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Abstract

The Attainable Region is the set of all achievable states, for all possible reactor
configurations, obtained by reaction and mixing alone. It is a geometric method
that is effective in addressing problems found in reactor network synthesis. For this
reason, Attainable Region theory assists towards a better understanding of systems
of complex reaction networks and the issues encountered by these systems.

This thesis aims to address two areas in Attainable Region theory:

1. To help improve the design and operation of batch reactors using Attainable
Regions.

2. To further advance knowledge and understanding of efficient Attainable Region
construction methods.

Using fundamental concepts of mixing and attainability established by Attainable
Region theory, a graphical method of identifying opportunities for improving the
production rate from batch reactors is first presented. It is found that by modi-
fying the initial concentration of the batch, overall production performance may
be improved. This may be achieved in practice by retaining a fraction of the final
product volume and mixing with fresh feed material for subsequent cycles. This res-
ult is counter-intuitive to the normal method of batch operation. Bypassing of feed
may also be used to improve production rate for exit concentrations not associated
with the optimal concentration. The graphical approach also allows optimisation of
batches where only experimental data are given.

An improved method of candidate Attainable Region construction, based on
an existing bounding hyperplanes approach is then presented. The method uses a
plane rotation about existing extreme points to eliminate unachievable regions from
an initial bounding set. The algorithm is shown to be faster and has been extended
to include construction of candidate Attainable Regions involving non-isothermal
kinetics in concentration and concentration-time space.

With the ideas obtained above, the application of Attainable Regions to batch
reactor configurations is finally presented. It is shown that with the appropriate
transformation, results developed from a continuous Attainable Region may be used
to form a related batch structure. Thus, improvement of batch reactor structures is
also possible using Attainable Regions. Validation of candidate Attainable Regions
is carried out with the construction algorithm developed in this work.
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Chapter 1

Introduction and literature
review

1.1 Introduction: optimisation in reactor design

Chemical reaction is at the heart of chemical engineering. Whereas the majority of
total plant expenditure and complexity is attributed to separations operations and
pre-processing, they typically exist as a consequence of reaction. Chemical reactors
play a central role in the transformation of less valuable materials into products of a
higher social and economic value. As a component of this transformation, reactions
may also be critical in converting harmful and dangerous by-products into benign,
and even potentially beneficial, side commodities. Environmental considerations
further influence and, as of late, dominate decisions in process design. The man-
ner in which materials are processed consequently influences the quality and type
of waste produced, and hence it also shapes their associated environmental impact.
The gasification of municipal waste into Fischer-Tropsch products and electricity
(Hildebrandt et al., 2009; Metzger et al., 2012), or the production of CaSO4.2H2O
(Gypsum), a highly valuable product used in the building and construction industry,
from acid mine drainage (Matlock et al., 2002) are two model examples of this. Al-
though economic considerations justify the proper design and execution of chem-
ical reactors, they are no longer of sole concern to the modern process engineer.
Moreover, chemical reaction differentiates the chemical engineering profession from
other similarly related science and engineering fields. It is not only that chemical
engineers design reactors correctly for the benefit of the population, it is their re-
sponsibility to do so when they are the ones trained to carry out the task. It is
for this reason that great care is taken to ensure that chemical reactors, and more
generally chemical reactor networks, are operated as close to optimal as possible.

A large portion of chemical engineering is attributed to process optimisation,
attempting to achieve the best yields in the most efficient manner possible. Optim-
isation is broad however, ranging in application from the traditional fields of physics

1



1.1 Introduction D. Ming

and finance (Hartmann and Rieger, 2001; Cornuejols and Tutuncu, 2007), to those
found in economics and sociology (Grass et al., 2008). Many topics in optimisation
can be found in the scientific literature. Within this field, a subset of work targeted
specifically to the optimisation of chemical reactors can be found. Thus, although
the topic of mathematical optimisation is reasonably broad, specific application to
chemical reactor design and and chemical plant operation is somewhat more narrow.

Optimisation in reactors can also be difficult. Practitioners historically tend to
concentrate on classic optimisation methods – a process model and objective func-
tion are formed, and then adjustments are carried out until no further improvement
can be realised. This approach is generalised for many problems (and often in many
fields of expertise), but may not always be well suited for the problems specific-
ally related to reaction. The influence of multiple steady states associated with
reaction kinetics and mixing introduce discontinuities in the operating model, com-
plicating the optimisation and making interpretation difficult. If the optimisation
model does not thoroughly reflect its actual physical performance, then the recom-
mendations produced by the optimisation may be equally inaccurate. The quality of
the optimisation result is hence a strong function of the quality of the model itself.
Furthermore, this is also under the condition that there is good convergence to the
optimisation problem. If multiple optima exist, then solutions may also be subject
to uncertainty. An alternate, simpler, solution may exist for the same outcome.
Thus, two common questions in optimisation arise:

1. Is the solution globally optimal?

2. Are there other solutions that achieve the same objective performance in a
simpler manner?

Unless the problem is well understood, these answers are generally not easily re-
solved. The former could be addressed if knowledge of the limits of the current
design are established, whereas the latter requires, to some extent, a better un-
derstanding of optimal reactor structures. Thus, the need to develop a method for
determining ‘the best’ or establishing the outer most limitations of the problem (and
how to get there) should first be established.

Given a set of reaction kinetics and feed conditions, there are potentially many
ways in which to design a reactor that satisfies all requirements of the designer. At
the very early stages of design, when there is typically more freedom at play, this
period might serve to provide the largest gains in performance. However, a typical
approach is to rather first choose a reactor based on operating and design constraints,
and then optimise. The final design is then a direct consequence of the reactor
that was chosen. Even if multiple reactors in series and parallel configurations are
considered, one can always ask whether some other configuration of reactors or
some other new reactor might have done better. Thus, traditional simulation and
optimisation may not always be sufficient in chemical reactor design.

2



1.2 Literature review D. Ming

A different approach to optimisation, proposed by Horn (1964), was to determine
all outcomes or solutions of the problem simultaneously, as a unified set. This
set would contain every possible physically realisable outcome, both known and
unknown. Horn termed this the Attainable Region. The Attainable Region thus
represents the entirety of all possible combinations and their associated outcomes
for a specified set of initial conditions. By acknowledging the full set of outputs for
a prescribed set of initial constraints in the present, one is better placed to make
more effective design decisions in the future. Although simple in concept, Horn’s
idea was an abstract one that required greater refinement and interpretation than
what was initially proposed. This is particularly true for how all outcomes might be
generated in practice, particularly for those that were yet to be imagined.

1.2 Literature review

1.2.1 The Attainable Region (AR)

Initial developments

Pioneering work by Glasser et al. (1987); Feinberg and Hildebrandt (1997); Glasser
and Hildebrandt (1997) set out to provide an unambiguous definition of the AR.
Viewed as a constrained geometric region in space that is chosen to appropriately
characterise the nature of the system, the AR is the n-dimensional volume in which
all achievable processes and their associated consequences must lie. In this work, we
specifically associate the AR to be the region that all reactors and reactor networks
must occupy. The boundary of the AR then acts as a border between all that is
achievable to all that is not. It will be shown later that determination of the AR
ultimately depends on the correct determination of its boundary.

Initial work in the area allowed for the understanding that, when reaction and
mixing are the two allowable processes, it is possible to construct the AR using only
combinations of three archetypal reactors – the Continuously-Stirred Tank Reactor
(CSTR), the Plug Flow Reactor (PFR) and the Differential Side-stream Reactor
(DSR). Glasser et al. (1987) provided several early 2D AR constructions, demon-
strating the power of the AR approach to reactor synthesis. These constructions
involved highly non-linear kinetics, were optimisation of a reactor network is typic-
ally difficult to perform by standard methods. For two dimensional problems, the
AR can be constructed by use of only PFRs and CSTRs. In three dimensions and
higher, DSRs have been shown to play an important role in the construction of the
AR boundary.

Additionally, the AR constructions considered here are generally associated with
the assumption that the system undergoes no change in density, and exists in a single
phase. In the case of gaseous systems, the ideal gas assumption holds. Isothermal
systems are also generally preferred, although many results may be generalised to
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allow for the relaxing of this constraint (Feinberg and Hildebrandt, 1997; Feinberg,
1999, 2000b,a). With these assumptions in mind, under consideration of the three
archetypal reactors, several important necessary conditions can be deduced. These
are summarised as follows: for the Attainable Region, A, generated by the two
processes of reaction and mixing, the following properties must hold:

• A is a convex polytope.

• No rate vector on the boundary of A must point outwards.

• No rate vector in the complement of A when extrapolated backwards may
intersect A.

• No two points on a PFR in the complement of A when extrapolated may
intersect A.

Work by Feinberg and Hildebrandt (1997) laid down a mathematical framework for
the study of the AR in a more formal context. The authors detailed the significance
of extreme points, i.e. specific AR boundary points, and introduced key concepts
and definitions. The most notable of these is the introduction of the complement
principle. This allowed the authors to deduce elementary geometric properties of
the AR. In turn, this provides proof that PFRs act as highways to the extreme
points of the AR, and also shows how CSTRs and DSRs act as connectors to these
PFR highways. Existence and uniqueness arguments of the AR were also provided.
Thus, this work essentially demonstrates the necessary role that classical reactor
types play in construction of the AR. There is no need to devise new reactor types
in other words.

Subsequent papers by Feinberg (1999, 2000b,a), provided further mathematical
and geometric properties that the AR boundary must include. The papers also
detailed the type of special CSTR and DSR combinations required to achieve it,
termed critical reactors. These typically included elaborate control policies under-
lying an exceptionally intricate and non-linear mathematical structure for which
reaction and mixing processes must follow. Even under seemingly ideal settings
of isothermal kinetics with only two or three species, the required control policies
generally produce an irrational expression containing hundreds of terms (Feinberg,
2000b,a).

Feinberg’s work introduced very specific rules by which the boundary of all ARs
must follow. These constraints made it possible, at least conceptually, to predict the
type of reactors that must be employed before AR construction is undertaken. This
provided clues as to the behaviour of a given system of kinetics. When viewed in this
manner, the work of Feinberg was the first of its kind to develop methods of reactor
network behaviour and characterisation, with the ultimate goal of discovering a valid
sufficiency condition. At the time of writing, the current set of AR literature still
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does not contain any new substantial developments to these ideas. We still do not
have a valid sufficiency condition for the AR.

Application of AR to industrial problems

AR theory has successfully been used as a tool for the determination of optimal re-
actor structures for a variety of industrial processes. Hildebrandt (1989) and Seodi-
geng (2006) both provided case studies of the industrial manufacture of ammonia
using the AR. Recommended cold-shot cooling schemes utilised in industry have
been shown to agree with the optimal designs found from AR analysis. Optimal
reactor networks for the industrial manufacture of methanol have been investigated
by Seodigeng (2006) whilst Kauchali et al. (2004) used the AR to generate can-
didate reactor network schemes for the water-gas-shift (WGS) reaction. Khumalo
et al. (2006) investigated the applicability of attainable regions for use in commin-
ution and the design of comminution circuits in which the particle size distribution
of the milling circuit, comprised of n size classes, can be used to construct an n-
dimensional attainable region. ARs associated with separations processes (Nisoli
et al., 1997; Agarwal et al., 2008) have also been determined in the past. Milne
(2008) provided extensive work on the application of Attainable Region theory in
membrane reactors for the oxidative dehydrogenation of n-butanes.

Recently, Scott et al. (2013) applied AR analysis for the production of bioeth-
anol from lignocellulose. Reaction kinetics for first enzymatic saccharification of
cellulose and fermentation of glucose to ethanol steps are provided. These are used
to construct a number of three-dimensional candidate ARs involving species yield,
species conversion and reactor residence time. The authors find that optimal reactor
structures involving critical DSRs, CSTRs and manifolds of PFRs are all present
on the boundary. This is similar to the optimal reactor structures obtained for
three-dimnensional van de Vusse kinetics. Although the findings are interesting, the
specific choice of component axes used to generate the AR are questionable, for it
is unclear whether the linear mixing relations, fundamental to AR construction, are
enforced or not. Be that as it may, the work is nevertheless useful as it is another
example demonstrating of the use of AR theory to realistic systems of industrial and
economic significance.

AR construction methods

Early developments Subsequent work in the field of AR research has focused
on the development of algorithms for the automatic construction of candidate ARs.
Initially, these methods have focused on ‘brute-force’ computation – enumerating all
conceivable combinations of the three reactor configurations and then checking for
any expansion in the AR. One of the first algorithms of this type is that proposed
by McGregor et al. (1999). It is considered essentially a direct application of the AR
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necessary conditions. The method is initiated by first solving for the PFR trajectory
and the CSTR locus from the feed. The convex hull of these points is then calculated.
This forms the first candidate AR. From this, points on the convex hull are checked
to determine whether any rate vectors point out of the region. PFR trajectories
established from these points are able to extend the region. Points belonging to
the PFR trajectory are checked to see if any CSTR can extend the region also. If
new PFR and CSTR points are found, then they are included in the attainable set
and a newer, larger, convex hull can be generated. With each new expansion, the
AR necessary conditions are checked. If all points satisfy the conditions, a new
candidate AR is proposed. The process is repeated until no further extension of the
convex hull can be achieved. The final result is a convex attainable set satisfying all
sufficiency conditions. In addition to this, the reactor structures required to build
the boundary are also known.

The process of AR construction and subsequent visualisation and interpreta-
tion is a relatively straightforward exercise in 2D. For higher dimensional problems
however, the construction of candidate regions is cumbersome. In R3, visualisa-
tion is possible but interpretation is difficult. In higher dimensions, visualisation
is only possible if lower dimensional projections are taken. This is time consum-
ing and awkward. The large number of available directions with which the region
could expand also becomes increasingly problematic and computationally intensive.
Direction enumeration of all states is simply not practical for higher dimensional
problems.

Iso-state method The Iso-state method introduced by Rooney et al. (2000)
aimed at addressing this problem by decomposing the problem into several easier
2D construction and convexification steps. By projecting the higher dimensional
candidate region onto many 2D spaces, the problem of identifying possible points
for further expansion is made easier. Once additional points for extension are iden-
tified, the region is expanded in the full space and the process is repeated. The
method composes of four steps. The first step, much like the method of McGregor
et al. (1999), begins by populating the initial set of attainable points with those
generated by the PFR trajectory and CSTR locus from the feed point. Next, the
n-dimensional space is ‘sliced’ into smaller 2D planes holding all but two compos-
itions constant. Initial points for these subspaces are found by the intersection of
points in the initial attainable set with each subspace, once all intersection points
with the subspace are found, the convex hull is computed resulting in a candidate
region for the subspace. The third stage of the algorithm extends each subspace
by use of iso-compositional PFRs and CSTRs. These are PFRs and CSTRs that
only operate within the subspace of choice. This is achieved by mixing of material
from other attainable subspaces that are both obtained from the DSR. The final
step utilises the newly extended points to recombine with the previous points into
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Figure 1.2.1: Geometric representation CSTRs in the complement space

the full n-dimensional space. The full set is then projected onto the 2D subspaces
and new intersections with the updated set of points are found. These steps are
repeated until no further extension of the region is possible.

Linear programming formulations The linear programming method proposed
by Kauchali et al. (2002) is another early example of automated AR construction.
The method is conceptually simple, composing of a global search in the complement
of the AR for possible additional attainable points. In this way, the method can be
seen as an enumeration of all possible reactor configurations for a given reaction sys-
tem. The consequences of this work resulted in the derivation of stronger necessary
conditions that the AR must obey. This is developed from the idea that, although
single reactors may not be able to extend the AR on their own, their combinations
possibly could. As with many methods, the algorithm begins by a gathering of all
concentrations produced by PFRs and CSTRs. The full space in which the vector
field resides is then discretised into a large number of points. Each point is then
tested as a possible connector for further AR extension. This is achieved by eval-
uating the rate vector at each discretised point to see whether a backwards linear
extrapolation intersects the current attainable set. This is represented graphically
in Figure 1.2.1.

Although simple, the method is computationally intensive. Not only must single
points within the space need to be considered, but also their combinations. Solution
of the classic van de Vusse kinetics in 2D space for example, results in a linear
programming program consisting of approximately 6× 103 constraints in 1.1× 106

variables using 1000 sample points. The method by which the AR is constructed
using this method has initiated a new sub-category of AR construction schemes.
These algorithms are more sophisticated and do not require direct enumeration
of all points in space. The IDEAS algorithm by Burri et al. (2002) and Shrink-
wrap method of Manousiouthakis et al. (2004) are two such examples utilising this
approach.
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IDEAS and Shrink-wrap methods The Infinite DimEnsionAl State-space ap-
proach (IDEAS) considers the problem of AR construction by solution of an infinite
dimensional linear optimisation problem. Reactor networks are represented as the
combination of two blocks, shown in Figure 1.2.2. The first, termed the reactor
operator (ROP), aims to describe all actions undertaken by all reactors on process
streams. The second block, referred to as the distribution network (DN), is rep-
resentative of all actions undertaken by mixing, splitting, recycling and bypassing
of process streams. The ROP and DN are linked together by a number of streams
connecting the inlets and outlets of each block to each other as well as to themselves.
This network is used as the generalised representation of an arbitrary reactor sys-
tem. Both the ROP and DN blocks produce linear constraints,. These form the
basis of a large linear optimisation procedure.

Construction of the AR occurs by solution of an infinite dimensional linear pro-
gramming problem. Since, the solution of this kind of problem cannot be solved
analytically, the authors propose an approximate solution by replacing the infin-
ite dimensional problem with the solution of a series of finite dimensional linear
problems of increasing size. It is shown that the solution of the finite problem is
guaranteed to converge to the infinite dimensional case and hence this provides a
means of AR construction. The results of the finite dimensional case approximate
the AR arbitrarily closely. The authors were able to construct 2D ARs for the well
understood van de Vusse kinetics using a number of finite approximations. Although
many simple lower dimensional constructions were achievable, the IDEAS algorithm
suffered from many of the challenges associated with point-sampling (linear program-
ming) methods. A large number of number of constraints require consideration. This
number increases rapidly for higher dimensional problems. Even under these cir-
cumstances however, the IDEAS formulation is a generalised and flexible framework
that can be used to formulate and solve many other reactor synthesis problems that
are not related to the AR.

Based on the IDEAS framework, Manousiouthakis et al. (2004) proposed a num-
ber of feasibility properties that reactor networks must obey. The properties were
employed as a basis for the development of a new AR construction algorithm known
as the Shrink-Wrap method. Using these ideas, the authors proposed both a ne-
cessary and sufficient condition for feasible concentrations founded on their formu-
lations of new terms. These terms are referred to as inactive, active and isolated
sub-networks. The Shrink-Wrap method begins by constructing a convex superset
that is known to contain the AR. The superset is then discretised into a number of
finite points. From these points, extreme points of the superset are determined by
way of a convex hull algorithm. The extreme points are used as generating points
from which CSTR and PFR backward trajectories can be drawn. The superset is re-
duced if a backward trajectory is found that does not intersect the current polytope.
In this way, the method acts to trim away unachievable regions from the set. The
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Figure 1.2.2: IDEAS framework

elimination process is repeated until CSTR and PFR backward trajectories can no
longer be drawn that do not intersect the region. The candidate region is thus de-
scribed by the extreme points of the reduced set. The authors also reasoned that the
need for PFRs in construction of the AR are not necessary, as approximations can
be achieved arbitrarily closely by a series of many small CSTRs. Again, the results
of by this method appear quite favourable, with good agreement when compared to
the constructions by classical methods.

Although the Shrink-Wrap method shares many of the properties found in the
IDEAS approach, clear benefits with the new method are observed. Many of the
intrinsic limitations associated with these methods are still apparent however, and
computational effort increases rapidly with higher dimensional constructions.

Bounding hyperplanes method The method of bounding hyperplanes developed
by Abraham and Feinberg (2004) approaches the construction of candidate ARs in
a different manner. By first considering the stoichiometric superset that encloses
the AR, the method approached construction by eliminating unattainable portions
from the space. The remaining region after elimination must then be the AR. The
method by which unattainable regions are eliminated is founded on the principles of
a tangency condition with which all rate vectors on the boundary of the AR must
support.

The use of hyperplanes is used to successively trim away regions and enclose the
AR. As a result, the method of bounding hyperplanes begins first by construction
of the stoichiometric superset known to contain the AR. This superset, termed the
stoichiometric subspace, provides the initial bounding set of hyperplanes from which
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additional bounding hyperplanes can be introduced. Corners of the polytope are
calculated and used as starting points for the trimming process. At each corner of
the current polytope, a new hyperplane is introduced. Its orientation is calculated
from the orientation of the other hyperplanes which contribute to the corner and
can be thought of as an average orientation of the hyperplanes passing through the
corner point. The hyperplane is then moved into the current polytope until either a
tangency point is found, or the feed vector is excluded. The hyperplane is then added
to the set of bounding planes, and the corners the new polytope are determined.
This process is repeated until no additional hyperplane can be added to trim away
a region. The resulting region is then generally a fairly accurate approximation to
the AR.

The bounding hyperplanes method is fairly robust but is computationally ex-
pensive to perform. The method has shown to be particularly effective in handling
kinetics that involve multiple steady states. Construction occurs as an elimination
of infeasible regions, rather than an addition of potentially feasible points. The
method does not appear to scale very well with increasing dimension. A comparison
of construction times for the van de Vusse problem in 2D and 3D shows that the
3D problem may take up to ten times longer to complete (Abraham, 2005). As a
result, construction accuracy may suffer if higher dimensional problems are to be
accomplished in reasonable time. These issues are in part due to the extra com-
putational workload associated with the calculation of the corners in the current
polytope (vertex enumeration).

Recursive constant control policy method The recursive constant control
(RCC) policy algorithm developed by Seodigeng et al. (2009) is one of the most
recent contributions to the field of AR construction algorithms. By exploiting the
dual nature of the DSR equation and with knowledge that DSRs provide final access
to the boundary of the AR (Feinberg, 2000b), candidate ARs may be constructed
fairly easily in an iterative manner by use of a single reactor equation. The algorithm
is particularly fast. Unlike the other methods discussed, the RCC algorithm does not
appear to suffer from higher dimensional constructions in the way that discretisation-
type algorithms do. This may be due to fact that the algorithm does not attempt to
perform a search over the entire region. However, since the method only performs a
local search, method generally does not produce the correct result for kinetics with
multiple steady states. The method of construction is simple. Construction begins
with the integration of the DSR equation from the feed for multiple values of the
control policy parameter α. Here the value of α is fixed for a given integration and
takes on values between 0 and ∞. For the range of α values chosen, a family of DSR
trajectories are produced. Feed and equilibrium points are chosen as mixing points
in the DSR equation. The convex hull of the points from this family is determined
and this constitutes the first candidate AR approximation. The second stage of the
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algorithm utilises the extreme points of the convex hull as generating points for new
DSR trajectories. For each extreme point, the above procedure is repeated, with a
range of constant α values chosen and their respective trajectories calculated. The
points belonging to these new trajectories are then combined with the existing set
of extreme points and the convex hull of the new set of points is found. The third
stage further populates the region with additional DSR trajectories belonging to α

values chosen to increase the number of α values in the specified range of α values.
This procedure is repeated until no further growth is achieved. The convex hull
resulting from this serves to represent the AR candidate.

1.2.2 Batch optimisation

Batch reactors and batch operation are common in many industries where high
value, low volume products are produced. Batch reaction is also often considered
to be more versatile than continuous operation, and lends itself well to small-scale
work, such as that developed in experimental and piloting operations. The use
of batch and semi-batch reactors thus forms an important part in the processing
of many specialist chemicals, pharmaceuticals, and food-related products. For this
reason, significant effort has been undertaken over the years towards the appropriate
synthesis (Allgor et al., 1996; Zhang and Smith, 2004), optimisation (Levien, 1992;
Vassiliadis et al., 1994) and understanding (Brooks, 1988; Bonvin, 1998; Luus and
Okongwu, 1999; Puigjaner, 1999; Yi and Reklaitis, 2006) of batch processes.

It follows that a large amount of research on batch optimisation and reaction
already exists, and the scope of work in this area is vast. In general, two broad areas
of batch optimisation exist:

1. Batch unit optimisation, in which batch unit operations are investigated and
improved. Batch reactor optimisation is accordingly a subset of this.

2. Batch process optimisation, in which interactions between different processing
stages are analysed and improved. The entire batch plant is optimised as a
whole.

The first category is concerned with the optimisation of individual batch units. This
often leads to the development of kinetic and transfer models with respect to time
that are then optimised, often in isolation, to the remainder of the batch plant. The
optimisation of batch reactors necessarily falls within this category, although interest
in this specific field is understandably still vast, due to the importance of batch
reaction as a whole. Issues such as component production and yield maximisation
are often areas of interest within this scope.

In contrast, batch process optimisation deals with optimisation of the entire
batch plant. This includes not only the selection and integration of all batch units
within the plant (mixing, reaction and separation unit operations), but also factors
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related to the transfer and timing of material throughout the plant within the pro-
duction campaign must be considered. Since batch equipment is far more versatile
than continuous equipment, the appropriate and optimal use of batch equipment is
often far more challenging, resulting a much more complex problem than the op-
timisation of a single batch unit operation. This requires the spatial arrangement
of batch equipment on the plant floor, as well as the organisation and scheduling
of batch equipment in time. Issues such as changeovers resulting from multiple
products, trade-offs from multiple objectives, product order changes and demand
patterns, minimising makespan (the total time for all jobs to complete), optimal
allocation of resources, changeovers, inventory sizes, sanitisation, shelf-life etc. are
readily encountered in a multi-product batch plants. Honkomp et al. (2000) discuss
how even when mathematically sound scheduling models have been developed, the
scheduler may still invest a large amount of time adjusting the model to account
for unexpected details that spoil the production plan. Batch process synthesis (the
design of batch process), may also fall within the scope of this field. Indeed, the span
of batch process research is vast, covering many fields of expertise under a single
branch.

Furthermore, the advancement of computer technology has allowed for a greater
surge of interest in batch optimisation, where easily accessible computational power
can be paired with numerical non-linear optimisation techniques. To this end, such
techniques often employ traditional optimisation and optimal control methods, and
are common in reactor design and modelling. Similar to that discussed in section
1.1, these works tend to focus on the optimisation of a problem given a specific
model, but do not always exploit structure in a system, an approach that the AR
excels in. A cursory overview of the efforts made to batch improvement is given
below.

Batch process scheduling and optimisation

For the optimisation of batch processes, scheduling is fundamental to the adequate
operation of the plant by optimal allocation of a fixed number of resources, over a
set time from a potentially a number of desired products from a batch recipe. Differ-
ent products may then be produced on common pieces of equipment, with sharing
of intermediate products. Batch plants are generally classifiable into two funda-
mental types, based on the nature of production within the facility: multiproduct
(or flow-show) problems are those belonging a production facility where all products
undergo the same set of tasks in the same order (such as a conventional production
line). All products must undertake the same path through the production line. The
multipurpose (job-shop) representation is a generalisation of flow-shop scheduling.
Here, different jobs require a different order of tasks, and so each job may undergo
a different sequence within the plant. Orders may even visit the same task multiple
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times(Li and Ierapetritou, 2008). The path of each product is then different to other
paths for other products.

The representation of time is important in batch scheduling, as often objective
functions for the plant optimisations are formulated around issues often related to
makespan, tardiness, earliness, etc. The modelling of batch schedules is handled by
two common approaches in time. Discrete time modelling of batches is the class of
problems that attempt to divide the scheduling horizon into a discrete number of
time intervals of fixed size. Tasks are then initiated and completed only at discrete
points defined by the boundaries of the discretised time intervals. This simplifies the
complexity of the resulting model, as only a discrete number of points and variables
are considered, although this also limits the possible solution set and may also result
in degenerate or infeasible solutions depending on the grid size. The accuracy and
quality of solution is then strongly correlated to the number of time intervals chosen
for the scheduling horizon. A further drawback of discrete time modelling is that
the resulting model is typically large, encompassing a large number of variables
associated with each discrete time interval. This limits the application of discrete
time formulations to realistic problems. Continuous time representations aim to
mitigate these issues by allowing timing decisions in the corresponding model to
occur over a continuous time range. Decisions are then modelled as continuous
variables indicating the exact time when tasks are completed or initiated. Typically,
this results in more complex model formulations resulting from more sophisticated
resource constraints(Mendez et al., 2006).

Similarly, the representation of material flows in the batch plant is handled by
two common models. Network flow equations often either follow State Task Network
(STN) or Resource Task Network (RTN) approaches. In STN based models, the
batch plant is assumed to consume or produce materials (states) at processing nodes.
The plant is then represented as a directed graph containing two distinct node types:
state nodes (feed, intermediate and final products), task nodes (process operations
that transform feed material into one or more output state), and arcs connecting
state nodes to task nodes. This representation fits closely to that of a conventional
process flow diagram. In RTN based models, the batch plant is represented as a
set of nodes in which both material and processing resources such as storage are
carried by the node. That is, nodes not only represent material and equipment, but
also utility resources such as heating and storage. Processing and storage tasks are
assumed to consume and release resources at their starting and ending times(Mendez
et al., 2006). Pinto et al. (2008) provides a detailed analysis between the relative
strengths of STN and RTN based models.

Furthermore, batch schedules can be distinguished based on their usage cases.
Two modes are identified. Online applications refer to those that are used frequently
to guide process operations over a constantly changing horizon time. In this way,
online schedules are similar to plant controller problems (Honkomp et al., 2000). By
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comparison, offline applications are used to make process decisions in a simulation
environment in which several scenarios can be investigated and used to guide the
actions of the management team.

Capon-Garcia et al. (2011) provide a complex mathematical batch scheduling
model involving both economic and environmental constraints including, but not
limited to, equipment changeover environmental interventions, raw material and
product manufacturing environmental interventions. This leads to a multi-objective
MINLP problem that provides a range of feasible solutions depending on the decision
maker’s criteria. Environmental assessments are mathematically formulated by use
of Life Cycle Inventories (LCI), which are directly associated with the product and
changeover recipes of the plant. A case study involving the manufacture of acrylic
fibres in a multi-product batch plant is provided.

The area of dynamic scheduling (schedules that may be adjusted in real-time)
has attracted the attention of of many batch researchers due to its practical focus on
production. Scheduling of this type is often also referred to as reactive scheduling.
Novas and Henning (2010) discuss a scheduling methodology for repair-based events.
Cott and Macchietto (1989) introduce the idea of a real-time controller that measures
deviations from the schedule and then forecasts the potential delays in production.
Starting times for subsequent batches are then modified to minimise disruptions.
Kanakamedala et al. (1994) provide a similar treatment to multipurpose batch plants
based on a look-ahead heuristic that chooses alternatives which minimise impact to
the rest of the schedule. Since it is a heuristic method, computation complexity may
be reduced, however a completely theoretical approach may provide better solutions.
A review of common reactive scheduling techniques is also discussed in (Ouelhadj
and Petrovic, 2009).

Indeed, scheduling operations are broad enough to include many aspects of
scheduling. These ideas may be transferred to related fields in operations research.
For instance, Shah (2004) provides a general treatment for scheduling to the phar-
maceuticals industry specific for supply chain modelling. The author provides an
overview of challenges faced as well as describes how scheduling theory can be formu-
lated and applied. Many of the ideas discussed in the work relate to the continuous
time modelling scheduling problems utilised in batch plant scheduling models.

Similarly, Grossmann (2005) details the use of scheduling techniques to an emer-
ging field of operations research termed enterprise-wide optimisation (EWO), in
which optimisation of not only the plant, but more generally the entire supply
chain, such as the operations of supply and distribution are included in the for-
mulation. The author describes key challenges, such as the adequate formulation
of non-linear mathematical models that describe the entire supply chain including
uncertainties, the solution of these models, and the eventual implementation of the
proposed solutions over a large time horizon (potentially involving many years).
EWO is a new field where existing scheduling techniques and expertise may be ex-
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panded into related and enterprise-centric interest areas. Wassick (2009) provides a
related discussion to EWO, whereas Biegler and Zavala (2009); Grossmann (2012)
propose a number of possible solution methods theories suitable for EWO prob-
lems. Varma et al. (2007) provide an interesting and extensive discussion on EWO
aspects, incorporating strategic and tactical R&D management decisions into the
model formulation. The authors highlight mathematical strategic and tactical en-
terprise models, and discuss a generalised enterprise wide network model consisting
of planning and process functions. The integration of financial and operational de-
cision models is also considered.

Li and Ierapetritou (2008) review a number of strategies for the mathematical
formulation of uncertainties in the batch schedule. Whereas a number of traditional
scheduling approaches adopt the view of deterministic models for their optimisation,
the authors indicate how uncertainties in scheduling present different problems with
their own solution strategies. Within this work, the authors describe how problems
such as demand changes (rush orders), unexpected breakdowns, processing and re-
cipe variability, and price changes might be handled. The work details how this
may achieved via three distinct representations of uncertainty: placing bounds on
the uncertain variables, probability distributions and fuzzy representations. Each
of these is associated with a specific solution technique, although all methods often
assume the form of a complex MILP or MINLP problem after reformulation.

Although scheduling problems are often solved in well developed commercial
optimisation software (GAMS, AMPL, etc.), Wang et al. (1996); Chunfeng and Xin
(2002); Ponsich et al. (2008a,b); Liu et al. (2010) describe various alternate methods
for determining optimal batch schedules via a number of evolutionary algorithms
including genetic algorithms and particle swarm optimisation.

The complexity of batch scheduling has attracted the attention of many aca-
demics over the years. Several batch process literature reviews have been produced
as a result. Mendez et al. (2006) is considered the most recent contribution on the
subject, discussing the issue of short-term scheduling problems in batch plants. The
work provides a thorough treatment of dominant mathematical equations used to
describe sequential batch and batch network plants. The authors categorise the
breadth of batch scheduling problems, and discusses their solution by two worked
case studies. Notably, the authors describe how scheduling problems may be for-
mulated in different ways (through time and event representation, material balances
and objective function formulations) which may make solution easier or more diffi-
cult depending on the representation adopted. Two real-world examples are given
demonstrating the challenges faced by batch processes. The authors also provide a
list of commercial and academic software used for short-term batch scheduling. Flou-
das and Lin (2004) provide an extensive comparison between continuous-time and
discrete-time formulations in batch scheduling. The authors highlight the strengths
and weaknesses of each approach, and also provide common mathematical formula-
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tions for describing generalised batch schedules with each approach. Performance
comparisons between the two are also briefly highlighted, and topics related to react-
ive scheduling and uncertainty are also briefly discussed. Kallrath (2002); Reklaitis
(1996); Shah (1998) all provide many other excellent reviews related to aspects of
batch scheduling and modellilng.

Batch reactor optimisation

Graphical methods Batch optimisation using graphical methods, particularly
with regard to the problem of efficient waste-water allocation are already known.
Notable contributions include (Wang and Smith, 1995b,a; Dhole et al., 1996; Hallale,
2002; El-Halwagi et al., 2003; Manan et al., 2004; Majozi et al., 2006; Chen and Lee,
2008) in which many include formulations are based upon mass transfer operations.
Hallale (2002) utilises a graphical approach similar to pinch analysis in heat ex-
changer network synthesis for the minimisation of water in what is referred to the
author as a surplus water diagram. A graphical optimisation based on dynamic pro-
gramming has also been investigated by Staniskis and Levisauskas (1983), whereas
several analyses using graphical methods to fermentation processes are discussed by
Shioya and Dunn (1979).

O’Reilly (2002) considers a batch reactor operating under the hypothetical re-
action scheme I + R → A + 2D and A + R → IMPS in which A and D are saleable
products and IMPS is a waste product. The formulation includes a detailed un-
steady state mass and energy balance including aspects of mixing efficiency in the
form of impeller speed, as well as heat transfer efficiency from fouling. Notably,
the author describes a short-cut method for producing the results when detailed
kinetic data for the reaction is not available. This is achieved using thermochemical
data and a yield profile with respect to time. Solution trajectories and temperature
profiles are generated using Microsoft Excel.

Optimal control theory and Pontryagin’s maximum principle The ap-
plication of Pontryagin’s maximum principle to batch optimisation is commonly
found in literature. Use of the technique, specifically to optimal batch operation
in fermentation processes, has been performed by Modak et al. (1986); Modak and
Lim (1989, 1992). In particular, the authors investigated general characteristics
of feeding rate profiles for fed-batch operation, and later expanded the theory for
two control variables (Modak et al., 1986; Modak and Lim, 1989). The problem of
maximising metabolite yield and productivity in these systems was also later ex-
plored by Modak and Lim (1992). Similarly, Srinivasan and Bonvin (2003) used
the maximum principle to identify conditions for optimal feed rate and temperature
policies for systems of batch and fed-batch reactors with two reactions. The authors
conclude that it may be difficult to find a general analytic theory for systems in-
volving more than two reactions. Filippi-Bossy et al. (1989) considered the use of
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tendency models to batch reactor optimisation. The method involved the joint use
of experimental data and a suggested dynamic model to systematically improve the
proposed model estimate with each successive experimental run. The authors used
Pontryagin’s maximum principle to calculate optimal trajectories that were used
to anticipate the optimal trajectory of the next run. However, the authors noted
that a priori knowledge of the reaction order was necessary, and that the success of
the method relied on the accuracy of the base model. Uhlemann et al. (1994) also
considered the use of tendency models and suggested that optimisation of fed-batch
reactors be viewed as a two-step process first involving the determination of off-line
control variables followed by an optimal control phase. Although the application
of Pontryagin’s maximum principle is popular in batch optimisation, the determin-
ation of optimal solutions with the technique is difficult, particularly if analytical
solutions are required. Shukla and Pushpavanam (1998) observe that this may be
as a result of numerical instability and a priori knowledge of the sequence of control
actions for adequate convergence.

Non-linear programming methods Optimisation of batch processes by dy-
namic optimisation has been investigated by Dhir et al. (2000); Aziz and Mujtaba
(2002). Conversion of the problem and solution via non-linear programming meth-
ods are also common (Garcia et al., 1995; Allgor and Barton, 1997), with broader
formulations to include separation processes for example (Allgor and Barton, 1999).
Cuthrell and Biegler (1989) used sequential quadratic programming to obtain op-
timal operating policies in fed-batch reactors involving discontinuous profiles. Push-
pavanam et al. (1999) applied the same approach for determining optimal feeding
profile, also in fermentation processes.

The use of non-linear programming methods are discussed by Allgor et al. (1999)
and Allgor and Barton (1999). Cuthrell and Biegler (1989) used sequential quadratic
programming to obtain optimal operating policies in fed-batch reactors involving
discontinuous profiles. Pushpavanam et al. (1999) applied the same approach for
determining optimal feeding profile in fermentation processes. Garcia et al. (1995)
demonstrated how the optimisation of batch reactors could be achieved by converting
an optimal control problem into an equivalent non-linear programming problem. The
solution is then found by a generalised reduced gradient approach and a golden search
method for determination of the optimal final time. The practical implementation
of optimal feeding profiles in fed-batch reactors is also considered by Shukla and
Pushpavanam (1998). The authors approximated optimal profiles using discrete
pulses and constant flow rates over both equal and unequal sub-intervals.

The optimisation of batch processes by dynamic optimisation has been invest-
igated by Allgor et al. (1999); Dhir et al. (2000); Aziz and Mujtaba (2002). Peters
et al. (2006) considered the design of an online controller for the optimal control of
batch reactors using dynamic optimisation. In this way, changes in plant dynamics
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are adjusted to provide an optimal control loop without the need for offline analysis.

Stochastic optimisation methods Recently, the successful use of stochastic
methods to batch optimisation has also been investigated. In particular, the use
of genetic algorithms for the determination of optimal feeding profile have been
investigated by Ronen et al. (2002); Sarkar and Modak (2003); Zuo and Wu (2000).
Zuo and Wu (2000) in particular modelled the cultivation of biological products
with hybrid neural networks and then optimised the production rate using genetic
algorithms. Faber et al. (2005) utilised a simulated annealing technique to improve
the convergence of dynamic optimisation methods. The method was applied to
the maximisation of intermediate species concentrations. Zhang and Smith (2004)
considered the determination of optimal, non-ideal batch and fed-batch systems
via a superstructure approach; optimal optimisation parameters were then solved
also using simulated annealing. In addition to determining optimal control policies,
the statistical nature of stochastic methods also allows for the discovery of similar
near-optimal control policies. Slow convergence may still be an issue with these
algorithms however.

1.3 Motivation

1.3.1 AR construction algorithms

In section 1.2.1, we indicated how recent developments in AR theory have tended to
focus on formulating efficient and accurate methods for numerical AR construction.
The existence of these methods are important, mainly for two reasons: firstly for
the advancement of fundamental AR theory, and secondly for the application these
methods to modern problems.

Despite there being a large body of work on AR theory, an adequate sufficiency
condition for the AR still does not exist. The application of AR theory to many
problems is still subject to uncertainty. It is still not well understood whether a given
region is the true AR, or only a subset of it. AR constructions are still referred to
as candidate attainable regions as a result.

Furthermore, development of efficient AR construction methods is required be-
cause current approaches are still computationally strenuous for modern problems
of interest. Constructions in four dimensions and higher are cumbersome to view
and work with, and so graphical techniques are either slow or not well suited for
this purpose. In this regard, the often termed ‘curse of dimensionality’ by Bellman
(2010) is appropriate for AR construction schemes. Current methods often rely on
a discretisation of concentration space followed by either a direct search or some
variant on traditional optimisation. The successful development of faster, more ef-
ficient methods, and a better understanding of the challenges involved would allow
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for more confidence in the recommendations suggested by AR algorithms.
AR construction methods therefore are necessary, not only because of the com-

plexity of higher dimensional problems, but also because they facilitate development
of conventional AR theory towards a sufficiency condition.

1.3.2 Batch reactors

Similarly, there also exists a need for improved techniques in batch reactor synthesis
problems. Irrespective of the specific numerical technique employed, the underlying
methodology to batch improvement of current methods is generally consistent. A
mathematical model describing the system is formulated and then solved by ad-
justing operating parameters, such as feed addition rate and temperature, until an
assigned performance index is optimised. Optimisation is thus carried out by de-
termination of an optimal combination of parameters for a fixed method of batch
operation. The solution to the problem is then resultant from a mathematical formu-
lation of a non-linear optimisation problem. The success and quality of the solution
is often also dependent on an initial guess, which, may be linked to one of many
local optima. In order for convergence to the true global optimum to be established,
one must choose a starting guess that is sufficiently close to the answer. This is
common to both batch and continuous optimisation problems. Specific examples
of this to reactor synthesis arise when mixtures are introduced (McGregor et al.,
1999; Godorr et al., 1999). Certain objective functions may be difficult to formulate
mathematically given particular time and event representations, which may lead to
additional auxiliary variables and complex constraints that ultimately influences the
solution and solution performance.

Often, fed-batch reactors are utilised specifically in batch reactor optimisation,
as this allow for flexibility in the problem types and optimisation routines employed.
Little is currently found in the scientific literature detailing how other reactor types
might be employed for the improvement of batch reactors, or even how combinations
of different reactors may be arranged together to form a complex structure that
achieves the desired task. This aspect of batch reactors specifically is still missing
in the field.

In this regard, further improvements might be realised by also considering batch
structure, in a similar manner to that achieved in continuous reactors. By batch
structure, we mean the specific selection and sequencing of batch reactive equip-
ment that produces a particular output state. Once the appropriate structure is
established, optimisations may be carried out in the usual manner, offering further
improvement to the problem. Following from arguments related to the continuous
case, the first goal in batch optimisation should be to arrive at the correct reactor
structure before optimisations are performed. With this in mind, use of the AR
approach to batch reactors could be helpful in providing a better understanding of
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optimal batch reaction sequence.
Even as the benefits of AR theory have been clearly demonstrated with con-

tinuous reactors, the method has seen little adoption in a batch setting. In almost
40 years since its initial development, only a single paper on the application of AR
theory in batch reactors (Davis et al., 2008) exists excluding this work. This is due
in large part to the fact that AR theory has historically developed with continuous
reaction in mind.

1.4 Conclusion and scope of this work

Earlier in section 1.2.2, we discussed how the field of batch optimisation may be
categorised into two broad fields: batch unit optimisation, and batch process optim-
isation. In this work we will be specifically focussed on the reactive portion of batch
processes. That is, although the breadth of batch optimisation problems is vast,
encompassing many different operations and scheduling problems, the particular
benefit offered by AR theory necessitates that improvements to batch processes are
focussed specifically on batch reactors, and not on the entire batch plant. With the
background of improvement through structure discussed, and motivation of these
detailed above, this thesis aims to address two areas in AR and batch reactor theory:

1. To continue the development of robust AR construction methods: providing a
deeper insight into the challenges and potential improvements of these meth-
ods.

2. Towards the improvement of batch reactors via structure: utilising the in-
sights gained from AR theory and applying them to batch operations. In later
chapters, it will be our specific aim to exploit the benefits of continuous AR
results, and apply it directly to equivalent batch systems.

The AR is a powerful method that has seen little adoption other than to prob-
lems mainly posed in R2 and R3 with continuous processes in mind. Although it
is currently possible to address non-adiabatic systems, unbounded constructions,
comminution and basic separation operations, little work has been attempted to ap-
proach related problems in batch reactors. Most of these methods are also held back
by slow construction times or limited to lower dimensions. The use of the method
to a wider audience may help to spread its use to broader fields, but it is our view
that the above two points limit adoption of AR methods and ideas as a generally
accepted, and easily accessible theory. Further research into this theory is required
in order to make it more accessible. This should be done rather with an emphasis
on graphical meaning as opposed to mathematical rigour. It is the goal of this thesis
to help close these two gaps. In this way, this thesis essentially communicates the
ideas of alternative methods to traditional process optimisation. The emphasis in
this work will be towards reactor structure, rather than on optimisation alone.
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In order for this to be done, the reader should first be familiar with basic AR
theory. This can be found in chapter 2, where a brief overview of the AR is discussed.
From there, the benefit in exploiting reactor structure should be more apparent
as a means for improvement, so that the same way of thinking can be applied
to batch reactors. This is partly achieved in chapter 3, where improvements in
structure ultimately bring about an improvement in production rate. In chapter
4, improvements to an existing outside-in AR construction algorithm are discussed.
The direct application of AR theory to batch reactors is given treatment in chapter
5. Final conclusions and recommendations for future research are then made in
chapter 6. Where appropriate, specific theory and definitions have been split into
the relevant chapters and used when necessary so that the reader is not required to
read this work in a linear fashion.

1.5 Copyright permissions

The majority of this work has been formed from the compilation of published work
(chapters 3, 4 and 5 respectively). Copyright permissions have been granted by the
publishers for these chapters as a result. The content in these chapters has been
adapted for use in this thesis from their respective papers given below.

• Chapter 3: Ming, D., Hildebrandt, D., Glasser, D., 2012. A Graphical Method
of Improving the Production Rate from Batch Reactors. Ind. Eng. Chem.
Res. 51, 13562–13573.

• Chapter 4: Ming, D., Hildebrandt, D., Glasser, D., 2010. A revised method
of attainable region construction utilizing rotated bounding hyperplanes. Ind.
Eng. Chem. Res. 49, 10549–10557.

• Chapter 5: Ming, D., Glasser, D., Hildebrandt, D., 2013. Application of
Attainable Region theory to batch reactors. Chem. Eng. Sci. 99, 203 – 214.
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Chapter 2

Preliminaries

2.1 The Attainable Region

In chapter 1, we described how the AR represents, in a geometric sense, the set of all
achievable points, for all possible reactor configurations, obtained by reaction and
mixing alone. The AR is commonly constructed in concentration space, although
constructions involving residence time are also often found in the literature (Glasser
et al., 1994; Godorr et al., 1994; Hildebrandt and Glasser, 1990; Hildebrandt et al.,
1990). With the exception of unique conditions containing irregular kinetics or state
vectors, the AR is typically composed of surfaces generated from reaction and mixing
processes only. Reaction surfaces are the result of distinct combinations of three
specific reactor types. These shall be described below. The particular combination
of reactors and their arrangement with respect to one another is termed a reactor
structure. Whereas reaction operations may be viewed to enlarge the AR, the linear
nature of mixing operations ensures that any set of compositions may always be
formed by a convex combination of achievable points. In this way, the AR also acts
as a boundary between all that is achievable to all that is not.

In the following chapters, we discuss the nature of concentration and reaction
in geometric terms. Although these discussions are best visualised in R2 and R3,
the results below are still applicable in Rn. As such, vector notation will be used
throughout. All vectors are, unless specified otherwise, assumed to be column vec-
tors.

2.2 Geometric representation of concentration, mixing
and reaction

2.2.1 Concentration

Most representations of the AR are performed in concentration space, and thus an
adequate understanding of the geometric properties of concentration and mixing is
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important. Let us begin with a set of n components in a mixture. There may be
more than one mixture present, in which case we will denote i to be the i-th mixture
in the system. The molar concentrations are then given by ciA, ciB, . . . , cin. We may
group the set into a n-dimensional column vector by

Ci =


ciA

ciB
...
cin


and call this the concentration vector. Ci is a arranged so that the n species each
represent an axis in the positive orthant in Euclidean space, and therefore any
concentration in the system can be represented as a coordinate from the origin
given by the zero vector. The space in which all concentrations must lie is called
the concentration space, or more generally, the state space. Ci thus represents
a unique coordinate in concentration space that may, for instance, indicate the
instantaneous concentration within a reactor, or the resulting composition formed
from a combination of mixing multiple effluent streams together.

2.2.2 Mixing

When two concentrations C1 = [c1A, c1B, . . . , c1n]
T and C2 = [c2A, c2B, . . . , c2n]

T

are mixed together, we have by mass balance

C∗ =
V1C1 + V2C2

V2 + V2

where C∗ ∈ Rn is the final mixture concentration and V1 and V2 are the volumes
of streams 1 and 2, respectively. When the substitution

λ = V2/ (V1 + V2)

is introduced, rearrangement of the above expression gives

C∗ = (1− λ)C1 + λC2 (2.2.1)

where 0 ≤ λ ≤ 1. This is also known as the Lever Arm Rule (Geankoplis, 1993). It is
clear from eq 2.2.1 that mixing is a linear process. Geometrically, this suggests that
C∗ must lie on the straight line segment joined by C1 and C2 in concentration space.
Figure 2.2.1 shows a simple representation of this for two arbitrary concentrations
in R2.

It is assumed here that density is constant so that the total volume change
remains the same. If the particular application does not admit this assumption,
as in the case of gaseous or highly non ideal mixtures, then mass fractions should
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Figure 2.2.1: Geometric representation of concentration and mixing

be used in place of concentration. Mixing is therefore always viewed to be a linear
process, and thus the above analysis is equally applicable to non-constant density
systems. For the purpose of simplicity however, constant density will be assumed
unless specified otherwise.

It is sometimes also convenient to define a mixing vector v ∈ Rn as follows:

v = C2 − C1 (2.2.2)

in which case, C∗ is then given by C∗ = C1+λv which has the property that the final
mixture concentration must lie on v. The above reasoning can now be generalised
to a set of k compositions {C1,C2, . . . ,Ck} ∈ X (Feinberg and Hildebrandt, 1997).
A set X is considered convex if and only if for any two points C1,C2 ∈ X, the line
segment C1C2 is completely contained in X. C∗ is considered a convex combination
of the set if there exists a set of k scalars {λ1, λ2 . . . λk} such that λi ≥ 0, i =

1, 2, . . . , k
k∑

i=1

λi = 1

and

C∗ =
k∑

i=1

λiCi

2.2.3 Concavities and mixing

Consider the region of achievable points shown in Figure 2.2.2. The blue shaded
region represents achievable points by an arbitrary set of reactors or feed points. A
concavity is clearly visible, although, it does not appear to be part of the achievable
set. This can be overcome by use of mixing. To see this, we join points C1 and C2

together by a straight line. In reality, this indicates that a mixture has been formed
between concentrations corresponding to C1 and C2. The straight line connecting
points C1 and C2 is thus also attainable now and points on the line C1C2 can now
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Concave set Convex set

Mixing

C2

C1

Figure 2.2.2: Concavities and mixing

be used to achieve other unattainable regions in the concavity. This establishes two
important results:

1. If mixing is an allowable process, a concave set of achievable states can always
be represented geometrically as a convex polytope in state space. Otherwise,
mixing would be able to fill in concave regions.

2. Given a convex set of points, there are infinitely many ways in which to achieve
points within the region bounded by the points. Interior points of the region
may be obtained by the intersection of many states that all cross at the same
point, and thus there is generally no unique combination of boundary points
that can be used to achieve points located within the region.

This suggests that one need only be concerned with the boundary points of the AR,
as all other points within the region may be attainable by mixing. The AR must
therefore also be convex, formed from the convex hull of its boundary points. A
formal definition of convex hulls is given below.

2.2.4 Convex Hulls

If S ⊂ Rn is a subset such that for any distinct pair of points C1, C2 ∈ Rn, where
the line segment joining C1 and C2 is completely contained in S, then S is said to
be convex. The convex hull of a set S ∈ Rn, is the intersection of all the convex
sets in Rn which contain S, and is denoted by conv(S). The convex hull represents
the smallest convex set that contains S. Geometrically, the convex hull can be
envisioned as a convex polytope in Rn, enclosed by a finite number of hyperplanes
from which the facets are composed.

The AR is thus the convex hull of the set of points that define its boundary.
This is important because it means that we do not need to find all possible reactor
configurations and their outcomes. The requirement is only to find the unique set of
reactor structures that make up the AR boundary. It is therefore possible to form any
combination of states within the region by mixing between the appropriate boundary
points. The act of constructing a candidate AR is then a matter of determining the
reactor structures that expand the convex hull of points. In this way, we not only
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determine the set of points belonging to the AR, but we also decode the optimal
structures that are used to achieve these points.

2.2.5 Rate vectors and rate fields

Consider now what occurs when, along with a set of individual species, a system of
reaction kinetics is introduced. Since reaction rates typically vary for each species
in a system, and since these are also commonly subject to the state of the system
(temperature, pressure, composition etc.), it follows that a unique direction vector
may be determined with components corresponding to the rate of formation of each
species. One is therefore able to define a rate vector. The rate vector contains all
reaction kinetics for the system under consideration. For a prescribed set of reaction
kinetics and concentration vector C ∈ Rn, we define the rate of formation of each
species i as the function ri (C) describing the instantaneous change of the species as a
function of C. For n components occurring in the system, n species rate expressions
may be written. The rate vector may be written as follows:

r (C) =


rA (C)

rB (C)
...

rn (C)


Here, rA (C) is the rate expression for component A, rB (C) for component B, and so
on. The rate vector r (C) then, is the vector in Rn which describes the instantaneous
change in each component at a point C in concentration space. Conversely, for every
point in concentration space, we are able to assign a unique rate vector described
by r(C). We are then able to associate a given set of reaction kinetics in terms of a
uniquely defined vector field residing in Rn.We call this the rate field. A rate field
for a typical system is given in Figure 2.2.3.

Although many reactor types may be formed that each separately rely on r (C),
movement through the rate field will be different for each type. These are described
briefly below.

2.3 Fundamental reactor types

2.3.1 The Plug Flow Reactor (PFR)

The Plug Flow Reactor (PFR) belongs to the class of fundamental reactor models
that exhibit no axial mixing – material is assumed to travel along the reactor’s length
in a differential plug, and as a result, no mixing is assumed to occur in the direction
of the flow of material. For any differential slice of the PFR however, the contents
of the slice is assumed to be perfectly mixed. That is, the contents is assumed to
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Figure 2.2.3: Rate field for a system of kinetics in R2

be perfectly mixed in the radial direction. For this reason the PFR is modelled, in
vector form, by the following equation

dC
dτ = r (C) (2.3.1)

Here τ is a non-negative scalar representing the PFR’s residence time

τPFR = VPFR/Q

where VPFR and Q are the PFR volume and flowrate, respectively. There is a direct
analogue between PFRs and batch reactors. If no material is allowed to enter a
batch vessel during reaction, then the evolution of species concentrations within the
batch is exactly the same as that found along the length of a PFR. The reaction time
of the batch then plays the same role as residence time in a PFR. An application
of this result is discussed later in chapter 5. Hence, from a modelling perspective,
there is no mathematical difference between a continuous PFR and a standard batch
reactor, although significant operational differences may still exist that may need
to be accounted for, particularly in the context of batch process scheduling and
optimisation.

The PFR equation is an ordinary differential equation (ODE), one for each com-
ponent participating in the reaction, that can be solved by standard techniques,
typically via numerical integration. Multiple species participating in the reaction
results a system of ODEs. In order to solve the system, initial conditions and an
integration time are required. These arise in the form of a PFR feed concentra-
tion and residence time, respectively. The solution of the PFR equation produces a
solution trajectory; we call this a PFR trajectory.
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Figure 2.3.1: Rate vectors on a PFR trajectory. Rate vectors are tangent at each
point on a PFR solution trajectory. This implies that PFR trajectories may never
cross.

Geometrically, all rate vectors evaluated on the set of concentrations belonging
to the PFR trajectory are tangent to the solution trajectory. This is clear when we
keep in mind the form of eq 2.3.1. The rate of change of concentration in a PFR
is equal to the rate vector evaluated at the same concentration. In practice, one is
generally able to deduce the shape of all PFR trajectories for the system graphically
by reviewing the direction of the rate vectors in the rate field. Furthermore, this
implies that PFR trajectories can never cross – for this to occur, multiple rate
vectors must be present at the intersection point (Feinberg and Hildebrandt, 1997;
Hildebrandt, 1989). Figure 2.3.1 demonstrates this using the rate field supplied in
Figure 2.2.3.

2.3.2 The Continuously-Stirred Tank Reactor (CSTR)

Opposite in nature to the PFR, the CSTR belongs to the class of reactors in which
complete mixing is assumed. The entire vessel contents is assumed to operate at a
single state so that the effluent concentration is equal to the vessel contents. The
governing equation for a CSTR is hence given by mass balance over the reactor

C − Cf = τr (C) (2.3.2)

CSTR solutions are obtained by the simultaneous solution to a system of non-linear
equations. Non-linearity appears in the form of the rate expressions used for the
system kinetics, and consequently the complexity of CSTR behaviour is a direct
function of the complexity of the underlying kinetics. It is not uncommon to observe
multiple steady states for a unique reactor volume and feed concentration. This may
occur, even for relatively simple autocatalytic reactions. It is for this reason that the
systematic determination of CSTR effluent concentrations is difficult, particularly
if complicated kinetics are used. An example of such a reaction is shown in section
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Figure 2.3.2: Rate vectors on a CSTR locus. For each point on the locus, a unique
CSTR volume can be calculated. Rate vectors are co-linear with feed mixing vectors
in CSTRs

5.4.1.
Solution of the CSTR equation results in a single concentration. This is in

contrast to the solution trajectory obtained by the integration of the PFR equation
for example. In order to generate a full set of CSTR concentrations, a range of
residence times is required. The collective term for the range of CSTR solutions
obtained is called a CSTR locus. A sample set of CSTR solutions for the same rate
expression is given in Figure 2.3.2. These kinetics do not exhibit multiple steady
states. In the case of multiple solutions, separate branches of the CSTR locus would
be observed.

Geometrically, the rate vector must be co-linear with the mixing vector given by
v = C − Cf. This allows for a geometric method of finding CSTR solutions. The
rate vectors evaluated on the CSTR locus are also shown in Figure 2.3.2. It is clear
that they are collinear with the mixing vector back to the feed.

Since CSTR solutions are found at discrete points, the presence of multiple solu-
tions in the rate expression allow for jumps and discontinuities in space. That
is, CSTR solutions allow us to achieve disjoint points in space that would not be
possible via continuous profiles. This presents a considerable challenge for AR con-
struction methods, as it is generally unsafe to rely solely on continuity arguments
found in traditional optimisation techniques. The presence of discontinuous regions
and multiple steady states (often found in chemical engineering) thus limit the use
of traditional optimisation methods, such as dynamic programming, in AR theory.

2.3.3 The Differential Side-stream Reactor (DSR)

Geometrically, the DSR is a reactor that may be viewed as a mixture between the
two limiting reactor model cases described above – the CSTR represents chemical
reaction in which complete mixing is observed, whereas the PFR represents reaction
where no mixing is observed. Figure 2.3.3 provides a schematic of a DSR with the
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Figure 2.3.3: Schematic of DSR.
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0  - C

Figure 2.3.4: The space spanned by a rate vector and mixing vector. The particular
DSR trajectory obtained is governed by the mixing vector and the α policy used.

feed and effluent concentrations of interest. With this in mind, the form of the DSR
expression is easy to interpret. The overall change in concentration of a differential
plug is expressed as a linear combination of two vectors: the reaction rate r (C),
and the side-stream concentration C0.

dC
dτ = r (C) + α (C0 − C) (2.3.3)

The variable α is a control parameter that is used to adjust the relative amount
of mixing by concentration C0 into the reactor. Furthermore, both C0 and α may
vary along the length of the reactor. When α = 0, we obtain the PFR equation.
At equilibrium (when dC/dτ = 0), we obtain the CSTR equation with C0 = Cf.
Integration of the DSR equation also produces a solution trajectory. We call this
the DSR trajectory. In addition to requiring an initial condition and reaction time,
the DSR also requires that one specify a relationship for the side-stream feeding
composition and feeding policy (the α policy). In chapter 5, the apparent general
purpose nature of the DSR is exploited and used to improve batch reactors.

Geometrically, the DSR must travel in a direction that is defined by the linear
subspace spanned by the vector r (C) and C0. The duty of α is thus to determine
the instantaneous direction of the DSR in space. Figure 2.3.4 gives a graphical
representation of this.

By careful choice of the α policy, DSRs may be useful in helping to extend
the AR in directions where both reaction and mixing are required simultaneously.
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The unique α policy results in a DSR forming part of the AR boundary is called
a critical α policy. DSRs are only found to play a useful role on construction of
the AR boundary for three dimensions and higher. This means for 2 dimensional
constructions, PFRs and CSTRs are sufficient to construct the AR.

2.4 Higher dimensional considerations

2.4.1 Dimension of the AR

Assume a system of L independent reactions is available participating amongst n

components, where L ≤ n. Although it is natural to expect the AR for the system to
reside in the full concentration space Rn, it may be shown that the AR can be viewed
to lie within RL, a subspace of Rn, corresponding to the number of independent
reactions in the system (Feinberg and Hildebrandt, 1997). The dimension of the
AR (and hence it’s computation) can therefore be reduced by only considering a
subset of all n components. The remaining components associated with states in
the AR are then found by mass balance. That is, although it is possible to express a
concentration vector C ∈ Rn and rate vector r (C) ∈ Rn in terms of all n components
participating in the system, the components are generally linearly dependent due
to reaction stoichiometry. It is generally more suitable to write concentration and
rate vectors in terms of only the L independent components corresponding to the
independent reactions participating in the system: C ∈ RL and r (C) ∈ RL.

By example, consider the synthesis of ammonia from nitrogen and hydrogen
N2 + 3H2 
 2NH3. Although there are 3 components participating in the system
(n = 3), they are all expressed in terms of a single extent of reaction. Thus, although
it is possible to plot all possible concentrations for the ammonia synthesis reaction
in cN2 − cH2 − cNH3 space, these points must lie on a line in R3 if they are to obey
the reaction stoichiometry. Knowledge of the feed and effluent state for one of the
components permits calculation of the other two by mass balance. The system is
inherently one-dimensional as a result. Note that the presence of a reverse reaction
does not influence the dimension of the subspace, for only independent reactions are
required to determine the dimension of achievable states.

2.4.2 Stoichiometric subspace

Given only a system of reactions and feed point Cf, it is possible to compute dis-
tinct bounds that enclose all possible species concentrations obeying the reaction
stoichiometry and feed point. Since the AR must obey mass balance constraints
and contain the feed point, it follows that these bounds must also encompass the
AR. This can be done without specification of reaction kinetics, for all kinetics must
also obey mass balance according to the reaction stoichiometry. Given d independ-
ent reactions occurring in n components, a stoichiometric coefficient matrix A of
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size (n× d) can be formed, housing the species reaction coefficients participating in
each reaction in the system

A =


ν11 · · · νd1
... . . . ...

ν1n · · · νdn


where νij is the stoichiometric coefficient of component i participating in reaction
j. It is straightforward to show how all species concentrations C in the system can
be expressed in terms of linear combination of an initial feed vector Cf and the
stoichiometric coefficient matrix A

C = Cf + Aε (2.4.1a)

ε is a (d× 1) vector corresponding to each extent of reaction. Indeed, the columns
of A correspond to the individual reactions participating in the system. The space
spanned by eq 2.4.1a is hence determined by A offset by Cf. Furthermore, feasible
concentrations must also be non-negative

C ≥ 0 (2.4.1b)

Concentrations obeying eq 2.4.1a and eq 2.4.1b are said to be stoichiometrically
compatible with the feed point Cf. We term the space spanned by eq 2.4.1a the
stoichiometric subspace and often denoted by the symbol S. The dimension of S is
hence determined by the dimension of A, in particular. This provides a simple way
of calculating the dimension of the stoichiometric subspace since this is equivalent
to finding the rank of A, rank (A). If there are d independent reactions, it follows
that rank (A) = d.

In section 2.4.1, we discussed how the AR exists as a subspace of Rn. The dimen-
sion of this space is determined by the number of independent reactions present in
the system. Computing the dimension of the AR is hence achieved by computation
of the stoichiometric subspace, which is directly related to the number of independ-
ent reactions, from rank (A). Since AR theory has typically come about from 2D
constructions, the stoichiometric subspace is generally represented as a triangle. It
is for this reason that the stoichiometric subspace is commonly also referred to as
the mass balance triangle. A worked example demonstrating how to compute the
stoichiometric subspace given reaction stoichiometry and a feed is given in Appendix
B.2.

2.4.3 PFRs on the AR boundary

From section 2.2.3, a concave set of achievable points can always be made convex
through mixing. A set X containing k points produced by a reactive network will
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have points in or on the boundary defined by the convex hull of X, conv (X). If a
point Ci satisfies the relation

Ci = λ1C1 + λ2C2 + · · ·+ λkCk

in which at least one of the λ’s is non-negative, then Ci must lie on the interior of
a line segment joining points in X. Hence, Ci can be formed from a mixture of the
boundary points in X given by conv (X). It follows that if a point Ci can be formed
from a mixture of two or more other points, then it cannot be an extreme point of
conv (X) and thus it also cannot be formed as a result of reaction. From this, we note
that the extreme points of X are those that arise from reaction alone, for otherwise
they would satisfy the above mixing relation. It follows that the boundary of the AR
is generated from reaction and mixing processes only. Linear (flat) sections of the
AR boundary are those resulting from mixing process whereas as convex (curved)
sections of the boundary are those generated from reaction alone.

An important result of this arises in the form of theorem 1 in Feinberg and
Hildebrandt (1997). Using the above result, along with the complement principle
discussed in chapter 1, the theorem states that any set of extreme points disjoint
from the feed are the result of the union of PFR trajectories (solutions to eq 2.3.1).
Though the AR boundary may typically be composed of a complex set of multiple
reactor types with intermediate mixing, the final reactor type used to achieve ex-
treme points on the AR boundary arise from PFR trajectories alone. This is useful
as a design guideline in reactor network synthesis problems, for terminating reactor
type will always be that of a PFR.

2.4.4 Connectors and critical reactors

Connectors

Although it is known that only PFR trajectories produce extreme points on the AR
boundary, other special reactor types must be employed in order to reach them. A
connector is used in the terminology of AR theory to describe a special manifold
of points residing on the AR boundary which allow for connection to the manifold
of extreme PFR trajectories. In Feinberg (2000b), they are described as ‘service
roads’ that link to PFR highways. Although a precise mathematical definition of
connectors can be found in Feinberg and Hildebrandt (1997), it is sufficient for our
sake to only have a qualitative understanding of their duty in the formation of the
AR boundary. In simple terms, connectors are points on the AR boundary which
are disjoint from the feed that originate from mixing lines. Connectors leave mixing
lines to connect to PFR trajectories smoothly. Moreover, connectors are formed
specifically from the solution of the CSTR and DSR equations only.
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Critical DSRs

A DSR solution trajectory contained entirely on the AR boundary is termed a crit-
ical DSR trajectory. Critical DSR trajectories result from highly specific α feeding
policies, termed critical α policies, that allow for traversal on the AR boundary.
Critical DSR trajectories act as connectors to PFR trajectories on the boundary. In
order to understand why these are special, we must understand that the AR bound-
ary plays special physical significance in the context of achievability. By simply
residing on the boundary, the corresponding reactor must be controlled in a highly
specialised manner.

It is possible to compute critical α policies from this understanding using ideas
from geometric control theory (Feinberg, 1999). To see this, suppose that a critical
DSR trajectory is available, controlled by a critical α policy. Since it is critical, it
must lie entirely on the AR boundary. Since it resides on the boundary, it bor-
ders between all achievable states to all unachievable states. If a perturbation is
introduced into the control policy, then the resulting trajectory will deviate from
the path prescribed by the critical trajectory. Since the trajectory is critical, this
perturbation may serve only to produce a deviation into the AR, for else the original
DSR trajectory would not be critical in the first place. We can see from this that
controllability arguments dictate the form of critical DSR trajectories and hence
the computation of critical α policies. Indeed, whereas we often attempt to seek
completely controllable solution trajectories in practice, it is the absence of control
that must be used as a condition for residing on the AR boundary (Feinberg, 1999).
In the theory of optimal control, the resulting α policy corresponds to a singular
control profile.

A condition for computing critical reactors is then possible. Since the nature of
the DSR equation is inherently non-linear, the use of iterated Lie Brackets is required
in order to calculate the condition. Specifically, rewriting the DSR equation in the
form

f (C) = r (C) + αv (C)

where
v (C) = C − C0

we may then define the Lie bracket, z[1] (C), in terms of f (C) and v (C)

z[1] (C) = [f (C) ,v (C)]

= dv (C) f (C)− df (C)v (C)

where df (C), dv (C) and dz[i] (C) are the Jacobians of vector functions f (C), v (C)

and z[i] (C), respectively. From this we may define iterated Lie brackets

z[2] (C) =
[
f (C) , z[1] (C)

]
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= dz[1] (C) f (C)− df (C) z[1] (C)

which may be generalised in a recursive fashion

z[k] (C) =
[
f (C) , z[k−1] (C)

]
= dz[k−1] (C) f (C)− df (C) z[k−1] (C)

It is then possible to show that for a DSR to produce effluent concentrations that
reside on the AR boundary, vectors

{
f (C) ,v (C) , z[1] (C) , . . . , z[k] (C)

}
must be

linearly dependent. In practice, this is achieved by computing the determinant of
the matrix whose columns are composed of the above vectors as well as vectors form-
ing an orthogonal basis to the stoichiometric subspace S, and setting the resulting
expression to zero:

Det
[
f (C) ,v (C) , z[1] (C) , z[2], . . . , z[k],N

]
= 0 (2.4.2)

Here, N is a matrix containing columns orthogonal to S. Note that we only provide
these definitions here for completeness. A detailed description of the procedure,
with worked examples, can again be found in (Feinberg, 2000b). Even if we do
not wish to know specific details of the method, it is still possible to understand
the general procedure: observe that eq 2.4.2 is in fact a function of α. Solution
and rearrangement of eq 2.4.2 may then be used to determine a critical α policy
corresponding to a critical DSR.

An important consequence of the fact that critical DSR trajectories must lie
entirely on the AR boundary is that these trajectories must then also originate on
the boundary. Thus points on the true AR boundary must be used as starting points
for critical DSRs. This places a large constraint on the number of possible initiating
points for critical DSR trajectories. Furthermore, the side-stream concentration C0

is also specialised. Similar to starting points of critical trajectories, C0 must also be
sourced from extreme points on the AR boundary. This again places a limitation on
the possible side-stream concentrations used in critical DSRs, and raises questions
as to how one should search for these during construction, when the full AR has not
been identified yet. In practice, the value of C0 is often taken to be the same of the
feed point C0 = Cf.

Critical CSTRs

The above control arguments may now be extended to include critical CSTRs. Sup-
pose that a CSTR is available that produces effluent concentrations on the AR
boundary (it is a critical CSTR). If a DSR is connected in series directly after the
CSTR, then the DSR must also start on the AR boundary. In order for the DSR
to also be critical, it’s trajectory must satisfy eq 2.4.2. This provides a link for
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PFR trajectories

Mixing lines

Connector

Figure 2.4.1: Connectors

how a critical CSTR condition may be calculated. Certainly, a critical CSTR must
satisfy the same controllability criteria as a critical DSR, for otherwise the above
arrangement would not produce concentrations on the AR boundary.

Feinberg (2000a) demonstrates how a condition similar to that given for critical
DSRs may be formed. In particular, the condition for a critical CSTR also follows
a determinant calculation of the following form

Λ (C) = Det
[
v (C) ,dr (C)v (C) , (dr (C))2 v (C) , . . . , (dr (C))k−1 v (C) ,N

]
= 0 (2.4.3a)

substitution of the CSTR equation and rearrangement gives an equivalent expression
written only in terms of r (C)

Λ (C) = Det
[
r (C) ,dr (C) r (C) , (dr (C))2 r (C) , . . . , (dr (C))k−1 r (C) ,N

]
= 0 (2.4.3b)

Eq 2.4.3b is particularly useful because it does not involve C0, which is often un-
known in practice. Eq 2.4.3a describes a surface in Rn that critical CSTRs must
satisfy. Whereas a critical DSR must adhere to eq 2.4.2 throughout its entire integ-
ration range, critical CSTR effluent compositions for the equivalent relation given
by eq 2.4.3a will only be satisfied at distinct points. It is convenient then to envi-
sion the locus of CSTR points piercing the surface described by eq 2.4.3a only at
distinct points. Intersection points with the surface are those that form part of the
AR boundary, for these satisfy the controllability requirements of connectors. Fig-
ure 2.4.2 shows this graphically. Again, further details can be found in (Feinberg,
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CSTR locus

Λ(C) = 0

Figure 2.4.2: Critical CSTRs

2000a).

Comment Even though it is possible to compute distinct conditions for critical
reactors, their analytic determination is challenging, involving determinant calcu-
lations of repeated iterated Lie Brackets formed from higher derivatives of f (C)

and v (C). Although these conditions are distinct and well defined, their nature
brings into the question the robustness of the rate expressions themselves employed
to model the system. Indeed, for many systems of interest, analytic determina-
tion of these profiles is intractable and thus we must rely on alternate means for
approximating the AR, mostly via numerical computation.

2.4.5 Simplifications for R3

In the previous section, we discussed how it is possible to determine concrete condi-
tions for critical DSRs that may be used to synthesise an associated critical α policy.
Although these conditions become increasingly complex in higher dimensions, an al-
ternative (simpler) method for computing critical α policies exists specifically for
three-dimensional systems. This is discussed in (Glasser and Hildebrandt, 1997). In
particular, it can be shown that the function

φ (C) = [dr (C) (C0 − C)]T [(C0 − C)× r (C)]

where × is the vector cross product, satisfies conditions for a critical DSR trajectory
when the value of α can be coordinated so as to maintain φ (C) = 0 along the entire
trajectory. This leads to the following condition

[∇φ (C)]T
dC
dτ = 0
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where ∇φ (C) is the gradient of the scalar function φ (C), and dC/dτ is the vec-
tor differential equation describing the DSR expression. Substituting eq 2.3.3 and
further simplification leads to an explicit expression for α

α = − [∇φ (C)]T r (C)

[∇φ (C)]T (C0 − C)
(2.4.4)

The scalar function given by eq 2.4.4 represents a critical α policy for systems in R3

specifically. This result is commonly referred to as the ‘VdelR’ condition.

2.5 AR construction from fundamental processes

Once the fundamental process vectors of reaction and mixing are known, AR con-
struction may begin. By optimal structures, we mean the reactor configurations
that are able to expand the region of attainable points in the greatest manner pos-
sible. The convex hull of these points is then the AR. Since all interior points can be
achieved by mixing, only boundary points are required to achieve all points in the
region. Hence, the task of finding the AR reduces to finding the unique set of struc-
tures that form its boundary. The solution to subsequent optimisation problems
thus only involves combinations of these optimal structures with mixing.

2.5.1 General procedure for constructing the AR

Unless the system kinetics under consideration is simple, AR construction is cur-
rently still not straightforward, requiring previous AR knowledge and construction
experience. In general, a fair amount of time and skill is involved whenever the
AR for a system is to be determined. AR practitioners often spend a large amount
of time visualising and interpreting the AR boundary to identify sections for how
to expand the candidate region further. Nevertheless, even if the full AR cannot
be determined, it is always possible to generate a candidate region representing a
large portion of the true AR. Although analytic determination of the AR is difficult,
this does not prohibit the practice of a generalised, common-sense, approach to AR
construction. Indeed, all constructions generally follow a similar procedure, even
if the final polytope is substantially different. A typical construction procedure is
provided below as a guideline for how one might generate at least a candidate AR.

Specify system kinetics and feed point (or convex hull of feed points)
Since the AR is defined in terms of its kinetics and feed point, these must both be
initially specified. The system of reactions must be known along with the reaction
stoichiometry. Specification of the feed point is usually determined by economic or
operating constraints. If there are more than one feed points available, then the
convex hull of all feed points is used as the initial candidate AR.
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Determine dimension of problem and (optional) stoichiometric subspace.
From the reaction stoichiometry and feed point, it is possible to compute the dimen-
sion of the problem by calculating the rank of the stoichiometric coefficient matrix
A. This determines the complexity of the solution procedure: 2D problems will
not require DSRs or the calculation of critical reactors, 3D problems may exploit
the ‘VdelR’ condition of section 2.4.5 to determine critical α policies easier, and
higher dimensional problems will need to be visualised as projections onto different
component spaces in R2 and R3.

It is also advantageous to compute the stoichiometric subspace from the reaction
stoichiometry and feed point. This establishes limits in space in which the AR is
known to reside that may guide the search for other reactor structures that extend
the region.

Generate PFR trajectories and CSTR locus from the feed The simplest
method for expanding the initial set of achievable concentrations is to determine
the PFR trajectory and CSTR locus from the feed points. Solving the PFR is de-
termined by integration of a system of ordinary differential equations whereas the
CSTR locus involves the solution of a system on non-linear equations. Depending
on the complexity of the rate expressions, multiple CSTR steady-states may exist
that will also need to be accounted for. Otherwise, the full set of achievable concen-
trations may not be discovered. Under certain reactions, the PFR trajectory may
be completely convex, indicating that a PFR from the feed is the optimal reactor
structure. In this case, construction may be terminated here as the convex hull of
the PFR trajectory corresponds to the true AR. This situation, although seemingly
rare, is observed for linear kinetics (Glasser and Horn, 1980).

Every point on the CSTR locus may be used as an initiating point for a PFR
trajectory. From section 2.4.3, it is known that PFR trajectories make up the final
extreme points of the AR and therefore it is sensible to always include PFRs as the
final reactor type. Thus PFR trajectories may be generated from all CSTR points.
Once this has been achieved, the convex hull associated with the PFR trajectories
and CSTR from the feed may be computed with a standard convex hull algorithm.
The resulting polytope generally constitutes a reasonable first approximation to the
AR.

Inspect the boundary for expansion The convex polytope resulting from PFR
trajectories and CSTR points may now be checked for possible extensions. For
two-dimensional systems, it is convenient to plot the rate field and overlay it onto
the region. In this way, we are able to visually inspect the candidate region for
any possible rate vectors pointing out of the boundary. For higher dimensions, it
may be possible to visualise sections of the boundary and plot rate vectors in a
similar manner, however manipulation, visualisation and interpretation of the data
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is inherently more complex. Nevertheless, if rate vectors on the boundary can be
found that point out of the region, then the region may be extended further with
PFR trajectories from those particular boundary points. If it is difficult to inspect
rate vectors on the boundary, then an attempt should be made to expand the region
by use of DSR trajectories.

Compute the critical α policy For systems involving three or more independ-
ent reactions, the AR boundary may be composed of reactor structures containing
critical DSRs. The guidelines discussed in section 2.4.4 may be followed to compute
critical α policies that may form part of the AR boundary. These expressions in-
volve the evaluation and solution of iterated Lie brackets which, depending on the
complexity of the rate expression and dimension of the system, may allow for an
analytic expression for the critical α policy. For systems specifically cast in R3, the
critical α policy may be determined by use of the ‘VdelR’ condition instead. The
particular expression obtained for α will depend on the side-stream composition C0

specified. As already mentioned, C0 must originate from a point on the true AR
boundary which may be difficult to know seeing as this precludes determination of
the AR. In practice we often use C0 = Cf.

Once an expression for the critical α policy has been found, it can be substituted
into the DSR expression and integrated given an appropriate initial condition. Initial
points of integration for critical DSR trajectories are again constrained to lie on the
true AR boundary, which is unknown up to this point. The feed set and equilibrium
points from the CSTR locus and PFR trajectories are typically utilised in practice.

Compute the critical CSTR surface Λ (C) = 0 Connectors on the AR bound-
ary might also arise from critical CSTR effluent compositions. Thus, determination
of the critical CSTR surface described by Λ (C) = 0 may also help to expand the
region. Eq 2.4.3b can be solved and plotted resulting in a surface in Rn. Eq 2.4.3b
is often employed over eq 2.4.3a seeing as it does not involve specification of C0,
which is also unknown. CSTR solutions that intersect the surface generated by eq
2.4.3b are then critical CSTR solutions.

PFR trajectories from critical reactor solutions PFRs initiated from the
critical reactor effluent concentrations are special as these form part of the true
AR boundary. The resulting region generated by computing the convex hull of
all points generate up to this point represents a good approximation to the AR.
Depending on whether the above steps are followed to completion, there may still
exist points that could expand the region further - often regions are obtained that
satisfy all AR properties but which are not the true AR dues to multiple CSTR
steady-states. Again, analytic determination of the AR is often difficult, requiring
many visualisation and boundary interpretation steps in order to obtain a sense of
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whether the candidate region is complete.

2.5.2 Remarks

We can see that although it is possible produce a candidate AR analytically, it’s
determination requires a large amount of time and calculation. The need for auto-
mated AR construction methods is necessary, particularly for higher dimensional
problems. In theory, once numerical AR construction is complete, the optimal re-
actor structures can also be found by back calculation. In practice however, AR
construction will often only provide the region. The optimal structure will not be
known in this case. AR construction methods usually fall into one of two categories.

1. Inside-out methods attempt to construct the AR from the feed point and grow
the set of attainable points outwards. Once these points have been found, the
optimal reactor structures are also known.

2. Outside-in methods begin by enclosing the AR within a larger region and then
removing unattainable regions. Outside-in methods are generally more robust
and are able to handle complex kinetics easier. These methods do not provide
the reactor structures however.

Thus, even though the AR serves to determine the optimal reactor structures for
a given system, construction is usually done through geometric interpretation of
the fundamental process and not through an actual simulation of proposed optimal
reactors. It is generally difficult to relate these properties back to a physical reactor
structure. This is different to if AR construction is determined via the analytic
guidelines described above, in which the region and optimal reactor structure is
generated simultaneously. Nevertheless, even if the optimal reactor is unknown, or
if the structure is completely impractical, the AR still provides the absolute limits of
achievability. Knowledge of these limits allows for the establishment of performance
benchmarks that can be used compare our current designs with.

2.6 On non-isothermal and heterogeneous systems

Although the AR has historically been developed with continuous, isothermal, con-
stant density systems in mind, it is possible to relax these constraints.

2.6.1 Variable density systems

Notation

When density is not constant, the linear mixing laws developed in section 2.2.3
in terms of concentration are no longer applicable. Many reactions of industrial
importance occur in the gas phase, or amongst heterogeneous reaction environments.
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Figure 2.6.1: Overall viewpoint for variable density systems

In these situations, it is no longer possible to generate the AR in concentration
space. AR theory may still be utilised for these systems, however certain necessary
transformations must be undertaken in order to honour the linear mixing property
that underpins the convex nature of candidate ARs. Rather than use concentrations,
we must use mass fractions instead.

Consider Figure 2.6.1 which represents the overall reactor network for a variable
density system. A stream containing n components is fed into a reactor network at
a total volumetric flow rate of Q1. The effluent stream leaving the network is at a
total volumetric flow rate Q2. Since the system is no longer assumed to obey the
constant density assumption, Q1 ̸= Q2. We use the symbol G to signify the total
mass flow rate of a stream, whereas gi signifies the component mass flow rate of i
within a mixture. The total mass flow rate is then found as the sum of all component
mass flows in the stream:

G =

n∑
i=1

gi

Since mass is always conserved, the total mass flow of material in stream in Figure
2.6.1 is equal to the total mass flow in stream 2, or G1 = G2 = G.

Mass fraction vector z

The mass fraction of component i, zi, in a stream with a total mass flow G is defined
as

zi = gi/G

zi may be similarly defined for batch systems in terms of the mass of component i,
mi, and the total mass of the system, mtot:

zi = mi/mtot

if n components are present in the system, then n mass fractions exist. Only n− 1

mass fractions are independent, since all mass fractions in the system must sum to
unity

n∑
i=1

zi = 1
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Figure 2.6.2: Hypothetical reactor for mixing mass fractions

The mass fraction vector, z, is then defined in a similar manner to the concentration
vector C as follows

z = [z1, z2, . . . , zn]
T

For any mixture containing n species, we may associate the mixture with a mass
fraction vector z. From a geometric viewpoint, z is the vector in Rn mass fraction
space associated with a unique magnitude and direction.

Mixing

Similar to section 2.2.3, suppose that two streams with total masses G1 and G2 are
brought into contact with each other, as given in Figure 2.6.2. The compositions
of mixtures 1 and 2 may be expressed in terms of mass fraction vectors z1and z2,
respectively. The total mass of the mixture is then Gtot = G1+G2 and it is possible
to write each species as the sum of each mixture in the following way

z∗Gtot = z1G1 + z2G2

Dividing through by Gtot and making the substitution λ = G1/Gtot then gives

z∗ = λz1 + (1− λ) z2

which is identical in form to eq 2.2.1. Observe that this expression does not rely
on the constant density assumption and thus it is useful for variable density sys-
tems. ARs are then generated in mass fraction space as opposed to concentration
space. It can be shown how molar quantities, such as moles, concentration and
mole fraction, may all be written as functions involving the species mass fractions
and molar masses. In the case of concentration, an appropriate equation of state
must be employed to relate the system density to composition, often in terms of
process variables such as reactor temperature and pressure. Analogous quantities
for residence time may also be developed involving mass fractions as well.
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2.6.2 Temperature and other parameters

Although variable density systems may be accommodated for by use of mass frac-
tions, the nonlinear nature of the energy balance means that analytically expressing
temperature in terms of concentration generally does not result in a linear expres-
sion. Unless simplifying assumptions can be made, this means that temperature
does not generally obey a linear mixing law. It it hence generally not possible to
construct an AR with temperature as one of the axes. We are hence forced to in-
corporate temperature via a different route. If the system is non-isothermal, the
general approach is to express the kinetics in terms of a temperature parameter. We
may hence rewrite the rate vector to be a function of both the concentration vector
C and the system temperature T, as r (C,T). If the energy balance allows for the
determination of T in terms of concentration, an expression of the form T = T (C)

is available. This may be substituted into the rate expression with the overall ef-
fect of creating a newer (more complex) rate expression incorporating temperature
r (C,T (C)) = r (C). AR generation then follows a conventional construction pro-
cedure. Substitutions of this type are common when the kinetics are expressed in
an Arrhenius form, by example. An example of this is shown in chapter 3.

If temperature cannot be isolated and expressed in this way, then it is still
possible to incorporate temperature by treating T as an extra control parameter in
the rate field over a temperature range. For non-isothermal systems, every point i in
concentration space may take on a range of temperature values Ti specified by the
designer Tmin ≤ Ti ≤ Tmax. Hence, the resulting rate vector is spanned by the values
of Ti and the geometric interpretation follows a situation similar to that of Figure
2.3.4. Optimal control strategies may then be developed that seek to determine the
optimal temperature profile that traverses the AR boundary (Godorr et al., 1994,
1999). In this way, heating and cooling equipment may also be incorporated into
the AR construction, with optimal reactor networks incorporating external heating
or cooling (Nicol et al., 1997, 2001).

This methodology is applicable to any kinetics in which the particular process
variable can be parametrised in this manner. As such, heterogeneous/catalytic sys-
tems might be incorporated in this way, although this has not been attempted cur-
rently. Catalytic systems that follow the pseudo homogeneous and pseudo steady-
state assumptions are treated much like the temperature case: developing a suitable
rate expression involving interphase transport directly into the kinetics (even if the
underlying rate expression may be rather complex). In the situation that the kin-
etics do not allow for this (where mass transfer may limit the reaction rate), then
the rate vector may again be expressed in terms of the spatial concentration vector
and a local mass transfer gradient at that point. The solution might then follow a
similar procedure to that for concentration.
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2.7 Conclusion

In this chapter, we reviewed some of the basic theory associated with Attainable
Regions. We saw that by interpretation of the basic processes of reaction and mix-
ing, one is able to construct a region in space that represents the attainable set of
outcomes from a given reactor structure. This is the true benefit of the AR. The
AR not only allows one to gain more information into the limits of achievability, the
reactor structure associated with this limit can also be determined at the same time.
Optimisation of the problem is carried out first by determining the best structure in
this sense. This is often overlooked as most optimisations rely on the improvement
of a object function based on a fixed structure.

The idea of mixing will come up often in this text, and it is important to mention
it here. Mixing allows one to fill in concavities in concentration space and turn curved
line segments into filled areas or regions. When concavities are present, mixing also
allows us to obtain new concentrations or states by mixing between two concave
points. These points might then foreseeably be used as starting points from which
new structures could be formed. Again, the use of mixing allows one to exploit the
inherent structure of the problem and improve the performance of the system. This
is only generally observed when there is a nonlinearity (specifically a concavity) in
the solution trajectory. In the next chapter this idea will be used and applied to a
common production problem in a batch environment. Specifically, this will entail
improving the production rate of a batch reactor by mixing feed material with final
product.
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Chapter 3

Graphically improving batch
production rate

The following chapter has been adapted from published work with permission. The
associated paper is (Ming, D., Hildebrandt, D., Glasser, D., 2012. A Graphical
Method of Improving the Production Rate from Batch Reactors. Ind. Eng. Chem.
Res. 51, 13562–13573.) Copyright (2012) American Chemical Society. D. Ming (the
present author) compiled the manuscript and contributed to the ideas in this work.
D. Hildebrandt and D. Glasser supervised this work.

3.1 Introduction

In this work, we shall be concerned with graphically identifying opportunities for
improvement, particularly through batch structure. Although similar aims have
been developed in the past, these techniques are often complex and mathematical
in nature (such as superstructure approaches), which make it difficult for someone
without the appropriate knowledge or resources to carry out. The work described
here then, may be viewed to fit within the larger framework of batch process syn-
thesis as a dedicated graphical approach to the improvement of batch reactors. In
particular, we shall be concerned with maximising the production rate for a desired
final product concentration. We will aim to demonstrate, that by graphical inter-
pretation of the reaction profile, opportunities for improving production rate may
be identified.

The organisation of the chapter is as follows: discussion of the method will be
given by way of an illustrative example, beginning in section 3.2, and followed on
in section 3.3. Examples demonstrating the technique are then provided in section
3.4. Remarks regarding operational considerations are given in section 3.5, before
conclusions are provided in section 3.6. We shall summarise important results and
observations throughout the discussion when appropriate.
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3.2 Standard batch operation

3.2.1 Problem formulation

We begin our discussion with the following autocatalytic reaction

A + B → 2B

For convenience, we shall assume constant density and isothermal operation so that
the change in the concentration of component B, cB, under standard batch operation
is modelled by

dcB
dt = rB (3.2.1)

By standard batch operation, we mean that an empty reactor vessel is charged
with feed material of concentration c0i and filled to a volume Vtot. The vessel is then
given time ∆t0 to react, after which, the entire contents are removed thus ending the
batch cycle. The corresponding final concentration is denoted by ci. The next cycle
is again charged with feed material, and the procedure is repeated until a desired
total amount of product is produced. Note that no restriction regarding operating
variables such as temperature, pressure and density are made in our interpretation
of the standard batch. In this example, the rate of formation of component B, rB,
is second order overall and expressed in terms of both components

rB = kc0A (1− x)
(
c0B + c0Ax

)
Concentrations are expressed in terms of the conversion of reaction, x, such that x

may take on values between 0 (no reaction) and 1 (complete reaction). The rate
constant is given as k = 2× 10−3 L/ (mol · s). Initial concentrations are specified as
c0A = 20mol/L and c0B = 1 × 10−6 mol/L respectively and Vtot = 20L. Integration
of eq 3.2.1 produces the profile in Figure 3.2.1a in cB–time space. Similar to the
residence time AR plots highlighted in the chapter 2, batch reaction time is placed
on the y-axis. Note that the shape of the profile is attributed to the rise and fall of
the reaction rate, as a quadratic function of x.

The production rate, P, for a single batch cycle is then defined as follows

P =
Vtot

(
cB − c0B

)
∆t0

(3.2.2)

where ∆t0 = t (cB) − t
(
c0B

)
. Although batch reactors do not operate continuously,

it is still possible to determine the rate of production over the entire batch period
involving multiple reaction cycles. We assume that the time taken to empty and fill
the vessel is small in relation to the reaction time, and so the entire cycle period is
made up exclusively by the reaction time. This assumption can be relaxed without
significant modification to the proposed method, or the results (see section 3.5). The
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(a) Graphical interpretation of production rates, achieved in the standard
batch, for different exit concentrations. Specifying a final concentration
results in a unique line gradient and production rate (given here by the
dotted lines). The solid curve is the batch profile obtained by integration
of the batch equation for the system specified.

(b) Production rate in the standard batch as a function of product concen-
tration. A single maximum of ∼ 0.78mol/s is observed. This is achievable
by operating the reactor at an exit concentration of ∼ 19mol/L.

Figure 3.2.1: Standard batch production rate and graphical interpretation
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overall production rate for a standard batch over multiple cycles is thus identical to
the production rate for a single batch reaction.

Figure 3.2.1a also shows the production rate for various exit conditions marked
off as coordinate points. When the two points are joined, the gradient of the straight
line segment is m = �t0/

(
cB − c0B

)
and, according to eq 3.2.2, is proportional to the

inverse of the production rate P = Vtot/m. The rate of production is therefore at
its highest when the gradient of the line is minimised.

Observation 1: Production rate can be associated with a straight line in concen-
tration – time space. This value is highest when the gradient of the line is
minimised.

3.2.2 Initial observations and modifications

Let us observe the effect of mixing product with feed for subsequent cycles. The
following conditions will be assumed for purposes of illustration:

• The exit concentration of component B is fixed at cB = 19.0mol/L.

• The starting mixture concentration of component B is c∗B = 1.5mol/L. By
mass balance, it is found that ∼7.89 % of the product volume must be retained
in order to achieve the desired mixture concentration. The corresponding
concentration of component A is then calculated to be 18.5mol/L accordingly.
The corresponding reaction time for the new initial condition is then 136 s.

The order of tasks is then as follows:

1. Run a standard batch with initial concentrations of c0A = 20mol/L and c0B =

1× 10−6 mol/L until the concentration of B is cB = 19.0mol/L. Using Figure
3.2.1a or solving eq 3.2.1 directly, the reaction time for this cycle is found to
be ∼ 492 s.

2. Empty the contents of the vessel but retain 7.89% of the volume for the next
cycle. If the vessel volume is 20L, then approximately 1.578L of product is
held back; the remaining 18.422L may then be transferred as product. Since
18.422L of product is transferred, 350.018mol of B is produced in the cycle.

3. Refill the vessel again to 20L with fresh feed. That is, since 1.578L of the
vessel is already taken by the previous product, only 18.422L of the feed is
required. By mass balance, the concentrations of A and B in the vessel after
filling are then c∗A = 18.5mol/L and c∗B = 1.5mol/L, respectively.

4. Run the second cycle until the concentration of B again reaches cB = 19.0mol/L.
Since the starting concentration in this cycle differs to the first, the reaction
time to reach final product is also different. Again, eq 3.2.1 can be solved
giving a reaction time of 136 s for the second cycle.
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Table 3.1: Production rate with mixing after four cycles for an exit concentration
of cB = 19.0mol/L and 7.89 % of product retained for mixing. For each successive
batch, the production rate is improved. By comparison, the production rate in the
standard batch for the same exit concentration is fixed at 0.772mol/s.

Production per cycle (mol)
Stages i ii iii iv Total

time
(s)

Overall
production

rate (mol/s)
1 380 - - - 492 0.772
2 350.018 380 - - 628 1.16
3 350.018 350.018 380 - 764 1.41
4 350.018 350.018 350.018 380 900 1.59

5. Repeat steps 2 to 4 until the desired amount of product is reached.

Table 3.1 summarises the results for four successive batches using this approach.
Notice that even though the amount of product produced per cycle is less (350.018mol

for 7.89% retained, as opposed to 380mol for the full volume), the reaction times
per cycle are decreased as a result of the different starting concentration. After suf-
ficiently many batches, the effect of the first and last batch on the overall production
rate is small, and hence the average production rate is influenced by the intermediate
cycles, which for the specific scenario here is given by P∗ = 350.018/136mol/s. We
can then determine the limiting production rate after many batches as that given by
the intermediate cycles. This production rate may also be represented graphically
on the concentration profile. The final concentration is the same as that previously,
however the initial point is modified to a new point on the profile, which is a function
of the retained fraction. The straight line joining these two points in c-t space thus
represents the steady state production rate for the retained case.

The gradient of the new line is shallower than the original, which by eq 3.2.2,
indicates a higher production rate. By graphical interpretation, maximising the
production rate for a specified exit concentration on the curve indicates searching
for the starting concentration on the profile that is associated with the straight line
having minimal gradient.

Inasmuch as the production rate for the standard batch can be expressed in
terms of a line gradient, P∗ is also expressible in this manner

P∗ =
Vtot
m∗

where m∗ = ∆t∗/ (ci − c∗i ). The relative gain in production rate is thus also given
in terms of line gradients by (P∗/P) = (m/m∗). Thus, the results of this example
indicate that the production rate in a standard batch may be improved by retaining
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Figure 3.2.2: Comparing production rate lines for different initial concentrations

product. Intuitively, it is expected that if too much product is retained, then the
reduction in time achieved may not be sufficient to overcome the loss of product that
must be reserved, and production rate may drop as a result. For certain kinetics
however, a drop in production rate is guaranteed for any amount of product retained.
These factors are discussed below.

3.3 Improving production rate

3.3.1 Improvement 1: Partial emptying and filling

The results of section 3.2.2 are constructive in suggesting that improvements in
production rate are feasible by use of a partial emptying and filling regime. Let us
generalise the method for a component i by introducing preliminary notation. We
begin by defining ϕ as the fraction of the total tank volume, Vtot, that is retained
in the batch cycle

ϕ =
Vretained

Vtot

The resulting (mixed) concentration, c∗i , is then given by a linear mixing law

c∗i = ϕci + (1− ϕ) c0i (3.3.1)

We have already observed that the production rate corresponding to partial empty-
ing and filling, P∗, approaches a limiting value after sufficiently many cycles. The
average production rate over all cycles is then given by the production rate of the
intermediate cycle

P∗ =
Vtot (ci − c∗i )

∆t∗ (3.3.2a)
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or
P∗ =

(1− ϕ)Vtot
(
ci − c0i

)
∆t∗ (3.3.2b)

where time ∆t∗ is the reaction time achieved from a batch concentration having
been partially mixed with a fraction of the product volume, that is,

∆t∗ = t (ci)− t (c∗i )

t (ci) and t (c∗i ) are the corresponding times on the batch profile where the concen-
tration in the batch is equal to ci and c∗i , respectively. Whereas the production rate
in eq 3.2.2 achieves a larger amount of product per cycle, it does so in a time equal
to ∆t0 given by initial and terminal concentrations

∆t0 = t (ci)− t
(
c0i
)

The production rate using partial filling, by comparison, may be achieved in a reac-
tion time of ∆t∗ instead.

Using the batch profile

The production rate by partial emptying and filling is completely defined by specify-
ing c0i , ci and ϕ. As in section 3.3, this may be accomplished by generating the batch
profile belonging to c∗i and then obtaining ∆t∗ from the resulting curve. Observe
however, that the profile belonging to c∗i already exists as a section of the original
batch curve – from eq 3.3.1, c∗i must lie between c0i and ci by mass balance, and
thus c∗i represents an achievable state in the standard batch, after time ∆t0 −∆t∗.
Therefore, the production rate with partial emptying and filing is equivalent to find-
ing line gradients joining the two points on the original batch profile, however with
respect to points ci and c∗i .

Observation 2: Only a single batch profile is needed in order to carry out compu-
tations involving partial emptying and filling.

Optimising retained fraction

Production rate corresponding to partial emptying and filling is maximised by optim-
ising eq 3.3.2b. Note that unlike eq 3.2.2, eq 3.3.2b is dependent on two parameters:
the species exit concentration as well as the retained fraction. Plotting eq 3.3.2b as
a function of ϕ for a fixed value of ci produces a curve that may be used to find the
optimal value of ϕ that maximises P∗ for the ci specified. Figure 3.3.1a demonstrates
this for the autocatalytic system for an exit concentration of cB = 19mol/L. Indeed,
a surface can be constructed showing the influence of both ci and ϕ on P∗; this is
shown in Figure 3.3.1b.

There are hence two optima that we are generally interested in:
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(a) Production rate as a function of ϕ for an arbitrary exit concentration

(b) Influence of production rate on exit concentration and ϕ

Figure 3.3.1: Production rate by partial emptying and filling
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1. The global optimum, associated with the unique point on the surface with
largest value of P∗. The global maximum is then found by determining specific
values for both ϕ and ci.

2. The maximum production rate achieved for a user-specified exit concentration.
This value of P∗ is given by an optimal retained fraction ϕopt that maximises P∗

for a given value of ci. In general, an optimal ϕ profile may then be determined
that specifies the required retained fraction for maximum production at any
value of ci. This equivalent to taking a projection of Figure 3.3.1b onto the
ci − ϕ plane and marking off points in the space that correspond to the peaks
of the surface. Figure 3.3.1b, these are shown as unfilled circles.

Limitations on ϕ

Although it is physically possible for ϕ take on any value between 0 and 1, it is
unreasonable to retain particularly large fractions – in practice, c∗i will be very close
to ci, and therefore ∆t∗ will be short. Consequently, many more emptying and filling
operations may be required for a given desired amount of product. For values close
to unity, the analysis would suggest running the reaction continuously. Even though
this may be possible, our intention here will be focused towards batch improvement
only.

Accordingly, Figure 3.3.2 shows the production rate as a function of final exit
concentration for different (optimal) retained tank volume fractions. The value of
ϕ corresponding to highest production rate is calculated by optimising the curve
obtained in P∗ − ϕ space for a fixed value of cB (similar to Figure 3.3.1a) and
repeated over the entire concentration range (refer to Figure 3.3.1b). Figure 3.3.2
is slightly different due to the fact that a constraint on ϕ is enforced. That is,
a maximum retained fraction of 50% is used. Geometrically, this is equivalent to
slicing the surface in Figure 3.3.1b at the ϕ = 0.5 plane and only considering the
constrained section when determining optimal ϕ and P∗ pairs.

Compared to the standard batch, the production rate from partial emptying and
filling achieves a larger value throughout the entire effluent concentration range.
The optimal ϕ profile consists of an initial segment at which ϕ is maintained at a
maximum value of 50 %, followed by a varying profile higher than approximately
14.9mol/L.

Graphically identifying opportunities for improvement

If the gradient belonging to P∗ is smaller than that of P, an opportunity exists for
improving the production rate by partial emptying and filling. This only occurs
when there is a concavity in the batch profile. If the batch profile is convex however,
the gradient of the intermediate production line will be steeper than that of the
fresh feed, and no improvement is expected by partial emptying and filling. Finally,

61



3.3 Improving production rate D. Ming

Figure 3.3.2: Comparison of production rates for partial emptying and filling (solid
line), and the standard batch (−o−); the associated optimal ϕ profile (-×-) has also
been plotted for bounds 0% ≤ ϕ ≤ 50%. The production rate by partial emptying is
significantly higher than what is available from the standard batch production rate
(ϕ = 0.0) by the appropriate choice of ϕ value.

if the batch profile is linear, the production rate by both methods is expected to be
equal, although emptying and filling may favour standard batch operation. This is
summarised in Figure 3.3.3.

Observation 3: If the batch profile contains a concavity, then production rate can
be improved by partial emptying and filling.

3.3.2 Improvement 2: Improving production rates for other exit
concentrations

In addition to providing recommendations for when opportunities for improvement
exist, Figure 3.3.2 also offers insight into identification of an optimal sequence of
operation, or structure; such insight may be difficult to achieve by ordinary optim-
isation methods alone. Note also that this procedure is equally applicable to the
standard batch, but we shall remain with partial emptying for illustration.

To begin, observe that a maximum production rate of ∼ 3.85mol/s is achieved
by partial emptying and filling, corresponding to a 50 % retained volume fraction.
Although it is clear from the graph that this production rate is obtained for a
distinct (optimal) exit concentration ci, our motivation here is to show how the batch
structure may be modified to improve production rate for concentrations different
to copt

i . In particular, our approach will be to utilise the maximum production rate
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Improvement No improvement

Equal production

Figure 3.3.3: Identifying opportunities for improving production rate can be done
by graphically inspecting the shape of the batch profile in concentration–time space.
Improvements are possible when there is a concavity in the profile, as the line gradi-
ent associated with the production rate is smaller than the standard batch produc-
tion rate. If the batch profile is linear, then production rate is identical by either
method.

achieved at copt
i to increase the product output for different exit concentrations,

denoted here by ci.

Improving production rate for ci < copt
i

We can obtain maximum production rate for all product concentrations lower than
copt
i by way of a bypass. To see this, observe that if a fraction of the feed is held back

from reaction and, instead, used to mix with final product after the reaction, arbit-
rary desired mixture compositions can be achieved by varying the relative amounts
of feed and reactor product. If the time for mixing operations is assumed to be
small, then additional volume may be added at no cost resulting in an increase in
production rate for a given vessel volume. Alternatively, a smaller reactor volume
could be used to obtain the same production rate. Therefore, it is possible to achieve
the highest production rate of 3.85mol/s for ci < copt

i by first splitting the feed into
two volumes:

1. Reacting one of the volumes to an exit concentration beyond ci to copt
i instead

to achieve the highest production rate.

2. Then mixing the remaining fraction of feed material afterwards, so that the
resulting mixture is at the desired final concentration ci.
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Figure 3.3.4: Improved structure for ci < copt
i . Maximum production rate is achiev-

able by bypassing feed and operating at the optimal exit concentration rather than
at the desired exit concentration.

Hence, the optimal structure is a batch reactor with partial emptying and filling
operated at copt

i followed by mixing with fresh feed in bypass.

Observation 4: Maximum production rate can be achieved for all concentrations
lower than the exit concentration corresponding to maximum production rate
by bypassing a fraction of the feed and mixing it with product at the end of
the cycle.

Improving production rate for ci > copt
i

Improving production rate for product concentrations larger than copt
i is more in-

volved, and has been left out of the discussion for brevity. For a full development of
the procedure, the reader is referred to 3.5.3. In summary, improvements are achiev-
able by again splitting the reaction into two stages, and running multiple reactors
in parallel in staggered cycles.

3.3.3 Experimental data

Note that the above example has been handled by a reaction rate expressed in
functional form. This has made computation of the standard batch profile straight-
forward. Observe, though, that the above methodology remains unchanged even
for batch profiles generated by experiment. Thus, an advantage of the graphical
approach is that it may also be used for situations in when experimental data is
available. Once the concentration profile has been determined, it may be inspected
for concavities to identify opportunities for improving production rate, after which,
line gradients and retained fractions can be computed. This provides the designer
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quantitative information regarding the potential improvement in the system over the
standard batch without the need for a detailed model, or before a detailed model
has been developed.

Remark

Since line gradients and optimal retained fractions are directly determined by points
on the concentration profile, the quality of the recommendations is influenced sig-
nificantly by the quality of the experimentally measured data. The resulting pro-
duction rate calculations may be adversely affected by ‘noisy’ data, in which sudden
and steep changes in the gradient of the measured data are observed over time.
In practice, when experimentally measured data are used with the method, an ap-
proximating function is employed to provide smoothed approximations of the data,
suitable for gradient calculations. In this work, cubic spline interpolation is used
when the method is operated on experimental data. Production rates and retained
fractions are then calculated based on the cubic spline interpolant of the data. This
allows for both a slightly more smoothed data set, as well as prediction of production
rates for points that are not given at the discrete points of measurement obtained
during experiment.

Observation 5: Calculations can be performed in the absence of a detailed model
since only points from the batch profile are required.

A note should be made regarding the production of undesired products. If we run
the reactor at conditions that are optimal for the production rate of the desired
component, then we may also incur the risk of overproducing undesired species as
well. In this case, there may be benefit to measuring the concentrations of both
species so that two separate batch profiles can be obtained. It is easy then to
compute production rates for both species to determine the best compromise between
the two. Bypassing feed may also give a more favourable concentration in undesired
components if we can afford to run the reactor at lower product concentrations.
Nevertheless, it may be more practical to change operating variables such as the
operating temperature to control the reactions for example. Again, benefit may be
found from using these methods as a simple method of improving the production rate
for a specific purity constraint, and then using traditional optimisation for further
improvement.

3.3.4 Method

In order to generate the optimal P∗ and ϕ profiles in Figure 3.3.2, the following
procedure is followed:

1. Generate the concentration profile (concentration versus time plot) for the
species of interest. This may be achieved with a kinetic model by integrat-
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ing the batch equation using the available reaction kinetics. Otherwise, the
concentration profile is obtained from experimentally measured data.

2. For each concentration ci in the measured concentration range, an optimal
value of ϕ exists that maximises P∗. In order to find the optimal value of ϕ,
a curve, such as that given in Figure 3.3.1a, must be optimised for each value
of ci:

(a) This is achieved by performing a constrained optimisation – maximising
eq 3.3.2b for the value of ci specified, bounded by 0 ≤ ϕ ≤ ϕmax, where
ϕmax is the maximum allowed retained fraction per cycle. If a stand-
ardised optimisation routine is employed for the optimisation, then in-
terpolation may be required. In general, we aim to find the ϕ profile
corresponding to following condition(

∂P∗

∂ϕ

)
ci

= 0

where P∗ is given by eq 3.3.2b. The value of ∆t∗ used in eq 3.3.2b is
determined by interpolating the concentration profile to find t (ci) and
t (c∗i ).

(b) Record the value of ϕ and P∗ obtained from the optimisation.

3. Repeat step 2 until all points in the concentration profile have been calculated.
The set of ϕ’s and P∗’s corresponding to each value of ci on the concentration
profile are thus the optimal retained fraction and partial emptying production
rate, respectively.

The procedure described above only requires concentration and time data and is
easily programmed on a computer as a compact function. Optimisations required
in point 2(a) above may still be carried out numerically with experimental data if
interpolation of the data (with a suitable interpolating function) is used.

3.4 Examples

3.4.1 Hydrolysis of propylene oxide

The production of propylene glycol is produced by the hydrolysis of propylene oxide
in the following reaction (Fogler, 2006)

CH2OCHCH3 + H2O → CH2OCHOHCH3

A + D → B
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The rate of formation is first order and given by

rA = −kcA

with rate constant (in hr−1)

k = A0 exp
(
− E

RT

)
= 16.96× 1012 exp

(
−32400

RT

)
where E, R and T are the activation energy, universal gas constant and temperature,
respectively. The reaction is performed adiabatically in a batch reactor, so that
the temperature expression (measured in Kelvin) is given in terms of conversion of
reaction, x, as

T = T0 +

(
−△H0

rxn∑
νjCpj

)
x

= 515 + 90.1x (3.4.1)

We find that the rate expression is a concave function with respect to x. Observe that
since the system is adiabatic, the temperature is linear with respect to conversion and
therefore obeys linear mixing laws. To see this, notice that eq 3.3.1 may be adapted
to express the conversion of a mixture as a linear combination of two arbitrary initial
and final conversions, x1 and x2

x∗ = ϕx2 + (1− ϕ)x1

The energy balance may be invoked by substitution of eq 3.4.1 into the above ex-
pression

T∗ = ϕT2 + (1− ϕ)T1

Therefore, a given conversion (and corresponding temperature) may be achieved
from a single batch reaction in the usual manner, or from two separate batches
(and thus two separate final temperatures) which, once mixed in the appropriate
proportions, obtains the same final temperature. Hence, temperature in the batch
reactor will be the same, irrespective of whether conversion is obtained by mixing
product with feed, reacting feed, or a combination of the two.

For this example, c0A = 20.0mol/L, c0B = 0.0mol/L, and Vtot = 1.0L. The
resulting batch profile is then given by Figure 3.4.1a, and a noticeable concavity
is observed. In order to identify whether any opportunities for improvement are
indeed available, a comparison between the production rates for the standard batch
and partial emptying and filling are given in Figure 3.4.1b. For both methods,
production rate increases with increasing conversion until ∼90 %, where a sharp
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decline in productivity is observed. Figure 3.4.1b shows several improvements over
the standard batch:

• Partial emptying and filling allows for a higher production rate, although, the
largest gains are achieved by operating at high conversions. In particular,
the highest production rate achievable by the standard batch is ∼ 0.006mol/s
near x = 92%, whereas the maximum production rate corresponding to partial
emptying and filling is ∼ 0.01367mol/s (an approximate 220 % improvement).
The corresponding optimum ϕ profile (-×-) is flat throughout the entire con-
version range and operates at the highest acceptable limit of 50 %. Thus, for
all exit conversions, it is beneficial to retain product.

• By operating at 92 % conversion and bypassing feed in the appropriate amounts,
maximum production rate is achieved for x ≤ 92% conversion. Thus maximum
production rate is possible for almost the entire conversion range by use of a
bypass. Even though there exists an optimal ϕ profile, further improvement is
achievable.

Observe that the suggested production rate profiles for partial emptying could be
achieved by standard optimisation using ϕ a control variable. However, it is simple
to check beforehand whether optimisation is at all required by visual inspection of
the batch profile.

3.4.2 Penicillin production

Up to this point, the examples used have been performed using a mathematical
model describing the kinetics. Calculation of production rate was convenient as a
result, although, this could have been handled by a standard optimisation method.
Consider then the production of penicillin in a bio-reactor. The kinetics are complex
and thus measured data obtained from an experimental run is initially available,
given in Figure 3.4.2. Fermentation was carried out in a 30L fermenter over a period
of 216h at a constant temperature of 295K. The data was generated from the work
of Constantinides et al. (1970). In addition to this, Constantinides et al. (1970) also
provided a model with the measured data. Although it is possible to obtain the
profiles using the model alone, they are not needed to carry out the computations
and thus the kinetics are not given here. That is, results from the model are overlaid
on the experimental points for comparison only; the actual expressions may be found
at the end of the chapter however.

Figure 3.4.3 shows the results generated from the fermentation. The solid lines
in all figures correspond to the model suggested by Constantinides et al. (1970) for
the same data set. A 20 h lag in penicillin concentration indicates that no product is
produced initially and a concavity in the concentration profile is clearly noticeable,
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(a) Batch profile for the hydrolysis of propylene oxide.

(b) Production rate comparison for propylene oxide. The production rate
by partial emptying (black solid line) may be improved significantly for all
conversions by operating at the maximum retained volume fraction, seen
here by the constant optimum ϕ profile (-×-). The gain in production rate
by mixing over the standard batch increases with higher conversions.

Figure 3.4.1: Hydrolysis of propylene oxide.

69



3.4 Examples D. Ming

Figure 3.4.2: Concentration profile for penicillin production. No penicillin is pro-
duced in the first 20 h of operation.

although there is in fact a small, approximately linear section, up to 0.03 g/L. Due
to the concavity, production rate is expected to be improved by retaining product.

The data were therefore used to compute the production rates of both the stand-
ard batch and partial emptying and filling; this is given in Figure 3.4.3a. Throughout
the entire concentration range, the production rate by partial emptying is larger than
the standard batch. In particular, this value is ∼ 8.7mg/h at maximum production
rate compared to ∼ 6.0mg/h for the standard batch. The corresponding retained
fractions generated using the experimental points are also shown in Figure 3.4.3b.
As discussed above, there is a small linear section in the profile near the start and
thus the optimum ϕ profile initially shows a section where no product is retained.
For exit concentrations less than approximately 7 g/L, the profile is flat. This sug-
gests that production rate is maximised by retaining as much product as possible.
For product concentrations beyond this value, the optimum retained fraction follows
a varying profile that steadily decreases to 0 %. Again, the curve calculated from
the rate expressions is fairly close to the experimental points. Partial emptying and
filling allows one to eliminate the initial 20h lag phase, and thus production rate is
larger when compared to the standard batch. For this reason, it is recommended
that at least trace amounts of product be retained.

It is interesting to note that these recommendations are what are done in prac-
tice. It is common in biological reactions to recycle a fraction of cells from the
product to allow sufficient time for cells to reproduce, and to minimise washout
(Crueger and Crueger, 1984). Fed-batch operation is also a common method of im-
proving production rate in practice and could be used to achieve an intermediate
concentration within the batch. In this regard, the results of the graphical analysis
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suggest that there is a benefit in retaining product for all effluent concentrations.
This information could be used in follow-up experiments, with the results used to-
gether with further optimisation when more detailed results are available.

3.4.3 Lysine fermentation

As a counterexample, the production of lysine will be used to demonstrate a set of
reaction kinetics in which mixing is not a suitable method of improving the pro-
duction rate. Again, this is achieved by graphical inspection of the batch profile
and so recognising improvements are easily identified. The evolution of biomass cX,
substrate cS and product cP are given by the system of equations (Pushpavanam
et al., 1999).

dcX
dt = µcX

dcS
dt = −σcX

dcP
dt = πcX

The rates of formation, with units of s−1, are provided as follows:

µ = 0.125cS

σ =
µ

0.135

π = −384µ2 + 134µ

The concentrations of cX and cP are measured in units of g/L, whereas units for
cS are given in wt.%. Initial concentrations are c0X = 0.02 g/L, c0P = 0.0 g/L and
c0S = 2.8wt.% and the fermenter volume is Vtot = 5L.

Again, it is desired to improve the production rate by partial emptying and filling.
As in the previous examples, the product concentration profile in Figure 3.4.4a for
the standard batch is then obtained. The reaction is found to be equilibrium limited,
resulting in a final product concentration of ∼ 0.50 g/L. The corresponding reaction
time is then found to be ∼ 300 s. The batch profile for lysine production exhibits
no concavity. Indeed, a slight convex shape is observed. As a result, the production
rate resulting from mixing is expected to be smaller than the standard batch.

The production rates for both the standard batch and partial emptying are thus
provided by Figure 3.4.4b. It is clear that the optimal production rate achieved by
the partial emptying approach is identical to the standard batch production rate. For
comparison, the production rates corresponding to constant ϕ policies of 25 % (-×-)
and 50 % (-o-) have also been plotted. These profiles represent the production rates
obtained when the retained volume fraction is held at a constant value irrespective
of the final product concentration chosen. Clearly, the rate of lysine production is
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(a) The production rates predicted are in close agreement with the theory.
There is benefit in retaining product as no penicillin is produced initially.

(b) Retained fractions calculated using the experimental points only are
also close to the profile suggested by the theory.

Figure 3.4.3: The production of penicillin in a bio-reactor. Expected production
rates are calculated using the experimental points only. Theoretical predictions are
given by solid lines for comparison.
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reduced for increasing retained volume fractions and hence for 0% ≤ ϕ ≤ 100%, the
corresponding production rate by partial emptying is smaller than a standard batch.

It follows that there exists no opportunity for improvement by mixing for these
kinetics. Although no improvement is possible, the graphical approach has still
provided insight into an optimal operating policy. This is still useful in itself. ϕ = 0%

3.5 Further remarks

3.5.1 Transfer time

The contribution of emptying and filling times, or transfer time, may be accounted
for by the addition of extra terms in the production rate equations. In general, this
quantity must be added to each cycle, and as a result, may be regarded as constant.
The production rate equations are then adapted as follows

P =
Vtot

(
ci − c0i

)
(�t0 + tT)

P∗ =
(1− ϕ)Vtot (ci − c∗i )(

�t∗ + t∗T
)

Where tT denotes transfer time. Here, use of the overbar signals that production
rate under consideration of transfer time has been accounted for. Two observations
can be made with respect to its inclusion:

1. Clearly, tT serves to increase the gradients of the production lines, suggesting
a decrease in production rate.

2. Since tT is associated with an emptying and filling rate, given here by r,
transfer time is a function of the volume transferred, and by association, ϕ.
As a result, the transfer time for partial emptying and filling is smaller than
the standard batch. The ratio of the production rates defined above can be
written in terms of filling rate and retained fraction as follows

P∗

P
=

(
P∗

P

)
ξ (3.5.1)

where
ξ =

[
r

Vtot
+

1

∆t0

]
/

[
r

Vtot
+

(1− ϕ)

∆t∗

]
(3.5.2)

The derivation of eq 3.5.1 can be found in appendix A.1. The relative gain
in production efficiency can be viewed as the product of two factors: a stand-
ard ratio of production performance where no allowance for transfer time is
accounted for, multiplied by a transfer time factor. Due to the dependence on
ϕ, this factor is approximately equal to unity. The relative gain in production
rate therefore might not be significantly influenced by transfer time. Figure
3.5.1 provides a plot of this ratio for different filling rates.
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(a) Concentration profile for lysine fermentation. The batch profile is
convex throughout the entire concentration range, suggesting that no im-
provement is possible by way of partial emptying and filling.

(b) Production rate comparison for lysine fermentation, given by the
standard batch (solid line), and constant retained volume fractions of
25 % (-×-) and 50 % (-o-). For any retained volume fraction, the associ-
ated production rate is lower than that of the standard batch.

Figure 3.4.4: Lysine fermentation.
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Figure 3.5.1: The ratio ξ versus exit concentration for the example problem given
in section 3.2. The effect of transfer time is plotted for different filling rates r. The
impact of transfer time becomes progressively smaller for higher value of r.

3.5.2 Fed-batch operation

The methods described above are also applicable to fed-batch operation. In addition
to the required rates of formation for each species, a time-dependent feed rate, F (t)

is also specified and reactor volume also varies as a result. The production rate
equations are equally valid for fed-batch operation, although F (t) can be seen to
introduce an added degree of freedom which may allow for the design of optimal
feeding policies.

The initial conditions for fed-batch operation must be specified as a function
of the final conditions from the previous cycle and the retained volume fraction.
Therefore, since the initial concentrations are formed from a mixture of fresh feed
and final product, the initial conditions are given as

C (t0) = ϕC (tf) + (1− ϕ)C0

V (t0) = ϕV (tf)

where V (t0) and C (t0) represent the initial state of the fed-batch reactor obtained by
mixing with the previous batch, and may not, in general, be considered equivalent to
the conditions of the first (non-mixed) batch. In particular, retained product could
be stored in a separate vessel and added to the reactor in a fed-batch manner, so
that mixing could be achieved through the feeding policy also. Notice that the above
formulation may be solved by standard techniques such as dynamic optimisation
(Dhir et al., 2000; Faber et al., 2005). Although, this is not always possible as a
detailed model of the process is generally required.
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3.5.3 Improving production rate for ci > copt
i

For ci > copt
i , the above approach in section 3.3.2 can again be modified, although

further reaction steps are required in order to reach the desired final concentration.
Obtaining maximum production rate for ci > copt

i may not always be realised in gen-
eral, although, improvements are still possible with the appropriate modifications.
By example, assume that a final product concentration of ci = 15.6mol/L is desired.
Then the reaction can be split into two physically separate reaction stages:

1. In the first (stage A), feed material is reacted to the optimum concentration
by the usual partial emptying and filling approach. The time taken to react
from c0

i to copt
i is denoted by ∆t1. This is referred to as reactor A1.

2. In the second step (stage B), product from A1 is transferred to a standard
batch stage, referred to here as reactor B, which further reacts the material to
the final desired concentration. The time taken to react from copt

i to ci is given
here by ∆t2. The choice of exit concentration is chosen such that ∆t2 = 1

2∆t1.

Since reactor B is idle for half the reaction time of A1, it can be supplied after
every cycle if two stage A reactors are used and operated in parallel. Again, in
order to ensure that production rates remain consistent and comparable, we keep
the sum of volumes from all reactors, both in stages A and B, so that they are
equal to the total equivalent standard batch reactor volume. Thus, for two stage
A reactors, we have that Vtot = 2V1 +

(
1 − ϕopt)V1, where ϕopt is the optimum

retained fraction associated with stage A. V1 can then be factorised and substituted
into the production rate expression. The corresponding production rate for two
stages is then

[(
1− ϕopt)V1

(
ci − c0i

)]
/
[
1
2∆t1

]
which gives 3.728mol/s. We can

generalise this for N stage A reactors to give

P =

(
1− ϕopt)V1

(
ci − c0i

)
1
N∆t1

=
N

(
1− ϕopt)Vtot

(
ci − c0i

)
(N + 1− ϕopt)∆t1

The improved batch structure is thus two reactors operated in parallel in staggered
cycles followed by a standard batch. Furthermore, note that for ci > copt

i , multiple
reactors are required. A similar rearrangement can be performed for when �t2 > �t1.
In this case, multiple reactors for stage B and a single reactor for stage A would be
required.

It may be difficult to have prior knowledge of a single (maximum) production rate
that could be used to improve the productivity of other final concentrations. It is
also not always clear that batch structure may change depending on the desired final
concentration. The graphical method presented here provides insight into identifying
opportunities for improvement in batch structure.
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Reactor A1

Reactor A2

Reactor B
(standard batch)

(a) Physical arrangement

A1

A2

B

Time 

Ta
sk

Δt1 

(b) Gantt chart demonstrating reaction sequence for ci > copt
i

Figure 3.5.2: Possible improved structure for ci > copt
i when ∆t2 = ∆t1/2. Produc-

tion rate can be improved by use of a partial emptying and a standard batch stage.
Reactors A1 and A2 are staggered so that reactor B is fed after every cycle of ∆t2.

3.6 Conclusion

This chapter presented a graphical method for identifying opportunities that improve
the production rate in batch reactors. This approach is also used as a basis for the
development of a simple modification to standard batch operation given as follows:
a standard batch profile in concentration–time space is generated or obtained from
experimental data, and straight line segments are joined between the initial and
final conditions within the reactor on the curve. In this way, production rate is
inversely proportional to the gradient of the line and thus the method provides
a quick means of interpreting the performance by inspection of the shape of the
batch profile. Identifying conditions associated with high production rate involves
locating the starting and ending points that generate the shallowest gradient. For
a fixed exit concentration, optimum initial concentrations within the reactor may
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be determined by locating the point associated with smallest slope. This suggests
that the standard batch cycle can be improved by changing the initial conditions
to produce more favourable gradients. It also follows that production rate can
be improved when the batch profile contains concavities, and hence it is easy to
determine these opportunities by graphical inspection.

From this, it can be shown that instead of withdrawing the full product volume
from the reactor at the end of each cycle, it is potentially more advantageous to re-
tain a fraction of the product volume and mix with fresh feed in the following cycle.
This may appear to be counter-intuitive to the normal method of batch operation.
The graphical approach also provides a better understanding into identification of
improved batch structures. In particular, the batch procedure may change depend-
ing on the desired final product concentration. For all concentrations less than
the optimal concentration, maximum production rate is achievable by bypassing a
fraction of the feed and mixing afterwards. For concentrations greater than the
optimum, further improvements may be achieved by distributing feed over multiple
reactors operating in parallel in staggered cycles.

Several industrial examples were demonstrated to improve over the standard
batch when concavities in the batch profile were observed. For lysine production
however, no improvement was achieved. Inasmuch as these cases have not shown any
enhancement in production efficiency, the graphical approach still provides relevant
information regarding the nature of the kinetics, and therefore allows for screening
of potentially productive batch structures before more complex optimisations are
undertaken. Subsequent optimisation may also be easier if an appropriate structure
is used in the optimisation model.

Consideration of how the production rate equations may be further applied for
non-standard batch operation was also briefly discussed. The method is equally
valid for fed-batch operation and no alteration to the equations is required. Fur-
thermore, the added flexibility of fed-batch operation provides opportunities to tailor
production performance by variation of the feed policy.

The graphical methods described here are simple enough that they may be per-
formed by those who do not have the required knowledge or resources to carry out
traditional optimisations. Additionally, this approach may also be used as a short-
cut method before more sophisticated techniques are employed. Considering that
the method only requires data points from the batch profile before meaningful in-
formation can be obtained, it is possible to use these methods on experimental data
in the absence of a detailed model, or before a model has been developed. Although
this could be viewed as an optimisation of the initial condition with splitting and
mixing constraints, identifying these opportunities are not always apparent from the
equations alone. The ideas presented here have come about from an understanding
that structure is an important component to the overall performance of a system.
The need for simple graphical methods is therefore incredibly useful, even in modern
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day design we believe.
With this in mind, AR theory might be viewed to address both of these aspects:

AR theory is geometric in nature, and thus interpretation of the boundary struc-
tures is simpler when compared to standard optimisation methods. Additionally,
knowledge of the optimal structure can also be gained by the approach. Many of
the ideas presented in this chapter have been established on concepts originating
from traditional (continuous) AR theory. It is not unreasonable, then, for one to
seek ways in which the desirable properties of the AR approach can be employed in
batch. At present however, current AR construction methods are slow, and so there
is an equally pressing need to develop better methods for their construction. In the
next chapter, we will address this issue directly and tackle the problem of automated
AR construction. An existing automated construction method is discussed and then
modified to form a new version. The end goal in mind will be towards developing a
faster construction method that may be used for more complex kinetics.

Kinetics for penicillin production

In this chapter, we demonstrate how the batch profile may be used to determine
an optimal value for the retained fraction (ϕ). Due to the graphical nature of the
technique, no additional information is required in order to carry out the analysis. In
section 3.4.2, the example of penicillin production using a batch profile, generated
entirely from experimental data, is given and used to demonstrate the usefulness
of the method. Predictions derived from the experimental data provided are then
compared to theoretical predictions. The theoretical basis for these predictions is
developed from kinetics for penicillin growth and provided in a functional form.
These kinetics are only included to demonstrate that the method has no reliance on
any other information other than that given in the experimental data. The actual
expressions for the kinetics are given here now for comparison and completeness.
The rate of cell growth, cX, and penicillin, cP, are taken from Constantinides et al.
(1970) and given as follows

dcX
dt = b1cX

(
1− cX

b2

)
dcP
dt = b3cX − b4cP

Rate constants are given in Table 3.2. In the original paper, the concentration of
cell mass and penicillin are converted into non-dimensional form. The model is
thus independent of the units specified for both species concentrations used in the
experiment.

Initial concentrations are hence specified as c0X = 5.0 and c0P = 0.0. Integration of
the equations is performed in the usual manner with the initial conditions provided.
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Table 3.2: Rate constants for penicillin production.

b1 b2 b3 b4

0.04079 43.33 9.269 0.04008

The resulting solution trajectory is subsequently given in Figure 3.4.2.
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Chapter 4

AR construction using rotated
bounding hyperplanes

The following chapter has been adapted from published work with permission. The
associated paper is (Ming, D., Hildebrandt, D., Glasser, D., 2010. A revised method
of attainable region construction utilizing rotated bounding hyperplanes. Ind. Eng.
Chem. Res. 49, 10549–10557.) Copyright (2010) American Chemical Society. D.
Ming (the present author) compiled the manuscript and contributed to the ideas in
this work. D. Hildebrandt and D. Glasser supervised this work.

4.1 Introduction

For the past three decades, knowledge of the Attainable Region (AR) has allowed
one to approach the problem of optimal reactor network design from a geometric
viewpoint. Originally introduced by F.J.M Horn in 1967 (Horn, 1964) but later
pioneered by the work of Glasser et al. (1987), Hildebrandt (1989) and Hildebrandt
and Glasser (1990), Feinberg and Hildebrandt (1997) and Feinberg (2000b,a), the
AR has addressed the problem of optimal reactor design by determining all possible
outputs for a given set of feed conditions, reaction kinetics and operating constraints.
In doing so, the AR approach has allowed for the solution of a large variety of reactor
network synthesis and optimisation problems.

In chapter 2, we discuss how many of the most recent developments in the field
have focused toward the advancement of algorithms for the automatic construction
of candidate ARs. Current methods of construction fall into two categories:

1. Methods which attempt to generate the AR from a known starting feed condi-
tion and grow the region outwards (Rooney et al., 2000; Kauchali et al., 2002;
Seodigeng et al., 2009), referred to as inside-out methods.

2. Methods that compute an initial (and possibly large) superset in which the
AR is known to reside, and then progressively shrink the region inwards (Burri
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et al., 2002; Manousiouthakis et al., 2004; Abraham and Feinberg, 2004), re-
ferred to here as outside-in methods.

In this chapter, we shall be concerned with a variation of an existing outside-in
algorithm originally developed by Abraham and Feinberg (Abraham and Feinberg,
2004). This procedure constructs candidate regions using a large number of bound-
ing hyperplanes. Our chief objective will be to first present the necessary changes
made to the original method, and then demonstrate its application to problems in
concentration and concentration-time space, particularly in R2. We aim to show
that by a change in hyperplane placement, AR construction efficiency may be im-
proved by a significant margin. We shall only be concerned with the construction of
candidate ARs in which density and, unless specified otherwise, temperature may
be assumed constant. As in chapter 2, this allows us to assert special geometric
characteristics of the process of mixing and hence the shape of the AR boundary.

Sections 4.2.1 to 4.2.6 provide the necessary mathematical background and gen-
eral results required for the proper understanding of the modified algorithm. Sec-
tions 4.3.1 and 4.3.2 introduce the reader to the original and modified construction
methods respectively. The main motivations for improvement are also discussed
at the end of section 4.3.2. Section 4.4 provides several examples for classical iso-
thermal problems as well as non-standard problems that have not been implemented
by the original bounding hyperplanes algorithm. These examples allow for the de-
termination of the AR for a wider variety of systems and kinetics. Section 4.4.1,
in particular, provides a comparison between the two approaches. Finally, section
4.6 provides several remarks regarding higher dimensional constructions before con-
cluding remarks are supplied in section 4.7.

4.2 Mathematical preliminaries

In chapter 2, an overview of the geometric nature of concentration and mixing is
provided. These properties are then used to define the AR by exploiting the convex
nature of mixing in conjunction with the use of three fundamental reactor types.
The AR construction algorithm outlined next relies on a basic understanding of
hyperplanes, as well as the geometric constituents (facets, edges, vertices) that are
formed when multiple hyperplanes are arranged in space to form a convex polytope.
Definitions and brief descriptions for these are also given below.

4.2.1 Hyperplanes

A hyperplane H (n,C0) is defined as one that obeys the following equation

H (n,C0) =
{

C ∈ Rn : nT (C − C0) = 0
}

(4.2.1)
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where vectors C and C0 are points lying in H (n,C0) and where n is a vector
orthogonal to (C − C0). A hyperplane separates a space Rn into two half-spaces.
The positive and negative closed half spaces are defined by

H≥ =
{

C ∈ Rn : nT (C − C0) ≥ 0
}

H≤ =
{

C ∈ Rn : nT (C − C0) ≤ 0
} (4.2.2)

and similarly for the open half spaces

H> =
{

C ∈ Rn : nT (C − C0) > 0
}

H< =
{

C ∈ Rn : nT (C − C0) < 0
} (4.2.3)

Clearly, n forms an orthogonal subspace to H (n,C0) and may be used as a test for
tangency to the plane.

4.2.2 Orthogonal and tangent vectors

The inner product of two vectors x, y may be defined by the following relation

xTy = ∥x∥ ∥y∥ cos (θ)

where θ is the angle between x and y. This relation may be used to signal when the
two vectors are orthogonal (cos (θ) = 0) or tangent (|cos (θ)| = 1) to one another.
Hence, x and y are orthogonal, if there is at least one non-zero element in x and y
and where

xTy = 0 (4.2.4)

where 0 is the zero vector. Similarly, x and y are tangent if

xTy = ∥x∥ ∥y∥ (4.2.5)

where ∥x∥ and ∥y∥ represent the magnitudes of x and y, respectively. If x and y
are unit vectors, then the above reduces to

xTy = 1

4.2.3 Extreme points

A point x ∈ Rn is an extreme point if it is a vertex of the convex hull. Extreme
points may not lie in the interior of the convex hull, nor in the interior of the line
segment bounding the facets of the convex polytope.
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4.2.4 Facets and edges

A hyperplane is said to a n-face or n-facet of the convex polytope conv(P ), if n

linearly independent points in P lie on H (n,C0). An n-edge of the convex polytope
conv(P ) is one which contains n − 1 linearly independent points that make up the
n-face (Chand and Kapur, 1970).

4.2.5 Vertex and facet enumeration

A convex polyhedron P in Rn may be described independently both in terms of its
vertices, and in terms of its facets. P is said to be given in the vertex representation
(the V-representation), when the polytope is described in terms of a collection of
vertices. Similarly, the same polyhedron is said to given in the hyperplane repres-
entation (the H-representation) when the polytope is described by a collection of
hyperplane constraints of the following form:

Ax ≥ b

Notice that imposing non-negativity constraints on the component concentrations
is equivalent to expressing the system in the above form. The vertex enumeration
problem constitutes finding the vertices (corners) of P when P is described by the
H-representation. Conversely, the facet enumeration problem arises when P is de-
scribed by the V-representation and we wish to determine the associated hyperplane
constraints in H-representation. We have already encountered the facet enumeration
problem on numerous occasions, disguised under the form of the convex hull of a
set of points. Vertex and facet enumeration are, in the sense of convex optimiz-
ation, dual problems. Solution of the one automatically results in solution of the
other. It is clear that computing the convex hull of a set of points is equivalent to
solving the facet enumeration problem for a given convex polytope describing a set
of achievable states in state space. Similarly, computing the extreme points of the
stoichiometric subspace is equivalent to finding the intersection points that produce
feasible vertices from a system of inequality constraints; we are in fact solving the
vertex enumeration problem. Figure 4.2.1 gives a visual representation of the two
problems.

4.2.6 Stoichiometric constraints

Given a system of chemical reactions and associated kinetics and feed point, we
aim to determine the limits to which a given concentration may be achieved by
stoichiometry alone. Knowledge of an upper bound on attainability allows one to
establish that the AR will lie in a smaller subspace in Rn (Feinberg, 2000b). Clearly,
non-negativity constraints restrict the subspace to lie within the positive orthant in
Rn. From chapter 2, it is simple to show that tighter bounds on attainability may be
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Figure 4.2.1: Geometric representation of vertex and facet enumeration

established through mass balance constraints via the stoichiometric subspace S. We
provide a fuller description of the method in appendix B.2 together with a worked
example. Nevertheless, knowledge and calculation of stoichiometric subspace forms
the basis of the method of bounding hyperplanes (Abraham and Feinberg, 2004), as
will be discussed next.

4.3 AR construction via hyperplanes

4.3.1 The method of bounding hyperplanes

Removing unachievable points

The original method of bounding hyperplanes is an AR construction technique that
utilises the successive addition of bounding hyperplanes to eliminate unattainable
regions from the stoichiometric subspace S. With each successive iteration, unat-
tainable regions (regions that form part of the stoichiometric subspace but that are
physically unachievable through any conceivable reactor network), are cut away from
the space. Repeated removal of unachievable states produces a tighter bounding set
of achievable points in the space. Hyperplanes are orientated such that division
of the two regions results in one of the two halves containing only unachievable
concentrations.

This is feasible because it is possible to form a condition that guarantees the
denial of achievability. This is done utilizing a proof from Abraham and Fein-
berg (2004). Hence points on the separated half space must be checked for denial
of achievability relative to the current hyperplane. Abraham and Feinberg (2004)
demonstrate that if a rate vector r(Ci) evaluated at a point Ci on a hyperplane
points into the hyperplane, then Ci is not achievable. The method of bounding hy-
perplanes thus utilizes this condition to eliminate these points in a systematic man-
ner. This is achieved by successively introducing hyperplanes at different positions
and orientations in space in an attempt to identify all unachievable concentrations
in the stoichiometric subspace. By moving hyperplanes inwards starting from the
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n

Point of tangency
nTr(C) = 0

Rate vector
r(C)

Bounding hyperplane
normal vector Pi

Figure 4.3.1: Eliminating unachievable space via hyperplanes. Hyperplanes are
moved into the current polytope until tangency between r (C) and n is observed.

extreme points of the polytope, we ensure that only unachievable states are removed
from the space.

Figure 4.3.1 demonstrates this graphically for a regionPi. Three distinct classes
of rate vectors, relative to the bounding hyperplane, may be distinguished from
Figure 4.3.1:

1. Rate vectors that point into the hyperplane. These rate vectors satisfy the
condition nTr (C) > 0. These points are unachievable according to Abraham
and Feinberg (2004).

2. Rate vectors evaluated with respect to the hyperplane normal satisfy the con-
dition nTr (C) < 0. We can make no assumption about the attainability of
these points (provided they lie within the current polytope).

3. Rate vectors tangent to the hyperplane. These satisfy the condition nTr (C) = 0.
Points that satisfy this condition may or may not be achievable.

Stopping criteria

In practice, a hyperplane is moved into the current polytope at discrete steps in the
opposite direction of the hyperplane normal. Further movement into the region is
possible as long as the following stopping conditions are not encountered:

1. The hyperplane does not exclude any feed points. Feed points are by definition
attainable and thus these points must be included in the current polytope.

2. The hyperplane does not exclude any equilibrium points. Similar to feed
points, equilibrium points are also attainable (in the limit of infinite resid-
ence time) and thus must also be included.

3. The hyperplane does not exclude any rate vectors which are tangent to the hy-
perplane normal. That is, concentrations satisfying the condition nTr (C) ≤ 0
must be retained.
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Notice that no assumption is made about the attainability of points whose rate
vectors point out of or are tangent to the hyperplane. It is not possible to discern
from the condition and so points satisfying nTr (C) ≤ 0 cannot be exclude them
from the region on this basis alone.

The method

We only present a generalised description of the method. Once a hyperplane with
the above orientation is achieved, the portion of the current bounded region lying
on the negative half space of the hyperplane is discarded and the newly introduced
hyperplane is added to the current set of constraints forming the bounding set.
Repeated stages of refinement transform the original stoichiometric subspace into
a smaller convex polytope containing only those output compositions achievable
through reaction and mixing (the AR).

The algorithm begins with initialisation of stoichiometric constraints. These con-
straints are in the form of a list of hyperplanes constraints that define a bounded
region in concentration space (the H-representation). Figure 4.3.2 demonstrates
the general geometric action of the bounding hyperplanes algorithm. The region
defined by the initial set of hyperplanes represents the stoichiometric subspace S.
New hyperplanes are then introduced at the vertices (corners) of S and elimina-
tions are carried out. Newly introduced hyperplanes are moved into S until one
of the above conditions are met. At this point, the region has been refined by the
entry of additional constraints. The extreme points of the resulting polytope are
calculated and the process is repeated for the new region. That is, the current poly-
tope is transformed into the V-representation with the new hyperplane via vertex
enumeration.

The process may now be repeated. Additional hyperplanes are introduced and
eliminations continue until no further hyperplane can be added without violation of
the above conditions to within a specified tolerance. The convex polytope resulting
from the bounding process represents the set of achievable concentrations through
reaction and mixing, and is an approximation to the AR as a result.

The bounding hyperplanes method is found to be a robust AR construction tech-
nique, and is particularly successful in constructions belonging to kinetics involving
multiple steady states. This success is, above all, a consequence of its approach to
infeasible region elimination rather than feasible region addition. What is unclear
from the above description though is the large overhead involved for intermediate
computations between trimming stages. These stages add to the total construction
time and make the algorithm uncompetitive for the construction of simpler kinetics.
A modification to the above technique is presented below that aims to maintain the
virtues of infeasible region elimination whilst reducing the volume of unnecessary
intermediate computations.
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...

Figure 4.3.2: Unattainable region elimination via bounding hyperplanes. At each
iteration a hyperplane is introduced at the corner of the current polytope. The
plane is moved into the region until either a tangent rate vector is found, or feed or
equilibrium points are excluded. After each hyperplane addition, the bounded region
is smaller than the last and represents a more accurate approximation of the AR.
This algorithm requires computation of the polytope vertices (vertex enumeration).

4.3.2 A revised method of AR construction

As in section 4.3.1, description of the revised method is facilitated by consultation of
Figure 4.3.3, in which a general schematic of the construction process is shown. The
original method of bounding hyperplanes seeks to eliminate unattainable regions
by introducing a new hyperplane at a corner of the polytope. These hyperplanes
have a fixed orientation, calculated as a weighted average of the hyperplane that
shape the corner. The hyperplane is then moved into the current bounding set until
rate vectors evaluated on the plane are either tangent or point out of the plane.
In this way, eliminations can be viewed as a translation through space with fixed
orientation. An alternative method of eliminations is possible, however. The idea is
presented as follows:

Rather than fixing the hyperplane orientation and moving it about through space,
fix the hyperplane position and vary its orientation.

This is done through a rotation about an existing edge of the current polytope.
Existing extreme points of the polytope generated from previous iterations may then
be used as edges from which new hyperplanes may be introduced and rotated about.
New extreme points to the AR may be combined with existing ones obtained from
previous iterations. The polytope describing the region is then built facet-by-facet.
The revised method is hence given as follows

1. Compute the stoichiometric subspace S. S can be converted into a list of
hyperplane constraints. These hyperplanes are calculated by the methods
described above for the determination of S, and are specific to the reaction
stoichiometry under consideration and feed vector Cf.

2. Determine the hyperplane that passes through the feed point Cf. This is the
first hyperplane to be considered for rotation. The feed point will also act as
the edge about which the first hyperplane is to be rotated.
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...

Figure 4.3.3: Unattainable region elimination via rotating hyperplanes. In this
instance, hyperplanes are rotated about an edge making up the current polytope.
Vertex enumeration is not required with this method.

3. Using the known extreme point, rotate the chosen hyperplane by a small angle
θ. If it is found that any feed or equilibrium points lie outside of the current
feasible region due to the new rotation, then unrotate and stop. Output the
list of extreme points and terminate the algorithm.

4. Discretise concentrations lying on the plane.

(a) For each discretised point Ci, compute nTr (Ci)

i. If nTr (Ci) ≤ 0, then condition 1 is no longer satisfied and a tangent
point has been found. Record this concentration Ci.

ii. Unrotate the hyperplane back to its previous position.
iii. In addition to this, unrotate the vector (C0 − Ci) by angle θ used

above. This is done so that the extreme point found in step a.i)
maintains its position on the newly unrotated hyperplane. Record
this rotated Ci and go to 6.

5. If all discretised points in the list have been considered and it is found that none
of these points satisfy the tangency condition, then the current hyperplane
orientation may be rotated into the polytope further. Hence return to 3.

6. Combine the new rotated hyperplane with the current list of hyperplanes cur-
rently bounding the region. Add the newest extreme point found in 4(a)iii to
the current list of extreme points. Go to 3.

Rotations are achieved by the use of a rotation matrix R ∈ Rn. The direction of
rotation is chosen such that rotations bring about a reduction in the size of the
resulting polytope. Rotations performed in the special two dimensional setting are
particularly simple to compute, involving a single matrix multiplication. In addition
to this, there is only one plane through which rotations may occur, and the edges
rotated about are single points.

Motivation for rotations

The benefit afforded by rotations as opposed to translations through space is subtle,
and only arises upon implementation of the two methods. The former undergoes
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two computationally intensive, yet entirely necessary, stages.

1. The first, which is common to both approaches, is the act of hyperplane discret-
isation (computing distinct points lying on the hyperplane and then checking
the rate vector at each point). Since a hyperplane represents an n − 1 di-
mensional subspace in Rn, hyperplane discretisation may be viewed as a com-
putational process of degree n − 1. Adopting Big-O notation, the number of
floating point operations (flops) for such a process is proportional to approx-
imately O(Mn−1), where M is the number of discretised points for each axis
in space and n is the dimension of the computational space (the dimension of
S).

2. The second intensive computation is altogether suppressed during the early
stages of refinement but quickly emerges as the number of bounding hyper-
planes increases throughout construction. In order for new hyperplanes to be
introduced, we must know the locations of the extreme points of the polytope,
defined by the current list of hyperplanes. That is, for each iteration of the
elimination process, the vertex enumeration problem must be solved. This is a
non-trivial problem, particularly for higher dimensional spaces involving many
hyperplanes. A brute-force implementation can be achieved by computing the
intersection of each plane with every other hyperplane in the region: Given L

hyperplanes in Rn, brute-force computation results in at most L!/ [n! (L− n)!]

total intersections that must be calculated, and hence this method is not re-
commended. More efficient methods exist that solve the problem in polynomial
time (Dyer, 1983), potentially alleviating part of the computational burden,
although a vertex enumeration step is nevertheless required in order for elim-
inations to be carried out.
A final consideration is the issue of redundant hyperplanes, that is, hyperplanes
that play no useful role in defining the feasible region. It is wise to exclude
these from the set of bounding constraints as quickly as possible though, as
the numbers of redundant hyperplanes can quickly outnumber the number of
useful planes describing the feasible region. This ultimately affects the vertex
enumeration step in an undesirable manner. As a result, the additional expense
of redundant hyperplane removal contributes further to the total computation
time of the bounding process.

The benefit of utilising hyperplane rotations as opposed to translations is that the
former does not require the enumeration of vertices (point 2). As a result, the costly
exercise of redundant hyperplane removal and vertex enumeration stages may be
avoided. This is accomplished by the addition policy of the revised method. Since
rotations are done about existing, known attainable points, the hyperplane tangency
condition guarantees that the new extreme point found is (in R2) attainable by
CSTR from eq 2.3.2. Hence, at every stage of construction, boundary points of the
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AR are found, and intermediate points never enter the problem. The enumeration of
vertices is still an unnecessary computation however. We refer the reader to section
4.6 for a discussion on how constructions might be carried out in higher dimensions.

Although it is the aim to achieve candidate AR constructions via an elimination
of unachievable space, this can be carried in a number of ways. The use of hyperplane
rotations is one such method which is, in principle, no different to the method of
bounding hyperplanes – both methods ultimately rely on the tangency condition
with the rate vector, as discussed above. However, the use of rotations is observed
to be faster in practice. We demonstrate this with a number of examples below.

4.4 Examples

4.4.1 Isothermal constructions

van de Vusse kinetics

We now demonstrate how the method of bounding hyperplanes may be improved by
plane rotations for various examples. In all the examples presented, we have assumed
that the systems are operated isothermally and under constant density. Although
we shall later present an example in which the isothermal assumption is relaxed, we
honour this restriction for purposes of comparison to the original method.

We begin with the well understood van de Vusse reaction scheme. The system
is given by the following set of reactions:

A
k1

k2

B k3→ C

2A →
k4

D
(4.4.1)

Several variations of the above kinetics exist but only the simplest scenario is presen-
ted here, that is a 2D system in cA − cB space with mass action kinetics given by
the following constants k1 = 1.0, k2 = 0.0, k3 = 1.0 and k4 = 20.0, such that

r (C) =

[
−k1cA + k2cB − 2k4c

2
A

k1cA − k2cB − k3cB

]

The AR is then found to be produced by a CSTR followed in series by a PFR.
Unfortunately this arrangement cannot be established by the algorithm, but has
been included to demonstrate the accuracy to which constructions may agree with
their theoretical predictions. A worked example for the first iteration of this problem
can be found in appendix B.1. Here, the reader will find details discussing the
necessary set-up steps required before the algorithm can be initialised. The results
of the construction are given by Figure 4.4.1 below where a comparison is made
between the original (translated) and revised (rotated) methods.
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(a) Bounding hyperplanes.

(b) Rotated hyperplanes.

Figure 4.4.1: A comparison of construction methods carried out for van de Vusse
kinetics. The CSTR locus (×) and PFR trajectories (-o-) have also been drawn.
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The total running time for the original method took 10 seconds and is bounded
by 32 hyperplanes. The shape of the boundary produced by the original method
agrees with the analytical solution although a distinct difference between the two is
noticeable near the CSTR-PFR junction. In particular, the maximum concentration
of component B is overestimated slightly with the original method. The results
achieved with the revised approach by comparison are in close agreement with the
theory. The time taken to construct the new region took 6 seconds and is constructed
with 116 hyperplanes. Although running time is of a similar order to the former,
the region is assembled with a significantly larger number of hyperplanes, allowing
for a more precise bound to be established.

The results highlight an important consideration associated with both methods.
That is, there is no claim that the resulting polytope obtained from construction is
indeed the true AR. Rather, the results provide an upper bound on kinetic attainab-
ility. Certainly there is evidence to suggest that in the limit as more hyperplanes are
used to bound the region, we approach the true AR boundary, however the regions
obtained by either method are necessarily always larger than the true solution. If
both an inside-out and outside-in method are available, then comparison between
the two candidate ARs may allow for the determination of the true AR boundary. If
the results of the two do not correspond, then a closer bound on the true boundary
is reached as we know that the true region must lie between the two constructions.

Complex van de Vusse kinetics

Next we study a fairly artificial example, one in which highly non-linear behaviour
is observed. This may be produced by the following rates of formation

rA (C) = f (cA)
2 + cAcB

df (cA)

dcA
rB (C) = cAf (cA)

where
f (cA) = 6c6A − 6c5A + 9c4A − 16c3A + 9c2A − 2cA

The reaction scheme is identical to the one posed for regular van de Vusse kinetics
by eq 4.4.1, although the actual rate expressions are more complicated now. A
PFR trajectory associated with the kinetics given above show multiple concavities,
indicating that both reaction and mixing processes will feature prominently in the
formation of the AR boundary. Indeed, it is found that for a feed concentration of
Cf = [1, 0]T, the AR is constructed from a four reactor series network of CSTR-
PFR-CSTR-PFR (Glasser et al., 1987). Figure 4.4.2 provides results obtained from
both methods of construction.

Once again, both the original and revised methods allow for an accurate approx-
imation of the AR boundary, even for highly non-linear kinetics. The efficiency by
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(a) Bounding hyperplanes.

(b) Rotated hyperplanes.

Figure 4.4.2: Construction comparison for non-linear van de Vusse kinetics
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which constructions are carried out differ greatly between the two nevertheless. 77
hyperplanes have been used to construct the AR by the original method in a time of
30 seconds and agree favourably with the results obtained from the new approach.
The latter is produced with over three times as many hyperplanes and is accom-
plished in a significantly shorter time. Hence, in a period of 13 seconds, the method
of rotations has allowed for the introduction of 262 hyperplanes producing a tightly
bound region. For this example, the use of either method requires the introduction
of a rather large number of hyperplanes in order for an adequate approximation of
the AR to be made. Multiple curved and straight line segments are noticeable on the
boundary and it is apparent how curvature is approximated with many hyperplanes.
Hence it can be expected that the most gains in calculation time may be associated
with boundaries having high curvature. We next examine a situation in which this
is not the case in the next example.

Multiple steady states

Hence, we now compare constructions for an example where multiple steady states
allow for the occurrence of discontinuous regions to be observed from within the
stoichiometric subspace. The reaction system is given by the following rates of
formation

rA (C) = −k1

[
cA +

b (cAcB)
2

1 + k2cAc
2
B
+ acA

]

rB (C) = k1

[
cA +

b (cAcB)
2

1 + k2cAc
2
B

]

with k1 = 1 × 10−3 min−1, k2 = 40L3/mol3, a = 100 and b = 1 × 104 L3/mol3. We
shall again assume that a single feed stream exists, with pure A such that the feed
stream concentration vector is Cf = [1, 0]T. A plot of the CSTR locus identifies two
separate branches that exist for the specified feed concentration. It is possible, using
standard techniques (Glasser et al., 1987), to show that a CSTR followed by a PFR
is required in order to obtain the AR associated with the kinetics provided. The
results are given by Figure 4.4.3. The candidate AR found indicates a maximum
achievable cB concentration of approximately 0.61 mol/L.

For comparison, the CSTR locus of ×’s corresponding to the feed concentration
has been plotted. The second branch is an isola and it is apparent from the con-
structions the significant contribution it provides in the full range of total achievable
concentrations. Kinetics involving multiple steady states are particularly difficult to
construct and are most likely to cause differences between constructions of inside-
out and outside-in methods. Candidate AR construction via inside-out methods
requires knowledge of multiple steady states, as the discovery of only partial convex
regions may result if knowledge of their existence is unknown. Prior knowledge of
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this behaviour is often difficult to predict however. Indeed, behaviour in isothermal
reactions may vary considerably, even for noticeably similar kinetics (Schlosser and
Feinberg, 1994). These situations occur frequently in adiabatic reactions unfortu-
nately (Hildebrandt, 1989) and thus there is a need to develop techniques that are
able to handle these systems.

Both methods produce an accurate bound on the set of all attainable concentra-
tions despite the fact that there exists irregular areas formed by the isola. The AR
exhibits minimal curvature, that is, the PFR trajectories vary somewhat linearly
near the AR boundary. This allows for a rather simply shaped triangular region
that is easily approximated using a small number of bounding hyperplanes. As a
result, the associated construction times and candidate regions produced by both
methods are fairly competitive and little benefit is obtained with the use of plane
rotations rather than translations. Consequently, the AR constructed by the ori-
ginal approach is approximated by 16 hyperplanes and was achieved in a time of 16
seconds whilst the revised method bounds the same region in a time of 4 seconds
with 18 hyperplanes. Nevertheless, we notice that even for kinetics in which the AR
may be approximated well with few hyperplanes, opportunities for improvement still
exist. Although such examples exhibit minimal overhead involved in vertex enumer-
ation, we find that rotations allow for more appropriate placement of hyperplanes
in space and offer a more efficient means of candidate AR boundary construction.

4.4.2 Temperature dependent kinetics

Let us know consider an example in which the isothermal constraint is no longer
required. The system of reactions we consider here again take the form of the familiar
van de Vusse kinetics, however we shall now allow the rate constants to be of the
Arrhenius form (Godorr et al., 1999)

ki (T) = k0i exp
(
− Ei

RT

)
(4.4.2)

The values for k0i and Ei for each component are given below

Table 4.1: Arrhenius constants for temperature dependent van de Vusse kinetics

i ki
( mol

L·min
) Ei

R (K)

k1 4 500
k2 1.5 800
k3 6 0
k4 0 0

As a result, the rate vector is no longer a sole function of C and is now also
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(a) Bounding hyperplanes.

(b) Rotated hyperplanes.

Figure 4.4.3: AR construction with multiple steady states. × represent the CSTR
locus for the feed concentration
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temperature dependent

r (C,T) =

[
−k1 (T) cA − 2k4 (T) c2A
k1 (T) cA − k3 (T) cB

]

It is now possible to vary the direction in which the rate vector points by a variation
in temperature. Hence, for every point in concentration space, the rate vector is
allowed to take on multiple directions depending on the temperature at which it is
evaluated at. The handling of temperature dependent kinetics is a fairly straight
forward modification to the standard approach discussed in section 4.4.1 above.
Instead of checking for a single tangent rate vector at a concentration residing on
the plane, we now check for a range of rate vectors. This range corresponds to
the range of allowable temperatures specified between given operating temperature
limits. Much in the same way that a grid is generated in concentration space for
calculation of discretised points on the plane, points in temperature space between
the maximum and minimum permissible temperature limits are now also determined.
Then, for each valid concentration generated on the plane, the range of rate vectors
between the operating limits are all evaluated for tangency.

Figure 4.4.4 shows the results of the construction for the non-isothermal case
operating between a temperature interval of 300 K to 1000 K. In order to maintain
a path on the boundary of the AR, the temperature profile would need to follow
the one suggested in Figure 4.4.4. It can be seen that the temperature profile de-
clines rapidly over a small cA concentration range from approximately 0.25 mol/L to
0.18 mol/L. The optimum recommended operating temperature profile is in agree-
ment with the recommendation suggested by (Godorr et al., 1999). Construction
time took significantly longer for this case, totalling 479 seconds. This is largely due
to a fine grid of 500 points used between the temperature interval and small rotation
angle of 1× 10−4 radians. The boundary is composed of 150 hyperplanes.

AR boundaries corresponding to isothermal operation at the minimum and max-
imum allowed operating temperature are also provided in Figure 4.4.4. Hence the
AR resulting from a design in which the operating temperature is maintained at
1000 K allows for a large portion of the total optimal set of concentrations to be
achieved. This is expected as the optimal temperature profile suggests that, for the
cA range of approximately 1 mol/L to 0.25 mol/L, the temperature which extends
the region the most is one that is maintained at its maximum value. A design using
only the lower temperature of 300 K on the other hand results in a region which is
noticeably smaller between the entire cA range. What is apparent nevertheless is
that isothermal designs maintained at either temperature do not result in an AR
which is considered optimal, as a small range of concentrations near cA = 0.1mol/L
to cA = 0.0mol/L exist that are only achieved by a varying temperature profile.

Determination of the optimal profile is easily handled by this approach, as no
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Figure 4.4.4: Temperature dependent kinetics. The ARs constructed for isothermal
operation at the two operating limits are both smaller than the one obtained by the
optimal temperature profile.

other modifications to the underlying elimination method need to be changed. Con-
structions for non-isothermal kinetics allow for inclusion of many more reactor op-
timisation problems, and ones which are much more likely to occur in reality when
used with mass fractions described earlier.

4.4.3 Unbounded construction

Finally we consider finding the AR for the case when we wish to determine the smal-
lest reactor volume. These examples are common in the design of batch processes
(Nicol et al., 2001). We consider an AR construction in concentration-residence time
space where the resulting feasible region is unbounded. The reaction is assumed to
be an adiabatic decomposition under constant pressure. The rate of formation is
again assumed to follow the Arrhenius form

r (c) = ck1 exp
(
−4000
T (c)

)
− (1− c) k2 exp

(
−8000
T (c)

)
where c is concentration and k1 = 5 × 105 and k2 = 5 × 108. For simplicity, we
assume constant specific heat and heat of reaction, the temperature for the process
is then

T (c) = T0
b + Tad (1− c)

where T0
b = 300K and Tad = 200K. In this space, the rate vector is given as

r (c) =
[
r (c)

1

]
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Figure 4.4.5: Unbounded AR construction

We specify that the feed stream does not contain any products so that c = 1 and
construct the unbounded region in the same manner as in the previous examples.
The only additional alteration required is the direction of rotation. Seeing as equi-
librium is achieved as residence time is increased, we now specify that hyperplanes
must be rotated in a clockwise direction in order for the region to be bounded cor-
rectly. The results of the construction are provided by Figure 4.4.5. For the specified
rate a minimum residence time of approximately 0.09, at which minimum c = 0.16

has been reached. The region is defined by 78 hyperplanes and took 43 seconds to
construct.

Construction of the AR face by face presents unique opportunities for the con-
struction of a special class of convex polytope, that being unbounded polytopes.
Elimination via a rotation implies no dependence or knowledge of all existing corners
to the current polytope, and hence reliance on a closed polytope is not a requirement.
Constructions of these types are unique to the revised method and are unachiev-
able by the regular method. Both the original and revised bounding hyperplane
algorithms were programmed in C++ using Microsoft Visual Studio 2008. The
computations for all examples discussed were carried out on an Intel Core i3-530
processor (2.93GHz) and 4GB RAM (DDR3 1600) under Windows 7 64-bit Edi-
tion.

4.5 Example of numerical sufficiency: Comparison to an
inside-out method

Although the rotated hyperplanes method has shown to generate regions consistent
with the method of bounding hyperplanes, uncertainties still remain in the resulting
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constructions. Due to the elimination nature of the hyperplanes method, one can
only guarantee the removal of unachievable points; the remaining region may still
contain unachievable states. The true AR must then reside as a subspace within the
candidate region generated by the method, and only in the case that all unachievable
points are removed is the true AR obtained. Similarly, inside-out methods achieve
AR construction via the addition of regions that are guaranteed to be achievable.
The resulting region is then an approximation of the true AR only if all achievable
points have been identified during the construction process. This is of course a
non-trivial task if multiple steady-states exist in the system. A discrepancy exists
between both construction procedures as a result.

Observe however that if both approaches are combined, this gives way to a
more robust procedure for computing candidate ARs. Agreement in shape and size
between the two methods signals, at least numerically, for when the true AR might
be found. Although significant advancement in the field may still be needed in
terms of developing a theoretical sufficiency condition for the AR, combining both
inside-out and outside-in construction approaches provides an avenue for numer-
ical sufficiency. It should be recognised that there exists a rich field of literature
exists for a similar problem encountered in global optimisation. Specifically, the
idea of spatial branch and bound methods in global optimisation bears resemblance
to the idea presented here. Lower and upper estimate bounds on the optimisation
solution are generated and then refined to obtain a globally optimal solution (Land
and Doig, 1960; Tawarmalani and Sahinidis, 2004). Convergence to the global op-
timum is achieved when the lower and upper bounds meet.Clausen (1999) provides
a readable introduction to branch and bound techniques in optimisation, whereas
the application of branch and bound techniques to chemical reactor networks are
discussed by Ryoo and Sahinidis (1995); Smith (1996); Smith and Pantelides (1999).

In Figure 4.5.1a, we demonstrate this idea with the 2D van de Vusse and Isola
examples from section 4.4.1. The rotated hyperplanes method is used as the outside-
in part of the construction, whereas the inside-out portion is carried out using the
Recursive Constant Control policy method of Seodigeng et al. (2009); Seodigeng
(2006). The RCC method is chosen as it is found to be particularly flexible in terms
it’s construction types, it is simple to program, and is generally considered to be
a fast candidate AR construction method. In Figure 4.5.1a, the results of both
constructions are compared and overlaid onto the same plot for the van de Vusse
system. The shaded region is that belonging to the rotated hyperplanes construction,
whereas the boundary corresponding to filled circles are those obtained from the
RCC method. The CSTR locus is also shown for comparison. Notice that there is
close agreement between the two methods, even though each method has generated
the region from two independent construction approaches. This provides a strong
indication that the region in Figure 4.5.1a is the true AR, barring minor numerical
differences.

101



4.5 Example of numerical sufficiency D. Ming

(a) 2D van de Vusse kinetics

(b) Isola kinetics

Figure 4.5.1: Comparison of methods for hybrid AR construction.
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Table 4.2: Comparison of AR volumes generated by the RCC and rotated hyper-
planes method for hybrid AR construction

System RCC volume

Rotated
hyperplanes

volume % Similarity
2D van de Vusse 0.0532 0.0533 99.8%

Isola 0.0010 0.3207 0.312%

Figure 4.5.1b, by comparison, demonstrates the construction results from both
techniques for the isola example. Unlike the van de Vusse example, there is a clear
difference between the region obtained by the hyperplanes method and the RCC
method. Whereas the hyperplanes method produces the larger region including the
isola, the inside-out nature of the RCC method does not successfully identify the
isola. This is because the RCC method relies on continuity information, in the form
of integrating the DSR equation for many constant α values; the method has no
inherent knowledge of the existence of multiple steady states outside of the localised
region that the DSR expression operates in the lower portion of the space. In this
example, there is a clear discrepancy in results between the two methods. Thus,
use of both inside-out and outside in methods in a combined analysis provides proof
when there is agreement between the two, and signals for further work when there
is a significant difference in results.

The AR volume may be used as a numerical measure from which the two methods
may be compared against. The AR volume is always positive and is maximised
corresponding to the true AR. The region becomes smaller with outside-in methods
and larger with inside-out methods. Table 4.2 shows the AR volumes corresponding
to both methods for the examples considered. The % similarity column is calculated
as the ratio of volumes obtained by the RCC and rotated hyperplanes method,
repsectively. In the case of the van de Vusse example, the volumes are in very
close agreement. Indeed, the RCC volume is 99.8% the volume of the hyperplanes
approach. There is still a difference in calculated volumes, due to the numerical
nature of each approach, however the two produce effectively the same region to
within the numerical tolerances specified. On the other hand, the RCC volume for
the isola example is 0.312% of the rotated hyperplanes method. This is due, of
course, to the existence of the large isola which is only identified by the hyperplanes
method. Even if the isola had not been known, this result is still useful as it indicates
that there may be irregular behaviour (multiple steady-states) in the system which
requires further investigation.
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4.6 Remarks on higher dimensional construction

4.6.1 Introduction

Constructions in Rn are currently not yet fully developed, however several ideas
are provided below for how they might be carried out. The expected complications
involved in generalised n-dimensional constructions are also discussed. In order to
extend the method of rotation to higher dimensions, we must first have an under-
standing of how these may be generalised, in spaces that cannot be easily visualised.
First, a generalised description of rotations is discussed which describes how this
is achieved in Rn. Next, supporting mathematical details are given, followed by
a proposed method for extension to higher dimensions. A brief discussion on the
potential difficulties and uncertainties with the approach is then supplied at the end.

4.6.2 Rotations in Rn

Facets and ridges

Before a generalised discussion can be done, a basic understanding of the facets
and ridges, associated with an n-dimensional convex polytope, must be known. We
symbolise the convex polytope associated with the a candidate AR construction by
conv(X). From section 4.2.4, a facet of conv(X) is a collection of extreme points such
that n linearly independent points in conv(X) lie on a hyperplane H (n,C0) residing
in Rn. A facet is hence a (n− 1)-dimensional polytope in Rn and a subspace of
conv(X) – two vertices define a facet in R2, three in R3, and so on.

Ridges (edges) of conv(X) are similar in structure to facets. Indeed, a ridge
is composed of vertices from a facet and hence it is a linear subspace of a facet.
Specifically, n − 1 linearly independent points of a facet create a ridge. A ridge is
hence a (n− 2)-dimensional polytope, and for any facet containing n vertices, there
are n − 1 ridges that are associated with it. The intersection of two facets creates
a ridge. This is show in Figure 4.6.1a for two and three dimensions. A distinction
is made between ridges and edges since edges are generally viewed with specific
reference to three dimensions, whereas ridges are generalised for all dimensions.

General understanding

Rotations in higher dimensions are more challenging than those cast in R2 alone.
This originates primarily from the fact there are more ways in which to rotate a
plane in higher dimensional space. By example, in R3 there are three principle axis
that a hyperplane can be rotated about (the standard basis involving x, y and z
axes are an example of this). In general, there are

(
n
2

)
principle axes in Rn and thus

rotations in higher dimensions are not uniquely defined (Aguilera and Perez-Aguila,
2004). Moreover, the view of rotations in R2 and R3 can be misleading. That is,
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rotations are often viewed to occur about an axis of rotation (a one-dimensional
subspace of Rn). From the previous statements, simply fixing the dimension for
rotation only reduces the number of degrees of freedom for rotation by one, but for
spaces greater than three, there are more principle axes from which rotations may
still occur. Hence the understanding of rotations to occur about an axis of rotation
(an edge) is only convenient for systems in R3.

Instead, it is better to view rotations in terms of a rotation in a plane. Points
in space are then transformed with respect to the plane of rotation and a space
orthogonal to the plane. The component of the point in the orthogonal subspace
is hence unchanged by the action of a rotation. Rotations are therefore still two
dimensional in nature, even when considered in higher dimensions. In Figure 4.6.1b
we show this for R3, although the method is true for all dimensions.

We can generalise the idea of an edge and instead view rotations to occur about
a ridge. Since a ridge is a n − 2 dimensional subspace of Rn, this leaves a two
dimensional subspace about which points may be rotated in. Rotation are then not
arbitrary, but rather are aligned with ridges from existing facets.

4.6.3 Additional mathematical details

Change of basis

A vector x viewed under one coordinate system can be written with respect to
another by a change of basis. That is, given an general matrix A containing k

linearly independent vectors forming a basis

A = [a1, a2, . . . , ak]

where k ≤ n, the matrix multiplication

Ay = x

implies that x can be written as a linear combination of the columns of matrix A.
Elements in y are then scalar ‘weights’ that give the relative proportions of the
columns of A used to express x. Vector y is hence a k-dimensional vector that
re-expresses x with respect to the new basis defined by A. Observe that A need not
be square (the columns of A form a subspace of Rn) and the columns of A need not
be orthogonal (although it is useful is the columns of A form an orthonormal basis).

Rotation matrix

The rotation matrix

R =

[
cos (θ) −sin (θ)

sin (θ) cos (θ)

]
(4.6.1)
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rotates a vector Ci ∈ R2 by an angle θ in the plane when R is multiplied to Ci. It
follows that a rotated vector C′

i ∈ R2 is given by

C′
i = RCi

By definition, rotations preserve lengths and angles. We can see that the action of R
might also be viewed as a change of basis in which lengths and angles are preserved.

Projections onto a plane and the orthogonal complement

Suppose that A is a matrix containing k linearly independent vectors in Rn (A is
a matrix of size n × k). An arbitrary vector Ci ∈ Rn can be projected onto the
subspace spanned by the columns of A with the following matrix

P = A
(
ATA

)−1 AT

We call matrix P the projection matrix and the matrix product PCi the projection of
Ci onto the subspace spanned by A. If A contains two linearly independent vectors
(k = 2), the subspace spanned by A is a two-dimensional plane in Rn. In general,
we can express vector Ci as the sum of two vectors:

Ci = PCi + e

where PCi is the projection of Ci onto a subspace, and e is a vector orthogonal to
the subspace. Vectore is said to be the orthogonal complement of Ci. Given A and
Ci, the orthogonal complement can be found by rearranging the above expression
for e

e = Ci − PCi

= (I − P)Ci (4.6.2)

where I is the identity matrix. Observe that if the columns of A form an orthonormal
basis, then the projection matrix P may be simplified:

P = AAT

since
ATA = I (4.6.3)

if A is an orthogonal matrix.
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4.6.4 n-dimensional rotations

Now that the necessary mathematical details have been discussed, it is simple to
understand how rotations of a point about an n-dimensional ridge may occur. It
is useful to refer to Figure 4.6.1b in the following description. Since it is known
that rotations occur in a plane, we can project a state vector C1 onto a plane of
rotation using a projection matrix P given two vectors that span a two-dimensional
plane in Rn. Suppose that a matrix A is available containing two vectors a1 and a2.
The plane spanned by a1 and a2 may also be used as a plane of rotation. Assume
furthermore that a1 and a2 form an orthonormal basis. The vector ATC1 is hence
a change of basis relative to A. The projection of C1 onto the plane is hence given
by

PC1 = A
(
ATA

)−1 ATC1

We wish to rotate only the component of C1 that lies in the plane using the 2 × 2

rotation matrix R. Hence, we must first express PC1 in terms of the columns of A
by a change of basis and then multiply this by R. The change of basis relative to
the plane spanned by A is given by

Ay = PC1

in which y is a vector describing PC1 relative to the columns of A (y is a 2 × 1

vector if A is a n × 2 matrix). Multiplying both sides by AT and expressing for y
gives

y =
(
ATA

)−1 ATA
(
ATA

)−1 ATC1

=
(
ATA

)−1 ATC1 (4.6.4)

A rotation of y in the two-dimensional plane may be achieved using the 2×2 rotation
matrix given by eq 4.6.1. Ry is hence the vector PC1, rotated in the plane spanned
by A, by an angle θ, expressed with respect to the plane basis vectors. Expressing
the rotated vector relative to the standard coordinates is done by another change of
basis A (Ry), that is

PC2 = A (Ry)

Substitution of eq 4.6.4 gives

PC2 = AR
(
ATA

)−1 ATC1

This gives the component of C1 rotated in the plane. To obtain the final rotated
vector, the orthogonal complement that is unchanged by rotation must be added
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back to PC2. Hence

C2 = PC2 + e
= AR

(
ATA

)−1 ATC1 + (I − P)C1

=
(
ARAT + I − P

)
C1

which is obtained by use of eq 4.6.2 and eq 4.6.3.

Procedure

The method of rotations described above is feasible because rotations are uniquely
defined in n-dimensional space when they occur about a ridge. A ridge is an (n− 2)-
dimensional subspace that can be found directly from the facets of the current poly-
tope during construction. In general, point C1 is a point on the current hyperplane
that is to be rotated and point C2 is the final rotated point. The columns spanned
by A act as the actual 2D subspace in which C1 is rotated in. The above procedure
relies on the knowledge of matrix A, however this not a concern in practice because
it is possible to define A in terms of a ridge of the current polytope. In this sense,
a ridge is a n × (n− 2) matrix E with columns given by linear combination of the
vertices of a n-dimensional facet. Finding a space orthogonal to the ridge is achieved
by computing the nullspace of the matrix transpose of E. The ridge about which
points are rotated forms the orthogonal complement that is unaffected by rotation.
Thus we have

A = null
(
ET)

Linear combinations of the columns in E give rise to the orthogonal vector e, used
in eq 4.6.2. In practice, if a method such as Gram–Schmidt orthogonalisation or
QR decomposition is applied when computing null

(
ET) as well, then the columns

of A form an orthonormal basis. This simplifies rotation calculations, in the form
of matrix inversions, greatly.

4.6.5 Proposed method

AR construction is conceptually identical when extended to higher dimensions. We
aim to enclose the AR within a large region P0, and then seek to successively elim-
inate unattainable regions by the introduction of additional bounding hyperplanes,
specifically through rotations. Initially P0 is given by the stoichiometric subspace
S. P0 is reduced to a smaller polytope Pr by r trimming stages. Pr is therefore a
closer bound on all attainable concentrations. Construction of Pr occurs facet-by-
facet, utilising existing hyperplanes and ridges about which new hyperplanes may
be introduced and rotated from.

Construction begins by determination of the stoichiometric subspace S in the
usual manner. This produces the largest convex polytope belonging to the system
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under consideration, and is the simplest approximation of the AR (S represents all
concentrations satisfying mass balance constraints). The extreme points belonging
to S are determined so that the facets and ridges associated with the region may
be constructed. The orientation of a facet in Rn provides an initial orientation of
the new bounding plane, whilst the ridges of the face provide an orthogonal space
about which rotations may be achieved.

Additional hyperplanes are aligned to an existing facet and rotated around the
ridges associated with the facet. For a problem residing in Rd then, d points must be
known before a facet may be determined. It follows that d possible edges belonging
to the face may be chosen for rotations.

The first elimination stage begins by identifying a face passing through the feed
point Cf which is used to orientate the first bounding hyperplane. The hyperplane
is rotated until a tangent rate vector lying in H (n,Cf) is found, at which point
the position in space is recorded and a new face is constructed from the remaining
d−1 points. In general, hyperplane discretisation and tangency evaluation are easily
extended to higher dimensions. These functions of the elimination step follow until
one of the stopping criteria detailed in section 4.3.1 are met. Creating of a new facet
establishes an orientation for the next hyperplane rotation, whilst a new rotation
edge is obtained from the establishment of further edges belonging to the new facet.
This is shown in Figure 4.6.1c. The identification of a new vertex in the plane allows
for the introduction of additional ridges connected to that point. A choice must be
made as to which ridge to utilise next for subsequent rotations, and also a direction
of rotation must be specified. These decisions must also take into consideration the
following movement criteria:

1. Rotations must not exclude feed or equilibrium points.

2. Rotations may not result in an increase in the size of the feasible region.

After each successive elimination steps, a new facet, or potentially many facets, of
a smaller convex polytope is determined. Nevertheless, selection criteria must be
made established to determine which facet to rotate next. Construction continues
until no further rotations are achievable to within a specified tolerance.

Initially, only feed points are known to be achievable and construction of the
first face is determined by computing the initial extreme points of S. From section
4.3.1, the tangency condition exists only to remove unattainable states from the
region; there is no assumption that the tangent point is achievable. Therefore,
tangent points that are found from rotations may not, in general, be satisfied by
eq 2.3.2. These points may not be physically achievable in a steady state reactor
network as a consequence. Be that as is may, so long as it is possible to continue
introducing hyperplanes and rotating them into the region, then unachievable states
can be removed from the the set. In Figure 4.6.2, we demonstrate this with a sample
polytope. The region shown in Figure 4.6.2a represents an intermediate polytope
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generated after an arbitrary number of eliminations have already been carried out.
The facets of the polytope thus represent hyperplanes that have already been rotated
into the region and stopped due to a tangent point found relative to the hyperplane.
Also shown in Figure 4.6.2a is a new hyperplane that is to be rotated into the region.
Points on the plane are displayed as blue ×’s. A ridge associated with the current
facet is chosen to act as the space to rotate about. In Figure 4.6.2b we show the
rotation of a plane into the region. The hyperplane is moved in until a tangent
point is found. Hence, even though the original facet is positioned in space due to
a previous elimination step, rotation with respect to a different ridge brings about
further eliminations. Rotation of the plane about the new ridge has excluded a
small set of vertices fro the previous step – relative to the new hyperplane, these
concentrations are not achievable. In Figure 4.6.2c, we show the polytope obtained
after the rotated hyperplane has been appended to the current set of hyperplane
constraints. Notice that new vertices (and hence new facets and ridges) have been
created by the hyperplane. Additional rotations may now be carried out. After
each step, the introduction of new points serves to break ties with the original
extreme points. Eventually, a stage in construction is reached where the edges
of the current face are no longer composed of the extreme points of the original
face. These may then be removed from the feasible set. Eliminations of this form
continue until no further rotations can be carried out. The remaining region serves
as an approximation of the AR relative to the numerical tolerance specified.

4.6.6 Difficulties and unknowns

Uncertainties

Uncertainty still remains as to whether eliminations in the manner described above
in fact converge to the true AR (these topics are an active area of discussion at
present). Nevertheless, the polytope resulting from this method must always enclose
the true AR and will always be smaller than the initial stoichiometric subspace. This
in itself is useful in establishing bounds on the attainability of a system.

The special setting of R2 allows construction to occur on an ordered (Hamilto-
nian) path – each extreme point discovered is visited exactly once. Higher dimen-
sional constructions are not generally ordered along such a path however, and a
systematic method must be developed for how new vertices are chosen to carry out
further rotation steps. Indeed, higher dimensional rotations allow for extra freedom
in movement. In general, three choices must be made before rotations can be carried
out:

1. Choosing which facet to rotate on the current polytope

2. Once done, choosing a ridge of the facet about which to rotate

3. Choosing a direction of rotation and step size that achieves optimal elimination
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(a) Initial orientation

(b) Rotation

(c) Resulting region following elimination

Figure 4.6.2: Example of eliminations in R3
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An approach that incorporates these decisions in a systematic manner has yet to be
developed. Strategies for selecting facets/ridges/rotations that achieve the largest
eliminations efficiently are can be formulated, and these may be guided more by
empirical data (gained during construction) rather than from a purely theoretical
basis at the beginning. Certainly, so long as rotations allow for further elimination
of unachievable states, there are many equally valid approaches to achieve this. The
strategy chosen may come about from a range of possible methods that are picked
based on the current state of construction.

Difficulties

Additional computational overheads are involved with higher dimensions that do
not arise in two dimensions. These arise mainly from the bookkeeping of facets and
ridges used in the decision making process for how to rotate additional hyperplanes.
Additionally, constructions in higher dimensions demand larger data requirements,
which places a greater strain on the computing resources available. For instance, Ab-
raham and Feinberg (2004); Abraham (2005) discuss how the number of hyperplanes
required for adequate AR approximation increases rapidly with increasing dimen-
sion. The need to discretise and evaluate points on a higher dimensional hyperplane
comes with greater computational time to approximate regions appropriately.

Hence, rotations in higher dimensions may not be as competitive when considered
with competing algorithms. However, much like how a robust ODE integration
scheme may employ a range of methods for different problem types, the same could
be envisioned for AR construction - we may wish to treat elimination via rotations
as a suitable 2D scheme, employed in an intermediate step or special selection case
of a grander AR construction algorithm incorporating many other methods as well.

4.7 Conclusion

Originally proposed for bounded isothermal constructions in concentration space,
the method of bounding hyperplanes (Abraham and Feinberg, 2004) has proven to
be a robust method of AR construction. This is particularly apparent for the de-
termination of degenerate kinetics when multiple CSTR steady states are present.
However, constructions performed in this way are hindered by computational com-
plexities that become ever more apparent with an increasing number of hyperplanes.
It is found that the cost of hyperplane discretisation, extreme point enumeration and
redundant hyperplane removal are computationally demanding stages in the original
method that otherwise hinder a rather novel construction technique. A revised al-
gorithm sharing many of the positive attributes linked with the original has been
presented and shown to construct regions that agree with the constructions of other
authors (Feinberg and Hildebrandt, 1997; Glasser et al., 1987; Hildebrandt, 1989;
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Seodigeng et al., 2009; Abraham and Feinberg, 2004; Godorr et al., 1999).
In much the same way as its predecessor, the method relies on the successive

addition of bounding hyperplanes to separate a region (containing both achievable
and unachievable parts) into two half spaces, such that one half contains unattain-
able concentrations only. Orientation of the cutting plane has been revised to allow
for a rotation about an axis, rather than a fixed orientation and translation through
space. This allows for the same trimming mechanism found desirable in the ori-
ginal approach, whilst simultaneously eliminating the need for vertex enumeration
and redundant hyperplane removal after the introduction of each elimination stage.
The method demonstrates an improvement in both running time and construction
accuracy when compared to the original for the same problem, however the most
gains are observed for kinetics where the AR boundary is composed of many hyper-
planes. This might arise when curvature is introduced by PFR solution trajectories
for example. These situations involve a large overhead in costly vertex enumeration
stages. Construction via rotations of a plane has allowed for the approximation of
unbounded ARs in concentration–time space. The method has also been extended
to allow for determination of non-isothermal ARs and shown to agree with the re-
gions obtained via traditional methods. Extension of the method for the inclusion
of these cases has allowed for the determination of a rather more broad set of re-
actor network optimisation problems that occur frequently in many common reactor
designs.

A discussion of how the algorithm may be extended to n-dimensions was also
presented. The ideas that characterise construction in R2 take on familiar roles in Rn.
Extreme points of existing facets provide starting orientations (positions in space)
whilst the edges of the same facet provide an edge about which the bounding plane
may be rotated. Eliminations performed in this way allow for the creation of new
facets and edges, about which new hyperplanes may be introduced and rotated to
further advance the elimination process. Higher dimensional constructions are not as
simple to perform as those determined in two dimensions unfortunately. Discussions
as to how these methods may be improved are still actively being investigated. This
is in part due to the need for additional bookkeeping of facets and edges, but chiefly
due to tangent points that are not generally guaranteed to be achievable.

Nevertheless, the performance gain and extended flexibility afforded by non-
isothermal and unbounded constructions can now be used in a wider range of reactor
network problems. It has already been discussed previously how the AR has observed
a small adoption in batch. In the next chapter, we will provide simple transforma-
tion guidelines for converting continuous reactor structures, used in traditional AR
theory, so that they may be applied to batch directly. We will apply the method
described in this chapter to assist in determining the correct AR boundary belonging
to a particular set of kinetics in which multiple steady states occur. These kinetics
would otherwise be difficult for traditional inside-out AR construction schemes to
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perform. As a result, direct application of the transformation rules from continuous
to batch may result in sub-optimal results if the incorrect boundary structure is
employed. The rotated hyperplanes construction method developed in this chapter
thus provides a sanity check on the AR. This allows for greater confidence in the
recommendations that are obtained from it.
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Chapter 5

Applying AR theory to batch
reactors

The following chapter has been adapted from published work with permission. The
associated paper is (Ming, D., Glasser, D., Hildebrandt, D., 2013. Application of
Attainable Region theory to batch reactors. Chem. Eng. Sci. 99, 203 – 214.)
Copyright (2013) Elsevier. D. Ming (the present author) compiled the manuscript
and contributed to the ideas in this work. D. Hildebrandt and D. Glasser supervised
this work.

5.1 Introduction

The problem of determining optimal operating policies in batch operations is a pop-
ular one, and has been given a great deal of attention in the literature, particularly
due to the importance of batch reaction in a large number of industrially relevant
processes. Batch reactors are used extensively in the production of a variety of phar-
maceutical (Davies and Gloor, 1971) and biological (Cheong et al., 2007; Modak and
Lim, 1992; Najafpour et al., 2004; Senthuran et al., 1997) products, as well as in the
waste water (Woolard and Irvine, 1995; Zwiener et al., 2002) and polymerisation
(Zeman and Amundson, 1965) industries, and are typically considered to be rather
more versatile than that of equivalent continuous processes (Bonvin, 1998). Batch
reactors also find use in the small-scale production of highly specialised products,
negating the benefit otherwise obtained by large-scale production. Moreover, batch
reaction may be the only viable method of producing certain products, such as when
experimental work is performed at lab-scale and pilot-scale.

It follows that optimisation plays an important function in the design and op-
eration of these processes. Much attention has been placed on the development of
methods that seek to improve batch performance, particularly with regards to the
determination of optimal operating conditions and scheduling strategies. Although
research into determining efficient batch structures exists (Allgor et al., 1996; Aziz
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and Mujtaba, 2002; Capon-Garcia et al., 2011; Mendez et al., 2006), a brief search of
the current literature would suggest that this area may not appear to be as popular
as traditional batch optimisation. Even then, current methods for determining op-
timal batch structures often rely on traditional optimisation methods (Allgor et al.,
1996, 1999; Allgor and Barton, 1999).

For the past two decades, the papers of Feinberg and Hildebrandt (1997); Fein-
berg (1999, 2000b,a); Glasser et al. (1987); Glasser and Hildebrandt (1997) have
motivated the use of a novel method of identifying optimal reactor configurations,
termed Attainable Region (AR) analysis. Determination of optimal reactor struc-
tures using the AR is unique since synthesis is achieved via a geometric interpretation
of reactor configurations. This approach has shown to be an effective alternative
method to optimal reactor synthesis, particularly with regard to systems involving
multiple side reactions or reactions with complicated kinetics. Nearly all applica-
tions of the AR have been performed on continuous reactors however; the single
paper of Davis et al. (2008) currently remains the only use of AR theory to batch
systems.

Our aim in this work will thus be towards improving batch reactor structures
with specific use of the AR and the associated benefits of this approach. This is
done as follows: for a given set of feed conditions and kinetics, a candidate AR
may be generated and interpreted, initially, in the form of a continuous reactor
structure. Once generated, the appropriate conversions to the batch setting may be
performed, providing an equivalent recommended batch reactor structure. A key
objective in this work has been towards reusing the results and insight discovered
from a continuous AR structure, such that the same outputs might be obtained with
an equivalent batch system.

We will begin by first providing a brief overview of AR theory, and drawing a
relevant set of results associated with continuous equipment; this is done in section
5.2. Section 5.3 investigates how equivalent structures in batch may be derived from
continuous equipment. The correct choice and exact combination of continuous
equipment is guided by AR analysis, and thus the development of the AR is central
to the approach presented in this work. Finally, examples and concluding remarks
are given in sections 5.4 and 5.5 respectively.

5.2 Overview of AR theory in continuous equipment

5.2.1 AR construction from three fundamental reactor types

The purpose of this section will be towards providing a brief overview of AR theory
for continuous equipment. The results obtained will allow for the development of
optimal batch structures. The geometric nature of AR theory has been discussed
in numerous papers before Davis et al. (2008); Feinberg and Hildebrandt (1997);
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Feinberg (1999, 2000a,b); Glasser et al. (1987); Glasser and Hildebrandt (1997);
Godorr et al. (1994, 1999); Hildebrandt and Glasser (1990); Hildebrandt et al. (1990);
Khumalo et al. (2006); Nicol et al. (1997, 2001); Nisoli et al. (1997), and only a brief
overview of the theory shall be provided here as a result.

Certain common aspects relating to reaction and mixing were also given treat-
ment in chapter 2, and so they are not discussed here either. We do however, wish
to repeat certain concepts relating to fundamental reactor types. This will be done
so that comparisons from continuous to batch can be performed directly without
the reader needing to constantly refer back to chapter 2. We shall thus begin with a
basic review of fundamental reactor types, after which, important properties of the
AR boundary will be discussed.

Plug Flow Reactor (PFR)

It may be shown that no more than three fundamental reactor types, together
with mixing between structures, are needed to construct the AR (Feinberg and
Hildebrandt, 1997). These are the plug flow reactor (PFR), the continuously stirred
tank reactor (CSTR) and the differential side-stream reactor (DSR). PFRs are
defined by the following expression

dC
dτ = r (C) (5.2.1)

Geometrically, the set of concentrations achieved by integration of eq 5.2.1 produces
a solution trajectory in concentration space. All rate vectors evaluated along this
trajectory are tangent to it, and thus PFR solutions move along in the direction of
the vector field. It is shown (Feinberg and Hildebrandt, 1997) that PFR trajectories
serve to act as highways to which the final most states of the AR boundary are
achieved and therefore they assume an important role in the overall optimal AR
structure. In view of this, we find that optimal AR structures usually terminate
in a PFR. PFRs allow one to traverse along the outer most extremities of the AR
boundary, and as a result, play an integral role in optimal AR structures. A col-
lection of PFR trajectories that form part of the AR boundary is often termed a
manifold (Feinberg and Hildebrandt, 1997).

Continuously-Stirred Tank Reactor (CSTR)

The CSTR is one in which the reactor contents is assumed to be perfectly mixed,
and therefore the exit stream of a CSTR is assumed to be identical to that found
inside the reactor. The defining equation is given as

C = Cf + τr (C) (5.2.2)
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CSTRs possess a unique geometric interpretation. If the mixing vector is taken
as C − Cf, then clearly the set of concentrations satisfying eq 5.2.2 must be those
points which are collinear to r (C). Whereas trajectories corresponding to the PFR
are obtained by integration of eq 5.2.1, the locus of points associated with the
CSTR are generally found by the solution of a system of non-linear equations. The
CSTR therefore operates on discrete points in space, and hence there exists an
opportunity for jumps and discontinuities to also occur as a result. Interpretation
of CSTR behaviour in this manner allows for a convenient geometric method for
the determination of CSTR solutions. This is useful for systems involving multiple
steady states. Critical CSTR points are those which reside on the AR boundary.

Differential Side-stream Reactor (DSR)

A DSR may be viewed as a PFR with side-stream addition along its length. The
rate of material addition, α, as well as the concentration of the side-stream, C0, are
allowed to vary along the reactor length. We will assume that C0 remains at a fixed
value in this work however.

dC
dτ = r (C) + α (C) (C0 − C) (5.2.3)

where 0 ≤ α ≤ ∞. Geometrically, the rate of formation of species achieved in a DSR
is determined by the rate of reaction and the mixing vector (C0 − C). The resultant
vector is then a linear combination of the two, and the net direction must therefore
lie within the space spanned by r (C) and (C0 − C). The overall direction may
be steered between the two by appropriate manipulation of the α parameter, and
consequently, its magnitude must be varied in a manner that produces a trajectory
that is able to maximise the set of achievable concentrations. The unique α policy
that allows the DSR trajectory to traverse along the AR boundary is termed a
critical α policy, whilst the DSR corresponding to this policy is termed a critical
DSR.

Construction of the AR using structures containing DSRs is only useful for sys-
tems involving three or more independent reactions, and thus it is sufficient to
describe the AR, involving two or one independent reactions, with combinations of
PFRs and CSTRs only. It follows that systems with two simultaneous competing
reactions may be solved without the use of DSRs.

5.2.2 Necessary conditions of the AR

From the above discussion, it is possible to establish a set of necessary conditions
that the AR must satisfy (Glasser et al., 1987; Glasser and Hildebrandt, 1997); these
are:

• The AR must contain the feed – The feed point is attainable, and therefore it
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must be contained with the set of all achievable points.

• The AR must be convex – A set of achievable points that is not convex can
always be made convex by mixing. Mixing can fill in concave regions and
spaces between two separate, yet achievable, regions.

• All rate vectors on the boundary of the AR must point into, or be tangent, to
the AR – A PFR may be used to extend the region otherwise.

• All rate vectors (or linear combinations of rate vectors) located in the com-
pliment of the AR may not be extended backwards to intersect the boundary
– A CSTR may be used to achieve the given point and therefore extend the
region otherwise.

Currently, there exists no sufficiency condition for the AR. Regions that are produced
that satisfy the above necessary conditions are therefore termed candidate attainable
regions. A number of AR construction methods, suitable for implementation on
computer, have been devised. The interested reader should refer to the works of
Rooney et al. (2000); Burri et al. (2002); Kauchali et al. (2002); Abraham and
Feinberg (2004); Manousiouthakis et al. (2004); Zhou and Manousiouthakis (2006);
Seodigeng et al. (2009); Ming et al. (2010) for further details.

5.2.3 Dimensional considerations

Dimension of the AR

Although it is natural to describe the dimension of the AR in terms of the total
number of species in the system, these are generally not independent, and hence
this approach may be unnecessary. Feinberg (2000b,a) demonstrated that it is usu-
ally possible to recast the AR in a lower dimensional subspace in RL. Here, L is the
number of linearly independent reactions taking part in the system. In addition to
this, given an initial feed concentration and system stoichiometry, the set of attain-
able compositions achieved by reaction and mixing may not violate the conservation
of mass. The AR must therefore be bounded by stoichiometric constraints. This re-
gion is termed the stoichiometric subspace. We denote by S the set of concentrations
stoichiometrically compatible with the feed.

Maximum number of parallel structures

There also exists an upper bound on the maximum number of parallel structures
required by the AR in order to achieve a given state. These bounds hold for both
within the AR, and on its boundary (Feinberg, 2000b), and are a consequence of
Carathéodory’s theorem. The results are summarised below for an AR constructed
in Rn:
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• The maximum number of parallel structures required to achieve any concen-
tration within the interior of the region is n.

• If concentrations on the boundary are to be achieved, the number of parallel
structures is, at most, equal to n− 1.

It follows that the maximum number of parallel structures is equal to the number
of independent reactions in the system. Although it is generally not possible to
determine, a priori, the number or sequence of reactor units that make up a branch
of an optimal AR structure, it is still feasible to obtain an upper bound on the
maximum number of unique parallel structures required by the system. Unless the
objective function intersects the AR boundary at multiple points, it is generally not
a requirement that all optimal reactor structures be used in the optimisation. This
result shall become more meaningful in the examples that are to follow.

5.3 Similarities between batch and continuous reactive
equipment

A note on continuous and batch operation

In the upcoming discussion, we will want to show how the states realized in the
three fundamental continuous reactors used in AR theory can be achieved by batch
equipment. Moreover, we would like to demonstrate that the necessary transform-
ations from continuous to batch can be used in conjunction with the AR to help
guide the design of optimal batch structures. Before we begin our discussion on
the similarities between batch and continuous reactors however, we would like to
highlight a clear difference between the two operating regimes.

Thus, even though we wish to show that it is possible to attain steady state
concentrations in a batch, it is not assumed that steady state itself can ever be
attained. By the very nature of batch processes, this is clearly not possible. Hence,
our outlook here will not be of the view that batch reactors, specifically fed-batch
reactors, can ever be operated in any particular way that is able to reach steady state.
We would, however, like to demonstrate that it is still possible to achieve the specific
concentration associated with that steady state. Certainly, this will require a special
operating regime to achieve (which shall be detailed in the following sections), but
this will always be with the idea that the reactor is operated under batch conditions
- that is, with a distinct cycle time in which the state variables of the batch reactor
(volume, concentration, etc.) do, in fact, vary for the duration of this period. With
this in mind, let us begin our discussion starting with the simplest of cases.
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5.3.1 The standard batch

By standard batch, we have in mind a batch reactor where there is no inflow or
outflow of material during the reaction period. The reactor contents are well mixed,
although, the concentration of species evolves with respect to time. Given an initial
concentration of species, the concentration profile within a standard batch reactor
may be determined by integration of the appropriate rate expression. Thus, we have
for the standard batch

dC
dt = r (C) (5.3.1)

Thus, the solution trajectory obtained by integration of eq 5.3.1 is identical to that
obtained by integration of eq 5.2.1 for the same initial conditions - the initial con-
centration of the standard batch at t = 0 is identical to the feed concentration in a
PFR at τ = 0. The reaction time of the batch replaces residence time of the PFR
as the integration parameter in this regard. As a result, optimal reactor structures
where PFRs form the boundary of the AR may be achieved in batch processes by
running a standard batch reactor with the appropriate reaction time.

5.3.2 Fed-batch reaction

Fed-batch or semi-batch reactors are reactors that allow the feeding of additional
material into the reaction vessel during the reaction period, and may be used to
bias the selectivity of components in competing reactions. Assume that a fed-batch
reactor is available with a side-stream volumetric feed rate of F (F has units of
[volume]/[time]) and a side-stream concentration of C0. It is assumed that F varies
with respect to time whereas the side-stream feed concentration, C0, is constant. A
molar balance for component i over the fed-batch with respect to time results in the
following differential equation

dni

dt = V (t) ri (C) + F (t) c0i

where ni, ri (C) and c0i are the moles of i in the reactor, species rate function and
side-stream concentration of component i, respectively, ,and V (t) is the current
volume of the reactor. Expressing ni in terms of ci by ni = ciV (t)gives

ci
dV
dt + V (t) dci

dt = V (t) ri (C) + F (t) c0i

and recognising that a volume balance over the fed-batch

dV
dt = F (t)

this results in
dci
dt = ri (C) +

[
F (t)
V (t)

] (
c0i − ci

)
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This may be written for each component in the system. The general vector form of
the fed-batch reactor is thus given as follows

dC
dt = r (C) +

[
F (t)
V (t)

]
(C0 − C)

= r (C) + α (C0 − C) (5.3.2)

Where α = F (t) /V (t). Note that eq 5.3.2 is obtained when density and the side-
stream concentration C0 are assumed constant. Such an assumption makes no
difference to the final result however (Feinberg, 2000b).

The properties of fed-batch reactors are such that they may assume several
functions corresponding to the continuous equipment in section 5.2.1. This is more
easily understood by way of an illustrative example. Consider then Figure 5.3.1,
which represents a hypothetical scenario for a number of fed-batch trajectories that
have been plotted in concentration space. We assume that each trajectory is obtained
by the integration of eq 5.3.2 for a unique α policy. The feed conditions for each are
the same and given here by point O, that is, point O represents Cf. The behaviour
for each policy is then given as follows:

Figure 5.3.1: Graphical interpretation for various fed-batch reactor trajectories.

Case 1: α = 0 (A PFR)

The solid curve OP is that of a solution trajectory corresponding to a fed-batch
reactor when α = 0. Point P is therefore the equilibrium point. Clearly, the form
of the fed-batch for this situation reduces to that of eq 5.3.1 for the standard batch,
and thus PQ is also a solution for a PFR with feed composition given by point O.
The analogy between standard batch reaction and PFRs has already been discussed
above, and therefore this case will not be considered further.
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Case 2: α = α (C (t)) (A DSR)

The most familiar method of operation is one in which the feed addition policy is
adjusted throughout the reaction period. Hence, consider now the case when α is
given by a varying profile. Again, eq 5.3.2 may be integrated if an initial condition,
side-stream composition (given by C0) and α policy are supplied. The curve OT
is representative of such a solution where point T is the equilibrium point for this
trajectory. Observe once more that the form of the fed-batch equation is identical
to eq 5.2.3 for the DSR, and identical behaviour may be achieved in the batch by
appropriate interpretation of the α variable as a result.

The set of concentrations belonging to the trajectory OT is thus equivalent to
that obtained in a DSR with feed composition equal to point O, and side-stream
composition given by C0 (not shown in the figure). With similar reasoning to the
standard batch/PFR analogy, residence time in the DSR is replaced by reaction time
in the fed-batch. The value of α in the DSR represents the feed rate with respect to
DSR length, whereas in the batch, α = F/V (the ratio of side-stream addition feed
rate to reactor volume). F (t) and V (t) are determined by integration of the α policy
with respect to time and the differential expression for the volume change, usually
given by dV/dt = F (t). Nevertheless, notice that there is a direct analogue between
fed-batch reactors with varying α policies and DSRs. AR boundary structures that
contain DSR segments are thus easily convertible to an equivalent fed-batch system
as a result.

Case 3: α = constant (A CSTR)

Consider now the particular case when α is maintained at a constant value through-
out the reaction period. Again, if an initial condition and fed-batch addition com-
position are specified, eq 5.3.2 can be integrated for any arbitrary reaction time.
The pair of curves represented by RU and SU are representative solutions for when
α is kept at a constant value of γ1, whereas the pair RV and SV is that which is
obtained when α is kept at a different value given by γ2. Clearly, RU and RV share
the same initial point, given by point R, and points SU and SV share the same
initial condition given by S. For α = γ1, the fed-batch trajectories both terminate at
point U, even though the starting conditions differ, the same behaviour is observed
for α = γ2. All trajectories however (RU, SU, RV and SV), are fed with material of
concentration given by point O.

For a sufficiently long reaction time, the concentration of species within the vessel
approaches equilibrium, and eq 5.3.2 reduces to

0 = r (C) + α (C0 − C) (5.3.3)

End points U and V therefore represent equilibrium points in the fed-batch for a
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constant α policy, and are thus also solutions to eq 5.3.3. For all values of α in the
range 0 < α < ∞, integration of eq 5.3.2 to equilibrium may be carried out with the
fed-batch feed concentration C0 set at point O. The locus of (×) given by the curve
OVUQ represents the set of equilibrium concentrations achieved in the system as a
result.

Clearly, equilibrium concentrations for the fed-batch are equivalent to CSTR
concentrations when the CSTR feed composition, Cf, is equal to point O. This may
be more easily seen by comparing eq 5.3.3 to the form of the CSTR expression given
by eq 5.2.2. The value of α at equilibrium is thus related to the CSTR residence
time by

α =
1

τCSTR
at equilibrium

It follows that all values of α in the range 0 ≤ α ≤ ∞ for fed-batch reactors operating
at equilibrium correspond to the set of CSTRs with residence times between the
range ∞ ≤ τCSTR ≤ 0.

The curve OVUQ in Figure 5.3.1 also corresponds to solutions for a CSTR (with
feed point O), and therefore curve OVUQ is also representative of a CSTR locus.
CSTR compositions can thus be obtained in a batch by operating a fed-batch reactor
at its equilibrium concentration. The particular equilibrium point is defined by the
specific constant α value chosen, which corresponds to a particular CSTR solution
with residence time given by τ = 1/α.

Several observations may be noted for the constant α fed-batch reactor with
relation to a CSTR:

1. Initial conditions

Notice that the equilibrium point in the fed-batch is defined by the value of
α and the fed-batch feed concentration, and is not a function of the initial
condition at t = 0. The choice of initial condition may still be somewhat
constrained, as certain specific instances prevent the designer from choosing
the starting point in a completely arbitrary manner. Details of these are
discussed under point 3.

It follows that equivalent CSTR behaviour may only be achieved in the fed-
batch at equilibrium, and therefore, in order to obtain CSTR concentrations
in a batch system, the reactor must be initiated at the equilibrium conditions.
In practice, this may be achieved by several methods:

• Initially run a small CSTR at the appropriate residence time to produce
the desired equilibrium composition. Then transfer the contents of the
CSTR into a fed-batch.

• Begin at a condition sufficiently close to the desired CSTR concentration
so that equilibrium may be approached during the reaction period.
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• Artificially form the desired CSTR concentration by combining pure
chemicals in the appropriate amounts to achieve the correct equilibrium
composition.

Irrespective of the method employed, this procedure need only be carried out
once at the beginning of the first batch cycle. Once product of the correct
CSTR composition is produced, a portion may be used to seed further fed-
batch cycles; the sequence is self-sustaining as a result.

2. Initial volume

At equilibrium, the concentration of species within the vessel is maintained at
a constant value of C throughout the entire reaction period. Reactor volume
therefore varies without a change in concentration in this instance.

In order to achieve a production rate comparable to that of an equivalent
CSTR, the correct initial volume of material must be chosen. The final batch
volume must allow for an additional small volume V0 for seeding of subsequent
batches. Therefore, the final volume produced in the batch at t = τCSTR

must be equal to the equivalent CSTR volume (VCSTR) and the initial volume
required for successive batches (V0). We thus have

dV
dt = αV

with boundary conditions given by

V (t0) = V0 and V (τCSTR) = V0 + VCSTR

3. Multiple steady states

Multiple steady states are often observed in CSTRs (Gray and Scott, 1983,
1984; Schlosser and Feinberg, 1994). Indeed, even for fairly simple chemistry,
there may exist opportunities to operate at more than one steady state for
a given feed composition and residence time. To this end, fed-batch reactors
may exhibit the same behaviour for an equivalent fixed α policy and side-
stream feed composition. Thus, care must be taken in the choice of equilibrium
concentration applied, as rather different outcomes in performance may arise,
even when the correct optimal structure belonging to the AR is enforced.

4. Dynamic behaviour of DSRs and fed-batch reactors

Observe that the system of differential equations described by eq 5.3.2 con-
tains equilibrium points associated with solutions to eq 5.3.3. These points,
often termed fixed points, are time-independent solutions that provide mean-
ingful information into the dynamical behaviour of the system. The stability
of fixed points is often distinguished by examination of the eigenvalues of the
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Table 5.1: Summary of fed-batch operating parameters.

Continuous structure PFR DSR CSTR
Initial condition C (0) = Cf C (0) = Cf C (0) = CCSTR
α policy α = 0 α = α (t) α = constant
Side-stream composition 0 C0 Cf
Volume V = constant V (t) = F (t)/α (t) V (t) = F (t)/α
Reaction time tf = τPFR tf = τDSR tf = free

Jacobian matrix of the system (Strogatz, 2001). These are classified as either
stable, if all real parts of the eigenvalues are negative, or unstable, if at least
one eigenvalue has a positive real part, or if there are multiple zero eigenval-
ues. The stability and position of the fixed points in state space influence the
dynamical behaviour of the system, and thus also influence the choice of ini-
tial condition – nodes associated with unstable equilibrium points may exhibit
chaotic behaviour and unstable operation. Furthermore, depending upon the
feed condition and kinetics specified, multiple steady states may arise, and thus
the stability of each equilibrium point should be considered in turn. Again,
the initial condition of the fed-batch should be considered carefully to ensure
that the desired equivalent CSTR behaviour is maintained.

5. Solution

It is evident that CSTR solutions may be obtained in a fed-batch reactor by
use of a constant α fed-batch, however the method of obtaining these solutions
is different. A CSTR solution is obtained by solving a system of non-linear
equations, in the form of the vector CSTR equation. Hence, a non-linear solver
such as Newton’s method must be employed. Graphically, a CSTR effluent
concentration is collinear with the rate vector. By comparison, the same con-
centration is obtained in a fed-batch by integrating eq 5.3.2 to equilibrium.
Hence the solution obtained is via the numerical integration of an ordinary
differential equation, such as with a Runge-Kutta method. Graphically, the
same concentration corresponds to a point in concentration space where the
dC/dt term in eq 5.3.2 is the zero vector in the vector field described by eq
5.3.2.

A comparison between continuous and batch equipment is given in Figure 5.3.2,
with defining parameters required by the fed-batch reactor summarised in Table
5.1. These serve as a convenient point of reference for the examples below.
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Continuous Batch

Fed-batch

Standard batch

Fed-batch

Figure 5.3.2: Comparison between continuous and batch reactive equipment. All
three continuous reactors required to form the AR boundary may be likened to an
equivalent batch structure.

5.4 Examples

5.4.1 2D autocatalytic reaction

System kinetics and feed point specification

Consider the following autocatalytic system(Brooks, 1988)

A + 2B k1→ 3B

B →
k2

C

with rate constants k1 = 1L2/
(
mol3h

)
and k2 = 1 h−1. A reaction of this type

is found to be of interest in a number of applications including the production
of industrial chemicals (Maestri and Rota, 2007; Xu et al., 2014), crystallisation
reactions (Subotic, 1989; Kondepudi and Asakura, 2001) and biological systems
(Putot et al., 2002; Watzky et al., 2008).

From section 5.2, the system contains two independent reactions and hence the
entire system can be constructed in R2 alone. The resulting rate vector is then
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expressed in terms of components A and B, and given by the following kinetics

r (C) =

[
rA (C)

rB (C)

]
=

[
−k1cAc

2
B

k1cAc
2
B − k2cB

]

The objective here will be towards finding the appropriate batch sequence that
maximises the concentration of component B in a batch cycle. This shall be achieved
by first constructing the AR for a continuous system, and then carrying out the
necessary conversions to establish an optimal batch structure. Brooks (1988) notes
two observations of particular interest:

1. Multiple steady states are achievable depending on the feed concentration
specified. In particular, this occurs when c0A > 1 > c0B.

2. A higher concentration in B may be obtained if a period of standard batch
reaction is employed directly after the initial fed-batch period.

The resulting maximum concentration achieved is then found to be larger than
both a standard batch or fed-batch operation alone. The above recommendations
correspond to those obtained by AR analysis also. To see this, we begin by first
computing the AR for a specified feed condition. A composition of Cf = [5.0, 0.25]T

has been chosen here so that it is consistent with the condition c0A > 1 > c0B, and
as a result, the system is expected to contain multiple steady states according to
Brooks (1988).

Multiplicity features

Solving the CSTR equation using Cf = [5.0, 0.25]T and plotting the resulting con-
centrations as functions of CSTR residence time demonstrates the existence of mul-
tiple steady states in the system. The residence times corresponding to these points
are easily computed from eq 5.2.2, and shown in Figure 5.4.1a along with supple-
mentary plots demonstrating the multiplicity features of the system. Indeed, it is
clear that for the specified feed point, multiple CSTR effluent concentrations are
available for specific residence time ranges - from Figure 5.4.1a, it appears that val-
ues of τ other than those in the range of ∼ 1.0 h ≤ τ ≤∼ 2.2h produce multiple
steady states. Knowledge of these residence times is important as a CSTR solution
operating on the AR boundary corresponding may be associated with other points
in space sharing the same residence time.

We highlighted previously that multiple steady states are only produced for
specific values of the initial species concentrations feeding the CSTR. Figure 5.4.2
demonstrates the effect that the feed point plays in the existence of multiple steady
states by plotting nine different feed points and their associated CSTR loci in cA−cB

space. These plots are inspired from similar work by Balakotaiah and Luss (1982,
1983, 1984). Feed points are given by the filled triangles whereas the CSTR locus in
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(a) Concentration profiles for A and B.

(b) Concentration profile in R3

(c) Multiple conversions of A are possible in the system.

Figure 5.4.1: Multiplicity features of the autocatalytic reaction of Brooks (1988)
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Figure 5.4.2: CSTR loci for different feed points

each sub-figure is denoted by ×’s. The species feed concentrations for components
A and B are chosen at three distinct points, namely 0.25mol/L, 1.0mol/L and
5.0mol/L for each axis respectively. Observe that irregularities in the shape of the
locus are observed as the value of cA is increased and the value of cB is decreased,
which corresponds to Brooks (1988).

AR generation and optimal reactor structure

Seeing as the particular feed condition is expected to exhibit irregular behaviour, it is
sensible to begin by choosing an AR construction technique capable of handling such
kinetics. An outside-in method is a preferred method in this instance, and so either
the bounding hyperplanes or rotated hyperplanes algorithm may be utilised. In this
instance, we elect the rotated hyperplanes method as constructions are generally
performed quicker.

Consequently, Figure 5.4.3a shows the resulting output from running the rotated
hyperplanes algorithm for the system of reactions described above together with the
particular feed point associated with multiple steady state behaviour. The hyper-
planes have been included in the plot to indicate how they have been orientated
in space to define the AR. We find that there is a maximum concentration of ap-
proximately 3.9mol/L in B can be achieved in the system with the specific feed.
The locus of CSTR points (×) belonging to the feed point for the system is overlaid
for comparison. The CSTR locus is of particular interest, as it forms an almost
completely closed loop within the space.
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(a) AR construction from the rotated bounding hyperplanes method de-
veloped in chapter 4. The CSTR locus (×) belonging to the feed point
has also been overlaid.

(b) PFR trajectories (–) and the CSTR locus (×) for the autocatalytic
reaction given by Brooks (1988). A feed vector of [5.0, 0.25]T has been
used. The CSTR locus produces a separate region is space that may be
used to achieve higher concentrations of component B. Point R corres-
ponds to the point of maximum B for a PFR whereas Q is obtained by a
CSTR-PFR structure that is part of the AR boundary.

Figure 5.4.3: AR and optimal reactor structures for the autocatalytic reaction of
Brooks (1988)

133



5.4 Examples D. Ming

In Figure 5.4.3b optimal reactor structures, corresponding to interesting sections
of the AR, are shown. The PFR trajectory and CSTR locus beginning at the
feed point have been plotted. Figure 5.4.3b also establishes all physically realisable
concentrations achieved by mixing and reaction; that is, the shaded region represents
the AR for the chosen feed point. This is obtained by computing the convex hull of all
points resulting from a CSTR with feed concentration (point O), followed by a PFR
to equilibrium. The CSTR-PFR sequence is thus the optimal reactor structure for
the proposed AR. It follows that this is the only structure required in order to achieve
all other physically realisable concentrations in the space. Of particular interest is
point P, which provides the unique CSTR concentration that, when followed by a
PFR, maximises the concentration of component B in the system; this occurs at
point Q (cB ∼ 3.9mol/L). The corresponding CSTR residence time is then found to
be 0.18367h accordingly. Point P therefore corresponds to a critical CSTR point. All
concentrations on the line segment OP are thus obtained by a CSTR with bypass
of a portion of the feed. These results are in agreement with those suggested by
Brooks (1988) for the batch case, where it is observed that a higher concentration
in component B may be achieved if a standard batch is employed directly after the
fed-batch period. This is displayed in the figure by the PFR trajectory PQ. Point
R by comparison, is the point of maximum B for a single PFR initiated at the feed
composition found at point O.

Nomenclature adopted by Brooks

Brooks (1988) discusses a strategy for reaction by initiating the cycle in fed-batch
operation, and then terminating the cycle by charging the vessel with the remainder
of feeding material in the form of a final feeding ‘plug’. This converts the fed-batch
into a standard batch, creating a fed-batch to standard batch reactor structure
similar to the that obtained by AR analysis. When this is performed, Brooks (1988)
notes that the concentration of B is higher than if standard batch operation is
employed for the entire reaction cycle.

In order for comparisons to be made with the current work, a consistent set of
quantities for concentration and reaction time need to be established. Brooks (1988)
works with dimensionless concentrations in the form

x =

(
k1
k2

)1/2

cA y =

(
k1
k2

)1/2

cB

Note that x = cA and y = cB when k1 = 1L2/
(
mol3h

)
and k2 = 1 hr−1, as is the

case here. Brooks (1988) also assumes the fed-batch is operated under a constant
feeding rate (F = const). A volume balance over a fed-batch assuming constant
density gives

dV
dt = F
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which, upon integration, gives an expression for V in terms of F and reaction time t

V (t) = V0 + Ft

V0 is the initial volume of the fed-batch. To find an expression for residence time τ

comparable with the current results, we invoke the definition of residence time using
the total reactor volume and feeding rate. Rearrangement gives

τ = V/F

=
V0

F + t

This is a linear function in terms of residence time. The inverse of this is hence the
equivalent expression for α

α =
1

V0/F + t

Brooks (1988) provides a dimensionless residence time, given by

Γ = k2

(
V0

F + t
)

The author also assumes V0 = 0L. We have a one-to-one relation for residence time
and reaction time in the fed-batch

Γ = τ = t and α = 1/t (5.4.1)

Dimensionless concentration profiles for x and y in terms of Γ are then given in
(Brooks, 1988). The above transformations are utilised in order to compare the
results presented here with the literature, which is discussed next.

Conversion from continuous to batch

Once the AR and its associated continuous structure have been formed, the task
of converting to an equivalent batch system is straightforward. The CSTR-PFR
structure required for continuous reaction is interpreted as follows:

1. A fed-batch reactor with constant α policy for the CSTR portion of the struc-
ture

2. Followed by a period of standard batch reaction for the PFR.

The distinct value for α is given by the associated residence time and equilibrium con-
centration of the CSTR. Hence, for a residence time of 0.18367h, α = 1/0.18367h−1.
Prior to performing the reaction however, the desired concentration at point P must
first be prepared. This is carried out using the suggested procedures discussed in
section 5.3.2. Since concentrations within the vessel do not vary with time during the
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fed-batch portion of the cycle, reaction time is somewhat arbitrary, although, it is
clear that the rate of filling (governed by the value of α) and the final desired volume
are important parameters when deciding on the reaction time. We have used the
familiar boundary condition when t = τCSTR, V = VCSTR + V0 as in section 5.3.2.

For the standard batch component of this structure, reaction time is determined
by the residence time of the PFR. It is found that a PFR residence time of 0.2140 h
is required in order to react from point P to point Q and therefore the same period
is required by the standard batch. Reaction time is determined directly by the
residence time of the PFR in this case.

Conversion from a continuous structure to an equivalent batch structure is now
complete. The resulting sequence of batch operations is given by Figure 5.4.4.

(Point O)

(Point P) (Point Q)

(a) Recommended continuous structure. A CSTR from the feed
(point O) followed by a PFR.

Fed-batch
(CSTR)

Standard 
batch

(b) Batch structure. The cycle begins with a constant α fed-batch
period initiated at the critical CSTR effluent composition (given
by point P), followed by a standard batch period.

Figure 5.4.4: Comparison of continuous (a) and batch (b) structures for the
autocatalytic reaction in R2. Only a single structure is required for this system.
Notice that the structure terminates with a PFR in the continuous case, and a
standard batch period for the batch. This is in agreement with the suggested final
batch period recommended by Brooks (1988).

It is also possible to operate the entire sequence within a single reaction vessel.
By comparison, an equivalent approach would be difficult to achieve in a single
continuous reactor. Hence, from an initial volume and CSTR concentration, the
cycle might begin, say, with a period of fed-batch operation and allow for the reaction
to proceed until the desired product volume has been obtained. Batch reaction could
then be initiated afterwards by terminating the side-stream feed to the reactor. The
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α policy and concentration profile of component B for this process is given by Figure
5.4.5a and 5.4.5b respectively. The recommended α policy is fairly simple in this
instance, and involves a period of constant side-stream addition for approximately
0.2h, followed immediately by a longer period with no additional side-stream feeding
(the point of maximum B occurs at t = 0.3977 h). The total cycle time is then
τCSTR + τPFR. The equivalent α policy for the recommendations by Brooks (1988)
are shown in Figure 5.4.5a. Whereas the value of α is constant in this work, that of
Brooks (1988) is a non-linear function given by α = 1/t from eq 5.4.1.

Results and comparison to literature

The concentration profiles belonging to Brooks (1988) are given by unfilled circles.
The sudden decline and subsequent rise in cB at t = 3 h corresponds to the period
when the fed-bath period is terminated and the standard batch is initiated. Notice
that the fed-batch to standard batch sequence is identical in structure this work,
however the maximum concentration of B is only slightly larger than the standard
batch (3.43mol/L compared to 3.24mol/L), whereas that given by the AR is larger
3.90mol/L then both.

The concentration profile corresponding to a standard batch for the same feed
point is provided for comparison. It is observed that a higher concentration is
achieved in the fed-batch when compared to the standard batch. Moreover, the
time required to achieve maximum concentration in the standard batch is notice-
ably longer when compared to that of the fed-batch-standard batch sequence (2.128h
compared to 0.3977 h); the production rate of the recommended structure is approx-
imately five times faster compared to the standard batch as a result. The maximum
value corresponding to point Q is that belonging to the AR boundary, and a higher
value in cB is not possible with a change the side-stream or feed point concentra-
tion. Both the maximum concentration of B and optimal batch structure have been
identified via AR theory.

Hansen et al. (1993) also studied the above reaction and investigated the optimal
feeding profile for the generalised reaction

A + nB → (n+ 1)B

mB → C

The above is identical to the system considered here when n = 2 and m = 1. The
authors employ Pontryagin’s maximum principle and solve for optimality conditions
to find singular arcs in the feeding profile. Specifically, a final time-independent
performance measure of maximum concentration of B is used in the analysis. Hansen
et al. (1993) investigate the case when n = 2 and m = 1 and compute optimal feeding
trajectories for the same feed point used here. Noticeably, the authors state that
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Table 5.2: Performance comparison for autocatalytic reaction

Author Max cB
obtained

Optimal structure Methodology/Reason

Brooks (1988) 3.4mol/L Decreasing α
policy fed-batch
followed by
standard batch
(constant F).

Exploiting structure of
fed-batch equations.
Observed higher
concentrations when
standard batch is
employed directly
afterwards.

Hansen et al.
(1993)

3.89mol/L Singular control
(increasing F
policy) fed-batch
followed by
standard batch.

Pontryagin’s maximum
principle. Structure from
switching policy of
optimality conditions.

Present work 3.90mol/L Constant α policy
fed-batch followed
by standard
batch.

Attainable Region
analysis. Structure from
AR construction.

1. The optimal profile is composed of a combination of singular and non-singular
profiles in the feeding policy.

2. The switching sequence for the feeding profile is

(a) first a period of fed-batch reaction, corresponding to a singular feeding
rate belonging to the optimality condition

(b) followed by a period of batch operation.

Hansen et al. (1993) also note that, typically, a non-singular arc is used to bring the
conditions to the singular point, at which time singular control takes over. A final
batch period is used afterwards to reach the performance index. This describes a
reaction sequence identical to that suggested by the AR construction. Notice that
in the case of AR analysis, the singular point is identified as point P on the AR
boundary in Figure 5.4.3b (the critical CSTR point). The period of batch operation
following this singular point corresponds to the PFR trajectory from the critical
CSTR point and thus both methods are in agreement with one another even though
the recommendations have come about from two independent theories.

Solution of the optimal control problem by Hansen et al. (1993) corresponds to a
single point on the AR boundary. Hence, points on the AR boundary can be found
from optimal control arguments, but many different optimisations must be solved in
order to generate the AR boundary. Table 5.2 summarises the performance achieved
by the different methods.

The correct sequencing and timing of individual batch operations is important,
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(a) α policy for the combined fed-batch to standard batch system. The
profile is composed of two sections, a constant value (α = 1/0.18367h−1)
corresponding to the critical CSTR portion of the structure, and a period
of no filling (α = 0) corresponding to the final PFR section.

(b) Concentration of component B achieved by the batch cycle obtained
from the AR compared to that achieved by a standard batch initiated at
the feed concentration. The initial constant concentration profile for the
fed-batch corresponds to the CSTR concentration given by the continuous
AR structure. The reaction time for the AR structure is shorter and
achieves a higher concentration in B compared to the standard batch.

Figure 5.4.5: Recommended α policy (a) and associated concentration profile of
component B (b) for the autocatalytic system.
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and reaction time is a central parameter in this regard. In contrast to batch equip-
ment, continuous structures require the adequate ordering of equipment through
space. Hence for continuous equipment, reactor volume (or residence time) is the
important parameter.

Stability and dynamic behaviour

The appropriate choice of initial condition for the CSTR concentration is an import-
ant consideration when dealing with the dynamic behaviour of both continuous and
batch operation. To see this, consider again the CSTR locus given in Figure 5.4.6.

Figure 5.4.6: DSR map for the autocatalytic system generated for an α value corres-
ponding to the critical CSTR residence time (α = 1/0.18367h−1). Three equilibrium
points associated with this value of α are observed (given by white triangles). Points
P and Z lie on the CSTR locus representing stable nodes (×). Equilibrium point Y
lies on the section of the locus associated with unstable nodes (unfilled circles). The
solid circles are locus points associated with a stable focus. The trajectory ZUV is
obtained by a PFR initiated with a concentration from equilibrium point Z.

As in Figure 5.4.3b, the AR and CSTR concentrations have been plotted in
cA − cB space. The graph also shows points on the locus corresponding to solutions
to eq 5.2.2 for when τ = 0.18367h (the CSTR residence time associated with the
critical CSTR), given here by points P, Y and Z. Note that points O and P are
the same point as those given in Figure 5.4.3b. DSR trajectories corresponding to
this residence time for a variety of feed points have also been plotted, allowing for
the determination of the DSR map for the specified α in space – for each value of
α specified, a unique DSR map may be generated, providing information regarding
the dynamic behaviour of DSRs in space. The path traced out by the CSTR locus
therefore represents the set of equilibrium points achieved by the DSR for various
values of α. Points P, Y and Z are thus also the distinct equilibrium points associated
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with the unique fed-batch reactor for when α = 1/0.18367h−1.
The CSTR locus is represented differently in this figure. Here, it is generated

by examination of the eigenvalues corresponding to the Jacobian matrix, J, for this
system

J =

[
−α− k1c

2
B −2k1cAcB

k1c
2
B −α+ 2k1cAcB − k2

]
The CSTR locus may be classified according to the following three stability criteria

1. Sections of the locus displayed by filled circles are those which represent a
stable focus (complex eigenvalues, negative real part).

2. Crosses indicate stable nodes (real eigenvalues both negative in sign).

3. Unfilled circles correspond to saddle points (real eigenvalues, differing in sign).

Notice that points P and Z lie on sections of the locus that are stable, and are
therefore stable equilibrium points, whereas point Y is a saddle point. It is clear from
the figure that depending on the initial concentration chosen for a fed-batch, one
may achieve significantly different outcomes. Although three fed-batch equilibrium
solutions exist for the intended residence time, only two are physically realisable.

If an initial concentration equal to point S is chosen, then the fed-batch trajectory
follows the curve SP and the equilibrium point achieved is that of point P (the critical
CSTR point for the AR). Accordingly, a period of standard batch operation following
from point P results in the full set of concentrations achieved corresponding to the
AR. By comparison, if an initial concentration equal to point T is used instead, then
the fed-batch trajectory follows curve TYZ. For this initial condition, the trajectory
begins at point T, approaches unstable node Y, and then diverges sharply towards
stable node Z. Point Z is thus the equilibrium point for the initial concentration given
by point T and corresponds to an alternate CSTR solution for the chosen residence
time. Consequently, a period of standard batch operation following from point Z
results in the smaller achievable region instead, given by curve ZUV. The set of
achievable concentrations obtained by this outcome is noticeably smaller than that
given by the full AR. This is in effect despite selecting conditions that correspond
to the correct, and optimal, CSTR-PFR structure for identical residence times. If
the feed point were to be used as the initial concentration for this problem, then
the fed-batch would have converged to the incorrect equilibrium concentration, and
the actual product achieved by the batch sequence would differ to that suggested
by the continuous structure. Again, care must be taken when selecting the initial
condition for constant α fed-batch operations. Although it may seem convenient to
use the feed concentration for example, multiple steady states and instability might
interfere with the fed-batch equilibrium achieved, even for situations in which the
structure has been determined correctly.
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5.4.2 3D van de Vusse kinetics

System specification

Next, we shall examine the nature of the optimal batch structure for the well-known
van de Vusse reaction scheme. Consideration of this system will demonstrate the
role that DSRs, and by extension, the role that fed-batch reactors with varying α

policies play in the formation the AR boundary. The system is composed of three
independent reactions, that is,

A k1→ B k2→ C

2A →
k3

D

Although four species are present, only three are independent, as the fourth may be
determined by mass balance. The rate expression follows mass-action kinetics and
may be written in terms of components A and B by the following rate vector

r (C) =

−k1cA − 2k3c
2
A

k1cA − k2cB

k3c
2
A


The associated rate constants are then given as k1 = 1h−1, k2 = 1h−1, k3 =

10L/ (mol · h). Historically, the associated AR has been determined in cA − cB − cD

space, so that the concentration vector may be expressed as C = [cA, cB, cD]
T. We

specify that the feed is pure in component A, in which case Cf = [1, 0, 0]T.
Construction of the AR for the above problem has been discussed in previous

work, and the optimal structure is well understood (Hildebrandt and Glasser, 1990;
Feinberg and Hildebrandt, 1997). As a result, we are able to utilise the previously
developed results and apply them here with very little added effort, so that the
development of an equivalent batch structure may be carried out. A brief summary
of the construction procedure for the system is provided below for completeness.

Optimal continuous structure

Only the feed point is achievable initially. As with many AR construction problems,
it is most natural to begin by considering single reactor structures that expand the
initial set of achievable points from the feed. The simplest method of achieving this
is by computing the PFR trajectory and CSTR locus from Cf. This is equivalent to
the procedure performed for the 2D van de Vusse system in chapter 5.

PFRs and CSTR locus from the feed PFRs make up the final approach to
the extremities of the AR boundary and thus it is helpful to include PFR segments
as the final reactor to all structures. In effect, we wish to generate the convex
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Figure 5.4.7: Convex hull of the CSTR-PFR reactor structure from the feed. Note
that this is not the full AR for the 3D van de Vusse system.

hull for a CSTR followed by a PFR in series from the feed point. This is achieved
algorithmically by first solving the CSTR equation and generating a CSTR locus
that may be used as feed points for PFR trajectories. CSTR effluent concentrations
act as initial conditions for the PFR integration. For N CSTR points generated in
the locus, N PFR trajectories may be computed. These points are then appended
to the existing set of achievable concentrations and the convex hull for the larger set
may again be computed. The results of which are shown in Figure 5.4.7.

The region generated represents a significant portion of the true AR, although it
is incomplete(Feinberg and Hildebrandt, 1997). Structures involving critical CSTRs
and DSRs are still missing. Ideas developed in chapter 2 are used next to expand
the region.

Critical CSTRs It is conceptually and computationally easier to begin expansion
of the region by consideration of critical CSTRs first. This is initiated by computing
the controllability conditions for a critical CSTR, as discussed in chapter 2. Note
that determining the behaviour of critical CSTRs and DSRs requires that the full
dimension of the system (that is, all components as opposed a subset) be considered
- to compute the determinant function, Λ (C), for this system (see chapter 2), a
rate vector containing the total number of components present in the system must
be considered. Therefore a four component variant of the rate vector given above
is utilized, rather than the typical three component rate vector given above. The
original rate vector is hence augmented with the rate expression corresponding to
component C in the system, and the following rate vector is obtained:

r# (C) = [rA (C) , rB (C) , rC (C) , rD (C)]T
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=


−k1cA − 2k3c

2
A

k1cA − k2cB

k2cB

k3c
2
A


We use rate vector r# (C) to differentiate it from the standard rate vector r (C) con-
taining only 3 components. Similarly, the Jacobian matrix, J# (C), corresponding
to r′ (C) may be computed

J# (C) =


−k1 − 4k3cA 0 0 0

k1 −k2 0 0

0 k2 0 0

2k3cA 0 0 0


Thus for the van de Vusse system, the determinant function is given by:

Λ (C) = −3.5c3Ak2k3 (2cAk3 + k1)
(
2c2Ak1k3 − 4cAcBk2k3 − cAk1k2 − cBk1k2 + cBk

2
2

)
The level sets of function Λ (C) describe surfaces in R3. The particular level set
when Λ (C) = 0 is of interest here since critical CSTRs must satisfy this condition
specifically – for a CSTR effluent concentration to exist on the AR boundary, the
associated CSTR locus must intersect the surface described by Λ (C) = 0. CSTR
effluent concentrations may be substituted into Λ (C) to determine if the point is a
solution to the function. If a CSTR effluent concentration C is a root of Λ (C), then
C must exist on the AR boundary. Since the CSTR locus at the feed point has been
solved previously, substitution of the locus values into Λ (C) may be carried out in a
straightforward manner. Each CSTR solution is associated with a unique residence
time. It is hence sensible to graph the values of Λ (C) as a function of τ . Thus,
instead of computing Λ (C) as a function of C to obtain a surface in R3, we plot
Λ (C (τ)) versus τ , where τ is the corresponding CSTR residence time associated
with C. This produces the 2D plot, given in Figure 5.4.8.

A root of Λ (C) exists time near τ ∼ 36.7 s in the range of 0 to 300 s. The
value of Λ (C) also appears to approach zero as the value of τ is increased. This
suggests that the equilibrium CSTR point is also a critical CSTR point. The curve
in Figure 5.4.8 thus suggests that there are two concentrations that lie on the AR
boundary. The remainder of the CSTR locus does not lie on the boundary and
these concentrations are hence not optimal. PFR trajectories initiated from the
CSTR locus not associated with the two critical CSTR solutions therefore also do
not form part of the manifold of PFR trajectories on the true AR boundary. Other
structures must therefore exist that constitute the AR boundary. The only remaining
fundamental reactor structure available is the DSR.
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Figure 5.4.8: The determinant of the controllability matrix from section 2.4.4 as
a function of CSTR residence time from the feed point. Two roots exist: one at
τ ∼ 36.7 s and the other at the CSTR equilibrium point.

Critical DSRs The form of the critical α policy for the DSR is generalized and
therefore potentially many different α policies may be computed that all conform
to the controllability criteria for critical DSRs . As noted in chapter 2, side-stream
concentrations C0 used in a critical DSR must originate from points on the AR
boundary. This assists in refining the possible concentrations available to act as
side-stream compositions. Since the feed point is always specified and included on
the AR boundary, we often use C0 = Cf for convenience.

A critical DSR profile for the system may now be computed. Since the system
under investigation is a three dimensional problem, two possibilities are available
for computing the critical α policy for the system:

1. The controllability criterion for the system may be applied, by computing
iterated Lie brackets as in chapter 2.

2. The ‘vDelR’ condition, specific to three dimensional problems, also discussed
in chapter 2 may also be employed.

Often for 3D problems, the second approach is quicker and so this will be done here.
The condition is reproduced below

φ (C) = [J (C) (C0 − C)]T [(C0 − C)× r (C)]

and
α (C) = − [∇φ (C)]T r (C)

[∇φ (C)]T (C0 − C)
(5.4.2)

The resulting generalised expression for the van de Vusse system is too large to
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display in terms of all system variables alone. Numerical values for the kinetic con-
stants and mixing point may be substituted into eq 5.4.2 to simplify the expression
slightly. The expression given in Feinberg (2000b) is then obtained.

α (C) =
1

2

[
cA

(
20cA

3cB − 80cA
2cB − cA

2 + 37cAcB + cA + 2cB
)

cB (cA2 − 2cA + 1)

]
(5.4.3)

Note that eq 5.4.3 is specific to the feed point C0 = Cf = [1, 0, 0]T and the values
of the rate constants given at the beginning of the example. If different conditions
are used, eq 5.4.2 must again be employed and simplified for the new α expression.

Initial conditions for the DSR are next considered. It is intuitive to initiate a
DSR from the feed point. The DSR expression is thus integrated together with the
critical � policy provided previously to produce a DSR trajectory. We note that eq
5.4.3 is undefined at C = C0. Hence, to initiate the integration, the initial condition
for the DSR is offset slightly from feed point value. Hence, an initial condition of
Cf = [0.9999, 0.0001, 0]T is supplied as opposed to [1, 0, 0]T. The DSR equation
is then integrated together with eq 5.4.3 over a sufficiently long integration time.
The resulting profile is given in Figure 5.4.9a. The convex hull corresponding to this
candidate is not shown here so that the underlying boundary structures are more
easily identified.

This produces a critical DSR trajectory in space. Note that although the DSR
trajectory appears to behave in a similar fashion to the CSTR locus, the sets of
concentrations produced by the two are distinct. All of the points on the critical
DSR trajectory lie on the AR boundary. PFR trajectories in series with the DSR
will therefore serve to fill out a manifold of extreme points on the AR boundary.
These trajectories are also displayed in the figure.

It is interesting to note that the critical DSR trajectory obtained in Figure 5.4.9a
terminates at an intermediate point near CSTR locus. This is labelled as point B in
Figure 5.4.9a. The second critical CSTR solution located at the equilibrium point
does not appear to intersect the DSR trajectory. Since the AR boundary is composed
of PFR trajectories connected by critical CSTRs and DSRs, a portion of the AR
boundary is missing that joins the two critical CSTR points obtained previously
together. Additional DSR structures must exist that connect the two critical points
together that are not currently associated with the proposed structure.

To identify the other critical DSR, a bit of deduction is necessary: Since the
feed point Cf has already been utilized as an initial condition to the critical DSR
that passes through one of two critical CSTR points (the DSR equilibrium con-
centration is at the critical CSTR concentration), the only critical concentration
available is that of the other critical CSTR point obtained at the CSTR equilibrium
concentration.

Accordingly, to complete construction of the AR boundary, another DSR tra-
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(a) Unfilled candidate region for the 3D van de Vusse system including a
critical DSR trajectory from the feed point.

(b) AR for the van de Vusse system in R3. The mixing points for both
α policies have been approximated arbitrarily closely. Mixing lines have
been excluded from the construction so that the optimal continuous struc-
tures are more clearly visible. DSR trajectories are given by solid green
lines, the CSTR locus from the feed point (point A) by blue circles, and
PFR trajectories by dashed black lines.

Figure 5.4.9: Optimal reactor structures for the 3D van de Vusse system
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jectory is initiated at the CSTR equilibrium point. When this is performed, the
resulting critical DSR trajectory is different to that initiated at Cf: the trajectory
appears to connect the two critical CSTR concentrations together. This second DSR
trajectory is a further connector on the AR boundary. PFR trajectories are again
initiated from critical DSR trajectory to fill out the remaining bottom portion of the
AR boundary. This is serves to complete construction of the AR boundary for the
3D van de Vusse system. All reactor structures forming the AR boundary is given
in Figure 5.4.9b.

A summary of the optimal structures is thus given as follows:

1. Structure 1: A DSR from the feed vector (point A) to equilibrium (point B)
followed by a PFR to equilibrium (point C). This fills out the first part of the
AR boundary (path ABEC).

2. Structure 2: A CSTR operating at its equilibrium (point D), followed by a
DSR at equilibrium (point B) and then a PFR. The unique PFR trajectory
BEC that passes through point E is the point of maximum concentration in
component B. This fills out the underside of the AR boundary (path DBEC).

The kinetics exhibit three independent reactions and hence, at most, two parallel
reaction schemes are required to achieve all concentrations on the AR boundary.
Combination of these two reactor structures alone allows for the synthesis of every
possible concentration for every possible reactor configuration imaginable. A dis-
tinct choice must be made between the two depending upon the desired final state.
Different optimizations may now be carried out to identify points where the AR
boundary and objective function intersect. Once these intersection points have been
established, the appropriate optimal reactor structures may be employed to achieve
the points of interest. Notice that the above structures are consistent with what it
expected from the theory discussed in chapter 2:

• The AR is convex.

• DSR trajectories and CSTR critical points form connectors to a manifold of
PFR extreme points.

• The boundary of the AR is composed of straight line sections (indicating mix-
ing) and PFR trajectories only. The final approach to all reactive portions of
the boundary is achieved via a PFR.

This concludes the AR construction for the 3D van de Vusse kinetics. Notice that
the inclusion of critical CSTRs and DSRs complicates construction, but these are
required in order to generate the true AR.
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Conversion to batch

For this example, the AR is defined by two parallel continuous structures. It follows
that we require, at most, two batch structures to achieve all points on the AR
boundary. Figure 5.4.10 provides the necessary conversion from continuous to batch.
Again, a one-to-one correspondence between batch and continuous equipment is
observed. In both cases, fed-batch reactors with varying α policies are seen to
contribute significantly to the overall set of achievable concentrations.

The following batch cycles are required (Figure 5.4.10b):

• For structure 1, a fed-batch reactor followed by a period of standard batch
reaction. This is provided by path ABEC in Figure 5.4.9b.

• For structure 2, three distinct reaction intervals are needed, two of which
are fed-batch operations. The cycle is initiated with a period of constant α,
followed by a non-constant α interval, and completed with a period of standard
batch reaction. This is given in Figure 5.4.9b by the path DBEC.

Again, as these structures are analogous to the original continuous equipment, both
may be used to achieve point E. Unless one is interested in achieving concentrations
along the unique PFR trajectory BC, reduced segments belonging to structures 1 and
2 such as those of AFG and DHI can be used. For concentrations occurring within
the region however, combinations of these structures along with mixing between
them may be used.

Effect of different objective functions

Now that the AR and its associated batch structures have been determined, optim-
isation for a number of scenarios may be investigated. Suppose that it is desired
to achieve the maximum amount of intermediate component B. By the above dis-
cussion, both structures in Figure 5.4.10 pass through point E and therefore both
may be used to achieve maximum B. Suppose, instead, that we wish to limit the
formation of component D to a maximum value of 0.3mol/L whilst still achieving
maximum B. This point must lie on the intersection of the AR boundary and the
plane described by cD = 0.3mol/L; this is obtainable by structure 2 (given here
by Figure 5.4.11). By comparison, assume that it is decided to find the maximum
amount of B for cD = 0.4mol/L instead. We find that structure 1 is now required,
and thus the nature of the batch cycle is different. Both of these scenarios how-
ever, are contained within the structure of the AR. The AR is composed of at most
two unique structures, and as a result, all concentrations on the boundary may
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Structure 2

Structure 1
(Point A) (Point B) (Point C)

(Point A)
(Point D) (Point B) (Point C)

(a) Optimal continuous structures. Structure 1 is given by a critical DSR to
equilibrium (point B) followed by a PFR to point C. Structure 2 is given by
a CSTR operating at the equilibrium concentration (point D), followed by a
critical DSR to point B, and completed with a PFR. For both structures, the
DSR side-stream composition is given by the feed point concentration.

Structure 2

Structure 1

Fed-batch
(CSTR)

Fed-batch
(DSR)

Standard 
batch

Fed-batch
(DSR)

Standard 
batch

(b) Optimal batch structures. The batch cycle for structure 1 begins with a
varying α fed-batch initiated at the feed concentration and ends with a stand-
ard batch period. Structure 2 begins with a constant α fed-batch initiated at
the CSTR equilibrium concentration given by point D, followed by a varying
αpolicy corresponding to a critical DSR. This is terminated with a standard
batch period. Similar to the continuous case, all side-stream compositions
used for fed-batch operations are equal the feed point concentration.

Figure 5.4.10: Continuous (a) and batch (b) structure comparison for the van de
Vusse system in R3.
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Figure 5.4.11: Example of the paths followed corresponding to two separate objective
functions (cD = 0.3mol/L and cD = 0.4mol/L). Path AFG corresponds to structure
1, whereas DHI corresponds to structure 2. In both cases, the structures result in a
traversal on the AR boundary and not within the region. Points A and D are the
same as those given in Figure 5.4.9b.

be achieved by these two structures alone together with mixing. The associated α

policies and concentration profile of component D for a generalised single fed-batch
configuration associated with structures 1 and 2 are given by Figures 5.4.12a and
5.4.12b respectively. For structure 1, the α policy begins with an exponential decline
in side-stream addition to a time of approximately 1.536h, followed by a period of
standard batch reaction to termination. The total batch cycle time for this struc-
ture is thus 3.5h. Theoretically, the correct α policy for this structure starts at
a value of ∞, however this has been approximated by utilising a starting concen-
tration that gives an initial value of α ∼ 200h−1 (C = [0.9885, 0.0006, 0.0055]T).
The recommended operating policy corresponding to structure 2 is slightly different
when compared to that of structure 1, as it undergoes three reaction periods. The
cycle begins with a fed-batch period of constant α in accordance with the equilib-
rium CSTR concentration given by point D. The cycle is then brought into a period
of varying α, where the side-stream addition is observed to increase sharply to a
maximum value of ∼ 1.356h−1, and then completed with a standard batch period
lasting approximately 9.24 h; the total batch cycle time for this structure is thus
roughly 15h.

An observation on parallel structures should be made here with regards to the
differences in operating requirements between batch and continuous equipment. If
the reaction is to be performed in a continuous setting, two separate sets of equip-
ment are required and must be run simultaneously. Compositions are then obtained
by mixing the appropriate streams belonging to each structure in the appropriate
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(a) α policy and associated concentration profile for structure 1 of the
van de Vusse problem. The value of α decreases throughout this cycle.
The size of α initially begins at a large value and drops rapidly until
approximately 1.5h (corresponding to point F). The side-stream feed is
then terminated resulting in a standard batch period that ends at cD =
0.4mol/L.

(b) Concentration profile and α policy for structure 2 of the van de
Vusse problem. For this structure, the value of α initially increases
from zero to ∼ 1.3h−1 near a reaction time of 7.8 h (corresponding to
point H). Beyond this point, the side-stream feed is again terminated
resulting in a final concentration of 0.3mol/L in component D.

Figure 5.4.12: The AR (a) and associated batch structures and α policies for two
different outcomes. When it is desired to limit the amount of component D to
0.3mol/L, structure 2 given by path DHI is used. If however, we require cD =
0.4mol/L, path AFG corresponding to structure 1 is employed instead.
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Table 5.3: Comparison of values reported by Bikić et al. (2002) summarising the
maximum cB value achieved for the van de Vusse system by different authors.

Author cB (mol/L) Method
Kokossis and A. (1990) 3.6796 Optimisation of CSTR

superstructure.
Chitra and Govind
(1981)

3.67772 Local search for PFR, PFR with
bypass and CSTR-PFR reactor
structures.

Achenie and Biegler
(1986)

3.6806 Gradient-based non-linear
optimisation based on axial
dispersion reactor (ADR).

Bikić et al. (2002) 3.6818 Analysis of optimality conditions
based on PFR superstructure.

Present work 3.682 AR theory.

amounts. By comparison, if it is desired to perform the same task under batch
conditions, an identical outcome may be achieved by two serial operations together
with intermediate storage of material used in mixing processes. Hence, it may turn
out that a single set of reactive equipment be required. Again, whereas in continu-
ous systems one is concerned with the arrangement of equipment through space, in
batch systems, one may also utilise time. The order of batch operations is important
in developing an efficient reactive structure.

Comparison to literature

Maximum cB The van de Vusse system has been studied extensively in the open
literature and the nature of the system is hence well understood. However, many
of the investigations have related to continuous reactor structures. Comparisons
to batch structures are nevertheless still possible since the underlying conversions
discussed in this work are founded on continuous structures. Bikić et al. (2002)
provide a summary of the maximum concentration of B achieved from different
investigations. These are shown in table 5.3 along with the results discussed here.
Note that values reported in table 5.3 are for a feed point of Cf = [5.8, 0.0, 0.0]T and
rate constants k1 = 10 h−1, k2 = 1h−1, k3 = 1L/ (mol · h). Hence, the problem must
be resolved for the new feed point and kinetics. The resulting region for the modified
system is shown in Figure 5.4.13a. We note that even though shape of the resulting
region is different to the original, the optimal rector structures remain unchanged.
Hence the same transformations discussed earlier may be used to optimise equivalent
batch structures.

The claimed values are all in close agreement. Notice that the values given by
Bikić et al. (2002) are effectively identical to the maximum cB value predicted by
the AR within realistic numerical accuracy.
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(a) AR for the 3D van de Vusse system corresponding to Cf =
[5.8, 0.0, 0.0]T

(b) Relative yield contours for the van de Vusse system

Figure 5.4.13: ARs generated for the van de Vusse system compared to the open
literature
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Maximum relative yield Brooks (1990) investigated maximising the relative
yield of B in a fed-batch reactor for different feed points and rate constants in the
van de Vusse system. Here, the relative yield of B, YB, is defined as

YB = cB/
(
c0A − cA

)
(5.4.4)

The author notes that when the ratio (k3/k1) cA is greater than k1/k2, YB is larger
in a constant feeding rate fed-batch compared to a standard batch. The author
goes on to demonstrate the performance of the fed-batch over continuous equipment
including a CSTR and PFR recycle reactor. Similar investigations for the van de
Vusse system have also been carried out by Lee (1977) for a PFR with intermediate
side-draw and De Vera and Varma (1979); Gillespie and Carberry (1966) for a PFR
with recycle.

In Figure 5.4.13b, we plot a projection of the 3D AR onto cA − cB space. The
region shown in Figure 5.4.13b is obtained by generating the AR boundary for
a feed point of Cf = [1, 0, 0]T and rate constants k1 = 1 h−1, k2 = 4 h−1 and
k3 = 10L/ (mol · h) . This is done so that constructions are consistent with the
investigations found in the literature. Since the relative yield expression in eq 5.4.4
is a function of cA and cB, it is possible to plot contours of relative yield for different
values of YB. These are displayed as solid straight lines all passing through the feed
point. Note that YB = cB when cA = 0. The values of YB for each contour is hence
easily read off the graph by inspecting the point of intersection on the cB axis.

Note that the point of maximum YB occurs at point A on the AR boundary in
Figure 5.4.13b. Point A also corresponds to the critical CSTR point on the AR
boundary. Hence, maximum relative yield is achieved in a constant α fed-batch
(CSTR) operating at point. De Vera and Varma (1979) classifies (k3/k1) cA − k1/k2

space for the above system into four regions indicating the reactor structure that
produces highest YB for each region. For the values of the rate constant specified
here, a CSTR is optimal according to the authors. Thus, the recommendations
generated by the AR construction agree with the suggestions by De Vera and Varma
(1979).

5.4.3 Residence time example

As a final example, we would like to apply the transformation rules and apply them
to problems involving residence time. As stated previously, constructions involving
residence time are performed when it is desired to find the optimal reactor structure
associated with smallest reactor volume. When viewed through this perspective, res-
idence time demonstrates a similar mechanism to reaction time in batch. Therefore
for an equivalent reactor volume V, flow rate Q, in the continuous setting is similar
to production rate in the batch once multiplied by the concentration difference over
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Figure 5.4.14: Production rate profile for the autocatalytic system given in chapter
3. Here, a 99% retained fraction has been employed rather than the recommended
50% given before. A maximum production rate of 4.0mol/s is obtained at an optimal
exit concentration of cB = 10.0mol/L.

the reactor.
Q =

V
τ

Before we begin, it would be helpful to refer back to the example problem given
in chapter 3. There we posed the problem of improving the production rate for an
autocatalytic system by retaining a fraction of product. A maximum retained frac-
tion limit of 50% was enforced so that the number of emptying and filling operations
could be handled to within a practical level. If however, we choose to relax this con-
straint, then it is possible to improve the production rate even further. Thus, when
we allow for up to 99% of the reactor volume to be retained, the following profile in
Figure 5.4.14 is obtained.

Although this presents a significant improvement to the production rate sugges-
ted before, however the practical implications of this approach are rather restrictive:

• To achieve the predicted 4.0mol/s production rate, we must retain a very high
fraction of product behind.

• The small fraction that does get removed must be replaced with an equally
small feed volume.

• It follows that since the ratio of fresh feed to product volume will be small,
reaction time is small (essentially instantaneous) and may be considered to
occur due to mixing rather than reaction.

• Since reaction time is short, we must then immediately remove product and
repeat the cycle once again.
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In operating the reactor at such high retained volumes, it is not difficult to see that
we, in essence, approximate the operation of a CSTR.

In order to investigate whether the optimal structure for maximum production
might include a CSTR, we can reformulate the kinetics and view the problem in the
form of a continuous AR construction in residence time space. This is performed in
Figures 5.4.15b and 5.4.15a. Here, the rate vector is defined as follows

r (C) =

[
k1c

0
A (1− x)

(
c0B + c0Ax

)
1

]

We can thus view the problem stated in chapter 3 as a continuous 2D AR construc-
tion in x–τ space. In order to determine the absolute limits of achievability, regarded
here in terms of minimum residence time, the AR for the associated kinetics is first
generated. To obtain a better appreciation for the dynamics of the system, the
AR has been generated again utilising the rotated bounding hyperplanes algorithm
developed in chapter 4. Figure 5.4.15a thus shows the resulting output of the con-
struction. We see that almost complete conversion is obtainable before a residence
time of 200 s is reached. Moreover at an exit conversion of 50%, a residence time of
50 s is also achievable. In chapter 3, a 20L reactor volume was used in the example
to achieve the stated 4mol/s production rate. For the same reactor volume and feed
conditions used here, it is not difficult to show that a corresponding molar flow rate
of 4mol/s is also achieved in the continuous case. This is significant. It suggests
that we are able to achieve similar performance in continuous and batch. It also
suggests that the AR can be used as a method to improve batch production rate.

In Figure 5.4.15a, the corresponding optimal reactor structures have been over-
laid on the AR. It is found that the optimal continuous structure is a CSTR followed
by a PFR. This corresponds with the recommendations given in chapter 3 for the
same kinetics – for exit conversions larger than 50%, the optimal structure is a
CSTR followed by a PFR. Thus, the results of the AR construction appear prom-
ising. These suggest that it may also be possible to use the information gathered from
continuous AR constructions in residence time space, and apply the transformations
discussed in this chapter to improve problems involving batch production rate.

Batch conversion

We first approximate the behaviour of a CSTR in the usual manner: by first forming
the desired CSTR effluent concentration, and then running a constant α fed-batch
at the equilibrium feeding rate and feed concentration. For exit concentrations
beyond this point, the side-stream may be terminated to convert the fed-batch to a
standard batch. From the residence time plot, we can read off the optimal residence
time directly from the graph. This corresponds to a residence time of τ = 50 s.
Using the equilibrium relation between DSRs and CSTRs, we calculate that α =
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(a) The resulting boundary obtained for the autocatalytic reaction given
in chapter 3 using the rotated bounding hyperplanes algorithm developed
in chapter 4. The results of the construction suggest that almost complete
conversion is obtainable for residence times lower than 200 s.

(b) Corresponding AR in cB − τ space (continuous reaction) for the
autocatalytic reaction given in chapter 3. The optimal reactor struc-
ture for minimum residence time is a CSTR (×) followed by a PFR (−).
The CSTR exit conversion is 50% corresponding to a product concentra-
tion of cB = 10mol/L. This concentration is associated with the optimal
product exit concentration for maximum production rate in the batch
example. The straight line connecting the feed point to the CSTR is a
mixing line.

Figure 5.4.15: AR for the autocatalytic reaction given in chapter 3
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1/50 s−1, and thus a F/V ratio of 0.02 s−1 is required for the CSTR portion of the
structure. For this example, the production rate is 4mol/s. At an optimal exit
concentration of 10mol/L, and for a 20L reactor volume, this indicates that a side-
stream flow rate of F = 0.4L/s is required. In this arrangement, there is no need
to perform partial emptying and filling. The retention of product is fulfilled by the
operation of an equivalent constant α fed-batch to keep the batch at the desired
CSTR concentration.

In a similar fashion as to how we approached the problem previously, it is possible
to classify our structure into three sub-categories depending on the required exit
conversion: exit conversions less than 50%, exit conversion equal to 50%, end exit
conversion greater than 50%. We shall discuss each of these separately below.

Production rate for x < 50%:

For exit conversions less than 50% (cB = 10.0mol/L), the optimal structure corres-
ponding to smallest residence time is a CSTR with bypass of feed. Similar to chapter
3, we can achieve the maximum production rate by running a smaller reactor for a
longer period past the desired exit conversion at the optimal exit conversion of 50%.
This arrangement ensures that maximum production rate is achieved in the batch.
It is then possible to bypass the remaining feed material directly to the product
tank and mix to the desired exit conversion. The optimal batch cycle thus involves
a bypass of feed material. The maximum production rate of 4mol/s is achievable
for all conversions less than 50%. Figure 5.4.16a provides a comparison between the
optimal continuous and batch structures.

Production rate for x = 50%:

For exit conversions equal to the optimal, maximum production rate is achieved by
a CSTR alone and no bypass is required. Figure 5.4.16b shows the conversion from
a continuous structure to the equivalent batch cycle. Thus, at the filling rate and
reactor volume specified above, it is known that a cycle time of 50 s is achieved at
50% conversion. Alternatively, we could also consult the continuous plot provided
in Figure 5.4.15b and read off the equivalent residence time for the CSTR at 50%
conversion. The production rate is maximised at this point. This corresponds with
the suggested production rate given in chapter 3 using partial emptying end filling
with a 99% retained fraction.

Production rate for x > 50%:

For desired conversions greater than 50%, the full AR structure is needed. That is,
a CSTR (constant α fed-batch) to 50% followed by a PFR (standard batch). Again,
note that this is similar in nature to the recommendation for exit concentrations
great than the optimal in chapter 3., where the reaction was split into two reaction
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steps. Instead of requiring multiple first stage reactors however, the structure can be
simplified by substitution with a fed-batch reactor. Again, there is no requirement
to perform partial emptying and filling, as we can convert AR structures to batch
using fed-batch reactors.

It follows that in order to carry out the reaction in the shortest time, we repeat
the same procedure for x = 50% and augment the cycle with a period of standard
batch reaction. In practice, this may be achieved by continuing the reaction once
the vessel has been filled by simply stopping additional fed-batch feed flow. Thus,
we begin with a filling stage corresponding to the CSTR portion of the structure
for 50s, and then terminate the side stream feeding policy (α = 0) to simulate the
PFR trajectory corresponding to the AR boundary. The duration of the standard
batch will then be dependent on the exit conversion desired by the designer. Again,
it is also possible to reference the AR in Figure 5.4.15b read off the required conver-
sion and corresponding residence time. Knowledge of the reactor volume and final
product concentration then allows for easy calculation of the production rate.

5.5 Conclusions

An important goal of this chapter has been towards developing a method for con-
verting optimal continuous structures, obtained via conventional AR analysis, to
an equivalent batch structure. Due to the one-to-one nature between continuous
and batch reactor equations, it is a fairly simple task to convert continuous struc-
tures to batch. Indeed, it is possible to derive an equivalent batch structure by
first computing the AR in the continuous setting, and then applying the necessary
transformations to batch.

Previous work (Feinberg, 2000b) has demonstrated that three unique reactor
types are needed to construct the AR, these are the PFR, DSR and CSTR. The
transformations to batch for these types are as follows:

• Standard batch reactors replace PFRs. It is already well understood that
standard batch reactors have identical performance to PFRs, and so they may
be used in place of them in batch processes. Reaction time then replaces
residence time of the PFR.

• Fed-batch reactors may be operated to function as both a DSR or CSTR
depending on the α policy chosen. The variable α in this case, is the ratio of
F/V, and if an expression for the α policy exists, then both the side-stream
feed rate and reactor volume may be determined. Thus, if the fed-batch is
operated with a varying α policy, DSR performance is obtained. If, instead,
a constant α policy is employed, then CSTR behaviour is possible, although,
only under the correct operating conditions.
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Fed-batch
(CSTR)

Standard 
batch

(a) Optimal structures for exit concentrations less than 50%. Max-
imum production rate is achievable for all conversions lower than
50%.

Fed-batch
(CSTR)

(b) Optimal structures for exit concentrations equal to 50%.

Figure 5.4.16: Optimal continuous and batch structures for an unbounded batch
system
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Fed-batch
(CSTR)

Standard 
batch

(c) Optimal structures for exit concentrations greater than 50%.
In this instance, maximum production rate is not achieved, though
this arrangement is still the optimal for smallest residence time and
hence optimal for best production rate.

Figure 5.4.16: Optimal continuous and batch structures for an unbounded batch
system

For each value of α, there exists an associated equilibrium concentration that must
be used. Possibly many equilibrium points may be obtained for kinetics involving
multiple steady states. This is related to the equivalence found between CSTRs
and constant α DSRs operating at equilibrium. Constant α fed-batch reactors thus
mimic CSTRs at the equilibrium point. This results in interesting operational con-
sequences:

1. Fed-batch reactors must be initiated and operated at a concentration equal
to that of the equivalent CSTR effluent composition. The concentration of
species within the fed-batch is constant during this period of reaction as a
result. Reaction time is also determined by the filling rate and vessel volume.

2. Various methods may be used to achieve the initial CSTR composition, al-
though these methods may be ineffective in obtaining the desired CSTR com-
position if the corresponding DSR equilibrium point is unstable. In practice,
if the desired CSTR point unstable, one may wish to introduce a stabilising
controller to realise the desired state.

Thus, care must be taken when choosing an initial concentration for the fed-batch
for converting structures containing CSTRs to an equivalent batch. It is generally
not sufficient to choose an initial concentration in an arbitrary manner in the hope
to reach a desired CSTR concentration. The dynamic behaviour of the system,
in the form of multiple steady states and instability, may not allow one to do so.
Furthermore, it might not be possible to achieve the desired CSTR concentration
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if the associated equilibrium point corresponding to eq 5.3.3 proves to be unstable
. At the time of writing, we have yet to encounter systems in which the desired
equilibrium point belonging to a critical CSTR is also unstable, however the pos-
sibility should not be overlooked. Such a situation could prove to be troublesome
for both continuous and batch structures, as both the CSTR and fed-batch may not
be controllable without further work to stabilise the state. Otherwise, one would
then need to work within a constrained region of the full AR utilising points that
are known to be stable.

We also investigated the use of ARs constructed in residence time space as a
means of improving the production rate in a batch reactor. It was observed that
residence time provides a similar metric to batch reaction time. Thus, there exists
a relation between the reactor volume and flow rate in a continuous setting, to an
equivalent volume and production rate in a batch. However, although it is possible
to mix residence time, it is not possible to achieve the same in the batch equivalent.
This investigation was performed on the same worked example provided in chapter
3. We noticed that unlike the recommendations given in chapter 3, we do not need
to employ a partial emptying and filling strategy to achieve maximum performance.
Instead, the approach used here is to relate the optimal reactor structure associ-
ated with smallest residence time to an equivalent batch operating policy using the
transformations provided in this chapter. In place of a partial emptying and filling
stage followed by a standard batch, we employ a constant α fed-batch followed by
a standard batch. The production rate achieved by this approach corresponds to
the same volumetric flow rate in the continuous case, and so the method is consist-
ent. It follows that AR constructions involving more than one independent reaction
might also be used to improve a batch with the same kinetics and feed composition,
however this has not been tested in this work.

Although the work given in chapter 3 appears to be subsumed by that given
here, we note that the two methods apply to different design scenarios: The former
may be employed in the absence of a kinetic model, when only experimental data
are available, whereas the the latter relies on AR theory, which in turn relies on
specification of a well defined rate field and feed point in order to generate the AR.
It is difficult to generate a candidate region using only the results of chapter 3, even
if these ideas are founded on principles in AR theory. Nevertheless, if kinetics is
supplied, with the intention of improving batch production rates, then the ideas
presented here are more easily generalised for many independent reactions.

Finally, although many similarities between batch equipment in time and con-
tinuous equipment in space exist, a number of differences are also noted.

1. It may be possible to achieve all concentrations belonging to the AR by a
single reaction vessel in batch systems, whereas for continuous equipment, a
physically separate set of reactors is required for each branch of the recom-
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mended AR structure. By the same reasoning, one should also be mindful of
the order that batch operations are carried out, as different batch operating
policies may be required for different points desired in or on the AR boundary.

2. If a single batch reactor is employed, one may be constrained if bypass mixing
with a stream downstream concentration at a future time is employed. Con-
tinuous equipment for a spatial reactor network are superior in this regard.
This may also be overcome in a batch if intermediate storage is utilised for
mixing with subsequent reaction stages in future cycles.

3. From general AR theory it is known that DSRs are not required for continuous
systems involving two independent reactions. The familiar VdelR condition of
chapter 2 is a consequence of this. However, since CSTRs are approximated
in a batch environment by use of constant α fed-batch rectors, which are ana-
logous to DSRs in the continuous setting, DSRs are generally still required
in batch unless the optimal reactor structure for the associated 2D system is
a convex PFR. Note that these fed-batch trajectories do not fulfill the same
function as critical DSR trajectories, but rather they approximate CSTR con-
centrations. Besides critical CSTR points, these fed-batch trajectories operate
inside the AR. Hence, if a particular optimisation scenario is employed in
which the objective function intersects the CSTR locus at a point other than
the critical CSTR point, then this may be awkward to realise with fed-batch
reactors.

The above discussion suggests that improvement in batch reactors is possible by
a geometric approach. Interpretation of the problem first as a continuous system
allows for the determination of the AR, which provides insight into the limits of
achievability for all reactor structures. This, in turn, guides the choice of reactor
structure employed. Consideration of the AR thus offers a different method of po-
tential improvement in batch reactors. The AR and its corresponding structures
therefore serve the dual purpose of establishing a set of recommended reactor con-
figurations that may be used to improve both batch and continuous equipment from
a single configuration.
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Chapter 6

Conclusions and future research

6.1 Conclusions

Chapter 1

In chapter 1, a brief overview of chemical reactor optimisation was given, and used
to provide some insight into the current landscape of reactor network optimisation.
We discussed the general approach to chemical reactor design, and argued that the
development of newer, more appropriate, optimisation methods may lead to better
insights and ultimately improved performance in these systems. Traditional optim-
isation is well understood and documented, however, these methods are generalised
and may not always be well suited for chemical reactor design. This is particu-
larly evident when one surveys the current scientific literature for work performed
involving multiple reactors and reactor network synthesis. The issue of mixing,
in particular, allows for discontinuous jumps in space that may present difficulties
for traditional optimisation methods. These approaches often rely on continuity
arguments and derivative information from calculus.

Lately, emphasis has been directed towards more generalised non-linear pro-
gramming methods that may be better suited for these kinds of problems. Even
while these methods can be used to overcome many of the drawbacks inherent in
older techniques, the model approach to improvement is still brought about in the
same way as conventional optimisation. The quality of the optimisation is still of-
ten limited by the flexibility of the process model, and the appropriate choice of an
initial guess still remains an important consideration. It is, however, often difficult
to know before hand what points might be useful to solve the model. Thus, similar
issues might still arise. The former could be addressed if a better understanding of
optimal reactor structures is known, whereas the latter could be addressed if limits
of achievability could be found – it is not uncommon to find methods that rely on
a reactor superstructure that is sufficiently generalised enough to account for the
entire behaviour of the kinetics. The reasons for choosing and designing certain
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superstructures may be influenced more out of practicality rather than through a
better understanding of optimal reactor structures. It follows that there is a need to
discover new ways and new interpretations of these systems, in order to solve these
problems better.

The AR is one type of approach to this class of problems. Unlike many of the
current methods, AR theory is geometric in nature. The method has demonstrated
to be a novel way of solving reactor network problems, however this has usually
been in the way of simple isothermal continuous reactor problems. AR theory is
therefore still rather new and further advances (both in terms of theoretical and
computational aspects) must be made before wide-spread use of the method can
take place. There is currently a low level of adoption of AR ideas in current reactor
synthesis problems and optimisation toolkits.

In this work, we work on two issues that may be the cause of the low adoption
of AR theory in practice:

1. The first is AR construction. Determining the AR is difficult. The AR is a
convex polytope usually found for higher dimensional problems and complex
kinetics, and thus is it difficult to both visualise and compute these regions
accurately and efficiently. A large portion of recent AR research has moved
away from traditional theory and directed towards the development of AR con-
struction algorithms. Current methods either produce inaccurate results, or
are computationally intensive however, and there is a need for further research
in this field.

2. A second factor is the use of AR to a wider class of problems. In particular,
problems in batch reactors. The AR has historically been formulated for use in
continuous processes, although increasing emphasis towards biochemical and
specialist applications has meant that batch reaction has played a larger role in
modern process engineering. Unfortunately, this has meant that the benefits
and insight into optimal reactor structure, provided by AR theory, were not
carried over to batch.

It is the aim of this work to tackle these two issues in Attainable Region theory.

Chapter 2

In chapter 2, we discussed the basic methodology of the Attainable Region approach
and its use as an alternate method to solving reactor network synthesis problems.
An overview was provided to help explain three fundamental reactor types and their
role in forming the boundary of the AR. The AR boundary is essentially the most
important aspect of AR theory, and knowledge of its complete structure and how it
is constructed are of great importance to us.
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Factors influencing boundary construction, and the difficulties associated with
current AR construction methods, were also given brief mention. Current methods
of construction may not always establish both the boundary and the associated
optimal reactor structure however. Nevertheless, knowledge of the AR boundary
without the reactor structures used to form it is still valuable in itself, as it still
allows for the limits of achievability to be determined on the system. This provides
a benchmark with which current designs can be compared to.

The graphical interpretation of mixing, and its application to AR theory was
also discussed. Mixing plays two useful roles. Firstly, it allows for the connection of
two separate, yet achievable, points in state space. In this way, mixing permits the
formation of a convex region from a set of distinct states. Secondly, mixing allows
for the attainment of new states when concavities (non-linearities) are present in
the system. The attainment of these new states renders starting points from which
new, potentially improved structures, can be initiated from. In this sense, mixing
should be viewed as an avenue for improving performance.

Chapter 3

Chapter 3 followed on from the ideas established in chapter 2 (using mixing to
improve the performance of the system), and presented a graphical method of im-
proving the production rate in a batch reactor. We find that advancements can be
made when there is a concavity in the concentration profile. This suggests that, at
the end of a batch cycle, it is potentially beneficial to retain product to seed sub-
sequent cycles rather than emptying out the full product volume and starting afresh.
When carried out in this manner, product volume is smaller for each cycle, but cycle
time may be significantly shorter thus offsetting the loss in volume produced. The
overall effect is a modified batch procedure with a average higher production rate
compared to the standard batch.

This method is entirely graphical and only relies on points generated in concen-
tration – time space. In order to carry out computations, line segments are drawn
between the initial and final states in the reactor. Depending on the starting and ter-
minating points chosen, recommendations regarding the optimal retained fraction of
product can also be deduced. All of these recommendations can be summarised on a
single plot of production rate and retained fraction versus desired exit concentration
for the species of interest.

The strength of the approach lies in its simplicity. There is no dependence on any
other data besides that provided in the batch profile. This makes it a suitable option
for when practitioners are not experienced in advanced optimisation techniques but
would still like to benefit from improved production performance. Moreover, the
technique could also be utilised as a short-cut method of enhancement before a more
sophisticated model has been formulated. This approach allows for the method to
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be used even on experimental data when no model is present, or when one has not
yet been developed.

In this chapter, mixing was also employed to improve production rate for situ-
ations where the desired exit concentration is different to the one associated with the
optimal. For exit concentrations less dilute than the optimal concentration, max-
imum production rate can be achieved by running a smaller volume to the optimal
concentration, and then bypassing feed to the final product tank. For exit concen-
trations greater than the optimal, improvements can be obtained by splitting the
reaction into two steps. The first is a reaction up to the optimal concentration in a
staggered configuration with an identical reactor, followed by a period of standard
batch operation.

Chapter 4

Chapter 4 introduced a modified outside-in method of AR construction. This work
is founded on the idea that the AR can be enclosed within a larger region containing
both achievable and unachievable states. Unattainable portions are then removed
from the space. It follows that the remaining region must be the AR if elimination
is performed perfectly. Enclosing the AR is done using stoichiometric constraints.
Due to mass balance requirements, all compositions from reactors compatible with
the feed must reside in this space. Elimination of unattainable regions is then
achieved by the introduction of hyperplanes that serve to trim away portions of
unachievable space. The check for achievable compositions is based on a tangency
condition with the hyperplane. This condition is easily implemented although it is
used extensively in the method and thus contributes to a significant portion to the
overall computational workload. Elimination of additional space is carried out by
the introduction of more hyperplanes. Thus, the approximation of curvature and
the accuracy of constructions can be made arbitrarily close with a sufficiently large
number of hyperplanes. This method is particularly effective in defining regions that
originate from complicated kinetics.

In the original method, addition hyperplanes are are introduced at the vertices
of the current polytope. The hyperplane orientation is determined by an average of
the hyperplanes that make up the vertex, and elimination is carried out by moving
the hyperplane into the region with a fixed orientation. Computation of the number
and position of these vertices is carried out by a separate procedure for enumerating
the feasible intersections of hyperplanes that describe the region. This process is
termed vertex enumeration. Vertex enumeration adds an additional cost to the
overall computational requirement of the AR. This, in turn, makes the resulting
algorithm fairly slow when compared to competing methods.

In the revised approach, vertex enumeration is eliminated by using hyperplanes
that are allowed to swivel/rotate around the vertices of the current polytope. Elim-
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ination is then carried out by a continual adjustment of the hyperplane orientation
at a fixed position in space. This is in contrast to the original method that uses a
varying position and a fixed orientation to carry out elimination. The costly step of
vertex enumeration can be skipped resulting in a quicker method of AR construction
using bounding hyperplanes.

The method was shown to be superior in three areas when compared to the
original approach:

1. Speed. Constructions for example kinetics were typically twice as fast com-
pared to the original.

2. Accuracy. Constructions appear to define curvature better for the same num-
ber of hyperplanes. Due to faster construction times, a larger number of
hyperplanes can be used to define the region, giving a tighter bound on the
AR.

3. Support for more AR construction types. The revised method has been mod-
ified to handle kinetics involving a control parameter, such as temperature,
so that more constructions can be performed with this method. Since elim-
inations are conducted via rotations, there is no dependence on using closed
polytopes. The method is therefore suitable for unbounded constructions in
residence time space.

The revised method using rotations therefore demonstrates useful improvements
over the original. Currently, the algorithm handles 2D constructions, though adapt-
ation to higher dimensional constructions were also discussed in the chapter. The
method also does not provide the optimal reactor structure. This is a common trait
associated with outside-in methods.

With this in mind, these constructions still offer great insight into discovery of
the true AR. Multiple steady states introduce significant challenges for inside-out
methods, as these often rely on a check for the necessary conditions of the AR.
Candidate regions constructed with these methods may still preserve the necessary
conditions, even if only a certain branch of the set of multiple steady states are
found. Construction from the compliment region (outside-in methods) thus offers a
new method to check whether inside-out constructions give the true AR:

• If the regions from both methods match, then we have found the true AR.
Subject to the construction algorithm employed, we may also have the optimal
structure.

• If the regions do not match, then we know that there are potentially additional
structures missing from the boundary. Further investigation is then required.

Thus, use of this method paired with an inside-out method may allow for the devel-
opment of new ‘hybrid’ methods (algorithms involving both addition and elimination
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of regions). These may be the best option for truly robust AR construction methods
in the future.

Chapter 5

Chapter 5 discussed the idea of directly applying the AR to batch reactor structures
and sequencing. This is done by converting individual reactor structures to an equi-
valent batch operating arrangement. Conversion is feasible due to the generalised
properties of fed-batch reactors. Under the correct operating conditions, fed-batch
reactors possess the ability to mirror the behaviour of each of the three fundamental
reactor types used in standard AR theory. Use of intermediate storage and mixing
between reaction steps then allows for the same structures found in continuous AR
to be used in batch. Conversion of a conventional fed-batch to continuous reactors
is obtained by noting that the ratio of fed-batch feed flow to reactor volume, F/V,
results in the same form as the DSR equation. Similarly, the DSR may be operated
in specific ways to achieve equivalent behaviour in a PFR and CSTR. The F/V ratio
thus fulfils the same duty as the α parameter in the DSR and the two can be used
interchangeably to achieve the desired continuous reactor.

It follows that conversion of the PFR to batch occurs when the F/V ratio is
zero. This implies that no material is fed into the fed-batch during reaction and the
resulting reactor is a standard batch. When the ratio is allowed to vary with time,
then the concentration in the vessel is the same as the effluent composition obtained
from a DSR of the same α profile. Conversion of CSTR behaviour to batch is slightly
more involved. DSRs are able to achieve CSTR effluent concentrations only for long
residence times with a constant α policy (when the DSR operates close to an equilib-
rium point). The resulting DSR is then maintained in an equilibrium state. CSTR
concentrations in batch can therefore be accomplished by holding the ratio of F/V
constant with time and initiating the fed-batch at the CSTR effluent concentration.
It follows that the start-up procedure of fed-batch with CSTR behaviour should be
considered carefully – this effectively requires the formation of the desired CSTR
concentration by other means before the reactor is brought online. This, however,
is only required to be performed once, and the resulting CSTR concentrations from
the fed-batch can be used to seed additional cycles. In addition to this, the designer
should also be mindful of the particular reaction kinetics taking part in the system.
If multiple steady states are a feature of the system, the incorrect choice of CSTR
solution may lead to significantly different performance. This might arise even when
the correct reactor structure as been identified and implemented.

The operation of fed-batch reactors with constant feeding policies (so that the
desired CSTR concentration is maintained) is therefore a strong function of the
stability criteria associated with the system. Unstable nodes in the DSR topology
provide clues as to how best to operate the reactor. The correct choice of initial
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condition not only allows for the proper CSTR concentration to be achieved, it
may also avoid the possibility of introducing states in the system that give rise
to unstable behaviour. Knowledge of the system’s stable CSTR nodes provide an
additional use. Knowing these solutions might allow for easier control of the reaction
during production cycle. In summary, conversion of AR structures to batch requires
that care be taken so that the appropriate behaviour is realised.

Finally, the possibility of applying ARs generated in residence time space was
investigated. We observed that although batch reaction time cannot be mixed in the
same way that residence time in a continuous reactor can, it is still possible to employ
the same transformation rules and convert optimal continuous reactor structures to
equivalent batch structures. Whereas in continuous reaction these constructions
allows one to address problems concerned with efficient use of reactor volume, in
batch the same problem could be viewed to be one in which batch throughput is the
desired objective. Thus, ARs generated in residence time space are useful in helping
to improve problems involving batch production rate.

With this understanding in place, the possibility of using the AR to improve two
separate design cases may be more viable now. From a single set of kinetics, the
AR could be used to optimise for a given performance. Knowledge of the structure
then allows the designer to articulate both continuous and batch reactor structures
designs. Use of the AR might then permit more freedom at the early stages of
conceptual design, as one does not need to commit into either a batch or continuous
route.

6.2 Directions for future research

A large portion of this work has been dedicated to articulate the idea of improve-
ments through structure, rather than through traditional optimisation alone. This
is ultimately communicated via ideas founded in Attainable Region theory. Within
this, two dominant themes exist throughout: the development of AR construction
methods, and improving batch performance through structure obtained via AR ana-
lysis. There are still avenues for improvement in both of these areas. Some ideas
for future work are provided below.

AR construction algorithms

Greater improvements to AR construction algorithms and understanding is neces-
sary for the adequate understanding of AR theory as a whole. In particular, the
search for a sufficiency condition would provide an excellent means of validation to
constructions. This would also assist in removing any remaining uncertainty regard-
ing whether a particular construction is the true AR, or whether it is only a subset of
it. Although the search for a theoretical sufficiency condition must continue, greater
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progress can be made towards a numerical sufficiency condition. Numerical suffi-
ciency, in this sense, implies that if a region can be validated via two independent
AR construction methods, then we are in a better position to show that it is the
true AR. Even if the results of the constructions do not match, then this is still
valuable because then it is known other, more complex, structures may not have
been identified. This ultimately helps guide construction further. Automated AR
construction techniques may become particularly valuable in this regard.

The development of a hybrid AR construction method, one that utilises both
inside-out and outside-in steps to construct the AR, might allow for both more ac-
curate and robust AR constructions as well as assist towards numerical methods for
AR validation. Figure 6.2.1 demonstrates this geometrically. Both convergence or
disagreement in constructions provides stronger numerical evidence for the existence
of the true AR. Furthermore, robust numerical AR construction algorithms may be
used to check AR constructions against theoretical predictions, in the form of a
theoretical validation tool. There still has not yet been significant progress towards
a hybrid algorithm, and work should continue in this direction, I feel. In chapter
4, we demonstrated the positive features of such a method by employing both the
rotated hyperplanes and RCC method in a single analysis for a number of systems.
The use of both methods, in conjunction with tracking the AR volume, provides
an effective means of AR construction suitable for a large variety of constructions.
What is still necessary, however, is a structured and generalised method employ-
ing these techniques (and possibly others) under a unified code base. Furthermore,
both inside-out and outside-in methods are still not developed to the point that
they are each capable of handling the same construction types (unbounded regions,
variable density systems, non-isothermal systems, etc.); this makes combining mul-
tiple methods difficult. Nevertheless, modification of existing methods to allow for
a wider variety of systems should be straightforward if the underlying concepts of
each method are adequately understood.

AR construction methods, on their own, must also be given further investigation.
Potentially many more novel insights could be found that would assist in making
AR construction both faster and more accurate. The rise of computational power,
specifically in the era of parallel computation, will allow for more complicated sys-
tems to be studied. The development of these methods requires a change in thinking
however, and thus either the old algorithms must be adapted, or new methods must
be formulated in order to take advantage of ‘wider’ computational architectures.

Batch reaction

Many of the current methods in batch reactor research rely on traditional optim-
isation techniques. Although these methods are robust and generalised enough to
tackle a large variety of problems in batch processing, there are potentially many
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Figure 6.2.1: Hybrid AR construction

other avenues for improvement that could also be utilised in conjunction with op-
timisation. In particular, a greater awareness of optimal structure may also lead to
further improvements in designs. The techniques and recommendations developed
in this work are simple enough that they can be found graphically, however this
does not prevent the methods from being adapted to handle higher dimensional and
more complex problems. The partial emptying and filling concept could be exten-
ded to give a more detailed treatment for how multiple reactions could be taken
into account for example. Further insight and recommendations might be gained if
the theory can be developed further with this in mind. This might also allow use
of the approach in a more generalised fashion along with traditional batch schedul-
ing techniques. If this is the case, then a deeper understanding of its mechanics to
non-isothermal and fed-batch conditions should be undertaken. Good opportunit-
ies therefore are available for extending the method into these two areas (multiple
reactions, and fed-batch operation).

The direct conversion of continuous AR structures to batch is a new research area
with the potential for further development. Currently, the handling of state vectors
other than concentration, and the use of control parameters such as temperature,
specifically to batch ARs, have yet to be investigated. These concepts should, at
least in theory, be simple extensions to the batch setting if equivalent batch analogies
can be found. A somewhat more interesting case is the application of this method
to residence time examples. As observed in the final example of chapter 5, it is
known that residence time is analogous to reaction time in a batch. It is possible to
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mix residence time, but the same clearly does not translate to batch using reaction
time. Chapter 3 is dedicated to batch production rate, and so there is a connection
between the simple recommendations given to the larger picture of AR residence time
examples. It may turn out that when converting continuous AR structures to batch
using residence time constructions, greater benefit might be obtained if flow rate and
volume are considered, rather than simply residence time alone. Understanding this
relation might allow for the conversion of more complicated residence time ARs to
batch. Consequently, higher dimensional problems in batch could also be addressed
if some of the questions posed above are given attention.

We note that along with the idea of a hybrid approach to AR construction, there
also exists another hybrid approach specific to batch reactors. That is, along with
the developments of AR theory to batch reactors, this methodology could also be
incorporated into more generalised batch structures involving other batch processing
equipment. Opportunities for further research exists that investigates improvements
to batch reactors by combining AR theory concepts into batch process schedul-
ing policies. Specifically, the AR could be combined with non-linear programming
strategies and used as an initialisation for these methods – if it is known that a
particular state is achievable within the reactive portion of the batch network, then
this allows for rapid iteration to a final, optimal batch schedule using AR theory.
It would be useful to understand, from a scheduling perspective, that, within the
reactive portion of the batch plant, a specific product can be delivered within a
certain quality specification (yield, waste minimisation, conversion, etc.), within a
cycle time (residence time or reactor volume), under the operating constraints of the
plant. Knowing this might open up further avenues for batch improvement as now
the designer is knowledgeable of the absolute limits of rector section of the plant.
This knowledge may be useful for highly complex batch process optimizations; AR
theory helps us to understand the details inside the reactor network. The combin-
ation of ARs with generalised batch equipment is an interesting concept that has
not yet been explored, but which may offer powerful insights into batch process
improvements in general.

Final remarks

Although the current landscape of AR research is not vast, particularly when con-
sidered against other fields far more established (and popular) than that considered
here, this should not be interpreted as a field that is by any means complete. If
anything, this would suggest that the field is still in its infancy. There remains a
great deal of unknown to the theories developed in AR (and yet to be developed),
and their relation to a sufficiency condition. The challenges in AR stem from three
main areas of concern:

1. Accurate and efficient AR construction.

178



6.2 Directions for future research D. Ming

2. A low adoption of the method within the process engineering community.

3. And a relatively limited theory base on what is actually known about the AR.

It is my hope that progress in AR will continue to be made with these issues in
mind.

With developments of new ideas and the expansion of the profession into broader
fields of work, process engineers find use working in industries that would histor-
ically not have been considered in the past. The training and methods developed
in traditional areas of practice will thus need to find use under different fields of
application. There exists a great need to continue developing topics in chemical
engineering that can then be transferred, translated and adapted to new areas of
expertise.
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Appendix A

Batch production rate

A.1 The effect of transfer time on batch production rate

Expressions for the production rate of a batch reactor were defined in chapter 3 for
both the standard batch as well as when a fraction of material is retained. These
are repeated below as follows:

P =
Vtot

(
cout
i − c0i

)
∆t0

(A.1.1)

P∗ =
(1− ϕ)Vtot

(
cout
i − c0i

)
∆t∗ (A.1.2)

Similar expressions were also defined for when transfer time, tT, is accounted for in
the formulation. These expressions are distinguished by use of the overbar
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)
(∆t0 + tT)

(A.1.3)

P∗ =
(1− ϕ)Vtot
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) (A.1.4)

We would like to derive the expression used in section 3.5.1 by eq 3.5.1. We start
by first dividing eq A.1.4 by eq A.1.3
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)
Substitution of eq A.1.1 and eq A.1.2 into the above expression then gives after
rearrangement:

P∗

P
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∆t0 + tT
∆t∗ + t∗T

)
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)
We now introduce the transfer rate r, with units of [volume/time]. For a typical
standard batch, it is possible to transfer a full volume Vtot in a time of tT = Vtot/r.
Similarly, for typical batch performed using partial emptying and filling, the asso-
ciated transfer time is thus t∗T = (1− ϕ)Vtot/r. Substitution of the transfer time
expressions into the above equation gives

P∗

P
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Vtot
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]
which upon simplification gives
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∆t∗

]
This expression may be used an indication for transfer time could affect the benefit
gained by partial emptying and filling and associated retained fraction.
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Bounding hyperplanes

B.1 Worked example for rotated bounding hyperplanes
algorithm

We begin by specification of the system. The van de Vusse reaction scheme and
associated kinetics is a commonly used example in AR research, and as a result, the
system is well understood. This will allow for comparison between the construction
obtained by the method and that suggested by theory. The reaction is given by

A
k1

k2

B k3→ C

2A →
k4

D
(B.1.1)

This is a three dimensional problem: the system involves three independent reactions
involving four components. Several variations of the above kinetics exist which all
result in different ARs. We present here only the simplest scenario. That is, a
2D irreversible system with mass action kinetics given by the following constants:
k1 = 1.0, k2 = 0.0, k3 = 1.0 and k4 = 20.0, such that

r (C) =


−k1cA − 2k4c

2
A

k1cA − k3cB

k3cB

k4c
2
A

 (B.1.2)

It is further specified that there is a single feed stream containing pure A. The feed
concentration is then given by the vector Cf = [1, 0, 0, 0]T.

It is known that in order to construct the AR, a CSTR followed by a PFR to
equilibrium is required. Using this arrangement, no other achievable concentration
may be obtained through reaction and mixing alone. We will now show that the
algorithm of rotating bounding hyperplanes produces a region which closely agrees
with the above arrangement.
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The process of hyperplane rotations, tangency checking and region exclusion is
a rather tedious exercise if done without automation, and as a result, we shall only
demonstrate the first iteration of the process here. The procedure begins by con-
struction of the stoichiometric subspace S. We have already noted that the dimension
of S is three, indicating that the fourth component is not independent and may be
computed from the remaining three species by mass balance. Since our concern here
is for the construction of a 2D region, we shall only be interested with concentrations
residing in the cA − cB plane in concentration space. The feed vector is therefore
truncated giving Cf = [1, 0]T. Non-negativity constraints on component A and B
require that the first two constraints be of the form

cA ≥ 0

cB ≥ 0

The normal vectors associated with these hyperplanes are then given by H1 ={
C ∈ R2 : nT

1 C ≥ 0
}

and H2 =
{

C ∈ R2 : nT
2 C ≥ 0

}
where

n1 =

[
1

0

]
n2 =

[
0

1

]

Both of the hyperplanes pass through the origin. The third and final constraint is
given by cA + cB ≥ 1 which, when written with respect to its hyperplane normal,
gives

n3 =
1√
2

[
−1

1

]
Alternatively, S may be computed with the methods described in appendix B.2
below. The region produced by these constraints results in the convex polytope
shown in Figure B.1.1a.

Next, the particular hyperplane passing through the feed point Cf is identified.
Note that two such hyperplanes satisfy this condition. These are H2 and H3 respect-
ively. H2 is a plane that contains both the feed concentration and the equilibrium
concentration [0, 0]T. As a result, it is impossible to rotate H2 in a manner that does
not exclude one of these two points after the rotation and therefore H3 is chosen
as the first hyperplane to undergo rotation. The first round of infeasible region
elimination may now begin. The standard rotation matrix R ∈ Rn is given by

R (θ) =

[
cos (θ) −sin (θ)

sin (θ) cos (θ)

]

When R is multiplied by a vector x, the resulting product Rx is vector x rotated
by an angle θ in an anticlockwise direction. A small angle δθ is specified through
which the hyperplane normal is rotated about. This ultimately determines a range
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B.1 Worked example for rotated bounding hyperplanes algorithm D. Ming

(a) Stoichiometric subspace for 2D van de Vusse kinetics. All concentra-
tions achievable through stoichiometry reside within the shaded region.

(b) AR for van de Vusse kinetics using rotated bounding hyperplanes.
The CSTR locus (×) and PFR trajectory (solid line) from the feed point
have also been drawn.

Figure B.1.1: 2D van de Vusse constructions
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of concentrations swept out by the rotated hyperplane. The value of δθ is arbitrary,
although it clear that the value specified will dictate the accuracy with which the
final AR is constructed. A trade-off between construction accuracy and construction
time must therefore be established – for smaller values of δθ chosen, the associated
hyperplane will bind tighter to the AR boundary. In practice, a value of approx-
imately δθ = 0.001 radians has been found to be an adequate trade-off between
construction accuracy and computational effort. As a result, this value will be used
in the current example. The first rotation step may now begin. Application of the
rotation matrix to the normal of the H3 results in the following

n3
∗ = R (δθ) · n3

=
1√
2

[
cos (0.001) −sin (0.001)
sin (0.001) cos (0.001)

][
−1

−1

]

=

[
−0.7064

−0.7078

]

Once the hyperplane has been orientated into its new position, points residing on the
plane must be checked to determine whether rate vectors are tangent to the plane.
If so, then by the hyperplane tangency condition we have found a valid achievable
concentration. The subspace spanned by H3 is discretised into a distinct set of
concentrations and then the associated rate vectors at these points are evaluated.
This is done as follows. It is clear that concentrations residing on H3 may be
expressed as

n∗T
3 (C − Cf) = n3AcA + n3BcB = γ3 (B.1.3)

where γ = n∗T
3 Cf = n3Ac

0
A+n3Bc0B. Since at each rotation we know the values of n∗

3,
we seek the value of only two unknowns. In order to solve for a valid concentration
residing on H3, it may be tempting to specify one value for either cA or cB and solve
for the other – this could be accomplished by generating a grid of M values between
0 and 1 for cA say, then the corresponding M coordinates for cB which lie on the
hyperplane may be found by eq B.1.3. This method has two limitations however:

1. If hyperplanes are parallel to the any of the axes, then it is impossible to solve
for a concentration by generating a grid in the other axis. For example, we
cannot solve for a y position by generating a grid of x points if the hyperplane
is parallel to the y-axis (with hyperplane normal given by n = [0, 1]T). A
check for the hyperplane orientation is first required then.

2. By generating a grid of points along a particular axis, it is generally not guar-
anteed that the spacing between the points on the plane will be even for other
hyperplanes with different orientations – for planes orientated closely to the
y-axis, the spacing between points on the plane will be significantly larger than
for planes closely orientated to the x-axis for example.
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This method is also cumbersome to program. As a result, discretising points on the
plane is performed rather by first computing the basis vectors that are orthogonal
to the hyperplane normal (i.e. computing a basis for the subspace spanned by the
plane). This method works for all dimensions and all normal orientations. A grid
of points can be generated that span the hyperplane using linear combinations of
the orthogonal vectors instead. In addition to this, if a method such as QR de-
composition is employed when computing this basis, the associated basis vectors are
orthogonal to one another and scaled to unity. This ensures that linear combinations
of the basis vectors generate points that are evenly spaced on the plane irrespective
of the orientation of the plane itself in space.

The evaluation of rate vectors may now proceed. In order for the elimination
process to work, we consider only those points lying on H3 that are contained in the
current region defined the list of bounding constraints. This is done by screening the
generated points on H3 and testing for validity. A concentration C is considered valid
if it satisfies all the constraints posed by the current list of bounding hyperplanes.
For our example, the initial list of constraints is given by S

n1
TC ≥ 0

n2
TC ≥ 0

n∗T
3 C ≥ γ3

which when written in matrix form gives 1 0

0 1

−0.7064 −0.7078

[
cA

cB

]
≥

 0

0

−0.7064


There is an additional consideration. Since points are evaluated at discretised steps,
there also exists the possibility of over rotating the plane and skipping tangent rate
vectors. Hence, a check for both tangent rate vectors and those vectors that point
out of H3 (rate vector which form an obtuse angle with n3∗) must be performed.
With this in mind, the stopping criteria for the current round of rotation is when

n∗T
3 r ≤ 0

At each rotation, the hyperplane is discretised into M distinct and valid points. For
each of the M points considered, the associated rate vector is computed and the
above tangency test is applied. If it is found that none of the M points satisfy the
tangency condition, then the current loop and ends and the hyperplane is rotated
by another increment of δθ. If, however, it is found that a point within the current
list of M points is tangent, then we have found a new attainable point with which
we can start the next round of rotation. In this case, the hyperplane is rotated back
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to its previous orientation by the angle −δθ and the concentration where tangency
occurs is also recorded.

When H3 is unrotated by −δθ, the vector (C − Cf) is rotated by the same
amount to ensure that the tangent point found still lies on the plane when rotated
back to its previous orientation. This marks the end of the current round of elim-
inations. We find that under the given system, H3 is rotated by a total angle of
~0.42 radians before a valid tangent point is found. The new point is added to the
existing list of extreme points, in this case only Cf, and the associated hyperplane
is also added to the current list of bounding hyperplanes. The new extreme point
found now acts the feed vector for the next elimination round. The results of the
construction are given by Figure B.1.1b. Also included in the figure is the PFR-
CSTR arrangement, suggested by theory, required to generate the AR. We find that
there is good agreement between the construction and the theory in this example.

Now that the details of the method have been discussed, we are in a better
position to describe the method in a more general way. At the start of an arbitrary
stage of construction, the k-th say, k extreme points forming the partial boundary of
the AR have been found. In addition to this, k new bounding hyperplanes have been
added to the d original hyperplanes in the list, and a new extreme point has been
identified about which the k-th rotation may commence. To start the next round of
elimination, we introduce a new hyperplane having exactly the same orientation as
the last hyperplane added, the k-th, and pre-multiply the normal to the plane, nk+d,
by R and initiate the next loop of rotations. Points on the plane are discretised and
checked for tangency and continue in this manner until a new tangent point is found.
We follow the unrotation rule discussed above and repeat the process for the (k+1)th
stage of elimination. These steps are repeated until an equilibrium point is identified.
This marks the end of construction. Viewed in this way, the construction process
begins at the feed point and gradually steps along the AR boundary approximating
it facet by facet. The constructions of various ARs are given in section 4.4 together
with comparisons with the original bounding hyperplanes method.

B.2 Constructing the stoichiometric subspace

We denote by S the stoichiometric subspace of a reactive system. S is is used to
form an upper bound on the AR and is therefore the basis of outside-in algorithms.
The determination of S requires that we find all the hyperplanes that bound the
feasible region.

In general, we have a n component system. The first k species are reactants,
whereas the remaining (n− k) species are products. For multiple reactions, it is
also assumed that there are, in general, d reactions that take place. Expressing the
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reactions in terms of all components then gives:

r1 : ν1c1 + . . .+ ν1kck 
 ν1(k+1)ck+1 + . . .+ ν1ncn (reaction 1)
...

rd : νdc1 + . . .+ νdkck 
 νd(k+1)ck+1 + . . .+ νdncn (reaction d)

or more compactly

ri =

d∑
i=1

νijcj where j = 1 . . . n

where νij is the stoichiometric coefficient belonging to component j for reaction i in
the system. Note that it irrelevant, for our needs, whether the reactions are written
with respect to products or reactants. It also does not make a difference whether
the reactions are considered strictly forward or reversible (as shall bee seen below).
The feed point is also given here as the n dimensional column vector:

Cf =
[
c01 c02 · · · c0n

]T

From the system of reactions, we can thus form the stoichiometric coefficient matrix
A containing the reaction coefficients of each component in all reactions

A =


ν11 · · · νd1
... . . . ...

ν1n · · · νdn


In general, A has size n × d. The stoichiometric subspace is therefore the space
spanned by the columns in A. S may be formed in general by computing the
hyperplanes that bound the space. The normals of these planes must be orthogonal
to the space and hence the normals must be orthogonal to the columns of A by
definition. This gives us a method of computing the normals belonging to the
bounding hyperplanes for S. All points orthogonal to A can be expressed by the
following expression

ATC = 0

It is clear then that we wish to find the null space of AT. We call this the matrix
N and define it as N = null

(
AT). If A has r linearly independent rows, then its

rank is r. This indicates that there are r linearly independent reactions occurring
in the system. If we have d reactions, and all of them are independent, then r = d.
It follows that if A has rank r, then the null space of AT must have rank of (n− r).
Thus N must have n rows and (n− r) columns.

N =
[
n1 n2 · · · nn−r

]

188



B.2 Constructing the stoichiometric subspace D. Ming

where ni is a column of N. The (n− r) columns thus span the null space of AT,
and therefore each ni in N represents a hyperplane normal that bounds S. For
hyperplanes stoichiometrically compatible with the feed, these planes must pass
through the feed point Cf. Therefore, each column in N is required to satisfy the
relation:

nT
i (C − Cf) = 0

or in matrix form
NT (C − Cf) = 0

Notice that this is identical in form to the hyperplane expression given by eq 4.2.1.
Note further that eq 4.2.1 is also an equality. There is a difference however. Matrix
N has dimension n, which is generally must larger than the dimension that we wish
to view the AR in (for constructions in concentration space only, the dimension is
usually chosen to coincide with the rank of A).

In order to convert the hyperplane expression from an equality to an inequality
expression, we remove the components that we are not interested in. In concept this
is simple – the components that are not of interest are removed from the expression
with the sign of the terms determining whether the left hand side is less than or
greater than zero. In practice however, we cannot guarantee that the elements in
NT are non-zero, and so it is difficult to determine whether the hyperplane normals
are correct once they have been projected into the subspace that we are interested
in constructing the AR in.

In order to ensure that no information is lost when the expressions are converted
in inequalities, we perform elementary row operations on NT to ‘clean’ the entries in
NT. This ensures that the components that are removed are strictly non-negative.
This is done in practice by pre-multiplying NT with a matrix G.

G−1NT (C − Cf) = 0

Where G contains the rows corresponding to the components that we wish to remove
from our system. The size of G is (n−r)×(n−r). It is square and must be invertible.
In general, this produces a matrix F = G−1NT with the columns in F associated
with the discarded components being reduced to the identity matrix. The remaining
r columns corresponding to the required hyperplane normal entries.

The r rows in F together with the n non-negativity constraints for each com-
ponent in the system, define the set of hyperplanes that bound S.
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B.2.1 Example: Methane steam reforming

In order to assist understanding of this procedure, a worked example using methane
steam reforming is given. A simplified reaction is shown by the following system

CH4 + H2O 
 CO + 3H2

CO + H2O 
 CO2 + H2

Both reactions are assumed to be reversible, and so we write both the forward and
reverse reactions for the stoichiometric subspace A.

A =


−1 1 0 0

−1 1 −1 1

1 −1 −1 1

3 −3 1 −1

0 0 1 −1


We denote row 1 to be CH4, 2 for H2O, 3 for CO, 4 for H2 and 5 for CO2. We also
specify the feed point to be Cf = [1, 1, 1, 0, 0]T. Since columns 2 and 4 are linear
combinations of columns 1 and 3 respectively, the rank of A is 2. There are two
linearly independent reactions for the methane steam reforming system, and so the
AR for this is two dimensional. Computation of N is then given by:

N = null
(
AT)

=


0.83767 0.25280 −0.36309

0.37263 −0.31499 0.71100

0.013661 0.66008 −0.0032395

0.39888 −0.24075 0.11705

−0.012588 0.58584 0.59071


The specific output given above has been obtained from the null() function in
MATLAB. Picking three components to discard will allow for the proper determ-
ination of the hyperplane normals of the remaining two desired components. For
this example, we wish to compute the S in CH4 − CO space (rows 1 and 3 in N).
Consequently rows 2, 4 and 5 must be used to form the pre-multiplier matrix G.
This results in the following

NT =
[
n1 n2 n3 n4 n5

]
and

G =
[
n2 n4 n5

]

190



B.2 Constructing the stoichiometric subspace D. Ming

=

 0.37263 0.39888 −0.012588

−0.31499 −0.24075 0.58584

0.71100 0.11705 0.59071


The rank of G is 3 and is invertible. Matrix F can therefore be determined

F = G−1NT

=

−2 1 −1 0 0

4 0 1 1 0

1 0 1 0 1


Notice that G achieves the desired result: columns 2, 4 and 5 of F form the identity
matrix. The components for H2O, H2 and CO2 are thus scaled to unity, they are
positive, and isolated for each hyperplane equation. F can therefore be used to
determine the hyperplane normals

F (C − Cf) = 0
FC = FCf

Writing out the hyperplane expressions produces the following result

−2 1 −1 0 0

4 0 1 1 0

1 0 1 0 1



cCH4

cH2O

cCO

cH2

cCO2

 =

−2 1 −1 0 0

4 0 1 1 0

1 0 1 0 1



1

1

1

0

0


or when expressed in terms of explicit equations

2cCH4 + 1cH2O − 1cCO = −2

4cCH4 + 1cCO + 1cH2 = 5

1cCH4 + 1cCO + 1cCO2 = 2

Eliminating the undesired components (H2O, H2 and CO2) thus gives the required
inequalities

2cCH4 − 1cCO ≤ −2

4cCH4 + 1cCO ≤ 5

1cCH4 + 1cCO ≤ 2

In addition to the 5 non-negativity constraints required for each component

cCH4 ≥ 0
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cH2O ≥ 0

cCO ≥ 0

cH2 ≥ 0

cCO2 ≥ 0

only CH4 and CO are of interest to us. These are also expressed as hyperplanes
passing through the origin

nCH4 =

[
1

0

]
nCO =

[
0

1

]

This gives the full set of bounding hyperplanes that define the stoichiometric sub-
space S:

S :


1 0

0 1

−2 1

−4 −1

−1 −1


[
cCH4

cCO

]
≥


0

0

2

−5

−2


A vertex enumeration algorithm can then be used to compute the vertices of the stoi-
chiometric subspace. S has rank 2 and therefore it is a 2-dimensional subspace resid-
ing in a 5 component concentration space. It is possible to project S into different
component spaces by performing the same procedure for different component pairs.
Figure B.2.1 shows the results obtained from the stoichiometric subspace calculation
taken for different component pairs in the steam reforming example. Note that the
associated regions all appear to have different shapes, however all regions belong to
the same stoichiometric subspace. In Figure B.2.1b, we repeat the stoichiometric
subspace calculation for a different feed point (Cf = [1, 0.5, 0.2, 0.45, 0.3]T). Notice
how the shape of the stoichiometric subspace changes by specification of a different
feed point. In this instance, the position of the feed point is inside the stoichiometric
subspace. In general, there is no requirement that the feed lie on the boundary of
S.
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(a) Stoichiometric subspace for Cf = [1, 1, 1, 0, 0]T

(b) Stoichiometric subspace for Cf = [1, 0.5, 0.2, 0.45, 0.3]T

Figure B.2.1: Stoichiometric subspace for the steam reforming system projected
onto different component spaces: CH4 − H2O (top left), CH4 − CO (top right) and
H2 − CO2 (bottom left). The feed point is displayed as a filled triangle.
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