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ABSTRACT                                                                                                                 

 

The current research investigates applicability of stochastic approach to simulation of gold 

distribution to assess uncertainty of the associated mineralisation and proposes a practical 

workflow to be used in future for similar problems. Two different techniques are explored in the 

research: Direct Sampling multi-point simulation algorithm is used for generating realisations of 

lithologies hosting the gold mineralisation, Sequential Gaussian Simulation is applied to generate 

multiple realisations of gold within them. A number of parameters in the Direct Sampling 

algorithm are investigated to arrive at good reproducibility of the patterns found in the training 

image. The findings arrived at are aimed to help when undertaking simulation in future and 

choosing appropriate parameters. The resulting realisations are analysed for assessment of 

combined uncertainty in the lithology and gold mineralisation. Different assessment criteria are 

demonstrated to visualise and analyse uncertainty. Block scaling to a panel size resolution is 

carried out to compare the results of the stochastic modelling to a kriged model and assess global 

uncertainty which stems from this analysis. A practical workflow has been reached as a result of 

the research. 

The approach confirms usefulness of the simulation in the estimation of uncertainty and 

provides some practical considerations in usage of Direct Sampling method which can be applied 

to other MPS algorithms with further improvements.  
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 “As far as the laws of mathematics refer to reality, they are not certain;  

and as far as they are certain, they do not refer to reality.”  

Albert Einstein 

 

January 27, 1921 

 

1. INTRODUCTION 

1.1 Uncertainty modelling: 2-point versus multi-point statistics 
 

Traditionally, modelling in mining industry is done in a deterministic way when only one 

representation of reality is considered. It is applicable to modelling stationary geological domains 

and mineral grade distribution within them. The main problem with deterministic models is that 

they convey a presumably perfect knowledge with regards to the size and geometry of the 

geological units and spatial continuity. This is a good approach if the density of the available data 

allows inferring the latter with high confidence. Problems arise when an interpretation is not 

definite and multiple scenarios can be inferred with equal validity from usually broadly spaced 

informing data (Perez, 2011). 

In the last two decades there have been considerable advances in using uncertainty for 

mineral resource and reservoir assessment. The approach requires generating and summarising 

multiple stochastic models of the truth and has been mainly used in hydrogeology and oil 

industry. The methodology has not been broadly utilised in the mining industry due to a number 

of issues. The main one of them is a necessity to deal with large datasets and high demands in 

terms of processing power and technical expertise for generating geological and geostatistical 

models. These models must be further subjected to mine design and optimisation algorithms 

(Perez, 2011).  

In the heart of the stochastic approach to modelling lies geostatistical simulation. When 

applied to modelling geology or grade distribution, the process serves as a platform for 

generating multiple scenarios. During the workflow, a number of equally probable models are 

created, each one of them providing a plausible version of a geostatistical reality. Analysing the 

suite of them all together allows assessment of uncertainty. 

For this research, two approaches to stochastic modelling are applied: multi-point statistical 

simulation – for modelling geostatistical lithological domains, and subsequent to this, a 

Sequential Gaussian Simulation – for creating multiple realisations of the grade distribution 

within the simulated lithologies.  
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Traditional stochastic simulation techniques carry a heavy reliance on an input parametric 

model of spatial continuity.  This approach, broadly described in the literature, is termed 2-point 

geostatistics (Remy, 2009). It has brought insights into geosciences by accounting for spatial 

relationships of data values. It consists of dividing a particular dataset into single locations of 

variables. The locations with known data values are considered in pairs to create a parametric 

description of spatial continuity. Each single data variable location is related then to a single 

location of unknown using the previously defined parametric model through the process of 

kriging to produce an estimate. This approach is very robust in generating the “best linear 

unbiased estimate”. It can be used with different variations for estimating both continuous and 

categorical variables. However, it fails at reproducing complex non-linear geological shapes. The 

variogram analysis is not always easy since data can be noisy, there are errors in the data, there is 

not enough data or the data is too broadly spaced to capture the true variability. Variograms are 

crude descriptions of actual phenomena, since they capture spatial continuity by considering 

sample values taken only two at a time. The three parameters (nugget, range and sill) cannot 

describe a deposit that may need hundreds of parameters for a complete description (Caers, 

2011). 

A concept of multiple-point statistics (MPS) was first introduced by Guardiano and Srivastava 

in 1993. Its basic concept lies in a training image (TI) which conveys a conceptual model of 

geological heterogeneity on which further MPS simulation is based (Caers, 2011). An MPS 

approach is a relatively new tool for geostatisticians to communicate the spatial continuity style. 

The multi-point simulation algorithm bypasses pair-wise division of the locations with the 

known data values. It uses an explicit multi-point model, which allows considering all n known 

data points together. The latter is termed “data conditioning”. The necessary multi-point 

statistics are obtained from replicates of the conditioning data event found in a visually explicit 

training image. A training image is a conceptual representation of how z values of a random 

variable are jointly distributed in space, be it a continuous or a categorical variable. A TI is 

essentially an unconditional realisation of a random function model Z(u). This model does not 

have to honour the data values at their spatial location. This “data conditioning” takes place 

during a further multi-point simulation. While a 2-point simulation aims at generating realisations 

that honour the data and the variogram model, a multi-point simulation generates realisations 

that honour the data and the multi-point structures present in the training image (Remy, 2009). 

A training image represents complex curvi-linear structures involving more than two locations 

in space simultaneously. It needs to reflect only fundamental rules of the conceptual geological 

relationship in the study area. It does not have to be constrained to any specific data. The aim is 

to build realisations that mimic the spatial continuity of the training image, and at the same time 

constrain the model to the available sampling data. During the simulation a particular pattern 

present in the training image is randomised over the area being modelled (Caers, 2011). 
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Traditional geostatistics requires a variogram model for kriging. In many applications involving 

subsurface deposits where local data are sparse, inference of a variogram is difficult.  In this case, 

a variogram can be borrowed from other deposits which are analogous to the one under study. It 

can also be modelled subjectively to reflect the geologist’s appreciation of the spatial continuity. 

The MPS approach in this case is more intuitive for geologists. It is easier to adopt a geological 

section, a sketch, series of trench sections or an outcrop photograph as a training image 

representing the variability rather than to infer a variogram. In the case of a training image, 

stationarity is a modelling decision. Such a decision is largely subjective. It can only be tested by 

evaluating the success of the resulting model in achieving the task at hand. Accepting a spatial 

variogram model or accepting a specific training image amounts to different decisions on 

stationarity. The use of different training images allows interpretation of spatial geological 

information to be taken far beyond the variograms of these training images (Remy, 2009).  

A word of warning is that the results of such multi-point geostatistical application are only as 

good as the prior model adopted using the training image. While the MPS approach attempts to 

provide solutions from a more realistic perspective, it requires a thorough understanding and 

interpretation of the geological phenomenon. Such interpretation is subject to a great deal of 

uncertainty in itself (Caers, 2011). 

 

1.2 Sequential simulation algorithm 
 

The size of geostatistical models reaches millions of cells and prevents most of them from 

being practical in terms of processing time. One method that does not suffer from this limitation 

is sequential simulation. The approach is to build a model one cell at a time and assign values to 

each cell by visiting each one along a random path, until all cells are visited. The value assigned to 

a cell depends on the values assigned to all previously visited cells along the random path. This 

sequential dependence forces a specific pattern of spatial continuity into a model. Each final 

result is termed a realisation. At each grid cell in a realisation, the probability of having a certain 

category or content of interest, given the previously simulated categories is calculated. 

Sample data provide local constraints for the assigned values. During simulation, the grid cells 

closest to the data points are assigned values from the samples. These cells’ values are “frozen”. 

The cells containing such constraints are never visited again and their values are never re-

considered. The sequential nature of the algorithm forces all neighbouring simulated cell values 

to be consistent with the data. Sequential simulation allows for constraint to data points in a 

single pass over all grid cells, no iteration is required (Caers, 2011). 

In MPS, the conditional probability distribution is deduced directly from the training image. 

This probability depends on the spatial variation seen in the training image. In variogram-based 
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modelling, kriging is used to derive such probability distribution. This probability distribution 

needs to be conditioned to the data in both cases.  

Unlike 2-point geostatistical algorithms, the MPS technique is only used in a simulation mode. 

 

1.3 History overview  
 

Monte Carlo experiments lay at the heart of the simulation algorithm lays. The modern 

version of it was invented as far back as the late 1940’s by Stanislav Ulam for nuclear weapons 

projects. The algorithm relies on repeated random sampling to obtain numerical results. When 

Monte Carlo Simulations were applied in petroleum and space exploration, the resulting 

predictions of project failures, cost and time schedule overruns were recognised to be 

consistently better than human intuition or “soft” methods.  There are three distinct problems 

where Monte Carlo methods are used: optimization, numerical integration and generation of 

samples from a probability distribution  (http://en.wikipedia.org/wiki/Monte_Carlo_method). It 

has been used extensively since then.  

With regards to the problem of optimisation of spatial phenomena, Deutsch and Journel 

introduced a theory of simulated annealing in 1992. In 1993, Guardiano and Srivastava 

introduced the concept of MPS for the first time. The theory of stochastic simulation was further 

advanced in 1994 by Caers with neural networks to collect MPS from training images. Further 

stepping stones included improvement in the theory of a single normal equation (Strebelle and 

Journel, 2000) and updating of conditional distributions with MPS by Ortiz and Deutsch in 2003 

(Deutsch, 2013).  

There have been a number of MPS algorithms developed in the last two decades, after the 

first introduction of the concept by Guardiano and Srivastava. In 2002, Strebelle proposed the 

snesim algorithm for simulation of categorical variables. It utilised a “search tree” structure to 

store conditional probabilities of data events which were extracted later during simulation. It was 

computationally demanding which made it prohibitive for simulation of large models. Filtersim 

algorithm (Zhang et al, 2006; Wu et al, 2008) accommodated both continuous and categorical 

variables, as well as improved the computational demands by simulating batches of pixels rather 

than one pixel at a time. IMPALA algorithm (Straubhaar et al, 2011) used lists instead of trees, 

which reduced the memory requirements by allowing parallelisation, however this was still 

demanding. In 2007, Arpat and Caers introduced SIMPAT algorithm which used distance 

functions to calculate similarity between the training image and conditioning data events. Multi-

dimensional scaling, MDS, (Honarkhah and Caers, 2010) and CCSIM method (Tahmasebi et al, 

2012) are other examples of the MPS algorithms (Rezaee, 2013).  

 

http://en.wikipedia.org/wiki/Monte_Carlo_method
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1.4 Research motivation 
 

The current research investigates the applicability of stochastic approach to the simulation of 

lithology and gold distribution to assess uncertainty of the associated mineralisation. An MPS 

algorithm is used to model spatial continuity of lithological units in a gold deposit, Sequential 

Gaussian Simulation (SGS) is applied subsequently to assess resulting uncertainty in gold 

distribution. There are many different MPS algorithms available currently which can be used 

successfully with sufficient proficiency. The purpose of the research is not to compare any of 

them, but rather to test the application of stochastic approach to a mining scenario, and 

demonstrate its plausibility in terms of time demands versus gains in generating a geostatistical 

model of uncertainty. Comparison of the averaged result of the simulation to a kriged model is 

performed. A workflow to be used in future for similar problems is proposed. 

 

1.5 Research methods 
 

The current work presents a case study of Nyankanga gold deposit, as an attempt to model 

and quantify uncertainty of different mineralised units. A suite of software was used for different 

parts of the project. The Direct Sampling (DS) algorithm developed recently at the University of 

Neuchâtel, was used to generate 50 realisations of lithology. The algorithm was operated on a 

Windows platform pc, from a command prompt.  

A Sequential Gaussian Simulation framework was applied to simulate gold grades using 

Geostatistical Software Library (GSLIB) developed at the University of Stanford.  

The lithology realisations were combined with the grade realisations to assess joint 

uncertainty in the interpretation of geostatistical domains and grade. 

Preparation of the training image and visualisation was done using Leapfrog software. Most 

processing was done in GSLIB, Datamine software was used for some of the scripting. 

The project was conducted with the gold values in the original units in order for the 

originators of the data to validate the results. Due to confidentiality reasons, no reference to 

actual gold values is made in the project report. Statistics which would allow one to infer the gold 

grades have been left out, where present – they have been modified.  

The simulation algorithms were run on a solid-state 64-bit 8-core machine with 2.4GHz 

processor. All further references to processing time are with regards to this capacity. 
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1.6 Project report structure 
 

Chapter 2 of the report provides an overview of the methodology employed to simulate 

lithologies and gold grade realisations. A detailed description of the practical workflow followed 

in the process is given in Chapter 3. The workflow explains the steps involved in creating a 

training image, the process followed for validating the workflow, the input parameters used in 

the simulation over the main volume of interest and difficulties encountered. 

Chapter 4 covers some aspects of post-processing for uncertainty assessments. Block 

averaging to recoverable resources is touched on in this chapter, and comparison of global 

statistics for gold and rock density between the stochastic approach and a kriged model is 

presented.  

In the last section, some recommendations stemming from the research and possible future 

work are suggested.  

  



7 
 

 

2 SUMMARY OF METHODOLOGY 

 

Traditional practice in resource modelling is to generate a single smooth 3D model usually 

applying the ordinary kriging algorithm. Stochastic simulation on the other hand is used to 

generate multiple equi-probable realisations of a variable. While kriging variance does not 

account for uncertainty and the kriging estimates are overly smooth, the objective of the 

stochastic simulation is to model variability as a means for quantifying uncertainty in a natural 

phenomenon.  

 

2.1 Lithology simulation 
 

The lithology realisations were generated using the Direct Sampling (DS) algorithm supplied 

by the University of Neuchâtel, Switzerland.  

 

2.1.1 Description of the Direct Sampling algorithm to perform multi-point simulation 
 

The Direct Sampling algorithm is one of the recent multi-point simulation techniques. Similar 

to the other techniques, it adopts a principle of sequential simulation. The difference comes in 

the way of computing a conditional cumulative distribution function for the local data event. 

Rather than storing the training image probabilities in a catalogue prior to simulation, the 

algorithm directly scans and samples the training image in a random fashion while conditioning 

to the data event dn. It uses dissimilarity distances between the dn and TI patterns. For each node 

x in the simulation grid, the TI is randomly scanned for matching patterns of nodes denoted y. A 

measure of satisfying the degree of “matching” is determined by a user-defined distance 

threshold, which takes a range of values between 0 and 1. As soon as a TI pattern that matches 

the data event dn exactly or within the defined threshold is found, the value of the central node 

of such TI pattern is pasted to x. The advantage of the DS over other MPS algorithms is that it by-

passes the step of explicit calculation of the conditional cdf, and as a result many technical 

difficulties encountered in other algorithms are avoided. Since the TI is scanned randomly, this 

strategy is equal to drawing a random value from the cumulative distribution function, however 

the simulation speed is increased considerably (Mariethoz et al, 2013). 

The DS algorithm can be applied to both categorical and continuous variables as well as to 

multivariate cases. Recently, a modified form of the algorithm was introduced, which allows 
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patch-pasting of groups of nodes at a time rather than a single-pixel pasting approach, combining 

the flexibility of DS with the processing efficiency of patch-based methods (Rezaee, 2013). 

The detailed description of the DS algorithm, its parameters and their sensitivities, as well as 

practical considerations for different applications can be found in Mariethoz et al (2012, 2013). 

 

2.1.2 Input into the Direct Sampling algorithm 
 

As an input to the DS algorithm, a number of parameters need to be defined. A short 

description of the most important of them is provided below.  

Simulation grid 

A simulation grid represents the volume to be simulated. It is a Cartesian grid which is defined 

in terms of: 

 Size, expressed in number of nodes in X, Y and Z directions; 

 Node spacing in each direction; 

 Coordinates of the origin cell (min X, min Y, min Z). 

Training image 

A training image is another type of a grid object, as such it is also described geometrically in 

terms of an origin, number of nodes in each direction and node spacing. Each node of the 

training image has at least one or a set of associated variables of interest. A training image does 

not have to be defined at each node, it can be defined partially. In this case, undefined cells carry 

a default value. 

If required, a number of training images can be provided as an input to the algorithm. The 

simulation grid itself can serve as a training image. This can be useful when a portion of the 

simulation grid is well informed and the remaining part is to be reconstructed. 

Conditioning data 

The conditioning data can be in a form of a regularly gridded file, termed an “image file” or a 

point set file representing sample centroids. Multiple conditioning data files can be provided in 

the input.  

Mask image 

A mask image is a grid object with the same geometry as the simulation grid and flagging of 1 

or 0 for nodes to be simulated or omitted from simulation. Providing a mask image is useful when 

only a portion of the volume of interest is to be simulated. Multiple mask files must be supplied 

per each variable if necessary. 
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Search neighbourhood parameters 

Search neighbourhood represents a 3D ellipsoid describing anisotropy. It is defined in terms 

of: 

 Angles of anisotropy direction (azimuth, dip and plunge), according to GSLIB 

convention; 

 search radii in each direction expressed in the number of grid nodes; 

 anisotropy ratios in each direction expressed as number of nodes representing a 

geological distance of 1. The ratios are used only for computing the distance from 

each node in the search neighbourhood to the central node;  

 power of computing weight according to distance of each node found in the search 

neighbourhood. 

The nodes inside the search neighbourhood are sorted according to their distance to the 

central node, from the closest one to the furthest one. 

Homothety 

In mathematics, a homothety is a transformation of space which dilates distances with 

respect to a fixed point (http://wiki.artofproblemsolving.com). This parameter allows relative 

scaling of the elements found in the training image when transferred to the simulation grid.  

The input can be either in a form of fixed values for each anisotropy direction or provided in 

an image grid file over the extent of the simulation grid. Upper and lower bounds of the 

homothety values can be imposed for each anisotropy direction, either as fixed parameters or in 

a form of a grid image object. 

Rotation 

This parameter is useful when the spatial arrangement of the elements in the simulation grid 

is rotated in relation to the elements present in the training image.  

Similar to the homothety, the rotation input can be in a form of fixed parameters for each 

angle (azimuth, dip, plunge) or as an input grid image file representing a potential field of 

azimuth, dip and plunge. Tolerance can be supplied in the two formats also.  

This functionality can be useful when simulating mineralised elements within stratigraphically 

conformable units and the conditioning data for the bedding is available in a form of structural 

measurements of the drill core. In this case, it is possible to create a potential field of the bedding 

and derive three separate input files – for the azimuth, dip and plunge components.  

Consistency of conditioning data 

This parameter, used in simulation of continuous variables, represents the maximum 

accepted expansion in both extremities of the range of values in the training image for covering 

http://wiki.artofproblemsolving.com/
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the conditioning data values. For example, if this number is set to 0.1, the conditioning data 

values can be beyond the range of the values in the training images (in both extremities) to at 

most 10%. 

Maximal number of neighbouring nodes for each variable 

The parameter describes the conditioning dataset – the maximum number of nodes n in the 

simulation grid closest to the node x being simulated, which are to be used within the search 

neighbourhood for each variable.  

Distance threshold 

The parameter defines the allowed variation in the distance being searched for in the training 

image.   It needs to be specified because a TI pattern matching a data event dn exactly is often not 

found. When the distance between the TI pattern and dn is smaller than t, the central node of the 

TI pattern is pasted at location x. The distance is measured on the fraction of non-matching 

nodes for categorical simulations. All distances are normalized ensuring their minimum to be zero 

(exact match) and their maximum to be 1 (no match). The parameter needs to be provided for 

each variable to be simulated. 

Probability constraints 

Probability constraints can add extra conditioning to the categorical variable simulations. 

Global or local probability constraints can be used. 

Maximum scan fraction for a training image 

This parameter represents the volumetric fraction of the TI to be scanned when searching the 

TI for suitable matches to the data events. It limits the number of TI patterns that are scanned for 

their similarity with dn. It ranges from 0 (no scan) to 1 (scan full TI if necessary). If the maximum 

fraction of the TI is scanned and still no TI pattern with acceptable distance is found, the central 

node of the TI pattern with the lowest distance is pasted at the location x.  

 

2.2 Simulation of grade 
 

A widely accepted form of simulation for continuous variables is Sequential Gaussian 

Simulation. The underlying algorithm of SGS is simple kriging. Kriging provides an estimate of 

both the mean of the variable of interest and its standard deviation at each grid node, meaning 

that the variable at each node is represented as a random variable following a Gaussian 

distribution.  

The conditional distributions are inferred in the Gaussian space. As SGS requires univariate 

Gaussian distribution of the continuous variable, the variable must be transformed to standard 
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Gaussian space with the mean of 0 and the standard deviation of 1. The SGS algorithm then 

assumes multi-Gaussianity – conditional distribution of each of the co-located variables is 

assumed to be a random function of multivariate Gaussian form, where any linear combination 

of its variables follows a Gaussian distribution.  The simulation takes place in this space. A 

variogram model based on the Gaussian units is used during the simulation. A random path is 

usually followed to avoid artefacts which are inevitable if the grid nodes are visited in a regular 

fashion. The simulation results are then backtransformed to the original units (Yunsel, 2012).  

There are a few basic steps involved in the SGS workflow, they have been broadly covered in 

the literature: 

1. Prepare input data for the SGS algorithm: 

a. Obtain a representative histogram for the input conditioning data;  

b. Transform the data into a Gaussian space; 

c. Produce a variogram model for the variable of interest in the Gaussian units; 

2. Run the SGS algorithm, during which the following takes place: 

a. Generate a random path though the grid nodes; 

b. Visit the first node in the path and use kriging to estimate a mean and standard 

deviation at that node based on surrounding data. This is termed local 

conditional probability distribution function; 

c. Select at random a value from the local conditional probability distribution 

function and set the node value to that number; 

d. Include the newly simulated value as part of the conditioning data. All previously 

simulated values serve as part of conditioning data in order to preserve the 

proper covariance structure between simulated values; 

e. Repeat the steps 2a-d until all grid nodes have a simulated value. 

3. Validate the results: 

a. Visual aspect of the simulated realisations; 

b. Statistics; 

c. Histograms; 

d. Variogram reproduction.  

  

Adopting the multivariate Gaussian model for gold simulation is one of the simplest and most 

practical approaches to produce conditional representation of uncertainty for continuous 

variables (Deutsch, 2013). 
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3 PRACTICAL APPLICATION OF THE SIMULATION ALGORITHMS 

 

The algorithms described in the previous chapter have been applied to a set of data 

originating from Nyankanga deposit, Geita gold mine. The dataset was chosen among other 

AngloGold deposits due to the fact that the local geology was expected to lend itself quite well to 

the MPS simulation. Also, extensive areas of the deposit have been drilled at dense spacing by 

grade control drilling, with lithological description of the chips available providing a good data set 

for a training image.  

 

3.1 Geological settings 
 

The Geita gold mine is located to the south of Lake Victoria in the northwest of Tanzania. It is 

hosted within the Sukumaland Greenstone Belt of the Lake Victoria goldfields. The Geita terrain 

is made up of greenschist facies rocks consisting of clastic sedimentary rocks, black shales, 

banded iron formation (BIF) and felsic volcanoclastics, which are intruded by a sequence of mafic 

to felsic rocks. 

The geology of the Nyankanga deposit comprises lense-shaped BIF packages with 

intercalation of intermediate and felsic intrusives, termed “diorites” for brevity in the current 

report, and minor sedimentary rocks. The package is folded, faulted and sheared. Subsequently 

to deformation it has undergone hydrothermal alteration. The sequence is regularly cut by late-

stage barren quartz-porphyry dykes. Along the strike of the orebody, the dykes converge and 

link, compartmentalising the orebody (Brayshaw, 2010). 

Gold mineralisation is predominantly shear-controlled and closely associated with banded-

iron formations. It is localised along a distinct, tabular, shallowly dipping shear zone. The 

intricacies of a braided fault zone controlling the mineralisation have local variability of a few 

meters. The highest grades are associated with breccia zones within BIF which are sigmoidal or 

tabular in shape (Nyankanga Resource Model Handover Note, 2013). Within the diorite, 

mineralisation is wider, but has a more erratic gold distribution and a lower average grade. 
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3.2 Data description 
 

The simulation was undertaken in the Eastern part of the Nyankanga orebody to test the 

applicability of the workflow on a small portion of the deposit.  

The location of the simulation volume in relation to the operating pit is shown in Figure 3.1. 

 

Figure 3.1. Isoclinal view of the Nyankanga pit showing drillholes dataset used in the simulation. 
The white box represents the extent of the training image, the red box – main simulation volume. 

 

The drillhole dataset comprised of 410 drillholes: 249 by reverse circulation (RC) and 161 by 

diamond core (DC) drilling. The majority of the drillholes are sampled at 1m intervals. In the top 

portion of the deposit, dense grade control drilling on a grid of 10m (along Easting) by 5m (along 

Northing) allowed to define a well-informed training image.  

 

3.3 Conventions used in the report 
 

Further in the report, where not specified explicitly, the following conventions are used:  

 References to geographic directions are made in a modified metric coordinate 

system. Distance scales on figures are in meters; 

 Gold values where reported have been modified. Unless otherwise specified, the 

same colour scale convention for gold was used for all the images in the report in 

order to allow comparison of the outputs of different processes. The gold statistics 

as well as appropriate units on graphs have been modified or excluded.  

 

Colour coding schemes for lithologies, grade and measures of a unit, like probabilities, are 

presented in Figure 3.2. 

X 

Y 

Z 
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Lithology  

 

 

Au (g/t), factorised linearly 

 

Probability percentiles  

 

 

Figure 3.2.  Legends used in the graphics of the report 

 

3.4 Training image 
 

Choice of a training image for simulation of lithologies is of paramount importance in the 

application of MPS. The training image serves as the source of spatial patterns to be simulated.  

 

Figure 3.3.  Drillholes used in the creation of a training image.  
Interval colours display the logged lithology. 

 

The training image with the total number of 742,500 nodes was created. Its geometry is 

presented in Table 3.1. 

Table 3.1.  Training image geometry 

Parameter X Y Z 

Origin, m 50,426 10,050 1,071 

Node spacing, m 2 2 2 

Number of nodes 135 100 55 

 

X 

Y

X 

Z 
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Densely spaced data allowed deterministic interpretation of the lithologies. The training 

image was defined only in a well-informed portion of the grid, the rest of the grid nodes were 

assigned undefined values.  

Three main lithologies were modelled and used later as stationary domains for simulating 

gold values: banded iron formation, intrusive diorite complex, and barren quartz porphyry dykes. 

Leapfrog software was used to create a geological wireframe model of the three main 

lithologies. The boundary between BIF and diorite was modelled using Radial Basis Function (RBF) 

method. Deterministic vein-type modelling approach was employed for creating tabular 

wireframes representing late barren dykes. The resulting wireframes were used to code grid 

nodes of the training image.  

a)  b)  

Figure 3.4.  Wireframe model used to create a training image. 
a) dykes, b) dykes and BIF. 

 

A sectional view of the resulting training image is shown in Figure 3.5.  

 

Figure 3.5.  The three main lithologies in the training image. 

 

The simulation algorithm was first tested on the training image, and only upon validation of 

the results it was implemented to the main simulation grid.  

 

 

 

X 
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Z 

X 
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3.4.1 TI statistics 
 

For the purpose of simulation, the statistics of the raw data must be representative. This 

involves eliminating bias. To ensure this, both the RC and DC drillhole samples were composited 

to 1m support and subsequently declustered.  

Different cell sizes were tested. Based on the minimised average mean, the cell size of 30mE x 

30mN x 10mElev for declustering was chosen. 

The histograms of the declustered dataset in the training image are presented in Figure 3.6.  

 

a)  b)  

c)  d)  

e)  f)  

Figure 3.6.  Au statistics of the conditioning data in the training image for the main lithology types. 
a), c) and e) histograms in the original units, b), d), and f) histograms in the log scale. 
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Gold in each of the three lithological units displays strongly positively skewed lognormal 

distribution. The mean value in each lithology is much higher than the median value. The 

interquartile range, a measure of spread around the median, broadens from quartz porphyry to 

that in diorite and in BIF. 

The coefficient of variation is quite high in each lithology. The quartz porphyry dykes, even 

though are post-mineralisation and considered unmineralised, also have a few extreme values.  

Despiking, necessary for smooth transform to Gaussian space, was done for each rock type. 

Despiking is performed to break ties when identical values are present in the dataset, e.g. default 

values assigned to the samples below detection limit. Further to this, the data was capped to 

eliminate outliers.  

The dataset was normal-score transformed per lithology code for variogram modelling to be 

further used in grade simulation. 

 

3.4.2 TI variography 
 

Variogram modelling is required for two purposes: as input parameters for the SGS algorithm 

and to allow parametric validation of the simulation results.  

The analysis of spatial correlation showed a greater spatial continuity in the NW-SE direction 

plunging towards NW. The azimuth of the primary anisotropy direction is shown in Figure 3.7. 

 

Figure 3.7.  Plan view of the study area showing the primary direction of continuity. 

 

The anisotropy was modelled along the same directions for the lithologies and grade. The 

anisotropy directions are summarised in Table 3.2. 

  



18 
 

Table 3.2.  Anisotropy directions 

Lithology Anisotropy angles 
(Z/ X/ Y) 

Angle 
component in 

Direction I 

Angle 
component in 

Direction 2 

Angle 
component in 

Direction 3 

BIF/diorite -55/  -20/  40 -55.0    -20.0 -129.0  37.2 12.8    46.0 

Quartz porphyry -60/  -10/  45 -60.0    -10.0 -140.1  44.1 20.1   44.1 

 

The variogram model parameters for the interface between BIF and diorite are presented in 

Table 3.3. It was deemed not necessary to create an indicator variogram model for the dykes, the 

main validation tool for checking the continuity of dykes used further in the workflow was visual. 

Table 3.3.  Variogram model parameters for BIF/diorite interface 

Lithology Nugget Structure 
ID 

Structure 
Sill 

Range in  
Direction 1  

Range in  
Direction 2 

Range in  
Direction 3 

BIF/diorite 0.0 1 0.40 8.0 8.0 2.0 

2 0.35 15.0 15.0 9.0 

3 0.25 50.0 50.0 11.0 

 

The variograms for gold values were produced both in original and in Gaussian space and are 

summarised in the Tables 3.4 and 3.5.  

Table 3.4.  Variogram model parameters for gold in original space 

Au 
domain 

Nugget Structure 
ID 

Structure 
Sill 

Range in 
 Direction 1 

Range in 
 Direction 2 

Range in 
 Direction 3 

BIF 0.14 1 0.34 8.0 55.0 3.0 

2 0.52 47.0 38.0 12.0 

Diorite 0.20 1 0.50 22.0 25.0 11.0 

2 0.30 32.0 32.0 11.0 

Quartz 

Porphyries 

0.15 1 0.30 4.0 17.0 5.0 

2 0.30 22.0 30.0 6.0 

3 0.25 90.0 30.0 7.0 

 

Table 3.5.  Variogram model parameters for gold in Gaussian space 

Au 
domain 

Nugget Structure 
ID 

Structure 
Sill 

Range in 
Direction 1 

Range in 
Direction 2 

Range in 
Direction 3 

BIF 0.10 1 0.25 4.0 5.0 4.0 

2 0.28 52.0 65.0 18.0 

3 0.37 125.0 70.0 20.0 

Diorite 0.10 1 0.45 10.0 9.0 5.0 

2 0.35 47.0 45.0 19.0 

3 0.10 100.0 70.0 19.0 

Quartz 

Porphyries 

0.10 1 0.30 10.0 3.0 5.0 

2 0.30 22.0 8.0 12.0 

3 0.30 50.0 45.0 12.0 

 

Comparison of the variogram models produced for gold in original units versus the models in 

Gaussian space shows longer ranges in Gaussian space. It is specifically true for BIF and to a less 
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extent for diorite. For the latter, 90% variance is reached at 45m for the first and second 

directions of continuity. It is 30% longer that the ranges in the original units. A complete set of 

the variogram models can be found in Appendix A. 

The variogram models in Gaussian space, based on the densely spaced grade control 

sampling, were used for further simulation of gold in the main simulation volume.  

 

3.4.3 Validating a training image 
 

A test for reasonableness of the parameters was done by first performing a full simulation 

exercise on the training image volume. 

Sensitivity of the Direct Sampling algorithm to different parameters was tested to balance the 

simulation quality and processing time. The test was done by fixing all the parameters and 

modifying one parameter at a time. Recommendations provided in Mariethoz et al (2012, 2013) 

were followed to allow reasonable results in minimal time. 

The following DS parameters were deemed sufficient for the good reproduction of the 

lithologies: 

 Node spacing. The node spacing is a critical factor in the process. As a first run, a grid 

of irregular spaced nodes was used (5mE x 5mN x 2mElev). This spacing was chosen 

to resemble the drillhole sample spacing  of 10mE x 5mN x 1mElev. Visual inspection 

of the simulation results was difficult for the non-cubic grid cells. For the final 

training image the grid was modified to have nodes of cubic geometry spaced at 2m 

in each direction; 

 Consistency of conditioning data: 0.05; 

 Anisotropy radii: 10-10-5 for the primary, secondary and tertiary directions of 

anisotropy respectively; 

 Anisotropy ratio: 1-1-1; 

 Number of nodes n=30, although n=24 produced sufficiently good results also; 

 Distance threshold: 0.05; 

 Maximum fraction of the training image to be scanned: 0.3. 

The processing time with the above settings was 9 min per lithology realisation, for a grid size 

of 742,500 nodes and a conditioning dataset of 45,700 points. One realisation of SGS took 

approximately 0.5 min per lithology type. 

A simulation for 50 realisations was done for both lithology and grade within the training 

image volume. The gold realisations were “stitched” to those of lithology in a sequential order. 

The results of the trial simulation were checked for visual reproduction, global proportions, 

histograms and variograms reproduction. 
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Visual inspection 

Prior to using the training image for the main volume simulation, unconditional simulation 

was performed to ensure good overall reproducibility of the patterns found in the training image 

and to confirm the choice of simulation parameters. A comparison of the training image and the 

unconditional simulation patterns is given in Figure 3.8.  

a)  b)  

Figure 3.8.  Unconditional simulation of lithology, sectional view.  
a) training image with the three main lithologies, b) one unconditional realisation within the training image volume. 

  

In the unconditional simulation, the connectivity of dykes posed a major challenge while 

simulated BIF and diorite shapes were reproduced quite reasonably and displayed the same level 

of irregularity of the shapes as in the training image. A number of parameters were tested, but 

none of them seem to have improved the connectivity dramatically.  

A better connectivity of dykes was achieved when running a conditional simulation within the 

training image volume. A big factor was the high density of the conditioning data. Examples of 

the conditional simulation are displayed in Figure 3.9. 

a)  b)  

Figure 3.9.  Conditional simulation within the volume of the training image, sectional view of two realisations. 

 

The honouring of the global lithology proportions within the training image conditional 

simulation was good taking into consideration the fact that no global proportions were specified 

in the simulation input. The BIF was understated and the diorite overstated in the simulation by 

4-5%. The comparison is presented in Table 3.6. 
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Table 3.6.  Global proportions of the conditionally simulated lithologies within the training image 

Lithology Conditioning 
data 

Simulated 
proportions 

BIF 0.31 0.27 

Diorite 0.61 0.66 

 QP 0.08 0.07 

 

Statistics and histogram validation 

The results of the gold simulation were tested by comparing the main statistics of the gold 

distribution, and visually for honouring of the conditioning data. Histograms for all three lithology 

types were very close to those of the conditioning data, they are presented in Figure 3.10.    

a)  

b)  

c)  

Figure 3.10.  Histogram reproduction within the training image. 
pdf and cdf graphs of a) BIF, b) diorite, c) quartz porphyry. 
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Variogram validation 

Variograms of the realisations were compared to the indicator variograms for lithologies and 

gold within each of the rock types, in the principal directions of continuity. The comparison was 

done within a portion of the simulated volume for brevity. The results display very good 

reproduction of the continuity for both lithologies and grade within them. The lithology 

variograms are presented in Figure 3.11.  

 

  

Figure 3.11.  Variogram reproduction for the simulated lithologies (BIF and diorite).  
a) Primary and secondary directions of anisotropy compared to an input omni-directional variogram, b) 

comparison for the third direction of anisotropy. 

 

Variograms of the simulated gold values were validated for each of the three main lithologies. 

The comparison was done against the variogram model created in the original space. For brevity, 

the simulated variograms were summarised in the easting, northing and elevation directions, not 

in the principal directions of the continuity, hence the comparison is not direct. Overall, the 

ranges of continuity are well replicated in the simulation. The gold variograms can be found in 

Appendix B. 
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3.5 Simulation of the main area 
 

The main simulation for a more extensive volume was done for 50 realisations of both 

lithology and gold. 

The best traditional approach in simulation is to generate 100-200 realisations (Deutsch, 

2013) to stabilise the uncertainty and reduce “uncertainty of the uncertainty” as much as 

possible. There are too many subjective decisions that might aggravate the uncertainty if a small 

number of realisations is produced.  

 The simulation grid consisting of 1,827,360 nodes covered the extent of 470mE by 900mN by 

540mElev. The geometry of the simulation grid is presented below: 

Table 3.7.  Geometry of the main simulation grid 

Parameter X Y Z 

Origin, m 50422.5 10252.5 532.5 

Node spacing, m 5 5 5 

Number of nodes 94 180 108 

 

Prior to deciding on the node resolution, a consideration was given to the size of the selective 

mining units (SMU) and the size of the panels. The size of the SMU used for Nyankanga is 10mE 

by 10mN by 3.33mElev. The size of the panels is 40mE x 40mN x 10mElev. The vertical dimension 

of the SMU is awkward to work with for upscaling of realisations at a later stage. It was decided 

to work with cubic grid cell of 5m side dimension to accommodate smooth upscaling to the panel 

size at a later stage. A resolution coarser than that in the training image was chosen also for time 

efficiency reasons. For the same reason, a mask object was used to block out the simulation grid 

nodes away from the mineralised shear zone.  

The DS simulation parameters that produced good results in the simulation runs over the 

training image volume were used in the large scale simulation, and fine-tuned further.  

 

3.5.1 Lithology simulation  
 

50 realisations of lithology were performed. An extensive validation was done similar to the 

routine described above for the training image volume simulation. 

Visual validation  

Reproduction of the patterns found in the training image was very good for diorite and BIF 

categories. The issue of poor connectivity of the dykes re-immerged. Running a number of 

sensitivity studies while modifying one parameter at a time allowed comparison of the different 

runs to test the effect on the connectivity.  
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Adding global proportions conditioning had a slightly deteriorating effect on the continuity as 

demonstrated in Figure 3.12. 

a)  b)  

c)  d)  

Figure 3.12.  Conditional simulation of lithology over main grid, sectional and isoclinal views. 
a) and   c)   simulation with global proportions conditioning, b) and d) simulation without global proportions. 

 

To enforce better dyke continuity, at least in the vicinity of the drillholes, a conditioning grid 

object was used in the input for the simulation in addition to the drillhole samples. The grid 

object was created for the same volume as the simulation grid, with nodes flagged in the vicinity 

of the drillhole intervals that intersected dykes. The flagging was achieved by coding the grid 

nodes falling within a distance of 20m from the appropriate drillhole intersections, using 

Leapfrog software. The continuity within the conditioning dykes was improved. This approach 

had an outcome similar to that with locally varying proportions. Figure 3.13 demonstrates this – 

the upper part of the simulation grid has higher content of nodes simulated as dykes than the 

portions down the plunge. This is explained by the higher density of drill coverage in the upper 

portions of the volume. 

a)  b)  

Figure 3.13. Conditional simulation of lithology over main grid, dykes conditioned by an additional grid object. 
a) sectional view,    b)    isoclinal view.  
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Further to the above, other parameters were tested to improve the continuity of the dykes, 

such as increasing number of nodes, increasing distance threshold tolerance, increasing search 

neighbourhood radii. None of it resulted in any significant improvement while imposing higher 

computational demands.  

A second training image was created and used as an additional input to the DS simulation. 

Equal weights of 0.5 were assigned to the two input training images. The extent of the new 

training image covered the whole volume of the simulation grid. It had a deterministic 

interpretation of the dykes produced from a wireframe model. No large scale interpretation of 

the BIF/diorite interface was available at the same scale. To substitute for this, dummy values 

were assigned to the nodes in the training image representing the host rock to the dykes as 

follows: the training image volume was split in three portions: upper portion was assigned codes 

of 1 (BIF), lower portion was assigned values of 2 (diorite), and an undefined zone was left in the 

middle between the two.  

 

Figure 3.14. Second training image over the extent of the simulation volume, containing large-scale morphology of 
the dykes, sectional view. 

 

The resulting simulation produced much better dyke connectivity as can be seen in Figure 

3.15, however the BIF/diorite interface was not representative. Testing for the connectivity was 

terminated at this point to possibly be carried out in future. 

a)  b)  

Figure 3.15.  Lithology simulation using 2 training images. 
a) sectional view, b) isoclinal view, the drillhole intervals logged for quartz porphyry dykes are displayed as yellow 

segments. 

 

Analysis of the drillhole intersections through dykes in 3D showed that they have a radial 

attitude joining down dip with a plug-like intrusive body present in the top right corner of the 
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simulation grid. This can be seen in Figure 3.16. For future simulation work, it is suggested that a 

synthetic training image is used with a horizontal attitude of dykes and a rotation field defined 

over the whole volume of the simulation grid. This potential field can be created from the 

structural readings of the diamond core contacts. Simulation of the plug-like volume would 

require defining another stationary domain and yet another training image.  

 

Figure 3.16.  Dykes logging in the drillholes, isoclinal view.  

 

Comparison of four realisations of lithology for the final simulation run demonstrates a 

uniqueness of each realisation, specifically further away from the conditioning data. 

  

  

Figure 3.17.  Four realisations of lithology from the final simulation run, sectional view. 

 

For possible future simulation of the deposit, incorporation of structural readings for lineation 

will be useful for simulation of BIF/diorite interface. It will allow reproduction of geologically 

viable scenarios where diorites would have intruded along planes of weakness associated with 

bedding.  
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Global proportions 

The global proportions used as an additional input for the simulation were determined from 

the logging information of the conditioning drillholes. Overall, the average values for the 

simulated global proportions are maintained. A few-percent overall fluctuation was observed 

across the 50 realisations and is shown in Table 3.8.  

Table 3.8. Comparison of the simulated and input global lithology proportions 

Lithology Proportions in the 
conditioning 

drillholes 

Proportions in the 
training image 

Proportions in the 
50 simulated 
realisations 

BIF 0.29 0.28 0.26 

Diorite 0.67 0.63 0.72 

QP 0.04 0.09 0.02 

 

The final proportions of the BIF are understated by 3%, in dykes the understating is by 2%, 

resulting in the overstatement of the presence of diorite by 5%. 

 The variation is attributed to insufficient understanding of the controlling parameters of the 

global proportions input for the Direct Sampling algorithm. Further work beyond the scope of the 

current project can be undertaken in this direction. 

Figure 3.18 shows the histograms of the simulated proportions. The spread across the 

realisations is very narrow. 

 

Figure 3.18. Histograms of the simulated lithology proportions across the 50 realisations. 
a) proportions of BIF, b) proportions of diorite, c) proportions of quartz porphyry. 
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Despite the few percent deviations of the final proportions from the conditioning data it was 

decided to continue with the parameters for the simulation as the effect was considered to be 

immaterial. 

Variogram reproduction 

The variogram validation for the interface between the BIF and diorite was done for a 

representative portion of the simulation grid in the principal directions of continuity. The results 

are shown in Figure 3.19.  

The simulation variograms between the BIF and diorite produced slightly longer ranges of 

continuity than the input model. A further investigation can be undertaken in future to 

understand the reason behind it. 

a)  b)  

Figure 3.19.  Variogram validation for the 50 lithology realisations. 
a) Omnidirectional variograms in the plane of continuity, b) variograms in the third direction of continuity. 

 

DS final simulation parameters 

The algorithm was run in multi-thread mode. The only draw-back of using this mode of DS is 

that the exact reproduction of the simulation results is not guaranteed for the same random 

seed. The average time required to produce a single realisation for the main simulation grid was 

21 minutes.  

A number of parameters have been tested to balance the simulation quality and processing 

time. The following was found to produce acceptable results while not imposing high demands 

on the processing. These were used in the final simulation: 

 Conditioning data:  

o drillhole samples (44,780);  

o a grid image containing quartz porphyry dykes’ control points in the vicinity 

of the intersecting drillholes; 

 Consistency of conditioning data: 0; 

 Anisotropy radii: 10-10-5 for the primary, secondary and tertiary directions of 

anisotropy respectively; 

 Anisotropy ratio: 1-1-1; 
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 Anisotropy angles: -55/-20/40; 

 Number of nodes: 30; 

 Distance threshold: 0.05; 

 Distance tolerance for flagging nodes: 0.01; 

 Probability constraints:  

o Global pdf proportions 0.29 (BIF), 0.67 (diorite), 0.04 (quartz porphyry); 

o Comparing pdf method: Kullback-Leibler divergence (KLD); 

o Probability deactivation distance: 4; 

o Constant threshold 0.002; 

 Maximum fraction of training image to be scanned: 0.3. 

The 50 realisations of lithology were used for subsequent geostatistical domaining of the 

simulated gold grade. 

 

3.5.2 Grade simulation 
 

An SGS simulation comprising 50 realisations of gold was performed.  

Similar to any other estimation technique, data preparation for SGS must be thorough and 

requirements of representativeness, stationarity, and Gaussianity must be considered. 

Prior to running Gaussian simulation, the conditioning drillhole samples were composited to 

the same support of 1m. The composite data was debiased and declustered to eliminate 

conditional bias due to possible oversampling of the high grade areas. Log probability plots and 

variance plots were analysed to facilitate the decision on grade capping. For each of the three 

lithologies the proportion of the capped samples to the total number of samples was below 1%. 

The mean of the gold values has dropped after capping with 6% for BIF, 11% for diorite and as 

much as 29% for porphyries.  

The debiased data was further declustered per each lithological domain. Due to sparser 

drillhole spacing in the volume of the simulation grid in comparison to that over the training 

image volume, the results of the declustering test suggested to use a different declustering cell 

size. The final declustering was performed to the size of 100m in each direction, for each rock 

type.  

Prior to performing the grade simulation, the data was despiked per lithology type.  

The simulation was run for each lithology, the transformation of the gold values to the 

Gaussian space and back is built-in within the SGS algorithm. The set of Gaussian variogram 

models based on the densely spaced grade control drilling was supplied as an input to the 

simulation of grade in each lithology. 

The simulated realisations of the gold grade were “stitched” to the previously simulated 

lithologies in sequential order. As such, the compiled file contained three gold values attributed 
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to each grid node of the simulation grid – one value per lithology type. The final Au grade was 

obtained by assigning to each node a gold value in accordance with the lithology simulated at the 

respective node.  

The resulting gold grade simulations were validated per the same check list as for the training 

image, and included visual checking, validation of the statistics, and variogram checking.  

Visual validation 

The first four realisations of the grade are presented in Figure 3.20.  

  

  

Figure 3.20.  Four realisations of gold grade, sectional view. 

 

While honouring of the drillhole samples is observed in each of the realisations, the 

appreciation of the uniqueness is apparent. The realisations display considerable variability away 

from conditioning data. The four realisations depict the short-range variability inherited from the 

variogram models of the densely spaced data in the training image. The differences between the 

realisations represent the joint uncertainty: from the lithology simulation and grade realisations 

within it. 

Statistics and histogram reproduction 

The histograms of the gold values for all realisations are plotted together with input 

histograms per lithology type and are shown in Figure 3.21. The reproduction of the histograms is 

good.  
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Figure 3.21.  Histograms of the simulated gold values vs conditioning data. 
a) BIF, b) diorite, c) quartz porphyry. 

 

Variogram reproduction 

Gold variogram reproduction was checked within a small portion of the simulation grid. The 

validation was performed for the three principle directions of anisotropy. The comparison was 

done against the variogram models based on densely spaced training image drillhole data, only 

for the BIF and diorite domains, since considerable care was taken to reproduce the connectivity 

of the barren dykes. The variograms for BIF and diorite domains are shown in Figure 3.22 and 

Figure 3.23. The comparison was done for the variograms constructed in the original data units.  

 

Figure 3.22.  Variograms of the simulated gold realisations of BIF for the three principal directions of continuity. 
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While the gold variograms within the BIF domain display a good fit with the original model, 

the diorite variograms are not well behaved and show a high degree of variance against the 

original model, specifically in the second direction of continuity as seen in Figure 3.23.  

 

Figure 3.23.  Variograms of the simulated gold realisations of diorite for the three principal directions of continuity. 

 

The noise in the variograms of the diorite at a short scale distance is attributed to the fact 

that the model in the original space reaches 70% of variance within the range of 22-25m for the 

main continuity plane. This distance, expressed in terms of the simulation grid nodes, represents 

separation of 2-3 nodes as the orientation of anisotropy is oblique to the geometry of the 

simulation grid. Finer resolution simulation grid would be beneficial to allow reproduction of 

short scale continuity. Another explanation is that inadequate care has been taken in deciding on 

the extents of the volume for variogram validation. The volume spanned across the shear zone 

boundary and contained samples of high and low grade stationary domains, therefore noise was 

introduced into the variograms and the comparison with the high grade variograms of the 

training image was not valid. 

 

3.6 Discussion 
 

A number of techniques have been applied in a nested fashion during the lithological 

modelling. They vary through the spectrum of the techniques available for geological modelling. 

The best approach to geological modelling progresses from deterministic to more stochastic and 

is summarised as follows (Deutsch, 2013): 

 Deterministic interpretation of geology should be performed where possible. This 

approach has been used in the current research for modelling the tabular solids 

representing dykes when constructing a training image; 
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 Semi-deterministic approach such as distance-volume function for boundaries. An 

example of it is creating an RBF-based function when building a training image for 

BIF and diorite; 

 Process-based model approach mimicking geological processes; 

 Object-based modelling simulating geologic features of definite shape; 

 Cell-based modelling techniques such as Sequential Indicator Simulation (SIS), 

Truncated Gaussain Simulation (TG) and MPS. The DS algorithm is just one of many 

among the MPS techniques. 

The Direct Sampling multi-point algorithm employed in the lithology simulation proved to be 

fast and flexible. Many parameters are available to ensure good reproduction of the patterns 

found in the training image and good connectivity while maintaining global proportions of 

lithologies.   

The irregularity of the interface between BIF and diorite lithologies demonstrated good 

reproducibility. There are no definite geologic object shapes, such interfaces are good-fit-for-

purpose for cell-based techniques as MPS (Deutsch, 2013). 

Difficulties were encountered when simulating dykes. Although in terms of final uncertainty 

assessment, reproducing the continuity of dykes was of negligible importance it was pursued for 

understanding the algorithm better and using it more effectively in future. A number of 

approaches were used to achieve this. Using an additional training image depicting large-scale 

morphology of dykes, showed to be promising. Imposing distance-based conditioning for the grid 

nodes in the vicinity of the drillholes, though not a holistically ideal approach, produced the most 

significant improvement.  

One of the concerns common to cell-based techniques (Deutsch, 2013) and confirmed in the 

current research is that the simulated categorical variable proportions slightly depart from the 

target (input) proportions in an order of a few percent. In future, post-cleaning for noise removal 

can be used. While correcting deviating global proportions for each realisation it should preserve 

important connectivity. 

Further improvement to the MPS simulation workflow can include the following: 

 Hierarchical simulation of the lithologies (Deutsch, 2013). For simulation of more 

than three facies, it can improve the results. In the workflow, the main lithologies are 

simulated first, then secondary lithologies, followed by a “cookie-cutter” approach 

while sequentially expanding or eroding previous structures. It allows one to 

concentrate on one interface at a time, ensuring better inference from a training 

image. This approach was attempted when trying to use two different training 

images: for simulation of the host-rock and dykes and proved to produce good 

results; 
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 A unilateral path could be used for simulation of dykes, and stitched in a hierarchical 

fashion to the BIF and diorite lithologies mentioned above; 

 Using diamond core structural readings to impose better control on the direction of 

the geological boundaries and to describe large scale stationary features will be 

geologically more “correct”. It can also be used as a conditioning potential field for 

the gold simulation, incorporating locally varying anisotropy and trend modelling. 

Some general considerations should be born in mind when performing simulation: 

 Start with non-conditioned simulation until the pattern reproduction is good. The 

insufficiencies in parameters will come through in a main simulation where 

conditioning data is sparser;  

 Test parameters and keep track of both – processing time and quality of 

reproduction using a common reference location for easier tractable comparison;  

 It is recommended to use a grid with equal nodes spacing in all directions if visual 

validation of the results and reproduction of the spatial patterns is important;  

 Rather use a generic training image and apply structural information if available for 

use on rotation and homothety. The TI should be as stationary as possible. Any 

manipulation should be presented in the form of potential fields images; 

 It is important to have full scale features present in the training image, for example 

boudin-like compartmentalising of the host rock by dykes in the current project; 

 Checking statistics for both continuous and categorical variables thoroughly in the 

early stage of simulation is important for validation of the performance to ensure 

reasonableness of the applied parameters and appropriate stationarity decisions;  

 For processing large files some basic scripting knowledge is required even if 

commercial software is being used. The latter often has limitations on number of 

files, size of conditioning datasets, size of simulation grids, etc. Scripting will simplify 

many tasks;  

 As anisotropy is borrowed from the training image, there will be short-scale 

continuity in the realisations and simulation results might present noise.  

For the specific project, the following can be improved in the workflow: 

 Stationarity domaining should be refined further, beyond the division in the three 

main lithologies. Sedimentary and chemical BIF populations should be simulated 

separately. Although they have been combined in the current project, the bi-

modality of the gold distribution was reproduced well. The non-stationarity 

expressed in higher gold grades along the narrow shear zone should have been taken 

proper care of. This demonstrated itself in the poor reproduction of the diorite 

variograms. In future, a stochastic approach to ore domaining along the shear zone 
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can be undertaken. Nonetheless, the reproduciton of the shear zone was 

satisfactory. This will be further demonstrated in the next chapter;  

 Using trend as an additonal input into the SGS will improve the continuity along the 

shear. Currently, it was only the anisotropy directions that defined the continuity of 

the high grade away from conditioning data. 

The DS was applied to quite a simple pilot project in this study, and was limited to simulation 

of a categorical variable. The nature of mineralisation at Nyankanga lends itself very well to 

parametric description. The experimental variograms of gold look like typical ‘text book’ 

examples. It will be a good exercise in the future to use DS for simulation of both categorical and 

continuous variables. It can also be tested on a more complex mineralisation case, where 

variograms are not sufficient to describe the continuity or validate results. Care would need to be 

taken to produce a training image which would truthfully represent the small scale gold 

distribution.  
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4 POST-PROCESSING FOR UNCERTAINTY 

 

4.1 Visualising uncertainty 
 

Generation of multiple realisations gives an appreciation of the variability, assimilating it 

requires summarising to represent a joint uncertainty. A number of post-processing options for 

summarising both the lithology and grade realisations using GSLIB software were exploited. An 

emphasis in this chapter is given to assessing local rather than global uncertainty.  

 

4.1.1 Post-processing lithology 
 

The weighted average summary of all 50 realisations creates as an output a grid object with 

probability of each lithology type, a most likely to occur lithology and entropy. The examples are 

shown in Figure 4.1. 

a)  b)  

c)  d)  

Figure 4.1.  Summary of the post-processing output of lithology simulation. 
a) probability of BIF, b)   probability of diorite, c)   probability of quartz porphyry, d) the most likely to occur lithology 

type. 

 

Post-processing for the most-likely to occur lithologies would be similar to a result of indicator 

kriging. 
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Entropy introduced by Christakos (1990) represents a measure of uncertainty in a probability 

distribution function (Deutsch, 2013). As can be seen in Figure 4.2, the lower entropy values are 

observed in the vicinity of the drillholes, where the continuity allows determination of the 

conditional probabilities with high confidence. The highest entropy can be seen on the 

peripheries of the most-likely dykes’ boundary, as this is the lithology with the most uncertainty 

in the study.  

a)  b)  

Figure 4.2.  Entropy for lithology simulations. 
a) N-S sectional view of the simulated grid, b) ‘zoomed-in’ area of the section.  

 

4.1.2 Post-processing grade 
 

The simulated uncertainty of the gold distribution is inclusive of the uncertainty of lithology.  

The maps of the conditional variance and the expected mean for all 50 realisations are shown 

in Figure 4.3. They demonstrate a strong dependency between the local mean and the 

conditional variance. The proportional effect is common for positively skewed distributions. It 

expresses itself as high-grade areas having a greater variability, hence uncertainty, than the low-

grade areas. For lognormal distributions, the local standard deviation is proportional to the local 

mean (Journel and Huijbregts, 1978).  

Reproduction of the higher-grade shear zone is very good even without the ore grade 

domaining or a structural trend. Away from the conditioning data, as can be seen in the bottom 

left corner of the Fig.4.3, the gold distribution follows the planar direction of the variogram.  

a)  b)  

Figure 4.3.  Post-processing results of the E-type averaging of the gold simulation, sectional view. 
a) E-type mean of the 50 realisations, b) conditional variance of the 50 realisations,  
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In Figure 4.4, the results of the post-processing for a specific grade cut-off are shown. For an 

easier analysis, the wireframes representing the most likely lithology are also displayed. Once 

again, a poor decision on stationarity demonstrates itself in smearing of high grade values across 

the simulation volume in the absence of conditioning data. For future work, high-grade 

domaining along the shear should be used. 

a)  b)  

Figure 4.4. Post processing for a selected cut-off grade, sectional view. 
a) average grade above the cut-off, b) probability being above the cut-off grade.  

The solid outlines represent the most likely lithology types: black – interface between the quartz porphyry dykes and 
host rock, white – interface between the BIF and diorite.  

 

An example of post-processing of the specified probability interval to be within a relative 

error of the mean is shown in Figure 4.5.  The probability of 90% can be observed only in the 

vicinity of the drillholes. This is due to short scale variogram ranges. Areas of higher drilling 

density, as in the top left corner of Figure 4.5b, have less uncertainty.  

a)  b)  

Figure 4.5.  Post-processing results of probability of being within 15% error of the Au E-type mean, sectional view. 
a) E-type mean of the 50 realisations, b) probability of being within 15% error of the mean. 

 

On Figure 4.6, different percentiles of being within the estimated E-type mean are displayed. 

The P10 (Figure 4.6a) and P90 (Figure 4.6c) show the symmetric 80% probability interval around 

the E-type mean. The areas which are certainly high in relation to the mean show as high-grade 

on the lower limit P10 map. On the P90 map, low values are indicative of areas with certainly low 

grade. The P50 map represents the most likely outcome.  
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a)  b)  

c)  

 

Figure 4.6.  Probability of being above a specified cut-off grade. 
a) P10 percentile; b) P50; c) P90. 

 

The final comparison performed for the study clearly demonstrates one of the main findings 

of the research – the importance of the stationarity assumption in the simulation. In Figure 4.7, 

an E-type average of the 50 gold realisations is displayed together with the drillhole samples 

available over the Nyankanga deposit. While the reproduction of the high-grade shoots 

orientation is in coherence with the picture demonstrated by the samples, the low grade values 

in the simulation are much higher than the background low grade values of the area seen from 

the drillhole samples. Note: yellow background in the simulation grid versus royal blue 

background of the drillhole samples (Figure 4.7).   

 

Figure 4.7.  Plan view of the Nyankanga deposit showing the simulation grid with the drillhole samples. 
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The importance of the stationarity in geostatistics has been emphasized numerous times, and 

it is vividly demonstrated here. As stated by Caers (2002:5): “The multi-variate Gaussianity by 

definition generates reservoir models that are ‘homogeneously heterogeneous’... Amongst all 

possible reservoir models that reproduce a given variogram.., SGS generates models that are 

maximally disconnected in the low and high values. This property of SGS is also termed the 

‘maximum entropy’ property.” 

 

4.2 Block averaging to recoverable resources 
 

Scaling the realisations up makes the uncertainty conclusions meaningful for a specific 

purpose. Upscaling fine resolution realisations to grid nodes of a panel size can be used for 

further processing in the mine planning process, upscaling to a SMU size can be used to assess 

uncertainty in mine scheduling process.  

For the variables involved in the estimation of the mineral resources, such as concentration of 

minerals and densities of rocktypes, averaging to a larger support size is linear. It means that for 

continuous variables the mean stays constant within the volume being upscaled, for categorical 

variables - the most probable lithology is assigned to larger size blocks by volume weighting. It 

would not be the case for non-linear averaging variables (Journel, 1996), such as geometallurgical 

parameters or rock permeability.  

Smoothing in the variables and uncertainty takes place during upscaling. This effect can be 

seen in Figure 4.8 which shows the fine–resolution simulation of 5m nodes spacing (Figure 4.8a, 

b) and a version upscaled to nodes spacing of 40mE x 40mN x 10mElev (Figure 4.8c, d). Large 

variability observed at small scale is considerably smoothed at large scale nodes. 

The upscaled realisations can be processed to generate grade tonnage curves to get a 

representation of uncertainty in the recoverable metal.  

The mining optimisation should be performed for all upscaled realisations. It can also be done 

for a few selected ones which can be chosen based on different transfer functions or 

performance calculations (Deutsch, 2013), such as metal content or degree of “connectivity” of 

the panel blocks above a chosen grade cut-off. In this case, the scenarios can be a P50 percentile 

which would represent a base case, and the P10 and P90 percentiles. 
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a)  b)  

c)  d)  

Figure 4.8.  An upscaled simulated model: probability of being within 15% error of the Au E-type mean, sectional 
view.  

a) E-type mean of the 50 fine realisations, and b) probability of being within 15% error, grid of 5m x 5m x 5m node 
spacing, c) E-type mean of the 50 upscaled realisations, and d) probability of being within 15% error, grid of 40m x 40m x 

10m node spacing. In the course resolution grid, spheres represent grid nodes. 

 

  

4.3 Comparison to a kriged model   
 

The realisations upscaled to a panel size were further compared to a kriged model to get a 

feel of the uncertainty associated with a deterministic approach to estimation.  

The kriged model with the cell size of 40mE x 40mN x 10mElev contains the two main 

lithologies, BIF and diorite, estimated by indicator-kriging with the resulting volumetric 

proportions assigned to each cell.  

For the simulated model, average densities were used during the upscaling process: 3.05g/t 

for BIF and 2.72g/t for the felsic intrusives. 

The comparison was done within a deterministically interpreted volume representing ore  

along the shear zone to eliminate the effect of inadequate stationarity domaining in gold 

simulation. The extent of the volume is shown in Figure 4.9. 
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Figure 4.9.  Deterministically interpreted volume of the ore along the shear zone used for comparison of the kriged 
model and simulation results. 

 

The histograms of the gold grade within the common volume are presented in Figure 4.10. 

They are based on the cell centroids falling within the volume of ore. Although no direct 

comparison for accuracy or method precision could be performed due to the fact that a different 

algorithm was used in the kriging (slightly different source data, differing capping strategy, 

decisions on stationarity and models of spatial correlation), some global comparisons have been 

made. Note, the gold statistics presented in this chapter have been factorised. 

  

Figure 4.10.  Histograms of the kriged and simulated E-type average of gold at panel size blocks, compared within a 
common volume. 

a) kriged estimates, b) simulated E-type average of 50 realisations. 

 

The gold histograms shown in Figure 4.10 demonstrate a well-known truth: the kriged 

estimates are too smooth. The interquartile range which is a measure of the spread of a 

distribution is smaller in the simulated average model than in the kriged model. The mean and 

median are also considerably lower.  

Figure 4.11 shows the two models side by side: on the left – the kriged model within the ore 

wireframe, on the right – the averaged result of the 50 realisations. In the well informed areas, 

the two approaches demonstrate closely correlated results in the gold values, with less 

smoothing observed in the simulated model. 
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a)  b)  

Figure 4.11.  Comparison of the kriged and simulated gold grade for the cells falling within the shear zone. 
a) kriged block model portion, b) average of 50 realisations, upscaled to 40m x 40m x 10m cell size. 

The black circles represent drillhole samples intersecting the ore wireframe. 

 

Comparison of the density histograms for the models is shown in Figure 4.12. In the 

simulations, the overall global proportions of the lithologies are representative of the 

conditioning data. The distribution is positively skewed reflecting the higher proportion of the 

felsic intrusives. In the kriged model, the density distribution shows smearing of values towards 

the higher end which is indicative of the larger proportion of BIF. The average density of the 

kriged model within the common ore volume is higher than for the simulation, 2.80g/cm
3
 for 

kriging versus 2.76g/cm
3
 for the simulation average.  

a)  b)  

Figure 4.12.  Histograms of the densities assigned to the kriged model and simulated realisations, compared within a 
common volume. 

a) kriged model density; b) simulation model density. 

 

A plan view of the two models in Figure 4.13 demonstrates the spatial prevalence of the 

lower density felsics in the simulated model and favouring of the BIF units in the kriged model.  



44 
 

a)  b)  

Figure 4.13.  Comparison of the densities in the kriged and simulated model cells falling within the shear zone. 
a) kriged block model, b) average of realisations, upscaled to 40m x 40m x 10m cell size. 

 

Figure 4.14 displays scatterplots of the gold and density values within the common ore 

volume compared on a block by block basis. For the gold (Figure 4.14a), the simulated model 

shows presence of extreme values which represents the input distribution more truthfully. The 

correlation coefficient of 0.82 expresses a good correlation between the two methods. Overall, 

the scatter between the two models is considerable and it gets more pronounced for the high 

grade cells. Two distinct areas are observed on the scatterplot: for the range of values 0-400 units 

the kriged model contains higher grades than the average of simulations, above the threshold of 

400 the reverse is true. 

The scatter of block densities on a block by block basis is wide, the correlation is positive. The 

distribution of density values in the simulated model shows presence of blocks with purely diorite 

or BIF lithologies. The kriged model within the common volume contains small portions of blocks 

composed of single lithology. It can be explained by the fact that the indicator kriging used to 

estimate the lithologies in the kriged model was based on a longer range variogram established 

from widely spaced drilling, while the simulation replicates short scale variability between the BIF 

and diorite observed in the training image.  

a)  
b)  

Figure 4.14.  Scatterplots of gold and density for simulated vs kriged model. 
a) gold; b) density. 
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4.4 Discussion 
 

A brief introduction to ways of assessing uncertainty was demonstrated in the chapter.  

Most of us comprehend concepts visually, visualisation of the results by post-processing the 

stochastic models provide a good presentation of uncertainty. 

A comparison to a kriged block model confirmed a well-known truth that kriging, while being 

the “best linear unbiased estimate”, creates an over-smoothed model of reality. 

Some further improvements to the workflow can be considered (Deutsch, 2013):  

 Realisations can be processed through a transfer function or performance 

calculation. In the context of mining it can be a grade-tonnage curve, degree of 

connectivity of the ore/waste blocks, or mine scheduling; 

 Realisations may be ranked to select a few for detailed processing; 

 Scenarios and parameter uncertainty is important. For assessing it, the realisations 

can be sampled with Monte Carlo Simulation or Latin Hypercube Sampling; 

 Currently, processing of multiple geostatistical scenarios is “intractable” in the mine 

planning and scheduling practice (Deutsch, 2013). At the same time, using one 

deterministic scenario, whether a kriged model or a realisation can lead to 

“overplanning” on a stochastic feature. Optimisation must be performed with all 

realisations simultaneously. 

The value of stochastic approach to modelling is that it provides an appreciation of the extent 

of uncertainty when making an appropriate decision. On the other hand, it is also possible to 

average outcomes of many realisations and produce a smoothed result which is very close to 

kriging. 

High-resolution simulation grids cannot be used efficiently. They should be upscaled to 

coarser resolution of SMU size and panel size to make assessment of uncertainty more 

meaningful. 

There are a few considerations which must be born in mind with regards to uncertainty 

assessment (Deutsch, 2013): 

 Uncertainty assessment is model-dependant and stationarity dependant. Improper 

stationarity decisions result in higher uncertainty. This statement was very well 

unintentionally demonstrated in the study; 

 Many parameters affect the distribution of uncertainty in a non-intuitive and non-

transparent manner; 

 Uncertainty in the histogram and spatial continuity can have a large effect on the 

large mining-scale uncertainty; 
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 Quantitative uncertainty, e.g. probability to be within +-15% with 90% confidence, 

should be used to support geometric criteria for classifying reserves and resources. 

In this way, probabilistic meaning will enhance classification and make it easier to 

understand for a non-specialist. 

 The uncertainty assessment is often not intuitive. Gold mineralisation is 

characterised by skewed distributions and proportional effect. The increased 

variability in the extreme values spreads uncertainty response. Larger proportions of 

low values are associated with low uncertainty. Spatial correlation plays a big role: 

poor spatial correlation causes increase in uncertainty, and the opposite is true. 
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5 CONCLUSION AND RECOMMENDATIONS 

5.1 Summary of findings 
 

In the current research an attempt has been made at utilising an MPS simulation approach for 

generating realisations of mineralised units, combined with a traditional SGS simulation of grade. 

The uncertainty of the lithology and grade simulations has been analysed. Some examples of 

uncertainty assessments have been presented to demonstrate that the amount of information 

provided by stochastic simulations is an order of magnitude richer than a kriged model can 

provide.  

The Direct Sampling approach has shown to be flexible and robust. The possibility of running 

it in multi-core mode fully utilising the resources available on a particular pc, makes it 

competitive with many other commercially available algorithms. 

Considering the scale of modelling when creating a training image and deciding on the grid 

resolution is important. The scale at which uncertainty assessment is taking place must be 

considered. For example: size of lithological units in comparison to the scale at which the 

decision will be made - SMU or panel size. 

The choice of tools to be employed for a particular model is determined by the objective at 

hand. It should always be in a favour of simplicity and effectiveness. In the presence of a high 

data density and low uncertainty in the geological setting, a deterministic approach should 

prevail. An MPS method should be employed when a conventional parametric description would 

compromise a truthful representation of the natural phenomena. Pro’s and con’s should be 

weighted before undertaking this approach. In the current research, a traditional algorithm as 

Sequential Indicator Simulation would have probably yielded sufficiently good and similar results 

for simulation of the BIF and diorite lithologies. It would have however failed at reproducing the 

morphology of dykes. Considerable time has been spent on getting the reproducibility of the 

latter right, for the purpose of future usability.   

Stochastic modelling and an MPS method in particular do not lighten the amount of technical 

work and computing power required. Time to produce such a model is not less than via 

conventional approach. Data preparation and analysis, results validation and post-processing 

take the major bulk of time. However, acceptance or rejection of a training image is more visual 

than a parametric model. It can be more inviting for involvement of specialist geological 

expertise, besides geostatisticians, and would provide more integration of different skills and 

ownership for field geologists. 
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5.2 Recommendations for a future use of an MPS approach  
 

A particular care needs to be taken when choosing a training image. It is the training image 

which carries the decision on stationarity and geological settings to be simulated over the entire 

volume of interest. The best approach is to have a stationary training image, and deal with any 

non-stationarity by the means of trends or potential fields for homothety and rotation. Local 

proportions of categories can provide further control on the trend.  

Sufficient repetition needs to be present in the training image to avoid an effect of 

“patching”. Reproduction of large scale patterns would require a training image which contains 

them. 

Hierarchical approach to lithology simulation can be explored in future. Multiple training 

images for different lithologies and different scale features will be useful. 

 

5.3 General recommendations on stochastic modelling workflow 
 

A stochastic approach carries a heavy reliance on the condition of stationarity. It is not 

explicitly obvious in Sequential Gaussian Simulation, but is expressed under the condition of 

multi-variate Gaussianity. The effect of making a stationarity omission during simulation is more 

unforgiving than for example with the ordinary kriging (Deutsch, 2013). Analysing the data and 

geological settings to make an appropriate decision on stationarity is crucial for valid uncertainty 

statements. Such a workflow would involve:  

 Reviewing geological model, contacts and large scale trends; 

 Deciding on the modelling scale; 

 Reviewing statistics and spatial correlation in different geological units;  

 Taking care in defining stationary domains; 

 Evaluating appropriate measure of uncertainty for analysis;  

 Considering multiple realisations to quantify the current state of uncertainty; 

 Relating uncertainty to drillholes spacing;  

 Performing sensitivity analysis to understand how parameter uncertainty and choice 

of uncertainty measures affects the results;  

 Documenting the methodology, results and recommendations. 

 

5.4 Recommendations for future work 
 

The Direct Sampling algorithm was applied to quite a simple case in this study, and was 

limited to simulation of a categorical variable. The nature of mineralisation at Nyankanga yields 

itself well to parametric description. The experimental variograms seems to have been borrowed 



49 
 

from text books. The DS should be tested on a more complex mineralisation case, where 

variograms are not sufficient to describe the continuity and hence to validate the result. The gold 

mineralisation is almost always structurally controlled. Structures cannot be effectively described 

by a variogram.  

There is a scope for future work to test applicability of DS for simulation of categorical and 

continuous variables simultaneously. Prior to undertaking it, care will have to be taken to 

produce a training image truly representative of mineralisation.   

Using an additional control in the form of drillhole structural readings can enrich the realness 

of the resulting model. It can be used in different ways: as an additional control on the interface 

between different rock types, or in reproducing the morphology of the large scale intrusive units 

and structures. 

A richness of high resolution expensive data is obtained from diamond core drilling. An 

enormous amount of specialist time goes into collecting and interpreting it. Examples include 

structural core logging or core scanning imaging, the latter represents new advances in 

technology. Unfortunately, in the most cases, it does not get utilised to the full extent. This 

information could be incorporated to produce more informed training images or to provide 

additional “soft” conditioning and potential field grids for manipulating size, rotation and attitude 

of the training image patterns. Using this data would allow one to go beyond inferring training 

images from outcrops and be used in both large and small scale modelling and uncertainty 

assessment. 

Other possible uses of the DS algorithm can include simulating poorly informed sections of 

otherwise well informed area using the restoring capability of the DS. 

There is still a big gap between the implementation of any algorithm for research purposes 

and its practical use. Many questions about the use of multiple-point geostatistics remain open, 

particularly related to the choice of a training image, model construction and validation.  
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7 APPENDICES 

Appendix A: Variograms of the conditioning drillhole samples within the 
training image 

Variograms for lithological interface between BIF and diorite  
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Gold variograms for BIF in original space 
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Gold variograms for BIF in Gaussian space 
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Gold variograms for Diorite in the original space 
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Gold variograms for Diorite in Gaussian space 
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Gold variograms for quartz porphyry in original space 
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Gold variograms for quartz porphyry in Gaussian space 
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Appendix B: Variograms of the Sequential Gaussian Simulation results within 
the training image 

Variograms for gold simulation in BIF  

a) Variograms along easting; b) variograms along northing; c) variograms along elevation 

a)  b)  

c)  

 

Variograms for gold simulation in diorite  

a) Variograms along easting; b) variograms along northing; c) variograms along elevation. 

a)  b)  

c)  
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Variograms for gold simulation in quartz-porphyry  

a) Variograms along easting; b) variograms along northing; c) variograms along elevation 

 

a)  b)  

c)  

 

 

 


