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Abstract 

An intelligent fault-tolerant control system for an unmanned aerial vehicle was developed that was 

designed to be capable of tolerating a number of different control actuator faults.  The development of 

the control system focused on the simulation of the system using a nonlinear flight dynamic model 

with the aim to implement this control strategy in an operational UAS in the future. The nonlinear 

flight dynamic model was a high fidelity, six-degree-of-freedom model that made use of available 

wind tunnel data. The model considered the general equations of motion of an asymmetric rigid 

aircraft within the troposphere and also considered motor, and control actuator dynamics. The 

proposed control strategy consisted of a model reference fuzzy logic adaption algorithm combined 

with a daisy chain allocation algorithm.  An equivalent desired first order behaviour was used to 

generate an ideal response to a control input and used as a reference for the adaption algorithm to 

follow. The allocation algorithm made use of secondary and tertiary control effectors that were used 

only after the primary control surface reached its physical limits of travel.  A number of control 

actuator failures, of varying severity, were modelled that included elevator failures, aileron failures 

and combined aileron and elevator failures.  The results showed the proposed control system was 

better able to tolerate the simulated failures when compared to the unmodified autopilot.  For more 

severe failures it was found that the control allocation algorithm was a necessity and in some cases the 

adaption algorithm when used in isolation, induced control instability. Tuning of the adaption rates of 

the adaption algorithm was found to have a significant effect on the performance of the system. In 

some cases the incorrect adaption rate caused degraded control performance. It was, however, 

concluded that the proposed control strategy did provide a degree of fault-tolerance for the failure 

scenarios considered.  It is recommended that research into the effects of adaption rates, auxiliary 

control functions (such as feedforward loops) and the use of health monitoring be considered for a 

more practical system. It is also recommended that extensive testing be conducted with hardware in 

the loop simulators before this system be implemented.  
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Scope and Contribution 

The scope of this dissertation involves the initial research and design of a fault-tolerant control system 

for a UAS.  A detailed high fidelity flight dynamic model is used to simulate and test the proposed 

control strategy under a number of control actuator failures.  The scope is limited to control actuator 

failures and in particular to aileron and elevator failures.  The system is to show fault tolerance in the 

longitudinal axis and lateral axis in isolation as well as show tolerance in both axes combined.  

Limitations of the flight dynamics models validity are recognized, these include: 

• Subsonic flight 

• Flight within ± 30° sideslip angles 

• Flight within -10°,+ 20° angle of attack  

• Flight within the troposphere with no turbulence 

This research has contributions in the development of a high fidelity flight dynamic model for the 

simulation of the fault tolerance control system. Secondly, there is little research to the effect of using 

fuzzy logic as a method of control adaption for both the longitudinal and lateral axes. This research 

also has contributions in combined failures of control actuators and this research also contributes to 

the understanding of combining two fault-tolerance control techniques namely, control adaption and 

control allocation.   

Published Work 

As yet, this work remains unpublished. At the time of writing a journal article, titled "Design of an 

intelligent fault-tolerant control system for an UAV", had been written and submitted to the Royal 

Aeronautical Society of South Africa for consideration.  
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1 Chapter 1 - Introduction 

1.1 Research Background 

The first rudimentary, but functional, autopilot design was first developed as early as 1914 by 

Lawrence Sperry, the son of gyrocompass co-inventor, Elmer Sperry [1].  He demonstrated his 

autopilot to an air show crowd by flying his Curtis C-2 “hands free”.  While basic, it provided a 

demonstration of what was to follow.  Autopilots have evolved into complex control systems that 

have the ability to optimise aircraft performance, reduce pilot work load, reduce airspace congestion 

and improve flight safety.  Autopilots range in complexity from simple wing levelling systems in 

small general aviation aircraft to complex systems capable of controlling unstable military fighter 

aircraft, such as the Euro fighter shown in Figure 1.1.   

 

Figure 1.1: Euro fighter performing a high G manoeuvre [2]. 

Advances in autopilot design and an increasing need for systems capable of laborious or dangerous 

flight missions led to the development of Unmanned Aerial Systems (UAS).  UAS aircraft are 

particularly useful in the military context as they offer a safer platform for reconnaissance and 

observation, and more recently, attack.  Aircraft such as the Northrop Grumman Global Hawk and 

General Atomics Predator drone, shown in Figure 1.2 (a) and (b), have been actively used by the U.S. 

Air Force in recent engagements.   

The capabilities of UAS in the civilian context are rapidly becoming apparent.  The interest shown by 

law enforcement, border patrol, research groups and general interest groups has seen the rapid 

development of small UAS.  These systems have been made possible through the increasing 

miniaturisation of electronic components and advances in energy storage capacity.   

The research into control of an UAS is extensive and widely varying and, in particular, the field of 

fault-tolerant control is equally extensive.  Various techniques have been developed to ensure a fault-

tolerant system.  These include the use of redundancy, robustness, adaptability and artificial 
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intelligence, all of which will be described in more detail in the chapters that follow.  All of these 

techniques have some merit and their suitability largely depends on the application.         

 

Figure 1.2: Typical UAS: (a) Northrop Grumman Global Hawk [3], (b) General Atomics Predator Drone [4] 

 

1.2 Types of Fault-Tolerant Control Systems 

Fault-tolerant control techniques fall into a number of classes some of which are: 

• Redundancy 

• Fault detection, diagnosis and isolation 

• Adaptive control (Indirect or Direct) 

• Reconfigurable control 

These categories are further subdivided into an ever increasing series of techniques that all have their 

advantage and disadvantages.  A summary of the various techniques examined and how they relate to 

each other in the fault-tolerant control design problem is given in Figure 1.3.  While the diagram does 

not hope to include all possible methodologies and approaches, it does show the basic ideas around 

fault-tolerant design techniques.  

(a) (b)
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Figure 1.3: Diagram indicating an overview of fault-tolerant controller design 

Fault Tolerant 

Control Strategies

Robust Design
Adaptive 

Control
Reconfigurable 

Control

Fault Detection, 

Diagnosis and 

Isolation

Software Hardware

Model 

Reference 

Adaptive 

Control

Artificial 

Intelligence

Gain 

Scheduling

Adaptive PID 

using Fuzzy 

Logic

Fuzzy Model 

Reference 

Learning 

Control

Conventional 

Techniques

MIT Rule
Lyapanov

Stability

Control 

Allocation

Multiple 

Model 

Switching

Sensors
Control 

Actuators

Direct 

Measurement

Model Based 

Approaches

Kalman

FilteringFault Model 

Comparison

Fuzzy Logic
Neural 

Networks

Hypothesis 

Testing and 

Statistical 

Methods

Non- Optimal 

Optimal

Daisy 

Chaining

Direct 

Allocation

Generalized 

Inverse & 

Pseudo 

Weighted 

Inverse

Linear & 

Quadratic 

Programming

Dynamic 

Control 

AllocationProcessor

Sliding Mode 

Control

System 

Identification

Bisection 

Edge 

Searching 

Self Tuning
Fuzzy Logic 

Controllers



4 
 

1.3 Challenges Associated with the Design of Fault-Tolerant Control Systems 

There are a number of challenges associated with the design of a fault-tolerant control system. These 

include, but are not limited to[5]: 

• Early and successful detection of faults (in the case of a FDD system) 

• Uncertainty within the modelled plant and robustness to unknown disturbances  

• Ensuring simplicity and integration into existing control system architectures  

• Ensuring that the fault-tolerant system is able to asymptotically track the desired set 

point. 

• Fault-tolerant systems may be controlling a nonlinear plant that behaves linearly at 

the operating point.  In the event of a failure there may be a shift in plant dynamics to 

the extent that the system must control a highly nonlinear system. [6] 

• Designing a system that is able to detect faults in real world environments where 

faults and uncertainties are mixed (defined as the "Robustness problem") [7] 

The first challenge for any fault-tolerant system is the identification of a fault. This may be done 

actively, as is the case with detection systems or this may be done passively, where the system simply 

reacts to the disturbance as in model based systems.  A robust system is also required, as a system that 

is too sensitive to uncertainties, in both the operating environment and discrepancies in modelled 

behaviour will result in a system that triggers false alarms or unnecessary changes in control 

behaviours that may lead to unstable system performance.  Of great difficulty is the ability of the 

fault-tolerant system to maintain stability after a fault has occurred as well as ensure that instabilities 

are not created during normal operation of the system. 
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1.4 Literature Review 

1.4.1 Artificial Intelligence Techniques 

Fuzzy Logic 

Fuzzy logic was first theorised by Lotfi Zadeh [8].  The idea of fuzzy logic is to allow a computer, 

which operates on 1’s and 0’s to have an ability to reason and think based on data which is flawed and 

inherently ill defined.  Fuzzy logic is used to give a computer the ability to reason by making a 

judgement of how true a condition is.  The analogy often given to explain fuzzy logic, as outlined in 

[9], is that of temperature.  One would generally describe temperature as cold, cool, mild, warm or hot 

and a person’s decision is based on a number of factors such as temperature, wind chill and humidity, 

but importantly, it is not a definite answer of hot or cold as there are subdivisions in-between.  If the 

temperature was 23°C, one may say that the temperature is warm but on the colder side of warm.  

Fuzzy logic tries to emulate this process of reasoning by creating a set of rules that can be followed to 

obtain an answer of how hot the temperature is and then determine an action to perform based on this 

information.  Fuzzy logic follows five basic steps as outlined in [10], which are the following. 

• Pre-processing 

This is the manipulation of the measured data such as filtering, averaging, differentiation, integration 

or normalisation.  It is simply used to obtain the data desired for use in the fuzzy logic controller.  

While not unique to fuzzy logic controllers, it is nonetheless important, particularly in fault-tolerant 

controller design.    

• Fuzzification  

Fuzzification is the process of taking the crisp data from the pre-processing, for example, a 

temperature, and converting it into degrees of membership.  The process starts with the creation of a 

membership set made up of linguistic variables.   This is a purely subjective process based on expert 

opinion from a knowledgeable person in the field being controlled.  In keeping with the temperature 

example, a membership set could be the definition of “Cold”, “Cool”, “Mild”, “Warm”, and “Hot”.  

The membership sets typically have the form shown in Figure 1.4; however, their shape may vary. 

The shape may be triangular, trapezoidal, or Gaussian. However, it is common to use triangular 

membership functions due to the reduced computational requirement.  Typically, there would be some 

overlap of the membership set to avoid a measured variable being in no membership function.  The 

fuzzification process is illustrated in Figure 1.4.   
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THEN the cooling is turned onto maximum”.  These rules are then tested based on the degrees of 

membership described above.  Again for completeness a typical rule set for the temperature example 

is given in Table 1.2.  It is noted that the rules are deliberately "Fuzzy", that is, the use of words such 

as "slightly" are encouraged.   

Table 1.2: Rule base for the temperature example (aim to keep temperature "Warm") 

Rule number If Temperature Then 

1 Cold Heating on maximum and cooling off 

2 Cool Heating on slightly and cooling off 

3 Mild Heating off and cooling off 

4 Warm Cooling on slightly and heating off 

5 Hot Cooling on maximum and heating off 
 

A rule is said to fire when its condition is met. Thus following with the above example, rule number 2 

and 3 are met to a certain degree. Thus rule 2 and 3 are said to fire with a firing strength of 0.4 and 0.6 

respectively.  

• Inference Engine 

In the case of a single input system, there is no need for this step as a rule has fired with a certain 

firing strength.  At this point a single input system would proceed to defuzzification, described below.  

For a multi input system where, for example, error and rate of change in error are used, an additional 

step before defuzzification is required.  If, for example, the rule is, “If the temperature is hot AND the 

temperature is decreasing THEN apply slight cooling”, one needs to determine the degree to which 

each part of the rule contributes to the output.  Thus, if the temperature was “Hot” to a degree of 0.9 

and temperature was “Decreasing” to a degree of 0.1, it can be seen that the “Hot” is more dominant 

and should have more prevalence.  In practical fuzzy logic algorithms, this is typically done using the 

AND and OR operators which correspond to minimum and maximum operators respectively.  Thus, 

the firing strength of the example would be 0.9. and not 0.1.  This would force more cooling to occur 

until the correct temperature is attained.      

• Defuzzification 

Defuzzification is the process of converting the results of the rules into a crisp output to be applied by 

the control actuator.  In the example used, this would be the air conditioner/heater. Several methods 

exist for calculating the required output, these are:  
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process will be slow, and if the learning rate is high, the values of the weightings may diverge.  This 

presents a problem with regard to aircraft and fault-tolerant control, as a quick and reliable change in 

control parameters is required.  

• Back Propagation 

Back propagation is a learning mechanism that allows the ANN to tune its threshold and weighting 

values based on the inputs and required outputs.  Back propagation starts with a random set of weights 

assigned to each of the hidden layers.  The inputs are then inserted into the ANN and the outputs 

compared to the desired outputs.  The weights and thresholds are then adjusted by looking at the 

effect of each node on the outcome.  A learning rate is also specified that determines how quickly the 

ANN will adapt its weights.  The higher this is, the faster the ANN will learn; however, if it is too 

large the weights will diverge.  This process is propagated backward and a number of iterations run 

until the desired state is reached [11].  There are various back propagation algorithms such as gradient 

descent, conjugate gradient descent, Broyden-Fletcher-Gloldfarb-Shanno method, quasi-Newton, one-

step secant, Levenberg-Marquardt and Bayesian regularization as described in [11]. 

1.4.2 Fault-Tolerant Design  

Fault-tolerant design has seen much attention in recent times [12] due to the drive for safer and more 

reliable systems.  Fault tolerance is particularly important where people’s safety is concerned, being 

particularly true in the aviation, nuclear and petrochemical industries [12].  The use of a more 

advanced control system would have undoubtedly resulted in a better outcome in many of the 

engineering failures of recent history.  Perhaps the most famous example of where a fault-tolerant 

control system would have changed the outcome of a critical situation is the case of United Airlines 

232, a McDonnell Douglas DC-10 flying from Denver, Colorado to Philadelphia, Pennsylvania.  The 

aircraft suffered a catastrophic failure of the number 2 engine, mounted at the rear of the aircraft.  The 

failure of the stage 1 fan disk resulted in the loss of hydraulic fluid in all three of the hydraulic 

systems, due to the engine fragments leaving the engine cowling.  This resulted in the loss of the 

actuation of all control surfaces and subsequent loss of traditional control [13].  An off-duty training 

pilot provided assistance to the on-duty pilots and using differential thrust with the remaining engines 

was able to navigate to Sioux City Airport and perform a landing.  Unfortunately, the right wing 

dipped moments before landing resulting in the aircraft tumbling on impact.  111 people were fatally 

injured but 185 people survived [13]. An almost identical situation developed on the 22 November 

2003. An Airbus 300 cargo aircraft was departing Baghdad airport and was struck by a surface to air 

missile. Using a similar technique to the UA232 case, the pilot was able to land the aircraft without 

casualty, however the aircraft was severely damaged [14] .  Due to accidents similar to this, a great 
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deal of attention has been given to fault-tolerant systems that could prevent a situation similar to this 

occurring in the future.  

Fault-tolerant design can be considered as a form of Systems Engineering, where a failure analysis of 

the system, coupled with good engineering practice, will result in a design that is tolerant to faults to a 

certain degree.  This may include a system that is completely fault-tolerant, or simply a system that is 

failsafe.  Thus the subject of fault tolerance is very broad and encompasses a variety of disciplines in 

order to achieve a truly fault-tolerant design.  

1.4.3 Redundancy 

Redundancy is simply the duplication of critical components and systems to ensure that a single point 

of failure cannot occur.  Redundancy can, in general, be split into hardware redundancy and analytical 

redundancy. 

Hardware Redundancy 

In the areas of human safety, hardware redundancy may include redundancy of actuators, sensors and 

systems. For example, on many commercial aircraft such as the McDonnell Douglas DC-10, there are 

multiple hydraulic systems to ensure that should one system be compromised the aircraft is still 

controllable and safe [13].  Many aircraft also make use of multiple control actuators and various 

backup instruments and sensors to ensure that the failure of one component cannot cause the unsafe 

operation of the aircraft.  Unfortunately, not all possible faults can be accounted for and many aircraft 

accidents have been caused when all of the redundancies have failed.    

The main drawback of hardware redundancy is; however, the increase in hardware complexity, weight 

and in general a large financial implication.  However, there are many advantages to hardware 

redundancy.  This is commonly seen in modern fighter aircraft to increase manoeuvrability by using 

redundant control actuators in combination with the classical control actuators.  In less safety critical 

industries, hardware redundancy is generally created through the use of redundant sensors which are 

less costly rather than more expensive systems and actuators, with the aim of minimising production 

losses [12], in essence creating a system that is fail safe, rather than fault-tolerant.  Hardware 

redundancy, in some form, will always be required in order to achieve fault-tolerant design for 

systems that interact with a real world environment.  Thus the use of hardware redundancy will be a 

vital aspect of the fault-tolerant UAS design.  
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Analytical Redundancy 

Analytical redundancy is the use of software and computational techniques that check the system or 

make adjustments to the control laws to achieve either a fault-tolerant system or a failsafe system.  

Analytical redundancy can be as simple as sensor fusion, where two separate sensors are used in 

combination to act as a check of sensor accuracy or functionality, or it can be more complex. 

Analytical redundancy can be achieved either passively, by having a set of pre-programmed actions to 

perform should a failure be detected, or actively using artificial intelligence techniques to identify and 

make decisions about what actions to make [12] to maintain the system performance.  Active methods 

are generally considered superior to passive methods as they can potentially accommodate any fault 

of the system, whereas a passive system is limited to the number of faults that have been designed for 

and programmed.   

1.4.4 Fault Detection, Diagnosis and Isolation 

Fault detection, diagnosis and isolation is a strategy to give the controller some information about the 

status of the system as a whole.  The strategy involves three steps as indicated by the title.  Firstly, the 

controller needs to determine that a change in the characteristics of the controlled device has occurred 

or a component failure has occurred (Detection).  Once this has been established, the fault or change 

needs to be identified (Diagnosis).  And finally, the action to take needs to be enacted (Isolation).   

There are multiple methodologies that can be used to achieve fault detection diagnosis and isolation.  

In the simplest case, it may be possible to measure directly the area of interest.  For example, a car’s 

engine temperature can be easily measured and a fault determined if that temperature is too high.  The 

control actuator of the plant can directly be measured and compared to the output of the controller and 

simple thresholds used to determine that the part is functioning correctly.  In the case where a direct 

measurement cannot be easily made, for example the output of a sensor, other techniques need to be 

used.  These include model-based approaches, shown in Figure 1.7, where the output of the controlled 

device is compared to a set of fault models.  Should the output match one of these models, a fault can 

be deemed to have occurred and preset action taken to mitigate the fault.  Hypothesis testing can also 

be conducted to determine whether a fault has occurred. Difficulties arise in successfully detecting a 

fault as uncertainties within the analytical model and faults are difficult to differentiate in real world 

environments. [7]      
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Model reference adaptive control has two distinct advantages. Firstly, MRAC can be used as a method 

of self tuning.  The controller tunes the PID gains to drive the plant to a desired reference model.  This 

property also gives MRAC another advantage over a traditional controller in that should the plant 

change, due to wear, actuator failure or structural changes, the MRAC will adapt the PID gains to 

achieve the desired performance.  This has been successfully demonstrated in the adaption of an 

autopilot to changes in airframe. In particular, experiments with quad-rotor aircraft losing a fraction of 

one propeller blade have proved the ability of the model reference adaptive control technique to adjust 

the control laws to accommodate changes in airframes [17].   

• Applications  

Model reference adaptive control has successfully been used in numerous instances including UAS. 

In [16] a model reference adaptive controller was applied to a second order system using the MIT rule 

and Modified MIT rule. The study varied the adaption rates of the controller and found that the 

selection of the adaption gain was important in creating a system that performed adequately. They 

found that by incrementing the adaption rates the performance of the system could be improved to a 

point, where after the performance degraded.     

In [18], a model reference adaptive control was developed that made use of adaptive algorithms in 

both the feed forward and feedback paths.  The aim was to control a not explicitly known system and 

force it to behave to a certain reference model.   A PID controller, with adaptable gains, was placed in 

the feedback path of the system.  The PID gains were adjusted online to minimise the tracking error 

between the ideal behaviour and the actual behaviour.  It was concluded that the MRAC control used 

was able to track the reference model and was asymptotically stable.  It was thus concluded that the 

same controller could be successfully used in multiple systems as the system tracks to a desired 

performance.  Thus in theory this could also be used to adapt should the system change, such as in the 

case of a fault occurring. 

In [19], the issue of stability in the adaptive gains was considered.  In this research, the authors 

highlight the fact that, in a PID system with uncertainties, simple adaptation techniques may not result 

in the convergence of the PID gains to their ideal values, but instead the values may converge to an 

unknown and unpredicted value due to the inherent noise and time variance of the system.  This may 

also result in a system where the PID gains do not converge at all but rather the adaptive controller 

may become unstable.  The work presented in [19] aimed to investigate this phenomenon.  The 

research concluded that the adaptive gains “...do converge to those bounded steady-state values that fit 

the particular input commands used in the specific application to guarantee perfect tracking.”  They 

found that generally the PID gains were lower than in the linear time invariant case and that this 

warranted future research.  
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In [26], a fault-tolerant fuzzy logic controller was designed for a quad-rotor UAS.  The UAS made use 

of classical PID control to maintain position, orientation and altitude.  A fuzzy logic system was then 

used to adapt the PID gains to achieve a required control performance in a similar manner to model 

reference adaptive control.  The quad-rotor UAS had two faults to adapt to, namely, the loss of 

effectiveness of all actuators (rotors) and the loss of control effectiveness in one actuator.  The UAS 

was tested using a Gumstix microcontroller at 200Hz.  It was observed that the fuzzy adaptive PID 

controller reacted faster than the PID controller to return the UAS to the desired set point after the 

fault was introduced.  The fuzzy PID controller also required less tuning as the gains were adapted 

real time by the fuzzy logic system. 

In [27], the development of a fuzzy logic system similar to the type in [26]  was developed.  However, 

this system focused more on a reduction in gains based on sensor measurements that indicate a fault.  

Thus the system was designed to protect the airframe should a fault occur by ensuring that the 

controller’s outputs are more conservative.  They were successful in their design and noted that the 

algorithms were not computationally intense and as such favoured miniaturisation.  They also noted 

that a hybrid neuro-fuzzy control system would be ideal; however, because of the uncertainty as to 

how neural systems obtain their decisions and the fact that the training of neural networks can be too 

slow for online applications, they concentrated only on the fuzzy logic system. 

Fuzzy Model Reference Learning Control (FMRLC) 

The next advancement in fault-tolerant control is a mechanism where the control algorithm can 

“learn” based on the outputs it sends and inputs it receives.  A typical block diagram of this is given in 

Figure 1.11.  This is in essence the same as the previous model reference controllers; however, the 

adaption controller changes the membership sets of the FLC in real time.   

In the research conducted in [28], a fuzzy model reference learning controller was developed for an F-

16 fighter aircraft.  This controller was used to reconfigure the F-16 flight controller after a fault had 

occurred.  The research was extended to include fault detection and diagnosis which improved the 

overall performance of the system by reducing the performance capabilities of the aircraft when a 

fault was detected.  This ensures that while parts of the mission are compromised, the aircraft is still 

safe to fly and can return to a safe airfield.  It follows a similar methodology to that of model 

reference fuzzy control, where a reference model is used to adjust the controller performance; 

however, the difference is that the controller is a fuzzy logic controller.  Thus the controller is learning 

and adapting to achieve a desired, preset performance.  While the simulations proved successful, the 

authors noted that more work needs to be conducted on non-linear models, that a comparison between 

these techniques and conventional model reference techniques should be conducted and that the 

stability of the system should be tested.  
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the field of fuzzy logic, where fuzzy logic was used in the simulation of formation flight of a pair of 

UAS.  The research in 

“...fading jet

This would be conducted using a neural network where the weights are ad

the faults detected.  The research showed promising results in that the simulations were reasonably 

successful.  It was noted by the author that the effectiveness of the controller was improved when 

more than 15 input nodes wer

when more than 25 nodes were used, chattering of the control outputs started to occur.  This research 

demonstrated the ability of a neural network to learn in real time and adapt to a fau

However, no mention was made about the computational requirements for such a system. 

Reconfigurable control differs from adaptive control in that control for one objective is apportioned t

several control effectors.  In the case of an aircraft, for example, ailerons are traditionally used for roll 

control; however, the use of differential flaps, rudder and differential elevator can be combined to 

create a more effective roll command.   Res

increasing manoeuvrability of advanced fighter aircraft and has developed into an extensive area of 

research with many differing opinions and techniques.  The technique identified as being the most 
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Several control allocation techniques exist.  These are classified into non-optimal and optimal 

techniques.  

The non-optimal techniques include:  

• Generalised inverse 

• Daisy Chaining  

• Cascaded Generalised Inverse 

• Multi-pass Inverse Methods 

The optimal techniques include: 

• Facet Searching 

• Edge Bisector 

• Optimisation techniques 

Non- Optimal Techniques 

• Generalised Inverse 

The generalized inverse technique is the simplest mathematical approach used and is essentially the 

solution to the state space problem  

 /0 = �2 (1.1) 

 
where /0 is the output of the control law, B is the control effectiveness matrix and 2 is a matrix of 

individual control actuators [32].  Thus the generalized inverse method simply solves for u using   

 2 = �34/0 (1.2) 

 
This assumes that there are no bounds on the control actuators and that the relationship is linear.  

While this method is relatively straight forward, it requires that the control effectiveness matrix � be 

known to a reasonable degree of accuracy.  It also has the disadvantage that no allowance is made for 

control actuator saturation in a practical system.  

• Daisy Chaining 

Daisy chaining is a priority driven control allocation technique where the control effort is assigned to 

all of the control actuators through a prioritised order.  The control effect receives a desired control 

effort which is distributed to the primary control actuators for that command until either the control 

effort is obtained, or until the control actuator saturates [32].  Should the primary controls saturate, the 

secondary control actuators will be activated to achieve the balance of the control effort required.  

This continues until either the control effort is obtained, or all of the control actuators are saturated.       
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• Cascaded Generalised Inverse 

The cascaded generalised inverse is similar to the generalised inverse; however, it takes the idea of 

daisy chaining and assigns the desired control effort to the primary actuators and then assigns the 

residual control effort, given in (1.3) [32], to the next set of control actuators.   

 /56%7089: = /06%7560 − �424 (1.3) 

 
This continues until the residual is driven to zero.  In essence this technique is a more formalised 

approach to daisy chaining.  However, again, the control effectiveness matrix is required in order to 

distribute the control effort effectively. 

• Multi-pass Inverse 

The multi-pass inverse technique is a combination of those techniques described above.  The control 

effort is distributed to the controls through a generalized inverse method; however, should the control 

surface saturate the next set of control actuators are incremented until the control effort required is 

achieved.  It was suggested in [32] that the use of a direct measurement of control deflections would 

aid this method as the deflection of the control surface would be known and would not need to be 

inferred.  

Optimal Techniques 

The optimal techniques are based on the determination of a solution within the control actuator 

deflection space.  The idea is to map the possible solution space of all control effectors to an m-

dimensional volume, where � is the number of control actuators.  The optimal solution then occurs 

on the surface of this volume [33].  The optimal techniques attempt to determine this point for any 

required control effort.  

•  Facet Searching 

This is a direct allocation technique that attempts to find the optimal solution to the control allocation 

by brute force [33]. The technique develops edges defined by two controls and then attempts to 

determine whether the edge intersects a line within the solution volume that is in the direction of the 

desired moment [33].  This method then iterates through numerous combinations until a solution is 

obtained.  Thus this method is very computationally intense [32].      

• Bisecting edge search 

This method was developed in an attempt to reduce the computational requirements of the facet 

searching method.  Essentially it attempts to find a solution that converges onto the edge of the 
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solution volume but over a fixed number of iterations [32].  It does this in a similar way to that of 

facet searching but instead of examining the entire solution space, the direction generated by the 

developed edge is noted, thus allowing for a quicker convergence to the optimal solution.  In [32], it 

was noted that this method was up to four times faster than the facet searching methods.  

• Optimisation Techniques  

Other optimisation techniques such as quadratic programming and linear programming have also been 

used to minimise a secondary objective related to control the deflections such as structural loadings, 

as seen in [34].  Normal optimisation techniques are utilised to solve the generalized inverse problem 

with the added constraints imposed, thus creating a solution that is simpler to understand and more 

optimal than the non–optimal techniques [32]. 

1.5 Identified Gaps in the Literature 

There is a fair amount of research that exists regarding the adaption of PID gains using either 

conventional techniques or artificial intelligent techniques.  However, there are relatively few cases 

where these have been applied to an operational UAS.  Furthermore, in many circumstances where 

aircraft are used, only one axis is considered.  Thus longitudinal and lateral motions are viewed 

separately.  Another gap identified is in the use of a combined fault-tolerant strategy, where multiple 

fault-tolerant techniques are used in combination.     

1.6 Rationale and Motivation 

The loss of an UAS, while not as critical as the loss of a manned aircraft, is highly undesirable.  This 

may be due to the high cost of the UAS itself, the cost of the payload it may carry, the loss of 

confidentiality of the UAS or the information it contained, or, in the civilian context, the safety risks 

for people on the ground.  UAS aircraft are often subjected to harsh and hostile operating 

environments which put the airframe at risk.  These environments may cause a variety of faults that 

include sensor failures, actuator failures and, in more extreme cases, combat damage.  A current 

limitation of UAS comes from the inability of the autopilot systems to accommodate for these faults 

or uncertainties in the system performance.  Significant effort is made in the design of a robust control 

system that is insensitive to a certain degree of failure, but there is still a desire to have a system that 

can tolerate more significant faults.  It would also be desirable to have a system capable of operating 

outside the current limited flight envelope and to have a system capable of recovering from unusual 

attitudes.  

In many commercial autopilots used in UAS, flight control is achieved through the use of classical 

control methods such as Proportional-Integral-Derivative (PID) control.  This control system, also 

found in many other commercial and industrial systems, is highly effective in basic UAS control.  
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However, two main drawbacks are evident with PID control systems, the first being the tuning of the 

PID gains used in the control loop and the second being the inability of PID control to cope with large 

changes in the system performance.  These changes may stem from differences in UAS geometry or 

from a failure of any number of systems on board the UAS, and, if large enough, may result in the 

inability of the PID controller to control the UAS adequately. 

The proposed research is to explore various methodologies of fault-tolerant control design, including 

the use of artificial intelligence techniques for a UAS aircraft.  The aim is to develop a control 

strategy that makes use of artificial intelligence techniques and apply this strategy to a known UAS. In 

the first instance, the control strategy will be tested through simulations with the intention of 

implementing this research into an UAS in the future.   

Fault-tolerant systems are not entirely unique and several systems been successfully demonstrated.  A 

noteworthy example of this is the work conducted by Rockwell Collins.  They have successfully 

flown a model of a Boeing F-18 UAS and ejected up to 80% of one wing in one test and 60% of the 

wing, 30% of the horizontal tail and 30% of the vertical tail in another.  The UAS recovered from the 

flight surface loss in both cases and performed a safe landing [35].  Other successful demonstrations 

of fault tolerance have been conducted on smaller UAS by a number of universities and research 

groups [17], [36].  

1.7 Research Objectives 

The problem statement for this research topic is as follows. 

Research, develop, simulate and test a fault-tolerant UAS autopilot system for use on the CSIR’s 

Modular UAS. 

Due to the nature of the work at the CSIR, the most common fault expected is that of control actuator 

failure.  This may be due to a malfunction with the servo motor, electromagnetic interference, an 

oversight in assembly or the disconnection of the servo in flight.  Another area of concern is in the 

loss of a control surface, due to flutter, or other structural damage.  Thus this will be the primary focus 

of the research.  However, as a secondary objective, it is desirable to have a system that is capable of 

tolerating changes within the aircraft as in many instances the UAS is modified for a particular 

mission.  Finally, sensor failure is of concern; however, this is not considered the primary focus of the 

project, but will be borne in mind during the research. 

The objective of the proposed project is thus to research, design, simulate and then, should the results 

be successful and time permitting, apply a fault-tolerant system into a commercial autopilot system.  

The detailed objectives of the proposed research are to develop an autopilot that is tolerant to the 

following. 
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• Actuator failure 

• The loss of a control surface 

• Uncertainties within the aircraft model 

It is desirable to focus on artificial intelligence techniques as; in general, they are more suited to non-

linearity and uncertainties within the system being controlled.  However, more conventional 

techniques will not be ignored where they are considered to be superior.  

1.8 Research Scope, Strategy and Methodology 

The methodologies proposed in this dissertation were chosen based on the advantages and 

disadvantages of the various techniques described in the aforementioned sections, while being aware 

of the limitations of the chosen autopilot and airframe.  The strategy proposed for this research is to 

combine several of the ideas of previous work in to a hybrid of all of the main techniques.  However, 

because of the limited processing power of the autopilot, many of the techniques proposed are not in 

their most advanced form, as in general these have been found to be highly complex and 

computationally expensive.  Thus a more practical methodology is proposed.  

The methodology proposed is a three pronged approach to fault-tolerant UAS controller design.  The 

start of this is simple robust design.  This will include both software and hardware redundancy.  This 

is already catered for in the design of most airframes in the form of multiple control actuators and in 

the case of the airborne platform modelled in this research; this will include 7 independent control 

surfaces and 2 independent engine controls.   

The second part of the strategy involves the idea of reconfigurable control and, in particular, in 

control allocation techniques.  At this stage, a non-optimal technique, such as daisy chaining or a 

weighted inverse approach, will be used. Because of the uncertainties in the aircraft, a robust 

technique that can be easily interfaced with the current controller will be chosen.  This robustness is 

also required to accommodate unknown actuator failures as well as uncertainties in the resulting 

control effectiveness matrix.  The non-optimal techniques have been compared in [32] and found to 

have a good performance when compared to the optimal methods.  In [32], it was stated that no 

noticeable difference was seen in the non-optimal and optimal techniques.  A non-optimal solution 

can also be motivated for because the project is based on fault-tolerant UAS design rather than the 

optimisation of control deflections for manoeuvrability purposes.  The computational requirement 

must also be considered to ensure a rapid response to a failure.  

The third part of the control strategy is the more complex of the strategies and includes a fuzzy logic 

adaptation mechanism of the PID gains of the controller.  This will increase the reaction time should a 

fault occur and help to maintain the desired performance.  This will be based on an ideal reference 
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model for the aircraft to follow.  This also improves on the current system in that the PID gains will 

be adjusted to optimise the controller performance during normal flight.  It is expected that this 

system will be the most computationally expensive as a fuzzy logic inference system will need to be 

developed for roll, pitch and yaw axes as well as heading, air
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1.10 Layout of Dissertation 

This dissertation has the following structure: 

• Chapter 2 - Development of a high fidelity, 6DOF, nonlinear flight dynamic model.  

• Chapter 3 - Development of a Autopilot model 

• Chapter 4 - Development of fault-tolerant control model 

• Chapter 5 - Simulation of Control actuator faults 

• Chapter 6 - Discussion of Results 

• Chapter 7- Conclusions and recommendations 

This dissertation covers the initial design and simulation of a fault-tolerant control system of a UAS. 

It begins with the development of a high fidelity, 6 degree-of-freedom (6 DoF), nonlinear flight 

dynamic model of the CSIR's Modular UAS.  This model is a time domain based model that makes 

use of the wind tunnel data of a full scale model of the UAS.  This is followed by the development of 

an autopilot model, based on the Ardupilot Mega architecture but simplified to extract the necessary 

control laws.  The development of the fault-tolerant system follows.  The use of fuzzy logic in PID 

adaption as well as the reconfiguration of control surfaces is outlined. A detailed simulation of the 

system is conducted and the results and presented in Chapter 5. The results will be further discussed 

in Chapter 6 and finally a conclusion as to the success of the fault-tolerant control system is presented 

in Chapter 7.  Additional flight dynamic details and models are described in Appendices A and B and 

the full simulation code, fault-tolerant control code and a full set of results can be found in the digital 

Appendix C.        
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2 Chapter 2 – System Description and Mathematical Modelling 

2.1 Chapter Outline 

Typically, when performing research into control, a plant is identified and the development of a 

physical model representing the system is developed.  This model is created by first finding a point at 

which the system is in equilibrium and then examining the changes in these forces due to the 

dynamics of the plant.  This results in a set of equations that, when linearised, provide a relatively 

easy way of obtaining the response of the system to a disturbance or change in set point about the 

equilibrium condition.  This works well for many systems, as their behaviours are often close to linear 

for small accelerations, angles and control inputs.  However, for this research the assumption of small 

accelerations, small control inputs and small angles cannot be guaranteed due to the very nature of the 

problem under examination.  Thus, the development of a model that considers non-linearity is vital to 

determine the ability of the control algorithms developed to handle various faults.  This chapter 

outlines the development of such a model. The chapter will start with a brief overview of the intended 

aircraft to be modelled, the CSIR’s Modular UAS, and will then follow with the simulation strategy 

and detail the various techniques and methods used in the flight dynamic model.  The relevant wind 

tunnel data will also be presented.  

2.2 CSIR’s Modular UAS Airframe 

The airborne platform to be used in this research is the CSIR’s Modular UAS, shown in Figure 2.1.  

The airframe was developed with the intention of being used for control research and, in particular, 

fault-tolerant control research.  Its configuration was thus tailored to provide multiple redundancies.  

The airframe consists of two fuselages joined with a centre wing section and a payload pod suspended 

beneath the centre wing.  There are two elevators, ailerons and two rudders that are all driven 

independently. Flaps inboard of the ailerons but outboard of the fuselages are also present.  

 

Figure 2.1: The CSIR's Modular UAS on final approach  
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 A significant advantage of using this airframe not only lies with the multiple control surface 

redundancies, but also in the set of wind tunnel data available.  This allows for the development of a 

high fidelity flight dynamic model that accounts for the non-linear effects seen at high angles of attack 

and high sideslip angles.  Unfortunately, the dynamic characteristics of the aircraft were not obtained 

in the wind tunnel, and as such will be derived in the sections that follow. The geometry and key 

specifications of the Modular UAS are provided in Table 2.1, for reference.   

  Table 2.1: Table detailing the geometry of the CSIR's Modular UAV 

Parameter Symbol Value Unit 

Mass and Inertia 

Mass ��<	 26.382 kg 

Moment of inertia about x-axis �� 11.106 kg.m2 

Moment of inertia about y-axis �  7.900 kg.m2 

Moment of inertia about z-axis �! 18.455 kg.m2 

Product of inertia about x and y axes ��  0.000 kg.m2 

Product of inertia about x and z axes ��! 0.836 kg.m2 

Product of inertia about y and z axes � � 0.000 kg.m2 

Wing 

Area =>6? 1.482 m2 

Root chord @AB 0.359 m 

Tip chord AC 0.359 m 

MAC @A̅ 0.359 m 

Span EA 4.130 m 

Aspect ratio "�A 11.509 N/A 

Oswald’s factor FA 0.85 N/A 

Horizontal Tail 

Area =GH 0.200 m2 

Root chord @GHB 0.200 m 

Tip chord GHC 0.200 m 

MAC @G̅H 0.200 m 

Span EGH 1.000 m 

Aspect ratio "�GH 5.000 N/A 

Oswald’s factor FGH 0.9 N/A 

Vertical Tail 

Area =IH 0.1689 x2 m2 

Root chord @IHB 0.2735 m 

Tip chord IHC 0.210 m 

MAC @I̅H 0.243 m 

Span EIH 0.348 m 

Aspect ratio "�IH 0.717 N/A 

Oswald’s factor FIH 0.9 N/A 
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In the case of an aircraft, the forces �, � and �, and moments �, � and � can be broken down into 

Eqs. (2.9) to (2.14), as indicated in [37]; again the sign convention shown in Figure 2.5 applies.  

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.9) 

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.10) 

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.11) 

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.12) 

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.13) 

 � = �b65c Y �Hd58%e Y �f59g7e Y �h7%e85V9ij6% (2.14) 

 

Typically in aircraft control analyses, an assumption is made that the aircraft is symmetrical about the 

x-z plane, which aids in reducing the coupling between these equations.  However, to allow for the 

possibility of asymmetry of an aircraft due to a fault or failure, this assumption has not been made 

here, and the further development will continue without this simplification.  From these equations the 

accelerations of the aircraft in all directions can be determined by rearranging Eqs. (2.3) - (2.8) into 

the following form and then solving the differential equations numerically.    

 

 kT = lZ�, �, 	, �, �, �[  

 kT  in the above equation  represents the time rate of change of the state vector of the aircraft and is 

given by: 

 kT = [�T  �T  	T  �T  �T  �T]H  

 

Equations  (2.3),  (2.4) and  (2.5) can be easily transformed into this form by inspection and are thus 

presented as Eqs. (2.15) - (2.17) respectively. 

 �T = �� Y �� − �	 (2.15) 

 �T = �� Y �	 − �� (2.16) 

 	T = �� Y �� − �� (2.17) 

      

However, Eqs.  (2.6) - (2.8) require a fair degree of manipulation to achieve this form. The 

development of these equations is presented in Appendix A, with the results of the manipulation 

presented as Eqs. (2.18) - (2.20): 
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�T = W� �! − � !` Xo �!p� Y W� − �!X�� − �� �� Y ��!�� − � !Z�` − �`[ Y ��!"q Y �W�� �! Y ��!� !Xr Z���! − ��!̀[W� − � !` X − W�� �! Y ��!� !XW��!� ! Y �� �!X  (2.18) 

 �T = � Y s��!� ! Y �� �!� �! − � !` t �T (2.19) 

 �T = " Y � !�T�! Y ��!�T�!  (2.20) 

 

where A and B are given by Eqs. (2.21) and (2.22) respectively:  

 " = � Y W�� − � X�� Y � !Z��[ − ��!Z��[ − �� Z�` − �`[�!  (2.21) 

 � = �!W� − Z�� − �![�� − � !Z�� − "[ − ��!Z�` − �`[ Y �� ��X� �! − � !`  
(2.22) 

 

 

The equations of motion presented describe the acceleration of the aircraft in all directions and 

rotations about the body axes.  From these equations, the state of the aircraft can be estimated by 

solving the equations simultaneously, over a very small time interval.  A fourth-order Runge-Kutta 

method was used to achieve this.  It is used to solve first order differential equations of the form [38] : 

uT = lZu, +[ 

where the initial conditions are known.  The method is a multistep method, i.e. the function is 

evaluated multiple times for a single time step.  While this is computationally more intense, the 

accuracy of the solution is improved over single step methods, such as the Euler method, for the same 

time step size [38].  Assuming that a process follows the form given above with initial conditions �i at +i, the Runge-Kutta method then estimates the state of � at the next interval tn+1, using Eq. 

(2.27), from [38], after the Runge Kutta estimators, ,4→w, are determined using Eqs. (2.23) to (2.26): 

 ,4 = ℎlZ+i , �i[ (2.23) 

 ,` = ℎl x+i Y 12 ℎ, �i Y 12 ,4{ (2.24) 

 ,| = ℎl x+i Y 12 ℎ, �i Y 12 ,`{ (2.25) 

 ,w = ℎlZ+i Y ℎ, �i Y ,|[ (2.26) 

 �i}4 = �i Y 16 Z,4 Y 2,` Y 2,| Y ,w[ (2.27) 

 

This process is continued until the desired time has been reached.  This process can be extended to a 

set of first-order simultaneous equations by calculating a set of estimators ,4→w for each set of 

equations in sequence [38].  This is done for this flight dynamic model where a set of 9 simultaneous 
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equations are solved. �, �, 	, �, �, �, ∅, ( and Altitude are solved simultaneously using the fourth 

order Runge Kutta method. Heading and geodetic position are simply determined using numerical 

integration techniques. 

2.6 Atmospheric Modelling 

The atmospheric model used in this fight dynamic simulation is the International Standard 

Atmosphere (ISA) model.  Turbulence has not yet been modelled; however, allowance has been made 

for constant translational winds.  The primary requirement for this model is to provide the air density 

variation with altitude for the simulation.  For this simulation, the atmosphere will only be modelled 

to the top of the Troposphere.  The properties of the atmosphere used in this simulation are given in 

Table 2.2.   

Table 2.2: Atmospheric Properties used in the flight dynamic model 

Description Symbol Value Units 

ISA Temperature at S.L T0 288.16 K 

Environmental Lapse Rate L -0.0065 K/m 

ISA Pressure at Sea Level P0 101325 Pa 

Universal Gas Constant R 8.31447 J/mol 

Molar Mass M 0.0289644 Kg/mol 

Air Density at Sea Level ρ0 1.225 Kg/m3 

 

The temperature at any altitude based on the ISA can be found using Eq. (2.28): 

 � = �� Y ℎ� (2.28) 

 

where ℎ is the height above sea level in m.  

This is then used to determine the pressure of air at that temperature using Eq. (2.29):  

 � =  �� x1 Y �ℎ�� {��>�
 (2.29) 

 
And finally, the air density ratio � can be found using Eq. (2.30): 

 � = ����
� (2.30) 

 
The air density ratio is used to calculate the dynamic pressure of the air and hence affects all 

aerodynamic force calculations.   
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2.7 Force and Moment Modelling 

2.7.1 Gravity 

Gravitational forces are relatively easy to understand and model.  For the case of a UAS, which 

primarily operates near the earth’s surface, one can make the assumption that the gravity force vector 

acts towards the centre of the Earth, or in a positive sense in the earth fixed z-axis.  This force is given 

by the well known Eq.(2.31):   

 �f = �� (2.31) 

 

where � is the mass of the aircraft and � is the gravitational acceleration due to gravity with a value 

of 9.81m/s2.The equations of motion are derived in the body-fixed axis coordinate system, which is 

free to rotate and translate relative to the Earth-fixed axis system. Thus all that remains is to transform 

the gravitational force vector from the Earth-fixed axis to the body-fixed axis. This is accomplished 

using Eqs. (2.32) - (2.37): 

 �V = �f sinZ([ (2.32) 

 �V = �f sinZ∅[ cosZ([ (2.33) 

 �V = �f cosZ([ cosZ∅[ (2.34) 

 �V = 0 (2.35) 

 �V = 0 (2.36) 

 �V = 0 (2.37) 

 

2.7.2  Aerodynamic 

The aerodynamic modelling for the flight dynamic simulation will be done through a coefficient build 

up method, based on experimental wind tunnel data gathered at the CSIR’s 7m wind tunnel.  In order 

to use this data, the translational and rotational velocities determined through the equations of motion 

need to be converted into the wind axis system.  Thus the velocities �, � and 	 are converted into �a9 , �  and � using Eqs. (2.38) to (2.40), these can be differentiated to get � T ��� �T  . 
 �a9 =  ��` Y �` Y 	` (2.38) 

 � = arctan x 	�a9{ (2.39) 

 � = arctan x ��a9{ (2.40) 
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Using these equations, as well as the rate of change in angle of attack (�T [, roll rate, pitch rate and yaw 

rate (�, � and �) and the deflections of the control surfaces( �), the force and moment coefficients are 

built up using (2.41) to (2.46):  

� = C��Z�[Z�[ Y  ∆C��T Z�[Z�[T �T Y ∆C��Z�[Z�[� Y ∆C��Z�[Z�[� Y ∆C��Z�[Z�[5
Y ∆C��������Z�[Z�[W��������X� 

(2.41) 

h = Ch�Z�[Z�[ Y  ∆Ch�T Z�[Z�[T �T Y ∆Ch�Z�[Z�[� Y ∆Ch�Z�[Z�[� Y ∆Ch�Z�[Z�[5
Y ∆Ch�������Z�[Z�[W��������X� 

(2.42) 

� = C��Z�[Z�[ Y  ∆C��T Z�[Z�[T �T Y ∆C��Z�[Z�[�  Y ∆C��Z�[Z�[� Y ∆C��Z�[Z�[5
Y ∆C��������Z�[Z�[W��������X� 

(2.43) 

: = ∆C:�Z�[Z�[ Y  ∆C:�T Z�[Z�[T �T Y ∆C:�Z�[Z�[� Y ∆C:�Z�[Z�[� Y ∆C:�Z�[Z�[�
Y ∆C:�������Z�[Z�[W��������X� 

(2.44) 

� = C��Z�[Z�[ Y  ∆C��T Z�[Z�[T �T Y ∆C��Z�[Z�[� Y ∆C��Z�[Z�[� Y ∆C��Z�[Z�[5
Y ∆C��������Z�[Z�[W��������X� 

(2.45) 

  = C �Z�[Z�[ Y  ∆C �T Z�[Z�[T �T Y ∆C �Z�[Z�[� Y ∆C �Z�[Z�[� Y ∆C �Z�[Z�[5
Y ∆C �������Z�[Z�[W��������X� 

(2.46) 

 

where the first subscript refers to the parameter causing the change in coefficient and the subscripts in 

brackets refer to value of the change in coefficient at a particular angle of attack and sideslip angle 

and control deflection.   

The coefficients are determined from wind tunnel data.  The wind tunnel data for each aerodynamic 

coefficient has been characterised by a set of polynomials which are selected based on the angle of 

attack and sideslip angle for that aircraft state and interpolated.  The details of the wind tunnel data 

and interpolation process is described in more detail in Chapter 2.8.5.  The forces in the wind axis 

system can thus be found using Eq. (2.47) to (2.52).  

 � = 12 
���a9̀=>6?� (2.47) 

 � = 12 
���a9̀=>6?h (2.48) 

 � = 12 
���a9̀=>6?@̅� (2.49) 

 � = 12 
���a9̀=>6?� (2.50) 
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 & = 12 
���a9̀=>6?E: (2.51) 

 � = 12 
���a9̀=>6?E  (2.52) 

 

where, 
� is the air density at sea level, �  is the air density ratio, which varies with altitude, as 

already defined, �¡¢ is the velocity of the UAS in the wind axis and =>6?  is the wing area of the UAS. 

These forces are then transformed into the body-axis system using the wind axis to body axis 

transformation described in Chapter 2.4.  

2.7.3 Power Plant Modelling 

Propeller Modelling 

The characterisation of the propeller is achieved through the use of a non-dimensional parameter 

which relates the velocity of the propeller through the air with its rotational velocity. This parameter, 

known as the advance ratio, allows a propeller to be characterised independently of forward velocity 

and is given by [39]: 

 � = ��� (2.53) 

 

Typically, propeller data is in the form of a set of coefficients that vary with advance ratio.  These 

coefficients, the thrust coefficient, torque coefficient and power coefficient, allow the determination 

of the thrust and torque generated or absorbed by the propeller.  

The thrust coefficient is used to determine the thrust generated, �, by the propeller and is given by: 

 � = 
��`�wH (2.54) 

 

The torque, �, can be determined using (2.55). 

 � = 
��`�£¤2¥  (2.55) 

 

where H and ¤ are the thrust and power coefficients respectively, � is the diameter of the propeller, 

and  � is the rotational speed of the propeller. 

To model the thrust and torque, all that remains is to obtain an expression to describe H and ¤ 

variation with the advance ratio of the propeller.  This can be achieved in a number of ways that 

include wind tunnel testing and analytical analysis.  For the propellers used on the CSIR’s Modular 
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Table 2.3: Table indicating the polynomial coefficients used to describe the thrust and power coefficient curves 
of Figure 2.6 

Polynomial 

coefficient 
Thrust Coefficient Power Coefficient 

a0 0.1058065026 0.0762913734 

a1 -0.0885243513 -0.0686730689 

a2 0.6233706854 0.2752244756 

a3 -1.9470978824 -0.4741954619 

a4 2.0325856787 0.2018584708 

a5 -0.7329001868 0 
 

 Motor Modelling  

The motor model used for this study is the well defined “Three Constant” model, shown in Figure 2.7, 

which makes use of three main parameters to describe a brushless electric motor.  These are the motor 

constant (,¦), the no load current (�c) and the internal resistance of the motor windings (�§).  

 

Figure 2.7: Diagram showing the main parameters of the three constant model adapted from [40] 

Using these parameters and drawing the simplified circuit, the following can be derived from [40]. 

The torque produced by the motor is given by:  

 �§ = Z¨ − ¨�[,¦  (2.56) 

 
and the rotational velocity is thus:  

 ©§ = Z¦� − ¨�§[,¦ (2.57) 

 
The output power is then:   

 �ªd9?e = �§©§ (2.58) 

and the input power is:  

 �«i�8e = ¦�¨ (2.59) 

 

v0
Rmvm i

Y

–

Qmωm



41 
 

Through some manipulation, the torque generated by the motor for any RPM and input voltage can be 

expressed in a more useful format given as:  

 �§ =
²³¦� − ©§,¦ ´�§ − ¨�µ

,¦  
(2.60) 

 
This equation allows the determination of motor torque for any given voltage input and thus is useful 

in the flight dynamic model.  

The control of an electric motor is accomplished through the use of an electronic speed controller 

(ESC).  The speed controller synchronises the switching of the motor windings and, through the use 

of PWM control, the effective voltage (¦�) seen by the motor.  The autopilot will provide the aircraft 

model with a % throttle setting which will then be converted to a voltage based on an assumption that 

the voltage is proportional to the throttle setting. 

 Combined model 

The purpose of the power plant modelling is to obtain the forces and moments in the body axis system 

for a given power setting.  However, there are dynamic effects of the motor and propeller combination 

that must be accounted for. Thus, the motor and propeller were modelled together. 

This was accomplished by setting the throttle to an arbitrary starting point and crudely estimating the 

RPM at that throttle setting using:  

 ��� = ¦�,¦ (2.61) 

 
The accuracy of this is unimportant, as all that is required is a starting point.  With this starting point, 

the advance ratio of the propeller in this state is determined.  This allows the determination of the 

thrust and power coefficients and hence the thrust produced and the torque absorbed by the propeller.  

Again, using the starting RPM, the torque provided by the motor is determined.  Because the RPM is 

unlikely to be at equilibrium, there will be a difference in torque, resulting in an angular acceleration 

of the motor propeller combination. This angular acceleration is determined in the main solver block 

using (2.62). 

 ��cec5 = ∆���cec5 (2.62) 

where, ∆� is the difference in torque produced by the motor and that absorbed by the propeller and ��cec5 is the second moment of inertia of the motor and propeller combination.  
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Finally, all that remains is to resolve the thrust and torque into components along the body axis 

coordinate system.  Thus the forces and moments are given by Eqs. (2.63) to (2.68).   

 �� = � cos , cos ,% (2.63) 

 � = � cos , sin ,% (2.64) 

 �! = � sin , (2.65) 

 �� =  −� ℎ − �!' Y ��cec5 cos , cos ,% (2.66) 

 � = ��ℎ − �!& Y ��cec5cos , sin ,% (2.67) 

 �! = −��' Y � & (2.68) 

 

where,  , is defined as the thrust line angle in the X-Z plane, ,% is the thrust line angle in the X-Y 

plane, ℎ is the distance of the thrust line from the centre of gravity along the Z-Axis, ' is the thrust 

line offset from the fuselage centreline and & is the distance of the motor from the lateral axis. These 

terms and their positive directions are defined in Figure 2.8. It is noted that the propellers in this case 

rotate in the same direction with is clockwise when viewed from the cockpit.  

 

 

Figure 2.8: Definition of thrust lines on a fictional twin fuselage aircraft design similar to that of the CSIR's 
Modular UAV 

  

w l
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2.8 Wind Tunnel Data 

2.8.1 Introduction 

One of the Modular UAVs manufactured was used in wind tunnel testing in order to characterise the 

airframe.   This testing was done by Mr. Peter Skinner at the CSIR 7m Wind tunnel in 2009.  The 

wind tunnel tests measured the lift, drag, pitching moment, side force, rolling and yawing moments of 

the aircraft for different angles of attack, angles of sideslip and control deflections.  All of the data 

was collected statically and hence no dynamic data has been obtained. The data was also collect with 

no power added.  Thus the dynamic stability derivatives will be determined using fundamental 

principles of stability analysis and the static wind tunnel data, where possible.   That process is 

described in Section 2.8.6.  The static wind tunnel data is presented in the sections that follow.  

2.8.2 Data Processing 

The wind tunnel data had to be processed in order to obtain the required parameters.  This involved 

several separate steps to condition the data appropriately.  

The data for 0° control deflection form the basis upon which all of the other data is referenced.  The 

data set consisted of multiple sets of coefficient vs. angle of attack data for different sideslip angles.  

Thus, for the parameters that varied with angle of attack, the procedure was relatively simple as a 

simple regression could be performed.  However, for the lateral coefficients which vary primarily 

with sideslip angle, an interpolation was required to obtain constant angles of attack across the data 

sets. Once this was completed, a regression could be performed with sideslip angle being the 

independent variable.  

For the control surface deflection data, a similar process was conducted.  A test was run for each 

control surface deflection increment.  As an example, for a 4° aileron deflection, a data set of all the 

coefficients as a function of angle of attack was generated for each increment in sideslip angle.  To 

compare the values and obtain a change in coefficient, an interpolation between angle of attack 

measurements was done so as to obtain consistent angle of attack values across the entire data set. 

After the interpolation, the data was subtracted from the zero reference condition and a change in 

coefficient generated.  This was then collected and transposed to generate a data set with the control 

deflection as the independent variable.  There was thus a data set for each coefficient, at 5 different 

angles of attack, for 6 sideslip angles.  
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The lift coefficient variation was as expected and found

The lift curve slope was found to be linear up to angles of approximately 10° at 

reduction in lift curve slope was noted. 

angle.  

variation with angle of attack for 0°

(f) show the lift coefficient variation with angle of attack for different 

sideslip angle is included on these figures to highlight the 

angle.  As can be seen in the figures, the lift coefficient is 

angle.  A 3rd-order polynomial was found to fit the data 

satisfactorily and the results of this regression are presented i

: Polynomial coefficients for the lift coefficient variation with angle of attack for different 

10° β = 0°

0.34371 0.38014

0.09816 0.0966

0.00037 -0.00016

0.00013 -0.0001

The lift coefficient variation was as expected and found to be that typically present in

The lift curve slope was found to be linear up to angles of approximately 10° at 

reduction in lift curve slope was noted.  A maximum lift coefficient of 1.46 was 

° sideslip angle

(f) show the lift coefficient variation with angle of attack for different 

angle is included on these figures to highlight the 

angle.  As can be seen in the figures, the lift coefficient is 

order polynomial was found to fit the data 

satisfactorily and the results of this regression are presented in Table 

: Polynomial coefficients for the lift coefficient variation with angle of attack for different 

β = 0° 

0.38014 0.34445

0.09663 0.09485

0.00016 0.00048

0.00011 -

to be that typically present in

The lift curve slope was found to be linear up to angles of approximately 10° at 

A maximum lift coefficient of 1.46 was 

angle (β) 

(f) show the lift coefficient variation with angle of attack for different 

angle is included on these figures to highlight the 

angle.  As can be seen in the figures, the lift coefficient is 

order polynomial was found to fit the data 

 2.4. 

: Polynomial coefficients for the lift coefficient variation with angle of attack for different 

β = 10° 

0.34445 

0.09485 

0.00048 

-0.00012 

to be that typically present in aircraft as 

The lift curve slope was found to be linear up to angles of approximately 10° at 

A maximum lift coefficient of 1.46 was 

 

(f) show the lift coefficient variation with angle of attack for different 

angle is included on these figures to highlight the 

angle.  As can be seen in the figures, the lift coefficient is 

order polynomial was found to fit the data 

: Polynomial coefficients for the lift coefficient variation with angle of attack for different 

β = 20° 

0.33062 

0.08405 

0.00021 

-0.00008 

aircraft as 

The lift curve slope was found to be linear up to angles of approximately 10° at 

A maximum lift coefficient of 1.46 was 

(f) show the lift coefficient variation with angle of attack for different sideslip 

angle is included on these figures to highlight the 

angle.  As can be seen in the figures, the lift coefficient is 

order polynomial was found to fit the data 

: Polynomial coefficients for the lift coefficient variation with angle of attack for different sideslip 

β = 30°

0.286927

0.073074

0.000127

-5.763E-05

β = 30° 

0.286927 

0.073074 

0.000127 

05 
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Figure 2.

 

.10: Lift coefficient variation with angle of attack for various : Lift coefficient variation with angle of attack for various : Lift coefficient variation with angle of attack for various 

 

: Lift coefficient variation with angle of attack for various : Lift coefficient variation with angle of attack for various sideslipsideslip angles (β) 
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The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

Figure 2

expected based on the characteristi

Figure 2.

The drag coefficient incre

Figure 2

in Table 

order polynomial

capture the presence of the drag bucket

Table 2.5

Coefficient 

a0 

a1 

a2 

a3 

a4 

a5 
 

Drag Coefficient Varia

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

2.11, with the presence of a slight “drag bucket” near the lower angles of attac

expected based on the characteristi

.11: Drag coefficient

The drag coefficient incre

2.12 (a) to (f). 

Table 2.5.  As can be seen

polynomial would be better in this regard;

capture the presence of the drag bucket

5: Polynomial coefficients of the drag variation with angle of attack for different 

 β = -30°

0.13265

0.000724

0.000448

-9.024E-06

1.5635E-06

-2.717E-08

Drag Coefficient Varia

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attac

expected based on the characteristi

coefficient variation with angle of attack for 0° 

The drag coefficient increased but

(f).  A least squares line

.  As can be seen by the coefficients

would be better in this regard;

capture the presence of the drag bucket

: Polynomial coefficients of the drag variation with angle of attack for different 

30° β = -20°

0.13265 0.08259

0.000724 0.00076

0.000448 0.00027

06 -3.42E-

06 1.7554E

08 -3.741E

Drag Coefficient Variation with A ngle of 

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attac

expected based on the characteristics of the aerofoil used on the M

variation with angle of attack for 0° 

ased but the shape widened 

east squares linear regression was performed, the results of which are given 

by the coefficients

would be better in this regard;

capture the presence of the drag bucket.  

: Polynomial coefficients of the drag variation with angle of attack for different 

20° β = 

0.08259 0.03485

00076 0.00055

0.00027 0.00026

-06 5.1819E

1.7554E-06 1.9301E

3.741E-08 -6.195E

ngle of Attack (

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attac

cs of the aerofoil used on the M

variation with angle of attack for 0° 

the shape widened 

r regression was performed, the results of which are given 

by the coefficients, the polynomial is somewhat over fitted and a 

would be better in this regard; however

: Polynomial coefficients of the drag variation with angle of attack for different 

β = -10° β

0.03485 0.02733

0.00055 0.00109

0.00026 -3.306E

5.1819E-06 -1.788E

1.9301E-06 4.744E

6.195E-08 -1.505E

ttack (º½¼) 

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attac

cs of the aerofoil used on the Modular UAV. 

variation with angle of attack for 0° sideslip angle (

the shape widened with increasing 

r regression was performed, the results of which are given 

the polynomial is somewhat over fitted and a 

however, the 5th-order

: Polynomial coefficients of the drag variation with angle of attack for different 

β = 0° 

0.02733 

0.00109 

3.306E-06 

1.788E-06 -7.175E

4.744E-06 3.7827E

1.505E-07 -1.072E

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attac

odular UAV.  

angle (β) 

with increasing sideslip

r regression was performed, the results of which are given 

the polynomial is somewhat over fitted and a 

order polynomial was required t

: Polynomial coefficients of the drag variation with angle of attack for different sideslip

β = 10° 

0.03354 

0.00095 

0.00016 

7.175E-06 

3.7827E-06 

1.072E-07 

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

, with the presence of a slight “drag bucket” near the lower angles of attack.  This was 

 

sideslip angle as shown in 

r regression was performed, the results of which are given 

the polynomial is somewhat over fitted and a 

polynomial was required t

sideslip angles

β = 20° 

0.07664 

0.00028 

0.00023 

-7.669E-06 

3.1323E-06

-8.195E-08 

The drag coefficient variation with angle of attack varied in a largely parabolic manner, as shown in 

This was 

angle as shown in 

r regression was performed, the results of which are given 

the polynomial is somewhat over fitted and a 3rd 

polynomial was required to 

angles 

β = 30°

0.13298

0.00039

0.00045

 -1.234E-05

06 1.6155E-06

 -2.64E-08

β = 30° 

0.13298 

0.00039 

0.00045 

05 

06 

08 
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Figure 2.

 

.12: Drag coefficient variation with angle of attack for various : Drag coefficient variation with angle of attack for various : Drag coefficient variation with angle of attack for various 

 

: Drag coefficient variation with angle of attack for various : Drag coefficient variation with angle of attack for various sideslipsideslip angles 
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The pitching moment variation with angle of attack was found to be largely linear at small angles of 

attack; however

Figure 2.

The pitching moment variation with angle of attack reduced as the 

scatter was noted at 

order polynomial 

regression 

Table 2.6
angles 

Coefficient 

a0 

a1 

a2 

a3 
 

Pitching Moment Coe

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

however, a reduction in slope occurred at higher angles of attack as shown in 

.13: Pitching moment coefficient variation with angle of attack for 0° 

The pitching moment variation with angle of attack reduced as the 

scatter was noted at 

order polynomial fit

regression are shown 

6: Polynomial coefficients of the pitching moment variation with angle of attack for different 

β = -30° 

0.17601 

-0.01911 

-0.00035 

0.00002 

Pitching Moment Coefficient Variation with A

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in 

moment coefficient variation with angle of attack for 0° 

The pitching moment variation with angle of attack reduced as the 

scatter was noted at sideslip angles of 30°, as shown in 

fit  adequately described the pitching moment variation and the results of the 

are shown in Table 2.

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

β = -20°

0.11974

-0.01910

-0.00037

0.0002

fficient Variation with A

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in 

moment coefficient variation with angle of attack for 0° 

The pitching moment variation with angle of attack reduced as the 

angles of 30°, as shown in 

adequately described the pitching moment variation and the results of the 

6.  

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

20° β = -10°

0.11974 0.10042

0.01910 -0.02344

0.00037 -0.00051

0.0002 0.00002

fficient Variation with A

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in 

moment coefficient variation with angle of attack for 0° 

The pitching moment variation with angle of attack reduced as the 

angles of 30°, as shown in Figure 

adequately described the pitching moment variation and the results of the 

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

10° β = 0°

0.10042 0.06370

0.02344 -0.02363

0.00051 -0.00036

0.00002 0.00002

fficient Variation with A ngle of Attack (

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in 

moment coefficient variation with angle of attack for 0° 

The pitching moment variation with angle of attack reduced as the sideslip

Figure 2.14 (a) 

adequately described the pitching moment variation and the results of the 

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

β = 0° β

0.06370 0.09379

0.02363 -0.02244

0.00036 -0.00066

0.00002 0.00003

ttack (º¾¼) 

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in 

moment coefficient variation with angle of attack for 0° sideslip angle (

sideslip angle i

(a) to (f).  It was found that a 3

adequately described the pitching moment variation and the results of the 

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

β = 10° 

0.09379 

0.02244 

0.00066 

0.00003 

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

a reduction in slope occurred at higher angles of attack as shown in Figure 2.

 

angle (β) 

angle increased and more 

It was found that a 3

adequately described the pitching moment variation and the results of the 

: Polynomial coefficients of the pitching moment variation with angle of attack for different 

β = 20° 

0.10991 

-0.01876 

-0.00045 

0.00002 

The pitching moment variation with angle of attack was found to be largely linear at small angles of 

.13.  

ncreased and more 

It was found that a 3rd-

adequately described the pitching moment variation and the results of the 

: Polynomial coefficients of the pitching moment variation with angle of attack for different sideslip 

β = 30° 

0.14429 

-0.01872

-0.00006

0.00002 

 

 

0.01872 

0.00006 

 



49 
 

Figure 2.

 

.14: Pitching moment coefficient variation with angle of attack for various : Pitching moment coefficient variation with angle of attack for various : Pitching moment coefficient variation with angle of attack for various 

 

: Pitching moment coefficient variation with angle of attack for various : Pitching moment coefficient variation with angle of attack for various : Pitching moment coefficient variation with angle of attack for various sideslipsideslip angles 
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The side force coefficient variation with 

However, at high angles the slope of the line decreased slightly, as shown in 

very little vari

change in slope, with the side force variation with 

shown in 

be due to a blanketing effect of the 

at high angles of attack the negative slope suggests that the aircraft will be slightly

Figure 2.

A 3rd-order least squares regression was found to fit the data satisfactorily. 

regression and hence the coefficients used in the flight dynamic program are given in 

Table 2.7
angles of attack

Coefficient 

a0 

a1 

a2 

a3 

 

Side Force Coefficient Variation with 

The side force coefficient variation with 

owever, at high angles the slope of the line decreased slightly, as shown in 

very little variation for slight changes in angle of attack; however, at larger angles there was a rapid 

change in slope, with the side force variation with 

in Figure 2.16

be due to a blanketing effect of the 

at high angles of attack the negative slope suggests that the aircraft will be slightly

.15: Side force coefficient 

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

7: Least squares regression results for side force coefficient variation with 
angles of attack 

α = -10° 

-0.0071142

-0.007085 

-6.959E-10

1.3179E-06

Side Force Coefficient Variation with 

The side force coefficient variation with 

owever, at high angles the slope of the line decreased slightly, as shown in 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

change in slope, with the side force variation with 

16 (a) to (f). It is s

be due to a blanketing effect of the 

at high angles of attack the negative slope suggests that the aircraft will be slightly

: Side force coefficient variation

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

: Least squares regression results for side force coefficient variation with 

 α = -5°

0.0071142 -0.0018153

 -0.0089396

10 6.2803E-

06 2.4308E-

Side Force Coefficient Variation with 

The side force coefficient variation with sideslip

owever, at high angles the slope of the line decreased slightly, as shown in 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

change in slope, with the side force variation with 

It is speculated that this change in slope at high angles of attack may 

be due to a blanketing effect of the wings; however the direct cause is not known.

at high angles of attack the negative slope suggests that the aircraft will be slightly

variation with angle of attack for 0° 

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

: Least squares regression results for side force coefficient variation with 

5° α = 0°

0.0018153 -0.0019902

0.0089396 -0.0091446

-06 5.2861E

-06 2.817E

Side Force Coefficient Variation with Sideslip

sideslip angle was found

owever, at high angles the slope of the line decreased slightly, as shown in 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

change in slope, with the side force variation with sideslip

peculated that this change in slope at high angles of attack may 

however the direct cause is not known.

at high angles of attack the negative slope suggests that the aircraft will be slightly

with angle of attack for 0° 

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

: Least squares regression results for side force coefficient variation with 

α = 0° α = 5°

0.0019902 0.00734716

0.0091446 -0.0070487

5.2861E-06 -3.225E

2.817E-06 1.7791E

Sideslip Angle (º¿À
angle was found

owever, at high angles the slope of the line decreased slightly, as shown in 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

sideslip angle becoming flat near stall angle as 

peculated that this change in slope at high angles of attack may 

however the direct cause is not known.

at high angles of attack the negative slope suggests that the aircraft will be slightly

with angle of attack for 0° sideslip

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

: Least squares regression results for side force coefficient variation with 

α = 5° 

0.00734716 0.01042921

0.0070487 -0.0032439

225E-06 -3.97E

1.7791E-06 6.7076E

) 

angle was found to vary linearly at low angles. 

owever, at high angles the slope of the line decreased slightly, as shown in Figure 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

angle becoming flat near stall angle as 

peculated that this change in slope at high angles of attack may 

however the direct cause is not known.

at high angles of attack the negative slope suggests that the aircraft will be slightly

sideslip angle (β) 

order least squares regression was found to fit the data satisfactorily. 

egression and hence the coefficients used in the flight dynamic program are given in 

: Least squares regression results for side force coefficient variation with sideslip

α = 10° 

0.01042921 

0.0032439 

3.97E-06 

6.7076E-08 

to vary linearly at low angles. 

Figure 2.15.  There was 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

angle becoming flat near stall angle as 

peculated that this change in slope at high angles of attack may 

however the direct cause is not known. This is a concern as 

at high angles of attack the negative slope suggests that the aircraft will be slightly unstable.   

 

 

order least squares regression was found to fit the data satisfactorily.  The results of the 

egression and hence the coefficients used in the flight dynamic program are given in Table 2.

ideslip angle for different 

α = 15° 

0.01541615

0.00027276

-1.245E-05 

-1.084E-06 

to vary linearly at low angles. 

.  There was 

ation for slight changes in angle of attack; however, at larger angles there was a rapid 

angle becoming flat near stall angle as 

peculated that this change in slope at high angles of attack may 

This is a concern as 

 

The results of the 

.7. 

angle for different 

α = 20°

0.01541615 0.01200092

0.00027276 0.00078588

 -9.902E-08

 -3.796E-07

α = 20° 

0.01200092 

0.00078588 

08 

07 
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Figure 2.

 

.16: Side force coefficient variation with : Side force coefficient variation with : Side force coefficient variation with 

 

: Side force coefficient variation with sideslip angle for different anglangle for different anglangle for different angles of attackes of attack 
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The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

stable tendency as shown in 

in slope occu

curve in the linear region as well as a

seen in Figure 

moment for large negative 

blanketing effect of the fuselages.     

Figure 2.

 A 3rd-order linear regression was found to fit the data well and 

moment behaviour. 

dynamic program are given in 

Table 2.8
attack 

Coefficient 

a0 

a1 

a2 

a3 

 

Rolling Moment Coefficient Variation with 

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

stable tendency as shown in 

in slope occurred.  With an increase in magnitude of angle of attack, there was a steepening of the 

curve in the linear region as well as a

Figure 2.18 (a)

moment for large negative 

blanketing effect of the fuselages.     

.17: Rolling moment

order linear regression was found to fit the data well and 

moment behaviour. 

dynamic program are given in 

8: Least squares regression results for rolling moment variation with 

α = -10° 

0.00528417

-0.0006466

-9.049E-06

1.3842E-07

Moment Coefficient Variation with 

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

stable tendency as shown in Figure 

With an increase in magnitude of angle of attack, there was a steepening of the 

curve in the linear region as well as a

(a) to (f).  It was no

moment for large negative sideslip

blanketing effect of the fuselages.     

moment coefficient variation with 

order linear regression was found to fit the data well and 

moment behaviour.  The results of this regression and hence th

dynamic program are given in Table 

: Least squares regression results for rolling moment variation with 

 α = -5°

0.00528417 0.00407978

0.0006466 -0.001117

06 -3.741E-

07 4.6779E-

Moment Coefficient Variation with 

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

Figure 2.17.  It was also noted that

With an increase in magnitude of angle of attack, there was a steepening of the 

curve in the linear region as well as a more pronounced decrease in slo

It was noted that

sideslip angles. 

blanketing effect of the fuselages.      

coefficient variation with 

order linear regression was found to fit the data well and 

The results of this regression and hence th

Table 2.8. 

: Least squares regression results for rolling moment variation with 

5° α = 0°

0.00407978 0.00240225

0.001117 -0.0010764

-06 1.616E

-07 2.354E

Moment Coefficient Variation with Sideslip

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

It was also noted that

With an increase in magnitude of angle of attack, there was a steepening of the 

more pronounced decrease in slo

ted that, at an angle of attack of 20°

angles.  The cause for this is unknown, but may be due to a 

coefficient variation with sideslip

order linear regression was found to fit the data well and 

The results of this regression and hence th

: Least squares regression results for rolling moment variation with 

α = 0° α = 5°

0.00240225 0.00192936

0.0010764 -0.0014423

1.616E-06 -1.999E

2.354E-07 1.0894E

Sideslip Angle (

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

It was also noted that, at higher side

With an increase in magnitude of angle of attack, there was a steepening of the 

more pronounced decrease in slo

at an angle of attack of 20°

The cause for this is unknown, but may be due to a 

sideslip angle at an angle of attack of 0°

order linear regression was found to fit the data well and was

The results of this regression and hence the coefficients used in the flight 

: Least squares regression results for rolling moment variation with 

α = 5° 

0.00192936 0.00185443

0.0014423 -0.0014066

1.999E-06 -1.742E

1.0894E-06 7.3168E

ngle (ºÁÀ) 

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

at higher sideslip angles

With an increase in magnitude of angle of attack, there was a steepening of the 

more pronounced decrease in slope at high 

at an angle of attack of 20°, there was a dip in rolling 

The cause for this is unknown, but may be due to a 

angle at an angle of attack of 0°

was used to describe the rolling 

e coefficients used in the flight 

: Least squares regression results for rolling moment variation with sideslip angle for different an

α = 10° 

0.00185443 

0.0014066 

1.742E-07 

7.3168E-07 

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

slip angles, a reduction 

With an increase in magnitude of angle of attack, there was a steepening of the 

at high sideslip angles as 

there was a dip in rolling 

The cause for this is unknown, but may be due to a 

 

angle at an angle of attack of 0° 

used to describe the rolling 

e coefficients used in the flight 

angle for different an

α = 15° 

-0.0095291

-0.0019763

2.0831E-05

1.8134E-06

The rolling moment coefficient followed a primarily linear trend with negative slope, indicating a 

a reduction 

With an increase in magnitude of angle of attack, there was a steepening of the 

angles as 

there was a dip in rolling 

The cause for this is unknown, but may be due to a 

used to describe the rolling 

e coefficients used in the flight 

angle for different angle of 

α = 20°

 -0.0083153

 -0.002432

05 1.5522E-05

06 2.3682E-06

α = 20° 

0.0083153 

0.002432 

05 

06 
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Figure 2.

 

.18: Rolling moment coefficient variation with : Rolling moment coefficient variation with : Rolling moment coefficient variation with 

 

: Rolling moment coefficient variation with sideslipslip angle for different angles of attackangle for different angles of attackangle for different angles of attack 
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The yawing m

linear for small angles of 

there was a red

recovery of yawing moment and the slope became positive. 

attack but diminished at high angles of attach as seen in 

Figure 2.

To capture the dip in yawing moment at high 

results of the 

Table 2.9
of attack 

Coefficient 

a0 

a1 

a2 

a3 

a4 

a5 

 

Yawing Moment Coefficient Variation with 

The yawing moment 

linear for small angles of 

there was a reduction in yawing moment and the slope became negative. 

recovery of yawing moment and the slope became positive. 

attack but diminished at high angles of attach as seen in 

.19: Yawing moment 

To capture the dip in yawing moment at high 

results of the regression are shown in 

9: Least squares regression results for yawing moment variation with 
 

α = -10° 

-0.0017320

0.00178371

-5.126E-06

-2.483E-06

3.871E-09

1.579E-09

Yawing Moment Coefficient Variation with 

oment coefficient 

linear for small angles of sideslip

uction in yawing moment and the slope became negative. 

recovery of yawing moment and the slope became positive. 

attack but diminished at high angles of attach as seen in 

: Yawing moment coefficient

To capture the dip in yawing moment at high 

egression are shown in 

: Least squares regression results for yawing moment variation with 

 α = -5°

0.0017320 -0.0002301

0.00178371 0.00202250
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Figure 2.
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2.8.4 Control Effects 

The effects of the control surfaces were also tested statically at each angle of attack and sideslip angle 

in increments of 2°.  From this data, the effect of each control surface could be determined by 

comparing each data set to that of the baseline wind tunnel results previously presented.  A set of 

polynomials were created that best represented the relationship between the aerodynamic coefficient 

and the control deflection at each angle of attack and sideslip angle.  This resulted in a number of 3D 

lookup tables containing the coefficient of a single term of the polynomial for a number of different 

sideslip angles and angles of attack.  This meant that the coefficients of the polynomial would be 

found in a set of lookup tables and then the control surface deflection, being the independent variable, 

would be used to determine the extent of the change in all coefficients.   

The number of relations and trends associated with all of the controls at all angles of attack and 

sideslip angles is considerable.  For each control surface, using angle of attack increments of 5° and 

sideslip angle increments of 10°, 210 trend lines are generated. Thus, for three types of control 

surfaces, a total of 630 different curves, with their polynomial coefficients, are required to describe 

fully the effects of controls on the aircraft.  Unfortunately, the majority of the control data only 

extended to a control deflection of ± 15°.  This angle was well within the linear region, and as such 

the majority of polynomials are first-order.  It is also noted that this lack of data will limit the 

maximum and minimum allowable deflections set in the flight dynamic model, as extrapolation of 

data was not conducted at any point in the flight dynamic code.  All of these relations cannot be 

included in this dissertation for practical reasons; however, the full set of control data can be found in 

Appendix C. The primary effects, and in some cases the secondary effects, of controls are, however, 

presented in the figures that follow.   

Elevator  

The primary effect of elevator deflection is to cause a change in pitching moment of the aircraft.  This 

trend was largely linear as demonstrated by Figure 2.21 (a) to (e), with large variations in pitching 

moment seen at large angles of attack and sideslip angles.  The secondary effects, while present, were 

small and are thus not included here. However, they were implemented in the flight model, the details 

of which can be found in Appendix C.        
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 4965c = �44�Åcie5c: Y �4`�Åcie5c:` Y ⋯ Y �4È�Åcie5c:È  (2.76) 

 
where �14 refers to the coefficient of the first term of the polynomial, at C1.  

A simple linear interpolation is then used, firstly between 1965c and 2965c and then 

between 3965c and 4965c using: 

 "965c =  Z2965c − 1965c[5 Z� − ��[ Y 1965c (2.77) 

 �965c =  Z4965c − 3965c[5 Z� − ��[ Y 3965c (2.78) 

 
Finally, interpolation is conducted between "965c ��� �965c, resulting in the final coefficient to be 

used in the coefficient build up equations described in Section 2.7.2. 

 965c = �965c − "965c10 Z� − ��[ Y "965c (2.79) 

 
This process was repeated for all baseline characteristics and all control characteristics, the details of 

which can be found in Appendix C. 

2.8.6 Dynamic Effects 

Unfortunately, the dynamic effects were not directly measured in the wind tunnel.  However, they are 

extremely important in describing the dynamic behaviour of an aircraft.  In order to determine these 

characteristics, a number of different techniques were used as outlined in the preceding sections.  

Ultimately, the variation of all the aerodynamic coefficients, with pitch rate, roll rate, yaw rate, and 

rate of change of angle of attack are required. Some of these can be neglected as they can be 

considered to be negligible when compared to the other effects. 

Aerodynamic Variations with Pitch Rate (q) 

The aerodynamic variations with pitch rate stem largely from the effects of the horizontal tail, with 

some contribution from the wings and fuselage.  The change in lift coefficient can be determined by 

examining the change in flow pattern at the tail, shown in Figure 2.28. 
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where =H is the tail area and ÐH is a tail efficiency factor. From this and assuming that the change in 

pitching moment with pitch rate is also primarily due to the horizontal tail, we can deduce that the 

change in pitching moment can be given as [41]: 

 Δ�� = Δ��
&H@̅ =  �H@W�Î�ÏX arctan x&H��a9{ =H=>6? ÐH &H@̅  (2.85) 

 
where @̅ is the mean aerodynamic chord of the wing.  It is assumed that the change in drag with pitch 

rate is negligible and can be ignored. Similarly, it is assumed that there will be no real change in side 

force, rolling moment and yawing moment with pitch rate. Thus these have been set to zero.  

In summary, Eqs. (2.86) to (2.91) are used to determine the change in the aerodynamic coefficients 

due to pitch rate.  

 Δ�� = �H@W�Î�ÏX arctan x&H��a9{ =H=>6? ÐH (2.86) 

 Δh� = 0 (2.87) 

 ΔÒÓ = �H@W�Î�ÏX arctan x&H��a9{ =H=>6? ÐH &H@̅  (2.88) 

 ΔÔÓ = 0 (2.89) 

 ΔCÕÓ = 0 (2.90) 

 ΔÖÓ = 0 (2.91) 

 

In order to use this, the properties of the horizontal tail are required. The properties of the horizontal 

tail were extracted from the wind tunnel data by taking the sum of moments about the centre of 

gravity, Eq. (2.92) [37], as shown in Figure 2.29.  

 ↻}g6   �j� = ��ØÙ Y �AÚZℎ − ℎ�[@ Û −  &H�H Y ��C (2.92) 

 

where ℎ refers to a percentage chord position of the centre of gravity and ℎ� refers to the percentage 

chord position of the aerodynamic centre. � and � refer to the moments and lift generated by the 

various surfaces and are defined in Figure 2.29. 
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Figure 2.29: Force diagram of the forces in the X-Z plane of a typical aircraft configuration 

The wind tunnel data records total lift.  Hence, we can break up the lift into components due to the 

wing and to the tail, using [37]: 

 ↑}g6  �Hce9: = �AÚ Y �H (2.93) 

 ∴ �AÚ = �Hce9: − �H (2.94) 

 
Substituting this into the moment equation above, results in:  

 �j� = ��ØÙ Y ��C Y  �Hce9:Zℎ − ℎ�[@ Û −  WZℎ − ℎ�[@ Û Y &HX�H (2.95) 

 
Converting to coefficient form and rearranging results in an expression to convert total lift and 

moment coefficients to an estimate for tail lift coefficient, we obtain  

 �Þ = §� Y  �C��ß�Zℎ − ℎ�[ − §àáZℎ − ℎ�[ =H=>6? Y �H  
(2.96) 

 
Using the results from this equation, one can extract the wing-body lift coefficient variation, using  

 �âã = �C��ß� − �Þ
=H=>6? (2.97) 

  

If this equation is used for each wind tunnel data point, the tail lift characteristics, shown in Figure 

2.30, can be determined.  

lT

hc
h0c

LTLWBMWB MT
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Figure 2.
from the wind tunnel data

.30: Horizontal t
from the wind tunnel data

 

 

 

Horizontal tail lift coefficient variation with angle of attack at various
from the wind tunnel data 

coefficient variation with angle of attack at variouscoefficient variation with angle of attack at variouscoefficient variation with angle of attack at variouscoefficient variation with angle of attack at various sideslipsideslip angles as extracted 

 

as extracted 
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Aerodynamic Variations with Roll Rate (p) 

The aerodynamic variations with roll rate are very important to describe the roll damping of the 

aircraft.  It is also more difficult to determine when compared to the effects of pitch rate and yaw rate 

as the roll rate causes a change in velocity that varies across the wing span. This in turn causes a 

change in angle of attack which varies along the wing span.  Thus, in order to determine the effect of 

roll rate, a strip theory approach was used as shown in Figure 2.31.  The wing was divided into 

chordwise strips of width �/, and the change in angle calculated at each station.  The change in lift 

was then determined for each station and a numerical integration performed to estimate the changes in 

lift and rolling moment.     

 

Figure 2.31: Diagram showing the nomenclature and conventions used in strip theory to determine the variation 
on aerodynamic coefficients with roll rate 

Examining the aerofoil section at a point y, as shown in Figure 2.31, it can be shown that the aerofoil, 

already at an angle of attack �, experiences a change in angle of attack.  Assuming the roll is to the 

right and looking at the right wing, the change in angle of attack, from Figure 2.32, is given by: 

 ∆� =  � Y  �′ (2.98) 

  

b

y dy

c
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where, 

 
�Ì = arc tan x �/�a9{ (2.99) 

 

 

Figure 2.32: Side view of an aerofoil section undergoing a roll, or downward velocity 

Once this change in angle has been determined, the changes in lift coefficient and rolling moment can 

be determined using Eqs. (2.100) and (2.101) adapted from [37]. In these cases the drag term was 

neglected. 

Δ�� =  1=>6?   ì x@̅�aV@W�Î�ÏX arctan x �/�a9{ cos xarctan x �/�a9{{ Y hí sin xarctan x �/�a9{{{ �/V̀
3V/`  (2.100) 

Δ�� =  1=>6?   ì x@̅�aV@W�Î�ÏX arctan x �/�a9{ cos xarctan x �/�a9{{ Y hí sin xarctan x �/�a9{{{ /�/V̀
3V/`  (2.101) 

 

This is then integrated, numerically, along the span of the wing using Simpson's integration. A similar 

process was followed for the change in side force coefficient, with the assumption that the majority of 

the change in side force is generated by the vertical tail. Thus the integration is performed from the 

base of the fin to the top of the fin.  

The change in side force coefficient is given by (2.102) also adapted from [37].  

 Δ�� =  1=>6?   ì x@Ieïïïï�Ie@W�Î�ÏX arctan x �ℎ�a9{{ �ℎd
�  

(2.102) 
 

 

 

  

py py Vwa
α’

α
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Aerodynamic Variations with Yaw Rate (r) 

The aerodynamic variations with yaw rate stem largely from the vertical fin and wings. It is assumed 

that the effect of the fuselage is negligible.  Three main changes occur with yaw rate: first, the vertical 

fin causes a change in side force which, in turn, results in a yawing moment change.  In a similar 

manner to that of pitch rate, the angle of the vertical fin changes with yaw rate and there is also a 

rolling moment change due to the difference in velocity along the span of the wing. It is assumed that 

there is no contribution to drag, lift and pitching moment. The change in side force with yaw rate is 

largely due to the vertical fin, with some effects from the fuselage.  However, it is thought that the 

effect of the vertical fin far outweighs that of the fuselage. Thus, the effect of the fuselage is neglected 

for this case. The change in side force can be determined with the aid of Figure 2.33.  

 

Figure 2.33: Diagram showing the effect of yaw rate on the local flow direction at the tail 

A positive yaw to the right results in a movement of the vertical tail to the left when looking at Figure 

2.33.  This increases the local angle of attack at the tail, resulting in an increase in lift force to the 

right, as well as inducing a yawing moment that tries to align the aircraft to the wind vector.  Thus the 

side force is positive, while the yawing moment is in the negative sense.  

β
Vwa

β
β’

rLt
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In a similar manner to the pitching moment derivatives, the lift curve slope of the vertical tail at the 

increased angle is examined, but the total contribution is limited by the change in angle due to the 

yawing moment. 

Thus 

 
∆� = ∆�óC

=IH=>6? ÐIH (2.103) 

 
and the angle at the tail is:  

 �H97: =  � Y �′ (2.104) 

 
where, 

 �Ì = arctan x&IH��a9 { (2.105) 

 
This allows the determination of the change in side force coefficient using, 

 Δ�� = �IH@W�Î�ÏX arctan x&IH��a9 { =IH=>6? ÐIH (2.106) 

 

From this and assuming that the change in yawing moment with yaw rate is also primarily due to the 

vertical tail, we can deduce that the change in yawing moment coefficient is given by  

 ΔÖô = −Δ��
&IHE =  −�IH@W�Î�ÏX arctan x&IH��a9 { =IH=>6? ÐIH &IHE  (2.107) 

 

Similarly to the pitching moment equation, the characteristics of the vertical tails are required. This 

was achieved by following a similar procedure to the horizontal tail data extraction.  Instead of 

examining lift and pitching moment, the data pertaining to the side force and yawing moments of the 

aircraft were used. The detailed procedure is not detailed here; however, the characteristics of the 

vertical tails are presented in Figure 2.34. 
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Figure 2.
from the wind tunnel data

 

.34: Vertical tail lift coefficient variation with angle of attack at various 
from the wind tunnel data

Vertical tail lift coefficient variation with angle of attack at various 
from the wind tunnel data 

Vertical tail lift coefficient variation with angle of attack at various 

 

Vertical tail lift coefficient variation with angle of attack at various Vertical tail lift coefficient variation with angle of attack at various Vertical tail lift coefficient variation with angle of attack at various sideslipsideslip angles as extracted 

 

angles as extracted 
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Aerodynamic Variations with Rate of Change of Angle of Attack (¼T ) 
The aerodynamic variations with rate of change in angle of attack stem primarily from a time lag 

effect of the downwash at the tail. This is determined using (2.108), as outlined in [41].  

 ∆� = 2�H97: x&+@̅ { x 2�¥"�F{ s =H=>6?t ÐH�T  (2.108) 

 

The change in pitching moment is then given by (2.109) [41]. 

 ∆� = 2�H97: x&+@̅ {
` x 2�¥"�F{ s =H=>6?t ÐH�T  (2.109) 

 

The variation of the other aerodynamic parameters with rate of change in angle of attack is considered 

negligible and has been excluded from the flight dynamic analysis.  

2.9 Navigation 

The navigation model used in the flight dynamic model provides two outputs that are useful in 

following the flight path of the aircraft.  The first model is centred about an arbitrary point on the 

Earth's surface and assumes that the Earth is flat and that the distance travelled in the time step is 

small.  This is useful to examine the actual ground path taken by the aircraft.  The second navigation 

model calculates the latitude and longitude as if the aircraft were actually flying.  This is then sent to 

the autopilot for its navigational algorithms.  

To determine the distance travelled from an arbitrary origin, the ground velocity in the north and 

easterly directions is required.  This is determined through an axis transformation as discussed in 

Section 2.4, from which the velocity in the north direction can be derived.  This is given as : 

�6  =  @ÄõZ*[@ÄõZ([�V  Y  W@ÄõZ*[õ¨�Z([õ¨�Z)[ − õ¨�Z*[@ÄõZ)[X�V  
Y  W@ÄõZ*[õ¨�Z([@ÄõZ*[ Y õ¨�Z*[õ¨�Z)[X	V  Y  �  A7i0 

(2.110) 
 

 

The velocity in the east direction is given as:  

�6    =  õ¨�Z*[@ÄõZ([�V  Y  Wõ¨�Z*[õ¨�Z([õ¨�Z)[ Y @ÄõZ*[@ÄõZ)[X�V  
Y  Wõ¨�Z)[õ¨�Z([@ÄõZ)[ − õ¨�Z*[@ÄõZ)[X	V  Y �K A7i0 

(2.111) 

 

Using Eqs. (2.110) and (2.111) the distance from origin is simply determined using 
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 � c5ed = � c5ed Y ì �6�+ (2.112) 

 �K9%e = �K9%e Y ì �6�+ (2.113) 

 

Equations (2.112) and (2.113) when plotted, provide an indication of the ground track followed by the 

aircraft.  

For the autopilot, the latitude and longitude of the aircraft are required.  This is determined using Eqs. 

(2.114) and (2.115), as developed in [42]. 

��+¨+2�F2 = arcsin ZsinZ��+¨+2�F1[ cos x ���{ Y cosZ��+¨+2�F1[ sin x ���{ cos Z���@,[ (2.114) 

�Ä��¨+2�F2 = �Ä��¨+2�F1 Y �+��2ZsinZ+��@,[ sin x ���{ cosZ��+¨+2�F1[ , cos x ���{
− sinZ��+¨+2�F1[ ∗ sin Z��+¨+2�F2[[ 

(2.115) 

 

where, for the equations above,  � is the distance travelled (in km), �� is the radius of the earth, 

which has a mean value of 6371km.  

To use the above equations, the distance travelled as well as the bearing are required. These are easily 

calculated using Eqs. (2.116) and (2.117), respectively.  

 � = ì ÷=�+ (2.116) 

 ���@, = atan x�6�6 { (2.117) 

 

The ground speed, ÷= in Eq. (2.116), is given by: 

 ÷= =  ø�6̀ Y �6̀  (2.118) 

 

2.10 Auxiliary Functions 

2.10.1 Servo Model 

The servo model attempts to simulate very basically the lag of a servo motor. This adds to the fidelity 

of the flight dynamic model, as the servos typically are slow in comparison to the autopilot 

computations.  Servos, typically, have a speed specification that is dependent on voltage and specified 

as a single value of number of seconds to travel 60°.  For the servo model, a simplistic approach was 
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3.3 Ardupilot Control Structure 

The Ardupilot Mega makes use of cascading PID controllers to achieve the desired flight control.  

This starts with the inner PID loops which control the elevators and ailerons to achieve a desired pitch 

and roll angles. The rudder is used to control the lateral acceleration of the aircraft, ensuring a co-

ordinated turn.  The pitch and roll angles, used in the inner loop as set point values and termed 

NavPitch and NavRoll, are controlled through another PID controller that makes use of airspeed and 

heading as set points. Thus the elevator is used to control airspeed via a pitch angel and bank angle is 

controlled based on the desired heading.  Finally, altitude and airspeed are used to control the position 

of the throttle.  A block diagram showing the control structure is given in Figure 3.2. 

 

Figure 3.2: Block diagram showing the control structure of the Ardupilot mega  
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3.4 Autopilot Flight Modes 

The Ardupilot has a number of flight modes. These flight modes are as follows. 

• Stabilise 

• FBW A 

• FBW B 

• Auto 

o Circle 

o Loiter 

o Takeoff 

o Land 

Of importance to the control laws are the first four. The last four flight modes are all essentially 

"Auto" mode, with navigational macros being run in the background.  

3.4.1 Stabilise 

The "Stabilise" flight mode is the most basic flight mode available other than manual.  This flight 

mode, when engaged, returns the aircraft to level flight.  This flight mode is thus often used to train 

new pilots.  This flight mode only makes use of the inner control loop with the NavRoll and NavPitch 

set points being set to 0.  If a non-zero command is received from the RC transmitter, the autopilot 

uses that command.  Hence, this mode is a form of assisted manual flight.  Throttle management and 

navigation is performed by the pilot.  

3.4.2 FBW A 

The "Fly by Wire A" flight mode is similar to "Stabilise" as only the inner loop is functional. 

However, in this case, the set points, NavPitch and NavRoll, are set to a value other than 0 by the RC 

transmitter.  The position of the RC transmitter indicates a proportional bank angle or pitch angle, 

based on the maximum allowable pitch and roll setting of the autopilot.  For example, if the maximum 

bank angle of the autopilot is 45°, moving the aileron control stick to the far left would result in a 

bank angle of 45°, while moving the stick to the half way point would result in a bank angle of 22.5°. 

Thus "FBW A" gives a form of angle control.  This makes the aircraft particularly easy to fly as the 

aircraft will maintain a turn with a single stick movement.  However, throttle management and 

navigation is still performed by the pilot.  
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3.4.3 FBW B 

The "Fly by wire B" flight mode is similar to "FBW A" in roll control but starts to include the middle 

loop for airspeed and altitude management.  The NavPitch set point is no longer controlled by the 

pilot but, rather, by the airspeed while throttle is controlled by the autopilot using both kinetic energy 

and potential energy obtained from airspeed and altitude measurements.  Thus all the pilot is required 

to do is navigate the aircraft.  

3.4.4 AUTO 

The "Auto" flight mode incorporates all control loops and only requires the operator of the system to 

enter waypoints and commands such as take off, land, loiter, or circle.  In this case, the heading is 

controlled by examining the current position of the aircraft and calculating the heading to fly to get to 

the next waypoint.  

3.5 PID Controllers 

The Ardupilot makes use of a common PID controller class that searches for the correct proportional, 

integral and derivative gains depending on the PID controller called.  There are also built-in 

integration wind up protectors in this class. The modified implementation of this class found in the 

Ardupilot code [44] is presented below.   

PID control can be separated into its three components and then simply summed together; thus each 

section of the PID controller will be presented individually. 

The proportional control is based on the error from the desired state and is generally given by: 

 ���Ä� = =F+�Ä¨�+ − �F�õ2�F� (3.1) 

 

 The error is then used to determine the output of the proportional controller. This output is given as:  

 <2+�2+ = ù� × ���Ä� (3.2) 

 

The integral controller examines the time history of the error and attempts to reduced the past history 

to a minimum.  This is simply done by performing a numerical integration of the error at each time 

step. This is given by: 

 ��+F���& = ��+F���& Y 12 Z���Ä� Y ��F¦¨Ä2õ���Ä�[ × �+ (3.3) 

 

  



83 
 

The output of the integral controller is then given by: 

<2+�2+ = ù¨ × ��+F���& = ù¨ × û��+F���& Y 12 Z���Ä� Y ��F¦¨Ä2õ���Ä�[�+ü (3.4) 

 

A form of integral wind up protection is included in the integral controller.  This is simply 

implemented by setting a maximum output value.  

The derivative controller aims to reduce overshoot by examining the rate of change of error. This is 

given by: 

 �F�¨¦�+¨¦F = ���Ä� − ��F¦¨Ä2õ ���Ä��+  (3.5) 

 

The output of the derivative controller is then given by: 

<2+�2+ = ù� × �F�¨¦�+¨¦F = ù� x���Ä� − ��F¦¨Ä2õ ���Ä��+ { (3.6) 

 

 The output of the completed controller is finally given by: 

<2+�2+ =  ù� × Z=F+�Ä¨�+ − �F�õ2�F�[
Y  ù¨ û��+F���& Y 12 Z���Ä� Y ��F¦¨Ä2õ ���Ä�[ × �+ü
Y  ù� x���Ä� − ��F¦¨Ä2õ ���Ä��+ { 

(3.7) 
 

  

The full implementation of the PID controllers can be found in the "PID" class of the simulation 

program, found in Appendix C.   

3.6 Inner Loop 

The inner control loop, shown in Figure 3.3 , operates the control surfaces and throttle directly.  The 

loop runs at approximately 50Hz depending on the required processing time of the ATmega Chip. 

However, for the simulations it has been assumed that this 50Hz is consistent and accurate.  The 

ailerons and elevators are controlled by the NavRoll and NavPitch variables which are set points for 

the aircraft to fly to.  A standard PID feedback loop is used to achieve the desired response 

characteristics.  In addition to the PID loop, the elevator control is complimented with a feedforward 

command based on bank angle.  The rudder is controlled using a PID loop with a set point of lateral 

acceleration, the lateral acceleration being set to 0, to achieve a coordinated turn.  The rudder is also 

complimented by a feedforward command based on aileron deflection.  The throttle control is fed 
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3.8 Outer Loop 

The outer loop simply consists of the calculation of the heading to fly waypoints. The equation used 

to find the bearing between two waypoints is, from [42], given as:  

=F+ �F��¨�� =  �+��2Zõ¨�ZΘA¤ − Θ�����	
[@ÄõZΨ��[, @ÄõZΨ�����	
[õ¨�ZΨ��[− õ¨�ZΨ�����	
[@ÄõZΨ��[@ÄõZΦ�� − Φ�����	
[[ 
(3.15) 

 

This forms the last part of the simplified autopilot code. There are, however, many nuances and subtle 

logic implementations. These have not been included here, but the full autopilot code can be 

examined in the "Autopilot Class" of the simulation program, presented in Appendix C.  

After a brief trial and error tuning process, a satisfactory set of PID gains were determined for the 

autopilot  This process was conducted due to the difficulties associated with tuning cascading PID 

controllers. The process followed was as suggested by the developers of the Autopilot code, and 

involved tuning the Inner loop PID controllers, then tuning the middle loop controllers and finally the 

outer loop controllers in turn. A set point was chosen for each PID controller and the response to a 

disturbance observed. The gains were then adjusted until the response was deemed satisfactory.  The 

gains as determined through this process and used throughout the remainder of the simulations are 

presented in Table 3.1. 

Table 3.1: PID gain settings used in all control simulations 

PID controller Proportional Gain Integral gain  Der ivative Gain 

Pitch PID 0.8 0.3 0.1 

Roll PID 0.6 0.2 0.1 

Yaw PID 0.0 0.0 0.0 

Airspeed PID 0.1 0.1 0.15 

Energy PID 0.03 0.005 0.01 

Heading PID 1.0 0.05 0.0 
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4 Chapter 4 – Development of Adaption Algorithm 

4.1 Chapter Outline 

This chapter forms the backbone of the design of an intelligent, fault-tolerant control system for an 

UAS.  As such, the chapter will outline the proposed control strategy and the reasoning behind the 

decisions made in the design of the fault-tolerant control system.  This will be followed by the 

development of the fuzzy logic adaption algorithm with the membership functions, rule base, 

inference engine and defuzzification process reviewed and the implementation thereof detailed in full.  

This is followed by the development of the allocation algorithm with attention paid to the 

practicalities of this system.  Verification of the allocation algorithm's function will be performed.        

4.2 Proposed Control Logic 

The strategy to be developed is a two pronged approach that includes the use of a model reference 

fuzzy logic adaption algorithm as well as a control allocation algorithm.  Figure 4.1 shows the 

proposed strategy and how the strategy relates to the existing autopilot structure.  The model reference 

fuzzy logic adaption algorithm is the primary focus of this research and allows the autopilot system to 

become “Intelligent”.  As outlined in Chapter 3, the autopilot makes use of a number of PID 

controllers to control the aircraft.  Each of these controllers (pitch, roll, airspeed, altitude and heading) 

will be assigned to a fuzzy logic adaption algorithm, as indicated in Figure 4.1, with each module 

tracking a specified ideal model.  The adaption algorithm will then adjust the gains of each PID 

controller based on the feedback from the aircraft, to ensure that the response of the aircraft matches 

the defined ideal model.  It was hypothesised that this will create a system that is tolerant to changes 

in aircraft behaviour due to numerous failures or disturbances.  It is intended that the adaption 

algorithm will be able to maintain the control performance of the aircraft for the tested failures.             

The development of a control allocation algorithm stemmed from some of the preliminary simulations 

conducted which showed that, under certain circumstances, the aircraft was incapable of meeting the 

desired flight path as the controls had reached their physical limits.  In these cases, there was 

insufficient control authority remaining to control the aircraft adequately and, had an adaption 

algorithm been implemented in isolation, no positive difference would have been made.  It is possible 

that, in some cases, an adaption algorithm may induce instabilities into the system rather than provide 

fault-tolerance.  Thus, it is the opinion of the author that some form of control allocation is vital in any 

fault-tolerant system.  The chosen control allocation algorithm is the Daisy Chaining method which 

distributes the required control authority to multiple control effectors as required, as indicated in 

Figure 4.1.  It is theorised that it will aid the fuzzy logic adaption algorithm in correct tracking and 

prevent instabilities arising due to insufficient control authority.  
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Figure 4.1: Block diagram showing lock diagram showing the proposed control logic to be developed in thethe proposed control logic to be developed in thethe proposed control logic to be developed in thethe proposed control logic to be developed in the design of an intelligent faultdesign of an intelligent fault-tolerant UAS tolerant UAS  
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4.3 Fuzzy Logic Adaption Algorithm 

Fuzzy logic, developed by Lotfi Zadeh [8], essentially creates a form of artificial intelligence by 

allowing a computer to determine the extent to which a condition is true.  Based on this condition, an 

output can be given.  Fuzzy logic makes use of five different processes that were discussed in Section 

0, but are summarised for convenience below.  These processes are as follows. 

1. Pre-processing 

2. Fuzzification  

3. Rule Base 

4. Inference Engine 

5. Defuzzification 

Typically, fuzzy logic is used to describe a data set or to control a system directly.  In this case, fuzzy 

logic will be used to adjust the values of the gains of each PID control loop of the autopilot. 

4.3.1 Ideal Model Development 

It was decided to make use of a form of model reference control to determine the desired behaviour of 

the system.  This required a simple but effective method to determine the change in a controlled 

parameter that is a realistic response to a command.  An ideal response was generated that is loosely 

based on a first-order system.  To achieve this, a simple model that is proportional to the error 

between the command and current measured value of the controlled variable was developed.  This 

ideal model is given by (4.1).  This determines the next value of the commanded variable based on the 

previous state of the variable, the size of the error between the ideal and command and the step size.   

 ��F�&7}4 = ��F�&7 Y ���+ (4.1) 

 

where, � is a constant that increases or decreases the response time of the ideal behaviour and � is the 

difference between the ideal variable and the command, given by: 

 � = Ä����� −  ��F�&7 (4.2) 

 

The first-order behaviour described above was chosen as, typically, it is desirable to have little to no 

overshoot in flying operations while still maintaining a reasonably quick response.  The selection of � 

is critical to the systems performance and its selection results in a method to tune the adaption 

algorithm.  Typical responses to a step function for various values of  � are shown in Figure 4.2.  

Intuitively, higher values of � provide a faster response and are more appropriate for aircraft control 

when compared to lower values, as the ideal response becomes too slow to be effective. 
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Proportional Gain 

The proportional controller is arguably the most important in a PID controller as it initiates primary 

corrective behaviour of the system after a disturbance or set point change.  In order to establish the 

correct rules to follow, a series of step inputs was considered.  When the proportional gain is too low, 

the response is typically slow with little to no overshoot of the controlled parameter.  When the 

proportional gain is high, the rise time is reduced; however, there is generally an overshoot of the set 

point, often resulting in a damped harmonic type motion.  If the proportional gain is increased further, 

the damping of this harmonic motion reduces and eventually becomes undamped, eventually resulting 

in a dynamically unstable condition.  The fuzzy logic adaption rule base needs to consider the 

following features of a typical response to a step input:  

• Undershooting behaviour 

• Overshooting behaviour 

• Steady-state error 

These features will be identified by examining the direction of the input to the system and the 

resulting error from the ideal model.  If the response is slower than the ideal model, this represents an 

undershoot condition. If the response is greater than the ideal model then this represents an overshoot 

condition. If the error is non-zero and the rate of change of error is zero then there is a steady-state 

error.  

The rule base was formulated with the aid of Figure 4.7.  In the figure, a series of step functions (red 

line) have been used to generate a typical response.  The black line indicates the response of a typical 

system, while the blue line indicates the ideal model to be followed.  At the first step function, the 

ideal model responds faster to the step change than the real model, indicating an undershoot condition.   
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Table 4.1: Table indicating the rule base for the proportional gain constant 
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Fractionally 

NS No Change 
Increase 

Fractionally 
No Change 

Decrease 

Fractionally 
No Change 

Z 
Decrease 

Fractionally 
No Change No Change No Change 

Increase 

Fractionally 

PS Decrease Slightly 
Decrease 

Fractionally 
No Change 

Increase 

Fractionally 
Increase Slightly 

P Decrease  Decrease slightly 
Increase 

Fractionally 
No Change Increase  

 

Integral Gain 

The integral gain behaves differently to the proportional gain.  When the proportional gain is used in 

isolation, it will be observed that a steady-state error is present. This is inherent in any proportional 

controller as an error is required to initiate a command.  The integral part of the PID controller 

examines the past history of the error through the use of the integral and thus provides a correcting 

output that reduces the steady-state error to zero over time.  The higher the integral gain, the faster the 

steady-state error is reduced.  However, if the integral gain is too high, the contribution to the output 

by the integral portion of the controller will be excessive and it is likely that there will be excessive 

overshoots. The rule base of the integral gain was developed with the aid of Figure 4.8 which shows 

the typical behaviour of a system without any integral gain: again, the red line indicates the 

commanded step input while the blue line indicates the ideal behaviour of the system.  In contrast to 

the proportional gain adjustment, which tracks the ideal model, the integral rule base essentially tracks 

the original set point of the PID controller. The concept of ideal model tracking or set point tracking, 

for this ideal model,  are equivalent as the steady state of the ideal model should equate to the final set 

point of the system.  

It is clear in Figure 4.8 that a steady-state error exists which is confirmed by examining the rate of 

change in error.  Thus the integral gain needs to be increased for the system. To determine when this 

steady-state point has occurred, the rate of change of error is examined.  When the rate of change of 

error approaches zero the integral gain can be increased to force the system to reach the ideal model.   

The integral gain, however, should not remain too large as this may cause instability in the system and 

thus a method of gain reduction should be considered.  However, this should be considered carefully 

as, once the ideal model has been tracked, the integral gain cannot be lowered as this will impact on 

the ability of the system to maintain the desired set point.  The potential exists to decrease the integral 
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Derivative Gain 

The derivative gain is used to prevent overshoot of the controlled parameter. Thus, unlike the integral 

gain which was modified when the rate of change in error was low, the derivative gains should only 

be adjusted when the rate of change in error is large.  Thus when an overshoot condition is present 

and the rate of change in error is to increase this, the derivative gain should be increased to reduce this 

overshoot; conversely, when there is little rate of change in error, then no change should be made to 

the derivative gain. Should the derivative gains cause a lag in the ability of the system to reach steady 

state then the gains should be reduced.  The rule base, as used in the simulation code, is presented in 

Table 4.3. 

Table 4.3 Table indicating the rule base for the derivative gain constant 
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N 
Decrease 

Fractionally 
Decrease Slightly Increase  Increase Slightly 

Increase 

Fractionally 

NS No Change 
Decrease 

Fractionally 
Increase Slightly 

Increase 

Fractionally 
No Change 

Z 
Increase 

Fractionally 
No Change No Change No Change 

Decrease 

Fractionally 

PS Increase Slightly 
Increase 

Fractionally 
Increase Slightly 

Decrease 

Fractionally 
Decrease Slightly 

P Increase  Increase Slightly Increase  Decrease Slightly Decrease 

 

The details of the implementation of the rules, if they are desired, can be found in the "PID tune" 

function in the simulation code. This can be found in Appendix C.  

4.3.5 Inference engine 

The inference engine makes use of the AND operator. This operator was defined making use of a 

conditional function that examined the following term. 

"��Z�, E[ =  Z� ≥ E[ 

If the statement was true, then the output of the result would be E and, if the statement was false, the 

output would be �. This essentially created a function that determines the minimum of two numbers. 

In the proposed adaption algorithm, the results of the fuzzification process were used as inputs into 

the AND operator and combined with the rule base to determine the strength with which each rule 

fired. The details of this can be seen in the "PID tune" function of the simulation program, included in 

Appendix.  
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4.3.6 Defuzzification 

The defuzzification process is concerned with converting the results from the inference engine and 

converting these results into a crisp number that can be applied to the PID gain adjustment.  The first 

process was to define a set of weightings that could be used to describe the terms used in the rule sets 

numerically. These terms as well as the weightings used are presented in Table 4.4.  

Table 4.4: Weighting used to defuzzify the results of the rule base 

Change in PID gain  Weighting 

Decrease (D) -1 

Decrease Slightly (DS) -0.25 

Decrease Fractionally (DF) -0.15 

No Change (NC) 0 

Increase Fractionally (IF) 0.15 

Increase Slightly (IS) 0.25 

Increase (I) 1 

 

This allowed the results of the rule base to be developed into a single crisp number for each gain 

using: 

∆f97i= Z−1� Y  −0.25�= Y  −0.15�� Y 0� Y 0.15�� Y 0.25�= Y 1�[ (4.7) 

 

The adjustment of each gain was then performed using: 

 ÷�¨� = ÷�¨� Y ∆f97iý� (4.8) 

 

where ý is an adaption rate used to tune the speed at which the adaption algorithm adjusts the gains 

and � is a modification factor that was used to scale the amount of change between the proportional, 

integral and derivative gains.  

The factor � was required as it was desired to have a different change in gain change for the 

proportional, integral and derivative controllers. The modification factor used was found to yield 

satisfactory results after some trial and error and the values used are presented in Table 4.5 

Table 4.5: Value of modification factor for the proportional, integral and derivative gains 

Controller Modification factor 

Proportional gain 0.1 

Integral Gain 0.01 

Derivative Gain 0.001 
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 The final process in the defuzzification was the constraint of the gains to preset maximum and 

minimum values.  

These maxima and minima were found to yield satisfactory results without causing large instabilities 

within the system and are presented in Table 4.6. 

Table 4.6: Maximum and minimum allowed gains for the proportional, integral and derivative controller gains 

Controller Maximum gain Minimum gain 

Proportional  10.0 0 

Integral  2.0 0 

Derivative  1.0 0 
 

The main aspects of the fuzzy logic adaption system have been presented; however, the complete 

adaption algorithm can be found in the simulation code of Appendix C. 

4.4 Control Adaption Algorithm Testing 

The adaption algorithm was tested by providing a series of pitch angle step inputs.  The control gains 

for the autopilot were set to zero as a starting point.  Two different ideal model time constants were 

used to determine if the algorithm was indeed attempting to track the ideal model behaviour.  Figure 

4.9 shows the results of the low time constant case while the high adaption rate case can be seen in 

Figure 4.10.  It can be seen by comparing the figures that the adaption algorithm is attempting to track 

the ideal model, albeit with some difficulties.  The figures clearly show a difference in response 

between the two cases, with a slow response time observed in Figure 4.9 and a faster response time 

observed in Figure 4.10.  The figures show that there are discrepancies between the ideal model and 

the actual pitch angles attained.  This is likely caused by the aggressive nature of the manoeuvres and 

the fact that the PID gains were set to zero.  It is unlikely that perfect tracking could be achieved 

immediately and it may take a number of manoeuvres to achieve better tracking.  The results may also 

be improved somewhat by the tuning of the adaption algorithm adaption rates and modification 

factors, but this will be conducted during the simulation of more realistic flight conditions.      

The change in the PID gains can be seen in Figure 4.11 and Figure 4.12.  The figure shows that the 

proportional gain changes frequently and fairly aggressively, particularly for the high time constant 

case at the moment of a set point change.  It was observed that the integral gain steadily increases in 

both cases which would be expected as the pitch angle typically showed a small steady-state error.  
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Figure 4.
for a low time constant ideal model

Figure 4
response for a high time constant ideal model

.9: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 
for a low time constant ideal model

4.10: Simulated t
response for a high time constant ideal model

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 
for a low time constant ideal model 

Simulated time history of the commanded step inputs, ideal pitch response and actual pitch 
response for a high time constant ideal model

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 
 

ime history of the commanded step inputs, ideal pitch response and actual pitch 
response for a high time constant ideal model 

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 

ime history of the commanded step inputs, ideal pitch response and actual pitch 

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 

ime history of the commanded step inputs, ideal pitch response and actual pitch 

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 

ime history of the commanded step inputs, ideal pitch response and actual pitch 

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 

ime history of the commanded step inputs, ideal pitch response and actual pitch 

 

: Simulated time history of the commanded step inputs, ideal pitch response and actual pitch response 

 

ime history of the commanded step inputs, ideal pitch response and actual pitch 
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Figure 4.

   

Figure 4.

.11: Simulated time history of the pitch PID gains for the low time cons

.12: Simulated time history of

: Simulated time history of the pitch PID gains for the low time cons

Simulated time history of

: Simulated time history of the pitch PID gains for the low time cons

Simulated time history of the pitch PID gains for the high

: Simulated time history of the pitch PID gains for the low time cons

the pitch PID gains for the high

: Simulated time history of the pitch PID gains for the low time cons

the pitch PID gains for the high time constant ideal model

: Simulated time history of the pitch PID gains for the low time constant ideal model

time constant ideal model

tant ideal model  

time constant ideal model 
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4.5 Control Allocation  

One of the problems that is envisaged when a failure occurs is the saturation of a control surface in an 

attempt to stabilise the aircraft or even maintain a trimmed position for extreme control failures.  If 

this saturation occurs, the ideal behaviour will not be able to be maintained, creating a number of 

potential problems some of which have been considered previously.  A limit on the PID gain values 

was set, as mentioned in Chapter 4.3.6, to prevent the PID gains from exceeding a certain value and 

causing the instability of the control system. However, this potential for the adaption algorithm to 

cause unstable behaviour highlights the need to couple two control methodologies together.  A 

method of control allocation is proposed that allows for the increase of PID gains to become more 

effective by transferring the control authority to other surfaces in the event of control saturation.  This 

is an auxiliary feature and, as such, a simple non-optimal control allocation method will be selected as 

robustness and fast computation time rather than optimisation is required.  The chosen control 

allocation technique to be implemented is the daisy chain control allocation method. 

4.5.1 Daisy Chain Control Allocation Algorithm 

The daisy chain control method is a simple method of distributing the remaining control effort 

required amongst different control surfaces. Each aircraft axis is assigned a primary, secondary and 

tertiary control surface.  The primary control surface is deflected in the normal direction until the 

command exceeds its limit of travel.  Once this point has been reached, the remaining control effort 

required is sent to the secondary control surface assigned for that control direction until it too 

saturates.  Finally, any remaining control effort required is assigned to the tertiary control surface.   

Two difficulties arise during the control allocation. The first is that the effectiveness of the secondary 

and tertiary control surfaces differs from that of the primary surface: typically, the effectiveness is 

lower.  Thus to induce the same control command, a greater deflection will be required. This has the 

consequence that, if not properly tuned, the performance of the PID controller will degrade unless an 

adjustment is made.  This is easily accomplished with the use of a control effectiveness matrix which 

essentially describes the effectiveness of a control surface in all axes.  However, this can only be used 

effectively if all of the characteristics of the control surfaces can be determined, either through wind 

tunnel testing or empirical methods.  If the aircraft was fully functional, this may prove to be a 

reasonable approach.  However, in this research, it must be assumed that the aircraft is not fully 

functional. An assumption has to be made regarding the effectiveness of the control surface for any 

given direction. Ideally, this assumption should be conservative in nature and allow the PID controller 

to correct any discrepancy or, in the case with adaption, allow the adaption algorithm to adjust the 

PID gains to achieve the ideal behaviour.  
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The second difficulty results from use of the other control surfaces.  It is conceivable that the use of 

the non-primary control surface will result in the degradation of control authority in the other control 

axes.  For example, if differential elevator control is used to supplement roll to the extent that the 

pitch control authority is compromised, then the aircraft may become unable to maintain stable and 

controlled flight altogether.   To solve this problem, two techniques were applied.  The first was in the 

selection of secondary and tertiary control effectors.  It was decided to limit the secondary control 

effectors to those not responsible for any primary control action, as far as was practical.  Secondly, the 

status of each control surface was examined before applying the secondary and tertiary control inputs. 

The residual control authority was determined for each control surface after the primary deflection 

was applied and then used in the secondary and tertiary control allocations, thus giving the primary 

control direction priority over the secondary and tertiary control directions.  

The control allocation assignments used in the implementation of the control allocation algorithm are 

presented in Table 4.7.  The table shows that flaps are assigned to be secondary control effectors in 

the pitch and roll directions thus ensuring that the ailerons and elevators are not the secondary control 

effectors for any control direction.  Throttle is used to supplement yaw control as the aircraft is a twin-

engined aircraft with the motors offset from the centre line.  The effectiveness weightings provided in 

Table 4.7 were determined partly through the use of simple estimates and then fine tuned by running 

multiple simulations and adjusting the values slightly to achieve a control performance similar to the 

performance with the primary effectors.    

Table 4.7: Control allocation assignments and effectiveness weighting as used in the implementation of the 
control allocation algorithm 

Control axis 
Primary 

Effectors 

Secondary 

Effectors 

Secondary 

Effectiveness 

Tertiary 

Effectors 

Tertiary 

Effectiveness 

Pitch Elevator Flaps in Unison 2.0 
Ailerons in 

Unison 
2.0 

Roll Ailerons 
Differential 

Flaps 
2.0 

Differential 

Elevator 
3.0 

Yaw Rudder 
Differential 

Throttle 
0.0555 N/A N/A 

Thrust Throttle N/A N/A N/A N/A 

 

The allocation algorithm is a multistep process, the logic of which is detailed in Figure 4.13 that 

begins with an input from the autopilot of the required elevator, aileron, rudder and throttle 

deflections. Based on the limits of control deflections set in the autopilot, the allocation algorithm first 

determines if any additional control effort is required for each of the primary effectors.  
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Figure 4.

Figure 4.

.14: Block diagram showing the determination of secondary control effort required

.15: Block diagram showing the determination of the tertiary control effort
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5 Chapter 5 – Simulation 

5.1 Chapter Outline 

This chapter begins with the verification of the flight dynamic model through the use of a linearised 

static flight model as well as through the use of well defined and understood performance indicators. 

This is only a verification that the simulation code is running correctly and only serves to confirm that 

results obtained are a realistic reflection of the real aircraft.  After this verification, a report of the 

failures modelled and the testing procedure followed will be outlined.  This chapter's primary concern 

is to test the adaption and allocation algorithms under a variety of flight conditions and with a variety 

of aircraft failures to determine if these algorithms are tolerant to certain control actuator failures. The 

results for the inner loop simulations, middle loop simulations and, finally, the outer loop simulations 

of the autopilot are presented.   

5.2 Flight Dynamic Model Verification 

The flight dynamic model makes use of the fundamental equations of motion of a rigid body about all 

axes.  The forces are resolved using a coefficient build up method which when used in the equations 

of motion allow the accelerations of the aircraft about all three axes to be determined.  The flight 

model can be verified, in the sense that key performance indicators can be checked, to determine that 

the behaviour of the aircraft is reasonable and that all integrators and estimators are functioning 

correctly.   

 Firstly, the longitudinal trim position was verified by running the nonlinear flight dynamic code with 

the autopilot in the "Stabilise" flight mode, equivalent to the methods outlined in [45].  This flight 

mode would maintain level flight and allow the aircraft to be trimmed.  Once this trim position was 

established this could be checked against a well established static trim calculation.  The performance 

of the aircraft with respect to lift and drag ratios, elevator angles, and angles of attack to maintain 

level flight can then be compared.  

A form of lateral verification can also be conducted.  This was achieved by running the simulation 

with the autopilot in the "FBW A" flight mode and inducing a constant banked turn. Using simple 

turn radius indicators and by examining the ground track, the performance of the nonlinear flight 

dynamic code can be verified.   

It must be stressed that this does not validate that the model will behave exactly as the real aircraft as 

this can only be done after flight tests.  But it does provide a means to determine whether the 

simulation results are reasonable. 

 



112 
 

5.2.1 Longitudinal Verification 

A three degree of freedom nonlinear trim equation was developed with the aid of [37]. This code 

essentially determines the longitudinal trim position for an aircraft given linearised approximations of 

various aerodynamic properties.  The code, described in more detail in [37] and found in Appendix C, 

examines the lift, drag and thrust forces acting on the centre of gravity and simultaneously solves the 

three nonlinear equations of motion for the aircraft to find the trim condition. The linear model as well 

as the nonlinear model was run at the same altitude and speed. The elevator angle to trim and resulting 

angle of attack were used as the primary focus of comparison and are presented in Table 5.1. 

Table 5.1: Table comparing the results for longitudinal trim of the simple linear model and the nonlinear flight 
dynamic model 

Performance indicator Trim calculation @ 25m/s Simulation 
Percentage 

Difference (%) 

Velocity 25.000 m/s 24.996 m/s -0.016% 

Elevator angle -0.896 ° -1.214 ° 1.39% 1 

Angle of Attack 1.166 ° 1.509 ° 2.28%2 

Pitch angle 1.166 ° 1.489 ° 2.28%3 

Required Thrust 17.65 N 14.16 N 19% 
 

It was observed that there were some differences, which is understandable based on some of the 

assumptions made in the simplified model. In particular the large variation in the required thrust. This 

is largely attributed to the use of the parabolic drag curve in the simplified trim model. Upon 

examination of the drag coefficient at this angle of attack it was found that an error of 26.2% was 

present between the parabolic drag curve and the wind tunnel data. The small differences in elevator 

angel to trim and angle of attack errors can be attributed to similar assumptions made in the trim 

analysis.  The results show that the nonlinear simulations are similar to the trim analysis and that the 

simulation code is functioning correctly. It is noted however, that this is not a validation of the 

simulation code, simply verification of correct functioning. A true validation would require the 

comparison of actual flight data, which is not yet available.    

5.2.2 Lateral Verification 

The lateral verification of the flight dynamic model is more difficult than the simple trim equation. 

The verification of the dynamic response in particular is very difficult.  However, the general 

behaviour can be checked by commanding the aircraft into a set bank angle and observing the track 

                                                      

1 Based on full elevator deflection of 30° 
2 Based on stall angle of 15° 
3 Based on stall angle of 15° 
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5.3 Faults Scenarios Considered 

The failures modelled stem from the objectives of this research as described in Chapter 1.7.  These 

failures are considered representative of typical UAS failures that one may expect in the operation of 

a research UAS.  Severe structural damage was not considered but, with some modifications to the 

flight dynamic code, this could be achieved and, as such, will be included in the recommendations for 

future work.  For this research, the failures modelled pertain primarily to actuator or control surface 

failures. The failures tested were as follows: 

• 0° deflection of one or more control surfaces 

• A 50% of full deflection failure 

• A hard over failure, where (servo moves to either extreme position)  

Specifically the controls to be failed are the right elevator and right aileron. The left elevator and left 

aileron were not failed in these tests as they show similar results to the failure of the right control 

surfaces and provide no additional insight. Different combinations of left and right control surface 

failures could be modelled, but have not been simulated. This will be recommended for future work.    

5.4 Procedures Followed 

A cautious approach was adopted in testing the algorithm and, as such, the recommended method of 

autopilot tuning by the Ardupilot developers was adopted.  This involved first testing the autopilot's 

inner loop controls, in "Stability" or "FBW A" flight mode.  Once satisfied with the results, the middle 

loops are then tested by switching the autopilot into "FBW B" flight mode.  Finally, the outer loops 

are tested in "Auto" flight mode.  Initially, the allocation algorithm was disabled to gain an 

understanding of the behaviour of the adaption algorithm; this was later introduced for more sever 

failure cases.    

5.4.1 Inner Loop Testing 

The flight mode chosen for this simulation was the "FBW A" flight mode as it provided a means to 

determine the suitability of the adaption and allocation algorithms during two common flight 

manoeuvres.  While many combinations of manoeuvres could be performed, the manoeuvres chosen 

were to maintain level flight and to roll to and maintain a constant bank angle.  This could be viewed 

at a system's level as the bare minimum for the aircraft to return to a "Home" location and loiter over 

the home location should a failure occur.  These manoeuvres also provide insight into the suitability 

of the proposed algorithms to achieve the desired goal and to determine any shortcomings or 

enhancements required.  It is also important to note that, for the inner loop tests, the set point is 
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unchanging and thus the tests will show the ability of the adaption algorithm to track a fixed set point 

value.  

The high level procedure to test the inner loops was to establish the throttle and pitch settings to 

maintain level and constant banked flight.  Using these settings, two simulations per failure were run.  

One simulation was run with the unmodified autopilot code in operation and one simulation with the 

adaption algorithm enabled.  The allocation algorithm was only used if it is found that it is required 

and for the more severe control failures.  A detailed procedure to test the inner  loop is outlined below.  

1. Find the correct pitch angle and throttle setting to maintain altitude for the manoeuvre 

being tested. 

2. Set the throttle position found in 1.   

3. Set NavPitch to the pitch angle found in 1.  

4. Set NavRoll to 0° for the level flight case or 20° for the banked flight case. 

5. Determine the failure to be modelled from the test matrix, Table 5.3, and set up the 

aircraft failure algorithm to apply the desired failure at 20 seconds after the start of 

the simulation. 

6. Run the simulation for a period of 120 seconds with the adaption and allocation 

algorithms disabled. 

7. Rerun the simulation with the adaption algorithm enabled, observe the results to 

determine if the allocation algorithm is required. If it is required, rerun the simulation 

with both adaption and allocation algorithms enabled; if not required, proceed to the 

next test point in the test matrix, Table 5.3. 

Table 5.3: Inner loop simulation test matrix 

Test 

Number 

Control Surface 

Failed 
Direction Failure Adaption Control Allocation 

Control None N/A None On & off Off (unless required) 

1 Right elevator N/A 0 ° On & off Off (unless required) 

2 Right elevator Pitch up 50% hard over On & off Off (unless required) 

3 Right elevator Pitch up 100% hard over On & off Off (unless required) 

4 Right elevator Pitch up 100% hard over On & off ON 

5 Right aileron N/A 0 ° On & off Off (unless required) 

6 Right aileron Roll right 50% hard over On & off Off (unless required) 

7 Right aileron Roll right 100% hard over On & off Off (unless required) 

8 Right aileron Right roll 100% hard over On & off ON 

9 
Right elevator & right 

aileron 

Pitch up and 

right roll 
0 ° On & off Off (unless required) 

10 
Right elevator & right 

aileron 

Pitch up and 

right roll 
50% hard over On & off Off (unless required) 
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11 
Right elevator & 

Right aileron 

Pitch up and 

Right roll 
100% hard over On & off Off (unless required) 

12 
Right elevator & right 

aileron 

Pitch up and 

right roll 
100% hard over On & off On 

13 
Right elevator & right 

aileron 

Pitch up and 

right roll 

50% & 100% 

hard over 
On & off On & off 

 

5.4.2 Middle Loop Testing 

The flight mode used to test the middle loop is the "FBW B" flight mode.  This flight mode adjusts 

the pitch angle and throttle to achieve a constant airspeed and altitude.  This will determine two 

important characteristics of the adaption algorithm, the first being the ability of the adaption algorithm 

to track a constantly changing set point and, secondly, to determine the interaction between two 

coupled adaption controllers.  A similar procedure to that outlined in Section 5.4.1 was performed, 

again for level flight and banked flight, but with the test matrix presented in Table 5.4.         

Table 5.4: Middle loop simulation test matrix 

Test 

Number 
Control Surface Failed Direction Failure Adaption 

Control 

Allocation 

Control None N/A None On & off On 

1 Right elevator N/A 0 ° On & off On 

2 Right elevator  Pitch up 50% hard over On & off On 

3 Right elevator Pitch up 100% hard Over On & off On 

4 Right aileron N/A 0 ° On & off On 

5 Right aileron Roll right 50% hard over On & off On 

6 Right aileron Roll right 100% hard over On & off On 

7 
Right elevator & right 

aileron 

Pitch up and 

right roll 

50% hard over 

and 100% hard 

over 

On & off On & off 

 

5.4.3 Outer Loop Testing 

The flight mode to test the outer loop is the "Auto" flight mode. Here, the autopilot is running in its 

most advanced form.  This provides insight into the ability of the adaption algorithm to undergo a 

number of manoeuvres.  Again a similar procedure as outlined in the previous sections was 

undertaken.  However, only one flight manoeuvre was flown, that being waypoint following. A set of 

three waypoints were defined to form a triangular flight path as shown in Figure 5.2. The test matrix 

used to test the outer control loop is presented in Table 5.5.  
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Figure 5.
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5.5 Results 

5.5.1 Inner control loop testing 

The inner loop of the autopilot was tested first.  The autopilot was “flown” in FBW A mode as 

described in Section 5.4.1 and the trim position determined.  The pitch angle to maintain level flight 

was found to be 1.25° and a throttle setting of 36% was found to maintain a speed of approximately 

25m/s.  The tests were also run with the wings banked at 20° and the pitch angle set to 1.88° to 

maintain altitude with the same throttle setting used.  These settings were then applied to the 

simulation and the test matrix followed.  

To display the results of all aircraft state data would be considerable: hence for each test in this 

section, the primary point of interest will be the pitch and roll angles as these are the controlled 

parameters of the inner flight modes.  The control deflection data as well as the PID gain coefficient 

data will also be supplied when relevant.  Where any other data is of interest, it is included; however, 

the full set of results is found in the summary provided in Appendix C. The simulation code, also 

found in Appendix C can be re-run to obtain an extensive set of results.     

Control - No Failures 

The simulation was run without inducing any failures, both with and without the adaption algorithm 

for commanded level flight.  Figure 5.3, which shows the time history of the pitch and bank angle, 

shows that a slight overshoot in the set pitch angle occurred for both the case with the adaption 

algorithm enabled and disabled.  The overshoot is slight in both cases (less than 1°) and is unlikely to 

be noticed in flight.  It can be seen that the simulation with the adaption mechanism enabled has a 

slightly smaller overshoot which indicates that the adaption mechanism is working to some degree. 

Figure 5.4 (a) shows the variation in PID gain constants and shows that, initially, there is a rapid 

increase in the pitch proportional gain, followed by a rapid decrease as the adaption algorithm detects 

an overshoot condition.  There is also a very slight increase in integral gain and derivative gain.  

However, these are very minor.  As previously discussed in Section 4.3.6, the adaption rates for the 

integral and derivative gains are low to avoid unstable and rapid changes in theses parameters as this 

was found to cause unstable control of the complete system.  

 The roll angle in Figure 5.3 is seen to have a disturbance from level flight attributed to a slight 

asymmetry in the wind tunnel model. This is corrected by the autopilot with a slight aileron 

deflection.  The response is somewhat oscillatory for both cases with and without the adaption 

algorithm enabled indicating that perhaps the proportional gain in the roll direction is slightly too 

high. However, the oscillations are small and hence modifications to the base PID gains are not 
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proportional gain while not 

(b). 

the adaption 

re presented in 

however, exhibit 

Only a slight difference 

Figure 5.6 (a) 

tial spike in proportional gain 

base levels. There is then an oscillatory behaviour as the 

as been achieved. One 

in that the 

however, it can be argued that the time to reach the desired set point 
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Figure 5.
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: Simulated time history of pitch and bank angles (right elevator 50% hard over failure causing nose 

also shows that the autopilot was able to tolerate the roll
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, the right elevator moves to an angle of 7.5° (50% of 15°) and remains at 
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Figure 5.
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enabled (right elevator 50% hard over failure causing a nose up pitching moment) during constant banked flight
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Figure 5.
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control saturates. 

failure, the roll PID proportional gain increases but quickly 

Figure 5

Figure 5.
adaption mechanism enabled (right elevator 100% hard over failure causing a nose up pitching moment) during 
constant banked flight

 

Figure 5.
enabled (right elevator 100% hard over failure causing a nose up pitching moment) during constant banked 
flight 
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change.  There was no lack of roll authority for this te

are very similar to those obtained in the previous tests.
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up pitching moment) in level flight with control allocation enabled
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however, the oscillations seen were not evident in this case, as the control allocation algorithm 

made use of the secondary control surface to provide the remaining pitch control required. The flaps 
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elevators had reached their travel limits, shown in 

is observed to aid in reducing the maximum 

reduction in flap deflection as sufficient e

up in flap deflection as more pitch 

a great deal of pitch authority

There was no lack of roll authority for this te

are very similar to those obtained in the previous tests.

which shows that the ailerons and rudder were only slightly deflected.  

: Simulated time history of pitch and bank angles (right elevator 100% hard over failure causing nose 
up pitching moment) in level flight with control allocation enabled
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the allocation algorithm was enabled. 

improved behaviour was observed.  The maximum pitch

however, the oscillations seen were not evident in this case, as the control allocation algorithm 

made use of the secondary control surface to provide the remaining pitch control required. The flaps 

d to provide a slight nose down pitching moment, as can be seen in 

elevators had reached their travel limits, shown in 

aid in reducing the maximum 

reduction in flap deflection as sufficient elevator authority was available

up in flap deflection as more pitch authority was required. 

a great deal of pitch authority and a large flap deflection is required to achieve a small pitch 

There was no lack of roll authority for this te

are very similar to those obtained in the previous tests.

which shows that the ailerons and rudder were only slightly deflected.  

: Simulated time history of pitch and bank angles (right elevator 100% hard over failure causing nose 
up pitching moment) in level flight with control allocation enabled

ority has improved the stability of the PID gain changes. 

ease in pitch proportional gain

ard Over (Control allocation enabled) (Test 4

run with a 100% hard over failure of the right 

the allocation algorithm was enabled. 

The maximum pitch

however, the oscillations seen were not evident in this case, as the control allocation algorithm 

made use of the secondary control surface to provide the remaining pitch control required. The flaps 

d to provide a slight nose down pitching moment, as can be seen in 

elevators had reached their travel limits, shown in Figure 

aid in reducing the maximum 

levator authority was available

authority was required. 

and a large flap deflection is required to achieve a small pitch 

There was no lack of roll authority for this test and

are very similar to those obtained in the previous tests. 

which shows that the ailerons and rudder were only slightly deflected.  

: Simulated time history of pitch and bank angles (right elevator 100% hard over failure causing nose 
up pitching moment) in level flight with control allocation enabled

ority has improved the stability of the PID gain changes. 
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the allocation algorithm was enabled.  As can be seen in 

The maximum pitch error induced was similar to the previous 

however, the oscillations seen were not evident in this case, as the control allocation algorithm 
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d to provide a slight nose down pitching moment, as can be seen in 
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aid in reducing the maximum pitch error. 

levator authority was available

authority was required.  Figure 5.21

and a large flap deflection is required to achieve a small pitch 

st and the results obtained in the roll direction 

 This is confirmed by 

which shows that the ailerons and rudder were only slightly deflected.  

: Simulated time history of pitch and bank angles (right elevator 100% hard over failure causing nose 
up pitching moment) in level flight with control allocation enabled 
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elevator as conducted previously
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error induced was similar to the previous 
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made use of the secondary control surface to provide the remaining pitch control required. The flaps 

d to provide a slight nose down pitching moment, as can be seen in Figure 
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error.  This is followed by a rapid 

levator authority was available and then a subsequent build 
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and a large flap deflection is required to achieve a small pitch 

the results obtained in the roll direction 

This is confirmed by Figure 
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error induced was similar to the previous 
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those obtained in 

assist with the correction of the 
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roll was more pronounced but only a small
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a slight overshoot

negligible.     
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The simulation was re

those obtained in Figure 

assist with the correction of the 

simulation which resulted in a slight oscillat

when the allocation algorithm was enabled. 

were minor; however they can be found in 

Right Aileron F

The simulation was run with a 0

simulation.  Figure 

could be made between the case where the adaption algorithm was enable

roll was more pronounced but only a small

expected for level flight with the 

aircraft.  Figure 5.23

response being generated when the 

a slight overshoot, not seen in the case without adaption.
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.23: Simulated time history of pitch and bank angles (

The simulation was re-run but with the aircraft in a banked turn. 

Figure 5.17.  There were minor differences due to the inclusion of flap deflection to 

assist with the correction of the 

which resulted in a slight oscillat

when the allocation algorithm was enabled. 
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Aileron Failure -
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response being generated when the 
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There were minor differences due to the inclusion of flap deflection to 
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Appendix C, if 
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at the time of failure and 
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Right Aileron Failure 
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the results of which can
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with a slight gain in the integr

induced by the failure. Little other change was noted. 

: Simulated time history of the 
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of the adaption algorithm.  It was noted
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Appendix C. 
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A 50 % hard over failure of the right aileron was modelled with and without the adaption algorithm, 

the results of which can be found in 

adaption algorithm disabled, there is a large and rapid increase in bank angle to approximately 9

This is followed by a steady and equally as rapid return to level flight as the autopilot compensates for 

When the adaption algorithm is enabled, the maximum bank angle is

 The return to level flight is

oscillatory behaviour being present. 

proportional gain rises rapidly to mitigate the change in bank angle. 

It is theorised that the step changes in proportional gain have caused the oscillatory 

behaviour of the bank angle in Figure 

show a small change in the proportional gain for both pitch and roll controllers 
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Little other change was noted. 
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Figure 5.25.      
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Figure 5.25 (a) and (b)
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Figure 5.
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proportional gain to account for the increasing pitch error.

the pitch error reduced. 
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elevator angle 

No flap deflection was generated as shown in 
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rolling moment to the right) in level flight

A pitch error was also induced by the failed elevator, as seen in

that the simulation with 

the adaption algorithm. 
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proportional gain to account for the increasing pitch error.
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mulation with the adaption algorithm enabled
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proportional gain to account for the increasing pitch error.

the pitch error reduced.  Little change was observed for the integral and deri
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shows that the right aileron moves to 7.5
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is observed as a new trim position has been created with the deflection of the ailerons.

No flap deflection was generated as shown in 
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the adaption algorithm enabled
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Figure 5.26 (a) that
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the right aileron moves to 7.5

the simulation while the left aileron moves to compen

lightly higher than the right aileron.  This is due to the trim offset due to the asymmetries of the 

A small rudder input, shown in 
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No flap deflection was generated as shown in 
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There was a smaller induced error and a faster, less oscillatory return to the 

(a) that, like many of the other failures, there was a rise in 

proportional gain to account for the increasing pitch error.
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No flap deflection was generated as shown in Figure 5.27

and bank angles (b) (right aileron 50% hard over failure causing 

A pitch error was also induced by the failed elevator, as seen in Figure 

 performed better than the simulation without 

There was a smaller induced error and a faster, less oscillatory return to the 

like many of the other failures, there was a rise in 

proportional gain to account for the increasing pitch error.  The proportional gain was then reduced, as 
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Figure 5.
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exist.  When the adaption algorithm is enabled, the adaption algorithm tends to increase the initial 

overshoot in airspeed, but brings the airspeed back to the desired set point more quickly, with fewer 

oscillations.       

Figure 5.
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The flap deflections are momentary as the elevator control saturates
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light as the elevator failure was only a 50% deflection failure. 
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e noted in the results may be attributed to the difficulty 

encountered by the autopilot in tracking the ideal pitch value as seen in 
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the elevator control saturates
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: Simulated time history of the PID gain changes with the adaption mechanism enabled for the 
and an increased pitch PID 
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Figure 5.
flight with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

Figure 5.
adaption mechanism enabled for the a
elevator and an increased pitch PID adaption rate

.84: Simulated time history of the comman
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

.85: Simulated time history of
adaption mechanism enabled for the a

and an increased pitch PID adaption rate

: Simulated time history of the comman
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

: Simulated time history of
adaption mechanism enabled for the a

and an increased pitch PID adaption rate

: Simulated time history of the comman
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

: Simulated time history of elevator (a), aileron (b), rudder (c) and flap (d)
adaption mechanism enabled for the aircraft in a constant bank turn

and an increased pitch PID adaption rate

: Simulated time history of the commanded pitch, ideal pitch and actual pitch f
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

elevator (a), aileron (b), rudder (c) and flap (d)
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elevator (a), aileron (b), rudder (c) and flap (d)
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ded pitch, ideal pitch and actual pitch f
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate

elevator (a), aileron (b), rudder (c) and flap (d)
with a 50% hard over failure of the right 

ded pitch, ideal pitch and actual pitch for the aircraft in level 
with a 50% hard over failure of the right elevator but with reduced airspeed PID adaption rate 

elevator (a), aileron (b), rudder (c) and flap (d) deflections 
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Figure 5.
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

Figure 5.
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur
elevator, and an increased pitch PID adaption rate

.88: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

.89:  Simulated time history of 
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur
elevator, and an increased pitch PID adaption rate

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

:  Simulated time history of 
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur
elevator, and an increased pitch PID adaption rate

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

:  Simulated time history of elevator (a), aileron (b), rudder (c) and flap (d)
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur
elevator, and an increased pitch PID adaption rate

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

elevator (a), aileron (b), rudder (c) and flap (d)
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur
elevator, and an increased pitch PID adaption rate 

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

elevator (a), aileron (b), rudder (c) and flap (d)
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate

elevator (a), aileron (b), rudder (c) and flap (d)
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failur

: Simulated time history of the commanded pitch, ideal pitch and actual pitch for the aircraft in level 
flight, with a 100% hard over failure of the right elevator but with reduced airspeed PID adaption rate 

elevator (a), aileron (b), rudder (c) and flap (d) deflections 
adaption mechanism enabled for the aircraft in a constant bank turn, with a 50% hard over failure of the right 
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The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 

seconds into the simulation. 

settings were maintained.

when compared to the control case.
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in the inner loop simulations. 

controlled by the inner loops. 

middle control loops. 

inner loop simulations but only minor differ

Figure 5.
flight, with the adaption
an increased pitch PID adaption rate

Right Aileron 

The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 

seconds into the simulation. 

settings were maintained.

when compared to the control case.

and pitch angles as seen in

in the inner loop simulations. 

controlled by the inner loops. 

middle control loops. 

inner loop simulations but only minor differ

.90: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in level 
flight, with the adaption
an increased pitch PID adaption rate

ileron Failure -

The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 

seconds into the simulation.  As mentioned

settings were maintained.  Only minor differences were observed, shown in 
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angles as seen in Figure 

in the inner loop simulations.  This is largely due to the fact that

controlled by the inner loops.  

middle control loops.  It is noted that the pitch angles have significant differences compared to the 

inner loop simulations but only minor differ

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in level 
flight, with the adaption algorithm enabled 
an increased pitch PID adaption rate
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The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 

As mentioned
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when compared to the control case.  However, it was noted that there was a 

Figure 5.91.  The roll angle disturbance was almost identical to those seen 
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Hence, any roll disturbance will only be marginally affected by the 

is noted that the pitch angles have significant differences compared to the 

inner loop simulations but only minor differences to the middle loop control simulation
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algorithm enabled and disabled
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and disabled with a 0° deflection fail

 

The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 
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However, it was noted that there was a 
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: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in level 
with a 0° deflection failure of the right aileron

The simulation was run inducing an aileron failure that moved the aileron to the neutral position 20 
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Figure 5.90 (a)
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Figure 5

The adaption algorithm generally improved the control performance, as was seen in the elevator 
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proportional gain rose to a fairly high value as seen in 
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the simulation. There was also a slight increase in integral gain. 

Little difference was observed in the fully banked case, and hence the resu
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: Simulated time history of pitch and bank angles (0° right aileron deflection failure) in level flight

The adaption algorithm generally improved the control performance, as was seen in the elevator 

titude control with the 

owever, that the p
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Figure 5.
level flight
with an increased pitch PID adaption rate

The simulation was run

to the right. 

value and

the time to return the airspeed to the set value was faster.  

result in altitude tracking

altitude. 

found to be considerably less with the adaption algorithm enabled. 

in these cases is primar

improved performance

algorithm is functioning in the middle loops correctly. 

.92: Simulated time history of the PID gain changes with the adaption mechanism e
level flight with the adaption
with an increased pitch PID adaption rate

Right Aileron Failure 

The simulation was run

to the right.  Figure 5

and, although the overshoot was initially

the time to return the airspeed to the set value was faster.  

result in altitude tracking

altitude.  Finally, great improvement was seen in 

found to be considerably less with the adaption algorithm enabled. 

in these cases is primar

improved performance

algorithm is functioning in the middle loops correctly. 

: Simulated time history of the PID gain changes with the adaption mechanism e
with the adaption algorithm enabled and disabled

with an increased pitch PID adaption rate

Right Aileron Failure -

The simulation was run inducing a 50% hard over failure of the right aileron causing a rolling moment 

5.93 (a) shows that the adaption algorithm was able to re

ugh the overshoot was initially

the time to return the airspeed to the set value was faster.  

result in altitude tracking with less overshoot and a significantly faster re

Finally, great improvement was seen in 

found to be considerably less with the adaption algorithm enabled. 

in these cases is primarily due to the inner loop

improved performance with adaption enabled. However, these results show that the adaption 

algorithm is functioning in the middle loops correctly. 

: Simulated time history of the PID gain changes with the adaption mechanism e
algorithm enabled and disabled

with an increased pitch PID adaption rate 

- 50% Hard O

inducing a 50% hard over failure of the right aileron causing a rolling moment 

(a) shows that the adaption algorithm was able to re

ugh the overshoot was initially

the time to return the airspeed to the set value was faster.  

with less overshoot and a significantly faster re

Finally, great improvement was seen in 

found to be considerably less with the adaption algorithm enabled. 

due to the inner loop

daption enabled. However, these results show that the adaption 

algorithm is functioning in the middle loops correctly. 

: Simulated time history of the PID gain changes with the adaption mechanism e
algorithm enabled and disabled with a 0° deflecti

50% Hard Over (Test 5)

inducing a 50% hard over failure of the right aileron causing a rolling moment 

(a) shows that the adaption algorithm was able to re

ugh the overshoot was initially higher, the overshoot after the failure

the time to return the airspeed to the set value was faster.  

with less overshoot and a significantly faster re

Finally, great improvement was seen in Figure 

found to be considerably less with the adaption algorithm enabled. 

due to the inner loop roll control which has already been shown to have 

daption enabled. However, these results show that the adaption 

algorithm is functioning in the middle loops correctly.  

: Simulated time history of the PID gain changes with the adaption mechanism e
with a 0° deflecti

(Test 5) 

inducing a 50% hard over failure of the right aileron causing a rolling moment 

(a) shows that the adaption algorithm was able to re

the overshoot after the failure

the time to return the airspeed to the set value was faster.  Figure 5

with less overshoot and a significantly faster re

Figure 5.93 (c) whe

found to be considerably less with the adaption algorithm enabled.  Again

control which has already been shown to have 

daption enabled. However, these results show that the adaption 
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with a 0° deflection failure of the righ

inducing a 50% hard over failure of the right aileron causing a rolling moment 

(a) shows that the adaption algorithm was able to re-establish the set airspeed 

the overshoot after the failure

5.93 (b) shows a much impro

with less overshoot and a significantly faster re-establishment of the correct 

where the change in heading was 

Again, the improved performance 

control which has already been shown to have 

daption enabled. However, these results show that the adaption 

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
on failure of the right aileron

inducing a 50% hard over failure of the right aileron causing a rolling moment 

stablish the set airspeed 

the overshoot after the failure was lower and 

(b) shows a much impro

establishment of the correct 

re the change in heading was 

the improved performance 

control which has already been shown to have 

daption enabled. However, these results show that the adaption 
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Figure 5.
flight with the adaption algorithm enabled and disabled, with 50% hard ov
an increased pitch PID adaption

Figure 5

set; however, the roll proportional gain, seen in 

peak forming at the moment of failure. The gain then reduces to a value still abo

value. There is also a

more quickly. 

integral gain

.93: Simulated time history of airspeed (a), altitude (b) and the ground track
with the adaption algorithm enabled and disabled, with 50% hard ov

an increased pitch PID adaption

5.94 (c) again shows the rapid change in pitch 

however, the roll proportional gain, seen in 

peak forming at the moment of failure. The gain then reduces to a value still abo

value. There is also a

more quickly.  The airspeed and energy gain constant show increases in both proportional gain and 

integral gain; however, only mi

: Simulated time history of airspeed (a), altitude (b) and the ground track
with the adaption algorithm enabled and disabled, with 50% hard ov

an increased pitch PID adaption 

(c) again shows the rapid change in pitch 

however, the roll proportional gain, seen in 

peak forming at the moment of failure. The gain then reduces to a value still abo

value. There is also an increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

however, only minor changes from the control

: Simulated time history of airspeed (a), altitude (b) and the ground track
with the adaption algorithm enabled and disabled, with 50% hard ov

(c) again shows the rapid change in pitch 

however, the roll proportional gain, seen in 

peak forming at the moment of failure. The gain then reduces to a value still abo

increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

nor changes from the control

: Simulated time history of airspeed (a), altitude (b) and the ground track
with the adaption algorithm enabled and disabled, with 50% hard ov

(c) again shows the rapid change in pitch proportional gain du

however, the roll proportional gain, seen in Figure 

peak forming at the moment of failure. The gain then reduces to a value still abo

increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

nor changes from the control

: Simulated time history of airspeed (a), altitude (b) and the ground track
with the adaption algorithm enabled and disabled, with 50% hard over failure of the right aileron

proportional gain du

Figure 5.94 (d), is reasonably well behaved with a 

peak forming at the moment of failure. The gain then reduces to a value still abo

increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

nor changes from the control simulation

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
er failure of the right aileron

proportional gain due to the high adaption rate 

is reasonably well behaved with a 

peak forming at the moment of failure. The gain then reduces to a value still abo

increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

simulation were observed. 
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er failure of the right aileron

e to the high adaption rate 

is reasonably well behaved with a 

peak forming at the moment of failure. The gain then reduces to a value still above the original base 

increase in integral gain which aids in returning the roll angle to the set value 

The airspeed and energy gain constant show increases in both proportional gain and 

were observed.  
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Figure 5.
level flight, with the adaption algorithm 
but with an increased pitch PID adaption

Similarly to the inner loop simulations

significantly reduced

from the inner loop simulation cases

commanded.

the non-

.94: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
level flight, with the adaption algorithm 
but with an increased pitch PID adaption

Similarly to the inner loop simulations

significantly reduced

the inner loop simulation cases

commanded.  However

-adapted case. 

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
level flight, with the adaption algorithm 
but with an increased pitch PID adaption

Similarly to the inner loop simulations

significantly reduced with the adaptio

the inner loop simulation cases

However, it is noted that t

adapted case.  

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
level flight, with the adaption algorithm enabled and disabled, with a 50% hard over failure of the right aileron, 
but with an increased pitch PID adaption 

Similarly to the inner loop simulations, the maximum error seen in the bank angle after the failure was 

with the adaption algorithm (

the inner loop simulation cases but that is to be expected as a constant pitch angle is not being 

it is noted that the pitch angle reaches

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
enabled and disabled, with a 50% hard over failure of the right aileron, 

the maximum error seen in the bank angle after the failure was 

n algorithm (seen in 

but that is to be expected as a constant pitch angle is not being 

he pitch angle reaches

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
enabled and disabled, with a 50% hard over failure of the right aileron, 

the maximum error seen in the bank angle after the failure was 

seen in Figure 5.95

but that is to be expected as a constant pitch angle is not being 

he pitch angle reaches a steady

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
enabled and disabled, with a 50% hard over failure of the right aileron, 

the maximum error seen in the bank angle after the failure was 

95).  The pitch angles again

but that is to be expected as a constant pitch angle is not being 

a steady-state value more quickly than 

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
enabled and disabled, with a 50% hard over failure of the right aileron, 

the maximum error seen in the bank angle after the failure was 

The pitch angles again

but that is to be expected as a constant pitch angle is not being 

value more quickly than 

 

: Simulated time history of the PID gain changes with the adaption mechanism enabled aircraft in 
enabled and disabled, with a 50% hard over failure of the right aileron, 

the maximum error seen in the bank angle after the failure was 

The pitch angles again differ 

but that is to be expected as a constant pitch angle is not being 

value more quickly than 
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Figure 5.

The simulation was re

similar r

performance.

results in an improved ground track as shown in 

observed that the flight path is diverted somewhat

Similar results were obtained for the changes in PID gains seen in 

proportional gain, shown in 

after the failure

was seen in the remaining results and thus they have not been included here

 

.95: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

The simulation was re

similar results to the level flight case

performance.  The ability of the adaption algorithm

results in an improved ground track as shown in 

observed that the flight path is diverted somewhat

Similar results were obtained for the changes in PID gains seen in 

proportional gain, shown in 

after the failure as with the level flight case

was seen in the remaining results and thus they have not been included here

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

The simulation was re-run but for the aircraft in a constant bank turn. 

esults to the level flight case

The ability of the adaption algorithm

results in an improved ground track as shown in 

observed that the flight path is diverted somewhat

Similar results were obtained for the changes in PID gains seen in 

proportional gain, shown in Figure 

as with the level flight case

was seen in the remaining results and thus they have not been included here

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

t for the aircraft in a constant bank turn. 

esults to the level flight case with the response of altitude

The ability of the adaption algorithm

results in an improved ground track as shown in 

observed that the flight path is diverted somewhat

Similar results were obtained for the changes in PID gains seen in 

Figure 5.97 (d), 

as with the level flight case but instead remained at a higher level. Little other change 

was seen in the remaining results and thus they have not been included here

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

t for the aircraft in a constant bank turn. 

with the response of altitude

The ability of the adaption algorithm to correct the rolling moment more quickly also 

results in an improved ground track as shown in Figure 

observed that the flight path is diverted somewhat but little other effect is noted

Similar results were obtained for the changes in PID gains seen in 

 showed that the proportional gain did not reduce in

but instead remained at a higher level. Little other change 

was seen in the remaining results and thus they have not been included here

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

t for the aircraft in a constant bank turn. 

with the response of altitude,

to correct the rolling moment more quickly also 

Figure 5.96 (c). 

but little other effect is noted

Similar results were obtained for the changes in PID gains seen in Figure 

showed that the proportional gain did not reduce in

but instead remained at a higher level. Little other change 

was seen in the remaining results and thus they have not been included here

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

t for the aircraft in a constant bank turn.  Figure 5

, in particular, showing excellent 

to correct the rolling moment more quickly also 

(c).  At the moment of failure, it is 

but little other effect is noted.  

Figure 5.97 (a) t

showed that the proportional gain did not reduce in

but instead remained at a higher level. Little other change 

was seen in the remaining results and thus they have not been included here. (See 

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight

5.96 (a) and (b) show 

in particular, showing excellent 

to correct the rolling moment more quickly also 

At the moment of failure, it is 

 

(a) to (c) while the roll 

showed that the proportional gain did not reduce in

but instead remained at a higher level. Little other change 

. (See Appendix C

 

: Simulated time history of pitch and bank angles (50% right aileron hard over failure) in level flight 

(a) and (b) show 

in particular, showing excellent 

to correct the rolling moment more quickly also 

At the moment of failure, it is 

while the roll 

showed that the proportional gain did not reduce in value 

but instead remained at a higher level. Little other change 
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Figure 5.
constant bank turn
aileron but with an increase

Figure 5.
aircraft in a constant bank turn
the right aileron

.96: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
constant bank turn with the adaption algorithm enab

but with an increase

.97: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
ircraft in a constant bank turn

the right aileron but with an increased pitch PID adaption

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
with the adaption algorithm enab

but with an increased pitch PID adaption

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
ircraft in a constant bank turn with the adaption

but with an increased pitch PID adaption

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
with the adaption algorithm enab

d pitch PID adaption 

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
with the adaption 

but with an increased pitch PID adaption

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
with the adaption algorithm enabled and disabled

 

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
 algorithm enabled and disable

but with an increased pitch PID adaption 

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
led and disabled with 

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
algorithm enabled and disable

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
with a 50% hard ov

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
algorithm enabled and disabled with a 50% hard ov

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in 
50% hard over failure of the right 

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
with a 50% hard over failure of 

 

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in a 
er failure of the right 

 

: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
er failure of 
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The simulation was run

hard over fail

the adaption algorithm was enabled. This

allowed the aircraft to resume the desired flight path

as seen in 

algorithm in returning the aircraft 

aircraft 

unsuccessful flight would

50% hard over case. 

Figure 5.
flight with 
with an increased pitch PID adaption

Right Aileron Failure 

The simulation was run

hard over failure simulation, the results show that there was an improved control performance when 

the adaption algorithm was enabled. This

allowed the aircraft to resume the desired flight path

as seen in Figure 5.

algorithm in returning the aircraft 

 after the saturation of the ailerons, 

unsuccessful flight would

50% hard over case. 

.98: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
with the adaption algorithm enabled and disabled, with 100% hard ov

with an increased pitch PID adaption

Right Aileron Failure -

The simulation was run inducing a 100% hard over failure of the right aileron.

ure simulation, the results show that there was an improved control performance when 

the adaption algorithm was enabled. This

allowed the aircraft to resume the desired flight path

.98 (c).  Figure 

algorithm in returning the aircraft 

after the saturation of the ailerons, 

unsuccessful flight would have resulted. 

50% hard over case.  

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
the adaption algorithm enabled and disabled, with 100% hard ov

with an increased pitch PID adaption

- 100% Hard 

inducing a 100% hard over failure of the right aileron.

ure simulation, the results show that there was an improved control performance when 

the adaption algorithm was enabled. This, coupled with the use of the control allocation algorithm

allowed the aircraft to resume the desired flight path

Figure 5.99  (a) to (d) 

algorithm in returning the aircraft to level flight as the flaps

after the saturation of the ailerons, 

have resulted.   Figure 

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
the adaption algorithm enabled and disabled, with 100% hard ov

with an increased pitch PID adaption 
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(a) to (d) shows the importance of 
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: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
the adaption algorithm enabled and disabled, with 100% hard ov
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: Simulated time history of airspeed (a), altitude (b) and the ground track (c) 
the adaption algorithm enabled and disabled, with 100% hard over failure of the right aileron

 Similarly to the 50% 

ure simulation, the results show that there was an improved control performance when 

coupled with the use of the control allocation algorithm

h a smaller change in heading,

the control allocation 

(d),  are used to roll the 

. Without the allocation algorithm, an 

, shows a similar trend to that observed in the 

: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the aircraft in level 
er failure of the right aileron

Similarly to the 50% 

ure simulation, the results show that there was an improved control performance when 

coupled with the use of the control allocation algorithm, 

change in heading, 

control allocation 

are used to roll the 

. Without the allocation algorithm, an 

, shows a similar trend to that observed in the 

 

of the aircraft in level 
er failure of the right aileron but 



190 
 

Figure 5.
adaption mechanism enabled for the aircraft i
elevator and an increased pitch PID adaption rate

Figure 5.
aircraft in a constant bank turn
of the right aileron

.99: Simulated time history of 
adaption mechanism enabled for the aircraft i

and an increased pitch PID adaption rate

.100: Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
ircraft in a constant bank turn

of the right aileron but with an increased 

Simulated time history of 
adaption mechanism enabled for the aircraft i

and an increased pitch PID adaption rate

Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
ircraft in a constant bank turn with the adaption algorith

but with an increased 

Simulated time history of elevator (a), aileron (b), rudde
adaption mechanism enabled for the aircraft in a constant bank turn

and an increased pitch PID adaption rate

Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
with the adaption algorith

but with an increased pitch adaption rate

elevator (a), aileron (b), rudde
n a constant bank turn

and an increased pitch PID adaption rate 

Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
with the adaption algorithm enabled and disabled

ch adaption rate 
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n a constant bank turn with a 10

Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
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Simulated time history of the PID gain changes with the adaption mechanism enabled with the 
m enabled and disabled with a 10
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The simulation was re

obtained in the 50% deflection cas

remainin

Figure 5.
constant bank turn
aileron but with an increased pitch PID adaption

A simulation was run

was applied to the right elevator and a 100% hard over failure was applied to the right aileron. In this 

test, a comparison between the unmodified autopilot (with

and the proposed control strategy are demonstrated. 

fails to maintain controlled flight with a rapid loss of altitude

and a spiral dive to the ground. 

failure and

the desired set poin

control and straight and level flight is resumed. 

The simulation was re

obtained in the 50% deflection cas

remaining results can be found in 

.101: Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the a
constant bank turn with the adaption algori

but with an increased pitch PID adaption

Comparison between Unmodified Autopilot and Autopilot with all Proposed Control 

Algorithms E

ulation was run

was applied to the right elevator and a 100% hard over failure was applied to the right aileron. In this 

test, a comparison between the unmodified autopilot (with

and the proposed control strategy are demonstrated. 

s to maintain controlled flight with a rapid loss of altitude

and a spiral dive to the ground. 

and, although the

the desired set points. 

control and straight and level flight is resumed. 

The simulation was re-run for the banked flight case

obtained in the 50% deflection cas

g results can be found in 
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with the adaption algori

but with an increased pitch PID adaption

Comparison between Unmodified Autopilot and Autopilot with all Proposed Control 

Algorithms Enabled (Test 7

ulation was run inducing a combined failure of two control surfaces. 

was applied to the right elevator and a 100% hard over failure was applied to the right aileron. In this 

test, a comparison between the unmodified autopilot (with

and the proposed control strategy are demonstrated. 

s to maintain controlled flight with a rapid loss of altitude

and a spiral dive to the ground. 

although there is a large upset in airspeed

ts.  The track shows a significant change in heading that is rapidly brought under 

control and straight and level flight is resumed. 

run for the banked flight case

obtained in the 50% deflection case, with minor changes in ground track seen in 

g results can be found in Appendix C
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with the adaption algorithm enabled and disabled

but with an increased pitch PID adaption 

Comparison between Unmodified Autopilot and Autopilot with all Proposed Control 

nabled (Test 7) 

inducing a combined failure of two control surfaces. 

was applied to the right elevator and a 100% hard over failure was applied to the right aileron. In this 

test, a comparison between the unmodified autopilot (with

and the proposed control strategy are demonstrated. 

s to maintain controlled flight with a rapid loss of altitude

and a spiral dive to the ground.  In comparison

is a large upset in airspeed

The track shows a significant change in heading that is rapidly brought under 

control and straight and level flight is resumed. 

run for the banked flight case, which showed almost identical results to those 

with minor changes in ground track seen in 

Appendix C, as no additional insight is gained. 

Simulated time history of airspeed (a), altitude (b) and the ground track (c) of the a
thm enabled and disabled

 

Comparison between Unmodified Autopilot and Autopilot with all Proposed Control 

inducing a combined failure of two control surfaces. 

was applied to the right elevator and a 100% hard over failure was applied to the right aileron. In this 

test, a comparison between the unmodified autopilot (with

and the proposed control strategy are demonstrated. Figure 
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thm enabled and disabled with  a 10

Comparison between Unmodified Autopilot and Autopilot with all Proposed Control 

inducing a combined failure of two control surfaces. 
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5.5.3 Outer Control Loop Simulation 

The adaption and allocation algorithms were tested in the fully autonomous flight mode and a set of 

three waypoints, the coordinates of which were arbitrarily chosen.  The aircraft is initialised at a speed 

slightly below that set in the autopilot but at the correct altitude at the starting waypoint.  The aircraft 

then flies to waypoint 1 which is approximately 400m from the initial way point and to the port side 

of the aircraft.  The second waypoint is to the starboard side of the aircraft and is approximately 500m 

away.  The last waypoint is the starting waypoint and thus a triangular flight path is intended.  The 

waypoints are flown in turn until the simulation time has lapsed.   

Control  

A simulation, without inducing any control failures was run both with and without the adaption 

algorithms enabled.  This allowed the establishment of a control that could be used to compare the 

performance of the autopilot system to the failures to be modelled.  The control simulation also 

provided a test of the adaption system under normal operating conditions to determine whether the 

adaption system would cause instabilities to arise in the control of the aircraft.  

During the simulations it was found that, for the current adaption settings of the inner loop roll PID 

controller, the simulation with the adaption algorithm enabled, failed.  This failure was caused by too 

rapid a change in the roll PID controller and this induced large accelerations.  This placed the aircraft 

out of the known flight envelope.  The aerodynamic characteristics of the aircraft were described 

using a set of polynomials.  Once the aircraft has exceeded the known flight envelope, the 

polynomials are no longer a reliable source of data and may produce unrealistic results. In this case, 

one of the aerodynamic parameters became large and a runaway condition, to infinite levels, 

developed.  While this is not physically possible, it does show that the adaption algorithm would be 

likely to have exceeded the structural or aerodynamic capabilities of the aircraft, causing the loss of an 

airframe.  The roll PID adaption rate was thus reduced by a factor of 10.  Again this caused a 

divergence that resulted in the termination of the simulation.  Again, the adaption rate was reduced by 

a factor of 10 and this simulation yielded a highly satisfactory response for the control of airspeed and 

altitude and a slight improvement in waypoint tracking.  

In Figure 5.106, it can be seen that, with the adaption algorithm disabled, there is a large variation in 

airspeed each time a manoeuvre was induced, to the extent that a stable airspeed at the desired set 

point was never achieved.  The simulation with the adaption algorithm, however, shows great 

improvements in control performance over the non-adapted case.  Figure 5.106 shows that after an 

initial overshoot in airspeed, the airspeed quickly stabilises to the set point value and only very minor 

disturbances in airspeed during each manoeuvre.  This variation is very slight and the set point value 

is quickly re-established.        
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Figure 5.109 shows areas of concern. An examination of Figure 5.109 (a) shows that, initially, there is 

a large increase in the airspeed proportional gain followed by a stepped increase in this and the 

integral gain every time a manoeuvre is performed.  This may result in an unstable condition 

developing should the flight continue.  This concern is especially true of the pitch PID shown in 

Figure 5.109 (c), which has a very large increase in proportional gain followed by a rapid reduction 

but then an increase again, during each turn manoeuvre.  The magnitude of the change does decrease 

during each successive manoeuvre, suggesting that the gain may reach an equilibrium point 

eventually.  However, the change is still to increase the proportional gain.  The energy, roll and 

navigational roll PID gains are reasonably well behaved and do increase slightly; however, it is noted 

that an equilibrium point, other than for the energy PID, is not attained.   

Figure 5.110 shows that the measured pitch value oscillates around the ideal pitch value. This is 

thought to occur due to the high pitch PID proportional gain and the high frequency oscillations 

observed in Figure 5.109 (c).  Towards the end of the manoeuvre, this oscillatory behaviour did 

reduce and the ideal pitch behaviour was more closely followed.  
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Figure 5.
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Figure 5.
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

Figure 5.
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

.113: Simulated time hist
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

.114: Simulated track followed by the aircraft in the fully autonomous flight 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

: Simulated time history of airspeed of the aircraft
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

: Simulated track followed by the aircraft in the fully autonomous flight 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

ory of airspeed of the aircraft
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

: Simulated track followed by the aircraft in the fully autonomous flight 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

ory of airspeed of the aircraft
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

: Simulated track followed by the aircraft in the fully autonomous flight 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

ory of airspeed of the aircraft in the fully autonomous
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

: Simulated track followed by the aircraft in the fully autonomous flight 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

he fully autonomous flight mode
pitch adaption rate and a low roll adaption rate (0° deflection failure of the right elevator) 

: Simulated track followed by the aircraft in the fully autonomous flight mode with a high pitch 
adaption rate and a low roll adaption rate (0° deflection failure of the right elevator) 

flight mode with a high 
 

mode with a high pitch 

 

with a high 

 

mode with a high pitch 



203 
 

An examination of

reached its

value throughout the simulation. 

large and highly unstable oscillatory variation in pitch 

These results are

failure in autonomous mode.

adaption rate by a facto

results of which are shown in

Figure 5.
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

examination of 

reached its maximum allowable value of 10 very rapidly

value throughout the simulation. 

large and highly unstable oscillatory variation in pitch 

These results are highly undesirable as they show that the adaption algorithm is not tolerant to this 

failure in autonomous mode.

adaption rate by a facto

results of which are shown in

.115: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

 Figure 5.115

maximum allowable value of 10 very rapidly

value throughout the simulation. 

large and highly unstable oscillatory variation in pitch 

highly undesirable as they show that the adaption algorithm is not tolerant to this 

failure in autonomous mode. Based on 

adaption rate by a factor of 10 to determine if this might

results of which are shown in Figure 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

115 shows that

maximum allowable value of 10 very rapidly

value throughout the simulation.  There was also an increase in integral gain.

large and highly unstable oscillatory variation in pitch 

highly undesirable as they show that the adaption algorithm is not tolerant to this 

Based on Figure 

r of 10 to determine if this might

Figure 5.116 to 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

that, in Figure 

maximum allowable value of 10 very rapidly

There was also an increase in integral gain.

large and highly unstable oscillatory variation in pitch proportional gain, as seen in 

highly undesirable as they show that the adaption algorithm is not tolerant to this 

Figure 5.115 (a)

r of 10 to determine if this might

to Figure 5.118

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

Figure 5.115 (a), the airspeed proportional ga

maximum allowable value of 10 very rapidly and maintained approximately this high 

There was also an increase in integral gain.

proportional gain, as seen in 

highly undesirable as they show that the adaption algorithm is not tolerant to this 

(a), it was decided to decrease the airspeed 

r of 10 to determine if this might improve the performance of the system, the 

118.  

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

(a), the airspeed proportional ga

and maintained approximately this high 

There was also an increase in integral gain.  There was

proportional gain, as seen in 

highly undesirable as they show that the adaption algorithm is not tolerant to this 

, it was decided to decrease the airspeed 

improve the performance of the system, the 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous

(a), the airspeed proportional ga

and maintained approximately this high 

There was, however

proportional gain, as seen in Figure 5

highly undesirable as they show that the adaption algorithm is not tolerant to this 

, it was decided to decrease the airspeed 

improve the performance of the system, the 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight

(a), the airspeed proportional gain 

and maintained approximately this high 

however, a 

5.115 (c).  

highly undesirable as they show that the adaption algorithm is not tolerant to this 

, it was decided to decrease the airspeed 

improve the performance of the system, the 

 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
flight 



204 
 

Figure 5

demonstrates that the adaption algorithm improves the control performance of the system. 

overshoot is generally smaller tha

is lower. 

the non-

performance of the system

Figure 5.
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

5.116 shows that the airspeed tracking has impr

demonstrates that the adaption algorithm improves the control performance of the system. 

overshoot is generally smaller tha

is lower.  This is also seen in 

-adapted case. 

performance of the system

.116: Simulated time hist
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows that the airspeed tracking has impr

demonstrates that the adaption algorithm improves the control performance of the system. 

overshoot is generally smaller tha

This is also seen in Figure 

adapted case.  Thus, again, it is noted that the 

performance of the system and the ability of the adaption algorithms to cope with a failure.

: Simulated time history of airspeed of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows that the airspeed tracking has impr

demonstrates that the adaption algorithm improves the control performance of the system. 

overshoot is generally smaller than the case w

Figure 5.117 which shows far better altitude tr

Thus, again, it is noted that the 

and the ability of the adaption algorithms to cope with a failure.

ory of airspeed of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows that the airspeed tracking has impr

demonstrates that the adaption algorithm improves the control performance of the system. 

n the case without adaption

which shows far better altitude tr

Thus, again, it is noted that the 

and the ability of the adaption algorithms to cope with a failure.

ory of airspeed of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows that the airspeed tracking has improved for the case with adaption

demonstrates that the adaption algorithm improves the control performance of the system. 

ithout adaption and the time to reach the set point value 

which shows far better altitude tr

Thus, again, it is noted that the adaption rates have a large impact o

and the ability of the adaption algorithms to cope with a failure.

ory of airspeed of the aircraft in the fully 
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

oved for the case with adaption

demonstrates that the adaption algorithm improves the control performance of the system. 

and the time to reach the set point value 

which shows far better altitude tracking when compared to 

adaption rates have a large impact o

and the ability of the adaption algorithms to cope with a failure.

e fully autonomous flight mode
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

oved for the case with adaption and now 

demonstrates that the adaption algorithm improves the control performance of the system. 

and the time to reach the set point value 

acking when compared to 

adaption rates have a large impact o

and the ability of the adaption algorithms to cope with a failure.  

autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator) 

and now 

demonstrates that the adaption algorithm improves the control performance of the system.  The 

and the time to reach the set point value 

acking when compared to 

adaption rates have a large impact on the 

 

with a low 



205 
 

Figure 5.
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

Figure 5

in Figure 

far fewer oscillations and is generally more stable;

still present. 

By reducing the adaption rate of the airspeed PID

compromise the control case. 

performance seen in

still satisfactor

adaption rate was maintained throughout the remaining simulations. 

.117: Simulated time hist
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

5.118 shows the response of the PID gains

Figure 5.115 (a) is no longer present in 

far fewer oscillations and is generally more stable;

still present.  The PID gains for the remaining controllers are reasonably stable and well behaved. 

By reducing the adaption rate of the airspeed PID

promise the control case. 

performance seen in

still satisfactory and the results were far better than the non

adaption rate was maintained throughout the remaining simulations. 

: Simulated time history of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows the response of the PID gains

(a) is no longer present in 

far fewer oscillations and is generally more stable;

The PID gains for the remaining controllers are reasonably stable and well behaved. 

By reducing the adaption rate of the airspeed PID

promise the control case.  The controlled case was

performance seen in Figure 5.106

y and the results were far better than the non

adaption rate was maintained throughout the remaining simulations. 

ory of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows the response of the PID gains

(a) is no longer present in Figure 

far fewer oscillations and is generally more stable;

The PID gains for the remaining controllers are reasonably stable and well behaved. 

By reducing the adaption rate of the airspeed PID

The controlled case was

106 and Figure 

y and the results were far better than the non

adaption rate was maintained throughout the remaining simulations. 

ory of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

shows the response of the PID gains.  It is observed that the large propo

Figure 5.118 

far fewer oscillations and is generally more stable; however

The PID gains for the remaining controllers are reasonably stable and well behaved. 

By reducing the adaption rate of the airspeed PID, stabi

The controlled case was

Figure 5.107 was degraded somewhat. 

y and the results were far better than the non

adaption rate was maintained throughout the remaining simulations. 

ory of altitude of the aircraft in the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

t is observed that the large propo

(a).  It is also noted that 

owever, large oscillations and extreme values are 

The PID gains for the remaining controllers are reasonably stable and well behaved. 

stability to the system was restored

The controlled case was run and checked and it was fou

was degraded somewhat. 

y and the results were far better than the non-adapted case. 

adaption rate was maintained throughout the remaining simulations.  

n the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

t is observed that the large propo

It is also noted that 

large oscillations and extreme values are 

The PID gains for the remaining controllers are reasonably stable and well behaved. 

lity to the system was restored

and checked and it was fou

was degraded somewhat.  The performance was 

adapted case.  As a result

 

n the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator) 

t is observed that the large proportional gain seen 

It is also noted that Figure 5.118

large oscillations and extreme values are 

The PID gains for the remaining controllers are reasonably stable and well behaved. 

lity to the system was restored but this will 

and checked and it was found that the 

The performance was 

As a result the reduced 

 

n the fully autonomous flight mode with a low 

rtional gain seen 

118 (c) has 

large oscillations and extreme values are 

The PID gains for the remaining controllers are reasonably stable and well behaved.  

but this will 

nd that the 

The performance was 

the reduced 



206 
 

Figure 5.
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

The simulation was run with the introduction of a 50% hard over failure of th

nose-up pitching moment and a rolling moment to the right. 

was observed. 

control of airspeed and altitude

manoeuvre, as show

.118: Simulated time history of the airspeed
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

 

Right Elevator F

The simulation was run with the introduction of a 50% hard over failure of th

up pitching moment and a rolling moment to the right. 

was observed.  It was found that

ontrol of airspeed and altitude

manoeuvre, as show

: Simulated time history of the airspeed
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

Right Elevator Failure 

The simulation was run with the introduction of a 50% hard over failure of th

up pitching moment and a rolling moment to the right. 

It was found that

ontrol of airspeed and altitude

manoeuvre, as shown in Figure 5

: Simulated time history of the airspeed
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

ailure - 50% Hard O

The simulation was run with the introduction of a 50% hard over failure of th

up pitching moment and a rolling moment to the right. 

It was found that, with the adaption enabled, there was a general improvement in 

ontrol of airspeed and altitude with the overshoot following a steady decay from manoeuvre to 

5.119 and Figure 

: Simulated time history of the airspeed PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

0% Hard Over (Test 2)

The simulation was run with the introduction of a 50% hard over failure of th

up pitching moment and a rolling moment to the right. 

with the adaption enabled, there was a general improvement in 

with the overshoot following a steady decay from manoeuvre to 

Figure 5.120. 

PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of t

(Test 2) 

The simulation was run with the introduction of a 50% hard over failure of th

up pitching moment and a rolling moment to the right.   A similar result to the

with the adaption enabled, there was a general improvement in 

with the overshoot following a steady decay from manoeuvre to 

.  The case without adaption shows a constant 

PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 
with a low airspeed adaption rate and a low roll adaption rate (0° deflection failure of the right elevator)

The simulation was run with the introduction of a 50% hard over failure of the right elevator causing a 

A similar result to the

with the adaption enabled, there was a general improvement in 

with the overshoot following a steady decay from manoeuvre to 

The case without adaption shows a constant 

PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 

he right elevator)

e right elevator causing a 

A similar result to the 0° deflection case 

with the adaption enabled, there was a general improvement in 

with the overshoot following a steady decay from manoeuvre to 

The case without adaption shows a constant 

 

PID (a), energy PID (b), pitch PID (c), roll PID (d) and 
navigational roll PID (e) gain changes with the adaption mechanism enabled for fully autonomous flight mode 

he right elevator) 

e right elevator causing a 

0° deflection case 

with the adaption enabled, there was a general improvement in 

with the overshoot following a steady decay from manoeuvre to 

The case without adaption shows a constant 



207 
 

pattern of overshoot and oscillations that is in general larger than the case with adaption.

changes were noted in the

induce a slight overshoot in heading

shown in 

Figure 5.
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

changes were noted in the

e a slight overshoot in heading

shown in Figure 5.121

.119: Simulated time hist
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

changes were noted in the track followed by the airc

e a slight overshoot in heading

121 .  

: Simulated time history of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

track followed by the airc

e a slight overshoot in heading although the turn radius in each turn was generally smaller as 

ory of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

track followed by the aircraft

although the turn radius in each turn was generally smaller as 

ory of altitude of the aircraft
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

raft in that the adaption algorithm seemed to 

although the turn radius in each turn was generally smaller as 

ory of altitude of the aircraft in the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

in that the adaption algorithm seemed to 

although the turn radius in each turn was generally smaller as 

in the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator)

pattern of overshoot and oscillations that is in general larger than the case with adaption.

in that the adaption algorithm seemed to 

although the turn radius in each turn was generally smaller as 

in the fully autonomous flight mode with a low 
airspeed adaption rate and a low roll adaption rate (50% deflection failure of the right elevator) 

pattern of overshoot and oscillations that is in general larger than the case with adaption. Small 

in that the adaption algorithm seemed to 

although the turn radius in each turn was generally smaller as 

 

in the fully autonomous flight mode with a low 



208 
 

Figure 5.
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The simulation was run inducing a 0

effect on the performance of the aircraft to maintain the waypoint following and made

difference to the airspeed and altitude tracking, as shown in 

the revised control results

position 

control effort is easily attained for this flight case

Figure 5.
fully autonomous flight mode with a low airspeed adaption rate and a low roll adaption rate (0° deflection 
failure of the right aileron)
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Figure 5.
aircraft in the fully autonomous flight mode with a low airspeed adaption rate and a low roll adaption rate (0
deflection failure of the right aileron)

The simulation was run with the introduction of a 50% hard over failure of the right aileron, inducing 

a rolling moment to the right. 
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Figure 5.
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6 Chapter 6 – Discussion of Results 

6.1 Chapter Outline  

This chapter presents a review of the objectives of the research as well as the results of Chapter 5.  

The success or failure of the proposed fault-tolerant control strategy is discussed and conclusions as to 

the suitability of the proposed fault-tolerant control system are drawn.  Finally the recommendations 

for future work on this topic are presented. 

6.2 Research Objectives 

The primary objective of this research, as outlined in Chapter 1.7, is to research, design and simulate a 

fault-tolerant control system into a commercial autopilot system, while making use of artificial 

intelligence techniques.  This objective was expanded into more detailed objectives which are as 

follows. 

• Actuator failure 

• The loss of a control surface 

• Uncertainties within the aircraft model 

The simulated tests concentrated on a number of different actuator failures. These included a 0° 

deflection failure, a 50% hardover failure, and a 100% hardover failure.  The right elevator and right 

aileron were failed individually. Simulation where both the aileron and elevator were failed 

simultaneously were also conducted.         

6.3 Inner Loop Simulations  

The inner loop simulations provided valuable insight into the feasibility of the adaption algorithm in 

providing a measure of fault tolerance.  The failures were tested for two different commanded flight 

manoeuvres, namely, straight and level flight and a constant bank turn.  The adaption algorithm was 

tested against the non-adapted autopilot in each test and, in the cases where there was insufficient 

control authority available, the control allocation algorithm was introduced.  

6.3.1 Elevator Failures 

The first failure tested was a 0° deflection failure which generated a nose-up pitching moment coupled 

with a rolling moment to the right.  This failure showed that the autopilot, in its current form and 

without adaption, is tolerant to this type of failure.  It was found, however, that there was an 

improvement in the control performance of the system when the adaption algorithm was enabled.  
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The 50% deflection failure showed a marked increase in pitch and roll error although it was 

demonstrated that the unmodified autopilot was again able to tolerate this failure.  It was noted that, 

similarly to the 0° deflection failure test, significant improvement in the control performance was 

attained with the adaption algorithm enabled.  A significant improvement in control performance was 

seen in the pitch response while only minor improvements were seen in the roll response.  Little 

difference was observed between the two flight manoeuvres tested.  

The 100% elevator failure, which was expected to induce difficulties for the autopilot, was reasonably 

well controlled.  However, the autopilot with and without adaption was unable to maintain the desired 

set point.  This was expected as insufficient control authority was available. As soon as the elevator 

control saturated, the aircraft was subject to its stick-fixed dynamic behaviour which was shown by a 

damped phugoid motion.  The roll error was again easily tolerated by the autopilot and improvement 

in control performance was demonstrated with the adaption algorithm.  A subtle difference was 

observed between flight manoeuvres with marginally better tolerance to the failure being observed for 

the constant banked turn.  This was due to the direction of the failure and the need for a higher pitch 

angle to maintain altitude in the turn.  The difference between the required control authority and the 

available control authority was lower resulting in a smaller oscillation about the set point value.  

Of note was the rapid increase in proportional gain for the 100% elevator failure case as the adaption 

algorithm attempted to regain control.  This presents a potential problem with the adaption algorithm 

logic.  Should a control surface reach its physical limits and saturate, the adaption algorithm has no 

mechanism to detect or resolve the resulting lack of control authority.   This was an unintended 

consequence that developed which has the potential to cause a catastrophic failure of the system.  This 

is highly undesirable as the purpose of the adaption system is to improve fault tolerance and not to 

induce further difficulties.  This result highlights the need for the development of a simple control 

allocation technique to be used in conjunction with the adaption algorithm.   

The combination of control adaption and allocation was tested for the 100% elevator failure.   The 

control allocation algorithm was highly successful in tolerating this failure to the extent that the non-

adapted autopilot was tolerant to the 100% hard over failure.  It was found, however, that the adaption 

algorithm improves the control performance when compared to the non-adapted autopilot. This is 

largely due to the adaption of the PID gains to accommodate the change in control characteristics.  

This simulation showed the importance of the control allocation algorithm and suggests that this 

algorithm is the primary driver for the successful result obtained in this simulation.  It is, however, of 

great advantage to include the adaption algorithm: the combination of the two algorithms yielded far 

improved control performance. 
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The simulations showed that, for the inner control loop, the proposed control methodology of 

combining the control adaption with the control allocation yielded a successful tolerance to all of the 

tested elevator failures.  

6.3.2 Aileron Failures 

The first aileron failure to be tested was the 0° deflection failure which yielded only a small roll 

disturbance.  Because the disturbance was so small only a small opportunity existed for the adaption 

algorithm to make changes to the PID gains.  As a result, only a small difference was noted in bank 

angle control performance for both level flight and the constant banked turn.  

The more aggressive 50% hard over failure simulation yielded somewhat more significant results. 

There was a large roll disturbance that was adequately controlled by the non-adapted autopilot; 

however, the maximum roll error was reduced by half when the adaption algorithm was enabled.  This 

test yielded a promising result although two areas of concern were noted, namely, the introduction of 

a more oscillatory behaviour and a delay in returning the bank angle to the set point value.  It is noted 

that, although the adaption algorithm did increase the time to reach the set point value, the bank angle 

error was low and this delay would not have impacted significantly on the performance of the aircraft.  

The cause of the delay is speculated to lie in a number of potential areas.  One may be a flaw within 

the fuzzy logic rule base; or another may be in the chosen behaviour of the ideal model.  A review of 

these issues should be conducted.   

The 100% hardover failure of the right aileron yielded an interesting set of results.  It was thought that 

this failure, similar to elevator 100% hardover failure case, would result in the failure of the autopilot 

to maintain the set bank angle; however, this was not the case.  The autopilot, without adaption, was 

able to level the wings of the aircraft with the aid of the rolling moment supplied by the rudder.  This 

rudder input was generated by a feedforward loop commonly used on remotely piloted aircraft. The 

rudder-aileron mix was sufficient to cause the levelling of the wings, albeit slowly, despite the lack of 

available roll control from the ailerons.  The same success could not be shown of the autopilot with 

adaption.  The autopilot supplies a commanded aileron output based on the roll error and has no 

mechanism to detect when a control surface saturates.  It then simply commands a higher control 

deflection after a control has saturated.  Under normal circumstances, this does not cause any 

significant problems as the control reaches its mechanical limits and cannot be deflected further. In 

this case two problems arise.  The first is due to the methodology that determines the rudder output 

based on the aileron output.  With the increase in aileron output beyond control limits, there is a 

corresponding increase in rudder output that is not limited until full rudder deflection is achieved. 

While not a severe problem alone, when combined with the rapid rise in the proportional gain of the 

roll PID controller, a dynamically unstable rudder control response results. This causes a series of 
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severe and increasing oscillations which results in excessive sideslip angles.  During the simulation 

the aircraft achieved a sideslip angle of 30° at which point the simulation was stopped automatically.  

The mechanism which resulted in the successful control of the aircraft in the non- adapted case was 

the direct cause of the failure of the adapted case. 

The problems encountered with the adaption algorithm were solved by removing the aileron to rudder 

mixing.  However, while the system did not become unstable, as it did previously, it was not able to 

maintain the desired set point with the system achieving maximum bank angle error in excess of 70°.  

This occurred for the unmodified autopilot as well as the adapted autopilot and is highly undesirable.  

Similarly to the 100% hardover elevator failure, the introduction of the control allocation algorithm 

yielded a satisfactory result in that the set point was achieved both with and without adaption.  As was 

found in the other simulations, in general, the adaption algorithm improved control performance.  

However, similarly to the 50% aileron failure case, the time to reach the roll set point value was 

longer than the non-adapted case, even though the maximum bank angle error was significantly 

reduced.   

The exact cause of this has not yet been established as it was expected that a similar performance to 

that attained in the pitch direction would be achieved; however, it is thought that a modification to the 

fuzzy rule set or an adjustment to the ideal model behaviour may yield better results.  Research into 

the reasons for this reduced performance is recommended in future work.          

6.3.3 Combined Failures 

A combined failure of the aileron and elevator was performed to test the ability of the proposed 

control laws to tolerate multiple surface failures.  The first combination of failures was a 0° deflection 

failure of the right elevator and right aileron.  This failure caused a larger pitch and roll error, as 

would be expected, than the single control surface cases.  The test showed that the autopilot, even 

without adaption, was able to tolerate this failure; however, as in the previous cases, the system with 

adaption was found to have improved control performance in pitch and roll.  The maximum errors in 

both pitch and roll directions were reduced by a small amount and the time to re-establish the set point 

value was reduced.  

The 50% hardover failure of the elevator and aileron was also tested.  This, again, resulted in a 

combined pitch and roll error that was the sum of each individual control failure.  The autopilot 

without adaption was tolerant to this failure and restored the aircraft to the required set points in both 

pitch and roll.  It was noted that the pitch control performance was greatly improved with the adaption 

algorithm with a reduced maximum error and a faster return to the set point value.  In roll, the 

maximum error was greatly reduced but, similarly to the aileron failure cases, the time to reach the set 

point value was significantly longer.  
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Lastly, the simulation was run with a 100% hardover failure of both the right elevator and right 

aileron.  This resulted in a complete failure in the autopilot, with or without adaption, to tolerate this 

failure.  This is as expected as the control allocation algorithm was disabled.  The bank angle, 

similarly to the previous test, increased to the point where the wings were nearly vertical.  Slight 

improvements were seen in control performance with the adaption enabled but this improvement is 

meaningless in this context as the aircraft would have entered a spiral dive.  The control allocation 

algorithm was then enabled and the simulation re-run.  This resulted in the successful return of the 

aircraft to the desired set point for both banked flight and level flight.  The allocation algorithm did, 

however, reach the limits of its ability to control this failure and a number of oscillations in pitch 

occurred.  The flaps, being the only remaining control surface to provide both pitch and roll control, 

was unable to provide enough control authority and reached their limits of travel.  It is highly unlikely 

that this flight would have been successful as the flaps were unable to provide adequate pitch control 

and the phugoid motion of the aircraft was evident both with and without the adaption algorithm.  The 

rudder mix was removed to reduce the amount of sideslip angle seen in the simulation and, 

interestingly, this resulted in a slight improvement of the control performance of the system.  This was 

found only to delay the inevitable as, towards the end of this simulation, the flaps were moments from 

reaching their limits and oscillations would have developed.  

The results of the combined control failures show that, for the inner loop, the autopilot was tolerant of 

the majority of the failures tested.  The adaption algorithm did show some control performance 

improvement in most cases although the time to re-establish the roll set point was longer.  The system 

failed for the most extreme failure tested which prompted the use of the control allocation algorithm.  

This showed a vast improvement in control performance; however, it was observed that insufficient 

control authority was present and that the aircraft in all likelihood would be lost.  Of note was the 

effect of the aileron-rudder mix that degraded the control performance demonstrating the sensitivity of 

the proposed system to feedforward control commands.        

6.3.4 Final Test 

A final test to demonstrate the difference between the unmodified autopilot and complete proposed 

control strategy was simulated.  A 50% hardover elevator failure combined with a 100% aileron 

failure test was performed.  When the unmodified autopilot was tested with this failure, a complete 

loss of control was demonstrated.  The aircraft reached a bank angle of 70° where it remained.  Large 

oscillations in pitch angle were also observed.  In short, this would have resulted in the loss of the 

airframe.  In contrast, the proposed control strategy was able to maintain level flight with only a small 

roll disturbance.  The desired bank angle and desired pitch set point were re-established satisfactorily.  

The use of flaps was sufficient to maintain this flight condition and shows that for the inner loop 

control loops, the proposed control strategy has largely met the objectives of the research. 
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6.4    Middle Loop Simulations 

The middle loop simulations provide great insight into the suitability of the proposed algorithms in the 

higher flight modes of the autopilot.  These tests are important for two reasons, the first being the 

testing of the adaption algorithm to track a constantly changing set point value and the second being 

the testing of the coupling effect of the adaption algorithms.   

 The inner loop simulations showed that the adaption algorithm was able to track a constant set point 

with little interference from other adaption algorithms.  In the middle loop tests, the pitch PID 

controller receives commands from the airspeed controller, both of which have their own adaption 

algorithms in place.  This is complicated by the coupling of the energy and airspeed PID controllers. 

These simulations provide a means to determine if the coupling of the three PID controllers will 

initiate a series of instabilities or if the system will be enhanced by the adaption algorithms.  Of 

primary importance, however, is the objective of this research in providing a system that is tolerant to 

various control actuation failures: hence, the middle loop simulations provide a small step forward in 

determining the suitability of this proposed control system.  This small step allows for a detailed 

examination of the airspeed and altitude controllers and allows any final tuning of the adaption 

algorithms.  

6.4.1 Control     

The simulation was run in "FBW B" mode with no failures being induced in the system.  This allowed 

for the confirmation of stable operation with the coupling of the various PID controllers. It also 

provided a baseline result with which to compare the failure test results. 

It was found that there was a greatly enhanced tracking of airspeed and altitude with the adaption 

algorithm enabled which is promising considering the coupling of the PID controllers.  The results 

also showed that the adaption algorithm was able to track a moving set point value.  While there was 

some overshoot of the ideal pitch angle at times, this was quickly resolved by the adaption algorithm 

and the correct tracking of the ideal pitch angle was achieved.  

6.4.2 Elevator Failures 

The first elevator failure modelled was the 0° deflection failure.  This failure had little effect on the 

aircraft in this flight mode, the only difference being seen in a subtle diversion of the pitch angle. 

Almost no effect was seen on airspeed or altitude and the adaption algorithm was still able to maintain 

excellent pitch tracking.  Thus, the improvements seen in the control were maintained and the 

adaption algorithm shows improved tracking of both airspeed and altitude.  
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The 50% hardover failure of the right elevator provided a surprising result given the success of the 

previous test.  The autopilot, without adaption, showed minor changes to airspeed and altitude results 

when compared to the control case and the performance, while not exceptional, was adequate.  The 

results with the adaption algorithm enabled showed a very poor control performance that had 

overshoot values larger than those seen without adaption.  The response was also erratic with no 

indication that the set point for airspeed or altitude would ever be achieved.  From this test, it was 

observed that there was a large proportional gain increase of the airspeed PID controller.  It was 

theorised that this was the cause of the instabilities of the system and thus, the airspeed PID adaption 

rate was reduced by a factor of 10.  The simulation results showed a marked improvement in system 

performance of the adaption algorithm.  However, the performance of system with adaption was still 

not as good as the performance without adaption.  The reduction in the airspeed adaption rate did 

provide some insight into the potential cause of the problem.  The tracking of the pitch angle was 

seriously inadequate with large variations in ideal pitch and measured pitch.  This warranted further 

investigation into the adaption rates of the pitch controller.  The adaption rate was increased by a 

factor of 10 and the airspeed adaption rate set back to its original value.  With these changes, there 

was a marked improvement in airspeed and altitude tracking and the simulation with adaption showed 

great improvements when compared to the non-adapted case.  The proposed system was found to be 

tolerant to this failure, albeit only with extensive simulations and changes or "tuning" of the adaption 

algorithm.  The simulation results for the banked flight case highlighted, the fact that the sensitivity of 

the system to tolerate failures is highly dependent on the flight manoeuvre being performed as the 

performance of the banked flight case had degraded when compared to the level flight case.  

However, the system was found to be tolerant of this fault and the adaption algorithm typically 

improved the performance of the system.    

Following this test, the 100% hardover failure of the right elevator test was simulated. The settings 

determined in the 50% deflection simulations were maintained and it was observed that the adaption 

algorithm induced a large degradation in control performance when compared to the non-adapted 

case.  This was attributed to large changes in pitch and airspeed proportional gain values.  It was 

noted that there were large and abrupt control deflections for the case with adaption which is likely to 

have resulted in the poor airspeed and altitude tracking performance.  This result was a 

disappointment in that the adaption algorithm created this reduced performance.  It is theorised that, 

with more adjustment of the adaption rates, this degradation may be resolved but this has not yet been 

tested. 

It was found that although the adaption algorithm generally improved the control performance of the 

autopilot, in the case of a 100% hardover failure, the adaption algorithm reduced the control 

performance.  It can be concluded that the proposed control system is tolerant to the less severe 

elevator failure cases.      
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6.4.3 Aileron Failure 

The first aileron failure to be tested for the middle control loop was the 0° deflection failure test. This, 

like the elevator case, showed little to no effect on the system.  The airspeed and altitude were not 

visibly affected by the aileron failure.  This is not surprising as only a small change in pitch angle 

occurs at the moment of failure which is easily controlled by the autopilot both with and without 

adaption.  The only real evidence of failure lay in the change in bank angle.  This change was 

identical to the changes seen in the inner loop simulation which is unsurprising as the bank angle is 

still, essentially, controlled by the inner loop with no influence by the middle control loop. Thus, for 

all of the aileron failures, a result similar to that attained in the inner loop simulations was 

demonstrated.  Of note, however, was the ability of the autopilot to be tolerant to all aileron failures 

tested. The ability of the system to tolerate these failures is largely due to the control allocation 

algorithm that made use of the flaps to restore any lack of roll authority. Great improvement was seen 

with the adaption algorithm in the ground track results.  For the 50% hardover and 100% hardover 

failures, it was found that the change in heading was significantly reduced when the adaption 

algorithm was enabled.  While it was seen in the inner loop simulations that the adaption algorithm 

increased the time to reach the roll set point value, the reduction in maximum roll error is 

considerably more important in limiting the change to the aircraft flight path.  

It was concluded that the proposed system is tolerant and well suited to aileron failures and that there 

is a large performance advantage to be gained through using the adaption and control allocation 

algorithms.     

6.4.4  Combined Test 

A test was conducted to show the difference in fault tolerance of the unmodified autopilot and the 

proposed control strategy.  This resulted in a successful display of the proposed control strategy to 

tolerate control actuator faults.  For this simulation, a 50% hardover failure of the elevator was 

combined with a 100% hardover failure of the right aileron.  For the unmodified autopilot this failure 

resulted in a complete loss of control that resulted in a rapid speed build up, dramatic loss in altitude 

and a very tight downward spiral ultimately resulting in the loss of the aircraft.  The proposed control 

strategy was able to tolerate this fault and successfully maintained airspeed and altitude with only 

minor disruptions from the set point.  The track followed by the aircraft showed a slight change in 

heading as the failure occurred but this heading was maintained and straight and level flight was 

achieved.  A constant bank angle turn was also performed with this failure and, again, the proposed 

control algorithm was able to tolerate this failure.  Airspeed and altitude were maintained and a 

circular flight path demonstrated. 
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This test showed that the proposed autopilot is tolerant of the tested control actuation failures for the 

middle control loop and that the control performance gain is significant.    

6.5 Outer Loop Simulations 

The outer loop simulations tested the most advanced form of the autopilot control strategy and 

provide insight in the suitability of the proposed fault-tolerant design.  The outer loop simulation was 

run in the "Auto" flight mode of the autopilot with three waypoints being used to create a triangular 

flight path.  A constant altitude and airspeed were set for all waypoints. The same three control 

failures were applied to the elevators and ailerons and a combined failure of the elevator and aileron 

was tested.  In all tests other than the final test, the control allocation algorithm was enabled.  

A control was run in which no control failures were induced.  This showed that the adaption algorithm 

created an unattainable solution as, due to the methodology of aerodynamic force characterisation, a 

runaway condition resulted.  It was decided to modify the adaption rate of the roll PID adaption 

algorithm by a factor of 100 which yielded a highly successful result.  The results of the control 

showed a considerable improvement in airspeed and altitude tracking and showed that the adaption 

algorithm was able to curb the change in airspeed and altitude resulting from the change in heading to 

almost perfect levels.   

These levels were not observed for the autopilot without adaption despite attempting to improve 

performance with feedforward pitch and throttle compensation.  The ability of the adaption algorithm 

to achieve this level of performance was very encouraging.   

6.5.1 Elevator Failures 

The first failure to be tested was a 0° deflection failure of the right elevator.  This simulation 

generated an interesting set of results that showed erratic airspeed and altitude tracking.  The 

waypoint track was, however, somewhat improved. This result was surprising and somewhat 

disappointing as the adaption algorithm reduced the control performance of the autopilot.  Upon 

examination of the PID gain change for the airspeed PID, it was noted that the adaption algorithm 

increased the proportional gain of the airspeed PID to very high levels.  It was decided to reduce the 

adaption rate of the airspeed PID adaption controller by a factor of 10.  This resulted in greatly 

improved performance.  The performance was not at the level of that seen in the control; however, the 

change in airspeed and altitude was less than in the case without adaption and the time to reach the set 

airspeed and altitude was greatly reduced.  The results showed a great benefit in using the adaption 

algorithm. 

Of some concern is the sensitivity of the adaption algorithm to the adaption rate.  An incorrect value 

of the adaption rate can quickly lead to the complete breakdown of the simulation and needs to be 



228 
 

chosen very carefully.  It is also a concern that this adaption rate may well be sensitive to changes in 

other parameters such as the set airspeed, altitude or aircraft characteristics and may cause unstable 

behaviour to develop. The sensitivity of the adaption algorithm at this stage is unknown and a 

recommendation into the research of this aspect of the algorithm will be made.   

The second failure to be tested was a 50% deflection failure of the right elevator.  This resulted in 

slightly more difficulty for the non-adapted autopilot in maintaining the set airspeed and altitude but 

little change to the adapted case.  It was found that the trends found in the 0° deflection case were 

maintained and that the airspeed and altitude tracking with the adaption rate was significantly 

improved over the non-adapted autopilot.  This trend continued for the 100% hardover failure and it 

was found that, because the allocation algorithm was enabled, the autopilot was relatively unaffected 

by the failures in this flight mode.  Thus, the adaption algorithm combined with the allocation 

algorithm was found to have superior performance in airspeed tracking, altitude tracking and even in 

waypoint following.  

It was concluded that the proposed fault-tolerant design is indeed tolerant to the control failures 

tested.  

6.5.2 Aileron Failures 

The first aileron failure was the 0° deflection failure of the right aileron.  This test showed that the 

control allocation alone was able to tolerate this failure, with little change observed from the control 

case.  It was, however, observed that the adaptation algorithm improved the airspeed and altitude 

tracking significantly.  The control allocation algorithm was important for this failure as the flaps 

were used to supplement roll control for brief periods during the start of each turn.  

The second failure tested was the 50% hardover failure of the right aileron. Surprisingly, very little 

variation was noted in the flight path of the aircraft.  This is likely caused by the fact that the failure 

occurred during a right hand turn.  However, it is noted that the autopilot was able to tolerate this 

failure without adaption, only making use of the allocation algorithm, although there was a significant 

improvement on control performance when the adaption algorithm was enabled.  

Finally, when a 100% aileron deflection failure was induced, again, little change in airspeed or 

altitude tracking was observed.  There was a slight degradation in waypoint tracking although this was 

minor. The adaption algorithm provided the same performance gains seen in the previous cases.  

It is concluded that the proposed control strategy is tolerant of the aileron failures tested and that there 

was a great control performance gain when the adaption algorithm was used in conjunction with the 

control allocation algorithm. 
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6.5.3  Final Combined Test  

This test was deemed to be the ultimate comparison of the autopilot in its unmodified form and the 

autopilot with the proposed fault-tolerant control strategies.  This test involved testing the unmodified 

autopilot with a 50% hardover failure of the right elevator and a 100% hardover failure of the right 

aileron and then comparing the results to the case where the control adaption and allocation 

algorithms were enabled.   

The unmodified autopilot completely failed to tolerate this failure.  The airspeed increased rapidly to a 

level beyond that considered acceptable for this airframe, with a corresponding loss in altitude.  A 

very tight spiral dive is seen that would be likely to cause catastrophic structural damage.  The 

proposed control strategy was, however, tolerant to this failure and the results showed that the 

airspeed and altitude were satisfactorily maintained.  The autopilot was also able to maintain the 

correct waypoint tracking with minor performance degradation when compared to the control case.  

The aircraft was able to track the waypoints for another complete cycle before the simulation ended.  

Based on the results of the PID gain changes which were reasonably stable, it is expected that the 

aircraft would be able to fly in this manner indefinitely without the introduction of instabilities; 

however, this has yet to be confirmed.  

In conclusion, this test demonstrates the success of the proposed strategy to tolerate control actuator 

failures of a severe nature and shows that the use of control adaption combined with control allocation 

is necessary to tolerate a control failure of this type with satisfactory control performance.   
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7 Conclusions and Recommendations  

7.1 Conclusions 

The current research has shown considerable potential in the proposed design of an intelligent fault-

tolerant control system for an unmanned aerial vehicle.  It has shown that the proposed system, 

consisting of a fuzzy logic model reference adaptive controller and a simple daisy chain control 

allocation algorithm, can be used successfully to tolerate a range of actuator failures, loss of a control 

surface as shown by the 0° deflection failures, and uncertainties within the aircraft model as shown by 

the use of the secondary and tertiary control surfaces.  The system was tested under a number of 

different conditions in a number of different flight modes and, in the majority of cases, the system 

performed well, yielding safe and fault-tolerant flight.  This was made particularly evident when 

comparisons were made between a completely unmodified autopilot and an autopilot with the 

proposed control architecture.  In this respect, this research and the proposed intelligent fault-tolerant 

system can be considered successful.  However, there are several concerns and issues that were 

identified.  

A number of problems were encountered in the research that may limit the ability of this system to 

function under some circumstances.  These problems stem primarily from the intelligent adaption 

system.  The first issue of concern is the sensitivity of system to the correct selection of the adaption 

rates.  Too low an adaption rate results in no real control performance gain and is of little value while 

too high an adaption rate results in the potential for numerous instabilities to develop.  This sensitivity 

to adaption rate was seen in a number of cases and necessitates the need for significant additional 

simulation of the system. There is also uncertainty as to the performance of the proposed system for 

different airframes and autopilot control structures and there may well be issues surrounding changes 

in aircraft characteristics with changes in airspeed and altitude.  

Furthermore, the complexity of a practical autopilot makes the determination of the optimum settings 

difficult.  There are numerous limits, correcting factors and adjustments that can be applied to a 

greater or lesser extent that all contribute to the successful simulation of fault tolerance. To 

understand fully the nuances of the system and to determine with confidence that this system can be 

implemented into a UAS airframe is particularly difficult and time consuming due to the many 

different combinations of parameters that can be set.  This complexity is further increased by the 

introduction of the proposed system which increases the number of parameters to be adjusted.  Thus, 

while a successful result was demonstrated, it is difficult to say with confidence that the proposed 

system is fully fault-tolerant in all conditions. 
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7.2 Recommendations for Future Research  

This research has provided great insight into the use of an artificial intelligent adaptive controller 

combined with a simple control allocation algorithm to create a control strategy that is tolerant to 

several control actuation failures.  However, in this research a number of concerns were raised, and a 

number of recommendations are required. 

The first concern developed from the need to "tune" the fuzzy adaption controller carefully.  This 

tuning was accomplished by adjusting the adaption rates for each PID controller.  While in most cases 

this proved to solve many control issues, it also highlighted several difficulties of the fuzzy adaptive 

controllers and the implementation thereof.  It is recommended that a review and study of the effect of 

the adaptive rates on the performance of the system be considered. Potentially, the use of global 

optimisation techniques could be used to improve the tuning of the PID gains.  

Another area of concern lies in the difficulties noted with the use of feedforward loops. These 

feedforward loops are commonly used in real autopilot systems to aid control.  These are often in the 

form of an aileron to rudder coupling, a roll to elevator coupling or a pitch to throttle coupling as is 

found on the Ardupilot Mega.  The adaption algorithm perceives these feedforward couplings as a 

form of offset error that tends to introduce instabilities within the system as the autopilot attempts to 

reduce the offset seen.  Thus, it is recommended that a more robust fuzzy adaption system be 

developed. This should have a form of feedforward signal, indicating to the adaption system not to 

attempt to remove the offset.  

Other issues surround the ability of the aircraft to manoeuvre after the failure of a control surface. 

This was not seen often in these tests especially in the higher flight modes but, with the reduced 

control authority that develops from the control failure, an introduction of a flight envelope restriction 

should be applied. This may be in the form of reduced pitch and bank angles, an increase in stall 

speed, or a reduction in maximum altitude.  It is also recommended that a system be developed, that 

detects that the control authority is reduced and prevents the fuzzy adaption algorithm from increasing 

the PID gains uncontrollably.  This would prevent a situation where the controller introduces 

instability, as would occur with this system  

It is recommended that an additional form of intelligence be introduced where information on the 

health condition of each control surface is gathered. This information could then be used to aid the 

adaption and allocation algorithms in controlling the aircraft.  This could be accomplished in several 

ways.  The first and perhaps simplest method of control surface monitoring would be the direct 

measurement of the control actuator deflections.  While this technique would be simple, it adds to the 

hardware complexity and in fact may decrease the fault tolerance of the system as the additional 

sensors could fail and provide incorrect or spurious data.  
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The other potential solution lies in the use of a fuzzy logic monitoring algorithm that compares the 

behaviour of the system to a set of predefined control inputs.  As an example, the ailerons and flaps 

could be moved in unison and in an opposite sense by a predetermined amount that results in no 

rolling moment.  If a roll is then measured, a potential fault then exists and other methods can then be 

used to determine the point of failure.   

It is recommended that extensive testing of the proposed system be conducted through the use of 

simulations before the system is implemented on an operational UAS.  In its current form, the 

proposed control strategy cannot be guaranteed to perform satisfactorily under all circumstances and 

for long durations.  It is thus recommended that the length of simulation be extended and that a variety 

of different flight conditions be simulated.  These should include turbulence, wind drift, altitude 

variations and airspeed variations.  Other control surface failures that include power plant failures and 

rudder failures should also be included.  The addition of structural failures would also be highly 

valuable in future research. 

Finally, it is recommended that the flight dynamic model be validated through the use of flight tests 

and that the proposed control strategy in its current form is flown. This flight should be conducted 

with a "man in the loop" that would allow a pilot to regain control should the proposed control 

strategy develop instabilities.       
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Appendix A  - Continuation of the Development of the Equations of Motion 

for a Rigid Non-Symmetric Aircraft  

Continuing with the development of the equations of motion described in Chapter 2.5 and rearranging  

(2.6) results in  

�T = � Y W�� − � X�� Y � !Z�� Y �T [ − ��!Z�� − �T[ − �� Z�` − �`[�!  
(A.1) 

 

 

Rearranging (A.1) further results in  

�T = � Y W�� − � X�� Y � !Z��[ − ��!Z��[ − �� Z�` − �`[�! Y � !�T�! Y ��!�T�!  (A.2) 

 

To aid in the development of the equations, a substitution is made: 

" = � Y W�� − � X�� Y � !Z��[ − ��!Z��[ − �� Z�` − �`[�!  (A.3) 

 

(A.2) therefore becomes 

�T = " Y � !�T�! Y ��!�T�!  (A.4) 

 
Now Substituting (A.4) into  (2.5) results in 

� �T Y Z�� − �![�� Y � ! ��� − x" Y � !�T�! Y ��!�T�! {� Y ��!Z�` − �`[ − �� Z�� Y �T[ = � (A.5) 

 

Rearranging (A.5) yields 

 
 

 
�T = �! s� − Z�� − �![�� − � ! ³�� − " − ��!�T�! ´ − ��!Z�` − �`[ Y �� Z�� Y �T[t

� �! − � !`  
(A.6) 

 

 

  



239 
 

This then becomes 

�T = �! ³� − Z�� − �![�� − � !Z�� − "[ − ��!Z�` − �`[ Y �� Z��[´� �! − � !` Y s��!� ! Y �� �!� �! − � !` t �T (A.7) 
 

 

Again, to simplify further development, another substitution is made:  

� = �!W� − Z�� − �![�� − � !Z�� − "[ − ��!Z�` − �`[ Y �� ��X� �! − � !`  (A.8) 

 

Thus (A.7) reduces to (A.9) 

 �T = � Y s��!� ! Y �� �!� �! − � !` t �T (A.9) 

 

Finally, substituting (A.4) into  (2.4) results in 

���T − W� − �!X�� Y �� Z�� − �T [ − ��! x�� Y " Y � !�T�! Y ��!�T�! { Y � !Z�` − �`[ = � (A.10) 

 

After some manipulation is transformed into: 

s���! − ��!̀�! t �T − x�� �! Y ��!� !�! { �T = � Y W� − �!X�� − �� �� Y ��!�� − � !Z�` − �`[ Y ��!" (A.11) 

  

Substituting (A.9) into the equation above yields 

s���! − ��!̀�! t �T − x�� �! Y ��!� !�! { s� Y s��!� ! Y �� �!� �! − � !` t �Tt
= � Y W� − �!X�� − �� �� Y ��!�� − � !Z�` − �`[ Y ��!" 

(A.12) 

  

Therefore,  

�T = s� Y W� − �!X�� − �� �� Y ��!�� − � !Z�` − �`[ Y ��!" Y � x�� �! Y ��!� !�! {t
x���! − ��!̀�! { − x�� �! Y ��!� !�! { s��!� ! Y �� �!� �! − � !` t  (A.13) 
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And finally:  

�T = W� �! − � !` Xo �!p� Y W� − �!X�� − �� �� Y ��!�� − � !Z�` − �`[ Y ��!"q Y �W�� �! Y ��!� !Xr �!Z���! − ��!̀[W� − � !` X − W�� �! Y ��!� !XW��!� ! Y �� �!X  (A.14) 
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Appendix B  - Blade Element Propeller Modelling 

Blade element theory has been used extensively in the modelling of propeller blades.  The method 

was first published in 1878 by William Froude and concurrently by Stefan Drzewiecki. [39] The 

method divides the propeller into a number of chord wise segments as shown in Figure B.1 and 

examines the forces generated by that segment.  These forces are then integrated to determine the total 

net force acting on the propeller.  

 

Figure B.1: Blade element theory diagram adapted from [39]. 

 

Propeller Geometry 

Propellers are typically described by two geometrical properties, namely, the Diameter (�), and the 

Pitch (�).  However, in order to perform a blade element method on a propeller the chord distribution 

and blade angle distribution is required.  This is typically obtained from the manufacturers of the 

propeller.  For the case of the Xoar 23x10 propeller used in this analysis, the geometry was obtained 

from the work of a previous student, Mr N Moore.  The blade angle was determined making the 

assumption that propeller had uniform geometrical pitch of 10”.  This resulted in the geometry shown 

in Figure B.2. 
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Prandtl lifting line theory and assuming that a ideal lift distribution is present. Thus the downwash can 

be simply expressed as 

 � = �¥"�F (B.5) 

 

This unfortunately also affects the angle of attack, and thus the downwash is iterated, until a 

converged solution occurs.  Thereafter, the thrust coefficient can be estimated 

 �� = 12 Z�`�` Y 4¥`�`[@W@&@ÄõZ [ − @�õ¨�Z [X (B.6) 

 

This in turn affects the induced angle of attack given by 

 �7  =  "�@+��
!
"12 øx�`�`  Y  x�w¥�{ ��{ – ��2

øWZ�`�`[ Y  4¥`�`X #
$ (B.7) 

 

where  =  ) Y �7 Y �. 

The procedure is iterated again until the induced angle of attack has converged, at which point, �� and �� are calculated using (B.6) and (B.8): 

 �� = 12 Z�`�` Y 4¥`�`[@W@&õ¨�Z [ − @�@ÄõZ [X (B.8) 

 

The power coefficient and efficiency can be determined using 

 

These quantities are then integrated numerically, using Simpson's integration to obtain the total thrust 

and torque coefficients of the propeller.  

 

 

 

  

 �� = 2¥�� (B.9) 
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Appendix C  - Digital Appendix  

This appendix (attached CD) contains all of the wind tunnel data, the flight dynamic code and a full 

set of results for the simulations run.    

 

 

 


