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Mathematical practices and mathematical modes
of enquiry: same or different?
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Abstract

Background: In this paper, I share a case study of a teacher’s work on mathematics tasks in the context of a
‘mathematics for teaching’ course aiming to develop mathematical content understandings and mathematical
practices among primary teachers in one South African province. The course was developed in a national
context of concerns about the nature and levels of primary teachers’ mathematical knowledge. Theories viewing
mathematical practices as fundamental, contrasted with those that view mathematical practices and mathematical
content in more separate and ‘to be integrated’ ways, are used to frame the analysis and critically reflect on the
findings.

Results: Data from this teacher’s pre-test and selected course assessments and interactions suggest that while he
was able to develop some aspects of the mathematical practices described in the literature, his overall orientation
remained attuned to memorization and recall. Findings also pointed to an ongoing reliance on external validation
of the ‘correctness’ of his answers.

Conclusions: The data suggest that the presence of elements of mathematical practices cannot be viewed as
equivalent to the presence of mathematical modes of enquiry. The analysis presented in this paper suggests that
while elements of mathematical practices can be developed, moving towards an encompassing orientation to
mathematical modes of enquiry may require more central focus on problem-solving approaches to achieve a
change in orientation.
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Background
A significant body of writing in mathematics education
points to the importance of mathematical processes/prac-
tices within mathematical working. Writing focused on the
nature of mathematics has noted its ‘autopoeitic’ form, in
that mathematics produces the objects it discusses, rather
than describing objects or phenomena that exist externally
in the physical world (Sfard 2008; Maturana and Varela
1980). A consequence of this view of the nature of math-
ematics is that the production of mathematical objects in
non-mathematical ways produces a discourse that funda-
mentally disrupts the nature of mathematics as a discipline.
So what are considered to be mathematical practices?

These practices have been described in a number of
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ways at more general and specific levels. The National
Council of Teachers of Mathematics (NCTM), for ex-
ample, described general mathematical processes in
terms of representing, problem-solving, reasoning, con-
necting, communicating - with all of these acting as
means of mathematizing (NCTM 2000). More specific
descriptions of mathematical practices include attention
to, e.g., ordering, structuring, reversing, abstracting, and
generalizing (Mason et al. 1982).
In recent years, there has been an overt emphasis on in-

corporating attention to mathematical practices alongside
content in many curricula, (e.g., NCTM 2000 in the United
States). The ongoing emphases on coverage and account-
ability, though, continue to be reflected in concerns that
mathematics is presented as its content-based ‘products’ ra-
ther than in terms of its processes leading to products.
In the South African context of this paper, post-

apartheid curricula that placed greater emphases on
mathematical practices have given way to a reversal back
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to more traditional content specifications. A key driver
for this reversal was extensive evidence of gaps in
teachers’ content knowledge which, in the terrain of the
less explicitly specified and process-orientated versions
of curricula, contributed to pedagogies that were criti-
cized as mathematically hollow. This evidence on
teachers’ mathematical content knowledge, much of it
focused on primary level mathematics, suggests gaps at
or close to the level at which they are teaching (Carnoy
et al. 2008; Taylor 2011). There is evidence too, though,
of pedagogic shortcomings at the level of mathematical
practices rather than at the level of content (Venkat
2013). These concerns are set within broad national and
international acknowledgement that teachers are repro-
ducing trained ways of working, with the added aware-
ness in South Africa of a history of inequitable and
disrupted access to education for the majority of
teachers currently in the system.
In exploring mathematics teacher learning for teach-

ing, Watson and Barton (2011) suggest a ‘fundamental’
view of mathematical practices in which ‘mathematical
modes of enquiry’ are central:

‘Knowing mathematics means being able to use
mathematical concepts mathematically: the two
cannot be separated’. (p. 66)

This fundamental view is contrasted in this paper with
views that identify content and practices in what I de-
scribe as more ‘separate but to be integrated’ ways.
Within our work in the Johannesburg-based Wits

Maths Connect-Primary (WMC-P) research and devel-
opment project, we developed a ‘primary mathematics
knowledge for teaching’ course that incorporated atten-
tion to mathematical practices within a structure that
was delineated on the basis of broad content areas. The
course consisted of 16 contact days spaced across the
school year in 2-day blocks, with each block focused on
a content area - e.g., numbers and number system, addi-
tive relations, multiplicative relations, etc. Our attention
to mathematical practices was embedded within an overt
framework based on developing teachers’ awareness and
explanations in relation to mathematical content areas,
reflecting more the ‘separate but integrated’ position.
Work with teachers across three cohorts (2012-14) has

indicated broad successes at the level of content know-
ledge gains (based on pre- and post-test results with
each cohort) and in relation to some of the mathemat-
ical practices referred to above (based on course task as-
sessments that placed emphasis on problem-solving
through connecting, representing, communicating, and
explaining). The successes were not universal though
and led to the question driving this paper: the extent to
which separate but integrated views of mathematical
practices and content can be considered as consistent
with or equivalent to the notion of mathematical modes
of enquiry. This issue is explored through a focus on a
teacher (Christopher, pseudonym) whose interactions
and test performance indicated moves towards aspects
of some mathematical practices but set within an over-
arching orientation that remained at some distance from
mathematical modes of enquiry. Through looking at
some of Christopher’s task responses and interactions, I
analyze instances of both his use and disruption of
mathematical practices. I suggest that underlying the
somewhat contradictory nature of his working is a fail-
ure, on our part, in shifting Christopher’s overarching
orientation to mathematics towards one that could work
mathematically with mathematical objects. Rather, he
maintained an orientation to mathematics that was
about remembering and retrieving facts and processes,
even while showing some evidence of being able to en-
gage in reasoning and problem-solving activities.
Christopher’s story takes current understandings of

the development of mathematical practices in pedagogy
forward in two ways. Firstly, it adds to the relatively lim-
ited body of knowledge that has explored shortcomings
relating to mathematical practices within pedagogy pro-
viding exemplifications of how these limitations play
out. Secondly, it allows for a critical consideration of dif-
ferent theorizations of mathematical practices in relation
to mathematical content. Christopher’s story suggests
that our more ‘separate and integrative’ presentation of
mathematical content and practices was not sufficient
for eliciting broad-ranging moves towards mathematical
modes of enquiry within the time frames that we had
available.
Christopher’s story is shared through the following

structure: the paper begins with a literature review out-
lining the nature of mathematical practices and reasons
for their advocacy. South African data that suggest some
distance from mathematical practices, as vehicles for
carrying and producing mathematical objects, are then
shared. The data sources and case study methodology
drawn on for sharing Christopher’s story are detailed
and followed by a section where his responses on key
tasks and accompanying interactions are presented and
analyzed. I conclude the paper by considering what this
analysis suggests for ways of thinking about developing
mathematical practices.

Mathematical practices - a literature review
Attention to mathematical practices continues to get
wide attention in the international mathematics educa-
tion literature. Writing emanating from the United
States has been particularly influential in this regard.
The current ‘common core standards for mathematics’
(CCSM) (Common Core State Standards Initiative 2010)
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include a set of ‘Standards for Mathematical Practices’.
This set, drawing from the NCTM list stated earlier and
Kilpatrick et al. (2001) ‘strands of mathematical profi-
ciency’, contains the following features:

– Make sense of problems and persevere in solving
them

– Reason abstractly and quantitatively
– Construct viable arguments and critique the

reasoning of others
– Model with mathematics
– Use appropriate tools strategically
– Attend to precision
– Look for and make use of structure
– Look for and express regularity in repeated

reasoning (pp. 6 to 8)

Each of these practices has an extensive associated lit-
erature base. In this overview, I provide some detail on
aspects of the practices that are relevant to issues that
have been raised in the South African teaching landscape
(and thus to our work within the course) and to the em-
pirical data that follows.

Problem-solving
Polya’s (1962) early but seminal work on problem-
solving continues to be widely cited in the literature.
Polya emphasized the importance of starting with situa-
tions that provide an authentic problem - a problem for
which solution procedures are not known at the outset
and have to be developed. The CCSM document reflects
this notion, describing sense-making/problem-solving
proficiency in terms of understanding problem situations
in terms of ‘givens, constraints, relationships, and goals’
(p. 6), with this understanding, feeding in to the formu-
lation of possible solution pathways.

Abstract/quantitative reasoning
Mason has written extensively about the nature of ab-
stract reasoning and abstraction within mathematical
working (e.g., Mason 1989). Working with abstract rea-
soning as a follow-up to generalizing activity, Mason de-
scribes these two practices as collectively representing a
move from ‘manipulating objects (physical, pictorial,
symbolic, mental) to expressing properties or features of
those objects in ways that can form the basis for further
manipulations’ (p. 3). Sfard’s (2008) notion of mathemat-
ics developing through the production of ‘discursive
layers’ provides a more condensed version of these pro-
cesses. Schifter (2011) explains her emphasis on teaching
driven towards helping children to reason quantitatively
through considering the effects of operations on num-
bers, rather than practicing operational procedures
through lists of calculations. Across this writing is a view
of mathematical learning guided by the need to move
beyond getting the answer to the immediate problem, to
being able to abstract structural similarities between sit-
uations that allow for the generation of increasingly
powerful, generalized problem-solving techniques.

Constructing viable arguments
The need to construct viable arguments draws from
Kilpatrick et al. (2001) ‘adaptive reasoning’ strand. It
involves developing the capacity to build networks of lo-
gical statements - argumentation chains with awareness
of the warrants that underlie them. Over time, and
through experience of the breadth and boundaries of
associated example spaces, this standard also calls for
awareness of the ‘domains to which an argument applies’.
Yackel (2001) notes that within teaching for the develop-
ment of justification and argumentation practices:

‘initially children had to learn that their explanations
and justifications needed a mathematical, rather than
a social, basis’. (p. 14)

Kazemi and Stipek (2001) contrast teachers’ orchestra-
tion of ‘mathematical arguments’ with ‘procedural de-
scriptions’, associating the former with classrooms
characterized by a ‘high conceptual press’ and the latter
with ‘low conceptual press’.

Mathematical modeling
A key antecedent for emphasis on mathematical modeling
is the Dutch work on ‘Realistic Mathematics Education’
(RME). A central assumption within RME is that
mathematics emerges, or comes to be reinvented,
through mathematization activity that seeks to under-
stand and organize phenomena (Freudenthal 1983).
Interpreting results in relation to the situation also
features within this standard.

Mathematical structure and regularity
Attunement to noticing patterns and structure is a key
part of the ‘looking for structure’ strand. Attention to
juxtaposing examples in ways that draw attention to var-
iations, invariances, and connections between examples
has been argued as one way to develop this attunement
(Watson and Mason 2006). Careful sequencing can draw
attention to ideas like ‘doing and undoing’ and the regu-
larities within sets of related examples in ways that draw
attention to underlying mathematical structure.

Is attention to mathematical practices necessary?
At one level, the thrust of much of the work on mathemat-
ical practices appears to state the obvious, like Watson and
Barton’s (2011) emphasis on using ‘mathematical concepts
mathematically’. This view fails however to explain the
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ongoing attention to mathematical practices in the litera-
ture. In order to understand this emphasis, we need to seek
out the phenomena within mathematics teaching and
learning that have motivated these foci. To do this, I return
to the writings mentioned above to note the shortcomings
that their attention to mathematical practices seeks
to address. This is followed by an outline of South
African evidence on mathematics teaching and learn-
ing related to mathematical practices that led to the
choice to orient our primary mathematics knowledge
for teaching course in particular ways.
Polya’s interest in problem-solving heuristics was

driven by observations of the absence in much of math-
ematics teaching of genuine problems - problems set,
not with the intention of repeatedly practicing a previ-
ously taught procedure, but instead, problems for which
a solution path is not known:

‘to have a problem means: to search consciously for
some action appropriate to attain a clearly conceived,
but not immediately attainable aim. To solve the
problem means to find such action’. (p. 117)

Mason (1989) highlights the difficulties that students
often have with abstracting and generalizing in mathem-
atics. He speculates that these difficulties may relate to
the frequent presentation in mathematics lessons of
abstract forms, divorced from the generalizing and
abstracting activities that have produced them: ‘there is a
huge difference between expressing your own generality
and doing someone else’s algebra’ (p. 3). Freudenthal
(1973) takes this issue as the central pedagogic problem
of ‘anti-didactical inversion’ wherein ‘ready made’ models
that have emerged from the ‘crystallized’ products of prior
mathematical activity are presented to children without giv-
ing them any access to the problems that produced them,
nor to the contours of the models and the purposes that
they are useful for. The need for a mathematical working
guided by mathematizing activity is thus foregrounded in
this literature.
Moving beyond generalizations and models more broadly

into mathematical learning, Vinner (1997), p. 101 contrasts
‘conceptual’ and ‘analytical’ behaviors with ‘pseudo-concep-
tual’ and ‘pseudo-analytical’ behaviors:

‘In mental processes that produce conceptual
behaviors, words are associated with ideas, whereas in
mental processes that produce pseudo-conceptual
behaviors, words are associated with words; ideas are
not involved’.

Vinner is careful to distinguish between pseudo-
conceptual modes of thinking and misconceptions,
noting that the latter have definite cognitive involvement
while the former are characterized by the lack of cognitive
involvement. He argues that pseudo-analytical ways of
working primarily involve reactions to stimuli or cues, ra-
ther than cognitive engagement (Vinner 1997, p. 121). Of
interest in relation to the analysis that I present later is
Vinner’s acknowledgement that pseudo-conceptual behav-
ior still involves attention to similarities between situation
and model and between different task situations and their
associated procedures. The problem is that these practices
play out in ways that ignore logical reasoning chains or vio-
late definitions. Superficial similarities, rather than similar-
ities that are critical features of the topic or concept being
handled, are instead noticed and followed up.
This brief overview highlights that the notion of work-

ing mathematically with mathematics, far from being an
underpinning fundamental of school mathematical activ-
ity, is considered rather rare. A key outcome of Vinner’s
pseudo-conceptual orientations to mathematics is a
heavy reliance on memorizing associations between per-
ceptual features of situations and use of specific and lo-
calized procedural responses.

South African evidence on primary mathematics teaching
The South African landscape reflects the concerns iden-
tified above, sometimes in quite extreme forms. The ter-
rain is marked by low performance in mathematics at all
levels of schooling. In primary mathematics, substantial
gaps between the advocated curriculum and attainment
of large numbers of children are apparent by the end of
grade 3 (DBE 2013). As noted already, larger scale stud-
ies have pointed to serious gaps at the level of teachers’
mathematical content knowledge, with some of these
studies showing gaps at or very close to the levels at
which these teachers are teaching (Taylor 2011; Carnoy
et al. 2008). Highly procedural orientations to teaching
with lack of incorporation of problem-solving tasks have
also been noted in teaching in the intermediate grades
(grades 4 to 6) (Ally and Christiansen 2013; Sorto and
Sapire 2011).
Smaller scale qualitative studies have investigated the

nature of pedagogy. Hoadley (2007), using sociological
lenses, drew attention to classrooms in which no criteria
for the appropriateness of answers were provided. Adler
and Venkat’s studies have focused attention on the
teachers’ explanations, set within what they have termed
teachers’ ‘Mathematical discourse in instruction’ (MDI).
While some of their episodes indicate breakdowns between
tasks and representations (Venkat and Adler 2012), Adler
and Venkat (2014) also draw attention to narratives that re-
flect ‘ritualized’ activity (drawing on Sfard 2008) in which:

‘Talk is about actions on discrete symbol parts, and
these processes are asserted, with substantiation that
relies on perceptual features’. (p. 144)
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Across Hoadley’s work and Adler and Venkat’s papers,
we see patterns of working in which mathematics is
often produced and proceeds in the absence of mathem-
atical argumentation. This teaching embodies many of
Vinner’s (1997) characterizations of pseudo-conceptual
behavior, and Adler and Venkat (2014) note that such
behaviors within learning reflect what is enacted in
teaching:

‘what is made available to learn through the teacher’s
MDI, and the substantiating narratives at work, relies
on memory and visual cues’. (p. 144)

Venkat (2013) identifies instances where correct an-
swers are produced in classroom teaching but in ways
that disrupt notions of mathematical practices leading to
the production of mathematical outcomes and objects.
Her illustrative examples indicate a lack of attunement
to how givens and unknowns are configured within
problem-solving practices. Verificational processes occur
in the absence of a preceding derivational process. Possi-
bilities for students to independently produce correct
answers to similar questions are severely disrupted here,
with trial-and-error guessing representing the only op-
tion for pupils who do not know the answer at the
outset.

Theorizing integrative views of mathematical practices
In the opening section, I contrasted a ‘fundamental’
view of mathematical practices with a ‘separate but to
be integrated’ view of mathematical content and prac-
tices. The CCSM, in their separate listing of content
and practice standards, tend to fall into the latter cat-
egory. Further supporting this position is that while
the CCSM document stresses the need to connect
practice and content standards within teaching (p. 8),
it suggests also that content standards containing the
word ‘understand’ provide particularly fertile ground
for such integration. This points to a more selective
integration than the position proposed by Watson and
Barton (2011), who offer a more fundamentally inte-
grative view, with particular interests in mathematics
teacher knowledge and education. They emphasize
that mathematics teaching activity should center
around enacting mathematics and that ‘mathematical
modes of enquiry’ are central to this enactment. A
consequence of this orientation for them is that dis-
cussions about what teachers of mathematics know
cannot be divorced from the ways in which they know
mathematics:

‘It is not just a question of what teachers know, but
how they know it, how they are aware of it, how they
use it and how they exemplify it’. (p. 67)
Differences in the descriptions of mathematical practices
in the ‘separate but integrated’ view and the ‘mathematical
modes of enquiry’ view point to subtle differences in
how mathematical working is conceptualized. In the
CCSM view, mathematical practices are viewed as an
outcome of well-connected understanding of content
(p. 8). Mathematical modes of enquiry, in contrast,
tend to point to mathematical practices as fundamen-
tal to developing mathematical understanding.
It could be argued that there is not really a distinction

here between the more separate integrative (CCSM) and
more fundamental (Watson and Barton) views; rather,
the issues and gaps seen in mathematics teaching and
learning lead to the need to make visible the mathemat-
ical practices that seem to ‘fall out’ of enactments of
mathematics in classrooms. Listing practices separ-
ately from content, as in the CCSM formulation,
provides one way of highlighting mathematical prac-
tices and drawing attention to their nature and range.
Watson and Barton (ibid), however, tend to disagree
with this view, arguing that curriculum lists are:
‘hypothetical until mathematical modes of seeking,
using, and exemplifying understanding are under-
stood’ (p. 66). Schoenfeld’s (1987) attention to math-
ematical problem-solving echoes the fundamental
view, with mathematical enactment, in his view, con-
nected to developing capacities that link discourses,
activities, and identities within a mathematical culture
wherein mathematics functions as ‘the medium of ex-
change’ (p. 213).
In the next section, the teacher development course

model is outlined and critically considered in terms of
its orientation towards mathematical practices.

The course model and orientation
The South African evidence on content knowledge gaps
and the nature of primary mathematics classroom teach-
ing led to our development of a ‘primary mathematics
knowledge for teaching’ course. As noted already, each
2-day block across the 16 contact days was focused on a
content domain, with mathematics homework and
classroom teaching tasks completed between contact
sessions. While course pre- and post-test assessments
featured items drawn from prior studies focused on
conceptual understanding of key mathematical ideas,
in-course assessments incorporated attention to con-
structing and communicating mathematical arguments
within problem-solving and using emergent represen-
tations to model situations in ways that would allow
for purposive selections of operations, rather than
guessing or recalling the operations required. These
latter tasks reflected multiple elements of the math-
ematical practices highlighted in the literature section
above.
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I noted in the introductory sections that gains at the
level of content knowledge and mathematical practices
were seen in our assessments across three cycles of the
course (2012-14). Teacher evaluations of the course sug-
gested awareness of better understandings of content
and growing awareness of the need for at least some of
the mathematical practices noted in the literature review
above. Learning related to explaining ‘why’ steps work
was one of the most common comments on teacher
feedback, alongside comments on learning related to
specific content/representations/procedures. This feed-
back suggested some successes in making mathematical
practices ‘visible’ in the course alongside mathematical
content, while reflecting also the ‘separate and integra-
tive’ position seen in the CCSM, rather than Watson
and Barton’s fundamental position on mathematical
modes of enquiry.

Methods
A case study design is used in this paper. The case in
focus relates to excerpts of mathematical working and
accompanying talk on tasks completed by a teacher,
Christopher, who was a course participant in 2013. The
case is framed thus because the ways in which mathem-
atical practices and/or mathematical modes of enquiry
played out within this dataset was the ‘phenomenon …
in a bounded context’ (Miles and Huberman 1994, p. 25)
that I was interested in. Christopher was not teaching
mathematics in school in 2013 but was interested in
doing so. Selected excerpts of his work from across the
year and my fieldnote records of his commentaries and
our interactions around this work are drawn on within
the analysis. Christopher was an enthusiastic and vocal
participant in our course sessions and was quickly will-
ing to admit that while he often knew what to do, he fre-
quently did not have any reasons for why he was
performing the selected sequence of steps - redolent of
Skemp’s (1976) ‘instrumental’ understanding. Christo-
pher’s enthusiastic participation means that we have
more evidence from him in terms of verbal commentary
and interaction around his work than for most of the
other teachers on the course, leading to my selection of
him as a particularly illustrative or ‘telling’ case (Mitchell
1984). However, comments from other teachers suggest
that the phenomena that he provided a case of - the abil-
ity to produce and expand a repertoire related to some
mathematical practices without an overall shift in orien-
tation towards mathematical modes of enquiry - were
more widespread.
Christopher was teaching social science, natural sci-

ence, and technology in grades 6 and 7 in a suburban
primary school in Johannesburg. Christopher told us
that he came on to the course because he was interested
in teaching mathematics but had not done so previously.
His academic background (a BA Honours degree in Edu-
cation) represented a higher level of education than
many of his peers, and his pre- and post-test scores were
above the cohort’s mean scores in both tests.
The data I draw on to analyze Christopher’s mathem-

atical working are drawn from three points in the year.
The first excerpt of his working is on an item in the pre-
test. The second excerpt, drawing on his workings and
his commentary and interactions on this working, oc-
curred halfway through the course in the context of an
assessment focused on multiplying decimals. The third
excerpt is also located in his working and related com-
mentary (recreated from my fieldnotes in this case) and
is drawn from an additional voluntary revision session
that we offered at the end of the year before the final
post-test where participants were asked to bring prob-
lems that they had tried and were having difficulty with.
Broader background data on Christopher’s performance
are drawn from the datasets that we keep for all the
teachers detailing their performance across all course
tasks. These data are selected because they are usefully
illustrative of ‘recurring regularities’ (Guba 1978, p. 53)
in Christopher’s responses at points when he was not
completely certain of the procedure being worked
with. As noted already, sporadic responses from other
teachers across all three years indicate that presences of
aspects of mathematical practices allied with absences in
relation to an overarching orientation to mathematical
modes of enquiry were more broadly prevalent.
My analysis of this data links to interpreting presences

and absences in relation to the literature-based identifi-
cation of markers of mathematical practices overviewed
earlier. Ethical clearances for data collection, analysis
and anonymized reporting in the course were granted
by the university and the provincial education depart-
ment, with informed consents for use of course-related
data for research purposes granted by participating
teachers.

Results and discussion
Excerpt 1
While Christopher’s performance on the pre-test indi-
cated that he was well above the group mean in terms of
his mathematical content knowledge, his ways of work-
ing indicated an orientation that swung towards oper-
ational techniques more often than towards structure or
generality. For example, three items on the pre-test,
shown in Table 1, were focused on using rounding to es-
timate answers to decimal multiplication and division
calculations:
Christopher had circled the correct answer in all three

cases. His work on these three problems (scribbled on a
rough piece of paper inside his test script) is shown in
Figure 1.



Table 1 Pre-test items

Circle the number that is nearest in size to the answer (do not work out
the answer)

2.9 × 7 0.002 0.02 0.2 2 20 200 2000

0.29 × 7.1 0.002 0.02 0.2 2 20 200 2000

59 ÷ 190 0.003 0.03 0.3 3 30 300 3000

Venkat International Journal of STEM Education  (2015) 2:6 Page 7 of 12
This work shows that for questions 1 and 2, in contra-
diction to the instruction, Christopher calculated actual
answers using traditional column multiplication
methods (with an error in the second calculation) and
then rounded. The work seen on the third problem is in-
teresting because Christopher tried two related problems
(190 ÷ 59 and 590 ÷ 190) and used repeated addition to
get 3 as the rough answer for both of these problems.
The correct approximate answer (0.3) is written below
but whether this was arrived at through an awareness of
reciprocal or scaling down relationships, or simply by
guessing, is not known.
Part of the complexity of Christopher’s orientation is

that his work indicates that he has at least some of the
quantitative reasoning skills needed to work out the an-
swers to the first two problems by rounding (e.g., he is
able to round his answer of 20.3 correctly to 20). The
issue here is not that he does not know how to round
off to the nearest whole number. Instead, it would ap-
pear that the presence of a problem in mathematics is
viewed as a trigger for a calculation, regardless of an in-
struction that calls for a solution through quantitative
reasoning. The instruction is returned to after the exact
answer has been calculated. This routine is followed in
the second example as well, where, in spite of a calcula-
tion error, his answer still takes him to 2 as the nearest
answer. Thus, while relevant reasoning practices are
sporadically evident here relating to rounding and pos-
sibly scaling up and reversing downwards, these are not
set holistically within either the quantitative reasoning
Figure 1 Christopher’s working on Table1 pre-test items.
(Schifter 2011) or the strategic working (Kilpatrick et al.
2001) that are described as part of the mathematical
practices canon or mathematical modes of enquiry
frame.
In Christopher’s response to the third question, his se-

lection of two associated, simpler calculations suggests
some awareness of quantitative relations. I cannot tell
from the marks on the paper whether Christopher used
scaling down to get from 3 to 0.3, mirroring the rela-
tionship between 590 and 59. What we can see is that
this technique was not brought into play in question 2,
where it could also have been applied. In combination, a
highly localized approach to techniques is seen and fur-
ther, thinking about quantitative relations appears to
come into play only when a procedure is not immedi-
ately at hand, pointing to a prioritization of content and
techniques over a more fundamental integration of
mathematical modes of enquiry. Thus, the evidence
taken together indicates a lack of consistent attunement
to reasoning quantitatively, rather than an inability to do
so.

Excerpt 2a
The second excerpt relates to Christopher’s responses
and interactions on a decimal multiplication task half-
way through the course. The course was structured such
that the topic in focus in each 2-day block had a short
assessment associated with it in the following 2-day
block. Days 5 and 6 had been focused on multiplication
and division. Various models for representing multiplica-
tion and division situations had been discussed during
the 2 days, with ‘area’ models of multiplication devel-
oped out of more basic array models in the context of
early multiplication. The assessment on day 8 included
the question shown in Figure 2.
Christopher’s solutions to this particular set of prob-

lems are shown in Figure 3. This work followed a word
problem asking for the area of a rectangular field
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involving two integer value dimensions. Christopher had
calculated the answer to this first problem correctly
using a traditional column algorithm method.

Discussion 2a
We see here and following from the work seen above in
the pre-test that Christopher appears to have difficulty
with multi-digit long multiplication involving decimal
numbers. The consistency in his problem setup indicates
fragments of remembered rules - ‘the decimal point has
to line up’, ‘move a column across each time you deal
with a new partial product’, and ‘the number of digits
after the decimal point is the sum of the number of
digits after the decimal point in the numbers being
multiplied’. However, ‘carrying’ within the partial prod-
ucts appears haphazard - sometimes applied and other
times missed. As in his pre-test working, his exact an-
swer (incorrect) is rounded for the estimate, in spite of
the repeated addition of 13 three times alongside the
calculation.
Beneath the request for an area method, there is an at-

tempt at some elements of the ‘form’ that accompanies
area models - a grid that looks like a table. However, the
partitioning of number that can be used within area-
based models is absent, and instead, his own long multi-
plication column model is placed within the grid. Along-
side this diagram, the calculation above is repeated with
the same incorrect answer. Here, the association of the
area model with the visual grid format is evident and
points to the pseudo-conceptual behaviors described by
Vinner (1997).

Excerpt 2b
In the course, we follow interim assessments with a sub-
sequent feedback session where common errors, mis-
conceptions, or shortcomings are discussed. A follow-up
repeat opportunity to do a similar task is offered. In
Christopher’s case, the repeat assessment was on day 9
of the course (about a month after the earlier task). The
repeat assessment task involved calculating the area of a
strip of field 42.5 m long and 2.15 m wide. While
Figure 2 Day 8 assessment question.
completing this task, Christopher called me over. He
asked me to look at his written script - which, at this
point, contained the working shown in Figure 4.
In his working, two models had been juxtaposed

alongside each other - the area model on the left and a
column algorithm model placed within a place value
frame. The answer for his area model working was writ-
ten in the middle of the page (91.375 m2). His answer
for the column model working was 9,137.50. Christo-
pher had noticed that the two answers were different
and was perturbed enough to call me over. Our conver-
sation proceeded thus:

Hamsa: Yes?
Christopher: There’s a problem here.
Hamsa: Oh, what?
Christopher: See this, there are two different answers.
Hamsa: Yes, I see. Is that a problem?
Christopher: Yes, they should be the same.
Hamsa: Ok. And they are not. So is one of them right
and not the other?
Christopher: Yes, but I don’t know which.
Hamsa: So how could you decide?
Christopher: I don’t know. I’ve checked all the numbers
on both sides. They are right.
Hamsa: So if we look at the question, roughly how big
do you think that field should be? Do you think you
could use that to help you decide?

I left Christopher at that point to carry on. In the ver-
sion we took in, Christopher had added the line shown
in Figure 5 to his working:

Discussion 2b
Several aspects of Christopher’s work are of interest
here. The first point is that he has expanded his repre-
sentational repertoire to include the area model for the
first time voluntarily in an assessment and used this
model to calculate the correct answer. His writing above
the models indicates also that he is strategically aware of
the extent of scaling up required to move from 42.5 to



Figure 3 Christopher’s written response to day 8 assessment question.
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425 and from 2.15 to 215, i.e., to produce a related inte-
ger value, with the reverse scaling down applied appro-
priately to the answer at the end. Strategic selections
within problem-solving and awareness of how to re-
verse operational effects - highlighted as important
aspects of mathematical thinking (Mason et al. 1982) -
both feature prominently within descriptions of math-
ematical practices.
However, Christopher appears to remain uncertain

about this new method and repeats the calculation in
column form. In placing the problem in a place value
grid, he adds a ‘0’ onto 42.5 to make 42.50 in the calcu-
lation. The carrying is error free here within all the par-
tial products, but the decimal point is re-inserted in the
wrong position in the bottom line. On completion,
Figure 4 Day 9 repeat assessment working.
Christopher’s appeal to me for resolution coupled with
the seeming absence of mathematical resources for deal-
ing with two inconsistent answers indicates a lack of de-
velopment of the sociomathematical norms (Yackel
2001) described as critical to mathematical enquiry.
When a ‘path’ is suggested though, he is able to enact
the calculation required with the rounded numbers and,
on the basis of this, decides that his area model answer
is the correct one. There is no mathematical curiosity
though, to understand why or where the second method
went wrong. Schoenfeld (1987) has noted that students
holding beliefs about mathematics as devoid of meaning-
making frequently write contradictory statements in se-
quence. Christopher interprets the difference between
the two answers as a problem. However, his resolution



Figure 5 Added working.
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remained reliant on external direction and ended with a de-
cision on which answer was correct, without wanting to
find out what was wrong with the rejected answer. Given
the importance accorded to dealing with learner errors
within the mathematics teacher knowledge literature (Ball
et al. 2005), Christopher’s lack of interest in probing his
own mathematical error is particularly problematic. The
disposition to view mathematics as reasonable is notably
absent here, pointing to lack of shift in some aspects of
mathematical practices in the midst of evidence of other
elements.

Excerpt 3
The next excerpt is drawn from an optional additional
revision session held towards the end of the year in early
October, where teachers were invited to bring tasks that
they had tried but were having difficulty with. One prob-
lem that some teachers asked for help with was the ‘Hi-
fives’ task (Beckmann 2011) asking for the number of
hi-fives needed between a group of 20 people if each one
hi-fived everyone else. Our support consisted of prompts
based on many of the problem-solving heuristics that
Mason et al. (1982) and Schoenfeld (1985) have suggested:

Hamsa: 20 is quite a large number of people to work.
Can we think about the situation with a smaller
number of people to make it more manageable?

‘Four people’ was suggested. Four participants came
up and acted the problem out, the first person hi-fiving
the other three, the next hi-fiving the two that she has
not hi-fived, and so on. We then ‘re-played’ the actions
with a mathematical representation for the number of
hi-fives. The group told me that the total would be:

3 þ 2 þ 1 þ 0 ¼ total number of hi‐fives

They calculated this total by adding. I asked them to
think about the situation for five people. In groups, with
some acting out and some moving straight into the sym-
bolic expression, all reached the expression 4 + 3 + 2 + 1
+ 0 and calculated the answer. Returning to the original
problem, most (including Christopher) were able to dir-
ectly write down the expression representing the total
number of hi-fives for 20 people as: 19 + 18 +….. + 1 +
0. Some started complaining that this was a very long
sum to work out. Noting that part of working mathem-
atically involves trying to find shortcuts for long-winded
calculations, we ended up, after some discussion, with
the annotated expression shown in Figure 6.
Some said that the ten groups of 19 in this list made 190

the total. Most seemed satisfied with this, but one teacher
asked if the same method could be used for 15 people. I
suggested they try this problem to decide if they could use
the same method. Christopher was working with a group
on this problem. After a spell working with his group, he
asked me to look at his working - recreated from my notes
(Figure 7).
Below, Christopher had written the following sequence

of additions:

14þ 0 ¼ 14
13þ 1 ¼ 14
12þ 2 ¼ 14
11þ 3 ¼ 14
10þ 4 ¼ 14
9þ 5 ¼ 14
8þ 6 ¼ 14
7þ 7 ¼ 14

Adding up the eight groups of 14, Christopher had ar-
rived at 112 as his answer. His calling me was prompted by
the fact that others in his group had a different answer:
105. Once again, there is evidence here of Christopher’s
ceding authority for ‘correctness’ to me as the teacher (after
discussion with his colleagues here) - retaining Yackel’s
(2001) social, rather than mathematical, bases for judgment.
Together, we traced through his connecting arrows over
the total expression and linked them to the list of sums
below - e.g., the 14 and 0 pair links to the 14 + 0 sum.
Reaching the 7 in the middle, I noted that there was only
one 7 in his total expression but there was a 7 + 7 (i.e., two
7 s in his list of sums). Christopher responded thus:

‘Oh, so I must not have 7 + 7. But you put an arrow
over all the numbers in the list’.

Pointing to his working on the 20-person example, I
responded that there had been two numbers in the middle
in that case that I could connect.
Christopher nodded slowly and said: ‘So if there is a

number in the middle on its own, I don’t put an arrow in
the middle over it, I just add it on its own’. A colleague on
his table interjected that odd numbers of people would
leave a number on its own in the total expression.
Christopher listened and responded: ‘So I must remember



Figure 6 Annotated expression.
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that odd numbers will leave a number on its own in the
middle without an arrow and even numbers won’t have a
number on its own’. He annotated his working with the
words ‘Odd number’ and underlined them. I ventured that
as he had just figured the expression out, he probably did
not need to commit this fact to memory. I noted later that
he had annotated his earlier copying down of the answer
for 20 people with the words ‘Even number’ underlined.

Discussion 3
Vinner’s (1997) identification of attention to ‘superficial
similarity’ within pseudo-analytical working is apposite
here. Christopher’s initial response, setting up the addition
string for calculating the total number of hi-fives, shows
evidence of some facility in construction of problem solu-
tions through the initial setting up of an appropriate model.
In making this construction, there is attention to the pat-
tern seen in earlier examples and to generalizing what he
has noticed to a new case. However, the need to make sense
of this emergent representation and to attend to its struc-
ture in order to transform it appropriately are lost in his
next steps, pointing to sporadic and partial presence of
some mathematical practices. Christopher’s attention is di-
rected instead to incidental perceptual features - connecting
arrows between terms in the numerical string, rather than
the values they are connecting. His response to the discrep-
ancy between his addition list and this numerical string
illustrates his belief that he needs to remember what to do
in the context of different cues. A dominant reliance on
memory is therefore apparent in Christopher’s comments
and responses, again in the midst of indications that sense-
making is within his grasp.

Conclusions
The analysis suggests that the presence of, even multiple
elements of, mathematical practices cannot necessarily
be considered equivalent to take up of mathematical
Figure 7 Christopher’s working.
modes of enquiry. Christopher retains a view of math-
ematics as dependent on memory and external valid-
ation through instances of strategic adaptation and
abstraction. Framing his recruitment of mathematical
practices is a recurring incidence of working and inter-
action driven by the need to ‘pin down’ the procedure
that will produce the answer, rather than attend to struc-
ture and sense-making. As Schoenfeld (1987) has noted,
these ways of working with mathematics run concur-
rently, in many instances, with the underlying content
knowledge needed to reason in the problem contexts
described.
Empirically, this analysis suggests that presenting

mathematical practices in terms of separate strands
alongside content strands can create situations in which
specific practices are produced but set within a broader
orientation that remains procedure and answer driven.
In this ‘separate and integrative’ frame, where mathemat-
ical practices are selectively, rather than fundamentally,
drawn upon, it would appear that a possible outcome of
sporadic absence of explicit attention to mathematical
practices is the disruption of mathematical modes of en-
quiry. Watson and Barton (2011) might consider this
outcome to be the consequence of failing to view math-
ematical modes of enquiry as fundamental to all math-
ematical working.
In the course teaching, while mathematical enquiry

modes were never disrupted, they were not always cen-
trally the focus of discussion and reflection. It could be
the case that it is the limited timeframe of the course ra-
ther than the mode of engagement with mathematical
practices that is critical. In any case, the evidence pre-
sented in this paper points at the very least to the need
for greater attention to mathematical practices within
our work with teachers. A concluding post-script sup-
porting this conclusion came from another teacher who
attended the course in 2014. Her performance on the
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pre-test was similar to Christopher’s and her post-test
score was higher than his. Like him, she was positive
and enthusiastic about the course. In the 2014 late-year
revision session, she offered an entirely coherent explan-
ation of how to produce the ‘rule’ for a linear sequence,
with the mathematical arguments that Kazemi and
Stipek (2001) describe as important for a high concep-
tual press communicated across all her steps. Several of
the mathematical practices detailed in this paper were
marshaled within her problem-solving and associated ex-
planation. She paused at the end, looking doubtful, and
asked: ‘Was that right?’ While assuring her that it was,
her response provided further support for the view that
accretions of mathematical practices, even when enacted
without the disruptions seen in Christopher’s working
and commentary, may yet not amount to a practice
driven fundamentally by trust in mathematical modes
of enquiry. The analysis suggests that while elements
of mathematical practices can be developed, moving
towards mathematical modes of enquiry may require
more explicit, consistent, and longitudinal attention to
problem-solving approaches to support orientational
change.
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