM).

Although the SIBSM has had some success in explaining certain resistiviig!<!®}

and electronic heat capacity!-!®) experiments on Pd/Ag alloys, the CPA
calculations of Faulkner!+®) and the APW calculaticns of Switendick!:!7)
and others hdave shown conclusively that not only do the palladium bands
undergo disrinct changes ¢f shape with the addition of hydrogen electrons,
but also that a hydrogen-induced band begins to form beneath the 4d band.
Thus both the RBM and SIBSM are physically oversimplistic, as is reflected

by their limited ability to consistently explain experimental data.

Swrmary:  Semlerpirical Electronie Models

We are led to the conclusion that the elec omnic structure of Pde requires

more complex models than the four semiempirical approaches so far

discussed. We shall therefore review some of the iess phenomenological

approaches that have been used.




1.2.3 Switendiek'+17)(1372)

We start with Switeadick's APW calculations for palladium and some of

its hydrides. He takes Pd to have the structure 4d%5s! as opposed to

the 4d'058? configuration favoured by Mueller et ail+18), o as to

model the partially-filled 5s band (4d%.-6%55°.38) revealed by experiment!-!3).
Pd metal has the fcc structure, and he uses the lattice constant

a = 3.89 §. The usual Muffin~Tin (MT) approximation is used for the
potential, with the MT spheres touching. He obtains a fairly narrow

4d band (about 5 eV across) for pure Pd, overlapped by and hybridized

with a wide plane-wave-like 5s~p band (= 10 eV across), with EF in a

high DOS region near the top of the d bard. For PdH he makes the usual
assumption of an NaCi-type structure (see Section 1.2.7) with

2 = 4.03 X (the lattice comstant for B-phase palladium hydride: see
Sectinn 1.2.4). The palladium MT spheres are no longer taken as touching
in the stoichiometric hydride, since this would leave insufficient

space for the hydrogen MIs; the Pd and [ MIs are instead taken as touching,
and have respective radii of 651 and 351 of the Pd/H separation. The
resulting calculations reveal that the palladium d band is only slightly
affected by hydride formation, whareas the s-p band changes significantly;
in particular, states which allow s-like character in the hydrogen MT

sphere are lowered considerably in energy, so that an s-like band is

formed below the d bands.

Thirdly, Switendick has applied his APW model to the ordered structure
PdyHj3; this is to approximate the behaviour ot PdHg, 75, which in reality
has ranwdom hydrogen occupation of the available interstitial sites. The

difficulty here relates back to our observation in Section 1.2.! concerning




the inapplicability of BS calculations to random (and hence disordered)
systems; as Switendick comments:”we have assumed an ordered arrangement,
since the disordered calcuiation is beyond any reasonable computational
means"!-17)P-53%,  In the same context he also indicates his belief in
the importance of nearest-neighbour atoms (that is, local envirowment)

in the determination of energ, states; this is an important issue which
will emerge more clearly lster. For the case of PdyH3 and then Pd,H

he again finds that states which are s-like around the hyd.ogen site

are lowered, though less in the case of PdyH. On the basis of this

he suggests that for infinite dilution part of an added hydrogen electron

helps fill the d band and part goes to the lowered states.

Swmar ;. Switendick (1972)

In his conclusion Switendick emphasizes that the significant qualitative
differences he obtains in his various DOS show that the RBM does not apply.
Cn the basis of the sophistication of his model we take this to be an
accurate comment; however, we note in the context of model cowplexity
(Section 1.2.1) that his approach makes use of 29 parameters which are
used to fit 46 APW states (evaluated at high-symmetry points), in
addition to MT radius parameters. Switendick poimts sur that his
calculations assume an ordered topology for Pdﬁx. since the disordered
calculation would not be computationally feasible. He also comments on
the importance of the local environment in determining the energy states
of the system. A striking feature of his BS results is the appearance

in the hydride of an s-like band below the d bands.
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1.2.4 Faulkner!-®) (1976)

Wa next consider Faulkner's CPA calculations for Pd, PCH and a number of
substoichiometric compounds (Pdﬂx, 0 < x < 1), He notes the essential
randomness of the .ydrogen sublattice at the outset; the CPA is in fact
used because of its efficacy in modelling a class of essentially random
systems viz. binary alloys"‘g). Navertheless, his wodel is still based
on a pertodic Hamiltonian; specifically, he has made use of the elaborate
firsi-principles BS calculations of Papaconstantopoulos and Klein!:20)
{viz. self-~consistent APW calculations including relativistic corrections).
As is common practice, these BS calculations were carried out only for
high~symmetry points in the Brillouin zone, and Faulkner thus follows the
usual prccedure of setting up an interpolation scheme between these noints;
sp. ~ifically, he applies the well-known tight-binding scheme of Slater and
Koster!:21) (Switendick's 29 parameters mentioned above are ti.» consequence
of a related interpolation method). Faulkner uses )3 interpolation
parameters for Pd and i/ for PdH, roughly half the number used by
Switendick. The sacrifice of detail is to facilitate the CPA calculatioms,

which require iterative solutions to a set of matrix equations.

His results confirm those of Switendick's in their essential features:
firstly, a narrow (* 5 eV), high~density d band for pure Pd and its
hydrides; secondly, the lowering of the lowest~lying band in Pd Lo what
Faulkner calls a palladium-hydrogen bonding band; and thirdly, EF falls

in a range of high DOS (at least in the cases below x = 0.7). Specifically,

he points vut from his DOS plots that no single band in his BS can be

thought of as a purely hydrogenic band; also that the DOS is clearly




a function of hydrogen concentration. Hence he establishes the point
(already emphasized by Switendick) that no RBM is acceptable for the

Pd/H system.

He further addresses the issue of the two-phuse nature of Pdnx: for

0.6 < x £ | this compound is in the so-called 8-phase, which is usually
described as having the NaCt struccure, the vacancies being randomly-
distributed on the hydrogen sublattice. His model is built upon this
random one-phase concept; however, for x < 0.6, the g-phase is in
equilibrium with the (much more dilute) a-phase, that is, we have a
two-phase system. Faulkner concedes that his model is therefore

suspect over this range of concentrations.

Surmary:  Faulkner (1878)

We see then that Faulkner's work has introduced the concept of randomness
through application of the CPA, but that it is still bound within the
framework of BS formalism and hence an implicitly ordered lattice. He
addresses the issue of multiple phases in the Pd/H system, pointing out
that strictly his model only holds in the 8-phase region (x * 0.6). He
has produced useful results for a range of Pd/H compounds, though we note
again the large number of parameters (13 to 17) required by the BS
interpolation scheme alone, as well as the need for iterative solution

of the CPA equations ir order to obtain the DOS. With specific reference
to the application of the CPA to the disordered hydrogen sublattice, we
note that Faulkner's formzlism avoids the necessity of dealing with off-
diagonal disorder!+?2)., We note however that the system does in fact

have this kind of disorder, and hence a model which could comfortably

P




include it in its formalism would have enhanced physical value. It
will be seen in subsequent chapters that our formalism results in just

such a model.

Finally, Faulkner finds that in the hydride a band develops below the
d bands, which he relates to the bonding of the hydrogen to the palladium ;

this finding agrzes closely with Switendick's results.

1.2.§ Papaconstantopoulos et all-?3)(,97¢)

This work is an extension of Faulkner's CPA study (Section 1.2.4). Tne
authors apply Faulkner's CPA technique as in his own work, but make better
use of it by implementing a more sophisticated Slater-Koster Hemiltonian
(see Section 3.3) with which to fit their APW band structure calculations

for Pd and PdH.

They use the same basis functions as Switendick1'17). viz. five d orbitals,
three p orbitzls and one s orbital for Pd, plus an extra hydrogen s orbital
for PdH, but increase the sophistication and consequently the accuracy

of the Slater-Koster interpclation scheme by including third-nearest
neighbour interactions (cf Switendick, who considered second-nearest
aneighbours, and Faulkner, who only considered nearest neighbours). The
consequence for PdH is that the number of parameters is increased from 29
in Switendick's case and 17 in Faulkner's case to 4i in their case. Using
these 41 parameters the authors solve their CPA equatioans and hence
generate the total DOS. They then drop the three Pd~H overlap parameters
and find that the DOS change by no more than a few percent, so that they
are left with 38 parameters for PdH (and 32 for pure Pd). The parameters

are evaluated using a nonlinea. least-squares technique, in which the




authors fit 111 and 127 energy values from their APW calculations for Pd

ardi PdH respectively.

An important finding of this work is that the constituent DOS (s, p and
d) are highly sensitive to the particular APW energy states fitted by the
Siater~Koster scheme {though the total DOS is found to be much less
sensitive in this regard). More specifically, they nots the need for
compatibility between the basis crbitals chosen and the APW staves fitted;
for example, the presence of higher-energy p orbitals in the basis set
requires that the energies fitted include p states which are high in

energy.

The authcrs calculate the constituent and total DOS, a2s well as the
Fermi energy (EF)’ for x = 0.0, 0.4, 0.2,....., 1.0; they also present

a table of the various DOS, calculated at E_, for these eleven x values.

F*

A striking fearure is that the total DOS at E_ is dominated by contributions

F
from the d bands, with the DOS of the s and p bands at EF being small

by comparison; in other words, E_ falls in an energy region of predominantly

F
d-like character. This result is expected for pure transition metals,
and hence their calculations indicate that even in the stoichiometric

hydride the metallic behaviour dominates at E The constituent and

P
total DOS are also plotted as functions of energy for the cases
x= 0.6, 0.8 and 1.0. As with both Switendick and Faulkner, we see

the emergence of a hydrogen-related band below the palladium d bands.




The authors also comment on the subject of phases; they are confident

of the accuracy of their model in the high-concentration, single-phase
region (B-phase, x 2 0.6). However they are less confident in the lower-
concentration two-phase regime, for .wo reasons: firstly, they expect

the two-phase regime to be dominated by short-range order phenomena,

that is, by effects of local envirowment (cf their band structure
approach, which is built on the principle of long-range order as found

in crystals); and secondly, as x becomes sualler, the use of the PdH;

Slater-Koster parameters becomes increasingly less valid.

Swmmary:  Papacongtantopoulos et al (1978)

This paper is an extension of Faulkner's work and hence the summarizing
comments at the end of Section 1.2.4 also apply here. The authors’
results are more accurate thau those of Faulkner, although we note
that the number of energy parameters is more than doubled (38 parameters

for PAH;, as opposed to 17 in Faulkner's case).

The authors further extend Faulkner's wcrk by calculating the constituent
DOS (s, p and d) of Pde for x = 0.0, C.1, 0.2,......,,1.0. 1In particular,

they tabulate the various DOS values at E,, which gives us the result that

F'
E. falls in a part of the band structure dominated by d bands. Thie is
significant since it indicates that the electronic pivperties cf the

hydride at E, are dominated by meiallic contributions.

F

The two-phase behaviour of the hydride is also commented on, with a
reminder tha this model is only strictly valid in the high-concentration,
single-phase regime. There are two reasons for this: firstly, the two-

phase region is characterized by short-range (and hence localized) order
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phenomena,whereas their BS-based approach assumes long-range crystalline
order; and secondly, the use of the PdH; Slater-Koster parameters becomes

increasingly less valid as x decreases.

1.2.6 Gelatt et all-2%)(.978)

We now move on to the study of various transition metal hydrides by

Gelatt et al, in which the authors focus their actention on Pd,

”dH; and various substoichiometric compounds PdH_ (0 < x < 1). As

with Switendick they use the APW method (though only for the metals

and their stoichiometric hydrides), and like Faulkner and Papaconstantopoulos
et al they treat the non-stoichiometric hydrides as disordered alloys
with hydrogen distributed randomly over the one fcc sublattice, the

other sublattice being entirely occupied by palladium atoms. Instead of
the CPA they use the Average T-Matrix Approximationl'zs) (ATA) for the
non~stoichiometric cases, in conjunction with the Korringa-Kohn-Rostoker
(KKR) BS method (see Appendix 1.1 for a brief comparison of the CPA

and ATA techniques). They note in this regard rhat although the correct
random calculations could have been performed in the non-stoichiometric
cases this would have resulted in an unwarranted increase in computational

complexity.

Their B resuits are similat to those of Switendick, Faulkner and
Papaconstantopoulos et al; in particular, we note the following points:
firstly, for small values of x a new band appears below the Pd d bands,
which they associate with the formation of a Pd/H bond (this new band

is in fact flat, that is it represents a discrete energy level, which




would show up as a delta function on a DOS plot. As x increases the
level "broadens" into a true band); and secondly, the d bands are largely
unaffected by increasing x, except that they are ghifted slightly down-

wards in energy.

Celatt et al are the first to have done damping-of-states calculations

" or broadening

for the Pd/H system. Damping is essentially the "blurring
of energy bands as a result of electronic scattering from the randomly-
occupied hydrogen sublattice. They observe that states having s-like

symmetry about the interstitial hydrogen atom/protom (that is, the basis
orbitals have finite amplitude at this point) are strongly damped, as

well as shifted in energy, whereas orbitals with a node at this site are
largely unperturbed by the iatroduction of hydrogen. This intuitively-

sensible result is in agreement with Switendick's findings discussed

above, and shall be further verified in Chapter 3.

This paper also contains work on the heats of formation (4H) of
gtoichiometric morohydrides, including PdH, where the aim is to
reproduce trends across the 3d and 4d rows of the periodic table rather

than to give precise results. They use the following equation:-
AHp = AE; - } E(Hp) (1.n

where E(Hy) = -2.266 Ryd (hydrogen ionisation energy), and for PdH,

PdH

H Pd Pd )
LB

> - (’gi:») + 8(<g§d > = <g ») + gF (1.2

AE] = 2(<e d

”<€igﬂ»” is the querage energy of the lowest band (LB) of PdH,
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"<£§du>” is the average energy of the four remaining d-bands of PdH

gd" is an absolute number giving the

(two electrons per band) and "e
contribution due to the addition of a hydrogen electron at Ep (this

last term mukes the resultant AH) values very sensitive to the choice of the
crystal potential zero). Equations (1.1) and (1.2) successfully model the

trends for AH), across the 3d and 4d rows, giving a reasonable estimate

for PdH,.

In addition, Gelatt et al made Coulomb corrections to these AH; values,
and thcugh these are considerable for the early transition metals such
as Y, Zr and Nb (due to the presence of more than one electron per

hydrogen site), the correction for PdH is minimal.

Swmmary: Gelatt et al (1378)

Like Fauliner and Papaconstantopoulo: et al, Gelatt et al have appreciasted
the random nature of the Pd/H system but ".ave nevertheless modelled it
within the framework of BS (aad hence ordered) theory; they also remind
us of the computational restrictions on a truly random non-stoichiometric
BS calculation, even with application of a non-self-consistent disorder
modei such as the ATA. Their calculations of the heats of formation

of stoichiometric monohydrides, incluling PdH;, are based on a physically
transparent model which makes use of an average-energy concept; they have
not here evaluated the heats of formation for non-stoichiometric hydrides.
Again the formation of a new band below the d bands is reported, and
again it is related to Pd/H bonding. It is further noted that for

low concentrations x this band is flat, which gives rise to a delta

function (bound state) in the DOS.
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1.2.7 Sholl and Smith'-28)-1.28)(1977-74)

We turn now to isolated-impurity models for the Pd/H system, in which
the hydrogen is treated as an isolated interstitial impurity in the
host Pd lattice; such models take electroatatic effects into azcceunt,
which are not considered in BS methods. We shall consider the work of
Sholl and Smich‘~26)‘l'28), which also takes BS considerations into
account: their model is based on the Green's function technique of
Riedinger!-2?) and the BS interpolation scheme of Hodges et all:30),
Prior to Sholl and Smith all the applications of these techniques were
to substitutional impurities In noble and tramsition metals; the
extension to interstitial impurities gzives a more complex formalism

which requires further approxim‘tiona"27).

Sholl and Smith start by applying the parameterized expressions of
Ehreareich and Hodges!-?!) to the APW BS calculations of Mueller et
all*18) and Switencick!:!7) for pure Pd metal. The consequence in
each case is a l4-parameter interpolation scheme, from which the
integrated DOS (proportional to charge) of the perturbed system is
determined by statistical techniques. By appropriate manipulation

of the integrated DOS"ZG), the change in 35 energy (AEb,) due to
addition of the isolated hydrogen impurity, is calculated. They proceed
to derive an expression for AEL;zB), the change in eleotrostatic energy
due to addition of chis impurity. This requires knowledge of Ap(r),
the change in charge density at the ianterstitial, and v(r), the

Coulomb potential energy due to the addition of the impurity. Ap(r)

and v(r) are related via Prisson's equation, viz:-
q




V2v(r) = -4 Ap(r) (1.3)

Shcll and Smitn point out that equation (!.3) should be solved self-
consistently to obtaim both v(r) and Ap(r), but remark that this would
not be computationally feasible. Hence they have approximared v(r)

to a screened Coulowb potentia11~26)'1"7), vig:i~

v{r) = e exp (~Br)/r (1.4}

where 8 is the inverse screening lengts and is evaluated'+?7) 30 as to
satisfy . oth the Friedel Sum Rule (whizz is essentially a charge conservation
requirement) and the assumption that the hydrogen only intecacts with

its nearest necighbours (that is, B must e sufficiently large to

"kill off" the potential before second-smurest neighbours are reached).

Their third and final energy-change term appromimates tze changes in

1L
e

exchunge and corpelation energiee (2 g to intraeguction of

hydrogen; its complexity is beyomd rthe .cope this discussion.

We thus see that they express the champe ir energy (3E) of the imrer—

stitial site as a sum of three comtributioms, or more specifically,

eight terms of comparable magn: 7Y, rancellation duwe to  ign

differences plays an important ~ole in obtuining the final AE walues;
hence this nodel is sensitively dependent om accurnte evalustion of

several terms. The largest of these is v@zﬁfé, g0 that The acouracy

of the model depends lavgely on the validity of the § value used, or

more fundamentally, the physical correctancss of the screened Couloab

- — - ekl . eran s e B .
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potential. Sholl and Smith point out that their value of 8 is largely
insensitive to the underlying Pd BS calculation used!-26), They neverthe-
less note that the screened proton model formula. d by Ebisuzaki and
0'Keeffel*32) gives a 8 value about half the size of theirs; it can thus
be seen that this important parameter needs ro be calculated with great
caution. The considerable computstional effort made by Sholl and Smith

to determine 8 lelf-consisCenclyl'zs) shows they have appreciated this

point.

Before considering their energy calculations, we first comment on

their integrated DOS curves!+2%). Though the presence of hydrogen
strongly perturbs the Pd valence band, they do not obtain the flat
hydrogen-related band found by Gelatt et al for low hydrogen concentration
(PdHg_ gs). They attribute the absence of this band to the fact that

they do not consider hydrogen-hydrogen interactions.

The main thrust of Sholl and Smith's energy calculatiops is to test

their theory by the values it gives for AE. It has been well-established

by NMR * , neutron scattering'+3*) and neutron diffractionl:35),:.36)
experiments thnat hydrogen occupies the sites in Pd which have octahedral
symmetry. The only other likely site is that with tetrahedral symmetry!:27);
hence they calculate AE for both the octahedral and tetrahedral con-

£
LOVWmET Q&se

&

figurations, and find (in agreement with experimeni) ilhat {h
has the lower energy. For a quantitative comparison with experiment,

they evaluate the heat of formation 6H, using the relatiom:-

AH = AE - } E(Hp) (1.5)

.

F——

4
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where E(H;) is given by cquation (1.1). Their values for oH fluctuate
cousiderably in sign and magnitude, depending on the underlying BS
calculation used!-27) and other details!-28), This insccuracy is
largely a consequence of canceilation effects in equation (1.5), which

consists of the difference between two nearly-equal rerms.

Summary: Sholl and Smith (1877-78)

As with Faulkner and Gelatt et a  Sholl and Smith have modelled the
Pd/H system within a BS formalism, which in their case requires the

use of 14 interpolation parameters. They have also considered electro-
static interactions which are gensitively dependent on the screening
parameter. Their integrated DOS is obtained by a computationally-
intensive statistical approach; it lacks the low-lying hydrogen bonding
band which characterizes the DOS of Faulkner and Papaconstantopoulos

et al, Their expression for the heat of formation on addition of
hydrogen to the Pd lattice is more sophisticated than that of Gelatt

et al, and correctly predicts occupation of the octahedral interstitial
sites by hydrogen; howev.r, the corresponding values of the heat of
formation are highly sensitive to the BS calculation used. Another
limitation of their model is ttat it only holds fcr low concentrations
of hydrogen; this is the case for all medels of this class. Finally, we
note that Sholl and Smith model the electrostaric coatribution to the

heat of formation within a nearest-neighbour formilism.

P




1.2.8 Oates!:37)(1982)

We finally consider a review by Oates, which provides us with a link
between some of the electronic models {escribed above and the thermo-
dynamics of the Pd/H system. He reviews semiempirical theoretical
models of the pressure-composition isotherms of Pd/H. These models are

all based on the following equation:-

2l ug
S et e B, M ;
in Py, o goe & * wF (1.6)
where p is the hydrogen pressure, Aul = 0 - i uo is the clange
Hy B Hy

in chemical potential of hydrogen at infinite dilution and us is the
@Zie.. chemical potential of hydrogen and so "2-ds to zero for small
x; the first term on the right is the configurational entropy contri-
bution b is of ovder unity), and RT is the usaal thermal eneigy
factor. Equation (1.6) is convenient for comparison with experimental
data, <hich are »ften expressed as isotherms of in /;;;Vvetsus x. Most
of the theoretical work on equation {(1.6) has to do with modelling

ui correctly; this quantity has been experimentally determined as &
function of x by Kuji et a1l+38) This excess potential can be

analysed in various ways: for example it can be expressed in its

E,
W

. -
Kuji et 211+38) strongly indicate that Sy» the excess partial emtropy,

explicitly thermodynamic form, viz. UE - Hs - 4 §.; the experiments of
is dominated by its configurational part (that is, vibrational and other
contributions are small). This result, taken in conjunction with
equation (1.6}, would suggest that the total entropy of the Pd/H

system is egsentially configurational, and will be of use to us in

Chapter 6.

i
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One of the first theoretical applications cf equation (1.6) was that
of Lacherl'ag)'l'“o), whose model considers interactions between
dissolved (interstitial) hydrogen atoms only; assuming a constant,

nearest-neighbour interaction energy W this model gives ug - wHB x/b.

HH’
However, the experimental results of Kuji et al clearly indicate that

u; is strongly nonlinear.

Wagnex:‘“l’ was the first to successfully model the nonlimeari.y of

ui. By assuming the proton model for PdH_, he expressed “g a8 a sum

of a protonic term (“50) and an electronic term (uz); then by applying

the Rigid Bemd Model (RBM) to cbrain ui and assuming a linear decrea<2

in u:, with x, he obtained the correct form for u:. Brodowsky!-42)
developed Wagner's model by replaciang the linear ”§¢ term with one

derived using the Quasi-Chemical Apptoximntionl'“3)(QCA). He evaluated
the electronic contribution uz by subtracting “§¢ from experimental

values for ui,
RBM. In addition he identified the protonic inturaction (wﬁn in Lacher's

and found that the results were in agreement with the

model) as being a short-range glastic interaction (note that the distance
between H atoms in PdHx is roughly 4 2 1.27), compared to the inter-
atomic separation of the H; molecule of about 1 R; hence we do not

expect W to have a significant electronic contribution).

HH

Qates peints out a number of weaknesses in the Wagner-Brodowsky models:

firstly, + is inadequately described by a nearest~neighbour formalism

He

s : E E .
(Lacher's approximation “H*ﬂuﬂahRHX/b , the QCAI-““) and an exact
calculation using Monte Carlo techniquesl'“s) all give phase diagrams

that disagree with experiment); secondly, dilation of the lattice by
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hydrogen is ignored; thirdly, W, . is assumed constant, though one would

HH
expect it to change with increasing x (as the P atoms are forced closer
together); and fourthly, both the protonic model and the RBM are too

simplistic, as we have seen before.

In addregsing some of these problems, the following refinements have
been made to the Wagner~Brodowsky models: firstly, the other two possible
(pairwise) interactions nave been included, viz. din and dePd;
secondly, these interaction parameters have been given x~dependence;
and thirdly, lattice-expansion terms have been included, giving rise to
a2 near-neigliuur countribution to ug (as opposed to solely nearest-
neighbour terms). One such improved model is that formulated by

Horner and Wagner!-“8), which is the basis for Monte Carlo calculationms
performed by Dietrich and Wagner!-“7). These calculations are ia fair
agreement with experimental isotherms, though noticeable shortcomings
show up in the phase diagram (which is basically a plot of temperature
versus concentration). The Horner-Wagner model is essentially pheno-
menological; two of its shortcomings are that it lacks configuration-
independent terms (the existence of which are predicted by first-~
principle calculations), and that it does not take into account change
of wlectronte gtructure as a function of x, It and similar models

are often able to provide satisfactorv results for low and high x, but
not for intermediate ranges of concentration. This implies that they
are essentially one-phase models, and hence not very effective in the

two-phase region of the Pd/H phase diagram.
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Swrmary: Oates (1§82)

The models reviewed by Oates are basically phenouenological, relying

on experimental observations and ideal~case theory. The non-ideal

(real) behaviour of the Pd/H rystem is approximated by the excess

chemical potential “g' which has been modelled with varying degrees

of success; the approach has generally been to reproduce the experimentally-
known ui isotherms via semiempirical theories, rather than to provide

a fundamentally~-correct model.

Because it is known that ug has a significant a¢lectronic contribution
(ui), these thecries constitute a link between easily-measurable thermo-
dynamic quantities (such as the pressure-composition isotherms) and
less-accessible electronic features; they hence provide at least a
qualitative means of testing electronic models (bearirg in mind that

the non-elect..nic contributions to “5 are also imperfectly known).

In conclusion, we note firstly that these models are all based on
nearest- or near-neighbour formalisms (that is they emphasize the
importance of the local environment of an atom in Pde); and secondly,
that they only give accurate results in the one-phase regions of the

Pd/H system.
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1.3 SUMMARY OF LITERATURE REVIEW AND AIMS OF PRESENT WORK

The following points have emerged from this reviaw:-

- electronic theories for Pdd tend either to be too simplistic

on the one hand or computationally restrictive on the other;

- the more sophisticated theories are almost invariably locked
within ordered-crystal formalisms which are physically incorrect
for substoichiometric (and hence disordered) systems such as
PdH_. In particular the concensus of opinion is that such
formalisws make the correct modelling of disorder computationally
impractical;

- the importance of nearest netghbours in modelling electromic

properties has been a recurring theme;

- heats of formation have been theoretically estimated for
stoichiometric palladium hydride and for palladium containing
very low concentrations of hydrogen, but not for the wide range

of concentrations between these limits;

- the m«ltiphase nature of the Td/H system is widely accepted;

however, semiempirical approaches are unable to model this
feature with clarity and accuracy; furthermore, multiphase

modelling is computationally prohibitive from the point of

view of band structure techniques, while being beyond the
range of physical applicability in the case of isolated-

impurity models.
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The aim of the present work is to provide more flexible alternatives

to the above~mentioned shortcomings of existing models, and thereby

to investigate the applications which up to now have been computationally
unfeasible. We proceed as follows: in Chapter 2 we present a formalism

which approaches a binary solid in a way radically different to hand

structure tachr{iquen;‘i’n‘chapte'r 3 v; provide links that will allow this
formalism to make use of existing band structure results for Pd and
PdH;; then in Chapter 4 the mode! is applied in detail to PdH_, leading
up to a one~phase model for the heat of formation of this system; in
Chapter 5 we rectify the anticipated shortcomings of the one-phase
approach by developing a physically more correct two-phase model, which
we again apply to the heat of formation; ia Chapter & our models are
further applied,  this time in a semi-qualitative manner, to examine
some important thermodymamic aspects of the Pd/H system; and finally

in Chapter 7 we surarize our findings and provide direction for the

development of our formalism.
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APPENDIX 1.1

THE CPA AND ATA!-25)

These are two of the principal approximations used in the calculation

of electronic properties of binary alloys (which are disordered systems).
They are both derived via a general multiple scattering formalism,

with configurational averages of physical observables (such as the

total energy) playing a vital part in the theory., Expressions for

these averages are most easily obtained using Green's function techniques
from which the DOS can be obtained directly, by taking the imaginary

part of the trace of the Creen's function matrix.

However, useful results can only be obtained once certain approximations
are made, the most important being the "single site" approximation:

this involves the decoupling of a particular site from its neighbours in
an average/effective medium. Because this effective medium is described
by a non-Hermitian Hamiltonirn, the eigenvalues are complex, with the
imaginary part related to the Jifetimes of single~electron states. From
this e®fective Hamiltonian one is then able to calculate the self-
energy in one of two ways: self-consistently, which gives the CPA;

and non-self-consistently, which gives iunter alia the ATA.

The CPA is a mean field theory, analogous to the Random Phase Approxi-
mation (RPA) which models Coulomb interactions in a many-electron system.
Although these models are strictly only applicable for limited ranges

of their characteristic parameters, they are nevertheless often effective

Mt ald A sems 2 — lly,
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well outside these strict limits, making them quite versatile approxi-

mations. The lack of self-consistency makes the ATA less accurate than
the CPA; but it gains on the CPA because of its greater simplicity and

hence lower computational demands. The ATA has another advantage, viz.
the convenience with which it can be formulated in terms of the

Muffin-Tin approach to band theory.

We therefore conclude that the CPA and ATA are complementary techniques,
the choice between them being made on the basis of the accuracy require-
wents of a particular problem, the structure of the formalism and the

computational resources available.
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CHAPTER 2

CLUSTER-BETHE-LATTICE TECHNIQUE

2.1 INTRODUCTION

In this chapter we will present a formalism which is fundamentszlly
diferent in concept to band structure {BS) techniques. The latter

ar: essentially methods for the solution of the one-electrom Scarddinger
equation with a periodic potential; chey have proved highly successful
in obtaining the energy levels and hence Densities of States (DOS) of
perfect crystalline solids, This success is due to the physical
compatibiiity of the periodic model potential and the potential of the
actual crystal. However, when we consider a substoichiometric hydride
such as PdH_, in which one crystal sublattice is randomly occupied,

we realize that the real system can no longer be described in terms

0! a periocdic potential. In physical terms, the solid ceases to bave
tie long-range order which is a ..adamental requirement for a successful
band structure calculation. It is still possible to modiel such &
system within a band structure formalism by using finite decay lengths
‘or the lantice wave functions, but the problem becomes physically

opaque and computationally unwieldy.

It is physically sounder to search for a formalism which suits this
random, disordered state of affairs rather than to adapt a proven tool
to tasks unsuited to it. An alternative approach to BS techniques would

most logically consider che random solid from the viewpoint of local

. .
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environment, since there is now no motivation for looking at the solid
as a whole (because of the lack of long-range order), Having taken
this fundamenta. conceptual step, it would seem sensible to deal with
as small a local enviroument as can give physically meaningful results.
At this point we are encouraged by the continual emphasis in Chapter |
of the importance of near-neighbour interactions in understanding the

behaviour of Pdﬂx.

The mcst immediately obvious idea is to consider a finite cluster of
atoms in the solid, with some sort of boundary condition to allow for
the surrounding atoms. This approach has been applied in ptacticez'l).
ana experience shows tnat it has one major drawback, viz. that large

clusters must be considered before physically realistic results are

obtained.

Anotual concept that has been implemented approximates the random solid

by mevcas of Infinite, branching chains of atoms whi~h lack periodicity;
examples of this technique are the Husumi cacti method?+?) and the

Cayley tree or Bethe lattice approach (see below). Although :ziLis is

not a localized concept, it certainly cvercomes the problem of periodicity,
and has the added advantage of producing analytically soluble models.
However, this approach has an important limitation, viz. it gener  es

DOS which tend to be rather featureless ard heuce unhelpful,

In the present work we consider a formalism which is basically a hybrid
of the above two approaches and which incorporutes the best features
~f both: a cluster of atoms is removed from the solid as in the finite

cluster approach, but instead of using standard boundary conditions the
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dangling bonds on the surface of the cluster are attached to infinite
Bethe lattices. This is the (Cluster-Bethe-Lattice (CBL) approach,
developed by Yndurain and coworkers?r 3)=2.5) 1t generates the detail
of the finite cluster approach, but with considerably smaller clusters;
it also has the .mportant attribute of the Bethe Lattice approach of

being analytically soluble.

The rest of this chapter is divided up as follows: in Section 2.2 we
define the Bethe Lattice more precisely, and expand briefly upon its
appeal from a physical poinv of view; iu the following three sections
(2.3 - 2.5) we provide insight into the CBL formalism by considering

two extreme cases and one iatermediate case. More specifically, in
Section 1.3 we consider a CBL consisting of only one type of atom
(referred to as the homopolar casez'3)), which will reveal the essential
{eatures of the CBL technique; then in Section 2.4 we examine the
opposite extreme, viz. a CBL consisting of two atomic species present

in equal amounts (the heteropolar case?:%)); and thirdly in Section 2.5
we look at the case midway between these extremes (the random caszz's));
in the next sgection of the chapter, Section 2.6, we tie together the
express_ons vesulting from the special cases by weans of suitable inter-
polation formulac2'5). leaving us with a highly versatile analytical
expression for the Local Density of States (LDOS). This will allow us
to evaluate the LDOS for any ratio of the two types of atom, and thus to
study non-stoichiometric binary alloys. Finally in Section 2.7 we

summarize some of the important findings of this chapter.
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2.2 {MD BETHE LATTICE

This consists of an infinite "tree" of atomic chains, branching in such
a way that no rings of bonds are formed: see Figure 2.1. It can also

be seen from this figure thar the coordination of every atom in the tree
is constant, allowing us to model local or short-range order to somc
degree. We use Bet“elLattices in place of more traditional boundary

conditions for the following three reasons:-

- firstly, they give rise to Densities of States (DOS) which

are analytically soluble;

-~ secondly, they are physically appealing because they
maintain the connectivity and coordination of the veal

system;

~ and thirdly, the DOS of the Bethe Lattice is swmooth and
featureless, so that it does not impose upon the electronic

structure of the cluster itself.







- 38 ~

2.3 FIRST EXTREME CASE: HOMOPOLAR LAITICE

2.3.1 Basic Topography

We start by removing a cluster of atoms from the complete lattice
(represented by the symbols a, i= 9,..i in Figure 2.2), We then
attach each "dangling” bond to a Bethe Lattice (represented by ¢y in
Figure 2.3). Now that we have the topography of the homopolar CBL,

we need suitable mathematical tools to take advantage of it.

2.3.2 Dyson's Equation and Loval Density of States

With reference to Figure 2.2, let us denote the wave function of the
central atom by }a°>, and that of each atom in near-neighbour shell

i by {ai»; let us assume that these wave functions form on ortho-
normal basis set {lai>}. Let K be the Hamiltonian of the system and

¢ the associated eigenenergy. We can then define the Green's function

to be:~

1
TR
Thus G(e-H) = | and so
€G = | + HG 2.1

When zxpressed iu terms of the set of basis functions {lai>), equation

(Z2.1) becomes:-

c<ile]j> = <ilj> + <ilHc)j> ,

e<ilGlj> = 6ij + 5 <iifjke<kjc!i> (2.2)
k
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Figure 2.2

Schematic representation of the environient a2bout atom
"a;" in & homopolar lattice. Atoms within brokem curve
are removed to fovm a cluster centred on atom "a;," (see

Figure 2.3).
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Figure 2.2 Schematic representation of the environment about atom

"ay" in s homopolar lattice. Atoms wi’ in brok<a curve

are removed to form a ciuster centred on atom "ap" (sex

Figure 2.3).
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Figure 2.3 Homopolar cluster with Bethe Lattices $, attached
to the dangling bonds.
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which is a form of Dyson's equation. The Density of States (DOS) is

given by the following standard expression:-

n(e) = - % Im Tr G

- Lin ] <ilsli (2.3

We are now able to give concrete meaning to the useful concept of
Local Density of States (LDC.). This is the DOS of a particular atom a,

and is defined az follows:-

a,(e) = - L 1a <ifcli> (2.4)

It follows from equations (2.3) and (2.4) that:-

u (or D0§) = [ n; (or LDOS)
i

In the next section we shall examine the LDOS of the central atom in

our cluster.

2.3.3 LDOS at the centre of the Cluster

2.3.3.1 Parametrizarion

We introduce the following notation to simplify our expressions:-
U for i = j
<aiiﬂlaj> : &V for i 4 § (nearest neighbours)
0 for i # j (2nd, 3rd,... neighbours)
Let the coordination of each atom be m (that is, each atom has m nearest

neighb.  ¢).
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2,3.3.2 Lattice Equations; Transfer Matrix Technique

We now apply equation (2.2) to Figure 2.2 to obtain the following

set of ejyuations:-

(e-U)<aglGlag> = 1 + aV <ay|Glag>,
(e=0)<ay|Glag> = V <ap'Clag> + (w1)V <azl6lap>,
(e-U)<ay|Glag> = V <ay|Glag> + (=~1)V <a3|Glag>,

(e~U)<a3lGlag> = V <az|Glag> + (m=1)V <ay!|Glag>, (2.5a)

.

(c~v)<anicfao> =V cay_|Glag> + (m1)V <ay,, 6lap,

We now make use of the transfer matriz techniquez‘e) by defining he

following ratio:-

“341161‘0’

T e Nz 2 (2.6

The transfer matrix T is a useful construct which will allow us to
model the connection of our finite central cluster to the infinite
Betkz Lattices. We will see its purpose once we have substituted
equation (2.6) into equations (2.5a). We do so bearing in mind that

for N z 2 equaticn (2.6) gives us:~

<ay,,l6lap>  <cay, l6lag>  <ay, lGlag>

<a[Glag> - “ag, 16Tay> x <ayfGlag>

<ag,,lGlagr = 12 <a 1Glag>
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Hence equations (2.5a) become:-

N=0: (e-U)<ag|{Glag> = 1| + av <a;|Glag>,
Nei: (e-U)<a;|Glag> = V <aglGlag> + (m1)V <az|clag>,
Now?2;: (s-U)<ay |Glag> = V <ajlglag> + (m-1)VT <ay|Glag>,
N=3: (e~U)T<az[Glag> = V <az|Glag> + (a-1)VI®<az|Glap>
: : (2.5b)

N=n: (s-U)T<an

- l6lag> =V <a_ [Glag> + (m-1)vTZea  [Glap>

N=0: (e-U)<agiGlag> = 1 + av <a,{Glap>,
Ne1: (e-U)<ay|Glag> = V <agiGlag> + (m-1)V <az{Glag>,
Nw2: (e-U)<ay|Glag> = V <aylGlag> ¢+ (m-!)VT <az{Glag>,
. - 2
N33 (s=U)T = V + (m=1)VT (250

Thus we see that the condition N 2 2 in equation (2.6) fur the intro-
duction of the transfer matrix T causes the central atcm to be equally
affected by all nearest-neighbour shells from the third cutwards. That
is, the "true" lattice is removed from third-nearest neighbours nurwards,
leaving us w th a cluster including only first-and second-nearest

neighbours of the central atom.

We next conslider the cases N > | and N » 3 in equation (2.6), and
write down the resulting equations to bring out an important feature

of the transfer matrix rechnique.
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coyey 610

1

gives:~

(e-U)<ag|Glag> = 1 + mV <a;|Clag>,
(e-M<ay|Glag> = V <aglGlag> + (m-1)VT <a;|Glag>,

(e=0)T = V + (m-1)VvT2

(2.7a)

<'N¢XSG;‘°’ :
1= —;;;TETIE;' ' Naz23 gives:~
(e-U)<ag|Glag> = 1 + mV <a1|Glag>,
e~U)<ap|Glag> = V <ag|Glag> + (m1)V <az2]Glap>,
(e-U)<az[Glac> = V <a;[Glap> + (@-1)V “a3]6]a0>,
(e-U)<23|Glag> = V <ay{Glag> + (m-1)VT <aziclae,
(e-U)T = V + (m-1)VI?

(2.7)

The important feature is that the Eethe Lattice contribution is

modelled by the some equation for all cluster sizes. Thus the effect

of increasing the cluster size is reflected in the cluster equations

only, which is a physically reasonable and indeed pleasing feature.

Specifically, we note that the complexity of the cluster's mathewmatics

is iacreased by one equation er addition of one near~-neighbour shell;

gleo that the squations are analytically soluble for <ag|Clag», and

hence the LDOS can be derived anelytically provided *“at T as well as

the psarameters m, U and V are known.
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2.3.3.3 Cluster Size

We should now briefly address the issue of cluster size before proceeding
with the formalism. Appendix 2.1 contains details of a first-nearest
neighbour cluster, the salient feature of which is a lack of interesting
structure. A cluster extending to the second-nearest neighbours of

the central atom does however produce quite rich structure iam the LDOS.
Going to third-nearest neighbours would create even richer structure,
but it will be appreciated from Section 2.6.3 and also from later
chapters that this would lead to s computationally intractable problem.
The spirit of this work has been to derive an analytical LDOS function
which can be conveniently and rapidly emploved in a variety of charge
and euergy calculations, rather than to obtain excellence »f detail of
the LDOS, which has been the emphasis of other workers?-5), We have
thus settled for the case implied by equation {(2.6), viz. a second-

nearest netghbour clugter.

2.3.3.4 Solution of Transfer Matrix Equation

We now consider the last of equations (2.5c¢c), (*.7a) and (2.7b), viz:~

(e=U)T = V + (a-1)VT2 (2.8)

We note that the equation is quadratic in T; we will discuss the
choice of the physically-correct root below. The solutions of equation
(2.8) are:-

T e o [(e-m ST T @V | 2.9)

20 1)V
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Ve recall that the LDCS is given by - 1/n Im <ag|Glay>. Examining
equations (2.5) and (2.7) we see that they contain no explicitly
imaginary terms, but that they uo have T as a variable. Hence we will

introduce imaginary terms by vewriting equation (2.9) as follows:-

T T(Ex—ln‘i'v' Em}) + iagm1)v2 - (5-0)2]

Now the criterioa fo' choosing the correct root is clarified: we will
choose the sign of the imaginary part of T such that the LDOS is

sogttive.

~c 8re now in a position to crystallize out a physical concept which
will save us much tedious application of the transfer matrix technique

in deriving equations for binary and other Cluster-Bethe-Lattices.

2.3.3.5 Physical ifusights into Transfer Matrix

Consiner the last cluster equation in equations (2.5¢):~

(e=U) < “'ag> = V <a;|Glag> + (m-1)VT <ay|Glag>
The factor VI is seer to represent the link between the cluster and
the Bethe Lattice. By considering the corresponding equations in
equations (2.7a) aud (2.7b) we obtain the following general equation

for the outernpust shell of a given cluster:-

(e-U) <3‘i0580> LI <aN_1{G{ag> 4+ (m=1)VT <aN!GIaO>

(2.10)

2.1
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where N is the number of the outermost shell. We recall that V is

the interatomic interaction parameter (V = <aifl(faj> for nearest
neighbours, V = 0 otherwise). Hence we see that VI is a modified
interaction parameter, representing the interaction between an atom

on the outer surface of the cluster and its corresponding Bethe Lattice.
For convenience we shall call chis paramete: ¢, so that equation (2.10)

becomes: -

6= VD - -ﬁf;_,—) [-(e—u) + i@ Ve - (e~0)2] (2.12)
and equation (2.11) becomes:-

(e-u)<ax}ciag> -V <aN_1}Glao> + (-1)¢ <aN]Glao> (2.13)

where N = 2 ip our case.

Because ¢ represents the interaction of an entire Bethe Lattice with
a cluster surface atom, we shall henceforth refer to it as the mean
field function, that is, the mean external field experienced by the
surface atom. Figure 2.3 provides a schematic representation of the

homopolar CBL system.

We are now in a position to evaluate an expression for the LDOS of a

homopolar lattice within our CBL formalism.
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2.3.3.6 1.pOs

We write the first three of equations (2.5c) in the following condensed

form: -
€189 = ¢ + mVg)
€181 = Vgo + nVg: (2.14)
€182 = Vi, + n¢g
where €] ® e~U
n owel
g = <.ilcz‘0>

Solving for g gives:-

g = — -
¢ - ——2V (2.15)
o _av?
€] ~ nd

€1

Equation (2.15) is in the form of a truncated continued fraction.

Notice that it is truncated at the third level of "nesting" by means

of the mean field function ¢. If we were to have one more near-neighbour
"shell" in our cluster it would also be terminated by ¢, only one

level lower down. As can be seen from Appendix 2.1, gy for a first-

nearest neighbour cluster follows the same mathematical trend.

We now eveluate the LDOS (n(e)) at the centre of our cluster; this is
done by writing b = Re¢ + i Im ¢, and then evaluating Im go, where gg

is given by equation (2.15). We obtain the following formulae:-
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ale) = 1 'i'ﬂ-“f
T &+ n
where:-
2
vV
§ = ¢ z
17842
2
ne oVy
BZ . Y2
, nvZ (€;-nRe¢)
[ S T 4
a
a2v? Im [
y = By =y
u2
and

a” = (€; - n ie 0)2 + (n Im $)?
Red =

Im o =+ Jo@DV - (e-0)2
w1

We note that the ocly place where Im $ does not appear in the form

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(Im ¢)2 ie s a factor in the numerator of n(c) (see equations (2.16));

hence our choice of the positive sign in frout of the Im ¢ expression.

We are now able to consider a more cow..ex CBL topology.
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2.4 SECOND EXTREME CASE: HETEROPOLAR LATTICE

2.4.1 Basic Topography

In this case our lattice consists of two atomic species in equal
quantities, and with bonds only between unlike atoms. We shail label
the two species with subscripts a and b. We again remove a cluster

of atoms from the real lattice, and attach the dangli: y bonds to Bethe
Lattices. The latter are represented by the mean fields Qa and ¢b'
depending on whether they are linked to a~ or b- type atoms respectively
(cf Figure 2.3). It is clear that there are now two types of cluster

to consider, viz. atom a at the centre and utom b at the centre.
2.4.2 Mean Field

Beaving in mind the concept of the mean field function for a homopolar
Bethe Lattice (Section 2.3.3.5) we are now in a position to extend this
concept to a heteropolar Bethe Lattice (8L). As in che case of the
heteropolar cluster, each atom in the heteropolar BL is surrounded
entirely by atoms of the other kind, as illustrated in Figure 2.4;

the coordination m is kept the same for both kinds of atom (m = 4 in
cur figures). We determine the mean field functions by considering
four "cuttings” from our Bethe Lattice (Figures 2.5), two with a-type

and two with b~type atoms at the centre.

Consider firstly Figure 2.5a : here we have removed an a-type atom
and its m neighbouring b~type atoms from the BL. We now proceed to
reattach this "cutting" to the BL by treating it as a clu-ter. We

obtain the following equations:-

(e-U)y<agliClag> = 1 + mV <by|G|ag> (2.17a)

(e+U)<by [Glag> = V <ag|Glag> + (m~1)V <ay|Glag> (2.17b)




Figure 7.4 Schematic representation of a " :upolar Bethe

Latcice with coordination number m = &4,
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We notice that the a; atoms are outside the "cluster” and hence we can
proceed along the lines of Section 2.3.3.2 by introducing a suitable

transfer matrix, viz.:-

<ay|Glag>

Tb - ('—‘b;‘rT‘-G AC; (2.18)

so that equation (2.17b) becomes:-

(e+U)<by[Glag> = V <ag|Glag> + (m-1)VT, <b;lG|ap> (2.17¢)

which is an equation in the form of equation (2.11). By comparing equations
(2.i7¢) and 2.1 we can write $b - VTb, where ob is the mean

field function which links a b-type "surface'" atom to its BL.

We aext consider Figure 2.5b; again an a-type atom is removed trom
the BL, but this time with only (m~1) of its nearest neighbours.

The "reattachment’ equations i this case are:-

(e-U)<ag|Glag> = | + (m-1)V <b)|Glag> + VI, <ag]Glag> (2.19a)
(e+U)<b; |Glag> = V <aglGlag> ¢ (o VT, <by |Glag> (2.19b)
<b1iGlag,

where Ta - W

These two cases leave us with three equations, which we express in our

simplified potation (Table 2.1) as follows:~
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Quantity Symbol
m1 n
e-U €1
e+l €2

<a;IGlag>
(bitcl‘0> Sbi

Table 2.1 Abbreviaticns used in {BL equations.

Matrix element

Parameter

<.iiuiai>
<bilﬂlbi»

boch <a, [H!b.>

- +U
= -y

V for near. st neighbours

nd ,rd

0 for 27, 3°7,... neighbours

Table 2.2 Parameters for the heter. s.ar {BL.
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€1 B

ag - mval ’)

€ -V + n¢
2 8y, Bay b Bb,

€1 By, * 1+ nVsbl + b, 2ag

solving equations (2.20) gives:-

‘a = €y
where:~
<t116]ag>
'a - VTa =V <a°{c{ao>
<az|Glag>
% " VT, =V TETags

The above process is now repeated for"cuttiugs" with b-type atoms
at the centre (see Figures 2.5 ¢ and ¢). This gives rise to the

fullowing results:-

where: -
<ba1G|bg> )
it L.
*a ” VTa v <ayGi{bp>
<ay(Glby>

1 [
% = VTy =V 5,T6Thos J

¢; is the mean field function which connects an a-type "surface”
cluster atom to its BL, and similarly ¢Q connects a b-type atom
to its BL. Now we have seen for the uomopolar lattice that the

mean field is independent of the cluster details (Section 2.3.3.2);

2.20)

(2.21)

(2.23)

(2.23)

(2.24)




]
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transferring this concept to our heteropolar lattice, we are then able

to say that:-

b, = ¢’
a a (2.25)
L
¢ %y
This amounts to the physica'ly sensible concept that an a-type
atom on the surface of a cluster experiences a mean field °a due to
its BL, ~gardless of whether the atomat the centre of the cluster
is a~type or b-type. Fence we arc left with the fo’lowing pair ~§
equations (equations (2.21) and (2.23)):-
4y = (e 0)-(a- o,
(2.26)
v2
% " G- e,
The solutions are:-
(e . 1 G-V (e~0) 2 )
% " 3@ I -+ (e-0)
(2.27)
L(er) o /agm-n)vl(uu,\ ~ B
% " 2D P IEen (-0 (e+0)
cf equation (2.12) for the homopolar lattice (a-type atoms):-~
e g L e Ve = (enU)2
¢ 1y + i 1Cb] 4(m-1)V (e=U) (2.12)
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From equations (2.27) we see that $, and @b differ ounly in the sign

of the parameter U.
2,4.83 LDOS

Consider an infinite hetercpolar lattice (cf Figure 2.2), and remove a
suitable clurter of atoms (cf Figure 2.3). Now "saturate” the 'dangling"”
bonds with mean field functions, as in Figure 2.6. Recalling

equation (2.2), viz.:-

c<ilGlj> = &, + § <i{Hlk><k|Gl|j> @.»
K

ij
and referring to Table 2.2, we are able to write down the following

cluster 2quations:-

(e=U)<ag|Glag> = 1 + mV <by|Glag>
(e+U)<b;|Glag> = V <ap|Glag> + (w=1)V <ay|Glag> (2.28)

(e-U)<az|Glag> = V <by|Glag> + (@ 1)V <b3|Giag>

that is, 3 equations in 4 unknown matrix elements. So we return to

the first of equations (2.22):~

[
b, V< T&Tans (2.22a)

With reference to equation (2.6) and the arguments tlat follow it
(Section 2.3.3.2), we may reasonably extend equation (2.22a) to a

more general form:-
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@ I, I l az/ :
¢a>a2 —-\bx bl/_._.az/—{-.:a
~ N
; N/ 3
/ 0\

/ \

Figure 2.6 Heteropolar cluster with Bethe Lattices o, attached
to the dangling bonds.
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<bN+l}G}ag>
6 =V Shags N 2 (some integer n) (2.29)

In the case of the last of equations (2.28) we have n = 2. Thus we
may rewrite equations (2.28) (in the condensed notation of Table 2.1)

asi~

€1 gao =1 - ngbl

€z gbl - Vgao + n\lga2 (2.30)

€1 L ngl * n@agaz
Solving equations (2.30) for gao gives:~

!

g =
ag € - TV (2.31)
! nVv
£2 7 El‘ﬂ¢a

Then using na(z) - - % Im gaG we obtain tl: LDOS for the case of a

heteropolar system (with a-type atom at centre of cluster):-

i B
na(E\ - - Firvoeya (2.32a)
where
V2
A= - myoa
! az*Bi
(2.32b)
p - V28
05082
n Vi(e) - nkes,) W
a =gy -
(ci-nRey )2 + n21m¢§ [‘
. (2.32¢)
n‘V21m¢
- A

(ek—nReéﬂ)z + nzlmwi
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€} =€ =0

€y = £ + U

For the case of a b-type atom at the centre of the cluster, an
expression for the LDOS (nb(e)) can be obtained by interchanging
the symbols a and b, and by replacing U with -U. The total LDOS

will then be :~

ntot(E) - na(c) + nb(ﬂ)

The two LDOS are given the same weight in the sum because atoums of

types a and b occur in equal concentrations. We will now proceed

0

to our third and final "special case".

(2.328)




i m———

- 61 -

2.5 INTERMEDIATE CASE: RANDOM LATTICE

2.8.1 Introduction

In this case ve examine a purely random lattice, that is, where an

a~type atom has the same probabilitv of having an adjacent b~type atum as it
does of having another a-type atom next to it. It can thus be seen that this
situation corresponds to the "halfway mark" between the two extreme cases of
the homopolar and the heteropolar lattices; as a result the coordination

o

aumber m will refer to m/2 atcas >f the ""same” type and m/2 of the "other”

type. An immediate consequence of having neighbours of different
ty;es is that a single i.teratomic energy parameter V is no lcnger
sufficient. In fact we now require thrge parzmeters viz. vaa’ vab

and V see Table 2.3 for definitions.

bb*

Paramzter Physical Description

Via <ai!K§aj>, i#j, i.e, a-type atom

interacting with (neighbouring) a-type atom

Vb <ai{!(\bj> and <bill{laj> i.e. interaction
between a-type and (neighbouring) b-type
atom

V., <b,|H!b,>, i#}, i.e. b-type atom

73] 2 M

interacting with (neighbouriug) b-type atom

Table 2.3 Parameters for the random and geaeral-case CBL.
2.5.2 Mean Fileld

As in the heteropolar case (Section 2.4.2) we will again take "cuttings"

from our Bethe Lattice(BL), typical examples of which are illustrated in
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Figures 2.7. Two of the equations resulting from Figure 2.7a are:-

m i N
(e~U)<ag|Glag> = 1 + 5 v <ayfGlap> + % v, <bilelap (2.33a)

o ; m
(e~Uy<ay [Glag> = Vs <aplGlag> + G-V, <ay|Glag> + 3V <bg [Glag>

ab
(2.33b)
and one of those resulting from Figure 2.7b is:~
m
(e-U)<ag|Glan> = 1 + G-Dv, <ay{Glag> + % Yab <byiclag>
+ vV <aylGlag (2.33¢)

aa

Proceeding 4s in Section 2.4.2 we define the following transfer matrices:-

88 <a [Gla,>
| for equation (2.33b)
[

T
ab o [6lay>

and:~
<a;|Glay>

for ation (2.33
aa <301c530> equ @ <)

Using these definitions and the abbreviatious defined by Table 2.1,

we rewrite equations (2.33) as follows:-

m
1 By, L+ {%aagal M Vabgb;] (2.332)
) w [ . v
£l By, 7 Vaaga 3 vaaTaa * Uabrab! gal JaaTaaGal (2.331)
1 0 2
o f“ - ~ -
5 E el
o1 830 b 2 {“aaga\ abgb3{ * ‘ua [“aagag Bay (2.33)

| — F a PTG e e -




-~
—
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Fig.2.7a &

Fig.2.7b

Figutes 2.7akb Two “cuttings” from a random Pethe Lattice.

Ll EE p SHEY ¢
Figure 2.7a: a~type atom with its four nearest
neighbours; Figure 2.7b: a-type ztom with three

of Its nearest neighbours.
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We now define Ta as followu:-

Ta - Taa = Tab

Equation (2.34) states in effect that an a-type atom on the surface

(2.34)

of the cluster will experience only one type of interaction (represenced

by Ta) with its a'tached BL, rather than twe separate types (represented

by T _ and T‘ ). That is, the inveraction experienced will truly be

aa b

a mgan fieid. Combining equatioas (2.33a) and (2.33c), and using

equation (2.34) leaves us with the following pair of equations:-

P - 1 B -
1 ga) - Vaagao "2 [aa * va;} Tadai vaaraaa1

We next define a mean interaction parameter Ga:-

- ~ ]
va =4 Eaa * VAIZJ

We note that this is a special case (xa - - 0.5) of:~

- %,
va xslsa * xbvab

where equatior (2.36b) is known as the Virtual Crystal Approximation
(VCA)2'7)v2'e>. ;e note that in order to have a completely random
ailoy we require equal concentrations of a- and b-type atoms. that
is Xy o= % o= 0.5. Hence it is physically correct for us to state
that our me»n parameter of equation (2.36a) represents the VCA.

Combining equations (2.35) and (2.36a, leaves us with:-

™
-3

- . 2
Viat (mv, \aa)Ta

(2.35a)

(2.35b)

(2.36a)

(2.36b)
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We now wish te vy °° eguation (2.37) ip the same form as the

corresponding equa. ~ns for the extreme CBL cases (see equation {2.0)).

we du this by extending ou:. application of the VCA as follows:-

Vo= ¥ (2.38a)

From equation (2.36a) we see that equation (2.3Ba) is » good approximation
prowvided that:~

Vag = Vab {2.38b)

How eyuation (2.38b) is known to be a criterion for the successful
applicazivon of the VCA in genera}z'g); we are thersfore in a physically
ronsistews position provided that the condition of equatiou (2.38b)
is mer Assuming this to be the case, we may proceed to apply the VCA

provims: we also incorporate one further pre-requisite of this

approximation, viz,:-

0w s Py o o
U 4 <La + bbs 0 2.39)

aliing that we have chosen Ua = ¢} and Ub = -, we see that our
rarameters are consistent with the requirements of equation {2.39);

replacing Ua and Uy with U, we are left withi~

o

Having met all the necessary regquirements we apply the VCA ¢

equation (2.37) to obtain the following approximation:-

5 N T ol PR
\43 + (m=1) \/ara {2.40)

the solution to which is:~-

— ke s - -

PR
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L JEg— [c:i/um—n)\"ﬂa_ez]

a =
2(m~-|)Va

and s0 we can write down our mean field function in the usuzl manner,

viz,:-

- T - € . L/ LS+ )
¢a vaTa 2(m-1) ti {m-1) b(m-i)va €

6& =4 {%aa * Vaé}

By interchanging the symbols a and b we also obtain an expression

where

for the mean field experienced by an atom of type b sitvated on the

"surface”" of the cluster:-

. ¥ - € ; ! /. 52 _ .2
% * YoTy * Tty Pl Ty DV, - e

where

. T
Vo = b Yoy * Vap| -
2.5.5 Loog

The cluster equations are more complex for the random alloy than for
either of the two extreme cases. Because they are obtained in a very
natural wanner as special cases of the generalized cluster equations
to be discussed in the next section, we choose not to carry through

the LDOS formalism in this case.

(2.41)

(2.42a)

(2.36a)

(2.42%)
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2.6 GENERAL CASE: INTERPOLATION BETWEEN SPF IAL CASES

2.6.1 Basic Concepts

We are now ready to extend our LDOS expressions thus far obtained to

a general form which will allow us to do useful calculations on

metal hydride systems. We will again consider a- and b-type atoms
(Section 2.4) but now we will allow them to be present in different
amounts N& and Nb respectively. Ir will be move convenient to work in
terms of concentrations rather than the absolute numbers N, and L

hence we define:-

¥ " N./(N‘ * Nb)
(2.43)
% Nb/(Na * Nb)

where x, and %, are the respective concentrations of a- and b-type

atoms.

An immediate consequence of differing concentrations is a complication
of our coordination parameter m. Consider for example the case

LR We can build up a straightforward heteropolar lattice
(Section 2.4) until our supply of b-type atoms iz exhausted; we

would then have the problem of incorporating the excess a-type atoms.
They could be accounted for by buildiug up an a-type homopolar lattice
(Section 2.3) in addition to the heteropolar one, but in the context of

an alloy this would clearly be a wrong picture physically. The only
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sensible alternative then is to "squeeze" the extra atoms into the
heteropolar lattice, which weuld result in a-type atoms having soue
a-type neighbours. Let k be the average number of these neighbours

of the same type. We can thus say:~

m = k("same type") + (w-k)("cther type”) (2.44)

On the basis of equation (2.44) we can now introduce another physically-

weaningful parameter )\, defined as follows:-

A = (probability of "other type” neighbour)

-« (probability of "same type” neighbour)

Bk ok
m m
. o2k
L Aow = (2.45)

Table 2.4 reveals the physical significance of equation (2.45).

% X Physical Description

m -1 All of neighbours are "same type" i.e. homo~

polar lattice (‘'segregaticn”)

% 0 Half of neighbours are "same type' (“random
alloy™
0 +1 No "same type” neighbours, i.e. heteropolar

lattice ("perfect binary alloy™)

Table 2.4 Physical significance of the parameter A (equatiou (2.45)).
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2.6.2 Mean Field

So far we have derived the mean fi-ld functions for the homopolar
random and heteropolar lattices, represented by equations (2.12),

(2.42a) and (2.27a) respectively:-

- e~U .
a 2(ma-l)

\ —
Homopolar : ¢ 2(h8°l) /é(m;l)Via - (e-U)2?

: S i ! futm ~13V2 - 2
Random H éa 2(ma-l) i 2(“a'l) A(ma l)V8 3
2
. . _eU o /Z(El-x)v“(s-u) 2
Heteropolar: ¢, 70,0 t i @, T (e-0)

where Ga - [?aa + Va;} and m_ is the coordination of an a-type atom,
We now require a more general expression for @a, which will reduce

to equations (2.12), (2.42a) and (2.27a) under the appropriate
conditions. Recall that the parameter )} (equation (2.45); we will
call it ka in this context) has the values -1, 0 and +1 for the cases
of equations (2.12), (2.42a) and (2.27a) respectively (see Table 2.4);
it world thus seem sensible to incorporate Aa into a general formula
for Qa' We consider the iuterpolation formulae used by Falicov and

Ynduraia in their work on binary alloysz'g).

Firstly, examination of equations (2.12), (2.42a) and (2.273) reveals

that we need a generalized interaction parameier 0a(xa) which will

reduce to V__, } Ly + vV and V
aa a

aa ab) for Xa equal to -1, O and +1

b

regpectively. A slight modification of the formula used by Falicov

and Yndurain?:®) gives: -

(2.12)

(2.42a)

(2.27a)
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V,0 =} [El-xa>vaa + (1+xa)va;l (2.46)

which satisfies the above three conditions.

We can now write down a slightly modificd form of Falicov and

Yndurain's formula for 082’5). viz,:~

(e -2
¢a('\a) - Z(ma-

o /A(ma—l)})'i(x‘)(s-ntiv)
R ICT) (RN

7; - (e=[x, 10?2
(2.473)

This reduces to equation {(2.12) for Xa = -1, to equation (2.42a) for

Aa = 0 and to equation (2.27a) for A‘ = +}, as required. By considering

equation (2.27b) and the "rules" used to obtain it from equation (2.27a)

(a + b, +U » -U) we obtain:~

- 2
e+ N SLACRICI N - e B2
o hy) = = w1 ImTn W) b

(2.47b)
where ), = mb-2kg/mb, and Wb(xb) is obtained by interchanging a and

: : , s -
b in equation (2.46) (remembering that vab vba)'

2.6.,8 LDOS

With reference to Figure 2.8 we see that we now have a more complex
cluster than in both the homopolar and heteropolar cases. This occurs
because we need to distinguish between two categories of second-
nearegt neighbours, viz. those attached to a flrst-nearest neighbour

(lst n.n.) of type a and those linked to b-type lst n.n.s., We denote




[ b ¢
;e

NAY%
4
5 b\% r i2 a, ;:,
@a\w \' / /Gb
@ emmmm— 5 w— (] 1 _—_bZ -~
I b

CLQ\
7/ \

Figure 2.8 Chemically-disordered (“general-case™") cluster with
Bethe Lattices $q and eb attached to the dangling

bonds.
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atoms in the first category with superscript "' (Figure 2.8 ). By
again applyiug equations (2.2) and (2.11), and making use of our
concise notation (Table 2.1), we are left with the following set
of linear equations:~
- ; e
£l 8y W PRV 8t (m~k )V p 8y,

€1 ga; " vaagug + (ka-‘)vaag§2 * <ma-ka)vabggz

£2 gb; = vabgla * \ub-kb“)vlbxaz * kbvbbgbg

18, " vnagnx * (ma~l)¢‘g:2

(2.48)
£2 85, ¢ VabBa, * (mb-l)obg%g
€1 832 - vabsb; * (ma'noasaz
2 By, ™ VipBy, ¢ (mTDoE,
We have seven equations in seven unknowns (the Green's function
matrix elements). Solving for 5‘0 gives:-
Bag © % V2 l (m_~k IVZ (2.49)
° . .faas_ MaTalab
! f1 [
- 2 - 2
where £, = gy - (ka l)vBa - (ma ka)vab
' Ve, =Ty, e7-(m=1),
vZ (m, -k, -1)VZ
and P Vbb _ DV

cz“(mb~l)¢b cl-(ma-l)aa

Again note the continued fraction form cof Sao (equation (2.49)),
truncated at the third level of "nesting” by the functions %, and ob;

cf equations (2.15) and (2.31) for the homopolar and heteropolar
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cases respectively.

We now evaluate the LDOS for the generalized second-nearest neighbour
cluster with an a-type atom at the centre, using the formula ns(c) -

V= Imgao. The final result is:-

1 B
na(t) - Z;:EI (2.50a)
where: - 2
k V< o \m -k )V‘by
A=er- 2402 2 2
@ *: Yess (2.50b)
-% )
B kavuaa . (m‘ kn’vab6
aZeg? v? o+ 82
where in turn:- s )
et - (ka*-l)vaaka (m -'k w bRb
LY 2 2
a2t 1y Rb * Ib
- 2
g = (k ‘)vaa a, (ma ka)vablb
2 2 2
e Rex
(2.50¢)
2 -
O ' s e DVEyRa
R+ 12 RZ + 12
b & a
-l - 2
s - V%, T Ve

aé«xg g;«zﬁ /

and:~
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R, = ¢ - nakeoa

(2.504)

Ry = €2 = mRedy

b~ Pplmy

It can now be appreciated from a brief study of equations (2.50) that
the formulae for the LDC. :esulting from a third-nearest neighbour
cluster would be impractically complicated for use in the very large
number of charge and ensrgy calculations we wish to perform (see

Section 2.3.3.3).

As with the heteropolar lattice, we must also consider the case of
a cluster centred on a b-type atom. The resulting LDOS (nb(:)) is
obtained as before by interchanging the symbols a and b, and by

replacing +U with ~U. The total LDOS thus obtained is given by:-

(e) = x.n‘(s) + xbnb(c) (2.51)

Dot

where the a- and b-type LDOS (na(c) and nb(s) respectively) are

weighted according to the concentrations of the a- and b-type atoms
(xa and X, respectively). Equation (2.51) provides the theoretical
basis for the electronic energy calculations which will constitute

the essence of this work.
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2.7  SUMMARY OF CHAPTER 2

We have started with the observation that in a non-stoichiometric metal
hydride the long-range order of a perfect crystalline system is absent
and hence there is no longer any motivation to analyse the solid as a
whole (cf band structure techniques). This observation, coupled with
the emphasis on local enviromwment in Chapter |, has led us to break away
from band structure techniques, We have started by considering the solid
from the viewpoint of a fintte cluster of atoms; however the literature
reveals that this approach, using standard boundary conditions at the

surface of the cluster, requires a cluster which is impractically large.

Secondly, we have commented on a quite different approach to disordered
systems, viz. tne Bethe Lattice method, in which the whole solid is

' of atoms with no long-range

represented by an infinite, branching "tree
order. The Bethe Lattice model has the following attractive features:
the commevntivity of the solid is maintained; the Ilocal order of the
system is retained through a constant coordinatior. number; and the
equations for the Local Density of States are analytically soluble. The

main drawback of the Bethe Lattice method is that it produces rather

featureless Local Densities of States and so is not very helpful.

In the present work we have employed a formalism which is essentially a
hybrid of the above two approaches; this is the so-called Cluster-Bethe-
Lattice (CBL) model, which consists of a small cluster of atoms with the
surface boundary conditions being replaced by Bethe lLattices attached to

the "dangling bonds" on the surface of the cluster. The consequent
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equations for the Local Density of States (LDOS) are still analytically
soluble, but now give rise to rich structure in the LDOS; the Cluster-
Bethe-Lattice approach thus incorporates the best features of its

constituent models.

The CBL model is formulated in terms of the Creen's funotions of the
system because of the convenient methematical link between these functions
and the Local Demsity of States. We have derived expressions for the LDOS
for three physically well-defined special cases, viz. a homopolar eolid,

a perfect binary alloy and a random alloy, which we have synthesized into
a general expression for the LDOS by implementing the interpolation scheme
of Falicov and Yndurain?:%). This scheme is formulated in terms of a
physically meaningful order parameter, in such a way that our expression
for the LDOS reduces to the above three special cases for appropriate

choices of this parameter.

In the next chapter we will evaluate suitable gnergy parameters for our
CBL model, and in Section 4.2 we will write down appropriate formulae for

the order parameter and related quantities.
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APPENDIX 2.1

LDOS OF THE HOMOPOLAR "SINGLE SHMELL" CLUSTER

Here we consider a Cluster-Bethe-Lattice model for a Aomopolar lattice,
consisting of atoms of type a only. Specifically, we cheose a cluster
consisting of a central atom and only one shell of neighbouring atoms,
that is the cluster only extends tc nesrest neighbours of the central
atom. Henc» we see that the Transfer Matrix must remove the lattice
from second-nearest neighbours outwards so that, in line with

equation (2.6), we obtain:~-

<ay,, 1618y

<aN§G{a°>

» N2 (AZ.1.1)

With reference ro equations (2.7a) 4nd Table 2.] we can then write

down the following "single shell"” cluster equations:~

£l B

ag = 4+ ngal (A2.1.2)

€1 gal - Vgao + n@gal (A2.1.3)

Solving equations (A2.1.2) and (AZ.1.3) for a0 gives:~

|
™ A2.1.4
380 mv? ¢ )

€1=np

€] -

Comparison wi.th ejuation (2.15) reveals that the mean field function

¢ truncates the continued fraction (equation(A2.1.4)) one ievel
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sooner in the present case. We now use equatiocn (AZ.1.4) to obtain
an expression for the LDOS for this cliuster, wviz.:-

1 S R
ey Img‘“ T g2ey2

where:~
2
B'El'%(ﬂl*nﬁew

a

anVe Ime
al

a? = (g; ~ nReg)~ + (nimg)”

€1
Red = ,2‘;
g2 - 4oy
Tmg = - 2n

ve sign zu fromr of Imw

Nize that in this case we choose the

0 as to keep the LDOS positive.

and wgmations (2.16) reveslis a

A comparison of equations (AZ.
richer mathematical structure for t=he "dpuble shell” cluster model;

we therefore expect the latzazr to provide a more detailed p.-ture

of the LDOS than the "sing shell” approsch.

(A2,1.5a)

(AZ.1.5b)

(A2.1.5¢)

I
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CHAPTER 3

PARAMETRIZATION

3.1 INTRODUCTION

In Chapter | we expressed the need for a non-periodic, localized
model for non- stoichiometri- .rans:tion metal hydrides, in particular
that of palladium. Chapter 2 laid the foundation for just such a
model by developing a formalism for a mom-stoichiometric binary alloy
with a variable order parameter ) (see equation (2.45)). 1Ia this
chapter we will begin to apply this model to Pdax by evaluating
physically-sensible expressions for the three interaction paramaters
Vda, vab ana vbb and for the energy-level parameter U. Section 2.3.3.1
and Table 2.2 remind us that these energy parameters are simply
metrix elements of the Hamiltonian of the system. So we firstly

want a simple, physically-transparent Hamiltonian which is neverthe-
less compatible with standard band structure parametriczations for

Pd and PdH; and secondly, we require simple approximations (based

on a semiempirical understanding of the electronic properties of

transition wetals in general) to take advantage of this compatibility.

This chapter is broken up as follows: in %ection 3.2 we give thought
to a suitable Hamiltonian, with particular a.tention paid to stripping
away all but the most important terms; Section 3.3 is devoted to a

review of the classic paper by Slater and Koster concerning the
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parametrization of band structure calculations; this will provide
sufficient irformation for the appreciation of Section 3.4, in

which we derive an approximnate expression for the palladium
palladium interaction pe ameter; in 3ection 3.5 we apply Molecular
Orbital Theory and information from Section 3.3 to obtain & similar
formula for the palladium-hydrogen interaction parameter; Section 3.6
considers the hydrogen-hydrogen and energy-level parameters; in
Section 3.7 we choose values from a suitable BS parametrization,

from which we derive a table of parameters to be used in subsequent

chapters; and finally Section 3.8 contains a summ~ry of the important

features and results of this chapter.
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3.2 CHOICY OF HAMILTONIAN

Palladium is a transition metal and heonce its valence bands are
expected to be predominantly d-~type. This is confirmed by BS
calculations in which we invariably find that the Fermi energy F.P
falls in an energy range dominated by the d-bands3'1); further,
we have seen already (Sections 1.2.3 and 1.2.4) that the DOS is

high at E_, which would not be the case for s- or p-type valence

F*
bands. Since the electromnic properties of a metal are largely
determined by the nature of its valence bands, we shall assume
from the outset that the palladium-palladium interaction is purely

between the d-orbitals. Thus, if we take the a~type atom of

Chapter 2 to be palladium, we row have:~-

Vaa * Ypara * Yad G-h

This equation is nevertheless only an approximation: we recall from
Section 1.2.2 the experimental finding that the palladium valence
bands contain 0.36 electron in the 5s orbitals; thus equation (3.1)
should strictly contain a contribution of the form vsd' However,
due to the compatibility of BS calculations performed for both
4d%5s' and 4410587 configurations of palladium (Section 1.2.3),

we shall assume from here on that equation (3.1) is an adequate

representation of the palladium-palladium interaction.

The so-called Tight-Binding (TB) model his proved particularly
effective in describing metals with predominantly d-type valence

states3 2)P: 35 and hence it seems seasible to choose a TB Hamiltonian
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for our formalism. The TB approach is a particular case of the
LCAC (Linear Combination of Atomic Orlitals) technique and hence
we expect these two methods to be compatible; this is important
because in subsequent sections we shall be applying an LCAO~based

technique to obtain expressions for our interaction parameters.

Our Hamiltonian will have to include terms to account for the
presence of hydrogen in the palladium lattice; these must be given
the same Tight-Binding form as the pure metal terms. The b~type
atoms of Chapter 2 are now taken to be hydrogen, and following

equation (3.1) we can write:-

v, =V (3.2a)

-V =V (3.2b)

It fecllows that the pai.meters describing the energies of the a and b

states in Chapter 2 are given by:-

U, = Uy (3.3a)
Uy = Uy (3.3b)
We now substitute equatious (3.1)-{3.3) iatc the TE Hamileonian

used by Falicov and Yndursin3’3), to obtain a Hamiltonian suitable

for our purpnses:-

H o= Z U, [is<i] + ¥ vijliwﬂ (3.4)
1




————
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|i> is the wave function of the atom at site i;

is either Ud or Uh’ depending on whether there is a
palladivm or a hydrogen atom at site 1i;

the sum over i and j is restricted to nearest neighbours only;

and Vij is either V depending on whether the ith

ad’ Ynn °F Via’
and jth atoms are both palladium, both hydrogen, or one

of each.

The rest of this chapter is concerned with finding expressions

and values for the parameters V,. and Ui'

ij

A
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3.3 THE SLATER~KOSTER INTERPOLATION SCHEME

3.3.1 Introduction

Although band structure (BS) techniques are usually highly accurate,
they are nevertheless only computationally feasible at points of

high symmetry in the Brillouin zonme (where the secular determinant

is considerably simplified, leading to degenerate states). To obtain
a continuous plot of the energy bands of a crystalline solid it is
therefore necessary to fit curves to the calculated points. This
could be achieved with least-squares or cubic spline fits, but the
polynomial coefficients would have no physical significance. In
their classic paper of 1954, Slater and Koster3'*) introduced an
interpolation scheme <hich generates coefficients which do have

physical meaning; this paper is reviewed in some detail in Appendix 1.

Section 3.3.2 is a summary of this review, and will provide the
reader with an adequate working knowledge of the Slater-Koster (SK)

scheme and its by-products to appreciate the rest of this chapter.

3.3.2 Outline of the Scheme

Slater and Koster start by developing an LCAO (Linear Combination
cf Atomic Orbitale) mndel for a crystalline solid. This approach
assumes that the wave functions of the solid can be built up from
atomic orbitals, this procedure is carried out in two main steps:
firstly, a given atomic orbital @L(E—Ej), where Kj is a lattice site,

is "delocalized”" by summing it over a large number of sites Ej;
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weighting factors alk'%j are used, where k is the crystal momentum

vector. The result is a so-called Bloch sum BZ - Z el¥.§jél(g‘§j);
b

and secondly, a linear combination of these Bloch sums is taken,

giving the complete LCAO approximation to the wave function.

The next step is to evaluate the energy matrix element <BZ|ﬂ[BZ,>

between any two Bloch sums Bl and Bl.; this turns out to be a linear
combination of a large number of complicated integrals, of the form
<¢z|u[oz.>. The Hamiltonian H in turn contains a sum of spherically-
symetric potential wells situated on all N atoms of the system; introducing
orthogonalised atomic orbitals {wz) (see Appendix 1) we have that <nzlnl»z.>

consists of a linear combination of emergy integrals of the following form:-
- * - —
El,l' JVWZ(E §j) H 'ilgq({ %jv)dv (3.5)

where H contains terms like v({-ﬁj"). which is the potential well associated
with the atom at Ej"' Thus we se¢e that the right-hand side of equation (3.5)
is a threg-centre integral (referring to atoms at Kj’ Ej" Ej")’ which the
authors describe as being computationally intractable, both because of

their complexity and number.

It is at this point that Slater and Koster introduce their ingenious
parametrization scheme by simply replacing these integrals with
disposable constants; in other words, we are provided with an inter-
pola-ion scheme in which the coefficients represent the physically-

significant integrals (Ez l’) of eqration (3.5). The definition of
,
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EZ,Z‘ must be extended to allow explicitly for interactions between
nearest, second-nearest and third-nearest neighbours; this is done
for convenience rather than for physical reasons: we require a
mechanism for generating as many constants (El,l'} as we need.

Hence we write:-

El,Z' - EZ,Z'(nlj’ nzj' n3j) (3.6)

e

where n. n,, are integers such that for lattice constant '
i

3i* 25 Maj
we have Ej - “lj‘i + “2j‘1 + najli; we recall that %j is the vector

linking a given atom to a particular atom in its jth

near-neighbour
shell. It follows immediately that these Qj vectors are determined
by the crystal structure of the lattice (for example fcc in the case

of palladium metal). Hence the enmergy matrix elements may finally

be expressed as:-

<8, |K|B,,> = § e"é'(’éj"’ij)al'l,(nlj, By B3p) a7

where the second summation which would have been present cancels with
the normalization constant, and where we note that h'%j can be

expressed as akxnlj + ak “2j + akznaj. Equation (3.7) contains the essence

y
of the Slater-Koster (SK) scheme: the energies <BZ!H|BL.> are known for

certain values of (kx. k , kz) from BS calculations, the (EZ Z') are
?

sr
J

the energy parameters to be evaluated, and the factors

{ela(kxnlj*kynzj*kzn3j)} encure that the (EZ Z') will be expressed
*

in terms of the general vector (kx’ ky, kz)'




- B8 -~

As mentioned above, the SK scheme allows us to inerease the number of
(EZ,Z'} parameters by considering more distant neighbours., But what
if we are required to reduce the number of Ez,z'°7 This question
led Slater and Koster to introduce the Two-Centre Approximation (TCA)
into their scheme; consider equation (3.5) above: for the off-~
diagenal case (%j ¢ kj‘) the integral on the right~hand side can
belong to one of two classes, either &j ¢ Qj‘ ¢ &j“ (three~centre
integral) or Ej ¢ %j" 5j" - 55 or 55. {two~centre integral). By
orbital-overlap considerations it can be seen that three-centre
integrals will be smaller than two-centre integrals; the underlying
assumption of the TCA is that vhe three-centre integrals are in

fact negligible.

The TCA thus models interatomic interactions in a way similar to that
employed for diatomic wolecules, with atomic-like orbitals space-
quantized about the interatomic axis Ej'“gj‘ consequently, the
agsociated two-centre energy integrals will be directed along this
axis. Slater an! Koscer represent these integrals by the parameters
(mnk)i, where m,n are s,p,d states, % is o,n,8 and i = 1,2,3 refers
to nearest, second-nearest, and third-nearest neighbours respectively.
The parameters {El,l') can be expressed as linear combipations of the
paramaters ((nmx)i) (see Table Al.l for examples), and the appropriate
substitutions made in equarion (3.7). The most imporiant feature of
such a substitution is that it almost invariably reduces the number

of fitting parameters, as required (see Appendix 1 for details).

o M e
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Once the number of parameters equals the number of energy states which
are to be fitted, equations like equation (3.7) can be solved for these
energy parameters; although they will have some physical significance,
we note that they are by no means unique, depending as they do on the

number of states fitted as well as on the BS technique used to generate

these states.

10 subsequent sections we shall make use of the SK interpolation scheme,
and in particular the Two~Centre Approximation, to obtain suitable

interaction parameters for our model.
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3.4 THE PALLADIUM-PALLADIUM INTEKACTION PARAMETER (Ydd)

3.4.1 Introduction

We are now in a position to evaluate an expression for vdd' using the
same approach as Lowchcr3'5); we first take up the analysis of Heine3+2)P. S7££
to obtain an approximate link between the two-centre integral (ddog)

and the width of the 4 bands of transition metals; and secondly, we

refer back to Chapter 2 to find an expres.ion for the width of the

palladium d band in terms of our parameter vdd' We are finally left

with an approximate expression for vdd in terms of the single two-centre

integral (ddo), which we shall choose from a suitable BS parametrization

in Sectiom 3.7,

3.4.2 Link betweer, Two-Centre Integrals and Band Widths

Heine3-2)P-58 4 Papaconstantopoulos et a13+1) remind us that the d
bands of a transition metal cover a relatively narrow emergy range,

and that they overlap the broad s and p bands. The orbitals associated
with the d bands have the expected TB structure, whereas those associated
with the 8 and p bands have plane wave (PW) form (as expected of

broad bands). The radial part of the Schridinger equation for the d
orbitals contains a repulsive centriiuzal barrier which tends to

confine d electrons within their host atoms (hence the TB concept),

but they can tunnel out. Such tunnelling causes the d states to
resonate with plane wave states of similar energy; an interaction

of this type can be approached from the viewpoint of resonance theory,
from which one may extract an approximate expression related to the

width of the d bands; this is given by3:®):~
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W= QKG{‘Ijjz(Kor)V(r)Q(r)rzdtlz (3.8)

where

Ko = /552 . Eo being the energy at resonance and hence at
the centre of the resonance band;
s is the atomic radius;
jz(xnr) is the spherical Bessel function of order 2 and
represents a component of a plane wave interacting via
the potential V(r) with the radial part $(r}. of the d crbital.
More precisely, ¢${r) = u{r,E,), where u(r,E) is the radial

wave function for any enmergy E.

Thus W models the interaction between TB and PW orbitals; in terms
of the uncertainty principle we have that N/W is the time required
for a 4 electron to escape into the PW states outside the atom. By
expanding jz(xor) to lowest order in Kor (that is, taking

j?(Kor) = (Kor)zlls) equation (3.8) becomes:-

W= 2KZ M?/225 (3.9a)

where

M=

-]
{ V(ry¢(r)rdr (3.9b)
o

Using another lowest-order expansion, “he well~known expression for the

radial wave function’:®) reduces to:-

E -E
u(r,E) = P I f}T for r « 8 (3.10)
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We must bear in mind that equation (3.10) refers to the d states only.
By applying suitable boundary conditions to equa.ion (3.10) we are
able to find expressions for both the lowest energy (Emin) and
highest energy (Emax) of the d bands; & = Emax - Jmin can then be

taken as an approximate measure of the width of the d bands of a

transition nmetal. We eventually obtain:-

4 = fM¥/sS (3.11)

We notice that dependence on the resonance energy Eo has been

cantelled out in the derivation of equation (3.11); & is thus seen

to depeud caly on atomic orbitals, the atomic potential and the

_tomic radius. That is, 4 is essentially an intra-atomic parameter;

this would appear to be physically incorrect, since the band width

is generally understood to te an interatomic effect. To resolve this
paradox we consider an integral of the two-centre typs. (cf Section 3,3.2)
between a pair of d orbitals @l and $Z" located on aioms at Ej and §j'

respect.vely:~

(it = L¢;<g-;§j>vq~55,)ol.q-ﬁj.)dv (3.12)

The major contribution to this integral is not from the region midway
Velween E} And Ty {as w
being that d orbitals peak very close to their parent atoms (for
example at about 97 of the interatomic distance in copper). Hence
the dominant contribution to the integral in equation (3.12) comes
from deep inside the atom at Ej" where the effects of the d orbital
located at Ej are hardly felt at all. Ve are thus left with an
{nteraromic integral which nevertheless hes essentially intra-atomic

features, and the paradox is at least qualitatively resolved.
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Thus a feature emphasized by this analysis is .he essentially localized
nature of transition metal d orbitals, which confirms our findings

concerning the importance of near-neighbour atoms (Section 1.2.8).

With the basic physical concepts of the width A of the | band
established, we now seek to combine equation (3.11) for 4 with the
two~centre approach of equation (3.12). Because the biggest contribution
to bonds between like orbitals is due to o-overlap, we make the rough
assumption that the d-d interaction can be expressed in terms of the
single two-centre integral (ddo). Because a d orbital has at most

four lobes, we can only have about four ddo bonds per transition metal
atom. With reference to equations (3.8), (3.9a and b), and (3.12) we

see that M corresponds to a two-ceantre integral; if we associate M with
four ddo bonds per atom then & = IM? consists roughly of ()2 = 8 (ddo)

integrals, so that:-

4 = =-8(ddo) 3.3

where the minus sign is taken because (ddo) is expected to be negative.

We now wish to test the validity of this highly intuitive derivation.

Using a more rigorous approach, Heine obtains the following expression:~

(ddv) = -6M?/5R5 (3.14a)

where R is the interatomic spacing; for nearest neighbours in the fcc

structure, Heine gives the relation s = 0.5526R so that equation (3.14a)

becomes: -

(ddo) = ~1,2(0.5526)5 MZ/s> (3.14b)
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Substituting equatinn (3.14b) into equation (3.il) gives us:~

i
1.2(0.5526) %

L Y R

leaviang u¢ with the remarkable result that eguation (3.03) is

accurate to about 1%, and therefore quite acceptable for our purposes.

3.4.3  Link between cur d Band Yidth and Ydd

We wish to use one of our LDOS expressions in Chapter 2 to obtain an

expression for the d band width in terms of V For this purpose

dad”
we consider pure palladium metal, that is, the case of a homopolar
lattice. The LDOS for such a lattice is given by equations (2.16),
into which we substitute Vdd for V and Ud for U. We notice that

the numarator n of this LDOS expression is proportional to the

quantity v, which in turn is proportional to Im¢, where:-

- 7 - 2 4
Img = gr—yy /(o DVE) - (e - UY) (3.

Thus we have:-

(ddo) » ~8.1(ddo) (3.

153

‘ba)

(LDOS of d-band) = '/“‘“"”"gd - (e - uyy? (3.16b)

It follows from equation (3.16b) that the maximum energy of the d band,

is given by ¢ = Uy - 2ém~1 V., (assuming V,, < 0), and that

€ max’ max dd dd
ini i i . Vi1
the minimum energy, Eqin’ 15 siven by €min © Ud + ¥m~1 vdd‘ Hence
the band width is 4 = ¢ - e ., giving us the result:-
max mir
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A = ~4/m] Vid (3.17)

We now combine equations (3.13) and (3.17) to give us a formula for

Vdd in terms of the two~centre integral (ddo). The final result ig:=-

2 (ddo) (3.18)

V. =
dd o

We proceed now to evaluate the palladium-hydrogen interaction parameter

vhd'
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3.5 THE PALLADIUM-HYDROGEN INTERACTION PARAMETER (Vhd)

3.5.1 Introduction

We shall approach the evaluation of the parameter vhd from the localized
viewpoint of Molecular Orbital Theory (MOT), again following Lowther
(1982)3%); we recall the importauce of local environment in the Pd/H
system, and hence feel justified in using MOT. We found in Section

1.2.7 that a hydrogen atom occupies the octahedral interstitial site

in palladium; this results in PdH; having the NaCf structure, that is
two fce lattices superimposed on each other. We thus see that the
hydrogen and palladium sites are symmetrically identical, so that we

can correctly think of a palladium atom as being in an cctahedral
"interstitial site" of the hydrogen lattice. This viewpoint will be
convenient for the application of MOT, where it is much simpler to

have a metal central atom survou' *rd by hydrogen ligands than vice vevrsa.
The MOT approach will require us to represent these hydrogen ligands

by means of a "mclecular” orbital, this being an appropriate linear
combination of the hydrogen s states on the six sites surrounding the
palladium atom (see Figure 3.1). The assumption is that all six
octahedral sites are occupied, corresponding to PdH; (¢f our evaluation

of the parameter V which was done on the basis of pure Pd metal).

dd’

3.5.2 Intuitive Approach

We began with an intuitive approach to this MOT calculation; firstly,
we assume that the palladium atoms has only d-type valence orbitals,

in keeping with our choice of Hamiltonian in Section 3.2. There are
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S ‘Sl.
sy

“
L
Figure 3.1 Numbering of hydrogen atoms octahedrally coordinated

about a palladium atom (after Lowther3:%)p.900),
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five d orbitals, and from Figure 3.2 we see that geometrically they
fall into two «_stinct classes: the xy, yz, zx orbitals have nodes

2._},2

in the direction of the Cartesian axes, whereas the 3z?-r2, x
orbitals have lobes in the direction of the axes. Now we see from
Figure 3.1 tnat the hydrogen atoms are situated on the axes in our

case of octahedral symmetry; hence we do not expect the first class

of orbitals (dtz) to interact with the hydrogen s states at all, whereas
the second class of orbitals (de) should interact with these s states,
presumably forming hybrid orbitals. These observations can be proved
rigorously using Group Theory, and we can thus exclude the three dtz
orbitals from our discussion; further, the two de orbitals can be shown
to be energetically degenerate {a group-theoretical consequence of

their belonging to the same symmetry class), sc that our picture of

the d orbitals is greatly simplified.

Superimposing & de orbital frowm Figure 3.2 onto Figure 3.] immediately
reveals a directed bonding structure, such as one wouid expect to

find in a diatomic molecule for instance; hence e imsediately see

the possibility of using the two-centre approximation discussed in
Section 3.3.2. Ignoring the (sdr) and (sdd) integrals (cf our neglect
of the (dd») and (ddd) integrals in Section 3.4.2), we are left with
the single integral (sdu) with which we wish to model the palladium-

hydrogen .ntaraction vhd'

To obtain an approximate expression for Vhd' we must appreciate that
the simple Hamiltouian we have chosen (aquation (3.4)) requirrs us to
approximate the sum of orbitals on the palladium atom by a single
wave function |i»; becausc the form given to this wave function in
equation (3.4) is identical to that ol “he hydrogen orbital, we
conclude that an s-like composite d orbital ir iwmplied by this
formalism. Such an approximation can be intuitively seen to be nor

too bad by superimposing the various d orbitals of Figure 3.2, noting
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d_u{37°-r") d viV3(x*-y")

Figure 3.2 Schematic representation ot the tive e orbitals of a

transition metal (after Watansbe®: 79953,
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that de lobes will "fill in" dt2 nodes, and vice versa. We can thus
express V,, in terms of an s-like orbital on palladium interacting
with an s~like hydrogen molecular orbital, and the detailed analysis
to follow will reveal that this is sufficient for obtaining a link

between Vhd and (sdo), as required.

&.5.8 Rigorous Approach

We recall from the previcus section that only the de orbitals of
palladium interact with the adjacent hydrogen s orbitals for the

case of octahedral symmetry in PdH;. W- also coumented on the
degeneracy of the de orbitals and the possibility of describing their
interaction with the nearest-neighbour hydrogen orbitals in terms of
the single two-cenire integral (sdo); and lastly we made some comments
regarding the s-like nature of our simple Hamiltonian, which will

allow us to link vhd with (sdo).

We now quantify these ideas by considering three different hydvogen
molecular orbitals, octahedrally coordinated about a central palladium
atom; the first two have symmetries compatible with d, orbitals on the
palladium atom, and the symmetry of the third is compatible with an

s~like pailadium orbital. In each case we evaluate the cnergy matrix
element between the particular palladium and molecular orbitals, using

the S5later-Koster scheme to express these in terms of two-centre
integrals. The firsr two matrix elements will be identical, as

expected of degenerate states; if we assume that these are also degenerate
with the third matrix element them our expression for Vhd follows

immediately.

The following three equations describe the above-mentioned hydrogen

molecular orbitals, and are taken from work by Watanube3'7>:-
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Vy2.y2 =h(s1 = 82 + sy - 85) (3.19a)
“'3z2—r2’/1"’z= (= 8y - 83 + 283 - 84 - 85 + 28¢) (3.19b)
ws - e (8) + 87 + 83 + 8y + 85 + 5¢g) (3.19¢)

where the hydrogen s orbitals 8; are as in Figure 3.1. To construct

energy matrix elements using equations (3.19a-c) we need the following

SK parameters, taken from Table Af.l:-

B‘z_yz"i =} /3 (12-n?)(sda) (3.20a)
e

Bszz-ﬁ,.i - E;Z -4 (1 mZ)J(aac:) (3.20b)

Ey.s. = (850} (3.20c)

With reference to equations (3.19a-¢), (3.20a-c) and Figure 3.1

we obtain Table 3.1:~

s, (1,m,n) Exz__yz"i l":‘z:e..,z_,i
st | (1,0,0) 1/3(sdo) | -}(sdo)
s | (0,1,0) -1/3(sdo) | -j(sdo)
sy | (0,0,1) 0 (sdo)
84 (=1,0,0) V3 (sdo) -} (sdo)
ss | (0,-1,00 | -1/3(sdo) | -}(sdo)
sg | (0,0,-1) 0 (sdo)

Table 3.! Slater-Koster parameters for the six
hydrogen s orbitals.
iv . the coefficients of the s orbitals 8 in equations (3.19) be

represented by the set (ai(wv)}, where v = xz-yz. 3z2-r2 5. It




V2oy2 =H(s1 = 82 + sy = 85) (3.19a)
!
Vg2 A4 (7817 Szt 28y - sy - 85 v 2sg) (3.19b)
! .
‘e TFE (8; + 83 + 83 + 3y + 85 * 5g) (3.19¢)

where the hydrogen s orbitals 8, are as in Figure 3.1. To construct

energy matrix elements using equations (3.19a-c) we need the following

SK parameters, taken from Table Al.l:-

Exg_yg‘ai « } /3 (1%-w?) (sdo) (3.20a)
Ehz_rz’si - E.z -4 (12 mzﬂ(sdc) (3.20b)
Es,s' = (ss0) (3.20c)

1

With reference to equations (3,19a-c), (3.20a-c¢) and Figure 3.1

we obtain Table 3.1:-

s (1,m,n) Exz‘y"',a;' E3z2-r2,si
) (1,0,0) 1/3(sdo) ~§(sdo)
s2 | (0,1,0) -4/3(sd0) | ~}(sdo)
8y (0,0,1) 0 (sda)
s (~1,0,0) }/3(sdo) | ~)(sdo)
sg (0,-1,0) ~1/3(sda) -4 (8da)
sg | €0,0,-1) 0 (sdo)

Table 3.1 Slater-Koster parameters for the six
hydrogen s orbitals,
Let the coefficients of the s orbitals 8; in equations (3.19) be

represented by the set (ai(wd)}, where v = x?-y?, 3z?-rf s, Tt
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then follows from the SK scheme . at the energy matrix elements are

given by:-

6
il > = ] 3, e (3.21)
im=] i
where |v» refers to the palladium atomic orbital and va> to the

ccrresponding hydrogen molecular orbital.

Using equations (3.19a and b) and Table 3.1 we find that equation (3.21)

gives us:~
<x2-y2{H§wx2_y2> - <3!2‘r25“§W322_r2> = ¥3(sdo) (3.22)

where we have the expected degeneracy oi the two d' orbicals, and by
making use of equations (3.19¢c) and (3.20¢) in equation (3.21) we

obtain:-

<slHly > = Y8 (s80) (3.23a)

Because our Hamiltonian H is s-like (see Section 3.5.2) we expect
equation (3.23a) to give us the best physical picture of the palladium-
hydr: "en interaction parameter vhd' In deriving equation (3.23a)

from equation (3.21) we have the following intermediate steps.-

- S,




- 103 -

3

sy > = 1 a0 (ss0)
1=]

, 8
-‘/g Z I.(ss0)

i=]

= /6(ss0)

The second~last step indicates that it is quite reasonable to

approximate vhd by (ssv), so that equation (5.23a) becomes:-

<siﬂ|ﬁ;s> s V6 Vg (3.23b)

The [inal step is to assume that the matrix element of equation (3.23b)

is equal to those of equation (3.22); this is physically reasonable
since the s-like palladium wave function |s> is supposed to approximate
.he behaviour of the more compiicated d orbitals which are present

in the real metal. Hence combiniug equations (3.22) and (3.23b)

we finally obtain:~

1
Voq * 5 (sdo) (3.24)

We next make some comments on the parameters V.. and U.

hh
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3.6 THE HYPROGEN-HYDROGEN AND ENERGY-LEVE AETERS (Vl] AND y)

Rather than derive independent expressions for thesc parameters, we
shall instead take them from the BS parametrization which we decide

to use for evaluating V . and Vhd (via equations (3.18) and (3.24)

dd
respectively). We can however make certain qualitati . observations
regarding Yo and U, and these will in fact assist us in choosing

32 guitable BS parametrization.

Firstly, we recall our comments ot Section 1.2.8 concerning the
hydcrogen~hydrogen glectronic interaction, namely that we expect it

to be small (because the hydrogen-hydrogen separation in octahedral
interstitial sites of the palladium lattice is roughly & X, as
compared to the interatomic separation of roughly 1 £ in the hydrogen
molecule)., Thus we wish o find a BS parametrization for which (sso)

is small or 22ro0 for the hydrogen-hydrogen interaction.

Secondly, we refer to tn» photoelectron spectroscopy experiments
performed by Schlapbach and Burger? 8) on PdHy ¢; they fiud a band at
about 8 eV (=0.6 Ryd) below EF' which they associate with hydrogen-
induced stares. We know that EF 15 in the d bands (Section 3.2), in

fact near the top of them (because of the 4d*'®“ configuration); also

that th d bands are roughly 5 eV wide (Sections 1.2.3 and 1.2.4),

Hence we might expect the centre of graviiy ol ihese bands to be
roughly 2 eV below Eg, giving a separation between the d and hydrogen~
induced bands of approximately 6 eV (=0.44 Ryd). We recall that the
separation between the centres of gravity of the d and hydrogen-
related bands is simply 2U (where U = L;Ud-uh]). Thus we are looking

for a2 parameter U of the order of 3 eV (=0,22 Ryd).
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. W T J

Reference Mueller et al (1970)3+9) Switendick (1972)3-10)
Electroni £icurati 4d%5s1 4d ' 95¢9 4410540 4d%5s!
CLronlc conyigy on (HFS). (HFS)' (HF)“
(ddo) -0.0427 | -0.0647 | -0.0497 -0.0484"
v, 0.2484 0.3062 0.3972 0.4346
e
U, 0.2458 0.3064 0.3920 0.3117
t
Table 3.2 Slater-Koster parameters for palladium (in Ryd)
*Hartree-Fock-Slater
**Hartree-Fock
Reference | Faulkner (1976)%+11) | Suitendick (197:)3-10) | Papaconstantopoulos
et al (1978b)3-1)
+ +
(ddo) 494 ~0.0430 -0.0401
(sdo) . 1200 0.1141 0.0005
(ss0) 0.0 -0.0234 0.0208
U, 1.3700 0.4557 0.3538
e
U, 1.7700 0.3661 0.3883
t
U, 1.00 0.7482 1.0839

Table 3.3 Slater-Koster parameters for palladium hydride (in Ryd)

"
"Taki ddo) = }(3E}LD
aking (ddo) ( Xy,

- glio
xy Ezé,zz)
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3.7 EVALUATION OF PARAMETERS

We again follow Lowther*5) in our choice of Slater-Kcster (SK) parameters;

Tables 3.2 and 3.3 are taken from his Tables | and 2.

We see immediately from Table 3.3 that Faulkner's parametrization
satisfies the semi~quantitative requirements of Section 3.6; firstly,
the hydrogen-hydrogen interaction parameter (ss¢) is zero; secondly,

the centroid of the hydrogen band, Uh' is lower in energy than that of
the d bands; and thirdly, we have U = Hud-uht = §|1.37-1.00| Ryd = 0.185 Ryd
(cf our rough prediction of U = 0.22 Ryd). Hence we will use Faulkner's
values as the basis of our parameter sets. We notice that his values
imply degeneracy of the de and d, states; though we would not expect to
find this degeneracy in the real system, neither do we expect the large
splitting of states implied by Switendick's parameters (Table 3.3).

The calculations of Papaconstantopoulos et al (Table 3.3) indicate only
a small separation between dc and d, states (roughly 0.035 Ryd, less
than a tenth of Faulkner's hydrogen-palladium band separation of

20 = 0.37 Ryd). Furthermore, Mueller's results for palladium (Table 3.2)

thow a negligible difference between the parameters Ud and Ud for the
e t

pure metal. Heance we shall make the assumption Ud - Ud - Ud .
e 4

We recall from Section 3.4 that we need the integral (ddo) for the

case of pure palladium metal, and from Section 3.5 that (sdo) is needed

for the stoichiometric hydride. Thus Faulkner's value fo- (ddc) in

Table 3.3 is not strictly appropriate; however, its small deviation

from the values for pure paliadium metal (Table 3.2) suggests that
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we can use Faulkaer's results for all our parameters, thus retaining

a certain consistency and simplicity in our approach.

Because palladium metal has the fcc structure, the coordination of

an atom in the Pd lattice is given by m = 12. Hence, using Table 3.3
and equation (3.18), we obtain an approximate numerical value for
our palladium~palladium interaction paramecer, viz:-

V., * -0.0298 Ryd (3.25)

ad
Similarly we obtain from equation (3.24) our palladium-hydrogen
interaction parameter, viz:-

v, . = ~0.08485 Ryd (3.26)

hd
where the minus sign has been introduced on the physically-intuitive

basis of an attractive palladium-hydrogen intcraction. Table 3.4 contains
what shall henceforth be referred to as "parameter set (a.l)" or

"prm.set (a.))":-

Parameter Value (Ryd)
Va4 -0.0298
Vhd -0.08485
th 0.0

Ud = +U +0.185
Uh = -y ! -0.185

Table 3.4 Parameter set (a.l).
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Set Vhd Subset th
a.l 0.0
a v a.2 +v/10.0
a.3 -v/10.0
b.1 0.0
b v b.2 +V/10.0
b.3 -v/10.0
c.l 0.0
¢ v/7 c.2 +V/10.0
c.3 -v/10.0
V = -0.08485 Ryd

Table 3.5 Parameter sets used for present calculations. The
choice of the factor /2 follows from equation {3.24).

The non-zero th values have been chosen arbitrarily.

vdd = ~0.0298 Ryd and U = 0.185 Ryd are used in all

cases.
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In the following chapters we shall keep Vdd and U constant, as in

Table 3.4; we are hence left with only two parameters to vary, viz. those
associated with the palladium-hydrogen interaction (vhd) and the
hydrogen-nydrogen interaction (th). Because of the form of equation
(3.24), we arbitrarily choose to vary vhd by the factor vZ; and

because V is small, we « "bitrarily let it take on the values -Vhd/lo,

hh

0.0, + Vhd/IO, where V, . is only allowed the value given it in

hd
parameter set (a.l) (Table 3.4). We now use these arbitrary choices
to generate the rest of the parameter sets to be employed in the

present work; the sets chosen are displayed in Table 3.5.

We emphasize the fact that we are dealing with an underlying model with only
two variable interactiou parameters; in fact, since wa shall focus most

of our attention on the case th = 0.0 (implied by Faulkner), we are
ecsentially ieft with an electronic model with only one interaction parameter,

viz. vhd'
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3.8 SUMMARY OF CHAPTER 3
In this chapter we have:-

- chosen a simple Tight-Binding (TB) Hamiltonian which
is compatible with both the localized nature of the Pd/H
system (with particular reference to the d orbitals) and

with the Slater-Koster (SK) interpolation scheme;

- review ° the key features of the SK scheme, with a particular
emphasis on the physically transparent and highly useful two-

centre approximation;

- combined TB and band width arguments with the SK two-centre
approximation to obtain an axpression for the palladium-

palladium interaction parameter vdd (equation ‘3.18));

-~ applied Molecular Orbital Theory und the two-centre approxi-
mation to derive a formula for the palladium-hydrogen inter-

action parameter Vhd (equation (3.24));

~ applied intuitive considerations of the hydrogen mola2cule

and used the photoelectron spectroscopy experinents of

Sc.alapbach and Burger3'5> to provide semi-quantitative

guidelines for choosing the hydrogen-hyc .-+ interacticun

parameter V, and the hydrogen-band-paliadium~band separation

bh

2U respectively;

~ tabulated the SK parametrizations of various BS calculations
in terms of two-centre integrals, and found Faulkner's
values311) to be most consistent with both experiment and

qualitative considerations;




ww‘"

- 111 -

~ substituted Faulkner's parameters into equations (3.18) and
(3.24) to generate our parameter set (a.l) (Table 3.4), and
hence, by sensible though arbitrary changes, tabulated a
number of other parameter sets to be used in subsequent

chapters (Table 3.5);

~ noted that we are essentially left with a single-parameter

electroaic model, the paramater being vhd'

We are now in a position to wake a detailed application of our CBL

formalis: Th:pter 2) to the LDOS of Pdﬂx.




- 112 -

REFERENCES (CHAP. 3)

3.0

3.3)

3.4)

3.5)

3.8)

3.9)

Papaconstantopoulos D A, Klein B M, Faulkner J S and

Boyer L L 1978b hys. Rev. B 18 2784

Heine V 1980 Electromic Structure from the Point cf View of the
Local Atemic Tnviromment in Solid State Phys. 33 |

(Ed.s: Ehrenreich H, Seitz F and Turnbull D; publ.: Academic Press)
Falicov L M and Yndurain F 1975 Phys. Rev. B 12 5664

Slater J C and Koster G F 1954 Phys. Rev. 94 1498

Lowther J E 1982 J. Phye. F : Met. Phys. 12 895

Hubbard J 1967 Proe. Phys. Soc., London 92 921

Watanabe H 1966 Uperator Methods In Ligand Fieid Theory

(Prentice-Hall, Inc.)
Schlapbach L and Burger J P 1982 J, Physiqua 43 L273

Mueller F M, Freeuw:. J, Dimmock J O and Furdyna A M 1970

Phya. Rev. B} 4=\
Switendick A C 197 B:  Bunserges. Phys. Chem. 76 535

Faulkner J § 1976 Phys. Rev, [ 13 2391




- 13 -

CHAPTER 4

ONE-PHASE MODEL

4.1 INTRODUCTION

In this chapter we apply our formalism for the LDOS of a disordered
binary system (Chapter 2) to Pdu‘. making use of the parameters obtained
in Chapter 3. We provide plots of LDOS versus energy for various
hydrogen concentrations and make cemi-qualitative observations and
comparisons to provide insight into the useful faatures of our CBL
model. These LDOS plots have the Fermi energies (EF) marked on them,
and we proceed to show how EP is calculated. Once EF is known we

are able to evaluate the totai and constituent charges of the system

as functions of x, and plots of both EF and charge versus x provide
further inmsight into our model. We t en proceed to evaluate the total

et ). noting that .< has no physical significance

electronic energy (ECOC B

as an absolute number because the parametor U results in our LDOS

having an arbitrary zero of energy. lence ‘n implementing our E:gt

calculations we will always work wi'' .he following relative quantity:-
AEei(y‘ - Fel (x) P12 )
tot - .t
This is the change in electronic «:. vy on formation of Pde, which

does have physical significance, boing an important term in our

expression for the heat of formatisn (AH) of Pde. Because AH is

known as a function of x from experiment, we have investigated this

quantity using our theory; we find that our AH values are in remarkably
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good agreement with experiment over the range 0.5 ¢ x < 1, but that

they disagree for 0 < x ¢ 0,5. Part of the reason for this disagreement
is clear from numerical considerations; we also comment that although
E:ét(x)is of the order of 1.5 Ryd the quantity AH is very small by
comparison (» -0.02 Ryd), so that the calculation of AH is highly
sensitive to cancellation effects (a problem common to such calcu.otions:
see for example Section 1.2.7). However the magnitude of the discrepancies
for low x indicates that there might also be problems in the physics

for this range of x values. We obtain an important clue from a somewhat
unexpected source viz. the thermodynamics of the system. We recall

from Section 1.Z.4 that for x 2 0.6 Pde consists of only one phase

(the g-phase), and consequently we infer that our present model provides
a good description of the high “oncentration, ¢me-phase hydride, though
it fails for lower x. Hence we choose retrospectively to desipnate the
title "Cne-Fhase Model” to the present formalism, bearing in mind that

we shall extend this to obtain a "Two-Phase Model" in the next chapter.
The contents uf the present chapter are as follows:-

- Section 4.2 deals with our parametrization of the Pde system
from the viewpoint of correlation {(cf electronic parametrization
of Chapter 3); we find that our coordination and order parameters
can all be expressed in terms of the single parameter x, piving

rise to a "quasi-local” appror.h to the Pd/H system;

- Section 4.3 provides us witl, expressions for the LDOS of Pde
in terms of the formalism of Chapter 2 and in terms of the

parametrizations of Chapter 3 and Section 4.2. 1lhese are
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followed by plots of LDOS versus energy for different x values
and parameter sets, with accompanying comments on important

features;

Section 4.4 furnishes us with equations for the evaiuation
of the Fermi enargy and charges of the system; plots of

these quantities versus x follow, and some cuuments and

ccoparisons are made;

In Section 4.5 we firstly provide expressions for the
numerical evaluation of E:it(x), along with suitable plots;
we implement our knowledge of E:it(x) by next deriving an
expression for the heat of formation 8H, which we proceed
to plot as a function of x for a variety of parameter sets.

We then compare our curves with experimeatal i«sults;

And finally in Section 4.6 we summarize the important

findings of this chapter.
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4.2 COORDINATION AND CORRELATION PARAMETERS

4.2.1 "Quast-Local" Approach

We recall from Section 1.2.7 that it is generally accepted that

hydrogen atoms occupy the octahedral interstitial sites of the fecc
palladiua lattice. Because there is only one octahedral interstitial
site per palladium atom, we have that the probability of such a site
being occupied in PdH; is unity; hence the querage site occupation
probability for Pde is simply given by x. For computational simplicity
we shall use this average occupatioa probability when considering

the local environment, so that we are left with a "quasi~Jocal”

rather than strictly local model.

4.2.2 Coordination Parameters

We now consider the parameters m and k, wher: m is the coordimation

of a given atom and k is the number of neighbours of the same type

as the central atom (Section 2.6.!). The parameter m is strictly

the number of nearest neighbours only (Section 2.6.1); this concept
works in Chapter 2 because there we consider a substitutional alloy,
which allows us the possibility of neighbouring atoms of both kinds.
However, Pde is an interstitial alloy, which has near-neighbour

shells of alternating atomic type; for exampie, in PdH; & pailadiua
atom has six nearest-neignbour hydrogens, twelve second-nearest
neighbour palladiums and so on. Hence we adapt the original substitutiomal
formaiism by defining our interstitial m value as the number of nearest-
and second-nearest neighbour atoms; it follows that k in this inter-

stitial scheme is simply the number of second-nearest neighbours.

-
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As in Chapter 3 wa let palladium be the a-type and hydrogen the b-type
atom. We recall that PdH) has the NaC{ structure and hence both
sublattices have identical m values, viz. 6+12 = 18, For the case of
Pde, however, we recall our comments on site-occypation in Section

4.2.1 and hepnce we write:-

m_ = m, = 6x(hydrogens) + 12(palladiums)

=
L]

P
L]

12(paliadiums)
m e om = 6(palladiums) + 12x(hydrogens)

k, = kh = |2x(hydrogens)

4.2.3 Order Parameters

With reference to equation (2.45), we can now generate the two order

parameters:~

L LM T a2

d kY 6x+12
4

L™ T M emiax

“n o, 6+12x

We recall that » was iatroduced in Sectiun 2.6.1 as paii oi the
Falicov-Yndurain interpolation scheme and that its three special
cases of ~1, 0, +! have important physical significance from the

viewpoint of correlation and local environment (see Table 2.4).

(4.1a)

(4.1b)

(4.2a)

(4.2b)

(4.3a)

(4.3b)

-




. .. r—

4.2.4 Swmmary of Section 4.2

We see from equations (4.1)-{(4.3) that all the coordination and
correlation parameters depend solely on the average occupation
probability x, emphasizing both the "quasi-local" nature and the

physical transparency of our model.
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4.3 LDOS OF PDHX

4.3.1 Detailled Expressions

The final product of Chapter 2 was the following general expression for

the total LDOS of a substitutional binary alloy (equation (2.51)):-

ntat(s) = xana(e) + xbnb(s) {4.4a)
where na(z) and nb(s) are the LDOS of a- and b-type atoms respectively,
and X, and x, are the respective concentrations of the two atomic

species.

We must now adapt equation (4.4a) for the case of anm interstitial
alloy, where we only have one variable concentration. Hence, taking
a and b to refer to palladium and hydragen raspectively, and defining

Xy = %, we have:-

ntct(x,e) = nyy(x,e) + x nh(x,a) (4.4b)
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Furthermore we recall from Chapter 3 that our Tight-Binding Hamiltonian
models the behaviour of palladium using only its ten 4d electrons, four
of which (the de electrons) are affected by the presence of hydrogen,
and the other six of which (the dt electrons) are unperturbed by
hydrogen. In other teords, the palladium dc electrons are not perturbed
te a first approximation by the hydrogen electron at all; hence in
their case we take x always to be zero in equations (4.1)~(4.3), no
matter what the concentration of hydrogen actually is. Consequently

we need to split npd(x.a) into two contributions, viz. ny (x,e) and

e

"y (¢}, ard we thus have:-
Yt

ntot(x,f) = Ande(x,s) + Sndt(z) + xnh{x,u)

where n, (¢) = nde(O,c)

Finally we require the explicit forms of ny (x,e) and nh(x,s). These
e
are obtained by substituting equations (4.1) and (4.2) into equation

(2,49), to give us the following expressions:-

6xv2

- y2ve -1
1 ! dd hd
n, (x,e) = -~ — Im |{e~U) ~ - |
4, ) LNE ] [P
whare: -
f1ve 6xv 3
PR dd - "V ha
(Q-U)—(1l+6x)¢d (£+U)-{5+\2x)¢h
12xv? 5
£, = (evy) - hh hd

(=120 8, b (=0 =(TT+6x),

(4.5)

(4.6a)

(4.6b)

(4.6c)

e il
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12xvE 62 )
! hh _ o hd’]
nh(x,i) = Im EE*U) T TR (4.7a)
where : - ) 2
(12e=1)VE. &V
_ hn hd N
fa = ()~ EGENTe,  CD-(119604, (4.76)
2 - 2
- (et - I2Vdd ) ‘_-(ﬁx l)Vhd 70
# (E-U}-(ii*Gx)@d (s*U)‘(S*iQx)&h
by and @h in equations (4.6) and (4.7) are obtained by substituting
equations (4.1)~(4.3; into equations (2.47), that is:~
. u«zaxﬁg(,\d)(e-]:«d:u) ﬂé
e _ . o el . Y
$4® = gy Dyl -4 e, 0) (e lw?
(4.8a)
where =
v, - 11, + G0V, T (from equation (2.46)) (4.8b)
6x~12 :
Pl sre {from equation (4.3a)) (4.8¢c)
(20+48%)¥2 0 ) (e ]2, 1)
-t W o~ 1 h h h'? . NG
N el G L L C S0 RN L
{4.9a)
where:~
Vo 1T ey vy O T T N - S L4G)D (4.50)
Ve R OV (s equation 4.46)) {au5h)
H=12 . -
Xh = 6+l2: from equation 4.5b)) (4.9¢)

e . Mt e an

1;&. - T




We have chosen to write these LDOS expressions in the form of
equation (2.49) for the sake of clarity. In our computer programmes

they are of course written as in equation (2.50).

2.3.8 Resulte and Discussion

In Figure 4.} we display the simplest LDOS curves that we can generate,
viz. those for pure palladium metal. This corresponds to the case

x = 0, for which equation (4.5) is:-

nwt(c.e) = 10 nde(o.e) (4. 10)

It can be seen from equations (4.6) that 0, (0,¢) does not depend on
vhd or on th (as expected for the pure met:l) and hence it does not
vary with the choice of parameter set (Table 3.5). The full curve

in Figure 4.1 is a plot of equation (4.10), whereas the broken curve

represenis the quantity 6n (ﬁ) which remains constant for all x
d
t

values and for all parameter sets.

We note that both these bands are centred on ¢ = +U = 0.185 Ryd and

that they have the width 4 = —4/TTvd * 0,40 Ryd (see equations (3.17)

d
and (3.25)), as expected. 1In addition we note the smoothness ol the
bands, that is, the lack of structure (c¢f DOS for palladium metal
obtained using BS calculations, for example Faulkner™ '’ anda
Papaconstantopoulos et al*-2)). oOur LA (0,e) has a shape clearly

e
reminiscent of that of the d band in the RBM, as can be seen by

comparing Figure 4.) with Figure 4.2 (after Wicke and Brodowsky“‘3>P‘76),
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Fl‘.gufte 4.1 Local Density of States for prre Pd. Full curve: total
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Figure 4.7 Dunsicy of States for PdH_ according to Rigid Band Model
(after Wicke and Brodowsky-3)P-76),
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We recal’ from Section ! 2.2 that the KEBM is of only limited applicabilicy,
and iu Section 1.3 we implied that our model would provide a more
realistic band structure than that of the RBM. A cursory examination

of equatiouns (4.6) and (4.7) reveals a strong x-dependence in both our
palladium and hydrogen bands; that 15, we expect not only the Fermi

energy {EF) te change with addition of hydrogen to the palladium lattice
but alsc the shapes of the bands themselves, in agreement with more
sophisticated BS technmiques™ 124-2)  our model is therefore expected

to Be more realistic than the EBM, though Figure 4.1 shows that we do

retain some of the appealing simplicity of the RBM.

In Figure .3 we digplay n (x,¢) for the three cases x = 0.0, 0.6, 1.0,

Lot

usiag sram.set (a.l). We at once notice fumndamental departures from

the RBM Figure 4.2) in two main features: firstly, the considerable

of the & bands, as expected; and secondly, the emergence
e ner bawe in the vicinity of £ = ~U, This new band and the shoulder

on che nigh~energy side of the d band are both products of our hydrogen

LGS, that s nh(x,gi; this point is clcarly brought out by Figure 3

of the work of Lowther® *). The appearance of this low-energy hydrogen-

iduced band in cur model is in agreement with one of the findings

of Chapter 1, viz. the consistent appearance of a yinr hydeogen=
weloted bavd in BS calculations on the Pd/H system. Our model further-
more agrees with the gxpariment ] photoelectron resnlts of Schlapbach
and Burger“'s) for PdHg, ¢ ¢ they obtain hydrogen-related emission at

about 0.5% kvd pelow EF while in (ur LIS we see that for x = 0.6 the

hydrogen-induced band peaks at approximately 0.58 Ryd below EF' In




- 125 -

PRM.SET(A. 1)
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Figure 4.3 tLocal Densities of States for Pde using parameter set (a.l).
;V Coarsely broken curve: x = 0.0; finely broken curve: x = 0.6;

full curve: x = 1.0; vertical lines: Fermi energies.
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addition, they obtain a slight increase in mission at roughly 0.22 Ryd

below E_, which is exactly the same position at which we find a peak

B’
in our PdHp,¢ d band.

The high-energy low-LDOS shoulders appearing in Figure 4.3 remind

us somewhat of the low-DOS 5s band emerging from the high-DOS 4d band
in the RBM (Figure 4.2). We notice in particular that the shoulder
extends upwards in energy as x increases, reminiscent cf the manner
ir which EF rises higher in the 5s band of the RBM with increasing x

This behaviour provides a second point of similarity with the RBM.

We recollect from Section 1.2.6 that a strictly localized state is
represented by a dalta function in a DOS plot (for example the DOS

of an isolated hydroge. atom in its ground state consisrs of a delta
function at an energy of -1 Ryd). We further recall from Section 1.2.6
that the hydrogen-related vnergy level found below the d bands for

low x broadems into a baul for higher values of x. On tine basis of
these two observations we expect a narrow, highly peaked hydrogen-
related band in a solid to broaden as the interactions between the
hydrogen and its surroundings are I{noreaged. The physical credibility
of our LDOS functions must now be tested in terms of this physically-
fundamental broadening phenomenon. We do this by replotting Figure 4.3

for different parameter sets, viz. set (b.)) (greater V Figure 4.4)

nd?

and set (5.2) (nonzero V. Figure 4.5). In both cases the Iroadening

Hh ¥
and diminished intensity of the hydrogen band is immediately obvious,
and the d band also lessens in intensity. Thus Figures 4,4 and 4.5

confirm yet again the physical validity of our model.

s, ... ol

«
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We further point out the physically qualitative expectation that
hydrogen~related bands should become narvewer as the value of x decreases;
this is because in the low x case a given hydrogen interstitial is further
separated from other hydrogen atoms, as well as its mean separation

from the palladium atoms being greater. We recall from Seccion 1.2.6

that band structure results confirm this expectation.

By referring back to Figures 4.3 - 4.5 and in particular by looking
ahead to Figures 5.1 and 3.2 we can see that our model satisfies this
criterion as well., To obtain an insight ints the mechanics of this
effective x-dependence of our interaction parameters, the reader is
referred to equations (4.6) - (4.9) in which it can be seen that the
coefficients of these parameters are usually simple functions of x.
Another clearly-discernible feature in Figures 4.3 - 4.5 is the movement
of both the hydrogen- and d-band peaks away from the origin as x
increases; this results in a broadening of the peak sepavation by
several percent in going from PdHy.g to PdH; 5. This behaviour is a
direct conseguence of our appiication of the Virtual Crystal Approximation
in Chapter 2, which required us to take U = 0 for the case of a
completely random alloy. Hence we see that the interpolation formulae
for the mean field functions (equations (4.8a) and (4.9a)) have a

factor X or [A| in front of the "peak separation” parameter U, giving

rise to an effective peak separation which varies with x.
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4.3.3 Summary of Section 4.3

In this section we have derived expressions for the LDOS of Pde
which have the following appealing features:-
- they have closed, analytical form;

- they deal equally naturally with the stoichiometric (x=1) and

nom-stoichiometric (x<!) hydrides;
- they retain some of the simplicity and clarity of the KBM;

- and they are in good agreement with both experimental findings

and computationally-intensive BS calculatious.
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4.4 FERMI ENERGY AND CHARGE

4.4.1 Introduction

In this section we provide expressions for the evaluation of the Fermi
energy (EF) of the Pd/H system, using the model developed in Chapter 2
and Sections 4.1 - 4.3, We note from the start that the numerical

values of our E_ are only meaningful relative to our "centre-pf-states”

F
partimeter U. Once we have EF as a function of x for a given parameter
set, we are able to evaluate tha corresponding charges of palladium

and hydrogen atoms, and consequently of the Pdﬂx "unit". The

advantage of using the Local Density of States is that it is physically
meaningful to speak in terms of a single dex unit, consisting of a
single, localized palladium atom and the fraction x of a hydrogen

atom associated with it. Although we will not be using the concept

of charge in the rest of our work, we nevertheless examine it briefly
because it provides another physically-meaningful criterien for testing

our formalism.

Evaluation of EF and the charge require us to jategrate our LDOS
expressions; because this is done numerically, we will from here on be
carrying a non-physical thread in our argument, which we will not always
be able to separate from the central physical themes. The reader might
therefore enquire as to the possibility of analytical integration, a

topic which we discuss in Appendix 4.1.

In Section 4.4.2 we evaluate and comment on EF; then in Section 4.4.3
we use EF to calculate the various charges associated with a single PdH
X

[ ; Lo s .
‘unit”, and we summarize our findings in Section 4.4.4.
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4.4.2 Evaluation of the Fermi Ewnergy

4.4.2,1 Method

Our LDOS is defined as the number of electronic states between energies
¢ and ¢ + de, so that integrating over all e gives us the total number
of electronic states. In our Pdﬂx unit we have ten palladium 4d states
and 2x hydrogen ls states, We therefore expect to find:-

[aad
| ntot(x,c)dz = 10 + 2x

~eo/

At the absolute zero of temperature (T = OK), the Fermi energy (EF) is
the energy of the highest occupied state of the system, with all the
states below Eyp alsc being occupied {a coasequence of Fermi-Dirac
statistics: see Appendix 4.2). Thus if we integrate the LDOS over all
energies up to EF we obtain the total number of occupied states for

T = OK {in Appendix 4.2 we show thai che calculation at absolute

zero is adequate for our purposes). In our case we have 10 ocoupied
palladium states and x ocoupled hydrogen states per Pdﬂx unit, and

we thus expect the following equation to hold:-
Eg
-mj ntoc(x,e)dc - 10+ x

Combining equations (4.11) and (4.12) gives us:-

or:-

(4.11)
(4.12)
(4.13a)
(4.13b)
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It is clear from our LDOS plots (for exampie Figure 4.%4) that we can
replace the limits of integration -» and +» by numbers of the order
-0.6 Ryd and +0.6 Ryd respectively. We are then able to evaluate the
right-hand side of equation (4.13b) numerically, for a given value

of the parameter x, and hence determine E, numerically by means of a

F

biseciion method (see Appendix 2 for details).

We comment that equations (4.11) and (4.12) give us the result that
both sides of equation (4.13a) are unity; because we are integrating
numerically we do not however expect this to be the case for our
calculated numbers. We thus do not o equation (4.13a) (and heuce
equation (4.13b)) on the assumption that equations (4.11) and (4.12)
hold numerically, but imstead on the assumption that they contain the
same percentage error. This is a reasonable approximation when one

considers the similarity of equations (4.11) and (4.12).

4.4.2.2 Results and Discussion

We recall from Section 4.3.2 that our LDOS for the case x = 0.0 do

not depend on the parameter set used; hence EF (x = 0.0) will be the

same for all our parameter sets. With reference to equation (4.13b)
we can see that Eg (x = 0.0) is evaluated simply by finding the point

at which the upper edge of our d band cuts the energy axis, that is

by finding the larger root of n (0,e) = 0. The solution is:i~

tot

EF(Pd metal) = 0.3859 Ryd (4. 14)

In Figure 4.6 we show plots of EF ve x for prm.sets (a.l) and (b.1).
The most striking feature in both cases is that EF is seen to decrease over
certain ranges of concentration in contrast to the monotonic increase with x

which is a fundamental feature “i{ the RBM. This highlights the fact that
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cur model does not have rigid bands, which makes possible this decrease

of EF with x. However, the BS calculations of Gelatt et al“'e),

raulkner*+!) and Papaconstantopoulos et al“:2) all show a slight overall

increase of EF with x, in agreement with the RBM; see Table 4. for

ro:gh values.

e -
Source ‘PF(PdHiRydgF(Pd}]
present work, prm,set {(a.l) -0.03
Gelatt et al*:8) +0.02
Faulkner“: 1) +0.,04
Papaconstantopoulos et a1t 2) +0,06

Table 4.1 Difference in the Fermi energy of palledium and
its stoichiometric hydride, according to various
sources.

Although the trend of our E, values for prm.set (a.l1) is different to that found

¥
in BS calculations, we notice that the values in Table 4.1 are only a few
percent of the overall width of the Pdﬂx band structure (about 0.8 Ryd

in our case), and so we do not expect this discrepancy to be significant.
We note that our calculated values of Er for prm.sets (a.2) and (a.2l)
would be barely distinguishable from the values for prm.set (a.l) on
the energy scale of Figure 4.6. 1In a similar manner our values of EF
calculated for prm.sets (b.2) and (b.3) would almost coincide with the
curve for prm.set (b.l) if plotted on Figur. 4.6. Hence we see that
our Fermi energy is ingsensitive to changes in th over the range of
th values we have employed, although it is clear from Figure 4.6

that it has strong V, , dependence.

hd




We will now make use of our values for EF to evaluate the charge on

each atomic species and hence the total charge of the average PdHX unit.

tion of Charge

i~
3~
=

Method

We recall from equation (4.12) that the total number of occupied
electronic states per PdHX unit is obtained by integrating ntot(x,e)

up to the Fermi energy E,., and that this number is expected to be 10+x

¥
for a given x. This integral therefore represents a number of electrons,
and multiplying it by the electronic charge e = 1.602 x 1071%

consequentlv gives us the electronic charge of the dex valence electrons

in Coulombs. For convenience we choose e=!, so that we may then write:-

qtot(x? = qd{x) + qh(x) (4.15a)
where
Eg - :
ag (%) = ﬂsnd (&) + 4oy (x,e)]de (h.15b)
e t e
and
fEF
qh(x) = lxnh(x.r)dr (4.15¢)

4.4.3.2 Results and Discussion

In Figure 4.7 we show plots qtot(x) vs x for prm.sets (a.l) and (b.1).
fn both cases we have that qtot(o) ~ 9,999, that is almost exactly

the expected value of 10.0; this accuracy is a direct consequence
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of the smooth, featureless LDOS we have for the case x = 0.0 (Figure
4.1)., However, we see that the accuracy begins to drop off with

increasing x; we quantify this in Table 4.2.

Calculated Charge Percentage difference
10+x
Prm.set (a.l}) Prm.set (b.]) Pro.set (a.1) Prm.set {(b.1)

10.0 10.0 10.0 0.0 0.0
10,2 10.0 9.85 2.0 3.4
10,4 9.84 9.62 5.4 7.5
10.86 $.72 9.59 8.3 9.5
i0.8 9.70 9.57 10.2 .4
(R 9.95 9.78 9.5 1t

Table 4.2 Charge deviations for prm.sets (a.l) and (b.1).

It can be seen from Table 4.2 that the loss of accuracy is not linear

in x, the worst error being in the region of x = 0.8. These errors are
almost certainly purely numerical in nature; that is, they do not reflect

a weakness in our physics, but rather reveal the numerical difficulties
associated with integration of a highly-peaked function. More specifically,
we take note of two competing error effects involved in integrating the
LDOS, viz. one due to the diminishing smoothness of the d band and

another due to the sharpness of the lower hvdrogen-induced band. The

first effect Inereasss witn x whereas the second decreases with x, and

Table 4.2 reveuls that the combined effect is worst in the high x region,
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that is, the d-band error term dominates in charge calculatioms. It

will be seen in the following section that for energy calculations the

hydrogen-band error contribution douinates. We take up the theme of

numerics in g more quantitative maaner in Appendix 2.

In Figures 4.8 and 4.9 we show respectively the plots of qd(x) vs X
and qh(x) vs x which correspond to the « ot(X) values plotted in
Figure 4.7. 1n Figuree 4.10 and 4.11 « again show qd(x) and qh(x)
for prm.set (a.!), as well as their "scaled-up” values F(x}qd(x) and

F(x)qh(x). where F{x) is simply a scaling factor given by:-
F(x) = (lO*x)/qtoc(x)

From equations (4.15a) and (4.16) we see that the sum [?(x)qd(x) +
F(x)qh(x)} equals the physically-anticipated charge value of (10+x).
Hence the "scaled-up" curves are essentially physical corrections to

our numerically-evaluated charges.

We see from Figures 4.8 and 4.10 that the palladium atom in the Pdﬂx

unit loses charge with increasing %, even in the scaled-up case. This

effect is most transparent for the stoichiometric hydride (x=1) ; we

display the various scaled charges for the case x=] in T=ble 4.3,

(4.16)
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Figure 4.11 Hydrogen charge vs x for parameter set (a.l). Full curve:

unsciied; chained curve: scaled.
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Parameter Set qd(!) qh(l) qmt(l)
a.l 9.484 1.516 11.000
b.} 9.573 1,427 11.000

Table 4.3 Charges for PdH;, scaled .y the correction
factor F (equation (4.16)).

We note from Table 4.3 that the increase in V_ . of approximately 407

hd
in going from prm.set (a.1) to set (b.!) causes only a I% change in
the charge distribution of the stoichiometric hydride, with the

larger Vh value (prm.set (b.1)) giving the larger palladium charge.

d

Consequently our formalism results in charge transfere which are more
akin to those of the so-called foric model than to the proton model
discussed in Section 1.2.2. The ionic model for transition metal
hydrides is based on the assumption that hydrogen exists in the wetal
lattice in the form of the negative ion H; although this model is
diametricaily opposed to the proton model there is nevertheless some
evidence in its favour“'”; we also recall that the proton model

is itself of only limited applicability (Sectiom 1.2.2).
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4.4.4 Summary of Section 4.4

In this section we have developed and applied suitable equations for

the numerical evaluation of the Fermi energy of Pl _; we have also

provided and applied expressions for the numerical determination of

the constituent and total charges of t' is system, ncting that these
expressions depend on the values of EP' We find that our Fermi energies some~
times decrease with x, as opposed to RBM and 85 calculations which show a
consistent increase of EF with x. However the change in the Fermi energy

is in all cases seen to be only a few percent of the total width

of the DOS, and hence we¢ do not see this deviation as being of any

great significance in the context of integration of the DOS.

Our charge calculations are highly accurate for the case of pure
palladium, though they develop inaccuracies of several percent for
higher x; this apparent loss of charge is understood to be a
numerical effect and not a reflection on the underlying physics. We
have applied a cc-ling correction to our cherge values and found that
our formalism favours an anioni» rather than a protonic view of the

P4d/H system.

We will aot attempt to use scaling factors in the energy calculations
whirh fallow; aur knowlados of the insceuracies in our charge values
(Table 4.2) is therefore helpful because these deviations give us a
rough indication of the percentage errors we are likely to make in

avaluating the total electronic enmergy. Appendix 2 deals with the

issue of numerical errors in a more quancitative maoner.
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4.5 TOTAL ELECTRONIC ENERGY AND HEAT OF FORMATION

4.5.1 Introduction

The evaluation of the total electronic energy (E:ﬁt) of Pde, using

our LDOS expressions, is of central importance because the results are
necessary for the calculation of the heat of formation which follows.
The evaluation of E:Zc is along similar lines to the charge talculations
of Section 4.4 because we use previously-calculated values of EF and

numerical integration of a continued fraction expression.

4.5.2 Total Electronic Energy

The total electronic energy (at the absolute zero of temperature, see

Appendix 4.2) is determined by means of the following expressions:-

el el | el
EtOt(x) - Ed (x) + Eh (x) (4.17a)
where
el EF
B (o) - _J [EvndL(s) + &nde(x,@;)]zde (4.17b)
and
E
el ( ¥
E (%) -~mj 2xny (% €)ede (4.17¢)

cf equations (4.15) for the various charge contributions. In Figure

4.12 we display curves of Eiit(x) vs x for prm.sets (a.l), (b.!) and

el

d (0) = 1.8505 Ryd and

(a.2). In all three cases we have Eiit(ﬁ) = E
<
1 . . .
Ei (0) = 0.0; Table 4.4 contains various energies calculated for the

stoichiometric hydride.
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el ( el el el ~
3 - 0)
Parameter Set Lh W htot(‘) [htoc(l) Etot( .
®kyd) |’y (Ryd)
a.l 1.5452 -0.2370 1.3082 ~0.5423
b.! 1.5870 ~0.2592 1.3278 -0.5227
a.2 1.5024 -0,2757 1.2268 -0.6238

Table 4.4 Electronic energies and energy changes for Pdhy, using

E:it(()) = 1.8505 Ryd.
We note that for all three parameter sets Efgc decreases with x; this
decrease is essentially monotonic (and in fact approximately linear up to
x ¥ 0.5 if the curves are sultably smoothed), Table 4.4 reveals that the
electronic energies drop by roughly 302 in going from pure Pd to PdH,.
We recall that our Efit values have no significance as abgolute numbers
because they sre evaluatad in terms of the parameter U, which gives
an arbitrary zero of energy for our LDOS; hence we will work in terms
of the difference in energy between palladium and a given hydride,
viz. Rtit(x) - E:ic(a), which doee have physical significance and which

we will implement in the next section.

L of Formation

4.5.3.1 Formalism and Calculations

The heat of formation (AH} is the total energy difference between the

metal hydride on the one hand and the pure metal lattice and hydrogen

molecules from which it is formed on the other. Thus for atolchlometris




palladium hydride we have:-
AH = E(PdH;) ~ E(Pd) - {E(H3) (4.18a)

where E(PdH|) is the total energy of PdH,.

Following Sholl and Smith*'®) we identify E(H,) as the fonization energy
of the hydrogen molecule, that is the energy required to separate the
molecule into its constituent protons and electrons; the value of this
constant®-%) is E(H) » ~2.266 Ryd. CGeneralizing equation (4.18a) to
allos for the substcichiometric hydride PdH leads us to the following

expression: -

AH(:) = AE(x) ~ {xE(H;) (4.18b)
where

AE(x) = E(Pdﬂx) - E(pd) (4.18¢)

The presence of hydrogen atoms in the palladium lattice causes strains
to be get up and hence we expect an elastic contribution to AE in
addition to the electronic component 2E%1%, Gelatt et al (1975)%:9)
estimate an elastic energy of roughly ~0.0% Ryd for PdH;, while the
analyses of Wagner and Horner“.'?) and Harada“:l!!) indicate that the
elastic contribution varies linearly with hydrogen concentration; we can
thus write:=

AEelﬂs = CX

where
¢ ® ~0.01 Ryd

.
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We note further that Gelatt et al (1978)“-8) record a Jecrease of
roughly 0.04 Ryd in the average energy of the d bands in going from
Pd to PdH,. Assuming that che d-band shift for concentration x is

given by 8(x), the correct..i total electronic energy can be approximated

to as follows*+12):-

Eel ( . EF -5¢ d
tot x) ntct(x,e)(c x))de
corrected -

Ee Ep
- —mj ntot(x,e)sda - é(x)wj nco:(x,c)de

s 0 - 8010w (4.19)
We see from this equation that the correction term is (10+x)6(x).
Now &§(x) must be zero at x=0 and wust increase with x; the simplest
funcrion that satisfies these conditions is §(x) = x4, where 4 is a
constant., Thus our correction term becomes simply (10+x)xA, and
collecting together the various contributions to the heat of formation

we finally obtain®+12):-

SH(x) = ESE (0 - ESL (0) - (10w)xd - BxE(Hy) + ex (4.20)

where

E:ét(x} is given by equations (4.17)

el
EtOC(O) * 1.8505 Ryd
E{Hy) = -2,266 Ryd

4 and ¢ are unknown parameters.

A



We expect & = 0.04 Ryd from Gelatt et a} (J978)**8) ard ¢ = -0.01 Ryd
from Gelatt et al (1975)"+ %), Following the procedure of our first
L17)

paper“ swe evaluate the parameters A and ¢ by fitting them to

experimental results. Sholl and Smith"-8) quote the experimental
value of AH, determined by Gillespie and Hall*-13) for low hydrcgen
concentration (x < 0.02), as being -0.0096 Ryd. If we make the crude
approximation that the empirical AH function is symmetr.c around

x = 0.5 (the results of Kuj. et al®+ 1) ang Harada® ') lend some
credence to such an assumptlon, especially if we take the average of
their values), then we have that &H i¢ also ~0.,0096 Ryd very close to
the stoichiometric case. Hence we make the following approximation:
AH(x=1) * ~0.0096 Ryd. S$10ll and Smith use Gillespie and Hall's

AH value to obtain the corresponding change in electronic energy,
viz., 3E®*P w1423 Ryd. I AT equal to our AEeE(l)(corrected
sccording to equation 4. 9) so that by applying our approximation
LH(x=1}) » AH(low x) we can write:-

2 e
or (1) = B (0) = 114 = ~1.423 Ryd

and hence:-

el \
htot(O) + 1.123]1/11 Ryd

Table 4.5 containg values of A used with four of our parameter sets.

(4.21)
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Parameter Set Eiit(l) (Ryd) 4 {Ryd)
a.l 1.3082 0.0528
b.l 1.3278 0.0546
a.? 1.2268 0.0454
a.3 1.3130 0.0532

Table 4.5 Values of Eiit{‘) and the band-shift coefficient

4 for different parameter sets.

w2 see from this table that our values of & are consistent with the
shift of approximately 0.04 Ryd recorded by Gelatt et ai% 8, 1o
evaluate the parameter ¢ we note that for the case of stoichiomecric

palladium hydride equation (4.20) can be rewritten in the following

form: -
aH(D) = 2E% (1) - JE() 4 ¢
where aE°°(1) = 42°°P = -1.123 Ryd
Henre we obtain ¢ » ~0.0196 Ryd for «il/ parameter sets. We now

substitute our values of A and ¢ into equation (4.20) and in Figuie 4.13
we plot 4H as a fun:tion of x for the four parameter sets of Table 4.5.
A comparison between our calculated values and the experimental results
of Harada®-11) is shown in Figure 4.14. We note that our AH expression
refers to one mole of hydrogen wtome, and hence we have halved Harada's

original results which referred to one mole of hydrogen molecules. In
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addition we have shifted the origin of Harada's curve so as to compare
it with our calculations which are based on the definition AH(0) = O

(see equation (4.20)).
4.5.3.2 Discussion
Figure 4.13 reveals the following trends in our AH curves:-

- firstly, they are largelv negative, implying a gtable hydride

(in agreement with experiment: see Figure 4,14);

- secondly, our &H values are typically a fuotor of Fifty
smaller than our total electronic energy values (compare
Fipgures 4.12 and 4.13),implying that we have significant
and subtle cancellation effects in equation (4.20). We
recall that Sholl and Smith (Section 1.2.7) found similar

effects in their theoretical mod~l:

- thirdly, we tave the physically-sensible finding that the

larger choice of {Vhd{, for Vhd < 0 {(prm.set (b.1)), gives

a lower 6H curve and hence a more stalle hydride than does
the smaller ‘Vhds value (Vhd < 0) of prm. set ‘a.l) (recalling

that both sets (a 1) and (b.,)) have V.. = 0.0);

hh

- fourthly, we observe that a small, negative th makes the
7

hydride less stable (prm.set (a.2)) while the corresponding

positive quantity {prm.set (a.3)) results in a more stable

hydride; this finding is consistent with the hlos

Iy model

to be discussed in Chapter 6;
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- and fifthly, considerable numerical instability is apparent,
particularly for x ¢ 0.5. dxamination of equation (4.20)

reveals that these fluctuations can only be due to instabilities

el

tot(x). With reference to the

in our calculation of E
discussion of crrors in Section 4.4.3.2, we see that the

: : L
dominant error term in the case of E:ot must be that due to

the sharpness of the low x hydrogen bands.

Moving on to Figure 4.14, we see that the two parameter sets having

zero V,_, are in quite good agreement with the experimental results of

hh
Harada® '!7 for x : 0.5; in fact Harada's curve is "sandwiched"
between our two curves for most values of x. We recall from Section
4.2 that our model is built on the underlying physical assumption

of an averaged but nevertheless random disrribution of hydrogen atome
throughout the palladium lattice, and hence the fair agreement with
experiment which we find for x z 0.5 implies that our physical
picture is correct for larger x. The disagreement with expe:iment

at lower x is no doubt partly due to the numerical inscability
refiected in the large fluctuations in our AH values for the x < 0.5
regime. However, even taking this into account, the very marked
disagreement with experiment at lower values of x makes us suspicious
of the underlyiryg physical validity of our present mcdel in this

concentration range.

An important clue to the shortcomings of our model is the well-
established multiphase nature of Pde which was emphasized in

Chapter 1; the variocus phases have been described in some detail from
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a macroscopic, thermodynamic viewpoint (especially via pressure-
concentration isotherms), but a thorough microscopic, electronic
model for the phases does not exist. Our results suggest that the
high-concentration B-phase (x z 0.6) can be associated with a rouiom
distribution of hydrogen throughout the lattice, whereas other phases
may not share this random nature. We take up this theme in the next
chapter, where we adapt our present model to allew for the two-phase

nature of Pdﬂx-

4.6.4 Summary of Section 4.5

Ezﬁt is found to decrease with x in an essentially monotonic fashion,
and in fact almost linearly up to x = 0.5; it plays an important role

in our formula for AH, being the only x-derendent comtribuction to 4H
from our model. Although certain rough approximations are made in
evaluating the band-shift and elastic contributions to AR, and although
most of the terms in our AH expression are individually over am order of

magnitude larger than empirical values for AH, we nevertheless obtain

a remarkable agreement with experiment for x z 0.5.
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4.6 SUMMARY OF CHAPTER 4

In this chapter we have firstly modelled the correlation-related

aspects of Pdﬂx within a “"quasi~local", interstitial-alloy formalism
which requires the hydrogen concentrationm x ag its only parameter.

On the basis of this formalism detailed expressions for the Local
Densities of States of Pde and its constituent atoms have been
formulated; these have several appealing features, including a closed,
analytical form and direct applicability to non-stoichiometric hydrides,
as well as ¢ ucing bands which are in good agreement with both

experimental results and band structure calculations.

The total LDOS are then integrated numerically to find the Fermi

energy and hence the various charge and electronic energy contributions
as functions of x. Although the charge calculations are highly

accurate for the case of pure palladium metal, the numerical integrations
start generating errors for x > O which are manifested as spurious

charge losses. The percentage error is not monotonic in x but maximizes
at x = 0.8, this is because there are two competing e or effe-.s viz.
that due to the sharp peaks in the hydrogen band for low x, and that

due to the development of peaks in the d band ar high x. The second
effect is dominant in the charge calculation; whereas the firsc

dominates the electronic energy comput tivis.

Having made allowances foi an elastic energy contribution and shifts
in the d band as a runction of hydrogen concentration, we have finally

formulated an expression for the heat of formation of nom-steichiometric
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palladium hydride and plotted this as a function of x for several
parameter sets. Our values are in fairly good agreement with experiment
in the region x 2 0.5, especially for those parameter sets with no
interaction between hydrogen atoms, Although the lack of agreement

for x § 0.5 is partly numerical in origin it is significant enough

for us to doubt the physical validity of our model in its present form
for lower values of x. Our suspicion is substantiated by the’fact

that our results agree with experiment in t* - high x, 8 phase region

(x 2 0.6), though not in the regions of lower x. We recall that our
model is based on the assumption of a rawdom distribution of hydrogen

in the palladium lattice, and hence an implication of our results is
that the PdHx 8-phase is essentially random in nature, whereas the
other phases may not be disordered to the same extent. In the following
chapter we modify our present formalism so that we can explore the

physics of the low x regime.
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APPENDILX 4.1

INTEGRATION OF LDGS

We attempted to integrate the general LDOS expression of equations
(2,50) analytically, using the simplifying assumptions [Xdl = xd

and {kh{ - Ah (it can be seen from equations (4.3a) and (4.3b) that
the first assumption is t.ue for all allowed x, that is 0 £ x s 1,
whereas the second only holds for x 2 0.5). To do this we first re-
expressed the LDOS in terms of a rational function (as opposed to the

original continued fraction format)., The result is:-

. £(x,2)
LDOS ET;TET (Ab4.1.1)

where f£(x,¢, is a function of 0(VZ¢”)

and g(x,e) is a function of 0(e!D).
We note that V mentioned in connection with £{x,c) is one of vdd’vhd'vhh'
Without presenting details, we can make the following general comments

regarding the functions f(x,e) and g(x,e):~

- although they are cf finite order in ¢, they are not polynumials;

of non-negative, integral powers of c and irreducible quadratics in ¢;

- the coefficients of these terms are rationzl functions of x.

Because of the high powers of ¢ as well as the presence of irreducible

quadratics in € it can be appreciated that analytic integration of
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equation (A4.1.1) is out of the question, even in this simplified case
of iAd) = iy and ]khf = A, We are thus obliged to turn to numerical
quadrature techniques. It will be appreciated from plots of the LDOS
(for example Figure 4.3) that we are dealing with a sharply-peaked

integrand, and hence we suspect that application of a simple technique

such as Simpson’'s rule will probably be inadequate or inefficient for

our purposes. We take this matter up in more detail in Appendix 2.

i

e el s
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APPENDIX 4.2

FERMI~-DIRAC STATISTICS FOR PDRx

The Fermi-~Dirac distribution function for elsctrons and other fermions

is given by:~

1
£(e,Ep,T) = e (Ab.2.1)

e 1

where T is the absolute temperature.

We see that:-

1 for e « EF
fLim f(s,EF,T)
0% (44.2.2)
.
0 for g > EF
For the general case T z 0 the number v of vcoupied states per Fdhx
unit is given by:-
o)
w(T) -Mm‘ B (%e0)Ele,Ep,Thde (A4.2.3)
If we now substitute equations (A4.2.2) into equation (A4.2.3) ve
obrain:-
»FF
v(0) = i ntot(x,t)dz (A4, 2.4)

il

- P
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In Sections (4.4.2) and (4.4.3) we have used the approximation

v{T) = v{0), and we have made a gimilar assumption in Section (4.5.2).
The validity of this approximation can be appreciated at an intuitive
level by examining Table A4.2.1 in which we compare values of

f(e,EF,T} for T = OK and T = 300K.

f(e,EF,T)
£ - EF
(Ryd)
T = 0K T = 300%
~0.02 1.000 1,000
-0.01 1.000 0.99%
~-0.001 1.000 0.629
0.0 0.500 0,500
0.001 ¢.000 0.371
0.0l 13.000 0.005
9.02 3.000 0.000
Table A4.2.1 Values of #(¢,E ,T), according to

equation (A4, 2.1).

We firstly note from this table that E(E,EF,BOOK) would only affect
equation (A4.2.4) over the range -0.01 Ryd : ¢~F £ +0.01 Ryd, this

being only 2.57 of the toral wDOS energy distrisution of about

0.8 Pyd; and secondly we see that for & given energy ¢ ir the above
range,f{c,EF,3OQK) would cause a sligbt desrease in V(D) to the left

of B, and 2 slight inerease to the right of EF' res: iting in a cancellation

F

effect.

[T

oy
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In corclusion ther we can say that the error introduced bv making
the approximation v(f) = v(0) is negligible, and hence we implicitly
use this and similar approximations in calculating our Fermi energies,

charges and total electronic energies.

The approximation Ep = L can also be justified qurlitatively by

considering the relationship between these two quantities :beained

from the free electron model, viz.“'ls):-

T, ot T
s B 1 - g3 (T;) - &% (T;) lfor 1 ec 1y (A4.2.5)

where TF is the ¥»rmi temperature of the metal.

Equation (A4.2.5) reveals that p and EF are in fact identical at
T = OK. We rec:zil from Section 1.2.2 that silver wetal and
stoichiometric palladium hydride have certain electronic features
in common, and from Section !.2.5 that the behaviour of the non-
stoichiometric hydride is essentially metallic at EF‘ Approxi-
mating the Fermi temperature of Pde to that of silver metal

“eiey

(TF = 6,38 x 10" K }, we readily obtain p = l.OOOEF at 300K

by using equation [A4.2.5). Henue we conclude that the approxi-

malior 1 = EF is valid,




-~ 165 -

REFERENCES (CHAP. 4)

4.1)

4.2)

4.3)

4.4)

4.6)

4.7)

4.8)

4.9)

4.10)

4.11)

4.12)

Faulkner J § 1976 Phys. Rev. 2 13 2391

Papaconstantopoulos D A, Klein B M, Faulkner J § and

Boyer L L 1978b Phys. Rev. 5 18 2784

Wicke E and Brodowsky H 1978 Hydrogen in Palladiwm and
falladiuwm Alloys in Topice in Appl. Phys. 29 73 (Ed.s: Alefeld G

and Vélkl J; publ.: Springer-Verlag)
Lowther J E 1982 J. Phys.F: Met. Phys. 12 895

Schlapbach L and Burger J P 1982 J. Phyaique 43

1273

Gelatt C D, Ehrenreich H and Weiss J A 1978 Phye. Rev. B

17 1940

Mackay ¥ M 1966 Hydrogen Compounda of the Metallie

Elements 46 (E. and F.N, Spon Ltd, London)
Sholl . and Smith P V 1977 J. Phys. F: Met. Phys. 1 789

Gelatt C D, Weiss J A and Ekrenreich H 1975 Solid State

Cormun. 17 663
Wagne: H and Horner H 1974 Adv. Phye. 23 587
Harada S 1983 J, Phya.F: Met. Phys. 13 607

Anagnostaras P D and Lowther J E 1984 J. Phys. F: Met.

FPhye. 14 1445




- 166 -
REFERENCES (CHAP. 4) continued
4.13) Gillespie L J and Hall F P 1926 J. Am. Chem. Soc. 48
1207
4.14) Kuji T, OQates W A, Bowerman B S and Flanagan T B 1983

J. Phys, F: Met. Thys. 13 1785
4.15) Minster A 1974 Statistical Thermodynamics Vol 11 49
(publ.s: Springer-Verlag and Academic Press)

4.16) Ashcroft N W and Mermin N D 1976 Solid State FPhysies 38

(publ.: Holt~Saunders Intervational Editions)

h.




- 167 -

CHAPTER 5

TWO-PHASE MODEL

5.1 INTRODUCTION

Our two-phase model incorporates the same fundamental Cluster-Bethe-
Lattice (CBL) formalism as its one-phase counterpart (Chapter 4)
except that it makes fuller use of the rich structural possibilities
of the CBL approach. Specifically, we construct Local Densities of
States (LDOS) which consist of limear combinations of single-~phase
LDOS of the type developed in the previous chapter. 1In keeping with
the specifically two-phase nature of the hydride and so as not to
obscure the essential features of our LDOS, we counsider linear combi-
nations consisting of oniy two terms weighted in a physically srnsible

manner.

We then evaluat: Fermi energies, charges, total electrunic energies

and heats of formation in the same manner as in Chapter &4, except

that we now implement our more sophisticated LDOS formalism as well

as an energy minimization technique; the consequence of this approach

is a marked improvement in our AH curves. In addition we introduce a simple
segreg’ Tion paramcic

ug imeighte into phase transition

phenomena of the hydride.

This chapter consists of the following sections:~

- Section 5.2, in which we introduce and develop our two-phase

formalism for the LDOS, substitute it into the various charge
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CHAPTER 5

TWO- PHASE MODEL

5.1 INTRODUCTION

Our two-phase model incorporates the same fundamental Cluster-Bethe~
Lattice (CBL) formalisam as its one-phase counterpart (Chapter 4)
except that it ma, es fuller use of the rich structural possibilities
of the CBL approach. Specifically, we construct Local Densities of
Sta*es (LDOS) which consist of ltnear combinationg of single-phase
LDOS of the type developed in the previous chapter. In keeping with

the specifically two-phase nature of the hydride and so as not to

obscure the essential features of our LDOS, we consider linear combi-
nations consisting of only two terms weighted in a physically sensible

manner.

We then evaluate Fermi energies, charges, total electronic energies
and heats of foimation in the same manner as in Chapter &4, except
that we now implement our more sophisticated LDOS formalism as well
as an energy minimization technique; the consequence of this approach

is a marked improvement in our AH curves. In addition we introduce a simple

<h gives o

phenomena of the hydride.

This chapter consists of the following sections:=

- Sect./on 5.2, in which we introduce and develop our two-phase

formaiism for the LDOS, substitute it into the various charge
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and energy-related expressions developed in Chapter 4, and

define and explain the purpose of the segregation parameter;

Section 5.3 which is essentislly a comparison of the results

obtained using the one- and two-phase models;

Section 5.4 in which we examine the segregation parameter and

other features of the two-rhase model for all our parameter sets;

and Section 5.5 which s.amarizes some important findings of this

chapter.
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5.2 TWO-PHASE THEORY
S$.2.. LDOS

We follow the approach outlined in our second paper®-!), that is

we assume chat for a given value of x there are fwo phases present

ia the hydride, wiy' fractional hydrogen concentrations of p and g
respectively. We further assume that the phase of concentration p
constitutes a fraction o of the total hydride, so that the other pnase is

present in a fractional amount (l-a). This can be expressed in terms

of a chemical reaction equation as follows:-
PdH_ = aPdH_ + (1-a)PdH 5.1
- b (1=a) " (5.1)

Comparison of coefficients reveals that the palladium contributicn
drops out of this equation, which is physically correct because we
have an wnvarying Pd sublattice (our model only takes the expansion
of the Pd lattice into account via the empirical parameter c¢ in the
expression for AH: see equation (4.20)). Hence by comparing
coefficients or the hydrogen atoms in equation (5.1) we are left with

the following equation:-
x = ap + (1-u)q or q = (x~ap)/(1-a) (5.2)

Recalling that 0 s <« 5 | for Pde, we assume that the two constituent
phases are subject t¢ the same restrictions, viz. 0 < p ¢ | and
0 2 qzx l. With reference to equation (5.2) this second inequality

becomes:~
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03 (x =~ ap)/(l=a) 5 1§

which in turn gives rise tc the following set of inequalities:-

0 <a <l
pzoadpz (x+a=-i)a (5.3
pslaudp s x/a J

For given values of x and a we then generate values of p subject to
equations {5.3) and hence we evaluate the paramerer q » (x-ap)/(l-a)

(equarion (5.2)).

We see that q depends solely on x, a and p and hence that we have
only introduced two extra independent parameters into our two-phase
formalism. Taking the two phases to be irndependent of each other

we evaluzte the total LDOS fur each one according to equation (4.5),

viz:-

n(p)(p €) = 4n, (p,e) + 6n, (e) + pye)

tot F* 4, 4, PRy Py
and (5.8

a{¥(q,0) = 4a, (@,0) *+ b, () + an (a,0)

tor 9 de\Qn dt q h q,¢)

and hence we evaluate the total LDOS ~ so-phase model according
to the following equatiom:-

n(z)(x,e) = an(p)(P.E) + (I'm)n(q)(q.E) (5.5)

tot tot tot

e gl
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We can now implement our two-phase expression for the LDOS by applying
it to the various charge- and energy-related expressions developed

in Chaptey 4.

5.2.2 Energies, Charges ard Heat of Formation

The two-phase Fermi energies are now calculated by solving the

following equation for E;z):-

L)
F w0ex [ ()
ntot(x,e)dc = 10+2x‘0j nmt(x’e)dc

which corresponds exactly to equation (4.13b) for the one-phase model,
except that the total LDOS is now given by equation (5.5) instead of
equation (4.5). Heuce we obtain the two-phase charges by anslogy with
equations (4.15):-

aBw =P P

where (z)
EF
qéz)(x) - mj [%“d (e) - A(und (p,e) + (i-a)nd (q,s);]ds
- t e e -
and E(2)
(2) F
G, () = ) 2x{an, (p,e} + (1= 'm,6) Jde

Similarly, by analogy with equations (4.17) we obtain the olc crumic

energies for the two-phasc model:-

el (2)
tot

E

(0 = g

(x) + Ezl(z)(x)

(5.6)

(5.7a)

(5.7v)

(5.7¢)

(5.8a)
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where E(ﬁ)
¥
Eel(?)(x‘ - { 6n, (¢) + 4{an, (r,.) + (I=a)n (q,e)}]sdc
d d d d
- 3 e e
(5.8b)
and
+(2)
er(2) [‘F
B (x) = . 2x{an, (pye) + (l'a)nh(q,z))ede
(5.8¢)
Finally we can write down an expression for the heat of formation
Aﬂ(z) of the two-phase hydride by adapting ejuation (4.20) to the
following form:-
(2) el(2) L oei(2) _ (2) _ (2)
MT(x) = B x) Eoe  (0) = (10+x)xa IXE(Hp) + ¢ “'x
(5.9a)
where E(H;) = -2.266 Ryd.
We sz2e from Appendix 5.1 that n(z)(o €} = n (0,c) and
PP : tot "’ frot
(2) : el(2} el
ntot(l’g) - ntot(l,s), from which follow } ot (0) = Etoc(o) anij
el(2) . pel : PrT—
Btot ) Etot(l) respectively, and subs:ituting these energy
i2)
equations into equation (4.21) gives us A2, 4. We also recall
from Section 4.5.3 that the elastic ene ., parameter ¢ depends
solely on fixed empirical data and sc i: .onstant, leading to
C(Z) = ¢, Equation (5.9%a) can thus be :..ritten as follows:~-
(2) el(2) el . )
ARY T (x) = Eloe x) - Ecoc(o) - (10 wres AxE(Hp) + cx {5.9b)

It is thus clear that our two~phase evpression for the heat of formation
differs from its on.-phase counterpart golely in the total electromic

energy term.
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Equation (5.9b) can be rewritten as follows:~-
81 (x,0,0,0) = B (x,0,p,0) + F ) (5.10a)

where

F(x) = —Eiit(O) - {10+x)xA « }xE(Hz) + ex (5.10b)

We choose the parameters (a,p,q) which minimize Aﬁ(z) for a particular x
value, this baing the physically correct ielection criterion at the

absolute zero of temperature. In our case tnis ainimization is carried

el (2}

tot for a large number of (u,p,q) values ,

out numerically by evaluating E

x being kept constant during the proc-dure; it is clear from equations

ei(2) for

ot 4 fixed x also minimizes AH(Z) at

(5.10) that min‘~ization of E

that x value.

5.2.3 Segregation Parumeter

Once we have found the pziameters (a,p,q) which minimize LH for a
given value of x, we can evaluate our segregation parameter (r) which

we define ar follows:-

r = min(p,q)/max(p,q) (5.11)

where min(p,q; is the smailer of p and q

and max{p,q) is the larger of the two.




It can be seen from this ~quation that r=! implies p=q, which in turn
indicates a one-phase system (x = p = q in equation (5.1)). Recalling
the experimental finding that Fdlix is a single~phase hydride for

x 2 0.6 (refer to Figure 6.1), we expect to find r = | for x 2 0.6;
this gives us one criterion for evaluating the relativa physical

correctrness of our various parameter sets.

2. 8.4 Surmary of Section 8.2

In this sect’ . we have firstly laid the foundation for our two-phase
mode! by expressing it in ierms of a chemical reaction equation, on
which we have impcsed phyzically-semsible boundarv conditions. Secondly,
we have implemented this formalism by deriving two-phase expressions

for the LDOS in terms cf our new twi-phase parameters and the one~phase
LI0S equations. Thirdly, the formulae for the Fermi energy, charges,

* tal electronic energy and heat of formation follow immediately by
substituting the two-phase LDOS expressions into the appropriate one-
phase charge and energy formulae. And lastly, two of the new parameters
have be2n used to define a segregation parameter which will help us

datect phase transitions in the bydride.
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5.3 COMPARISON OF ONE- AND TWO-PHASE RESULTS

5.38.1 LDOS

Figures 5.1 and 5.2 provide a comprehensive comparison between our one-
and two-phase LDOS (equations (4.5) and (5.5) respectively), with
Figures 5.1 baing plotted using prm.set (a.i) and Figures 5.2 making

use of prm.set {a.2); the parameters (a,p,q) employed for the two-phase

results are those which minimize aa(z) for a given x. We take note of
the following features:-
- the two-phase LDOS are generally richer is structure than their

one-phase counterparts, and usually have d-band peaks centred at

higher energies than the corresponding single~ohase peaks;

- the high-energy shoulders discussed in Section 4.3 are also present
in the two-phase LDOS, including at lower values of x where they
do not appear in the one-phase model. However, the twc-phase
shoulders are of lower intensity than those of the one-phase

formalism for intermediate values of x;

- the most dramatic differences are observed in the hydrogen-related
peaks below the d band. We see that in general the two-phas:
LDOS have noticeably l¢s8 structure than those of the single-phase
mode? for low x, whereas for intermediate values of x the two-phase
structure is distinctly richer. If we compare Figures 5.1 and 5.2
we observe that these hydrogen-related peaks both broaden and
diminish in inten3ity very considerably in going from prm.set (a.l)

to prm.set (a.2). Now the only difference betwezn these two
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parameter sets is that the former has th = 0.0 whereas the latter

has th

relatively small change in th has a considerable effect on the

-+-vhd/10.o % -0,00845 Ryd, and hence we see that a

low~lying hydrogen-related peaks;

- and fiaally, we observe that for x > (.7 the dramatic differences
between the one- and two~phase LDOS found for low and intermediate
x have all but disappeared. This feature is particularly encouraging
since it shows that our two models become almost indistinguishable
in the high-concentration g-phase regime, which is precisely what
we wish to see. Specifically, we observe from the footnotes of
Figures 5.1 and 5 2 :pat iv **"¢ k! *« oncentration region the pand q
values of the two-phase model are mostly sir'lar in size to their
associated x value, so tha* for x > 0.7, our two-phdse model is
seen to converge on one of its special cases, viz, the one-phase

model.

Having observed the important differences between our one- and wo-phase

rodels, we now oroceed to find out what effects these differences have

on our charge and energy formalisms.

§.3.2 Energies, Charges and fHeat of Formation

In th.s section we compare one~ and two-phase results3-%) for prm.set {(a.l}.
We display the Fermi energies as a function of x in Figure 5.3, plotted
according to equations (4.13b) and (5.6); we note that the two-phase

values are lower than the single-phase curve up to x *0,25 and slightly

higher for 0.3 s x ~ 0.8; on the scale of Figure %.3 the results for the
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two models coincide for x 2 0.8, as is to be expacted from the findings
of the previous section. Figures 5.4 to 5.6 show plots of the various
charges versus x, obtained via equations (4.15) and (5.7); we find that
the two-phase values are very similar ) their one-phase counterparts,
the main difference being that they exhibit greater oscillation than

do the one-phase charges. This behaviour is due to an increase in
numerical instability, which in turn is a consequence of the richer

structure in the LDOS of the two-phase formalism.

A comparison between the total electronic energies appears in Figure 5.7,
for which we have used equations (4.17) and (5.8); the following features
are apparent: firstly, the two-phase energies are always less than or
equal to the one-phase values, in accordance with our minimization
procedure; secondly, the two-phase curve exhibits greater instability
than the one-phase curve in the region 3.2 ¢ x ¢ 0.6, again because of
numerical considerations; and thirdly, the curves for the two models

coincide on the scale of this particular figure for most of x 2 0.8.

In Figure 5.3 we dispiay plots of our one~ and two-phase heats of
formation versus x, together with Harada's experimental values®-2),
These three curves agree substantially for x 2 0.7, whereas for most

x 5 0.7 the one- and two-phase plots encompass the experimental curve.
(2)

Our two-phase model tor the heat of formation (4H ~ ) is seen to be

superior to the corresponding one-phase model (AH) for the following

)

reasons: firstly, AH is noticeebl: closer iu shape to the

N
experimental curve than AH; and secondly, AH(‘) remains negative
for almost all x values, agair in better agreement with the entirely

exothermic experimental curve.
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In particular we observe that the region where the two-phase model for

the heat of formation improves the most markedly om its one-phase counter-
part coincides to a large extent with the experimentally well-established two-
phase region, viz. 0.0l ¢ x < 0.6 at room temperatures'3) (cf Figure 6.1).

The good agreement between the two models for higher x values is seen to

coincide with the experimentally-established single-phase nature of the hydride
for x 2 0.6 (see Figure 6.1). These improvements to the heat of formation
indicate that our twc-phase model has some physical validity, leading

us to infer that in the two-phase region the microscopic structure of

Pde is a now-homogeneous distribution of hydrogen, consisting of

segregated forms of each phase.

We recall from equations (4.20) and (5.10) that our one- and two-phase

heat of formation expressions differ only in their total electronic

energy terms, which we have already compared in Figure 5.7. The total
electronic energy is in turn a function of the Fermi anergy EP (Figure 5.3).
However, a comparison of Figures 5.3 and 5.7 reveals that the differences

in total energies between the two models correlate only slightly tc the
positions of Lhe respective Fermi energies. We must therefore attribute

the differences between the heats of formation largely to other features

of the band siructure, for example the shift in the position of the

hybridized de~band peak, which Figures 5.! and 5.2 reveal to be higher

in energy for the two-phase LDOS.
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5.3.3 Swmary of Seztion 5.3

We have compared results for our one- and two-phase models and found that
they are substantially the same for x : 0.8 and in close agreement for

x 2 0.7; this is in keeping with the experimentally-establishei fact

that PdHx is indeed a single-phase hydride for x 2 0.6. The noticeable
differences between our models for x s 0.7 manifest themselves specifically
in the heats of formation, which we are employing as the experimentally-
verifiable test of these models; a distinct deepening and also a smoothing
of the AH curve occurs in moving from our single-phase to our two-phase

formalism (see Figure 5.8). We are left with 2 two-phase curve which exhibits
a smoothness and exothermic nature in keeping with experiment, though
we notice from Figure 5.8 that the magnitudes of the experimental data

are "sandwiched” between our on- - and two-phase results for prm.set (a.}).

Having established the superiorvity of the two-phase formalism, we now

proceed to implemeut it in further detail.




- 192 -

5.4 DETAILED APPLICATION OF TWO-PHASE MODEL

5.4.1 Introduction

This section is based on the resul:s and discussion incorporated in our
third paper3-*), and serves to establish our two-rhase concepts by
calculating the segregation parameters, related LDOS and heats of
formation for all nine parameter sets given in Table 3.5 and repeated

in Table 5.1. Instead of thinking in terms of nine separate parameter
sets we prefer rather to consid . three groups of three sets, where only
the first set in each group is in keeping with our original choice of
hydrogen-hydrogen interaction parameter (Section 3.7).In effect we are
considering only three key parameter sets (a.l, b.1, c.l), each one
complemented by two arbitrarily-perturbed sets (a.2 and a.3, b.2 and b.3,

c.2 and ¢.3 respectively). The three key sets differ only in their

choice of hydrogen-palladium interaction strength vhd; set a.! incorporates

the V. . value derived in Section 3.7, while Vhd for sets b.! and c.!

hd
are respectively bigger and smaller by the arbitrary factor vZ chosen

for convenience in accordance with equation (3.24). Cur results for

each physical quantity are presented in the form of three adjacent figures,

referring to parameter sets a, parameter sets b and parameter sets c

respectively.
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Set vhd Subset th
a.l 0.0
a v a.? +v/10.0
a.3 -v/10.0
b.l 0.0
b 7 b.2 +V/10.0
b.3 -v/10.0
c.t 0.0
c v, /2 c.2 +V/10.0
c.3 ~v/10.0
vV = - 0.08485 Ryd
.

Table 5.1 Parameter sets used for present calculations. The
choice of the factor v2 follows from equation (3.24).

The non~zero th values have been chosen arbitrarily.

vdd ¢ -0,0298 Ryd and U = 0,185 Ryd are used in all

cases.
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5.4.2 Segregation Parameter Fegults

Curves of r versus x, plotted according to equation (5.11), appear
in Figures 5.%9a-5.9c. We see immediately that we do indeed have the
desired behaviour of r for higher values of x, viz. r - | at some

Yeritical" x value (x Yand v = | for x > x The abruptness

cerit crit’

of the upswing in 1+ and the maintenance of large r values for x > Xepit

indicate that the two-phase formalism is qualitatively successful in
modelling the transition of the hydride into the 8-phase at higher
concentrations of hydrogen. The only parameter set which gives a
quantitatively accurate transition concentration is set (a.3) for which

= 0.57 (cf the experimentally-pradicted value of x = 0.6: see

erit
s 0.94, though

Xerit
Figure 6.1); for the other sets we have 0.73 < x__..
the upper limit is probably pessimistically large due to oscillations

caused by numerical instabilities in the calculations with sets ¢ (this

instability is apparent from our results for the heats of formation below).

We now proceed to evaluate the LDOS for the various parameter sets

at x = x P
crit

5.4.3 LDOS Results

In Figures 5.10a~5.10c we display plots of the two-phase rotal LDOS, each

curve evaluated for x = x and for parameters (a,p,q) which minimize

am®

crit

at x The value of x = X pip Was chosen to give us insight

crit’ it

into the electronie behaviowr of the hy.ride at its high-concentration

phase boundcry, bearing in mind the physical importance of such boundaries.
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In comparing Figures 5.!0a-c we must bear in mind that the corresponding
curves differ for two reasoms, viz. the respective values of X it and
vhd employed; we must therefore be careful to distinguish between these
two effects. We firstly confine our attention to the case th = 0.0

in each of Figures 5.10a-c; for these plots the Xorit values are roughly

0.78, 0.81 and 0.92 respectively. The first two X rit values are
sufficiently close for us not to expect any significant effects i the
LDOS due to their difference (compare with the same range of x values
in Figures 5.1). We can thus safely state that the broadening and
diminished intensity of the hydrogen pcak in going from Figure 5.10a to
S.10b is due to the increased magnitude of Vhd’ in accordance with our

findings of Section 4.3.Z. Furthermore we observe that the hydrogen

and perturbed palladium states are particularly sharply peaked in the

case of Figure 5.10c; this sharpness of the hydrogen band is particularly
surprising because of the high x value employed for this plot

(x“it = 0.92), recalling that we have previously associated high x

values #i-a "»pad hydrogen bands (see Figures 5.!). The effect can only

be due to the small magnitude of vhd used; this is physically sensible
because we expect the hydrogen band to "condense" into a localized state

when the interaction between the interstitial hydrogen and its various
neighbours becomes sufficiently small. We also notice the expected sharpening
of the d-band peaks with decreastrny magnitude of Vig® & feature which in

eonjunction with the hydrogen band 'peakiness" just disc.ised gives rise to

numerical inetabilities in the integration of tbe LDOS of Figure 5.10c.

We now examire the effact of "switching on” the interaction vhf' It is

seen that for a given value of vhd the hydrogen bonding peak is broadened,
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diminished in intensity and lowered in energy when th is made negative,
while che opposite effects occur for positive th, suggesting that the
hydride should be most stable fcr the case th < 0.0. However we have
already seen in Section 4.5.3 and will see again below that this is not

the case; hence we deduce that the upward shift of the hybridized d~band

peak observed for the case th < 0.0 causes an increase in the total

electronic energy which offsets the .sergy reduction due to the downward

shift of thes hydrogen states. The d-band peak is in the range (2.5:0.5)eV
below EF for all parameter sets employed, so that we again have the
agreement with the experimental results of Schlapbach and Burger3:5) found
in  Section 4.3.2 (we recall that these workers found a slight increase
in the d-band DOS of PdHjp 5 at 3 e” below EF)' Furthermore our lower,
hydrogen-related pedk is centred between 7.6 and 9.0 eV below EF’ again

consistent with Schlapbach and Burger's result of approximately 8 ev5:5),

ine Fermi energy is seen to fall in a region where the LDOS is changing
rapidly, particularly for parameter sets a and ¢, and we notice that the
LD0S at the Fermi energy drops with increasing vhd' We observe the
expected shoulder in the LDOS above EF for sets a, which partially resolves

into a peak for sets b but which is absent for sets c.

Having gained some insight into the electromic structure of Pdﬂx for the
various parameter setrs, we are luw iu a4 position tu appreciste more fully

the corresponding heats of formation.
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5.4.4 Heat of Formatirm Regults

We have agiin plotted AH(Z) versus x accrding to equations (5.10) and
the results appear in Figures 5.11a to 5.1l¢c, where we also show the
experimental curves of Harada®-2) and Kuji et a15+?). e observe that
sets c.! and c.3 give rise to curves which oscillate considerably,

this being indicative of instabilities in the numerical quadrature
procedure employed. However, the remarkably smooth curve obtained for
parameter se" c.2 suggests that this instability might not be purely
numerical in nature, possibly reflecting the reaction of the modcl to
physically-unacceptable parameter scts, If this is the case thea the
dist? smoothing out of the curves for larger meeritudes of Vhd would

indicate that rhe parameter sets with the larger vhd values are

physically more correct.

We observe that fur the energetically and numerically more stable
paramet:v sets a and b the positive th value makes the hydride
energetically wore stable whereas the negative Vh

effect; some of the electrcnic features contributing to this behaviour

h value has the opposiie

were discussed in Section 5.4.3. It can be seen that our plots of
2 ; : : ; :
AH( ) versus x are in qualitative agreement wir* experiment, both as

far as shape and exothermal properties are conccined. However our AH(z)
minima are two to three times larger in magnitude than the experimental
ones. Because our LDOS are consistent with experimental photoelectron
results® 5) and with the essential features of detailed band structure
calculationsS-6),5-7),5.9) it would appear that the electronic

23

contributions to AH from our formalism are not seriously at fault,

but rather our modelling of the band-shift and elastic terms; we note
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that difficulties in accomodating the elastic emergy have been experienced

by other workers5: %),

5.4.5 Summary of Section §.4

In this section we hava appliad our two-phase formalism in some depth,
making use of all our paramet r sets. We have firstly evaluated the

segregation parameter r as a function of x and in all cases have found
a sharply-defined "critical”™ hydrogen concentration (xcric) at which r
increases very rapidly to values close to unity; Xepit is in the range

0.57 ¢ x s U.94, and we have r = | for x > Xoit” In terms of our
definition of r this means that our model gives rise to a phase transition

at X, iev with a single phase being present for x > Xorit This is in
good qualitative agreement with the experimentally-established phase

transition at x = 0.6, with only the B-phase being present for x > 0.6.

In order to obtain insight into the electronic properties of the hydride
at the phace transition we have also plotted the LDOS for each parameter

set at x = x .
c

eit® finding inter alia that these LDOS become narrower

and more sharply-peaked for smaller magnitudes of V We have finally

hd*
given plots of the heats of formation for the various parameter sets,
finding that a weik metal-hydrogen interaction (small absolute value
of Vhd) results in a shallow and osci' ating curve for the heat of

formation, whereas larger absolute values of Vt_d give rise to smoother,

more exothermic curves. The oscillatory behaviour for small magnitudes

of vhd is a direct consequence of the narrow, sharply-peaked bands found

in the LDOS for such vhd valuss,
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that difficulties in accomodating the elastic energy have been experienced

by cother workersS:9),

5.4.5 Swmmar of Section 5.4

In this section we have appiied our two-phase formalism in some depth,
making use of all our parameter sets. We have firstly evaluated the

segregation parameter r as a function of x and in all cases have found
a sharply-defined "critical"” hydrogen concentration (xcrit) at which r

increases very rapidly to values close to unity; LI in the range

0.57 £ x s 0.94, and we have r = | for x > x In terms of our

crit’
definition of r this means that our model gives rise to a phase transition
at X  ce» with a single phase being present for x > This is ia

Xerit®
good qualitative agreement with the experimentally~established phase

transition at x = 0.6, with only the S-phase being present for x > 0.6.

In order to obtain insight into the electronic properties of the hydride
at the phase transition we have also plotted the LDOS for each parameter

set at x = x, finding inter alia that these LDOS become narrower

rit’
and more sharply-peaked for smaller magnitudes of vhd' We have finally
given plots of the heats of formation for the various parameter sets,
finding that a weak metal-hydrogen interaction (small absolute value

of Vhd) results in a shallow and oscillating curve for the heat of
formation, whereas larger absolute values of vhd give rise to smoother,
more exothermic curves. The oscillatory behaviour for small magnitudes

of Vhd is a direct consequence of the narrow, sharply-peaked bands found

in the LDOS for such vhd values.
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5.5 SUMMARY OF CHAPTER 5

In this chapter we have introduced and demonstrated the superiority of a
model which accommodates the two-phase characteristics of Pdd . This
two-phase model is based on the assumption that the hydride consists

of two segregated, non-interacting phases, each with the essentially
random nature of the one-phase model developed in Chapter 4. The more
sophisticated two-phase formalism requires that we implement a numerical
energy-minimization technique which results in a more computationally-
intensive method for evaluating the correct electronic energies of the
system; we nevertheless consider the marked improvement in our heats of
formation to be ample justification for implementing the two-phase

approach.

A further benefit of this improved formalism is that it allows us to
evaluate a suitable segregation parameter, which successfully predicts

the higher-concentration phase transition in Pde.

These successes in describing aspects of the phase behaviour of the
hydride encourage us to apply our two-phase model to the thermodynwnics

of the system, even if only in a semi-qualitative manner.
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5.5 SUMMARY OF CHAPTER 5
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hydride encourage us to apoly our two-phase model to the thermudynaomics

of the system, even if only in a semi-qualitative manner.
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APPENDIX 5.1

EQUTVALENCE OF ONE~ AND TWO~PHASE MODELS FOR X = 0 AND 1

We recall equations (5.2) and (5.3a) respectively:-

x = ap + {1-a)q (A5.1.1)

0 «<a < (A5.1.2)

Solving equation (A45.1.1) for a and applying equation (A5.1.2)

we obtain:-

0 <§E—3< ! (a5.1.3)

Assuming p » q, it firstly follows from equation (A5.1.3) that:-

X~ qg<p-q

S X ¢ p (A5.1.4)
and secondly that:-
x=-q >0
. X >4 (A5.1.5)

Equations (A45.1.4) and (A5.1.5) together give us q < x ¢ p, or more

fully:~

Czq<x<psgl (A5.1.6)
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For the case x -+ 0 equation (A5.1.6) gives q - 0, which when substituted
into equation (2A3.1.1) results in p » O (recalling that « > 0)., Hence
we have p + ¢ » x + 0, proving that the two-pnhase model reduces to the

one-phase model as x + 0.

For the case x - | we obtain p -+ | from equation (A5.1.6) which we also
substitute into equation (A5.!.1) to obtain the result q = 1. So we
are left with p + ¢ » x = !, which proves that the two models are also

equivalent as x ~» |.

Similar arguments can be used for the case p < q.
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CHAPTER 6

THERMODYNAMIC CONSIDERATIONS

6.1 INTRODUCTION

Most of the thermodynamic models for Pdax are expressed in terms of a
semiempirical partial pressure equation (Section 1.2.8) so as to facilitate
direct comparison with experimentally-known pressure~composition isotherms.
This equation is characterized by a correction term (the so-called

excess chemical potential) for modelling the nom-ideal behaviour of the
system, and we wish to determine how effective our one- and two~phase
formalisms are in describing this non-idea. contributiou. To do this

we divide the excess chemical potential into its enthalpic and euntropic
contributions, for each of which we cevelop one- and two-phase models;

we then incorporate these terms in the underlying partial pressure
equation, thereby obtaining our own one- and two-phase expressions for

the partial pressure. We are then able to comparc both our formalisms

with experimental isotherms in order to ascertain which is more

applicable to the palladiumhydrogen system,

In Section 6.2 the semiempirical partial pressurz eguation is derived

and discussed, with an emphasia on the enthualpic ar entropic parts of

the correction term; in Sections 6.3 and 6.4 we develop suitable models
for the enthalpic and entropic contributions respectively to the
correction term; in Section 6.5 we generate pressure~composition isotherms
using both our partial pressure equations, enabling us to compare cuy
models with experiment and with each other; and finally the important

findings of this chapter are summarized in Section 6.6.




i

i
.

6.2 SEMIEMPIRICAL MODELS

6.2.1 Underiying Formalism

The following is a fundamental thersodynamic equation for a metal hydride

in equilibrium with an atmosphere »f molecular hydrogens'l)9'75:-

vy * ! My, (6.1)
where u, and by, are the partial Gibbs free energies of atomic hydrogen

dissolved in the lattice and molecular hydrogen gas in the surrounding

atmosphere respectively.

For the case of an ideal solution (that is very low concent-ation)
Sieverts' Law®s!)P+75 nglds for the dissolved hydrogen gus, giving rise

to the following approximation for x << l:=

o x
UH “ \AB + RTID-S:-; (6.2)
where “; is the standard chemical potential of hydrogen in the lattice
(that is the chemical potential at infinite dilutiom of hydrogen), R is
the universal gas constant (Boltzmann's constant kB multiplied by
Avogadro's number NA), T is the absolute temperature of the system and

b is a siteravailability parameter (see appeudix §.1).

Assuming that the molecular hydrogen can be modelled by an ideal gas

formalism , we then also have a simple expression for Vo viz.:-
2

a
uH2 = uH2 + RTln(pHZ/atm) {6.3)
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where uﬁ is the chemicai potential for the hypothetical caze of
2
infinitely~dilute molecular hydrogen, and pHZ is the partial pressure

of the molecular hydrogen gas in atmospheres; both these are experimentally-

accessible quantities.

Because we dre interested in all concentrations 0 < x < | and nut merely
the ideal case x << |, we must add an x~dependent correction term (the
excess chemical potential, uﬁ) to the right-hand side of equation (6.2),
giving rise to the following more general equation:~

= uC ¢+ RTIn <2+ uﬁ 6.4)

By " My b-x

Substituting equations (6.3) and (6.4) into equation (6.1) gives us
the following paitial pressure equation, commouly used in the application

of semiempirical formalismsS-2):-

o
v B,
[ H X
ln(pnzlam) " * w in ox (6.5)
o o o
where AuH =y i by,
; i
* : Kuji et a15+3) express the excess chemical potential in the following
manner -
NH l‘lﬂ TSH (6.6)

where Hﬁ and Si are the partial excess enthalpy and entropy respectively,
Now the term in xAb-x) in equation (6.5) is also entropic in nature

(Appendix 6.1) and hence equation (6.5) contains two entropic contributions.
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Substituting equation (6.6) into equation (6.5) gives us:-

o
Auﬂ

T

Blafin

E
S
H X
- T En—b-:; (6.7)

ln(pﬂzlatm)§ =
where the entropic terms are grouped togéther in square brackets. The
left~hand side of equation (6.7) is known from experimentally-determined
pressure~composition isotherms (for example Figure 6.1) and so the success
of a given semiempirical formulism is determined by the accuracy with
whichk the right~hand side of equation (6.7) reproduces the experimental

trends.

In modelling the right-hand side of equation (6.7) we make use of the

Aug values provided by Kuji et 316'3); the specific values used are uisplayed
in Table 5.1 (zee Section 6.5). In the following two sections we derive
expressioas for Hﬁ/RT and for the combined entropic contribution viz.

[gﬁlR ~snx/ (b—xf], employing both ocur one- and two-phace models.

6.2.2 Swmmary of Section 6.8

In this section we have applied standard thermodynamic equations to the
Pde system in equilibrium with an e¢nvironment of molecular hydrogen.
The equation describing the partial Gibbs free energy of hydrogen in
Pde strictly applies orly to low hydrogen concentrations; hence a
correction term,referred to as the ewcess chemical potential, is added
to make this equation physically acceptable at higher values of x. The
correct modelling of this non-ideal correction term is the key challenge
to eloctronic and other formalisms applied to these simple underlying
thermodynamic equations. For convenience we have followed the usual

procedure of combining the equations into a single eq: .ibrium equation
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Substituting equation (6.6) into equation (6.5) gives us:-

i Au; Hﬁ Sg x
ta(py fatm)? = wF 4 g - g - E:;J (6.7)

where the entropic terms are grouped tog@ther in square brackets. The
left-hand side of equation (6.7) is known from experimentally-determined
pressure-~composition isotherms (for example Figure 6.1) and so the success
of a given semiempirical formalism is determined by the accuracy with
which the right-hand side of equation (6.7) reproduces the experimental

trends.

In modelling the right-hand side of equation (6.7) we make use of the

Au; values provided by Kuji et al®+3); the specific values used are displayed
in Table 6.1 (see Section 6.5). 1In the following two sections we derive
axpressions for HE/RT and for the combined entropic coniribution viz.

[SEIR - gnx/(b—xfj, employing both our one~ and two-phase models.

6.2.2 Swmmary of Section 6.2

In this section we have applied standard thermodynamic equatioms to the
PdHg syscem in equilibrium with an environment of molecular hydrogen.
The equation describing the partial Gibbs free energy of hydrogen in
Pde strictly applies only to low hydrogen concentrations; hence a
correction term,referred to as the e¢xcess chemical potential, is added
to make this equation physically acceostable at higher values of x. The
correct modelling of this non-ideal coricction term is the key challenge
to electronic and other formalisms applied to these simple underlying
inermodynamic equations. For convenience we have followed the usual

procedure of combining the equations into a single equilibrium equation
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for the partial pressure of molecular hydrogen gas, bearing in mind that
the pressure~composition isotherms are known from experiment. We

have followed Kuji et a1t 3) in separating the excess chemical potential
into its enthalpic and entropic parts, paving the way for the analyses

in the next two sections.




- 212 ~

6.3 PARTIAL EXCESS ENTHALPY

6.3.1 Similarities between Hg and our AH Formaltsm

The only enthalpy-related quantity in our formalism is the heat of
formation (4H), and we demonstrate in a semi~quantitative manner

tkat the partial excess enthalpy (Hi) can be modelled using our

heat of formation espressions. Firstly, we see from Kuji et alb.3)

that Hg is an excess quantity in the sense that it tends to zerc with x;
both our one- and two-phase heat of formation expressions have the

same property (see equations (4.20) and (5.9b) respectively). Secondly,
we see from Figures 5.1] that Kuji et al’s Kg values and our two-phase
AH curves are similar in shape and exothermicity. Now Figures 5.11 also
reveal that the minimum of Kuji et al's Hg curve is similar in magnitude
to the minimum of Harada's heat of formation curve® *), and we recall
from Figure 5,8 that Harada's values fall roughly midway between our one-
and two-phase AH results; hence Hg also falls in this range, making it

comparable in magnitude to our AH model or most values of x.

6.8.2 Swwmary of Section £.3

We have found that H; is compatible wich ocur two-phase AH curve shown
in Figure 5.8 (parameter set {a.l)), both in shape and exothermicitv,

and thae §

-

hae walues which fall hetween our one~ and two-phase curves;
further, Hg and our AH functions are all excess quantities. On the basis
of these similarities we choose to model Hg by means of both our one-

and two-phase heat of formation expressions (equations (4.20) and (5.9b)

respectively).

We now consider the eatropic contributions to the system.
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6.4 ENTROPY CONTRIBUTIONS

6.4.1 Pormulae and Results

In Appendix 6.1 we derive the following expression for the integral ideal

configurational entropy per mole of metal atoms:-

S(X)/R==[xtnx~bnb + (b-x)in(b-x)] (6.8)

By taking the derivative of S{x) with respect to x we then obtain che
following expression for the partiul ideal configurational entropy per

mole of Aydrogen atoms:-

S'(x)/R = - tn %‘}-"; 6.9

which corresponds to the second entropy term in equation (6.7)  Because
S(r) and 8'(x) are functions of x only and not of (x,p,q) we may think

of them as cme-phuase quantities, Ideally we would have b=] for the case
where atomic hydrogen occupies the octahedral interstitial sites in
palladium metal. It is however usually found that semiempirical models
of the type describ d by equation (6.7) only concur with experiment for
values of b < | 6:7 An entropic expiession which requires b < I is
consistent with the so-called blocking model8+ ) soncept, in which short-
range ¢lectronic repulsiou between hydrogen atoms prevent the total
number of interstitial sites from being occupied. This assumed existence
of repulsive hydrogen-hydrogen interzctions suggests that the blocking
model corresnonds most closely to those of our pirameter sets which

have V.. > 0. However we should note at this point that the blocking

kh
concept (b < |) is of only limited applicability to Pde because the
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stoichiometric hydride, for which we require b=1, is in fact experimentally
obtainable. In the present analysis we will make the simplifying assumption
that blocking effects are absent altogether, and will thus work with the
original set of parameters derived in Chapter 3, viz. prm.set (a.1),

for which th = 0.0. Neglect of the blocking model allows us to occupy

all the interstitial hydrogen sites, that is we can choose b=l;

substituting this into equations (6.8) and (6.9) results in the

following expressions for our ome-phuse entropiesi-

=Sy /R [x tn x + (~x)in(1-x)] (6.10)
and

* X
*S(l)(x)/R' i’.n-i—:; 6.11)

where we now place the minus sign on the left-hand side for more convenient

comparison with equation (6.7)

We next consider the other entropy contribution to equation (6.7) viz. Si.
Kuji . a18°3) have carried out a detailed analysis of their experimentally-
measureld Sg values and conclude that the dominant contribution to Sg is
configurational in nature; they refer to this dominant term as the non-ideal
configurational entropy. Hence the combimed entropic contribution ro
equation (€.7) is essentially comfigurationc! in natute, consisting

chiefly of one Zdeal and one nom-ideal configurational entropv term.

On the basis of tais observatio- we will firstly approximate the compined
entropy terms of equation (6.7) by means of our one-phase configurational
formalism (equation (6.11)), and secondly by means of a purely configuracional

two~phase entropy formalism which we will now derive.
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We recall from Section (5.2) that our two-phase model is based on the

following reaction equation:-

PdE = a Pde + (l-u)Pqu (6.12)

where p and q are the concentrations of the two constituent phases
and o and (!-a) are the respective fractional amounts of these two

phases.

In Appendix 6.2 we apply combinatorial arguments to the two~phase model
and thereby obtain the following expression for the integral two-phase

configurational entropy:~-

-8(2)(u,p,q)/R - c[}-) tnp + (1-p)in(l~p)] + (1-a)[q tn q +
+ (l—q)zn(!—qi] +a ina ¥ (l-a)in(l~a) (6.13)

Taking the appropriate partial derivatives and allowing for the mathematical
singularities at p=q, 1,q=0 and p,q~1 (Appendix 6.2), we obtain the
following expressions for the partial two-phase configurational entropy

of hydrogen:~

S (P8, (9)
-ty (1) 1 ]
PFA, P, as0, P-q ML =

peqtl

-y 0opra) /€]

+ n -g: + in T§: (6.14a)
? i=q

where S(l)(p) =p in p + {(I-p)in(l~-p)

and S(l)(q) = q in q + (1-q)in(i-q)

- e - Py PP | T
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' = -G - .2
[Slay@ps 8 g, pqm0 T SR = I T (6. 148)
or p,q=!

For our plots of —5(2)(u.p,q)/R and -522)(a,p,q)/8 versus x we employ
the sare (a,p,q) values as were used to obtain the two-phase total

electronic energy curve in Figure 5.7.

In Figure 6.2 we show plots of the integral configurdtional entropies
(multiplied by -1) versus x for our one- and two-phase models (equations

(6.10) and (6.13) respectively). We observe that the one-phase curve

is symmetrical about x = 0,5, whereas this is not so for the two-phase

curve which reaches a minimum just below x = 0.5 {cf Figure 9 of Kuii et al®-3),
in which their 7deal integral configurational entropy is symmetrical

about x = 0.5 whereas their total integral entropy curve lacks this

symmetry).

Plots of our one and two-phase partial configurational entropies
(multiplied by -1; see equations (6.11) and (6.14) respectively) appear
in Figure 6.3, where we note that the one-phase curve is an odd function
about x = (.3 whereas the two-phase curve lacks any such symme:iry;

we do however observe that both curves pass through zero at x = 0.5.

The twn-phase values are generally greater in magnitude than the one-
phase values by roughly a factor of three; the significance of the
greater nagnitude of the two~phase values will hecome evident in

Section 6.5,
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8.4.2 Swmary of Section 6.4

In this section we have derived one~ and two-phase entropy expressions
with which to model the combined entropy contribution to the semiempirical
partial pressure equation (equation (6.7)). We are able to approximate
the combined entropy by means of our purely confijurational one- and
two-phase {ormalisms because we have seen that the entropy of Pdux is
predominantly cenfigurational in nacure. The tntegral two-phase entropies
are found to be asymmetric about x = 0.5 (in qualitative agreement with
the experimentally-derived results of Kuji et 315’3)), while the partial
two-phase entropies are found to be larger in magnitude :han the
corresponding one-phase values by roughly a factor of three, the

significance of which will be appreciated in Section 6.5.

We are now in a position to write down our one~ and two-phase partial

pressure equations.
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6.5 APPLICATION OF OUR MODELS TO THE SEMIEMPIRICAL EQUATION

8.5.1 Partial pressure Equations

We recall that in Section 6.2 the following semiempirical partial pressure
equation was derived:-

(] E E
5.23.5!_-.5_*1-“__}_‘]
RT X

zn(pnzlpatm) ' (6.7)

where we have chosen a brvalue of unity and where Patm © 101.3 kPa

(the various erergy terms on the right-hand side being expressed in kJ).

We now subscitute the results of Sections 6.3 and 6.4 into equation (6.7)

to obtain one- and two-phase partial pressure equations, viz.:-

ONE~PH, 1= i ) l‘-h; A“(l) s'l (%)
in(pnz) = 0137 + -+ -——ETLEL - -S—%—-— (6.15)
TWO~PHASE: - o
&u (2) $! | (a,p,q)
:m(pﬂz)é - maont v A MG L J) (6.16)

where AH(R)(X) and AH(Z)(m.p,q) are given by equations (4.20) and (5.9b)
respectively and where SEX)(X) and SEZ)(a,p,q) are given by equaticns
(6.1') and (6,14) respectively For the partial entropies we employ

the values displayed in Figure 6.3, and the heat of formation values are
the same as those appearing in Figure 5.8. COur Au; data are displayed

in Table 6.1 and are taken from Kuji et a1b+3),
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T(K) bug (kJ mol™1H)
300 7.05
350 9.68
400 12.26
450 14.80
500 17.35

Table 6.1 Au; values used in the present study (from Kuji et a16:3)).

B.5.2 Results and comparison with crperiment

It is clear from equations (6.15) and (6.16) that each of our partial
pressure formalisms reguires us to provide both enthalpic and entropic
terms. In order to evaluate the relative importance of these contributions,
we plot the isotherms of each model for the case of zero partial

entropy in addition to 8' # 0. The case of zero entropy (as opposed

to zero enthalpy) is considered because eotropic considerations are
introduced for the firet time in this chapter and it is thus of interest

to examine their particular contribution.

In Figures 6./ a-d we present the ome-phase results; specifically,

Figure 6.4a is obts ned from equation (6.15) for the case Szl)(x) =0

nnd Figure 6.4b for the case of Szl)(x) ¢4 0, while Figures 6.4c and d

are simply cumerically-smoothed versions of Figures 6.4a and b respectively
(a combined spline~least-squares fittirg routine was employeds'ﬁ)). The
two=phagse isotherms (equation (6.16)) are similarly presented in Figures

6.5a~d, where Figure 6.5a represents the case for which 822)(a.p,q) = 0,

shciliion
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Fi{gunes 6.4akb Pressure-composition isotherms for the one-
phase model, using prm.set (a.}).
Fig.6.4a: zero entropy;

Fig.6.4b: non-zero entropy.
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Figutes 6.4céd Pressure-composition isotherms for the ome-

phase model, using prm.set (a.l).

Fig.6.4c: zero entropy (smoothed isotherms);

Fig.6.4d: non-zero entropy (smoothed isotherms).
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Figures 6.5c&d Pressure-composition isotherms for the two-
phase model, using prm.set (a.l).
Fig.6.3c: zerc entropy (smoothed isotherms);

Fig.6.5d: non-zero entropy (smoothed isotherms).
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Figure 6,.5b the case for which 322)(a,p,q) # 0, and where Figures 6.5c

and d are the respective smoothed isotherms.

Comparison of Figures 6.4 with the experimental isotherms displayed in
Figure 6.1 reveals that the one-phase model breaks down for x s 0.7,
that is over the entire two-phase regien (0.01 s x ¢ 0.6) , as w. would
expect of a single-phase formalism. We notice that for x 2 0.7 the non-
zero entropy contribution results in steeper (and hence more acceptable)
isotherms than the S = 0 case, thus confiruing the validity of

)

including an entropic contribution in our une-phase model.

In contrast to the one-phase findirgs, we observe from Figures 6.5

that the two-phase isotherms are in substantial qualicative agreement
with experiment for x 2 0.2. More specifically we note that the mon~
zero entropy contribution (SZZ) in this case, see Figure 6.3) again
improves the shape of the isotherms, giving a slightly steeper rise for
higher x; it also lowers the isotherms in the region x < 0.5, making
ther more compatible with the plateau region clearly discernible in
Figure 6.1. With reference to the case 522) # 0 we have qualitative

agreemet.. -ith experiment in the following specific featuresg:-

-~ fairly flat egions (known as plateaus) in the isotherms
for intermediate x values (correspcnd.ng to the two-phase
region of the hydride), tollowed by snarp rises ai. bigies

concentrations;

- the isotherms do not cross, and the higher-temperature

isotherms always remain above the lower temperature ones;




- 226 -

-~ the spacing between the isotherms decreases with increasing

tempecriure.

The chief quantitative differences between our two-phase isotherms and
experiment have to do with the depth, width and abeolute position of the

plateau region, and the behaviour for x § 0.2:-

~ depth of plateau regic:. By "depth" we me.. the separation
betveen the 300 and 500 K isotherms in the plateau reg’om
(x = 0.5). By comparing Figures 6.5 and 6.! we see that
our two-phase depth is greater than the experimental one by
roughly a factor of two, a difference which is largely
attributable to the factor two deviation inm our two-phase
heats of formation (see Figure 5.8). A comparison of Figures
6.5a and b reveals that the entropic contribution has very
little effect on the depth of our two~phase plateau region,
confirming that the discrepancy is chiefly enthalpic in
origin. To keep this deviation in its proper perspectivs
we should bear in mind that the agreement of our two-phase
heats of forma’ion with experimenc to within a factor of two
or three (Section 5.4.4) is in fact a remarkable achuic “rpsw
in the light of the considerable cancellation effect. iuvolved

(Section 4.5.3).

- width of plateau region. This remains constant for all our
isotherms whereas the experimental platesu .+gion diminishes
with increasing temperature, disappearing at a wcll-defined
criticil temperature. Our model lacks this feat.re because
both our enthalpy and entropy terms are independent of temperscure,

resulting in isctherms of unvarying shape.
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absolute positions of tsotherms in the plateau region. Taking

our isotherm values at x = 0.5 as the rough plateau positions

we observe that our plateaus do not coincide with the experimental
ovnes; this is partly a consequence of the greater depth of our
plateau region discussed above, vhich causes our isotherme to be
more spread out than the empirical ones. The fact that our
plateaus are not completely flat is a further source of error

in that the actual plateau position cannot be unambiguously
defined; we note from a comparison of Figures 6.5a and b that

the entropy term has a considerable influence on the flatness

of the plateaus (although we have seen that it does not
significantly affect the depth of the plateau region). We finally
point out that our theoretical isotherms need to be lowered by a
constant term (ln(pacm)§ = 2,31, see equation (6.16)) when compzaring

them with the experimental isotherms of Figure 6.1,

behaviour at low x. Figures 6.5 indicate that our two-phase
model breaks down for x g 0.2 in that it does not predict the
sharp downswing in the isotherms at .ow x revealed by experiment
(Figure 6.1). Comparison of Figures 6.5c and d (or Figures 6.5a
and b) shows that the presence of the non-zero two-phasec entrapy
term noticeably improves our model at low x, suggesting that the

enthalpic contribution is at fault in this concentration range.

Indeed it is clear from Figure 5.8 +° 4gh our two-phase
heat of formation model is disti.. than its one-~phase
counterpart, it nevertheless exhibits .derable instabilities

at low x, including physically-incorrect endothermic behaviour

for certain concentrations. Thus the partial pressure isotherms
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simply highlight the fact that our heat of formation models

are least successful in the low-concentration regime.

6.5.8 Thermudynamio stability of two-phass Model

Finally we briefly report on some observations related to the stability
of Pdﬂx as a function of temperature. Our two-phase theory (see equation

(6.16)) gives us:-

Bug = du ¢ aw’? - 15 (6.17)

H (2)

In Figures 6.6 we show smoothed isotherms of Auu versus x calculated using
equation (6.17) and with prm.set (a.l); we recall from Section 3.7 that
this set constitutes the hest choice of interaction parameters. In
particular we compare AuH for the case of zero two-phase entropy (Figure

6.6a) with that of non-zero two-phase entropy (Figure 6.6b).

The important point is that the system is exothermic (and hence gtable)
when 4u, < 0 while being endothermic (and therefore unstable) for duy > 0.
We are thus interested in concentration: * which Auﬂ = (; these can

readily be obtained from Figures ©,6 and ace displayed in Table 6.2 along

with some experimental values deduced from ;u.ii et a1%:%),

Our theoretical results indicate firstly that the hydride becomes less

stable with increasing temperature (that is the iscrierms become less

>

negative, see Figures 6.6) and secondly that the highest stable concentration
attainable decreases with increasing tomperature (Figures 6.6 and 1:h" - 5.2);
both cthese observations are physically sound because we expect that for

a given value of x the hydride will become less «table as its tlormal energy

(which is proportional to temperature) increases, Furthermore, our
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Figures 6.6akb Tsotherms of Gibbs energy vs x for the
two-phase model, using prm.secr (a.l).
Fig.6.6a: zero entropy (smoothed isotherms) ;

Fig.6.6b: non-zero entropy (smoothed isotherms).
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x (AuH = 0)
T(K) 2-phase theory, prm. set (a.l) Experiment
t e ' sy 6.3) :
5(2) 0 S(z) ¥ 0 (Kuji et al , Fig.4)

300 A0 0.91 ~0.8

350 0.97 0.87 -

400 0.94 0.82 0.6

450 0.90 0.76 -

500 0.87 0.70 I -

Table 6.2 Concentrations (x » 0.5 only) below which th2 Pde system

is exothermic, as 4 function of temperature.

theoretical prediciions are in reasonable agreement with the experimental
results of Kuji et a16-3) (see their Figure 4 and our Table 6.2), our
nom=~zero two-phase entropy model again proving superior to our zero-
entropy formalism (Table 6.2). Our two-phase theoretical model is thus

once again consistent with experiment,

6.5.4 Swwmary of Section 6.6

We have derived ome- and two-phase partial pressure equations, fiading
that the one-phase formalism gererates incorrect isotherms over the
entire two-phase concentration region, while the two-phase model is
qualitatively correct for x : 0.2. Specifically, tle two-phase isotherms
have a fairly flat plateau region followed by a sharper rise at higher
valuyes of x, and the iso*herms do not cross but hecime more closely

packed with increasing temperature.
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For both one~ and two-phase mcdels the isotherms were also plotted for

the case of gero configurational entropy, resulting in a shallower rise

at high concentrations and an elevation of the isotherms for lower x;

because both these changes lead to physically less-satisfactory results, the
present cilculations reveal rhat the configurational entropy plays an important

part in our parti2i pressure models.

The two-phase formalism is quantitaitvely inaccurate in the following
respects: firstly, its plateau region is too deep by a factor of two,
corresponding closely to a simil+~ discrepancy in our two-phase heat

of formetion curve; secondly, its plateau region is constapt in width
(instead of diminishing ay temperature increases) because our heats

of formation and entropies are temperature-independent; thirdly, the
absolute positions of the isotherm plateaus are incorrect because our
two-phase heat of formation curve differs from experiment in both shape
and depth, and possibly also because of inaccuracies in the concentration-
independent terms of our two-phase equation; and fourthly, the two-phase
model breake down for x § 0.2 as a consequence of instabilities in the

corresponding heat of formation in t’: low x regime.

Finally, we find that the temperature dependence of the stability of the

hydride follows experimentally~-established trends.

a
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6.6 SUMMARY OF CHAPTER 6

We have successfully employed our two-phase model for the heat of formation
of Pdlix (described in Chapter 5) to obtain pressure-composition isotherms
in substantjal qualitative agreement with experiment. This was achieved

by applying our formalism to a standard thermodynamic equation for the
partial pressure of hydrogen gas in equilibrium with Pdﬁx; specifically,

we were required to provide emthalpic and entropic contributions for this

~xpression.

We firstly demonstrated a number of simi.arities between our heats of
formation and the enchalpy results employed by Kuji and coworkers in
their partrial pressure formalism; hence we chose to model the enthalpic
contribution to the partial pressure equation by means of our one- and

two-phase heats of formation.

We next established that the entropic contribution is predominantly
configucational in nature, and so proceeded to derive one- and two-phase

configurational entropy expressions to model this contribution.

To complete our models we made use of standard chemical potential data

provided by Kuji and coworkers.

We have found that our one-phase partial pressure equation produces
incorrect isotherms for x ¢ 0.7, that is, over the entire two-phase region
of the hydride, as would be expected for a single-phase formalism. However
cur two-phase results are in qualitative agreement with experiment for

x 2 0.2, 1In particular we notice that the presence of the configurational

entropy term improves the shape of the isotherms at high and low x. The
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quantitative shortcomings of the two-phase isotherms are closely related

to discrepancies between the depth and shape of our two-phase heat of
formation curve and the experimental results, and also to the lack of
temperature dependence in both our heat of formation and entropy expressions.
The breakdown in the two-phase model for x € 0.2 correlates closely to
instabilities in the corresponding heats of formation for this concentrition

range.

Finally, the temperature dependence of the thermodynamic scability of

the hydride is found to follow experimental trends.

In this chapter we have demonstrated the qualitative applicability of

both our two-phase heat of formation model and our two~phase configurational
entropy expression to the experimentally well-known pressure-composition
isotherms of Pdﬂx; we have also confirmed that our two-phase formalism

is of wider applicability than its one-phase ccunterpart.
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APPENDIX 6.1

IDEAL CONFIGURATIONAL ENTROPIES

Consider a metal hydride an consisting of one mole of metal atoms,
with b interstitial sites available per atom (we assume b > x}. This
gives us NAb interstitial sites with NAx hydrcgen atoms available to

occupy them (where N, is Avogadro’s number). The total number of

A

possible configv "ations is obtained in the usual combinatorial manner

as follows:-—

N b (N,b)!
AP RS MO (a6-1.0)
A AT A A

The ideal configurational entropy is given by:-

§ = kB in W (46.1.2)
where kB is Boltzmann's constant,

Further, for large integers n we oktaiz the following simplifying

equation via Stirling's approximation:-

tn{n!) *ninn-n (A6.1.3)

Substituting equation (A6.1.1) into equation (A6.1.2) and using equation

(A6.1.3) gives us the following entropy expression:-




§ =k, [(N,D)2a(N,b) - (N,B) = (N,b - Nx)2n(Nb - E,x) +
+ (N = Nyx) = (N,x)2a(N,x) + (N,x)]

= - kg, [ 20 x - b in b + (b-x)Zn(b-x)] (A6.1.4)

Noting that the ideal gas constant R = kBNA we rewrite equation (A6.1.4)
as follows to obtain our expression for the ideal integral configurational

entropy per mole of metal atoms:-

S(x)/R = - [x tn x - b &a b + (b-x)in(h-x)] (46.1,5)

We finally evaluate the ideal partial configurational entropy per mole
of hydrogen atoms by taking the derivative of S(x) with respect to x,

giving us the following expression:-

§'(x)/R = ~ fn '»?f‘x (A6.1.6)
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APPENDIX 6.2

TWO~PHASE CONFIGURATIORAL ENTROPIES

In deriving our two-phase entropy expression we use the combinatorial
approach of Appendix 6.! in conjunction with the following equation from

our two-phase model:~

PdH_ = o Pde + (i-d)Pqu (A6.2.1)

which i3 equivalent to:-

x = ap + (l-a)q (A6.2.2)

We start by assuming that the parameter b of Appendix 6.1 has the value
b=1, as expected for an ideal fcc palladium lattice with only octahedral
interstitial sites available for oczupation; thus for a mole of palladium
atoms there are NA interstitial sites available for occupaticn by N x

hydrogen atoms.

We must now evaluate the total number of ways of distributing these
hydrogen atoms between the two phases of concentrations p and q as well as

amongst the ¥y available sites.

Firstly, with reference to equations (A6.2.1) and (A6.2.2) we see that
the number of ways of partitioning the NA sites between the two phases

is given by:-
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N NI
(a8 ™ TO=ONITTaN]T (a6-2.3)

where we have dropped the subscript from NA.
Secondly, the number of ways of distributing "p"~-phase atoms amongst
the aN sites available to this nhase is obtained as follows:~

) (aN) L (46.2.4)

-
apN ail-piglliupﬂi!
and similarly, the number of ways of distributing the "q"-phase atoms

amongst the (1-a)N sites available to this phase is given by:-

- 3N
UraN o e (:“:)“ T (46.2.5)
(1-a)qN : )

With reference to equations (A6.2.3), (A6.2.4) and (A6.2.5) we obtain the
following expression for the total number of ways of distributing "p''-phase

and "q"-phase atoms amongst the N available sites:~

N!
W= - 2.
TN U MU DL (46.2.6)
Hence
oW = Ln(N!) - {in(apN)! + 4n Lu(l-p)ﬁ]! +
+oun [Cimeygi)l o+ AelObewd 0 gl {28.2.7)

Now by Stirling's approximation we have:-

% tn(apN)! = ap &nap = oap + ap ¢n N (A6.2.8)
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so that by substituting equation (A6.2.8) and similar expressions into

equation (A46.2.7) we obtain:-

1 in W= n N~ 1~ [gp 20 ap + all=-p) in o (l=-p) +

N
+ (I=a)q fn (1-a)q + (1~0)(1-q) fn (1-a)(1~qJ]
- [op + a(l-p) + (l~a)dq + (1=a)(i-q)](in ¥~1) (A6.2.9)
Now ap + a(l-p} + (l=a)q + {l-a)(l-q) = o + (J~a) = | (46.2.10)

Substituting equation (A6.2.10) into equation (A6.2.9) and simplifying the
resultant expression gives us the following formula for our two-phase

integral configurational entropy per mole of palladium atoms:-~

§(p) (%P> /R = - {alp tn p + (1-p)en(1-p)] +

+ (l*u)[ﬁ in q + (!~q)2n()~q)] +a fna+ (i=a)in(i-a)}
(A6.2.11)

where R = kBNA'

We observe that equation (A6.2.11) consists of a4 weighted sum of one-phase
entropy terms in p and q (each term being analogous to equation (A6.1.5)

for the case b=1), as well as a similar exnression in a.

As in Appendix 6.1 we next evaluate the partial entropy per mole of
hydrcgen atoms, by taking the derivative of 3(2)(u,p,q) with respect
te ri-
38 3s da EE] 3 38 3
« (95 2a o8 2P + (OF 29
ETd (aa)p,q\ax)p,q + (ap)a,q(ax)a,q (Qq)a,p(ax)a,p

(A6.2.12)
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where we have dropped the subscript from S(Z)

By referring to equation (A6.2,2) we obtain the following partial
derivatives:-

X
(M)p'q p-q

&%

39X - a
apTa,q

(Gx

s = j-a
3q a,p

which when substituted into equation (A6.2.12) give :~

a8 I 3s 1 as : f
3% ey (Sgﬁp’q iy (3; ayq i~a ‘;6)ﬂ.p (A6.2.13)

where we assume p ¥ q.

Now we refer to equation (A6.2.11) to evaluate the following partial

derivatives:~

(gi)p q/R - - {f} inp+ (l~p)in(|-pf} - [h o q + (l~q)2n;l~qi] +

+ fr )
t-a
(22) JR = - g in ~P—
3p a,q I-p

As - P qQ
kaq)a’p/l‘« (S et ¥} anm

We substitute these into equation (46.2.13) to obtain the following

expression:~
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g,..(p) - 3, (g}
(%3)/;{. ARSI PR i
% ] ] a
+ in T@; + in Tga} for p # q (46.2.14)

where s(l)(p) = p inp+ (I-p)in(l-p)

and (4} = q tn g + (1-gitn(i~q) (A6.2.15)

o
")
Now equation (A%.2,2) gives us:-

PR . § (AE.2.16)
g

We see from tivis equation that o and hence the two-phase mcdel is not
well-defined for peq. However, it is clear from cquation (A6.2.1) that
p=y correspmmds to our one~phase model, for which the partial

comfigurational entropy is known (Appendix 6.1).

Using “<he notation sz)fa,p,q) = 35/3%x, we can now rewrite and extend
equation (A6.2.14) to give us our final expression for the two-phase
par tial corfigurational entropy per mole of Lydrogen atoms:-

S -8

I AL O A

PR, paR0, P-a p=q = T-a
pyqél

ES'(:) (a,p,4) /8]

+ sm-‘-ﬁ-;; + zn-‘éa) (A6.2.17a)

where § (p) and S(1>(q) are given by equations (A46.2.15);

&3]

M 5l _— ‘ . - X ;
[5(2)(Q¢P#Q)/8Jp_q' p,9%0, S(z)(x)/R tn = (46.2.17b)
,q#l
where we have used equation (6.11); and
y : g0 ( @ - X »
8oy PRI, g o 2 S(1yOO/R in T (36.7.17¢)
pyq=1
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We comment that equation (A6.2.17¢; is defined purely for computational
convenience; however it is no? physically sound, because both a
hydrogen-free phase (say p=0) and a stoichiometric phase (say p=1) would
for general x f/say 0 < x < 1) result in a two-phase hydride (p < x < q
for the p=0 case and -~ < x <« p for the p=l case). For prm.get (a.1) we

have p=0 for x=0,0 and 0.025 and p=! for all our x values between 0.85

and 1.0 inclusive; hence the first star and the last six stars on the
broken curve of Figure 6.3 should strictly be ignored. A rough estimate
of the true derivatives at these points can be obtained by taking the

gradient of the broken curve in Figure 6.2 at the same x values.

In examining Figures 6.5 we should therefore bear in mind that the first
data point (corresponding to x = 0.025) and the data points for x 2 0.85
are not strictly correct., Specifically, by examining the gradient at these
x values in Figure 6.2, we expect tne first point to be somewhat lower

and the points for % z 0.9 to be somewhat higher, but we comment that

any such corrections would make very little difference to the overall ; )
trend of the data. ?
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CHAPTER 7

CONCLUSION

We have noted that the various theoretical approaches to non~stoichio-

metric palladium hydride usually belong to one of two distinct categories,
namely semiempirical formalisms on the one hand and band structure techniques
on the other. In the first category we have models characterized by
physically~transparent simplifying assumptions and based on ezperimertal
results (for example the so-called .. gid Band Model); their chief

shortcoming is that they are in general oversimplistic and hence have

only li-ited ranges of physical validity. At the other extreme we have

the band structure methods (for example the APW and KKR techniques) in

which the one-elactron Schrddinger equation is accurately solved for

the case of a periodic crystal potential; these approaches have three
important shortcomings: firstly, they require very considerable computational
resources; secondly, their results are expressed in terms of interpolation
schemes which require large numbers of fitting paramefers; and thirdly,

they are based on the assumption that the sclid has a perfect crystalline
structure (that is, long-range order), which is not the case for pandom

systems such as non-stoichiometric metsl hydrides.

In response to these physical shortcomings and computational restrictione
we have formulated a Cluster-Bethe-lLattice model for non-stoichiometric
metal hydrides which incorporates the following appealing features:
firstly, it models the hydride from the viewpoint of local environment

and ghort-ru~re order instead of long-range order; secondly, it results
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in closed, analytical expressions for the Local Densities of States

which give us cousiderable insight into the and structure of the

hydride as well as facilitating extensive electronic energy calculations;
thirdly, it requires only a few physically-meaningful parameters; and
fourthly, the model allows us to develop a physically-transparent formalism
for the multiphase nuture of the hydride. Our Local Densities of States
are found to be in good agreement witn the essential features of both

band structure calculations and photoemigsion spectroscopy results,

giving us confideace ia the physical applicability of our model.

In the present work we have concentrated on evaluation of the experimeutally-

accessible heat of formation of Pdﬂx (0 £ x £ 1), thereby retaining

the emphasis of our parers on this metal hydride“'lz)’s'l)'5‘3).
Specifically, we have found that our one-phase nodel®-12) generates

heats of yormation which agree quite well with experiment for x 2 0.5
though not for x s 0.5. However our two-phase heats of formation3-1)

are seen to improve on the one-phase results for x < 0.5, while remaining
substantially the same for x ¢ 0.7. It is imporrant to recall at this
stage that at room temperature PdH  consists of two coexisting phases

for 0.0 < x 5 0.6 and of only one phase (the 8-phase) for x z 0.6.

Now we have found that our one- and two-phase models for the heat of

formation are in good agreement with each other and with experiment in the

g-puase region, while only the two-phase model is successful cver the

two-phase concentration range; we thus infer that our models are consistent

with experiment.
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Further, our one-phase model is based on the assumption that hydrogen
is randomly distributed in the palladium latrice* !2), and its success
for higher concentrations suggests that the B-phase exhibits randomness

in irs microscopic structure. Similarly, ths applicability of the

two-phase model for intermediate values of x suggests that the microscopic
structure of the hydride in the two-phase regime is characterized by
some sort of ordering process, possibly resulting in gegreguted forms

of each phase.

A segregation parameterS'3) has also been defined in the context of our

two-phase model, and this gives a qualitatively successful prediction

of the phase transition at the lower end of the B~phase.

We have concluded the present work with an application of vur formalisms

to the thermodynamics of non-stoichiometric palladium hydride. One-

and two-phase configurational entropy expressions have heen derived and

substituted, together with the corresponding heats of formation, into a

semiempirical partial pressure equation. It is found that our one-phase

model is only successful in the high~concentration B8-phase regime,

breaking down in the two-phase region as would be expected of a single-

phase approach. However our two~phagse partial pressure isotherms are in '

substantial qualitative agreeuent with experiment for x 2 0.2, the

breakdown at lower x being closely linked to instabilities in our two-

phase heat of formation curve for x s 0.2, We have established that our [ | {

the correct shape, particularly at the higher 2nd lower extremes of

concentration.

entropy contributions play an important role in producing isotherms of ] {
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Qur two-phase model for the thermodynamic stability of palladium hydride
is also found to generate iso:-herms in reasonable agreement with
experimental trends, in particular presenting some indication of the

concentrations at which the hydride becomes unstable.

In short the inclusion of temperature dependence has confirmed that
our two-phase formalism is of wider applicability than its one-phase

counterpart, and has also revealed the importance of entropic effects.

Despite the notable successes already achieved in the presemt work

there are nevertheless opportunities for the improvement and extension

of ouv two-phase model. For exampl.:, our present formalism seems to
break down for x g 0.2; if this shortcoming could be rectified we would
be in a position to examine the microgscopic nature of the a-phase

(0 < x g 0.01 at room temperature). Another poteatial refinement is

the inclusion of vibrationcl terms in our emtropy theory and maybe even
in our heat of formation expressions. Further, it should be possible

to extend our model to other non-stoichiometric transition metal hydrides

(such as nickel hydride), and perhaps to refractory metal carbides.

In summary, we have employed the Cluster-Bethe-lLattice tachnique

to model various electronic features of non-stoichiometric palladium
hydride, finding in particular that our two-phase formalism generates
Local Densities of States, heats of formation and pressure-composition

isotherms all in substantial qualitative agreement with experiment.
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APPENDIX 1

REVIEW OF SLATER-KOSTER INTERPOLATION SCHEME (See Section 3.3)

Slater and Koster®!-!) work within an LCAO (Linear Combination of

Atomic Orbitals) formalism, which is based on the assumption that

wave functions in a periodic solid can be well approximated to by

linear combinations of the isvlated atomic wave fumctions. Specifisally,
consider a set of atomic orbitals (¢1(£ —Ej)}. wher~ | refers to the
orbital type (for example 4d) and &j indicates the position of the
particular atom; we note that these are strictly localized states,

and hence that the LCAO approximation has inherently local properties.

To remove the localization associated with ¢Z(§'§j), we take the

so-called Aloch sum B, i~
8,0 = ] X Rio gy (1.1
3

where the sum is strictly over the entire lattice, that is, Bl is
highly delocalized. Secondly we take a weighted sum of all the
Bloch sums Bl to obtain the LCAO wave function in its fullest form,

viz.:-

reao® = L2y By o (a1.2a)
or

—
Yreaot® ~ Zij E‘zelk B‘{f% &Ry (A1.2b)
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