

i

Insertion/Deletion Error Correction using Path Pruned

Convolutional Codes and Extended Prefix Codes

By

Muhammad Waqar Saeed

A research report submitted to the faculty of Engineering and Build Environment

In partial fulfilment of the requirements for the degree

Masters of Science in Engineering

in

Electrical Engineering (Telecommunication)

at the

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Supervisor: Dr. Ling Cheng

August 2014

ii

Declaration

I declare that this project report is my own, unaided work, except where otherwise acknowledged.

It is being submitted for the partial fulfilment of the degree of Master of Science in Engineering at

the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before

for any degree or examination at any other university.

Candidate Signature : ..

Name : ...

Date : (Day).......... (Month).......... (Year)............

iii

Abstract

Synchronization error correction has been under discussion since the early development of coding

theory. In this research report a novel coding system based on the previous done work on path-

pruned convolutional codes and extended prefix synchronization codes is presented. This new

coding scheme is capable of correcting insertion, deletion and synchronization errors. A codebook

has been constructed that contains synchronization patterns made up of a constraint part (maker

sequence) and an unconstraint part based on the concept of extended prefix codes. One of these

synchronization error patterns are padded in front of each frame. This process is done by mapping

information bit to a corresponding bit sequence using a mapping table. The mapping table is

constructed by using path-pruning process. An original rate convolutional code is first punctured

using a desired puncturing matrix to make enough paths available at each state of the trellis. The

desired paths are then pruned and matches to the extended prefix codebook constructed. The path

pruning process consists of a feedback mapper attached in front of the original rate parent

convolutional encoder with puncturing. The state of the convolutional encoder is fed back to the

mapper which maps first information bit of the frame into a multi-bit sequence that is fed into the

convolutional encoder with puncturing and thus produces one of the synchronization patterns

contained within the codebook constructed. The remaining bits of the frame are encoded normally

using convolutional encoding with a puncturing process only. This process is repeated periodically

depending on the condition of the channel.

Simulations were performed to evaluate the ability of new system to resynchronize and correct

insertion/deletion and synchronization errors at the receiver, from which favorable results were

obtained. Simulations were performed with different synchronization pattern (extended prefix

code word) lengths, different constraint lengths of the parent encoder and using Reed-Solomon

codes as outer code in concatenation with new coding system.

A complete concatenated coding system is thus demonstrated and studied that resynchronizes and

corrects insertion, deletion and substitution errors.

iv

Dedication

I dedicate my research work to my family and friends. I owe my sincere gratitude to my loving

parents, especially my father whose words of encouragement and support helped me to overcome

all the difficulties and hurdles that I faced during the research.

v

Acknowledgement

First and above all, I praise almighty ALLAH, for providing me with this opportunity and granting

me the capability to proceed successfully.

This research report appears in its current form due to the assistance and guidance of several

people. I would therefore wish to thank the following people who were more than generous with

their expertise and time, and helped me to complete my M.Sc. degree.

My dear parents, Prof. and Mrs. Muhammad Saeed, who have instilled a desire for formal

education in me, and who have been supportive both financially and morally. I am forever indebted

to you for the foundation you laid for me in life since my childhood.

Dr. Ling Cheng, my esteemed promoter, my cordial thanks for accepting me as M.Sc. student

under your supervision. I am most grateful for your warm encouragement, thoughtful guidance,

critical comments and for providing directions and correction of the research report. Thank you

for the opportunity you gave me to develop and improve my skills and learning.

My beloved brothers Dr. Muhammad Nadeem, Col Ahmed Naeem and my brother-in-law Ishtiaq

Ahmed for your encouragement and financial support.

I want to express my deep thank you to Prof. Rex Van Olst the head of Telecommunication

department for his kindness, affection and financial support.

My colleagues in the School of Electrical and Information Engineering and the CeTAS research

group; Muhammad Mehran Manzoor, Familua Ayokunle, Mpendulo Ndlovu, Reevana

Balmahoon, Sibonginkosi Ntuli, Rohaan Shah, Abdul Wahab, Mehroze Abdullah, Benjamin Sim,

Peter Brookstein, Duane Churms and those that I fail to mention, I recognize your immense

contributions.

vi

Table of Contents

Declaration .. ii

Abstract .. iii

Dedication .. iv

Acknowledgement .. v

List of Abbreviations ... ix

List of Figures .. xi

List of Tables .. xii

Chapter 1: Introduction ... 1

1.0 Problem Statement ... 1

1.1 Organization of Research Report ... 4

Chapter 2: Literature Review .. 5

2.0 Introduction .. 5

2.1 Channel... 5

2.1.1 Channel Model .. 5

2.1.2 Synchronization Channel Model... 6

2.2 Error Control Coding ... 7

2.2.1 Block Codes .. 8

2.2.2 Convolutional Codes ... 8

2.2.3 Concatenated Codes .. 9

2.2.4 Turbo Codes .. 10

2.3 Synchronization Error Correction Codes ... 12

2.3.1 Prefix Codes .. 12

2.3.2 Convolutional Codes ... 13

2.3.3 Linear and Cyclic Codes ... 14

2.3.4 Number Theoretic Codes .. 14

2.3.5 Synchronization using Permutation Codes ... 15

2.4 Summary .. 15

Chapter 3: Background ... 16

vii

3.0 Introduction .. 16

3.1 Prelude Definitions ... 16

3.2 Channel Model ... 17

3.3 Convolutional Codes .. 17

3.3.1 Convolutional Encoder ... 18

3.3.2 Generator Matrix ... 18

3.3.3 Graphical Representation of Convolutional Code .. 21

3.4 Rate-Compatible Convolutional Codes .. 23

3.4.1 Puncture Convolutional Codes ... 24

3.4.2 Pruned Convolutional Codes .. 26

3.5 Decoding .. 26

3.5.1 Viterbi Decoding Algorithm ... 27

3.6 Summary .. 28

Chapter 4: Codebook Design .. 29

4.0 Introduction .. 29

4.1 Codebook Design ... 29

4.2 Codebook Search Methodology ... 31

4.3 Inner Code Construction of the Proposed System ... 36

4.3.1 Encoding Process .. 36

4.3.2 Resynchronization... 37

4.3.3 Viterbi Decoding ... 38

4.4 Outer Code Construction of the Proposed System ... 38

4.4.1 Reed-Solomon Code ... 38

4.4.2 Interleaving ... 39

4.4.3 Reed-Solomon (RS) Decoding ... 41

4.5 Summary .. 43

Chapter 5: Computer Simulation and Results ... 44

5.0 Introduction .. 44

5.1 Channel Model ... 44

5.2 Simulation Methodology .. 47

5.3 Simulation Results and Discussion .. 48

5.4 Summary .. 58

viii

Chapter 6: Research Summary and Conclusion .. 59

6.0 Introduction .. 59

6.1 Research Summary ... 59

6.2 Conclusion .. 60

6.3 Future Recommendations ... 62

References ... 63

Appendix A: Some Example Extended Prefix Codes Designed... 71

Appendix B: Some Example Mapping Tables ... 75

Appendix C: Matlab Simulation Code.. 77

ix

List of Abbreviations

BER Bit Error Rate

𝐶 Channel Capacity

B Channel Bandwidth

𝑆

𝑁

Signal to Noise Ratio

ARQ Automatic Repeat Request

FEC Forward Error Correction

EPS Extended Prefix Synchronization

𝑃𝑖 Insertion Probability

𝑃𝑑 Deletion Probability

𝑃𝑠 Substitution error probability

SPA Sum-Product Algorithm

RS Reed-Solomon code

RSC Recursive Systematic Convolutional Code

FSM Finite State Machine

𝑡𝑒𝑟𝑟𝑜𝑟 Error Correcting Capability

𝑑𝑓𝑟𝑒𝑒 Free Distance

AEM Accumulated Error Matrix

𝐺𝐹 Galois Field

𝐾 Constraint Length

𝑟 Code rate

𝑛 Number of Output Bits of the Encoder

x

𝑘 Number of Input Bits to the Encoder

𝐿 Extended Prefix Length

𝐵𝑝 Size of the Codebook

𝑃 Puncturing Matrix

𝐻 Number of Paths Produced by Punctured Encoder

𝑀 Length of Puncturing Matrix

xi

List of Figures

Figure 1-1: Digital Communication System [4] ... 2

Figure 2-1: Insertion Deletion Channel with Probabilities Pi, Pd, and Pt .. 6

Figure 2-2: A serial Concatenated Code ... 10

Figure 2-3: A Turbo Encoder [38] .. 11

Figure 2-4: A Turbo Decoder [38] .. 11

Figure 3-1: Block Diagram of the System .. 16

Figure 3-2: Insertion Deletion Channel with Probabilities Pi, Pd, and Pt 17

Figure 3-3: A (2, 1, 3) Convolutional Encoder ... 18

Figure 3-4: Tree structure of convolutional code ... 21

Figure 3-5: State diagram of the convolutional code .. 22

Figure 3-6: Trellis diagram of a convolutional code .. 23

Figure 3-7: Trellis diagram of a punctured convolutional code ... 24

Figure 3-8: Trellis diagram of a r = 2/3 convolutional encoder ... 25

Figure 3-9: Pruning Processing Using Feedback Mapping .. 26

Figure 3-10: Example of hard-decision Viterbi decoding .. 27

Figure 4-1: Trellis diagram with puncturing length M, r = k/n and K = 3 33

Figure 4-2: Trellis diagram of punctured convolutional code .. 33

Figure 4-3: Block diagram of Inner Coding scheme .. 36

Figure 4-4: Block Diagram of the Concatenated Coding System ... 38

Figure 4-5: The Interleaving Process .. 40

Figure 4-6: Decoding Stages ... 42

Figure 5-1: Simulation Channel Model .. 45

Figure 5-2: BER vs. Pd for r = 1/2 convolutional code, with outer RS codes 50

Figure 5-3: BER vs. Pd for r = 1/2 convolutional code, without outer RS codes 52

Figure 5-4: BER vs. Pd for r = 1/2 & K = 3 convolutional code, with outer RS codes 53

Figure 5-5: BER vs. Pd for r = 1/2 & K = 5 convolutional code, with outer RS codes 54

Figure 5-6: BER vs. Pd for r = 1/2 & K = 3 convolutional code, without outer RS codes 55

Figure 5-7: BER vs. Pd for r = 1/2 & K = 5 convolutional code, without outer RS codes 56

Figure 5-8: BER vs. Pd for r = 1/2 & L = 16 convolutional code, with outer RS codes 57

Figure 5-9: BER vs. Pd for r = 1/2 & L = 8 convolutional code, with outer RS codes 58

xii

List of Tables

Table 4-1: Example Marker Sequences .. 30

Table 4-2: Codebook... 31

Table 4-3: Transition Table for 𝑟 = 1/2 and 𝐾 = 3 Convolutional encoder 32

Table 4-4: Mapping Table .. 35

Table 5-1: Channel Model Parameters ... 46

1

Chapter 1: Introduction

1.0 Problem Statement

The recent developments in technology, increasing growth in machine-to-machine

communication, transfer of information and the need for a better resource management has led to

an increase in the demand and usage of communication systems. The growth in the number of

devices has resulted in more end users sharing the limited bandwidth, and also an increase in

interference which results in errors on the systems. Hence there is a need to efficiently manage

system bandwidth and quality of service by preventing different error types which might

consequently lead to performance degradation.

By designing efficient coding schemes a better throughput can be achieved in communication

systems. The purpose of channel encoding is to efficiently use band-limited channels and provide

enough information to cancel the effect of noise at the receiver.

Modern communication systems heavily rely on error correction coding. This approach started in

the late 1940’s with some innovative work by Shannon [1], Hamming [2] and Golay [3]. Claude

Shannon presented noisy-channel coding theorem in 1948 [1]. Shannon mathematically defined

the entropy of information source and capacity of a communication channel and showed that a

reliable communication can be achieved over a noisy channel if the source’s entropy is lower than

the channel capacity.

𝐶 = 𝐵 𝑙𝑜𝑔2 (1 +

𝑆

𝑁
) 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 (1.1)

Where 𝐶 represents the capacity of the channel, 𝐵 is the bandwidth and
𝑆

𝑁
 represents the signal-to-

noise ratio of the channel. The significance of equation 1.1, is that an error free transmission is

possible by keeping the information rate below the channel capacity, with good error

protection/correction codes.

2

A block diagram of the digital communication system is illustrated in Figure 1-1. Information

source and the information encoder have been shown in a group which is considered as discrete

information data source, similarly the source decoder and the information sink form discrete sink.

The discrete channel constitutes of the modulation, demodulation and the noise source [4].

Information

Source

Source

Encoder

Information

Sink

Source

Decoder

Channel

Encoder

Channel

Decoder

Feedback

Channel

Demodulator

Waveform

Channel

Modulator

Noise

Discrete Source

Discrete Sink

Discrete Channel

Figure 1-1: Digital Communication System [4]

All kinds of digital communication systems can be generally represented by Figure 1-1, a block

diagram described in [4]. The discrete source creates bit streams that are compressed by source

encoder from distinct message symbols generated by the information source. The compressed data

is then coded at the transmitter by adding some redundancy such that the receiver can correct errors

if introduced while passing through the channel. The most common channel encoders are

convolutional and block encoders. The discrete channel constitutes of a modulator, a waveform

channel and a demodulator. The modulator superimposes discrete coded symbols onto a carrier

waveform, transmitted over the waveform channel at a certain frequency. The waveform channel

is a continuous channel that can add noise to the carrier signal being transmitted. The most

common type of noise is additive white Gaussian noise (AWGN), which causes errors in the

transmitted signal. The demodulator tries to retrieve the coded information that was transmitted

3

over the channel by superimposing on to the carrier signal. The channel decoder decodes this coded

information and corrects the errors caused by the noise during transmission over the channel. The

discrete sink decompresses and recovers the information that was generated by the source

information.

As explained noise is a major component that affects the transmission of information over the

channel. To minimize the effect of noise during transmission and to achieve reliable

communication, either of the two schemes can be used: automatic repeat request (ARQ) or forward

error correction (FEC). For band-limited channels ARQ can be a very costly solution because of

repeated transmission of the same information. FEC is a better solution where bandwidth is very

expensive and limited. FEC uses error correction coding that has the capability to correct the error

at the receiver side.

These discoveries in the field of information theory and communication systems led researchers

towards the error control codes. In late 1940’s Golay [3] and in 1950’s Hamming [2] brought in

different forms of error control codes known as block codes. A decade later Bose, Ray-Chaudhuri

and Hocquenghem found another class of block codes known as BCH codes [5] [6]. Peter Elias

was the first to introduce Convolutional codes in 1955 [7-9]. In 1960, Reed and Solomon created

the Reed-Solomon codes [10], these codes allow for excellent error correction and protection

against burst errors during transmission. In 1993, Berrou and Glavieux [11] presented a practical

coding scheme with a coding gain very close to that of Shannon theoretical limit.

The insertion and deletion errors can be used to represent a synchronization error channel model.

The synchronization error can cause bust errors to occur unless the whole system is

resynchronized. Some work has been done on insertion/deletion error correction for block codes

[12-15].

Convolutional codes are very common as error correction codes and are implemented in a variety

of communication systems with Viterbi decoding as the decoding algorithm. Most of the research

using convolutional encoder and Viterbi decoder is bounded to substitution error correction

schemes by assuming that transmitter and receiver are in synchronization. Whereas Viterbi

algorithm cannot decode insertion/deletion errors correctly unless the system is synchronized.

4

Some work that has been done on insertion/deletion error correction using convolutional codes

which can be found in [16-18].

In this research synchronization error correction using rate-compatible convolutional codes and

extended prefix codes is looked into. The idea is to periodically generate extended prefix code

words by puncturing and pruning an original rate convolutional encoder.

1.1 Organization of Research Report

The First chapter presents the research theme, goals and organization of the report.

Chapter 2 gives a literature survey on the work related to the research. A review is presented of

work done on the construction of synchronization channel models, error control coding and

synchronization codes.

Chapter 3 presents a background technical details and concepts of the system model used in this

research.

In Chapter 4, techniques to design and construct a codebook of synchronization patterns and the

new synchronization error correction scheme is presented. These patterns are transmitted in front

of each frame. The design includes the use of marker sequence and extended prefix codes. These

synchronization patterns are generated using path-pruned convolutional code. This chapter also

presents the whole concatenated model of the new proposed system using path pruned

convolutional codes as inner code and Reed-Solomon code as outer code.

In Chapter 5 the computer simulation and the results of the research are discussed and presented.

The performance of the new system is evaluated using Bit-Error-Rate graph at various deletion

probabilities. Results have been presented by varying different parameters and the conditions of

the concatenated synchronization error correction system.

In Chapter 6, the research summary, conclusion and the future work of the research carried is

presented.

5

Chapter 2: Literature Review

2.0 Introduction

A literature review in the field of forward error correction and insertion/deletion errors is presented

in this chapter. First, some channel models are discussed, followed by the different types of error

correction techniques that are commonly used. In the last section the recent research carried out in

the field of synchronization error correction will be discussed.

2.1 Channel

A channel in telecommunication is referred to as a physical medium which includes wire, optical

fiber etc. or a logical medium over air interface such as microwave, radio etc. A channel is intended

to convey information from a source or transmitter to a receiver which requires some form of

pathway either through a cable or a virtual broadcast media.

2.1.1 Channel Model

A channel model is the theoretical representation of a channel with certain error characterizations

of a particular channel based on statistical and physical modeling. A channel can be modeled by

defining its characteristics that can modify the transmitted signal passing through it. For example

a wired channel can be modeled by determining effects of signal attenuation, signal interference,

noise and other channel impairment on the transmitted signal. Whereas the wireless channel can

be modeled by determining the effects of fading, reflection, additive noise and other channel

impairment on the transmitted signal [1].

The main aim in developing a channel model is to create an artificial environment that supplies

the same representation as that of a real channel. By having good knowledge of channel properties

and its behavior, a more appropriate modulation and/or coding schemes can be designed that may

improve error performance and achieve reliable communication by manipulating principle

attributes accordingly [19].

6

The behavior of a system depends on the possible states of the Markov model of the system having

finite or infinite states. A Markov model is a stochastic model where the state of a system changes

at fixed or random interval of time and this process is probabilistic in nature. Let 𝑆(𝑡) represents

the state of the system and it has n different possible values at given time such

as 𝑆1(𝑡), 𝑆2(𝑡), … , 𝑆𝑛(𝑡). The current state of the system moves to next state with a certain

probability. This probability is known as transition probability and it can be constant or time

varying.

2.1.2 Synchronization Channel Model

Consider a Davey-MacKay binary channel having three parameters 𝑃𝑠, 𝑃𝑖 and 𝑃𝑑. These

parameters control the rate of substitution, insertion and deletion errors respectively [20]. A

symbol can be transmitted correctly with the probability 𝑃𝑡, a random bit can be inserted in the

sequence with probability 𝑃𝑖 or the next bit queued in the sequence can be deleted with

probability 𝑃𝑑. Therefore the probability of a bit transmitted is given by the equation 2.1, having a

probability 𝑃𝑠 of bearing a substitution error [21].

Delete

Insert

ti ti + 1

Transmit

.

Pi

Pd

Pt

Figure 2-1: Insertion Deletion Channel with Probabilities 𝑷𝒊, 𝑷𝒅, and 𝑷𝒕

 𝑃𝑡 = 1 − 𝑃𝑖 − 𝑃𝑑

(2.1)

7

Gallagar defines four scenarios that a symbol can go through while passing through a channel

[22]. The symbol can be transmitted correctly with probability 𝑃𝑡 or otherwise affected by

deletion 𝑃𝑑, insertion 𝑃𝑖 and substitution errors 𝑃𝑠 given by the following equation 2.2:

 𝑃𝑡 = 1 − 𝑃𝑖 − 𝑃𝑑 − 𝑃𝑠

(2.2)

Zigangirov channel model presents the channel where any number of bits can be inserted and

deleted during the transmission of symbols. Substitution error is not part of the Zigangirov channel

model. Hence, the probability of no bit inserted is 𝑝𝑖, one bit inserted is 𝑝𝑖𝑞𝑖 and two bit insertion

is 𝑝𝑖𝑞𝑖
2 and so forth.

Therefore

 𝑝𝑖 + 𝑝𝑖𝑞𝑖 + 𝑝𝑖𝑞𝑖
2 + ⋯+ 𝑝𝑖𝑞𝑖

∞ = 1

(2.3)

Hence,

 𝑝𝑖 + 𝑞𝑖 = 1

(2.4)

Similarly, the probability of deletion can be given by the following equation 2.5.

 𝑝𝑗 + 𝑞𝑗 = 1

(2.5)

Where 𝑝𝑗 represents no deletion, 𝑝𝑗𝑞𝑗 gives the probability of one insertion and so forth.

2.2 Error Control Coding

Modern communication systems heavily rely on error correction coding, this approach started in

the late 1940’s with some innovative work of Shannon [1], Hamming [2] and Golay [3]. Shannon

mathematically defined the entropy of information source and capacity of a communication

channel and showed that a reliable communication can be achieved over a noisy channel if the

8

source’s entropy is lower than the channel capacity. The objective of error control coding is to

enhance the capacity as well as reliability of a communication channel by efficiently adding

carefully designed redundant data to the information being communicated over the channel known

as channel coding. There are mainly two types of error control codes i.e. Block Codes and

Convolutional codes.

2.2.1 Block Codes

Hamming developed the first error correction code in late 40s [23]. Hamming looked for ways to

isolate and correct errors that were causing his program to halt. In the process of encoding

information he grouped it into sets of four bits and added three redundant bits that act as a parity

check bits. He developed an algorithm that could detect and locate the position of a single error in

a block of seven encoded bits [2].

Golay addressed the problems with Hamming code and generalized its construction. He also

discovered two noteworthy codes, the binary Golay code and ternary Golay code [24]. The

Hamming and Golay’s codes use the same scheme i.e. to group q-ary symbols to make a block of

𝑛 symbol code word having 𝑘 information symbols and 𝑛 − 𝑘 check symbols. The error correction

capability of the resultant code is 𝑡 errors and code rate 𝑟 = 𝑘/𝑛, a code of this type is known as

block code, and can be represented as a (𝑞, 𝑛, 𝑘, 𝑡) block code. However, recent communication

systems use more powerful codes instead of Golay codes. Some other linear block codes

discovered were Reed-Mullar codes [25], cyclic codes [26], BCH codes [5] [27] and Reed-

Solomon codes [10].

2.2.2 Convolutional Codes

The block codes discussed in the previous section have some drawbacks as well. These blocks

have certain code word lengths called frames. The decoding process depends on the length of these

frames, the longer the frame length the more response time required for the system to decode these

blocks. Another drawback is the synchronization at the receiver end, the decoder needs to have the

knowledge of the starting of each frame, i.e. which symbol is the first symbol in a received code

word or frame. The third drawback is that most algebraic based decoders for block codes work

9

with hard bit decision, rather than soft outputs of the demodulator. Hence, the performance is poor

at a low signal-to-noise ratio.

The drawbacks of block codes can be avoided by using a different approach towards coding, i.e.

convolutional coding, first introduced in 1955 by Elias [7-9]. Elias added redundancy to a

continuous stream of data by using a linear shift register instead of segmenting data into blocks.

In convolutional codes, each set of 𝑛 output bits is a linear combination of the current set of 𝑘

input bits and the 𝑚 bits stored in the shift registers. The total number of bits upon which each

output depends is called the constraint length. The encoder rate is the number of data bits 𝑘 taken

in by the encoder in one coding interval divided by the number of coded bits 𝑛 during the same

interval. As the data is continuously encoded, it can be continuously decoded with short response

time. The encoding algorithm can make use of soft decision information as well. The first decoding

algorithm was the sequential decoder of Wozencraft and Reiffen in 1961 [28], which was later

modified in 1963 by Fano [29] and Jelinek in 1969 [30]. The optimal solution of maximum

likelihood decoding became practical with the introduction of Viterbi algorithm in 1967 [31].

2.2.3 Concatenated Codes

Convolutional codes are susceptible to burst errors. A solution to this weakness of convolutional

code is to scramble the order of the code bits by introducing an interleaver prior to transmission.

This will spread the burst errors apart and will appear as independent error to the decoder. Block

interleavers are most commonly used interleavers that have a 𝑋𝑏 × 𝑌𝑏 bit matrix. The data is

placed into the matrix column-wise and then read out row-wise or vice versa. This will make burst

error length up to 𝑌𝑏 bits spread apart so that one error occur every 𝑋𝑏 bits. Another type of

interleaver is a cross or convolutional interleaver, which allows continuous interleaving and

deinterleaving and is mostly used with convolutional codes [32].

Reed-Solomon codes handle burst errors quite well. Therefore, RS codes have properties that are

complimentary to those of convolutional codes. A RS code and a convolutional code designed by

concatenation in series is a very efficient system for power limited channels. Data is first encoded

by an RS encoder which then goes in to the convolutional encoder. At the receiver end the

convolutional decoding is performed first and then fed into the RS decoder. Therefore, each

10

decoder performs its suitable operation on the data i.e. convolutional decoder works with

independent errors with low SNR, while RS decoder works with burst errors and high SNR. David

Forney in 1966 proposed this method of serial concatenation. [33].

It is found that serial concatenated codes offer comparable performance and in some cases better

to that of parallel concatenated codes [34]. The performance 𝑖𝑡ℎ convolutional component codes

can also be matched or exceeded with block component codes such as Reed-Solomon [35],

Hamming [2] [36] and BCH [5] [37] codes.

Outer

Encoder

Inner

Incoder

Outer

Decoder

Inner

Decoder

Channel

Date

Figure 2-2: A serial Concatenated Code

2.2.4 Turbo Codes

Berruou, Glavieux and Thitimajshima in June 1993 presented a new coding scheme at

International Conference on Communication in Geneva Switzerland. This new coding scheme was

able to achieve a practical code rate very close to that of Shannon’s theoretical limit. They

presented the new class of codes and its decoding technique named “Turbo Codes” [11]. This

coding technique constitutes two or more component codes combined in parallel and are from a

11

subclass of convolutional codes known as recursive systematic convolutional (RSC) codes [11].

A turbo encoder and decoder is shown in Figure 2-3 and Figure 2-4 respectively [38].

Upper RSC

Encoder

Lower RSC

Encoder
Interleaver

MUX

Data

Systematic output

Parity

output

Figure 2-3: A Turbo Encoder [38]

Upper

Decoder
Lower

Decoder

Interleaver

Deinterleaver

Interleaver

DeMUX

Systematic data

Parity data

Figure 2-4: A Turbo Decoder [38]

Figure 2-4 above shows that the input is interleaved before it is fed into the lower encoder. The

output of the lower encoder is redundant because both encoders receive the same input but in

different order, therefore they are systematic encoders. The output of the lower encoder does not

12

need to be transmitted. The code rate of the whole system is 𝑟 = 1/3. Higher rates can be achieved

by puncturing.

A suboptimal iterative decoding algorithm was presented in [11]. This algorithm operates at a

much lower complexity, as the presence of the interleaver makes optimal decoding (maximal

likelihood) of turbo codes complex and impractical. The idea behind the suboptimal decoding

algorithm is to break it down into two smaller codes. The decoding of these codes is performed

locally and the information is shared in an iterative fashion.

2.3 Synchronization Error Correction Codes

In this section the discussion will be on some existing techniques on insertion/deletion error

correction codes.

Synchronization error correction schemes have gained more attention due to the applications such

as image watermarking [39] and bit-patterned magnetic media [40]. In 1966 Levenshtein

described, a code that is capable of correcting x number of deletions should also be able to correct

x number of insertions and/or deletions [41]. When a message is carried as blocks of binary

symbols, the need is to provide some means for the receiver to detect the beginning or the end of

each block to keep synchronization with the transmitter. Generally, special synchronization

symbols are used that represent a third kind of information neither 1 nor 0. The examples of such

type of symbols are Morse code spaces and teletype beginning and end pulses in which each

symbol is represented by a unique combination of sequences [42].

2.3.1 Prefix Codes

A receiver turned on in the middle of a transmitted message can decode data wrong if

synchronization scheme is not used. Gilbert first introduced the synchronization of binary

messages in 1960 known as prefix codes [15]. According to Gilbert, a short sequence known as

prefix 𝑃 can be used with each code word transmitted to determine the boundary of a code word.

The constraint in using a prefix code is that the sequence 𝑃 cannot appear in the remaining part of

the block. The prefix should be chosen such that it satisfies the constraints of different blocks of

13

𝑁 bits (consisting of prefix 𝑃 and the unconstraint part) used. Longer prefix will affect the length

of message bits as 𝑁 is a fixed value and corresponds to an optimum length of the prefix.

Sellers [14] introduced marker codes in 1962, which was a first major achievement in the field of

insertion, deletion and substitution error correction coding. A sequence of bits called Marker codes

is inserted periodically during the transmission of code words to help the receiver determine the

synchronization.

Van Wijngaarden, and Morita, presented a new type of synchronization code, known as extended

prefix synchronization code (EPS) in [43]. The EPS is constructed by using a so called extended

prefix with fixed symbol positions and unconstraint data information positions followed by

constraint data sequence. EPS extends the set of available prefix for frame recognition and data

mapping procedure rather than having a single prefix used in normal prefix synchronization codes.

In Extended Prefix Synchronization EPS-code there are ℎ − 𝑘 unconstraint positions of data, and

an extended marker 𝑃 (length ℎ) having 𝑘 fixed positions is used. According to Guibas and

Odlyzko [44], when using 𝑞-ary PS-codes, the set of 𝑞ℎ−𝑘 different prefixes is given by 𝑃. These

PS-codes can be presented as 𝐶𝑝 (𝑘 + 𝑚) = 𝑃 𝐹𝑝(𝑚), where 𝐹𝑝(𝑚) is the set of constrained code

word 𝑐𝑖, (where 𝑖 = 1… 𝑚) and 𝑃 must not appear as a part of constrained code word.

2.3.2 Convolutional Codes

The convolutional codes are mainly used for the substitution error correction. Little research has

been done on convolutional codes as insertion/deletion error correction code. In this section

research done on this topic in the last decade will be discussed.

In [45] Swart and Ferreira proposed a new insertion/deletion error correction scheme that was

based on a parallel convolutional encoder. Cheng and Ferreira presented rate-compatible

convolutional codes with the Levenshtein distance metric for insertion, deletion and substitution

errors [46]. The Levenshtein distance metric is asserted to be suited to use with Viterbi decoding

as a branch compare metric. A new type of Viterbi decoding algorithm was presented that uses

14

Levenshtein distance metric for decoding and rate-compatible pruned codes for encoding. The

detail of the algorithm and its applications on different channels can be found in [18] [46] and [47].

Cheng, Ferreira and Swart [48] presented a bidirectional Viterbi decoding algorithm that uses the

Levenshtein distance metric and is used with a regular convolutional codes. This system has a

capability of correcting an average of 30 deletions with in a 6000 bits long frame when used with

𝑟 = 0.67 rate convolutional code [48].

A post-modulation scheme to correct insertion deletion substitution errors was presented by Cheng

and Ferreira [49]. They used run-length-limited Levenshtein codes for a dc2 – balanced code in

conjunction with interleaving techniques. This protects code words from insertion, deletion and

substitution errors.

2.3.3 Linear and Cyclic Codes

Linear and cyclic codes are mainly used to correct substitution errors. Insertion and deletion errors

can reduce the quality of service (QoS) of the system to a very bad extent. Abdel-Ghaffar, Ferreira

and Cheng in [50] and [51] investigated linear and cyclic codes for synchronization errors

correction. They showed that linear code of rate greater than 1/2 cannot correct insertion and

deletion errors. They also showed that by adding an extra symbol to the code word of a cyclic

codes of rates 1/3 or 1/2 have the potential to correct a single deletion or insertion [50]. In another

approach they presented a cyclic code of rate at most 1/2 which was shortened by deleting code

words such that the shortened code was capable of correcting insertion and deletion errors. [51].

2.3.4 Number Theoretic Codes

Ferreira, Abdel-Ghaffar, Cheng et al presented their work on systematic encoding of number

theoretic codes to develop moment balancing templates by extending a block or convolutional

code with predetermined error correction capability [52] [53]. Insertion/deletion correction can be

achieved by adding redundant bits at selected positions to balance the moment of the code word

by using some number theoretic constructions. They investigated bit error rate performance

comparison of LDPC and Convolutional codes based on sum-product algorithm (SPA) decoding

and 3-bit quantization Viterbi decoding respectively.

15

2.3.5 Synchronization using Permutation Codes

Slepian introduced variant I and variant II permutation codes for reliable communication over

certain class of noisy channels [54], Dunn used variant I codes for memory less Gaussian sources

[55]. Later Berger et al developed permutation codes for more general sources [56 -58].

A fast synchronization coding scheme was presented in [59], they have used single

insertion/deletion error correcting permutation codes. The author also presented a new algorithm

for permutation coded sequences which combines the dynamic algorithm and a Viterbi like

decoding algorithm [60].

2.4 Summary

A brief literature survey covering synchronization channel model, general error control coding and

synchronization error correction codes was given in this chapter. These coding schemes include

block codes, convolutional codes, concatenated codes, turbo codes, prefix codes, number theoretic

codes, and permutation codes.

16

Chapter 3: Background

3.0 Introduction

The research work presented in this research report is novel and based on the work previously

done by Cheng in [61]. Previous work done has been presented to create a background for the new

work done in this research. This chapter presents a detailed background of the channel model and

encoding techniques used in this research and previously presented in [61]. The role of this

research will be defined by explaining the error model used for the insertion, deletion and

substitution error protection, and the coding scheme. A block diagram determining the components

of the system used in this research is shown in Figure 3-1.

Data Source
(Information)

Convolutional

Encoder
(Puncturing and Pruning)

Transmission

Channel
(Davey-MacKay (DM)

binary channel)

Decoder
(Viterbi Decoding)

Sink

Figure 3-1: Block Diagram of the System

3.1 Prelude Definitions

Definition 1: An insertion error is the insertion of a bit(s) in the sequence resulting in the addition

of an extra bit while transmitting the symbol over the channel.

Definition 2: A deletion error is when a bit is deleted from the sequence, hence resulting in a

shortened or an empty word in the sequence while transmitting the symbol over the channel.

Definition 3: A substitution error is the replacement of a bit with another while transmitting the

symbol over the channel.

17

3.2 Channel Model

A Davey-Mackay (DM) binary channel [12] was used in this research. The binary channel can be

defined by three error parameters 𝑃𝑡, 𝑃𝑖 and 𝑃𝑑 which refers to the transmission, insertion and

deletion probabilities. Therefore, the probability of a bit transmitted is given by the equation 3.1

shown as follows, and it has a probability 𝑃𝑠 of bearing a substitution error [19].

 𝑃𝑡 = 1 − 𝑃𝑖 − 𝑃𝑑 (3.1)

Delete

Insert

ti ti + 1

Transmit

.

Pi

Pd

Pt

Figure 3-2: Insertion Deletion Channel with Probabilities 𝑷𝒊, 𝑷𝒅, and 𝑷𝒕

3.3 Convolutional Codes

A brief introduction on the error correction technique used in this research is discussed. The main

focus of this research is to use rate-compatible convolutional codes to overcome the

synchronization error that occurs during transmission.

There are two common types of error correcting codes available, namely: block codes and

convolutional codes. A binary convolutional code is denoted as a three-tuple (𝑛, 𝑘,𝑚), where 𝑛 is

the output bits, 𝑘 is the input bits and 𝑚 represents the memory of the convolutional code. A

detailed introduction of convolutional codes can be found in [62].

18

3.3.1 Convolutional Encoder

Convolutional encoder consists of shift registers that are serially connected to form a finite state

machine (FSM) that processes information bits serially. Therefore, the output of the encoder

depends on the input and the current state of the encoder. Each message bit influences a span of

𝑛(𝑚 + 1) successive output bits known as output constraint length. For an (2,1,3) encoder, 8

successive output bits are influenced by a single input. Figure 3-3 represents a (2,1,3)

convolutional encoder having 3 shift registers.

+

+

U

V(1)

V(2)

S
e
rializer

D0 D2 D3D1

Figure 3-3: A (𝟐, 𝟏, 𝟑) Convolutional Encoder

3.3.2 Generator Matrix

Convolutional code can be defined by the generator sequences 𝑔(1), 𝑔(2), … 𝑔(𝑛) that represents the

output of the encoder on each input. The code word is produced by the matrix multiplication of

input data and the generator matrix which is associated to the generator sequence.

The convolutional code can be generated by multiplying the information sequence by the generator

matrix. Let 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘 be the information sequence and let 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 be the output

sequence.

19

Then

 𝑢 = (𝑢1,0, 𝑢2,0, … , 𝑢𝑘,0, 𝑢1,1, 𝑢2,1, … , 𝑢𝑘,1, … , 𝑢1,𝑖, 𝑢2,𝑖, … , 𝑢𝑘,𝑖, …)

(3.2)

 𝑣 = (𝑣1,0, 𝑣2,1, … , 𝑣𝑛,0, 𝑣1,1, 𝑣2,1, … , 𝑣𝑛,1, … , 𝑣1,𝑖, 𝑣2,𝑖, … , 𝑣𝑛,𝑖, …)

(3.3)

The relationship between input and output can be described as:

 𝑣 = 𝑢𝐺

(3.4)

Where G is the generator matrix of the code.

The generator matrix is given as:

𝐺 =

[

𝐺0 𝐺1 𝐺2 … 𝐺𝑚

𝐺0 𝐺1 … 𝐺𝑚−1 𝐺𝑚

𝐺0 … 𝐺𝑚−2 𝐺𝑚−1 𝐺𝑚

⋱ ⋱]

Generator Polynomial:

The generator sequence can also be represented as polynomials. For the encoder shown in Figure

3-3 the polynomial is:

{

g(1) (D) = [1 + D2 + D3]

 g(2)(D) = [1 + D + D2 + D3]

(3.5)

20

An (n, k, m) encoder can be represented by a 𝑘 × 𝑛 matrix 𝐺(𝐷), known as polynomial generator

matrix in which each entry is a polynomial.

𝐺(𝐷) =

(

𝑔1
(1)(𝐷) 𝑔1

(2)(𝐷) … 𝑔1
(𝑛)(𝐷)

𝑔2
(1)(𝐷) 𝑔2

(2)(𝐷) … 𝑔2
(𝑛)(𝐷)

⋮ ⋮ ⋮ ⋮

𝑔𝑘
(1)(𝐷) 𝑔𝑘

(2)(𝐷) … 𝑔𝑘
(𝑛)(𝐷))

Definition: The code rate is defined as 𝑟 = 𝑘/𝑛 , where k is the number of input bits and n is

the number of outputs.

Definition: The Hamming distance of two sequences with the same length is the number of

positions at which these two sequences differ.

Definition: The error correcting capability (𝑡𝑒𝑟𝑟𝑜𝑟) of a convolutional code is the number of

errors that can be corrected by the code. It is given as

𝑡𝑒𝑟𝑟𝑜𝑟 = ⌊

𝑑𝑓𝑟𝑒𝑒 − 1

2
⌋

(3.6)

The definition of free distance 𝑑𝑓𝑟𝑒𝑒 will be addressed in section 3.4.1.

21

3.3.3 Graphical Representation of Convolutional Code

A convolutional code can be represented as a code tree. The tree generated by the encoder in Figure

3-3 is shown in Figure 3-4.

00
00

00

00

11

01
11

11

11

01

11

10
01

01

10

01

01

01

10

10
10

01

10

10
10

00

11

11

00

00

START

0

1

Initially

encoder is

at all zeros

state

The number of

branches coming

out of each node

equals 2k

Figure 3-4: Tree structure of convolutional code

22

Figure 3-4 describes the structure of the tree diagram. As we discussed in the previous section, the

convolutional encoder starts with all registers at zero, therefore the tree diagram also starts at all

zero state. Each branch of the tree transforms a single bit input into a two bit output. The upper

branch at each node represents 02 input and the lower branch 12 input.

Figure 3-5 describes the structure of a convolutional encoder in the form of a state diagram. The

solid line represents 02 input and the dotted lines represents 12 input. Similarly Figure 3-6

represents the trellis structure of the convolutional encoder presented in section 3.3.1.

01000

11

11

11

01
10

00

100

001

000 11110

00
11

01

01

01

10

00

110

001

101

10

Figure 3-5: State diagram of the convolutional code

23

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

00(1)

01
(0

)

10
(0

)

00(0)

11(0)

01
(0

)
10

(0
)

00
(0

)

Current

state

Next

state

Figure 3-6: Trellis diagram of a convolutional code

3.4 Rate-Compatible Convolutional Codes

The purpose of designing a coding scheme is to achieve maximum throughput and error correction

capability for a worst case scenario of the channel. In some harsh channel cases, the channel status

fluctuates drastically in time and can cause a constant rate coding scheme to fail. This prompts a

variable rate coding scheme that can adjust to the channel conditions to have a changing error

correction capabilities. The advantage of using rate-compatible convolutional code is that the same

single encoding and decoding system can be used for a range of code rates. The rate-compatible

convolutional codes are obtained by using puncturing or pruning operations [18] [63].

24

3.4.1 Puncture Convolutional Codes

The process of puncturing is done by periodically deleting (or puncturing) encoded symbols from

ordinary convolutional encoded sequence of data. Therefore, the rate of the encoder increases by

puncturing process. Consider an encoder with generator polynomial:

 𝐺 = (1 + 𝐷2 + 𝐷3 1 + 𝐷 + 𝐷2 + 𝐷3)

(3.7)

The puncturing matrix 𝑃 = [
1 0
1 1

] indicates that the first bit of second encoded block is

punctured.

000

001

010

011

100

101

110

111

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

00(1)

01
(0

)

10
(0

)

00(0)

11(0)

01
(0

)
10

(0
)

00
(0

)

State

x1(0)

x1(1)
x0(1)

x1(1)

x0(1)

x1(1)

x0(1)

x1(1)

x0(1)

x1
(0

)

x0
(0

)

x0(0)

x1(0)

x1
(0

)
x0

(0
)

x0
(0

)

Figure 3-7: Trellis diagram of a punctured convolutional code

25

The puncturing process is shown in Figure 3-7. The first bit of the second trellis is the

punctured/deleted bit denoted by 𝑥. The 𝑟 = 1/2 encoder is punctured into an 𝑟 = 2/3 encoder.

The equivalent 𝑟 = 2/3 encoder trellis diagram is shown in Figure 3-8.

000

001

010

011

100

101

110

111

State

Figure 3-8: Trellis diagram of a 𝒓 = 𝟐/𝟑 convolutional encoder

Puncturing reduces the free distance of the code but it is still comparable with the ordinary

convolutional code having the same rate as after puncturing.

26

3.4.2 Pruned Convolutional Codes

Puncturing the number of branches connecting to a state increases the rate of a code. We can

remove some of the undesired branches of the trellis. This process is known as pruning. Pruning

is done to improve the error correcting capability or correcting special types of errors, such as

insertion and deletion errors [18] [64]. Due to the trellis structure of convolutional codes, it is easy

to delete some or all of the undesired code words or associated paths from it. It is considered as

an inverse operation of the puncturing, thus by doing so the code rate is reduced.

Figure 3-9 describes the pruning process which consists of a feedback mapper. The state of the

convolutional encoder is fed back to the mapper and the mapper maps the information data into a

corresponding input by using a mapping table. This input is then encoded by the convolutional

encoder that produces a corresponding code word which is part of the pruned paths.

Mapper
Parent Convolutional

Encoder

Information

Source

Input

Encoder State

Code Word

Figure 3-9: Pruning Processing Using Feedback Mapping

3.5 Decoding

As discussed above, rate-compatible convolutional codes has been used as the encoding technique

in this research. Maximum-likelihood algorithm is a very widely used decoding process for

convolutional codes, also known as Viterbi decoding algorithm. In this research, Viterbi decoding

is used as the decoding technique for the convolutionally encoded information at the receiver.

27

3.5.1 Viterbi Decoding Algorithm

Viterbi decoding algorithm is a scheme for decoding convolutional codes on the basis of maximum

likelihood decoding [65]. The encoded information signal is corrupted by noise when sent via a

channel; the receiver tries to recover the sent sequence into the most likely sequence. This process

is known as maximum likelihood decoding. The Viterbi decoding algorithm takes the two code

words i.e. the received code word and the trellis branch code word, compares them for the

hamming distance and selects the branch with the minimum Hamming distance [18]. An example

of Viterbi decoding algorithm follows:

000
00(0)

001

010

011

100

101

110

111

11(1)

11(1)

10(1)

01
(0

)

Received

Decoded

11 01 00 01 01

1 0 1 1 1

00(0)

11(1)

01(0)

10(1)

01(1)

10(1)

01
(0

)

10
(0

)

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

10(1)

01
(0

)

10
(0

)

00(0)

11(0)

11(1)

01(0)

00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

00
(0

)

10(1)

01
(0

)

10
(0

)
10

(0
)

01
(0

)

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

10(1)

01
(0

)

10
(0

)

00(0)

11(0)

11(1)

01(0)

00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

00
(0

)

10(1)

01
(0

)

10
(0

)
10

(0
)

01
(0

)

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

10(1)

01
(0

)

10
(0

)

01 00 11

00(0) 00(0) 00(0) 00(0)

01(0)

01(0)
01(0)

01
(0

)

01
(0

)

01
(0

)
10

(0
)

10
(0

)

10
(0

)

00
(0

)
00

(0
)

00
(0

)

3

4

1

5

3
5

0

4

33 4 0 4 5

3

4

440

4 4 4

2

4

3

3

2

3

3

2

3

3

4

2

3

0

4

4

0

5

4

2

3

0

6

3

5

33

0

3

2

2

0

0 0 0

Figure 3-10: Example of hard-decision Viterbi decoding

Definition: The Free distance 𝑑𝑓𝑟𝑒𝑒 of a convolutional code is the minimum weight of a path

that starts at all zero state and terminates at all zero state.

28

3.6 Summary

A detailed background on synchronization channel model and convolutional codes was given in

this chapter. Further, the rate compatible convolutional codes and Viterbi decoding process used

in this research were discussed.

29

Chapter 4: Codebook Design

4.0 Introduction

In this chapter the design and construction of the codebook for the proposed system used in the

research is discussed.

Consider a concatenated coding system with an inner code having capability of correcting

synchronization and substitution errors and a non-binary outer code that can correct remaining

substitution errors. The inner code is designed using rate-compatible convolutional codes. The

scheme consists of a set of extended prefix sequences generated using path pruned convolutional

codes. These extended prefix sequences are transmitted at the start of every frame. The decoder

recognizes these combinations and keeps in synchronization with the encoder.

4.1 Codebook Design

A novel coding scheme has been proposed in this research. This coding scheme is designed using

path pruned convolutional codes and extended prefix codes, capable of correcting synchronization

errors (insertion, deletion and substitution).

Consider a 𝑟 = 1/2 rate parent convolutional encoder with constraint length 𝐾 = 3 punctured

code using the puncturing matrix 𝑃. The length of the puncturing matrix depends on the selection

of the marker sequence and the constraint length of the parent encoder. The modified code rate

after puncturing will be 𝑘/(𝑘 + 1) , where 𝑘 is the number of input bits and (𝑘 + 1) = 𝑛 is the

number of output bits of the punctured convolutional code. Hence, the length of the extended prefix

code word that will be selected should be 𝑛 bits long. The constraint part of the extended prefix

consists of a marker sequence. The unconstraint part of the extended prefix depends on the

constraint length 𝐾 of the parent encoder. Hence, the length of the constraint part i.e. the marker

sequence is 𝑛 − 𝐾.

30

The size of the codebook 𝐵𝑝 generated from PS-code is given by:

 |𝐵𝑝| = 2𝑘 (4.1)

Example 1

Let us take an example of a codebook that was used for computer simulations.

The first step is to define the constraint length and the rate of the original code being used. In this

example the constraint length of 𝐾 = 3 and the code rate of 𝑟 = 1/2 parent convolutional

encoder is used.

The second step is to define the length 𝑀 of the puncturing matrix 𝑃. For this example assume

that 𝑀 = 7, a different length of 𝑀 can also be assumed depending on the condition of the

channel. As overall code rate of the proposed coding scheme is 𝑘/(𝑘 + 1), the extended prefix

length 𝐿 (code words each having length 𝑛 = 𝑘 + 1) will therefore be 𝑛 = 𝑀 + 1 which is 8.

Hence, the constraint part of each code word in the codebook will be 𝑛 – 𝐾 = 5.

As the constraint and unconstraint portion of the each extended prefix code word is known, the

next step involves the construction or selection of a suitable marker sequence (constraint part of

the extended prefix code word). The marker sequences are usually constructed by combining

consecutive 1s and 0s. Some example marker sequences are given in the table below:

Marker Sequences

110

11100

1111000

111110000

1111110000

Table 4-1: Example Marker Sequences

31

After selecting a suitable marker sequence, the next step is to combine this marker with the

unconstraint part to form a codebook. Table 4-3 shows the codebook constructed in this example.

The size of the codebook 𝐵𝑝 constructed is given by:

|𝐵𝑝| = 23

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

11100 000 11100000

11100 001 11100001

11100 010 11100010

11100 011 11100011

11100 100 11100100

11100 101 11100101

11100 110 11100110

11100 111 11100111

Table 4-2: Codebook

4.2 Codebook Search Methodology

After designing the codebook the next step involves searching these paths (code words) and its

corresponding inputs to the encoder.

Consider the transition table shown in Table 4-3 for rate 𝑟 = 1/2 convolutional encoder with

constraint length 𝐾 = 3, given below:

32

As mentioned in the previous example the length of the puncturing matrix is denoted by 𝑀. Since

the length of each code word in the codebook depends on the length of the constraint marker

sequence, and for the unconstraint part on the constraint length of the parent convolutional

encoder, 𝑀 therefore is equal to the length 𝑘 which is the number of input bits to the encoder.

i.e. 𝑀 = 𝑘

Figure 4-1 below is the trellis representation of a 𝑘/𝑛 punctured convolutional encoder. 𝑇𝑖

represents the 𝑖𝑡ℎ puncturing interval, where 𝑖 = 1, 2, … ,𝑀.

Initial State Input Next state Output

00 0 00 00

00 1 10 11

01 0 00 11

01 1 10 00

10 0 01 01

10 1 11 10

11 0 01 10

11 1 11 01

Table 4-3: Transition Table for 𝒓 = 𝟏/𝟐 and 𝑲 = 𝟑 Convolutional encoder

33

State

00

State

10

State

01

State

11

00

01

00

01

00

01

00

01

...

...

...

...

T1 T2 T3 TM

Figure 4-1: Trellis diagram with puncturing length 𝑴, 𝒓 = 𝒌/𝒏 and 𝑲 = 𝟑

The above punctured encoder will produce 2𝑘 different paths (code words each having length 𝑛 =

 𝑘 + 1) from every input state of the encoder. The number of paths 𝐻 produced by the above

punctured encoder can be found by:

 𝐻 = 2𝑘 × 2(𝐾−1) (4.2)

Where 𝐾 is the constraint length of the parent convolutional encoder and 𝑘, is the number of input

bits of the punctured convolutional encoder.

State
00

State
01

State
10

State
11

001001

010

011

000

Figure 4-2: Trellis diagram of punctured convolutional code

34

Figure 4-2 is the trellis representation of a 𝑟 = 2/3 punctured convolutional encoder in which the

first output bit of the second interval is punctured using 𝑃 = [
1 0
1 1

] puncturing matrix.

The next step is to prune the desired paths from the code set 𝐶 that match the codebook 𝐵𝑝

generated using extended prefix codes.

Example 2

Consider the codebook designed in Section 4.1.2. In order to search these paths and its

corresponding outputs, a Matlab program was simulated that constructed all the possible paths and

then pruned the paths that matched the code words of our designed codebook. The steps involved

in the Matlab simulation will now be discussed.

The first step is to choose the length 𝑀 of puncturing matrix 𝑃. After a few tries with different

values it was found that the value of 𝑀 should be large enough to produce sufficient paths available

for pruning. Therefore, 𝑀 = 𝑘 was chosen, therefore 𝑖 = 7 time intervals of the trellis were

selected to construct an extended prefix code word of length 𝑛 = 8, as the overall code rate will

be 𝑘/(𝑘 + 1).

The second step involves selection of a puncturing pattern for the matrix 𝑃. Simulations with all

possible valid puncturing patterns were carried out and were able to find enough paths to prune.

For this example the puncturing matrix is given by:

𝑃 = [
1 1 1 1 1 1 1
0 0 0 0 0 0 1

]

Where 1 represents the selected bit and 0 represents the punctured bits.

The next step involves generation of all possible paths available from each state to every other

state. These paths are then punctured using puncturing matrix 𝑃. The total number of paths 𝐻

produced are calculated by:

𝐻 = 27 × 2(3−1)

𝐻 = 512

35

In the next step, these 512 paths/code words are compared with the codebook generated in Section

4.1.2. The matched paths with their input sequence and state history were stored in a mapping table

that was later used in the simulation. The mapping table below describes the state and input bits

for each extended prefix code word of the codebook generated.

Initial State Input Next State Extended Prefix Codebook

0 1101000 0 11100100

0 1101010 1 11100001

0 1101001 2 11100111

0 1101011 3 11100010

1 0111100 0 11100111

1 0111110 1 11100010

1 0111101 2 11100100

1 0111111 3 11100001

2 1000000 0 11100000

2 1000010 1 11100101

2 1000001 2 11100011

2 1000011 3 11100110

3 0010100 0 11100011

3 0010110 1 11100110

3 0010101 2 11100000

3 0010111 3 11100101

Table 4-4: Mapping Table

36

4.3 Inner Code Construction of the Proposed System

A rate-compatible convolutional encoding system was used as inner code for the proposed scheme.

The block diagram of the inner coding scheme is shown as follows:

Mapper
Parent Convolutional

Encoder
Puncturing

Channel

Viterbi DecodoingDemapping

Information

Source

Input

Encoder State

Information

Sink
Synchronization

Check

Figure 4-3: Block diagram of Inner Coding scheme

4.3.1 Encoding Process

The information fed into mapper is periodically mapped into a corresponding input sequence

depending on the state of the parent encoder, which produces a code word from the codebook 𝐶𝑝

and it is transmitted over the channel in front of each frame. The remaining bits of the frame are

not mapped to a corresponding input sequence rather normally fed into the encoder.

The pruning period depends on the status of the channel. If the channel is harsh, the pruning period

can be decreased to have more synchronization patterns in the transmitted code words. The

advantage of the above coding scheme is that the encoding process is a continuous and is not

stopped or changed to generate a synchronization pattern before each frame. Each synchronization

pattern generated depends on the state of the parent encoder.

37

4.3.2 Resynchronization

At the receiver end the code word is first passed through the synchronization check process. The

resynchronizer looks for the synchronization patterns that were inserted in front of each frame at

the encoder through pruning process. As the codebook of these synchronization patterns and the

frame length are known to the receiver, it looks for these patterns and their distances between each

other. If the distance between patterns is less than the original frame length, that means bits have

been lost during the transmission over the channel and deletion errors have occurred. This implies

that, a sufficient number of bits are added to make the received code word of length equal to the

original frame length. This may introduce substitution errors in the current frame but will

resynchronize the subsequent frames. Similarly, when insertion errors occur, the resynchronization

process deletes some of the bits from the received code word to make its length equal to the original

frame length.

In this research the sliding window method is used to resynchronize the transmission at the

receiver. The method works on the fixed sized window that slides over the received bit sequence

and looks for the synchronization patterns inserted in front of each frame. It also checks the length

of each frame for deletion errors. The resynchronization works for three different cases:

1. When some of the bits from synchronization pattern get deleted.

2. When some of the bits from rest of the frame get deleted.

3. When some of the bits from both synchronization pattern and rest of the frame get deleted.

In case if deletion errors are detected in a frame the resynchronizer calculates the number of

deletions and insert required number of bits 0 in front of the frame to make the frame length equal

to the actual length of the frame transmitted. This can introduce large burst errors. To improve the

performance of the Viterbi decoder the Reed-Solomon code is used in concatenation to the

Convolutional code. Interleaving is also introduce to further improve the performance by spreading

burst errors apart.

38

4.3.3 Viterbi Decoding

The Viterbi algorithm is used for decoding the received code words. The received sequence after

synchronization check is fed into the Viterbi decoder, which treats this sequence normally and

decodes according to the specified puncturing matrix. The advantage of the Viterbi decoder is that

it is capable of correcting substitution errors. Therefore, some of the substitution errors caused by

resynchronization process are corrected by the decoder. The performance of the decoder also

depends on the code rate. For detailed Viterbi decoding algorithm refer to the section 3.5.1 in

chapter 3.

4.4 Outer Code Construction of the Proposed System

The proposed coding scheme constitutes of an inner code, as discussed in the previous section and

an outer code. A non-binary Reed-Solomon code was used as an outer code. A block diagram of

the concatenated system is given below:

Mapper
Parent Convolutional

Encoder
Puncturing

Channel

Viterbi DecodoingDemapping

Information

Source

Input

Encoder State

Information

Sink

Synchronization

Check

Interleaver

DE Interleaver

RS-Encoder

RS-Decoder

Figure 4-4: Block Diagram of the Concatenated Coding System

4.4.1 Reed-Solomon Code

RS codes are special and a very popular class of non-binary BCH codes that are over 𝐺𝐹 (𝑞) ,

where 𝑞 > 2. Even though RS codes are subclass of BCH codes, they were constructed

39

independently using a different approach by I. Reed and G. Solomon in 1960 [66]. RS codes have

high capacity to correct both random and burst errors. They were initially designed for deep-space

communication, but they have found several other applications such as in mass storage devices,

broadband modems, wireless mobile communications systems and so forth.

A 𝑞-ary Reed-Solomon code (RS code) is a 𝑞-ary BCH code of length 𝑞 − 1 generated by:

 𝑔(𝑥) = (𝑥 −∝𝑎+1)(𝑥 −∝𝑎+2)… (𝑥 −∝𝑎+𝛿−1) (4.3)

With 𝑎 ≥ 0 and 2 ≤ 𝛿 ≤ 𝑞 − 1, where ∝ is a primitive element of 𝐹𝑞.

Concatenation of RS code as outer codes with a simple binary codes (convolutional codes) as inner

codes provides reliable communication and data storage with reduced decoding complexity and

higher error correction capability.

4.4.2 Interleaving

In many communication systems errors occur in burst. Sometimes, these burst errors are long and

exceeds the error correction capability of the coding scheme and fails to retrieve the original code

word. Interleaving mitigates this problem by changing the positions of each symbol in the code

word before transmission and rearranging them at the receiver. This can cause burst errors to

spread apart making error correction easier.

According to Ramsey [68] a device that rearranges the ordering of a sequence of symbols in some

one-to-one deterministic manner is known an interleaver.

Interleaving is used as an accessory to assist error correction techniques to perform better in worst

conditions. To correct burst errors one technique is to place an interleaver between the channel

encoder and the channel. This spreads the channel symbols in such a way that symbols of each

code word are separated by more than the length of a typical burst of errors, making channel look

like a random-error channel to the decoder.

40

Another type of interleaver is block interleaver linked with block codes. Block interleaver divide

symbol sequences into blocks in the form of two dimensional arrays. The symbols are read in row

wise and read out column wise [69].

In this research, the information blocks were first encoded using a non-binary (15, 7) Reed-

Solomon code by adding parity check bits row wise. These code words were then fed into the

convolutional encoder by taking bits column wise. This makes code words to interleave and help

improve the performance of the outer code.

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

1 4 7 2 5 8 3 6 9

1 2 3 4 5 6 7 8 9

Original Bit Stream

Interleaved Bit Stream

Error Bits Stream

Deinterleaved Bit Stream

Figure 4-5: The Interleaving Process

Figure 4-5 describes the randomization of burst error; a burst of errors on the channel is converted

into isolated errors by using interleaving process.

41

4.4.3 Reed-Solomon (RS) Decoding

The decoding of non-binary BCH codes (Reed-Solomon codes) is a complex operation and

involves more computation than decoding binary BCH codes [67]. It involves the determination

of the location and value of errors. Gorenstein and Zierler [70] founded the first decoding

procedure for non-binary BCH and RS codes, which was later improved by Chien [71] and Forney

[72]. The first efficient decoding algorithm for both binary and non-binary BCH codes was

presented by Berlekamp [73]. The Euclidean algorithm can also be used for decoding BCH and

Reed-Solomon codes [74]. The Euclidean decoding algorithm is simple and easy to implement.

Gore [75] introduced a mechanism to decode BCH and Reed-Solomon code in the frequency

domain, which was later modified by Blahut [76] to improve the decoding performance. An

overview of the decoding procedure is given below:

Preliminary Decoding Concepts

The received polynomial 𝑅(𝑥) can be divided into two parts:

 𝑅(𝑥) = 𝐶(𝑥) + 𝐸(𝑥)

(4.4)

Where 𝐶(𝑥) the code word and 𝐸(𝑥) is the error polynomial.

Let 𝐸(𝑥) = 𝐸0 + 𝐸1𝑥 + ⋯+ 𝐸𝑠−1𝑥
𝑠−1 is the expansion of the error polynomial and that there are

no more than 𝑧 errors in the received polynomial. Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑧 denote the positions of the

errors. Therefore each error location 𝑙𝑖 is a distinct integer between 0 and 𝑠 − 1.

The error location 𝑋𝑖 is defined as 𝑋𝑖 = 𝛼𝑙𝑖. Hence the error locations 𝑋1, 𝑋2, … , 𝑋𝑧 are another

way of representing the error indices.

Stages of the Decoder:

Figure 4-6 describes the main stages involved in the decoding process. The decoder receives the

code word 𝑅(𝑥) and outputs the corrected code word 𝐶(𝑥).

42

Syndrome Calculation

Berlekamp-Massey Algorithm

Chien Search

Forney s Formula

Correct Error

: Received Code word

Syndromes

Error Locator polynomial

Error Locations

Error Magnitude

: Corrected Code word

R(x)

C(x)

Figure 4-6: Decoding Stages

The steps involved in decoding process are described below [77]:

43

1. Syndrome Calculation:

The first step involves the calculation of syndromes 𝑆𝑖 of the received data, where 𝑖 =

 1, 2, … , 2𝑡.

2. Berlekamp-Massey Algorithm:

The second step involves computation of error locator 𝜎(𝑋) and error evaluator

polynomials 𝜔(𝑋). After solving for these polynomials the error locations and error

magnitudes can be found.

3. Chien’s Search:

The next step involves finding the roots of the error locator polynomial. 𝐺𝐹(𝑞𝑚) is a finite

field therefore, the idea of Chien’s search is to enumerate all the elements of the field to

determine the roots. There are some other methods to determine the roots but Chien’s

search may be the most efficient.

4. Forney’s Formula:

After knowing the error locations {𝑋𝑖} the next step is to calculate the error

magnitudes {𝑌𝑖}. Chien’s algorithm provides the locations of the errors and Forney’s

formula the magnitude of error at those locations. Thus, the code word 𝐶(𝑥) can be

calculated using the formula 𝐶(𝑥) = 𝑅(𝑥) − 𝐸(𝑥), and the decoding process is complete.

4.5 Summary

Chapter 4 presented the details of the research work done. The system used path pruned

convolutional codes as inner codes and the RS code as an outer code presented as a concatenated

coding scheme. This chapter also explained how the codebook was designed and how the

synchronization patterns were generated using pruned convolutional codes.

44

Chapter 5: Computer Simulation and Results

5.0 Introduction

In this chapter, the various aspects of the computer simulation needed in order to evaluate the

performance and the effectiveness of the proposed system will be discussed.

Generally, simulations determine efficiency of a coding scheme on the basis of substitution error

correction and not how effectively insertion and deletions are detected and corrected. Hence, a

conventional bit error rate (BER) versus error probability computer simulation scheme cannot

conclusively determine the performance of the proposed concatenated coding system, because the

elementary function of the scheme is to detect deletions/insertions and to re-establish the

synchronization.

Alternatively, a more complex and detailed simulation is executed by randomly deleting bits from

the transmitted code word during the transmission and then at the receiver. The performance is

evaluated by resynchronizing and decoding the sequence. By repeating this simulation for several

bit deletion probabilities a graph is obtained to show the deletion probability 𝑃𝑑 versus bit error

rate.

The graphs depict the performance of proposed synchronization error correction scheme using

path-pruned convolutional codes in concatenation with RS codes.

5.1 Channel Model

A channel model is required to conduct a simulation. The channel model describes the natural

events that can happen during the transmission of a signal on a channel, in this case the occurrence

of insertion deletion and substitution errors. The channel model is meant to provide a test bet to

measure or estimate the performance of the coding scheme on the basis of parameters extracted

from real physical channel.

45

The channel models that have been used for the insertion/deletion error correction are not generally

accepted models, rather they have been designed particularly for the research being carried out.

Some of the commonly used insertion deletion channels are Gilbert-Elliot model [15] and Davey-

MacKay (DM) binary channel model [12][78][79].

The proposed scheme uses the following simplified channel model based on the binary symmetric

channel to carry out the research. Similar model was also used by Swat in [80] and Ferreira dos

Santos in [81].

11

0 0

del

P1

D1

D0

P0

Figure 5-1: Simulation Channel Model

The description of the model parameter is defined in table below.

46

The above channel model can be presented by the following equation 5.1:

 𝑃0 + 𝑃1 + 𝐷0 + 𝐷1 = 1

(5.1)

Let’s consider that when a 0 or a 1 is transmitted over the channel their deletion probabilities are

equal, therefore the equation 5.1 can be modified into the following equations 5.2 and 5.3:

 𝑃0 = 𝑃1 = 𝑃 (5.2)

 𝐷0 = 𝐷1 = 𝑃𝑑 (5.3)

By substituting the values, the equation 5.3 is written as follows:

 2(𝑃) + 2(𝑃𝑑) = 1 (5.4)

 𝑃 + 𝑃𝑑 = 1/2 (5.5)

This is the simplified form of channel used for the simulation. The probability of the deletion errors

𝑃𝑑 that was introduced in the simulation ranged from 10−3 to 10−4.

Parameters Description

𝑃0 Probability of receiving 0 when 0 is transmitted

𝑃1 Probability of receiving 1 when 1 is transmitted

𝐷0 Probability of not receiving 0 (Deletion probability of 0)

𝐷1 Probability of not receiving 1 (Deletion probability of 1)

Table 5-1: Channel Model Parameters

47

5.2 Simulation Methodology

Random bits are generated at the information source and saved for comparison at the later stages.

These randomly generated bits are then encoded using (15, 7) Reed-Solomon code, then

interleaved before feeding them to the convolutional encoder. These bits are then divided into

small chunks on the basis of pruning period, such that each chunk represents one frame. The first

bit of each frame is mapped into a corresponding sequence (which will generate one of the code

words from the extended prefix codebook) depending on the state of the convolutional encoder

before feeding the whole frame to the convolutional encoder. The convolutional encoder is the

normal (𝑛, 𝑘,𝑚) encoder with puncturing.

The punctured code word is then transmitted over the channel defined in the channel model section

above, which introduces deletion errors in the coded sequence. At the receiver end this sequence

is pretreated to look for deletion errors and frames are resynchronized by looking for the predefined

extended prefix pattern sequences from codebook. The resynchronized patterns are then fed into

the Viterbi decoder which corrects the most substitution errors caused by the resynchronization

process. The ability of the decoder to correct substitution errors depends on the free distance of

the code. After decoding, the frames are remapped to their corresponding bits, de-interleaved and

then fed into the RS decoder. The RS decoder corrects the remaining substitution errors depending

upon its error correction capability. The same process is repeated for different deletion error

probabilities to evaluate the extent of error correction ability of the concatenated system.

A BER versus deletion probability 𝑃𝑑 graph is obtained. This graph compares the randomly

generated bits and the decoded bits of the RS decoder. This BER vs. 𝑃𝑑 graph evaluates the overall

performance of the concatenated coding scheme by comparing the data bits from the information

source at the transmitter and the bits decoded by the decoder at the receiver.

Similarly a BER versus deletion probability 𝑃𝑑 graph is obtained for the inner coding system which

only involves the convolutional encoder and Viterbi decoder. By comparing the two graphs, the

effectiveness of the RS codes is shown.

The same process is repeated for different scenarios which include the change in the length of each

code word of the extended prefix codebook, change in the conditions of the channel and by

changing the code rate and constraint length of the parent encoder.

48

A RS (15, 7) Reed-Solomon code with 𝐺𝐹(24) was implemented using Matlab’s built in functions

‘rsenc’ for encoder and ‘rsdec’ for decoder. This RS code can correct 4 errors within each 15

symbol RS code word and require less processing and time to be implemented for simulation.

Commercially a more powerful RS (255.223) code is used [82].

A deletion probability 𝑃𝑑 ranged from 10−3 to 10−4 was used for this simulation. The deletion

errors caused by the deletion probability were random through the transmitted code word. The

encoding process of the convolutional encoder was continuous and there were no modifications

made to the parent encoder. This is considered to be one of the advantages of this proposed

concatenated coding scheme, where the pruning process is introduced without stopping or

changing the convolutional encoder structure. The set of extended prefix code words and the frame

length were known to both the transmitter and the receiver. The frame length can be varied on the

base of channel conditions. The better the channel conditions, the lesser is the need for

synchronization sequence, therefore the pruning period will increase making the frame length

larger. The BER was calculated by comparing the source information and the decoded information

at the decoder using:

 BER = 𝑁𝑒𝑟𝑟𝑜𝑟/𝑁𝑏𝑖𝑡𝑠 (5.6)

This process was repeated several times for each deletion probability with a very long randomly

generated binary information sequence to get a dependable approximated assessment of the

system.

5.3 Simulation Results and Discussion

In this section the results of the simulations that were introduced in the previous question will be

presented, compared and discussed

49

The simulations was carried out using different scenarios on the basis of the coding system. These

Scenarios include the following:

1. Concatenated coding scheme (with RS code).

2. Different extended prefix code word lengths.

3. Inner coding scheme (without RS code).

4. Different constraint lengths.

A rate 𝑟 = 1/2 parent convolutional encoder with two different constraint length; 𝐾 = 3 & 𝐾 =

5 and two different extended prefix code word lengths (i.e. 𝐿 = 8 & 𝐿 = 16) to perform the

simulation experiments of proposed coding scheme for the above mentioned scenarios. Each case

will be individually discussed.

Comparison of Concatenated coding scheme vs. Inner Coding Scheme:

Figure 5-2 illustrates the performance of the concatenated coding scheme for synchronization error

correction on the basis of BER vs. 𝑃𝑑. Figure 5-2 presents the results of above mentioned all four

scenarios for the concatenated coding system. The outer code used is a non-binary Reed-Solomon

code RS (15, 7) with 𝐺𝐹(24). The graph is drawn between deletion probabilities 𝑃𝑑 and the Bit

Error Rate (BER). The code words transmitted over the channel were long enough to introduce an

average of 50 random deletions at each deletion probability. There were no guard spaces or

substitution errors introduced during the transmission. The deletions were totally random and there

were no restrictions on the number of consecutive bits to be deleted.

50

Figure 5-2: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 convolutional code, with outer RS codes

It can be seen from Figure 5-2 that the concatenated scheme with 𝐿 = 16 & 𝐾 = 3 outperformed

all other coding scenarios shown. The system with 𝐿 = 16 & 𝐾 = 5 performed the worst out of

all.

The performance of the coding scheme depends on the number of unconstraint positions of the

extended prefix that was chosen. The larger the unconstraint part the higher the chances of

introducing long bursts of substitution errors after resynchronization. With 𝐿 = 16 & 𝐾 = 3 the

constraint part is very long which helps in keeping a better synchronization and hence fewer

substitution errors are produced.

51

If the code with 𝐿 = 16 & 𝐾 = 3 is compared to that of code with 𝐿 = 8 & 𝐾 = 3 the

resynchronization process is better with longer extended prefix lengths having shorter unconstraint

parts. This is because the code set is very large (i.e. 230 code words produced at each state of the

convolutional encoder is very large as compare to 23 code words in the extended prefix codebook

used as synchronization patterns) and very little chances are that synchronization pattern i.e.

extended prefix code set will appear in the message portion of the frame. Whereas, in case of

shorter extended prefix lengths the code set is not very large (i.e. 214 code words produced at each

state of the convolutional encoder is not that large as compare to 23 code words in the extended

prefix codebook used as synchronization patterns).

It is better to use large extended prefix codes with shorter unconstraint parts as it will produce

larger code sets at the convolutional encoder hence the probability of repeating synchronization

patterns in the message part of the fame is less, and even if a deletion occurs during the

transmission the chances of producing large substitution errors in a frame during resynchronization

is also less. The longer the marker sequence of the extended prefix the better the result will be.

Figure 5-3 shows the BER vs. 𝑃𝑑 for the inner coding system only. It can be seen that bit error rate

without the outer coding system is higher than what it should be. The reason behind that is the

coding rate that is being restricted. This restriction is because of the fact that it needs to have

enough branches in the trellis of the punctured code that matches our extended prefix codebook.

Because of high rate, the performance of the Viterbi decoder is affected and are not able to correct

enough errors as it should. Therefore, the introduction of outer code RS code was essential to

correct most of the remaining errors after Viterbi decoding (inner decoder).

52

Figure 5-3: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 convolutional code, without outer RS codes

Comparison of Concatenated coding scheme (with RS code) between different Extended Prefix

lengths having same Constraint length:

The next two Figures compare the performance of the two concatenated coding systems with same

constraint lengths 𝐾 but different extended prefix lengths.

Figure 5-4 shows the coding performance of the parent code with constraint length 𝐾 = 3,

therefore, both the codes have same unconstraint length of the extended prefix patterns, but the

markers they have used are different. It can be seen that the longer extended prefix outperformed

the shorter one at a lower constraint length.

53

Figure 5-5 shows the coding performance of the parent code with constraint length 𝐾 = 5. Since

both the codes have the same unconstraint portion but it’s larger than what was discussed in the

previous Figure 5-4 with constraint length 𝐾 = 3. With larger constraint length the extended

prefix codebook size also increases, hence, making synchronization process harder. Also the larger

unconstraint parts produce longer synchronization error burst which makes the decoding

inefficient.

Figure 5-4: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑲 = 𝟑 convolutional code, with outer RS codes

54

Figure 5-5: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑲 = 𝟓 convolutional code, with outer RS codes

Comparison of inner coding scheme (without RS code) between different Extended Prefix lengths

having same Constraint length:

The next two Figures describe the inner code performance with same constraint length but different

extended prefix code word lengths.

55

Figure 5-6: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑲 = 𝟑 convolutional code, without outer RS codes

Figure 5-6 shows that the coding scheme with only convolutional encoder and decoder

performance is not as good as was expected. It was realized that the performance of the Viterbi

decoder depends on the punctured code rate. The high code rate was used due to the constraint of

finding enough paths hence the performance of the decoder was degraded.

56

Figure 5-7: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑲 = 𝟓 convolutional code, without outer RS codes

Similarly the performance of inner code by using different length extended prefix codes with

constraint length 𝐾 = 5 is shown in Figure 5-7. In this case shorter length extended prefix codes

performed better than the longer ones because the unconstraint part of the extended prefix is larger

hence, chances of substitution errors are high. Therefore, when resynchronizing a frame the longer

length codes will produce more substitution errors.

57

Comparison of Concatenated coding scheme (with RS code) between same Extended Prefix lengths

having different Constraint length:

The last comparison is shown by using same length extended prefix but with different constraint

lengths. This means that the constraint part of the extended prefix is same for both constraint

lengths.

Figure 5-8 illustrate the performance of the concatenated system for 𝐿 = 16. The constraint length

of the original code was varied and found that longer extended prefix codes perform better with

the lower constraint length parent convolutional codes.

Figure 5-8: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑳 = 𝟏𝟔 convolutional code, with outer RS codes

58

Figure 5-9: BER vs. 𝑷𝒅 for 𝒓 = 𝟏/𝟐 & 𝑳 = 𝟖 convolutional code, with outer RS codes

Similarly shorter length extended prefix codes also performs better at lower parent convolutional

code constraint lengths. Because with the same extended prefix length the unconstraint part of the

code increases by increasing the constraint length which also decreases the marker length in the

extended prefix.

5.4 Summary

In this chapter, firstly the channel model and the simulation methodology were presented.

Secondly the simulation results were presented and discussed in a methodical manner.

59

Chapter 6: Research Summary and

Conclusion

6.0 Introduction

This chapter provides a brief summary of this research report. Section 6.1 presents a chapter by

chapter summary of the research discussed in this research report. Section 6.2 presents conclusion

of the research carried out. In section 6.3 some future aspects of the research will be discussed.

6.1 Research Summary

The first chapter defines the problem statement of the research study carried out and constructs the

environment in which the research is been conducted.

In Chapter 2, a literature review of the concerned work was introduced in which the channel model,

error correction codes and synchronization error correction codes were discussed in detail. These

topics are the core of the research and directly linked to it.

In Chapter 3, a background of the techniques was created that were used to accomplish this

research. An overview of the synchronization error channel model, convolutional codes, the

encoding and decoding of convolutional codes were provided in detail. The puncturing and path

pruning techniques were also introduced and discussed and were used for the construction of

codebook.

In Chapter 4, the proposed coding scheme that uses path pruned convolutional codes and extended

prefix codes were presented. A detailed methodology to design and construct the codebook that

uses extended prefix codes and marker sequence was also presented in this chapter. The whole

methodology was explained and comprehended with the aid of examples which clarified the whole

process step by step. These examples were extracted from the results of the research simulations.

60

In Chapter 5, the focus was on simulation results. The channel model and the simulation

methodology were also presented. The results of these simulations were presented for different

scenarios that included concatenated coding scheme with Reed-Solomon codes, inner coding

scheme (without RS codes), different extended prefix lengths of the codebook designed and

different constraint lengths of the original code.

6.2 Conclusion

A novel coding approach to correct insertion/deletion errors based on rate-compatible

convolutional codes and extended prefix codes was presented in this research report. The

codebooks were designed using the concepts of extended prefix codes. Each code word in the

codebook comprised of a constraint (marker sequence) and an unconstraint part. This results in a

set of code words that can be used as synchronization patterns instead of using a single sequence.

These code words were then periodically transmitted during the transmission.

The conventional convolutional codes were punctured and path-pruned in this research. The

coding scheme used consists of a feedback mapper that lies just before the convolutional encoder.

The state of the encoder was fed back to the mapper which decides/maps the information data into

input bits to the encoder. The coding process was a continuous process in which the original rate

convolutional code was punctured at a certain rate. This puncturing rate was same as that was used

in searching the codebook and its corresponding inputs to create the mapping table. The pruning

process was introduced periodically by mapping the first bit of the data information frame into a

corresponding input to the encoder by feeding its state back to the mapper. Pruning was followed

by the normal encoding process with puncturing for the rest of the frame. Hence each frame

consisted of an extended prefix code in front and the rest was the normal encoded code word.

Therefore the frame was distinguished by looking for these extended prefix at the front of each

frame at the receiver to keep synchronization.

After resynchronization the Viterbi decoder decodes these synchronized frames. During the

resynchronization process the receiver adds or removes bits when the deletion or insertion error

occurs respectively. This introduces substitution errors to the received code word hence the

decoding performance of the Viterbi decoder was affected. To improve the performance of the

61

system a concatenated Reed-Solomon code as outer code and interleaving was introduced in the

system.

Different simulations were carried out to evaluate the performance of the new proposed coding

system by varying different parameters in the system. A simplified binary symmetric channel was

used in the simulation experiments to introduce insertion/deletion errors. The designed

concatenated coding scheme successfully resynchronized the frames at the receiver and corrected

majority of the substitution errors caused due to the resynchronization process.

The system was tested for deletion errors with a rate 𝑟 = 1/2 parent convolutional encoder. The

simulation was designed for four different scenarios having two different constraint length 𝐾 =

 3 & 𝐾 = 5 and two different extended prefix code word lengths (i.e. extended prefix lengths of 8

& 16). The results showed that the coding system performed better at lower constraint lengths and

extended prefix with longer constraint part (marker sequence). The reason it performed better was

because at lower constraint lengths the unconstraint part of the extended prefix is shorter. During

the resynchronization at the receiver the extended prefix with larger unconstraint part produced

longer bursts of substitution errors as compared to the extended prefix with shorter unconstraint

part. Because the size of unconstraint part of the extended prefix designed depends on the

constraint length of the original code, therefore lower constraint lengths outperformed the higher

constraint lengths. By adding Reed-Solomon code as outer coding scheme in concatenation with

the new coding scheme the results were improved to greater extent.

To the author’s knowledge, this is the first implementation of insertion/deletion error correction

coding system using existing path-pruned convolutional codes and extended prefix codes. The

performance of this new concatenated scheme showed a great prospect and more developments

and improvements are possible in this scheme.

62

6.3 Future Recommendations

Some possible improvements and developments related to the new coding scheme are now

presented:

The higher rate convolutional codes as parent code have not been considered with respect to the

new coding scheme. The simulations conducted were for 𝑟 = 1/2 rate convolutional code.

Therefore considering higher rates e.g. 𝑟 = 2/3 , 3/4 as parent codes may further improve the

performance of the system.

By lowering the puncturing rate and finding an optimum extended prefix codebook can also

improve the performance of the Viterbi decoder. The Viterbi decoder will be able to correct higher

number of substitution errors with more information available and lower puncturing rates.

63

References

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Sys.Tech. J., vol. 27, 1948,

pp. 379–423 and 623–656.

[2] R. W. Hamming, “Error detecting and correcting codes,” Bell Sys. Tech.J. vol. 29, 1950, pp.

147–160,

[3] M. J. E. Golay, “Notes on digital coding,” Proc. IEEE, vol. 37, 1949, pp. 657.

[4] A. Dholakia, “Introduction to convolutional codes with applications.” 1994 by Kluwer

Academic Publishers, Boston. ISBN: 0-7923-9467-4.

[5] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, 1959, pp. 147–156.

[6] B. Sklar, "Digital communications fundamentals and applications," 1988 by Prentice Hall, Inc.

Englewood Cliffs, New Jersey, ISBN 0-13-211939-0.

[7] P. Elias, “Predictive coding--I," Information Theory, IRE Transactions on, vol.1, no.1, March

1955, pp. 16-24.

[8] P. Elias,"Predictive coding--II," Information Theory, IRE Transactions on, vol.1, no.1, March

1955, pp. 24-33.

[9] P. Elias, “Coding for noisy channels,” IRE Conv. Record, vol. 4, 1955, pp. 37– 47.

[10] I. S. Reed and G. Solomon, “Polynomial codes over cerain finite fields,” SIAM Journal on

Applied Mathematics, vol. 8, 1960, pp. 300–304.

[11] C. Berrou, A. Glavieux, and P. Thitimasjshima, “Near Shannon limit error-correcting coding

and decoding: Turbo-codes (1),” in Proc., IEEE Int. Conf. on Commun. (Geneva, Switzerland),

May 1993, pp. 1064–1070.

[12] M.C. Davey and D. J C MacKay, "Reliable communication over channels with insertions,

deletions, and substitutions," IEEE Transactions on Information Theory, vol.47, no.2, Feb 2001,

pp. 687-698.

64

[13] V. I. Levenshtein, "Binary codes capable of correcting spurious insertions and deletions of

ones," Problemy Peredachi Informatsii, vol. 1, no.1, 1965, pp. 12-25.

[14] F., Sellers, Jr., "Bit loss and gain correction code," Information Theory, IRE Transactions on,

vol.8, no.1, January 1962, pp. 35-38.

[15] E., Gilbert, "Synchronization of binary messages," Information Theory, IRE Transactions on,

vol.6, no.4, September 1960, pp. 470-477.

[16] T.G. Swart, H.C. Ferreira, "Insertion/deletion correcting coding schemes based on

convolution coding," Electronics Letters, vol.38, no.16, 1 Aug 2002, pp. 871-873.

[17] M. P F. dos Santos, W.A. Clarke, H.C. Ferreira, T. G. Swart, "Correction of

insertions/deletions using standard convolutional codes and the Viterbi decoding algorithm,"

Information Theory Workshop, 2003. Proceedings. 2003 IEEE, vol., no., 31 March-4 April 2003,

pp. 187-190.

[18] L Cheng, H.C. Ferreira, "Rate-compatible path-pruned convolutional codes and their

applications on channels with insertion, deletion and substitution errors," Information Theory

Workshop, 2005 IEEE, vol., no., 29 Aug.-1 Sept. 2005, pp. 6.

[19] C. Pimentel, I.F. Blake, “Modeling burst channels using partitioned Fritchman's Markov

models,” 1998. IEEE, Vehicular technology Transaction, Volume: 47, pp. 885-899.

[20] K. Sh. Zigangirov, “Sequential decoding for a binary channel with drop-outs and insertions,”

Probl. Pered. Inform, vol. 5, no. 2, 1969, pp. 23–30.

[21] Wu. Tong, M.A. Armand, “The Davey-MacKay coding scheme for channels with dependent

insertion, deletion, and substitution errors,” Magnetics, IEEE Transactions on Volume: 49, Issue:

1, Part: 3 Publication Year: 2013, pp. 489-495.

[22] R. G. Gallager,"Sequential decoding for binary channels with noise and synchronization

errors," Massachusetts Inst. of Tech. Lexington Lincoln Lab, Tech. Rep. 2502, Oct. 27th, 1961.

[23] R. W. Lucky, Silicon Dreams: Information, Man, and Machine. New York, NY: St. Martin’s

Press, 1989.

65

[24] S. Wicker, “Error control systems for digital communications and storage,” Englewood Cliffs,

NJ: Prentice Hall, Inc., 1995.

[25] D. E. Muller, “Application of boolean algebra to switching circuit design,” IEEE Trans. on

Computers, vol. 3, Sept. 1954, pp. 6–12.

[26] E. Prange, “Cyclic error-correcting codes in two symbols,” Tech. Rep. TN-57-103, Air Force

Cambridge Research Center, Cambridge, MA, Sept. 1957.

[27] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,”

Information and Control, vol. 3, Mar. 1960, pp. 68–79.

[28] J. M. Wozencraft and B. Reiffen, “Sequential decoding,” Cambridge, MA: MIT Press, 1961.

[29] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Inform. Theory,

vol. 9, Apr. 1963, pp. 64–74.

[30] F. Jelinek, “An upper bound on moments of sequential decoding effort,” IEEE Trans. Inform.

Theory, vol. 15, July 1969, pp. 464–468.

[31] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm,” IEEE Trans. Inform. Theory, vol. 13, Apr. 1967, pp. 260–269.

[32] J. L. Ramsey, “Realization of optimum interleavers,” IEEE Trans.Inform. Theory, vol. 16,

May 1970, pp. 338–345.

[33] G. D. Forney, “Concatenated codes,” Cambridge, MA: MIT Press, 1966.

[34] S. Benedetto and G. Montorsi, “Serial concatenation of lock and convolutional codes,”

Electronics Letters, vol. 32, May 9th 1996, pp. 887–888.

[35] O. Aitsab and R. Pyndiah, “Performance of Reed-Solomon block turbo code,” in Proc., IEEE

GLOBECOM, (London, UK), Nov. 1996, pp. 121–125.

[36] J. F. Cheng and R. J. McEliece, “Unit-memory Hamming turbo codes,” in Proc., IEEE Int.

Symp. On Inform. Theory, 1995, p. 33.

66

[37] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decoding of product codes,”

in Proc., IEEE GLOBECOM, 1994, pp. 339–343.

[38] M. C. Valenti, “The evolution of error control coding”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.6249&rep=rep1&type=pdf

Last accessed 12 December 2013.

[39] D. Bardyn, J.A.Briffa, A.Dooms, and P.Schelkens, "Forensic data hiding optimized for JPEG

2000," in Pr oc. IEEE Intern. Symp. on Circuits and Systems, Rio de Janeiro, Brazil, May 15-18,

2011.

[40] J. Hu, T.Duman, E.Kurtas, and M.Erden, "Bit-patterned media with written-in errors:

Modeling, detection, and theoretical limits," Magnetics, IEEE Transactions on, vol. 43, no. 8, Aug.

2007, pp. 3517-3524.

[41] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals,"

Sou. Phys-Dokl, vol.10, no.8, February 1966, pp. 707-710.

[42] B. Gold, "Machine recognition of hand-sent Morse code," Information Theory, IRE

Transactions on, vol.5, no.1, March 1959, pp. 17-24.

[43] A. J. Van Wijngaarden, B. Morita, "Extended prefix synchronization codes," Information

Theory, 1995. Proceedings, 1995 IEEE International Symposium on, vol., no., 17-22 Sep 1995,

pp. 465.

[44] L. J. Guibas, A.M. Odlyzko, “Maximal prefix-synchronized codes”, SIAM J. Appl. Math.,

vol. 35, no. 2, Sept. 1978, pp. 401-418.

[45] T. G. Swart, H.C. Ferreira, "On multiple insertion/deletion correcting codes," Information

Theory, 2000. Proceedings. IEEE International Symposium on, vol., no., 2000, pp.6.

[46] L. Cheng and H. C. Ferreira, "Rate-compatible pruned convolutional codes and Viterbi

decoding with the Levenshtein distance metric applied to channels with insertion, deletion and

substitution errors," in Proceedings of IEEE AFRICON, Gaborone, Botswana, September 15-17,

2004, pp. 137-143.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.6249&rep=rep1&type=pdf

67

[47] L. Cheng and H. C. Ferreira, "Pruned convolutional codes and Viterbi decoding using the

Levenshtein distance metric applied to asynchronous noisy channels", Transactions of the SAIEE,

vol. 97, no. 2, June, 2006, pp. 140-145.

[48] L. Cheng, H. C. Ferreira and T. G. Swart, "Bidirectional Viterbi decoding using the

Levenshtein distance metric for deletion channels," in Proceedings of IEEE Information Theory

Workshop, Chengdu, China, October 22-26, 2006, pp. 254-258.

[49] L. Cheng and H. C. Ferreira, "A post-modulation scheme to correct

insertion/deletion/substitution errors using the DC2-balanced codes," in Proceedings of IEEE

AFRICON, Windhoek, Namibia, Sept. 26-28, 2007, pp. 1-5.

[50] K. A. S. Abdel-Ghaffar, H. C. Ferreira and L. Cheng, "On linear and cyclic codes for

correcting deletions," in Proceedings of the IEEE International Symposium on Information

Theory, Nice, France, June 24-29, 2007. pp. 851-855.

[51] K. A. S. Abdel-Ghaffar, H. C. Ferreira and L. Cheng, "Correcting deletions using linear and

cyclic codes ," IEEE Transactions on Information Theory, vol. 56, no. 10, October 2010, pp. 5223-

5234.

[52] H. C. Ferreira, K. A. S. Abdel-Ghaffar, L. Cheng, T. G. Swart and K. Ouahada, "Moment

balancing templates: constructions to add insertion/deletion correction capability to error

correcting or constrained codes," IEEE Transactions on Information Theory, vol. 55, no. 8, August

2009, pp. 3494-3500.

[53] H. C. Ferreira, K. A. S. Abdel-Ghaffar, L. Cheng and T. G. Swart, "Moment balancing

templates: universal constructions to add insertion/deletion correction capability to arbitrary error

correcting or constrained codes," in Proceedings of the IEEE International Symposium on

Information Theory, Nice, France, June 24-29, 2007. pp. 1676-1680.

[54] D. Slepian, “Permutation modulation,” Proc. IEEE, vol. 53, Mar. 1965, pp. 228-236.

[55] J. G. Dunn, “Coding for continuous sources and channels,” Ph.D. dissertation, Columbia

Univ., New York, 1965.

68

[56] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for sources,” IEEE Trans. Inform.

Theory, vol. IT-18, Jan. 1972, pp. 160–169.

[57] T. Berger, “Optimum quantizers and permutation codes,” IEEE Trans. Inform. Theory, vol.

IT-18, Nov. 1972, pp. 759–765.

[58] T. Berger, "Minimum entropy quantizers and permutation codes," Information Theory, IEEE

Transactions on, vol.28, no.2, Mar 1982, pp. 149-157.

[59] L. Cheng, T. G. Swart and H. C. Ferreira, "Synchronization using insertion/deletion correcting

permutation codes," in Proceedings of the IEEE International Symposium on Power Line

Communications and its Applications, Jeju City, Jeju Island, South Korea, April 2-4, 2008, pp.

135-140.

[60] L. Cheng, T. G. Swart and H. C. Ferreira, "Re-synchronization of permutation codes with

Viterbi-like decoding," in Proceedings of the IEEE International Symposium on Power Line

Communications and its Applications, Dresden, Germany, March 29-April 1, 2009, pp. 36-40.

[61] L. Cheng, "Pruned convolutional codes and Viterbi decoding with the Levenshtein distance

metric" Master’s degree thesis, Electrical and Electronic Engineering, University of Johannesburg

UJ, 2005.

[62] R. J. McEliece, L. Wei, “The trellis complexity of convolutional codes,” 1996. IEEE,

Transactions on Information Theory, Volume: 42, pp. 1855 – 1864.

[63] J. Hagenhauer, “Rate-compatible punctured convolutional codes and their applications,”

Communications on April 1988. IEEE Transactions, volume 36, pp. 389-400.

[64] B. Brink, H.C. Ferreira, W.A. Clarke, "Pruned convolutional codes for flexible unequal error

protection against insertion/deletion/reversal errors," Information Theory, 2000. Proceedings.

IEEE International Symposium on, vol., no., 2000, pp. 260.

[65] Jr. G. D. Forney, "The Viterbi algorithm," Proc. IEEE, vol. 61. No. 3, 1973, pp. 268-278.

[66] I. S. Reed, and G. Solomon, “Polynomial codes over certain finite fields,” SIAM J. Applied

Math., Vol. 8, 1960, pp. 300–304.

69

[67] P. Sweeney, "Error control coding from theory to practice,” John Wiley & Sons, LTD, 2002.

[68] J. Ramsey, "Realization of optimum interleavers," Information Theory, IEEE Transactions

on, vol.16, no.3, May 1970, pp. 338-345.

[69] K. Brayer, O. Cardinale, "Evaluation of Error Correction Block Encoding for High-Speed HF

Data," Communication Technology, IEEE Transactions on, vol.15, no.3, June 1967, pp. 371-382.

[70] D. Gorenstein and N. Zierler, "A class of cyclic linear error-correcting codes in pm symbols,"

J. Soc. Ind. Appl. Math., 9: June 1961, pp. 107-214.

[71] R. T. Chien, "Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes,: IEEE

Trans. Inf. Theory, IT-10: October 1964, pp. 357-363.

[72] G. D. Forney, "On decoding BCH codes," IEEE. Inf. Theory, IT-11: October 1965, pp. 549-

557.

[73] E. R. Berlekamp, Algebric Coding theory, McGraw-Hill, New York, 1968.

[74] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. "A method for solving key

equation for decoding Goppa codes," Inf. Contro;, 27: January 1975, pp. 87-99.

[75] W. C. Gore, "Transmitting binarysymbols with Reed-Solomon codes." Proc. Conf. Infor. Sci.

and Syst. Princeton, N.J., 1973, pp. 495-497.

[76] R. E. Blahut, "Transfoem Techniques for error-control codes," IBM J. Res. Dec., 23(3), May

1979, pp. 299-315.

[77] T. K. Moon, "Error correction coding," Mathematical Methods and Algorithms. Jhon Wiley

and Son, 2005.

[78] E. A. Ratzer, "Marker codes for channels with insertions and deletions," Annals of

Telecommunications, 2005.

[79] J. A. Briffa and H.G.Schaathun, "Improvement of the Davey-MacKay construction," in Proc.

IEEE Intern. Symp. On Inform. Theory and its Applications, Auckland, New Zealand, Dec. 7-10,

2008, pp. 235-238.

70

[80] T. G. Swat, “Coding and bounds for correcting insertion/deletion errors,” Master’s degree

thesis, Electric and Electronic Engineering, Rand Afrikaans University RAU, 2001.

[81] M. P. Ferreira dos Santos, “Insertion/deletion detection and bit resynchronization using the

viterbi algorithm,” Master’s degree thesis, Eletric and Electric Engineering, Rand Afrikaans

University RAU, 2003.

[82] Recommendation for space data sytem standards, “Telemetry channel coding,” Blue Book,

consultive committie for space data systems meeting, Oberpfaffenhofen, Germany, May 1992.

71

Appendix A: Some Example Extended Prefix Codes Designed

In this Appendix some extended prefix example codebooks designed in chapter 4 are presented.

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

11100 000 11100000

11100 001 11100001

11100 010 11100010

11100 011 11100011

11100 100 11100100

11100 101 11100101

11100 110 11100110

11100 111 11100111

Table A- 1: Extended Prefix Code for Constraint Length 𝑲 = 𝟑 and 𝑳 = 𝟖

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

1110 0000 11100000

1110 0001 11100001

1110 0010 11100010

1110 0011 11100011

1110 0100 11100100

1110 0101 11100101

1110 0110 11100110

1110 0111 11100111

1110 1000 11101000

 1110 1001 11101001

 1110 1010 11101010

1110 1011 11101011

1110 1100 11101100

1110 1101 11101101

1110 1110 11101110

1110 1111 11101111

Table A- 2: Extended Prefix Code for Constraint Length 𝑲 = 𝟒 and 𝑳 = 𝟖

72

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

110 00000 11000000

110 00001 11000001

110 00010 11000010

110 00011 11000011

110 00100 11000100

110 00101 11000101

110 00110 11000110

110 00111 11000111

110 01000 11001000

 110 01001 11001001

 110 01010 11001010

110 01011 11001011

110 01100 11001100

110 01101 11001101

110 01110 11001110

110 01111 11001111

110 10000 11001000

110 10001 11010001

110 10010 11010010

110 10011 11010011

110 10100 11010100

110 10101 11010101

110 10110 11010110

110 10111 11010111

110 11000 11011000

110 11001 11011001

110 11010 11011010

110 11011 11011011

110 11100 11011100

110 11101 11011101

110 11110 11011110

110 11111 11011111

Table A- 3: Extended Prefix Code for Constraint Length 𝑲 = 𝟓 and 𝑳 = 𝟖

73

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

1111111110000 000 1111111110000000

1111111110000 001 1111111110000001

1111111110000 010 1111111110000010

1111111110000 011 1111111110000011

1111111110000 100 1111111110000100

1111111110000 101 1111111110000101

1111111110000 110 1111111110000110

1111111110000 111 1111111110000111

Table A- 4: Extended Prefix Code for Constraint Length 𝑲 = 𝟑 and 𝑳 = 𝟏𝟔

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

111111110000 0000 11111111100000000

111111110000 0001 11111111100000001

111111110000 0010 11111111100000010

111111110000 0011 11111111100000011

111111110000 0100 11111111100000100

111111110000 0101 11111111100000101

111111110000 0110 11111111100000110

111111110000 0111 11111111100000111

111111110000 1000 11111111100001000

111111110000 1001 11111111100001001

111111110000 1010 11111111100001010

111111110000 1011 11111111100001011

111111110000 1100 11111111100001100

111111110000 1101 11111111100001101

111111110000 1110 11111111100001110

111111110000 1111 11111111100001111

Table A- 5: Extended Prefix Code for Constraint Length 𝑲 = 𝟒 and 𝑳 = 𝟏𝟔

74

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word

11111110000 00000 1111111000000000

11111110000 00001 1111111000000001

11111110000 00010 1111111000000010

11111110000 00011 1111111000000011

11111110000 00100 1111111000000100

11111110000 00101 1111111000000101

11111110000 00110 1111111000000110

11111110000 00111 1111111000000111

11111110000 01000 1111111000001000

 11111110000 01001 1111111000001001

 11111110000 01010 1111111000001010

11111110000 01011 1111111000001011

11111110000 01100 1111111000001100

11111110000 01101 1111111000001101

11111110000 01110 1111111000001110

11111110000 01111 1111111000001111

11111110000 10000 1111111000001000

11111110000 10001 1111111000010001

11111110000 10010 1111111000010010

11111110000 10011 1111111000010011

11111110000 10100 1111111000010100

11111110000 10101 1111111000010101

11111110000 10110 1111111000010110

11111110000 10111 1111111000010111

11111110000 11000 1111111000011000

11111110000 11001 1111111000011001

11111110000 11010 1111111000011010

11111110000 11011 1111111000011011

11111110000 11100 1111111000011100

11111110000 11101 1111111000011101

11111110000 11110 1111111000011110

11111110000 11111 1111111000011111

Table A- 6: Extended Prefix Code for Constraint Length 𝑲 = 𝟓 and 𝑳 = 𝟏𝟔

75

Appendix B: Some Example Mapping Tables

In this Appendix some example mapping tables for some specific parent convolutional codes are

presented.

Initial State Info Input Extended Prefix Code Word

0 0 1101000 11100100

0 1 1101011 11100010

1 0 0111100 11100111

1 1 0111111 11100001

2 0 1000000 11100000

2 1 1000011 11100110

3 0 0010100 11100011

3 1 0010111 11100101

Table B- 1: Mapping Table of a Constraint length 𝑲 = 𝟑 Parent Convolutional Encoder

and 𝑳 = 𝟖

Initial State Info Input Extended Prefix Code Word

0 0 1001000 11101111

0 1 1001111 11100101

1 0 0101000 11100111

1 1 0101111 11101101

2 0 0011000 11100011

2 1 0011111 11101001

3 0 1111000 11101011

3 1 1111111 11100001

4 0 0000000 11100000

4 1 0000111 11101010

5 0 1100000 11101000

5 1 1100111 11100010

6 0 1010000 11101100

6 1 1010111 11100110

7 0 0110000 11100100

7 1 0110111 11101110

Table B- 2: Mapping Table of a Constraint length 𝑲 = 𝟒 Parent Convolutional Encoder

and 𝑳 = 𝟖

76

Initial State Info Input Extended Prefix Code Word

0 0 1110000 11010111

0 1 1111111 11001111

1 0 0100000 11010100

1 1 0101111 11001100

2 0 1010000 11000011

2 1 1011111 11011011

3 0 0000000 11000000

3 1 0001111 11011000

4 0 0110000 11011111

4 1 0111111 11000111

5 0 1100000 11011100

5 1 1101111 11000100

6 0 0010000 11001011

6 1 0011111 11010011

7 0 1000000 11001000

7 1 1001111 11010000

8 0 1010000 11010011

8 1 1011111 11001011

9 0 0000000 11010000

9 1 0001111 11001000

10 0 1110000 11000111

10 1 1111111 11011111

11 0 0100000 11000100

11 1 0101111 11011100

12 0 0010000 11011011

12 1 0011111 11000011

13 0 1000000 11011000

13 1 1001111 11000000

14 0 0110000 11001111

14 1 0111111 11010111

15 0 1100000 11001100

15 1 1101111 11010100

Table B- 3: Mapping Table of a Constraint length K = 5 Parent Convolutional Encoder and

𝑳 = 𝟖

77

Appendix C: Matlab Simulation Code

Code to construct transition table used to create all possible code words at each state of the

encoder

function [Transition_Table] = transition_table

ConstraintLength = 3;

CodeGenerator = [5 7];

Transition_Table = [];

trellis = poly2trellis(ConstraintLength,CodeGenerator);

i_s = 0;

for j = 1:1:length(trellis.outputs)

 Transition_Table = [Transition_Table; i_s, 0, trellis.nextStates(j,1),

trellis.outputs(j,1); i_s, 1, trellis.nextStates(j,2),

trellis.outputs(j,2)];

 i_s = i_s+1;

end

end

Code to search extended prefixes and create mapping table

function [Table_Mapping] = marker_search_mapping_table

% disp(' i_s input n_s output');

Transition_Table = transition_table; % inputs the transition table from the

function

 sequence=[]; % Record the code words generated

 state_hist=[]; % Record the state history for each transition

 input_hist =[]; % Record the input sequence for each code word

 Extended_Prefix = [1 1 1 0 0 0 0 0;

 1 1 1 0 0 0 0 1;

 1 1 1 0 0 0 1 0;

 1 1 1 0 0 0 1 1;

 1 1 1 0 0 1 0 0;

 1 1 1 0 0 1 0 1;

 1 1 1 0 0 1 1 0;

 1 1 1 0 0 1 1 1];

 i_s=[];

 n_s=[];

 % loop to generate all possible code words at each state

for r = 1:1:length(Transition_Table)

i_s=Transition_Table(r,1);

n_s=Transition_Table(r,3);

78

 [a]= find(Transition_Table(:,1)== n_s);

 for b=1:1:length(a)

 n_s= Transition_Table(a(b),3);

 [c]= find(Transition_Table(:,1)== n_s);

 for d=1:1:length(c)

 n_s= Transition_Table(c(d),3);

 [e]= find(Transition_Table(:,1)== n_s);

 for f=1:1:length(e)

 n_s= Transition_Table(e(f),3);

 [g]= find(Transition_Table(:,1)== n_s);

 for h=1:1:length(g)

 n_s= Transition_Table(g(h),3);

 [i]= find(Transition_Table(:,1)==

n_s);

 for j=1:1:length(i)

 n_s=

Transition_Table(i(j),3);

 [k]= find(

Transition_Table(:,1)== n_s);

 for

lt=1:1:length(k)

sequence=[sequence;Transition_Table(r,4),Transition_Table(a(b),4),Transitio

n_Table(c(d),4),Transition_Table(e(f),4),Transition_Table(g(h),4),Transitio

n_Table(i(j),4),Transition_Table(k(lt),4)]; % creates all possible code

words generated at all states of the encoder for N time intervals

state_hist = [state_hist;Transition_Table(r,1),Transition_Table(k(lt),3)];

% stores the state history for the code word produced for N time intervals

input_hist =

[input_hist;Transition_Table(r,2),Transition_Table(a(b),2),Transition_Table

(c(d),2),Transition_Table(e(f),2),Transition_Table(g(h),2),Transition_Table

(i(j),2),Transition_Table(k(lt),2)]; % stores the input sequence for each

code word produced by the encoder during N time intervals

 end

 end

 end

 end

 end

79

 end

end

sequence;

sequence2 = reshape(sequence.',1,[]);

sequence_dec = sequence2;

sequence_bin = [];

for dec = 1:1:length(sequence_dec);

 sequence_bin = [sequence_bin dec2bin(sequence_dec(1,dec),2)- '0'];

end

input = reshape(sequence_bin.',1,[]);

t1= reshape(input, size(sequence,2)*2 ,

size(input,2)/(size(sequence,2)*2))'; % contains all possible code words at

each state

 t = t1(:,[1 3 5 7 9 11 13 14]); % Puncturing pattern determines the

positions of 1s i.e. bits that are kept

 figure;

hh = [];

in = [];

ot = [];

for e = 1:1:size(Extended_Prefix,1)

 l=

ismember(t(:,1:size(Extended_Prefix,2)),Extended_Prefix(e,:),'rows'); %

find the element of Z (Extended_Prefix) in t (punctured sequence)

 hh= [hh; state_hist([find(l)],:)]; % state history of the found pattern

in t

 in= [in; input_hist([find(l)],:)]; % input sequence of the found

patterns

 ot = [ot; t([find(l)],:)]; % code words found

 hh_r=reshape(hh.',1,[]); % reshaping state history for ploting

 hh_dec = hh_r;

 hhh= reshape(hh_dec, 2,length(hh_dec)/2);

 plot(hhh); % plotting state history

 set(gca,'YDir','reverse');

 xlabel('Trellis');

 ylabel('States');

end

table1 = [];

for z = 1:1:length(in)

80

 table1 = [table1; hh(z,1) in(z,:) ot(z,:)];

end

table2 = [];

for z = 1:1:length(in)

 table2 = [table2; hh(z,1) bin2dec(cellstr(sprintf('%d',in(z,:))))];

end

table2 = sortrows(table2);

Table = [];

in_put = 0;

for z = 1:1:length(table2)

 Table = [Table; table2(z,:) in_put];

 in_put = xor(in_put,1);

end

limit = 2^2;

count1 = 1;

count2 = limit;

Table_Mapping = []; % creating mapping table required for the pruning

process

for u = 1:1:length(Table)/limit

 Table_Mapping = [Table_Mapping; Table(count1,:); Table(count2,:)];

 count1 = count1 + limit;

 count2 = count2 + limit;

end

end

81

Simulation code for the concatenated scheme that includes RS code, interleaving,

convolutional encoding, puncturing, pruning, resynchronization, Viterbi decoding and RS

decoding

function [] = simulation

Mapping_Table = marker_search_mapping_table; % mapping table for

introduction of pruning. it consists of initial_state input and info.

p_m =[1 1 1 1 1 1 1; 0 0 0 0 0 0 1]; % puncturing matrix

Extended_Prefix = [1 1 1 0 0 0 0 0;

 1 1 1 0 0 0 0 1;

 1 1 1 0 0 0 1 0;

 1 1 1 0 0 0 1 1;

 1 1 1 0 0 1 0 0;

 1 1 1 0 0 1 0 1;

 1 1 1 0 0 1 1 0;

 1 1 1 0 0 1 1 1];

probability = linspace(0.00001,0.001,10); % Error Probabilities.

Bit_Error_Rate = [];

Bit_Error_Rate_inner = [];

for prob = 1:1:length(probability) % loop will run for each deletion

probability i.e. 10 time

data_info = [];

op_info =[];

data_info2 = [];

op_info2 =[];

N = 1;

for nn = 1:1:N % loop will run N times to for each deletion probability

 msg_complete = []; % records the complete information message sent

 input2 = []; % records the encoded data after deletion errors

 input3 = []; % recodes the resynchronized code word

% Reed-Solom Encoder

 k = 7;

 m = 4;

 x = [];

 c = [];

 b1 = 616*80; % produce more than 50 thousand bits

 information1=floor(2*rand(1,b1)); % Generate random information bits

equal to the length of b1

 for j = 1:m:length(information1)

 x = [x bin2dec(sprintf('%d',information1(j:j+(m-1))))];

 end

 x = vec2mat(x,k);

 msg_rs = gf(x,m); % Create a Galois array in GF(2^m).

82

 n = 2^m-1;

 code_rs = rsenc(msg_rs,n,k);

 interleaved = reshape(code_rs,1,[]);

 for r = 1:1:length(interleaved)

 c = [c interleaved(r)];

 end

 GFInput =[];

 DecOutput = [];

 prim_poly = primpoly(m,'nodisplay');

 information = [];

 % GFInput = GFInput(:)';% force a row vector

 GFInput = c;

 GFRefArray = gf([0:(2^m)-1],m,prim_poly);

 for i=1:length(GFInput)

 for k1=0:(2^m)-1

 temp = isequal(GFInput(i),GFRefArray(k1+1));

 if (temp==1)

 DecOutput(i) = k1;

 end

 end

 end

 for u = 1:1:length(DecOutput)

 information = [information dec2bin(DecOutput(u),4) - '0'];

 end

 pruning_period = 21; % Pruning Period i.e. after every 21 bits 1 bit

is pruned to produce Extended_Prefix for synchronization

 pruning_bit_positions = (1 : pruning_period : length(information));

 count1 = 1; % counter for the bit to be pruned

 count2 = 22;% counter for the bits to be encoded normally

 init_state = 0;

% Mapping

 i_s2 = Mapping_Table(1,1); % Encoder Starts from all zero state

for j = 1:1:length(information)/22; % loop will run to map the information

 % bits according to the pruning period

 % and encode the information per frame

 % i.e for 22 bits per loop

 info = information(count1); % stores the pruning bit

 info_puncture = information(count1+1:count2); % stores next 21 bits

after pruning bit

 count1 = count1 + 22;

 count2 = count2 + 22;

83

 % Mapping Process

 info_check= find(Mapping_Table(:,3)==bin2dec(sprintf('%d',info))); %

Checks the location of pruning bit in the Mapping table

 istate2_check= find(Mapping_Table(:,1)==i_s2); % Checks the initial

state which is the final state of the encoder after encoding previous frame

 d = intersect(info_check,istate2_check); % finds the position of the

information bit for pruning from Mapping table

 data1 = dec2bin(Mapping_Table(d,2),7); % Maps 1 bit into 7 bits

data_dec = bin2dec(data1);

data_bin =dec2bin(data_dec,length(p_m))- '0';

msg1 = reshape(data_bin.',1,[]);

msg = [msg1 info_puncture]; % 7 mapped bits plus 21 normal bits makes it 28

msg bits that are encoded by the encoder

msg_complete = [msg_complete msg]; % Complete message bits (mappped and

normal) to check BER over the length of information

% Encoding

ConstraintLength = 3;

CodeGenerator = [5 7];

tblen = 5*ConstraintLength;

opmode = 'trunc';

dectype = 'hard';

puncpat = [1 0 1 0 1 0 1 0 1 0 1 0 1 1]; % Puncturing Matrix

trellis = poly2trellis(ConstraintLength,CodeGenerator); % Trellis formation

[code_conv,final_state] = convenc(msg,trellis,puncpat,init_state); %

Encoding

input2 = [input2 code_conv]; % Code word to be transmitted to the receiver

% i_s2 = str2num(dec2bin(final_state,2));

i_s2 = final_state; % Final state of the Encoder after each frame i.e.

after 22 bits of information or 28 bits of mapped information

% msg_info = [msg_info msg];

init_state = final_state; % Initial state for the encoder to start from

i.e. final state of the previous encoded frame

end

% Introducing deletion error

out = rand(1, length(input2)) <= probability(prob); % Randomly generate the

bits for deletion on the basis of probability

error_pos = find(out==1);% Positions of the bits to be deleted

84

input2(:,error_pos) = []; % Code word Received by the Receiver after

deletion of random bits from it on the basis of probability

% Resynchronization

sliding_window =zeros(1,length(input2)); % Generates a sequence of zeros of

the length of received code word

% Creating sliding_window

for i = 1:1:length(input2)-(size(Extended_Prefix,2)-1)

 window = [input2(i:i+(size(Extended_Prefix,2)-1))];

 for s = 1:1:size(Extended_Prefix,1)

 e_w = ismember(window, Extended_Prefix(s,:), 'rows');

 if e_w ==1

 sliding_window (1,i)= 1;

 break;

 else

 end

 end

end

pattern = [1 zeros(1,31)]; % Generates the correct sliding window pattern

of an error free frame

sliding_window = [sliding_window pattern]; % concatenate the correct

pattern of the sliding window at the end of the generated sliding window

find1 = find(sliding_window); % Finds the positions of 1s in the sliding

window (1 shows the starting point of the frame)

temp_vector = []; % to store the unmatched pattern in the sliding window

ref_point = find1(1);

if find1(1) ~= 1; % Case when one of the synchronization bits get deleted

and its the 1st frame of the transmission

 sliding_window = [pattern sliding_window]; % concatenate the correct

pattern of the sliding window at the start of the generated sliding window

for reference

 find1 = find(sliding_window); % Finds the positions of 1s in the

sliding window (1 shows the starting point of the frame)

 ref_point = find1(1); % Reference point for resynchronization purpose

 for i = 1+1:1:length(find1); % Loop through the sliding window to check

for deletions

 if i == length(find1); % case when its the last frame of the

received code word and the synchronization patterns occurs within the

message sequence

85

 temp_vector = [sliding_window(ref_point:find1(i)-1)]; % to store

the unmatched pattern of a frame in the sliding window

 dd = length(temp_vector); % length of unmatched pattern to find if

there are bits deleted in the frame

 dz = round(dd/length(pattern)) * length(pattern) - dd; % determines

the number of deleted bits in the frame

 input3 = [input3 zeros(1,dz) input2(ref_point:end)]; %

Resynchronizes the received code word by adding zeros in front of the frame

in which bits get deleted

 else

 if mod((find1(i) - ref_point),length(pattern)) == 0 ||

find1(i)-find1(i-1) == length(pattern); % Case when the correct frame is

received

 temp_vector = [temp_vector sliding_window((find1(i-

1)):find1(i)-1)]; % stores the frame for resynchronization

 dd = length(temp_vector); % length of frame (unmatched

/matched)

 dz = round(dd/length(pattern)) * length(pattern) - dd; %

determines the number of deleted bits in the frame

 input3 = [input3 zeros(1,dz) input2(ref_point : (find1(i)-1)-

length(pattern))]; % Resynchronizes the received code word by adding zeros

in front of the frame if bits get deleted

 ref_point = find1(i)-length(pattern); % changes reference point

to the current Correctly received frame

 temp_vector = []; % Empty the current temporarily stored frames

 else

 temp_vector = [temp_vector sliding_window((find1(i-

1)):find1(i)-1)]; % Case when if the correct pattern is not found store the

frames

 end

 end

 end

else % Case when one of the synchronization bits get deleted other than the

1st frame of the transmission

 for i = 2:1:length(find1); % Loop through the sliding window to check

for deletions

 if i == length(find1); % case when its the last frame of the

received code word and the synchronization patterns occurs within the

message sequence

 temp_vector = [sliding_window(ref_point:find1(i)-1)]; % to

store the unmatched pattern of a frame in the sliding window

 dd = length(temp_vector); % length of unmatched pattern to find

if there are bits deleted in the frame

86

 dz = round(dd/length(pattern)) * length(pattern) - dd; %

determines the number of deleted bits in the frame

 input3 = [input3 zeros(1,dz) input2(ref_point:end)]; %

Resynchronizes the received code word by adding zeros in front of the frame

in which bits get deleted

 else

 if mod((find1(i) - ref_point),length(pattern)) == 0 ||

find1(i)-find1(i-1) == length(pattern); % Case when the correct frame is

recived

 temp_vector = [temp_vector sliding_window(find1(i-

1):find1(i)-1)]; % stores the frame for resynchronization

 dd = length(temp_vector); % length of frame (unmatched

/matched)

 dz = round(dd/length(pattern)) * length(pattern) - dd; %

determines the number of deleted bits in the frame

 input3 = [input3 zeros(1,dz) input2(ref_point:find1(i)-1)];

% Resynchronizes the received code word by adding zeros in front of the

frame if bits get deleted

 ref_point = find1(i); % changes reference point to the

current Correctly received frame

 temp_vector = []; % Empty the current temporarily stored

frames

 else

 temp_vector = [temp_vector sliding_window(find1(i-

1):find1(i)-1)]; % Case when if the correct pattern is not found store the

frames

 end

 end

 end

end

% decoding

% Input3 is the resynchronized code word that is fed into the decoder

op = vitdec(input3,trellis,tblen,opmode,dectype,puncpat); % Decoder

% Converting Output Back to its corresponding data for each Extended_Prefix

used

out_put = [];

for H = 1:28:length(op)

ham_dist =[];

 for T = 1:1:length(Mapping_Table)

 ham_out = [dec2bin(Mapping_Table(T,2),7) - '0'; op(H:H+6)];

 h_out = pdist(ham_out,'hamming')*7;

87

 ham_dist = [ham_dist; h_out];

 end

 indi = find(ismember(ham_dist,min(ham_dist), 'rows'));

 out_put = [out_put, Mapping_Table(indi(1),3),op(H+7:H+27)];

end

x2 = [];

for j2 = 1:m:length(out_put)

 x2 = [x2 bin2dec(sprintf('%d',out_put(j2:j2+(m-1))))];

end

msg2 = gf(x2,m);

msg2 = reshape(msg2,length(msg2)/n,n);

decoded = rsdec(msg2,n,k);

input = reshape(decoded.',1,[]) ;

 GFInput1 = input;

 DecOutput2 =[];

 information_decoded =[];

 GFRefArray2= gf([0:(2^m)-1],m,prim_poly);

 for ii=1:length(GFInput1)

 for k2=0:(2^m)-1

 temp = isequal(GFInput1(ii),GFRefArray2(k2+1));

 if (temp==1)

 DecOutput2(ii) = k2;

 end

 end

 end

 for u2 = 1:1:length(DecOutput2)

 information_decoded = [information_decoded

dec2bin(DecOutput2(u2),4) - '0'];

 end

 BB1 = xor(information1,information_decoded); % Determines the flipped

bits

 BER1 = sum(BB1)/length(information1); % Determines the BER per N

iterations

 BB2 = xor(msg_complete,op); % Determines the flipped bits

 BER2 = sum(BB1)/length(msg_complete); % Determines the BER per N

iterations

data_info = [data_info information1]; % Stores message (mapped information

that was encoded by the encoder) bits for the whole N iterations

op_info = [op_info information_decoded]; % Stores Decoded bits for the

whole N iterations

data_info2 = [data_info2 msg_complete]; % Stores message (mapped

information that was encoded by the encoder) bits for the whole N

iterations

op_info2 = [op_info2 op]; % Stores Decoded bits for the whole N iterations

end

88

BB = xor(data_info,op_info); % Determines the flipped bits for the while N

iterations per Probability

BER = sum(BB)/length(data_info) % Determines the BER for the while N

iterations per Probability

BB_inner = xor(data_info2,op_info2); % Determines the flipped bits for the

while N iterations per Probability

BER_inner = sum(BB_inner)/length(data_info2) % Determines the BER for the

while N iterations per Probability

Bit_Error_Rate = [Bit_Error_Rate BER]; % Stores the values of BER for

plotting

Bit_Error_Rate_inner = [Bit_Error_Rate_inner BER_inner]; % Stores the

values of BER for plotting

end

% plot

close all

figure

plot(probability,Bit_Error_Rate,'b.-');

hold on

plot(probability,Bit_Error_Rate_inner,'mx-');

grid on

legend('outer','inner');

xlabel('probability, Pdel');

ylabel('Bit Error Rate');

title('Bit Error Rate vs Deletion Probability Curve');

end

