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Abstract 

Synchronization error correction has been under discussion since the early development of coding 

theory. In this research report a novel coding system based on the previous done work on path-

pruned convolutional codes and extended prefix synchronization codes is presented. This new 

coding scheme is capable of correcting insertion, deletion and synchronization errors. A codebook 

has been constructed that contains synchronization patterns made up of a constraint part (maker 

sequence) and an unconstraint part based on the concept of extended prefix codes. One of these 

synchronization error patterns are padded in front of each frame. This process is done by mapping 

information bit to a corresponding bit sequence using a mapping table. The mapping table is 

constructed by using path-pruning process. An original rate convolutional code is first punctured 

using a desired puncturing matrix to make enough paths available at each state of the trellis. The 

desired paths are then pruned and matches to the extended prefix codebook constructed. The path 

pruning process consists of a feedback mapper attached in front of the original rate parent 

convolutional encoder with puncturing. The state of the convolutional encoder is fed back to the 

mapper which maps first information bit of the frame into a multi-bit sequence that is fed into the 

convolutional encoder with puncturing and thus produces one of the synchronization patterns 

contained within the codebook constructed. The remaining bits of the frame are encoded normally 

using convolutional encoding with a puncturing process only. This process is repeated periodically 

depending on the condition of the channel. 

Simulations were performed to evaluate the ability of new system to resynchronize and correct 

insertion/deletion and synchronization errors at the receiver, from which favorable results were 

obtained. Simulations were performed with different synchronization pattern (extended prefix 

code word) lengths, different constraint lengths of the parent encoder and using Reed-Solomon 

codes as outer code in concatenation with new coding system. 

A complete concatenated coding system is thus demonstrated and studied that resynchronizes and 

corrects insertion, deletion and substitution errors.  
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Chapter 1: Introduction  

 

1.0 Problem Statement 

The recent developments in technology, increasing growth in machine-to-machine 

communication, transfer of information and the need for a better resource management has led to 

an increase in the demand and usage of communication systems. The growth in the number of 

devices has resulted in more end users sharing the limited bandwidth, and also an increase in 

interference which results in errors on the systems. Hence there is a need to efficiently manage 

system bandwidth and quality of service by preventing different error types which might 

consequently lead to performance degradation. 

By designing efficient coding schemes a better throughput can be achieved in communication 

systems. The purpose of channel encoding is to efficiently use band-limited channels and provide 

enough information to cancel the effect of noise at the receiver.  

Modern communication systems heavily rely on error correction coding. This approach started in 

the late 1940’s with some innovative work by Shannon [1], Hamming [2] and Golay [3]. Claude 

Shannon presented noisy-channel coding theorem in 1948 [1]. Shannon mathematically defined 

the entropy of information source and capacity of a communication channel and showed that a 

reliable communication can be achieved over a noisy channel if the source’s entropy is lower than 

the channel capacity.  

 

 
𝐶 = 𝐵 𝑙𝑜𝑔2 (1 +

𝑆

𝑁
) 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 ( 1.1 ) 

 

Where 𝐶 represents the capacity of the channel, 𝐵 is the bandwidth and 
𝑆

𝑁
 represents the signal-to-

noise ratio of the channel. The significance of equation 1.1, is that an error free transmission is 

possible by keeping the information rate below the channel capacity, with good error 

protection/correction codes. 
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A block diagram of the digital communication system is illustrated in Figure 1-1. Information 

source and the information encoder have been shown in a group which is considered as discrete 

information data source, similarly the source decoder and the information sink form discrete sink. 

The discrete channel constitutes of the modulation, demodulation and the noise source [4].   

 

Information 

Source

Source 

Encoder

Information 

Sink

Source 

Decoder

Channel 

Encoder

Channel 

Decoder

Feedback 

Channel

Demodulator

Waveform 

Channel

Modulator

Noise

Discrete Source

Discrete Sink

Discrete Channel

 

Figure 1-1: Digital Communication System [4] 

 

All kinds of digital communication systems can be generally represented by Figure 1-1, a block 

diagram described in [4]. The discrete source creates bit streams that are compressed by source 

encoder from distinct message symbols generated by the information source. The compressed data 

is then coded at the transmitter by adding some redundancy such that the receiver can correct errors 

if introduced while passing through the channel. The most common channel encoders are 

convolutional and block encoders. The discrete channel constitutes of a modulator, a waveform 

channel and a demodulator. The modulator superimposes discrete coded symbols onto a carrier 

waveform, transmitted over the waveform channel at a certain frequency. The waveform channel 

is a continuous channel that can add noise to the carrier signal being transmitted. The most 

common type of noise is additive white Gaussian noise (AWGN), which causes errors in the 

transmitted signal. The demodulator tries to retrieve the coded information that was transmitted 
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over the channel by superimposing on to the carrier signal. The channel decoder decodes this coded 

information and corrects the errors caused by the noise during transmission over the channel. The 

discrete sink decompresses and recovers the information that was generated by the source 

information. 

As explained noise is a major component that affects the transmission of information over the 

channel. To minimize the effect of noise during transmission and to achieve reliable 

communication, either of the two schemes can be used: automatic repeat request (ARQ) or forward 

error correction (FEC). For band-limited channels ARQ can be a very costly solution because of 

repeated transmission of the same information. FEC is a better solution where bandwidth is very 

expensive and limited. FEC uses error correction coding that has the capability to correct the error 

at the receiver side. 

These discoveries in the field of information theory and communication systems led researchers 

towards the error control codes. In late 1940’s Golay [3] and in 1950’s Hamming [2] brought in 

different forms of error control codes known as block codes. A decade later Bose, Ray-Chaudhuri 

and Hocquenghem found another class of block codes known as BCH codes [5] [6]. Peter Elias 

was the first to introduce Convolutional codes in 1955 [7-9]. In 1960, Reed and Solomon created 

the Reed-Solomon codes [10], these codes allow for excellent error correction and protection 

against burst errors during transmission. In 1993, Berrou and Glavieux [11] presented a practical 

coding scheme with a coding gain very close to that of Shannon theoretical limit. 

The insertion and deletion errors can be used to represent a synchronization error channel model. 

The synchronization error can cause bust errors to occur unless the whole system is 

resynchronized. Some work has been done on insertion/deletion error correction for block codes 

[12-15].   

Convolutional codes are very common as error correction codes and are implemented in a variety 

of communication systems with Viterbi decoding as the decoding algorithm. Most of the research 

using convolutional encoder and Viterbi decoder is bounded to substitution error correction 

schemes by assuming that transmitter and receiver are in synchronization. Whereas Viterbi 

algorithm cannot decode insertion/deletion errors correctly unless the system is synchronized. 
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Some work that has been done on insertion/deletion error correction using convolutional codes 

which can be found in [16-18].  

In this research synchronization error correction using rate-compatible convolutional codes and 

extended prefix codes is looked into. The idea is to periodically generate extended prefix code 

words by puncturing and pruning an original rate convolutional encoder.  

   

1.1 Organization of Research Report 

 

The First chapter presents the research theme, goals and organization of the report. 

Chapter 2 gives a literature survey on the work related to the research. A review is presented of 

work done on the construction of synchronization channel models, error control coding and 

synchronization codes. 

Chapter 3 presents a background technical details and concepts of the system model used in this 

research.  

In Chapter 4, techniques to design and construct a codebook of synchronization patterns and the 

new synchronization error correction scheme is presented. These patterns are transmitted in front 

of each frame. The design includes the use of marker sequence and extended prefix codes. These 

synchronization patterns are generated using path-pruned convolutional code. This chapter also 

presents the whole concatenated model of the new proposed system using path pruned 

convolutional codes as inner code and Reed-Solomon code as outer code. 

In Chapter 5 the computer simulation and the results of the research are discussed and presented. 

The performance of the new system is evaluated using Bit-Error-Rate graph at various deletion 

probabilities. Results have been presented by varying different parameters and the conditions of 

the concatenated synchronization error correction system.   

In Chapter 6, the research summary, conclusion and the future work of the research carried is 

presented. 
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Chapter 2: Literature Review  

2.0 Introduction 

A literature review in the field of forward error correction and insertion/deletion errors is presented 

in this chapter. First, some channel models are discussed, followed by the different types of error 

correction techniques that are commonly used. In the last section the recent research carried out in 

the field of synchronization error correction will be discussed.  

  

2.1 Channel 

A channel in telecommunication is referred to as a physical medium which includes wire, optical 

fiber etc. or a logical medium over air interface such as microwave, radio etc. A channel is intended 

to convey information from a source or transmitter to a receiver which requires some form of 

pathway either through a cable or a virtual broadcast media.   

 

2.1.1 Channel Model 

A channel model is the theoretical representation of a channel with certain error characterizations 

of a particular channel based on statistical and physical modeling. A channel can be modeled by 

defining its characteristics that can modify the transmitted signal passing through it. For example 

a wired channel can be modeled by determining effects of signal attenuation, signal interference, 

noise and other channel impairment on the transmitted signal. Whereas the wireless channel can 

be modeled by determining the effects of fading, reflection, additive noise and other channel 

impairment on the transmitted signal [1].  

The main aim in developing a channel model is to create an artificial environment that supplies 

the same representation as that of a real channel. By having good knowledge of channel properties 

and its behavior, a  more appropriate modulation and/or coding schemes  can be designed that may 

improve error performance and achieve reliable communication by manipulating principle 

attributes accordingly [19].  
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The behavior of a system depends on the possible states of the Markov model of the system having 

finite or infinite states. A Markov model is a stochastic model where the state of a system changes 

at fixed or random interval of time and this process is probabilistic in nature. Let 𝑆(𝑡) represents 

the state of the system and it has n different possible values at given time such 

as 𝑆1(𝑡), 𝑆2(𝑡), … , 𝑆𝑛(𝑡). The current state of the system moves to next state with a certain 

probability. This probability is known as transition probability and it can be constant or time 

varying.  

 

2.1.2 Synchronization Channel Model 

Consider a Davey-MacKay binary channel having three parameters  𝑃𝑠, 𝑃𝑖 and 𝑃𝑑. These 

parameters control the rate of substitution, insertion and deletion errors respectively [20]. A 

symbol can be transmitted correctly with the probability 𝑃𝑡, a random bit can be inserted in the 

sequence with probability 𝑃𝑖  or the next bit queued in the sequence can be deleted with 

probability 𝑃𝑑. Therefore the probability of a bit transmitted is given by the equation 2.1, having a 

probability 𝑃𝑠 of bearing a substitution error [21]. 

 

Delete

Insert

ti ti + 1

Transmit

. . . . . .

Pi

Pd

Pt
 

Figure 2-1: Insertion Deletion Channel with Probabilities 𝑷𝒊, 𝑷𝒅, and 𝑷𝒕 

 

 𝑃𝑡 =  1 − 𝑃𝑖 − 𝑃𝑑   

 

( 2.1 ) 
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Gallagar defines four scenarios that a symbol can go through while passing through a channel 

[22]. The symbol can be transmitted correctly with probability 𝑃𝑡 or otherwise affected by 

deletion 𝑃𝑑, insertion 𝑃𝑖 and substitution errors 𝑃𝑠 given by the following equation 2.2: 

 𝑃𝑡 =  1 − 𝑃𝑖 − 𝑃𝑑 − 𝑃𝑠 

 

( 2.2 ) 

Zigangirov channel model presents the channel where any number of bits can be inserted and 

deleted during the transmission of symbols. Substitution error is not part of the Zigangirov channel 

model. Hence, the probability of no bit inserted is 𝑝𝑖, one bit inserted is 𝑝𝑖𝑞𝑖 and two bit insertion 

is 𝑝𝑖𝑞𝑖
2 and so forth.  

Therefore 

 𝑝𝑖 + 𝑝𝑖𝑞𝑖 + 𝑝𝑖𝑞𝑖
2 + ⋯+ 𝑝𝑖𝑞𝑖

∞ = 1  

 

( 2.3 ) 

 

Hence,   

 𝑝𝑖 + 𝑞𝑖 = 1 

 

( 2.4 ) 

 

Similarly, the probability of deletion can be given by the following equation 2.5. 

 

 𝑝𝑗 + 𝑞𝑗 = 1 

 

( 2.5 ) 

 

Where 𝑝𝑗 represents no deletion, 𝑝𝑗𝑞𝑗 gives the probability of one insertion and so forth.  

 

2.2 Error Control Coding 

Modern communication systems heavily rely on error correction coding, this approach started in 

the late 1940’s with some innovative work of Shannon [1], Hamming [2] and Golay [3]. Shannon 

mathematically defined the entropy of information source and capacity of a communication 

channel and showed that a reliable communication can be achieved over a noisy channel if the 
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source’s entropy is lower than the channel capacity. The objective of error control coding is to 

enhance the capacity as well as reliability of a communication channel by efficiently adding 

carefully designed redundant data to the information being communicated over the channel known 

as channel coding.  There are mainly two types of error control codes i.e. Block Codes and 

Convolutional codes.  

 

2.2.1 Block Codes 

Hamming developed the first error correction code in late 40s [23]. Hamming looked for ways to 

isolate and correct errors that were causing his program to halt. In the process of encoding 

information he grouped it into sets of four bits and added three redundant bits that act as a parity 

check bits. He developed an algorithm that could detect and locate the position of a single error in 

a block of seven encoded bits [2].  

 

Golay addressed the problems with Hamming code and generalized its construction. He also 

discovered two noteworthy codes, the binary Golay code and ternary Golay code [24]. The 

Hamming and Golay’s codes use the same scheme i.e. to group q-ary symbols to make a block of 

𝑛 symbol code word having 𝑘 information symbols and 𝑛 − 𝑘 check symbols. The error correction 

capability of the resultant code is 𝑡 errors and code rate 𝑟 =  𝑘/𝑛, a code of this type is known as 

block code, and can be represented as a (𝑞, 𝑛, 𝑘, 𝑡) block code. However, recent communication 

systems use more powerful codes instead of Golay codes. Some other linear block codes 

discovered were Reed-Mullar codes [25], cyclic codes [26], BCH codes [5] [27] and Reed-

Solomon codes [10].  

 

2.2.2 Convolutional Codes 

The block codes discussed in the previous section have some drawbacks as well. These blocks 

have certain code word lengths called frames. The decoding process depends on the length of these 

frames, the longer the frame length the more response time required for the system to decode these 

blocks. Another drawback is the synchronization at the receiver end, the decoder needs to have the 

knowledge of the starting of each frame, i.e. which symbol is the first symbol in a received code 

word or frame. The third drawback is that most algebraic based decoders for block codes work 
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with hard bit decision, rather than soft outputs of the demodulator. Hence, the performance is poor 

at a low signal-to-noise ratio.  

The drawbacks of block codes can be avoided by using a different approach towards coding, i.e. 

convolutional coding, first introduced in 1955 by Elias [7-9]. Elias added redundancy to a 

continuous stream of data by using a linear shift register instead of segmenting data into blocks. 

In convolutional codes, each set of 𝑛 output bits is a linear combination of the current set of 𝑘 

input bits and the 𝑚 bits stored in the shift registers. The total number of bits upon which each 

output depends is called the constraint length. The encoder rate is the number of data bits 𝑘 taken 

in by the encoder in one coding interval divided by the number of coded bits 𝑛 during the same 

interval. As the data is continuously encoded, it can be continuously decoded with short response 

time. The encoding algorithm can make use of soft decision information as well. The first decoding 

algorithm was the sequential decoder of Wozencraft and Reiffen in 1961 [28], which was later 

modified in 1963 by Fano [29] and Jelinek in 1969 [30]. The optimal solution of maximum 

likelihood decoding became practical with the introduction of Viterbi algorithm in 1967 [31].  

  

2.2.3 Concatenated Codes 

Convolutional codes are susceptible to burst errors. A solution to this weakness of convolutional 

code is to scramble the order of the code bits by introducing an interleaver prior to transmission. 

This will spread the burst errors apart and will appear as independent error to the decoder. Block 

interleavers are most commonly used interleavers that have a 𝑋𝑏 × 𝑌𝑏 bit matrix. The data is 

placed into the matrix column-wise and then read out row-wise or vice versa. This will make burst 

error length up to 𝑌𝑏 bits spread apart so that one error occur every 𝑋𝑏 bits. Another type of 

interleaver is a cross or convolutional interleaver, which allows continuous interleaving and 

deinterleaving and is mostly used with convolutional codes [32].  

 

Reed-Solomon codes handle burst errors quite well. Therefore, RS codes have properties that are 

complimentary to those of convolutional codes. A RS code and a convolutional code designed by 

concatenation in series is a very efficient system for power limited channels. Data is first encoded 

by an RS encoder which then goes in to the convolutional encoder. At the receiver end the 

convolutional decoding is performed first and then fed into the RS decoder. Therefore, each 
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decoder performs its suitable operation on the data i.e. convolutional decoder works with 

independent errors with low SNR, while RS decoder works with burst errors and high SNR.  David 

Forney in 1966 proposed this method of serial concatenation. [33].  

 

It is found that serial concatenated codes offer comparable performance and in some cases better 

to that of parallel concatenated codes [34]. The performance 𝑖𝑡ℎ convolutional component codes 

can also be matched or exceeded with block component codes such as Reed-Solomon [35], 

Hamming [2] [36] and BCH [5] [37] codes. 
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Figure 2-2: A serial Concatenated Code 

 

 

2.2.4 Turbo Codes 

Berruou, Glavieux and Thitimajshima in June 1993 presented a new coding scheme at 

International Conference on Communication in Geneva Switzerland. This new coding scheme was 

able to achieve a practical code rate very close to that of Shannon’s theoretical limit. They 

presented the new class of codes and its decoding technique named “Turbo Codes” [11]. This 

coding technique constitutes two or more component codes combined in parallel and are from a 
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subclass of convolutional codes known as recursive systematic convolutional (RSC) codes [11]. 

A turbo encoder and decoder is shown in Figure 2-3 and Figure 2-4 respectively [38].  
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Figure 2-3: A Turbo Encoder [38] 
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Figure 2-4: A Turbo Decoder [38] 

 

 

 

Figure 2-4 above shows that the input is interleaved before it is fed into the lower encoder. The 

output of the lower encoder is redundant because both encoders receive the same input but in 

different order, therefore they are systematic encoders. The output of the lower encoder does not 
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need to be transmitted. The code rate of the whole system is 𝑟 = 1/3.  Higher rates can be achieved 

by puncturing. 

 

A suboptimal iterative decoding algorithm was presented in [11]. This algorithm operates at a 

much lower complexity, as the presence of the interleaver makes optimal decoding (maximal 

likelihood) of turbo codes complex and impractical. The idea behind the suboptimal decoding 

algorithm is to break it down into two smaller codes. The decoding of these codes is performed 

locally and the information is shared in an iterative fashion.  

 

2.3 Synchronization Error Correction Codes 

In this section the discussion will be on some existing techniques on insertion/deletion error 

correction codes.  

 

Synchronization error correction schemes have gained more attention due to the applications such 

as image watermarking [39] and bit-patterned magnetic media [40]. In 1966 Levenshtein 

described, a code that is capable of correcting x number of deletions should also be able to correct 

x number of insertions and/or deletions [41]. When a message is carried as blocks of binary 

symbols, the need is to provide some means for the receiver to detect the beginning or the end of 

each block to keep synchronization with the transmitter. Generally, special synchronization 

symbols are used that represent a third kind of information neither 1 nor 0. The examples of such 

type of symbols are Morse code spaces and teletype beginning and end pulses in which each 

symbol is represented by a unique combination of sequences [42].  

 

2.3.1 Prefix Codes 

A receiver turned on in the middle of a transmitted message can decode data wrong if 

synchronization scheme is not used. Gilbert first introduced the synchronization of binary 

messages in 1960 known as prefix codes [15]. According to Gilbert, a short sequence known as 

prefix 𝑃 can be used with each code word transmitted to determine the boundary of a code word. 

The constraint in using a prefix code is that the sequence 𝑃 cannot appear in the remaining part of 

the block. The prefix should be chosen such that it satisfies the constraints of different blocks of 



  

13 

 

𝑁 bits (consisting of prefix 𝑃 and the unconstraint part) used. Longer prefix will affect the length 

of message bits as 𝑁 is a fixed value and corresponds to an optimum length of the prefix. 

 

Sellers [14] introduced marker codes in 1962, which was a first major achievement in the field of 

insertion, deletion and substitution error correction coding. A sequence of bits called Marker codes 

is inserted periodically during the transmission of code words to help the receiver determine the 

synchronization.  

 

Van Wijngaarden, and Morita, presented a new type of synchronization code, known as extended 

prefix synchronization code (EPS) in [43]. The EPS is constructed by using a so called extended 

prefix with fixed symbol positions and unconstraint data information positions followed by 

constraint data sequence. EPS extends the set of available prefix for frame recognition and data 

mapping procedure rather than having a single prefix used in normal prefix synchronization codes.  

 

In Extended Prefix Synchronization EPS-code there are ℎ − 𝑘 unconstraint positions of data, and 

an extended marker 𝑃 (length ℎ) having 𝑘 fixed positions is used. According to Guibas and 

Odlyzko [44], when using 𝑞-ary PS-codes, the set of 𝑞ℎ−𝑘 different prefixes is given by 𝑃. These 

PS-codes can be presented as 𝐶𝑝 (𝑘 + 𝑚) = 𝑃 𝐹𝑝(𝑚), where 𝐹𝑝(𝑚) is the set of constrained code 

word 𝑐𝑖, (where 𝑖 =  1…  𝑚) and 𝑃 must not appear as a part of constrained code word. 

 

2.3.2 Convolutional Codes 

The convolutional codes are mainly used for the substitution error correction. Little research has 

been done on convolutional codes as insertion/deletion error correction code. In this section 

research done on this topic in the last decade will be discussed. 

 

In [45] Swart and Ferreira proposed a new insertion/deletion error correction scheme that was 

based on a parallel convolutional encoder. Cheng and Ferreira presented rate-compatible 

convolutional codes with the Levenshtein distance metric for insertion, deletion and substitution 

errors [46]. The Levenshtein distance metric is asserted to be suited to use with Viterbi decoding 

as a branch compare metric. A new type of Viterbi decoding algorithm was presented that uses 
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Levenshtein distance metric for decoding and rate-compatible pruned codes for encoding. The 

detail of the algorithm and its applications on different channels can be found in [18] [46] and [47]. 

Cheng, Ferreira and Swart [48] presented a bidirectional Viterbi decoding algorithm that uses the 

Levenshtein distance metric and is used with a regular convolutional codes. This system has a 

capability of correcting an average of 30 deletions with in a 6000 bits long frame when used with 

𝑟 =  0.67 rate convolutional code [48]. 

 

A post-modulation scheme to correct insertion deletion substitution errors was presented by Cheng 

and Ferreira [49]. They used run-length-limited Levenshtein codes for a dc2 – balanced code in 

conjunction with interleaving techniques. This protects code words from insertion, deletion and 

substitution errors.  

 

2.3.3 Linear and Cyclic Codes 

Linear and cyclic codes are mainly used to correct substitution errors. Insertion and deletion errors 

can reduce the quality of service (QoS) of the system to a very bad extent. Abdel-Ghaffar, Ferreira 

and Cheng in [50] and [51] investigated linear and cyclic codes for synchronization errors 

correction. They showed that linear code of rate greater than 1/2 cannot correct insertion and 

deletion errors. They also showed that by adding an extra symbol to the code word of a cyclic 

codes of rates 1/3 or 1/2 have the potential to correct a single deletion or insertion [50]. In another 

approach they presented a cyclic code of rate at most 1/2 which was shortened by deleting code 

words such that the shortened code was capable of correcting insertion and deletion errors. [51]. 

 

2.3.4 Number Theoretic Codes 

Ferreira, Abdel-Ghaffar, Cheng et al presented their work on systematic encoding of number 

theoretic codes to develop moment balancing templates by extending a block or convolutional 

code with predetermined error correction capability [52] [53]. Insertion/deletion correction can be 

achieved by adding redundant bits at selected positions to balance the moment of the code word 

by using some number theoretic constructions. They investigated bit error rate performance 

comparison of LDPC and Convolutional codes based on sum-product algorithm (SPA) decoding 

and 3-bit quantization Viterbi decoding respectively.  
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2.3.5 Synchronization using Permutation Codes 

Slepian introduced variant I and variant II permutation codes for reliable communication over 

certain class of noisy channels [54], Dunn used variant I codes for memory less Gaussian sources 

[55]. Later Berger et al developed permutation codes for more general sources [56 -58]. 

A fast synchronization coding scheme was presented in [59], they have used single 

insertion/deletion error correcting permutation codes. The author also presented a new algorithm 

for permutation coded sequences which combines the dynamic algorithm and a Viterbi like 

decoding algorithm [60].  

 

2.4 Summary 

A brief literature survey covering synchronization channel model, general error control coding and 

synchronization error correction codes was given in this chapter. These coding schemes include 

block codes, convolutional codes, concatenated codes, turbo codes, prefix codes, number theoretic 

codes, and permutation codes. 
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Chapter 3: Background 

3.0 Introduction 

The research work presented in this research report is novel and based on the work previously 

done by Cheng in [61]. Previous work done has been presented to create a background for the new 

work done in this research. This chapter presents a detailed background of the channel model and 

encoding techniques used in this research and previously presented in [61]. The role of this 

research will be defined by explaining the error model used for the insertion, deletion and 

substitution error protection, and the coding scheme. A block diagram determining the components 

of the system used in this research is shown in Figure 3-1. 

 

 

Data Source
(Information)

Convolutional 

Encoder
(Puncturing and Pruning)

Transmission 

Channel
( Davey-MacKay (DM) 

binary channel)

Decoder
(Viterbi Decoding)

Sink

 

Figure 3-1: Block Diagram of the System 

 

3.1 Prelude Definitions 

Definition 1: An insertion error is the insertion of a bit(s) in the sequence resulting in the addition 

of an extra bit while transmitting the symbol over the channel.  

Definition 2: A deletion error is when a bit is deleted from the sequence, hence resulting in a 

shortened or an empty word in the sequence while transmitting the symbol over the channel. 

Definition 3: A substitution error is the replacement of a bit with another while transmitting the 

symbol over the channel. 
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3.2 Channel Model 

A Davey-Mackay (DM) binary channel [12] was used in this research. The binary channel can be 

defined by three error parameters 𝑃𝑡, 𝑃𝑖 and 𝑃𝑑 which refers to the transmission, insertion and 

deletion probabilities. Therefore, the probability of a bit transmitted is given by the equation 3.1 

shown as follows, and it has a probability 𝑃𝑠 of bearing a substitution error [19]. 

 𝑃𝑡 =  1 − 𝑃𝑖 − 𝑃𝑑 ( 3.1 ) 

 

Delete

Insert

ti ti + 1

Transmit

. . . . . .
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Figure 3-2: Insertion Deletion Channel with Probabilities 𝑷𝒊, 𝑷𝒅, and 𝑷𝒕 

 

3.3 Convolutional Codes 

A brief introduction on the error correction technique used in this research is discussed. The main 

focus of this research is to use rate-compatible convolutional codes to overcome the 

synchronization error that occurs during transmission. 

There are two common types of error correcting codes available, namely: block codes and 

convolutional codes. A binary convolutional code is denoted as a three-tuple (𝑛, 𝑘,𝑚), where 𝑛 is 

the output bits, 𝑘 is the input bits and 𝑚 represents the memory of the convolutional code. A 

detailed introduction of convolutional codes can be found in [62]. 

 



  

18 

 

3.3.1 Convolutional Encoder 

Convolutional encoder consists of shift registers that are serially connected to form a finite state 

machine (FSM) that processes information bits serially.  Therefore, the output of the encoder 

depends on the input and the current state of the encoder. Each message bit influences a span of 

𝑛(𝑚 + 1) successive output bits known as output constraint length. For an (2,1,3) encoder, 8 

successive output bits are influenced by a single input. Figure 3-3 represents a (2,1,3) 

convolutional encoder having 3 shift registers. 

 

+

+
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S
e
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Figure 3-3: A (𝟐, 𝟏, 𝟑) Convolutional Encoder 

 

3.3.2 Generator Matrix 

Convolutional code can be defined by the generator sequences 𝑔(1), 𝑔(2), … 𝑔(𝑛) that represents the 

output of the encoder on each input. The code word is produced by the matrix multiplication of 

input data and the generator matrix which is associated to the generator sequence. 

The convolutional code can be generated by multiplying the information sequence by the generator 

matrix. Let 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘 be the information sequence and let 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 be the output 

sequence. 
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Then  

 𝑢 = (𝑢1,0, 𝑢2,0, … , 𝑢𝑘,0, 𝑢1,1, 𝑢2,1, … , 𝑢𝑘,1, … , 𝑢1,𝑖, 𝑢2,𝑖, … , 𝑢𝑘,𝑖, … ) 

 

( 3.2 ) 

 

 𝑣 = (𝑣1,0, 𝑣2,1, … , 𝑣𝑛,0, 𝑣1,1, 𝑣2,1, … , 𝑣𝑛,1, … , 𝑣1,𝑖, 𝑣2,𝑖, … , 𝑣𝑛,𝑖, … ) 

 

( 3.3 ) 

 

The relationship between input and output can be described as: 

 

 𝑣 = 𝑢𝐺 

 

( 3.4 ) 

Where G is the generator matrix of the code. 

The generator matrix is given as: 

 

𝐺 =  

[
 
 
 
𝐺0 𝐺1 𝐺2 … 𝐺𝑚

𝐺0 𝐺1 … 𝐺𝑚−1 𝐺𝑚

𝐺0 … 𝐺𝑚−2 𝐺𝑚−1 𝐺𝑚

⋱ ⋱ ]
 
 
 
 

 

Generator Polynomial: 

The generator sequence can also be represented as polynomials. For the encoder shown in Figure 

3-3 the polynomial is: 

 
{

g(1) (D) =  [1 + D2 + D3]

 g(2)(D) =  [1 +  D + D2 + D3]
 

 

( 3.5 ) 
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An (n, k, m) encoder can be represented by a 𝑘 × 𝑛 matrix 𝐺(𝐷), known as polynomial generator 

matrix in which each entry is a polynomial. 

 

𝐺(𝐷) =  

(

 
 

𝑔1
(1)(𝐷) 𝑔1

(2)(𝐷) … 𝑔1
(𝑛)(𝐷)

𝑔2
(1)(𝐷) 𝑔2

(2)(𝐷) … 𝑔2
(𝑛)(𝐷)

⋮ ⋮ ⋮ ⋮

𝑔𝑘
(1)(𝐷) 𝑔𝑘

(2)(𝐷) … 𝑔𝑘
(𝑛)(𝐷))

 
 

 

 

 

Definition: The code rate is defined as  𝑟 = 𝑘/𝑛 , where k is the number of input bits and n is 

the number of outputs.  

Definition: The Hamming distance of two sequences with the same length is the number of 

positions at which these two sequences differ. 

Definition: The error correcting capability (𝑡𝑒𝑟𝑟𝑜𝑟) of a convolutional code is the number of 

errors that can be corrected by the code. It is given as 

 

 
𝑡𝑒𝑟𝑟𝑜𝑟 = ⌊

𝑑𝑓𝑟𝑒𝑒 − 1

2
⌋ 

 

( 3.6 ) 

 

The definition of free distance 𝑑𝑓𝑟𝑒𝑒 will be addressed in section 3.4.1.  
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3.3.3 Graphical Representation of Convolutional Code 

A convolutional code can be represented as a code tree. The tree generated by the encoder in Figure 

3-3 is shown in Figure 3-4. 
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Figure 3-4: Tree structure of convolutional code 
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Figure 3-4 describes the structure of the tree diagram. As we discussed in the previous section, the 

convolutional encoder starts with all registers at zero, therefore the tree diagram also starts at all 

zero state. Each branch of the tree transforms a single bit input into a two bit output. The upper 

branch at each node represents 02 input and the lower branch 12 input. 

Figure 3-5 describes the structure of a convolutional encoder in the form of a state diagram. The 

solid line represents 02 input and the dotted lines represents 12 input. Similarly Figure 3-6 

represents the trellis structure of the convolutional encoder presented in section 3.3.1. 
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Figure 3-5: State diagram of the convolutional code 
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Figure 3-6: Trellis diagram of a convolutional code 

 

3.4 Rate-Compatible Convolutional Codes 

The purpose of designing a coding scheme is to achieve maximum throughput and error correction 

capability for a worst case scenario of the channel. In some harsh channel cases, the channel status 

fluctuates drastically in time and can cause a constant rate coding scheme to fail. This prompts a 

variable rate coding scheme that can adjust to the channel conditions to have a changing error 

correction capabilities. The advantage of using rate-compatible convolutional code is that the same 

single encoding and decoding system can be used for a range of code rates. The rate-compatible 

convolutional codes are obtained by using puncturing or pruning operations [18] [63]. 
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3.4.1 Puncture Convolutional Codes 

The process of puncturing is done by periodically deleting (or puncturing) encoded symbols from 

ordinary convolutional encoded sequence of data. Therefore, the rate of the encoder increases by 

puncturing process. Consider an encoder with generator polynomial: 

    

 𝐺 = (1 + 𝐷2 + 𝐷3     1 + 𝐷 + 𝐷2 + 𝐷3) 

 

( 3.7 ) 

 

The puncturing matrix  𝑃 = [
1 0
1 1

]  indicates that the first bit of second encoded block is 

punctured. 

 

000

001

010

011

100

101

110

111

11(0)

11(1)
00(1)

11(1)

10(1)

01(1)

10(1)

01(1)

00(1)

01
(0

)

10
(0

)

00(0)

11(0)

01
(0

)
10

(0
)

00
(0

)

State

x1(0)

x1(1)
x0(1)

x1(1)

x0(1)

x1(1)

x0(1)

x1(1)

x0(1)

x1
(0

)

x0
(0

)

x0(0)

x1(0)

x1
(0

)
x0

(0
)

x0
(0

)

 

Figure 3-7: Trellis diagram of a punctured convolutional code 
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The puncturing process is shown in Figure 3-7. The first bit of the second trellis is the 

punctured/deleted bit denoted by 𝑥. The 𝑟 =  1/2 encoder is punctured into an 𝑟 = 2/3 encoder. 

The equivalent 𝑟 = 2/3 encoder trellis diagram is shown in Figure 3-8.  
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Figure 3-8: Trellis diagram of a 𝒓 = 𝟐/𝟑 convolutional encoder 

 

 

Puncturing reduces the free distance of the code but it is still comparable with the ordinary 

convolutional code having the same rate as after puncturing. 
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3.4.2 Pruned Convolutional Codes 

Puncturing the number of branches connecting to a state increases the rate of a code. We can 

remove some of the undesired branches of the trellis. This process is known as pruning.  Pruning 

is done to improve the error correcting capability or correcting special types of errors, such as 

insertion and deletion errors [18] [64]. Due to the trellis structure of convolutional codes, it is easy 

to delete some or all of the undesired code words or associated paths from it.  It is considered as 

an inverse operation of the puncturing, thus by doing so the code rate is reduced. 

Figure 3-9 describes the pruning process which consists of a feedback mapper. The state of the 

convolutional encoder is fed back to the mapper and the mapper maps the information data into a 

corresponding input by using a mapping table. This input is then encoded by the convolutional 

encoder that produces a corresponding code word which is part of the pruned paths.  
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Figure 3-9: Pruning Processing Using Feedback Mapping 

 

 

3.5 Decoding 

As discussed above, rate-compatible convolutional codes has been used as the encoding technique 

in this research. Maximum-likelihood algorithm is a very widely used decoding process for 

convolutional codes, also known as Viterbi decoding algorithm. In this research, Viterbi decoding 

is used as the decoding technique for the convolutionally encoded information at the receiver. 
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3.5.1 Viterbi Decoding Algorithm 

Viterbi decoding algorithm is a scheme for decoding convolutional codes on the basis of maximum 

likelihood decoding [65]. The encoded information signal is corrupted by noise when sent via a 

channel; the receiver tries to recover the sent sequence into the most likely sequence. This process 

is known as maximum likelihood decoding.  The Viterbi decoding algorithm takes the two code 

words i.e. the received code word and the trellis branch code word, compares them for the 

hamming distance and selects the branch with the minimum Hamming distance [18]. An example 

of Viterbi decoding algorithm follows: 
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Figure 3-10: Example of hard-decision Viterbi decoding 

 

Definition: The Free distance 𝑑𝑓𝑟𝑒𝑒 of a convolutional code is the minimum weight of a path 

that starts at all zero state and terminates at all zero state.  
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3.6 Summary 

A detailed background on synchronization channel model and convolutional codes was given in 

this chapter. Further, the rate compatible convolutional codes and Viterbi decoding process used 

in this research were discussed. 
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Chapter 4: Codebook Design 

4.0 Introduction 

In this chapter the design and construction of the codebook for the proposed system used in the 

research is discussed. 

Consider a concatenated coding system with an inner code having capability of correcting 

synchronization and substitution errors and a non-binary outer code that can correct remaining 

substitution errors. The inner code is designed using rate-compatible convolutional codes. The 

scheme consists of a set of extended prefix sequences generated using path pruned convolutional 

codes. These extended prefix sequences are transmitted at the start of every frame. The decoder 

recognizes these combinations and keeps in synchronization with the encoder. 

 

4.1 Codebook Design 

A novel coding scheme has been proposed in this research. This coding scheme is designed using 

path pruned convolutional codes and extended prefix codes, capable of correcting synchronization 

errors (insertion, deletion and substitution).  

Consider a 𝑟 = 1/2 rate parent convolutional encoder with constraint length  𝐾 = 3  punctured 

code using the puncturing matrix 𝑃. The length of the puncturing matrix depends on the selection 

of the marker sequence and the constraint length of the parent encoder. The modified code rate 

after puncturing will be  𝑘/(𝑘 + 1) , where 𝑘 is the number of input bits and (𝑘 + 1) = 𝑛 is the 

number of output bits of the punctured convolutional code. Hence, the length of the extended prefix 

code word that will be selected should be 𝑛 bits long. The constraint part of the extended prefix 

consists of a marker sequence. The unconstraint part of the extended prefix depends on the 

constraint length 𝐾 of the parent encoder. Hence, the length of the constraint part i.e. the marker 

sequence is 𝑛 − 𝐾.  
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The size of the codebook 𝐵𝑝 generated from PS-code is given by: 

 |𝐵𝑝| = 2𝑘 ( 4.1 ) 

 

Example 1 

Let us take an example of a codebook that was used for computer simulations. 

The first step is to define the constraint length and the rate of the original code being used. In this 

example the constraint length of  𝐾 =  3 and the code rate of  𝑟 =  1/2  parent convolutional 

encoder is used.  

The second step is to define the length 𝑀 of the puncturing matrix 𝑃. For this example assume 

that 𝑀 =  7, a different length of 𝑀 can also be assumed depending on the condition of the 

channel. As overall code rate of the proposed coding scheme is 𝑘/(𝑘 + 1), the extended prefix 

length 𝐿 (code words each having length 𝑛 =  𝑘 + 1) will therefore be 𝑛 =  𝑀 + 1 which is 8. 

Hence, the constraint part of each code word in the codebook will be 𝑛 –  𝐾 =  5.  

As the constraint and unconstraint portion of the each extended prefix code word is known, the 

next step involves the construction or selection of a suitable marker sequence (constraint part of 

the extended prefix code word). The marker sequences are usually constructed by combining 

consecutive 1s and 0s. Some example marker sequences are given in the table below: 

 

Marker Sequences 

110 

11100 

1111000 

111110000 

1111110000 

 

Table 4-1: Example Marker Sequences 
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After selecting a suitable marker sequence, the next step is to combine this marker with the 

unconstraint part to form a codebook. Table 4-3 shows the codebook constructed in this example. 

The size of the codebook 𝐵𝑝 constructed is given by: 

|𝐵𝑝| = 23 

 

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

11100 000 11100000 

11100 001 11100001 

11100 010 11100010 

11100 011 11100011 

11100 100 11100100 

11100 101 11100101 

11100 110 11100110 

11100 111 11100111 

 

Table 4-2: Codebook 

 

 

4.2 Codebook Search Methodology 

After designing the codebook the next step involves searching these paths (code words) and its 

corresponding inputs to the encoder. 

Consider the transition table shown in Table 4-3 for rate 𝑟 =  1/2 convolutional encoder with 

constraint length 𝐾 =  3, given below: 
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As mentioned in the previous example the length of the puncturing matrix is denoted by 𝑀. Since 

the length of each code word in the codebook depends on the length of the constraint marker 

sequence, and for the unconstraint part on the constraint length of the parent convolutional 

encoder, 𝑀 therefore is equal to the length 𝑘 which is the number of input bits to the encoder. 

i.e.   𝑀 =  𝑘  

Figure 4-1 below is the trellis representation of a 𝑘/𝑛 punctured convolutional encoder. 𝑇𝑖 

represents the 𝑖𝑡ℎ puncturing interval, where 𝑖 =  1, 2, … ,𝑀.  

Initial State Input Next state Output 

00 0 00 00 

00 1 10 11 

01 0 00 11 

01 1 10 00 

10 0 01 01 

10 1 11 10 

11 0 01 10 

11 1 11 01 

Table 4-3: Transition Table for 𝒓 =  𝟏/𝟐 and 𝑲 =  𝟑 Convolutional encoder 
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State
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01
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11

00

01
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...

T1 T2 T3 TM

 

Figure 4-1: Trellis diagram with puncturing length 𝑴, 𝒓 =  𝒌/𝒏 and 𝑲 = 𝟑 

The above punctured encoder will produce 2𝑘 different paths (code words each having length 𝑛 =

 𝑘 + 1) from every input state of the encoder. The number of paths 𝐻 produced by the above 

punctured encoder can be found by: 

 𝐻 = 2𝑘 × 2(𝐾−1) ( 4.2 ) 

Where 𝐾 is the constraint length of the parent convolutional encoder and 𝑘, is the number of input 

bits of the punctured convolutional encoder. 

State 
00

State 
01

State 
10

State 
11

001001

010

011

000

 

Figure 4-2: Trellis diagram of punctured convolutional code 
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Figure 4-2 is the trellis representation of a 𝑟 =  2/3 punctured convolutional encoder in which the 

first output bit of the second interval is punctured using 𝑃 = [
1 0
1 1

] puncturing matrix.  

The next step is to prune the desired paths from the code set 𝐶 that match the codebook 𝐵𝑝  

generated using extended prefix codes.  

Example 2 

Consider the codebook designed in Section 4.1.2. In order to search these paths and its 

corresponding outputs, a Matlab program was simulated that constructed all the possible paths and 

then pruned the paths that matched the code words of our designed codebook. The steps involved 

in the Matlab simulation will now be discussed. 

The first step is to choose the length 𝑀 of puncturing matrix 𝑃. After a few tries with different 

values it was found that the value of 𝑀 should be large enough to produce sufficient paths available 

for pruning. Therefore, 𝑀 =  𝑘 was chosen, therefore 𝑖 = 7 time intervals of the trellis were 

selected to construct an extended prefix code word of length 𝑛 =  8, as the overall code rate will 

be 𝑘/(𝑘 + 1).  

The second step involves selection of a puncturing pattern for the matrix 𝑃. Simulations with all 

possible valid puncturing patterns were carried out and were able to find enough paths to prune. 

For this example the puncturing matrix is given by: 

𝑃 = [
1 1 1 1 1 1 1
0 0 0 0 0 0 1

] 

Where 1 represents the selected bit and 0 represents the punctured bits. 

The next step involves generation of all possible paths available from each state to every other 

state. These paths are then punctured using puncturing matrix 𝑃. The total number of paths 𝐻 

produced are calculated by: 

𝐻 = 27 × 2(3−1) 

𝐻 =  512 
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In the next step, these 512 paths/code words are compared with the codebook generated in Section 

4.1.2. The matched paths with their input sequence and state history were stored in a mapping table 

that was later used in the simulation. The mapping table below describes the state and input bits 

for each extended prefix code word of the codebook generated.  

 

Initial State Input Next State Extended Prefix Codebook 

0 1101000 0 11100100 

0 1101010 1 11100001 

0 1101001 2 11100111 

0 1101011 3 11100010 

1 0111100 0 11100111 

1 0111110 1 11100010 

1 0111101 2 11100100 

1 0111111 3 11100001 

2 1000000 0 11100000 

2 1000010 1 11100101 

2 1000001 2 11100011 

2 1000011 3 11100110 

3 0010100 0 11100011 

3 0010110 1 11100110 

3 0010101 2 11100000 

3 0010111 3 11100101 

 

Table 4-4: Mapping Table 
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4.3 Inner Code Construction of the Proposed System 

A rate-compatible convolutional encoding system was used as inner code for the proposed scheme. 

The block diagram of the inner coding scheme is shown as follows: 

Mapper
Parent Convolutional 

Encoder
Puncturing 

Channel

Viterbi DecodoingDemapping

Information 

Source

Input

Encoder State

Information 

Sink
Synchronization 

Check
 

Figure 4-3: Block diagram of Inner Coding scheme 

 

4.3.1 Encoding Process 

The information fed into mapper is periodically mapped into a corresponding input sequence 

depending on the state of the parent encoder, which produces a code word from the codebook 𝐶𝑝 

and it is transmitted over the channel in front of each frame. The remaining bits of the frame are 

not mapped to a corresponding input sequence rather normally fed into the encoder. 

The pruning period depends on the status of the channel. If the channel is harsh, the pruning period 

can be decreased to have more synchronization patterns in the transmitted code words. The 

advantage of the above coding scheme is that the encoding process is a continuous and is not 

stopped or changed to generate a synchronization pattern before each frame. Each synchronization 

pattern generated depends on the state of the parent encoder. 
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4.3.2 Resynchronization 

At the receiver end the code word is first passed through the synchronization check process. The 

resynchronizer looks for the synchronization patterns that were inserted in front of each frame at 

the encoder through pruning process. As the codebook of these synchronization patterns and the 

frame length are known to the receiver, it looks for these patterns and their distances between each 

other. If the distance between patterns is less than the original frame length, that means bits have 

been lost during the transmission over the channel and deletion errors have occurred. This implies 

that, a sufficient number of bits are added to make the received code word of length equal to the 

original frame length. This may introduce substitution errors in the current frame but will 

resynchronize the subsequent frames. Similarly, when insertion errors occur, the resynchronization 

process deletes some of the bits from the received code word to make its length equal to the original 

frame length. 

In this research the sliding window method is used to resynchronize the transmission at the 

receiver. The method works on the fixed sized window that slides over the received bit sequence 

and looks for the synchronization patterns inserted in front of each frame. It also checks the length 

of each frame for deletion errors. The resynchronization works for three different cases: 

1. When some of the bits from synchronization pattern get deleted. 

2. When some of the bits from rest of the frame get deleted. 

3. When some of the bits from both synchronization pattern and rest of the frame get deleted. 

In case if deletion errors are detected in a frame the resynchronizer calculates the number of 

deletions and insert required number of bits 0 in front of the frame to make the frame length equal 

to the actual length of the frame transmitted. This can introduce large burst errors. To improve the 

performance of the Viterbi decoder the Reed-Solomon code is used in concatenation to the 

Convolutional code. Interleaving is also introduce to further improve the performance by spreading 

burst errors apart. 
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4.3.3 Viterbi Decoding 

The Viterbi algorithm is used for decoding the received code words. The received sequence after 

synchronization check is fed into the Viterbi decoder, which treats this sequence normally and 

decodes according to the specified puncturing matrix. The advantage of the Viterbi decoder is that 

it is capable of correcting substitution errors. Therefore, some of the substitution errors caused by 

resynchronization process are corrected by the decoder. The performance of the decoder also 

depends on the code rate. For detailed Viterbi decoding algorithm refer to the section 3.5.1 in 

chapter 3. 

 

4.4 Outer Code Construction of the Proposed System 

The proposed coding scheme constitutes of an inner code, as discussed in the previous section and 

an outer code. A non-binary Reed-Solomon code was used as an outer code. A block diagram of 

the concatenated system is given below: 
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Parent Convolutional 

Encoder
Puncturing 

Channel

Viterbi DecodoingDemapping

Information 

Source

Input

Encoder State
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Synchronization 
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Interleaver

DE Interleaver

RS-Encoder

RS-Decoder

 

Figure 4-4: Block Diagram of the Concatenated Coding System 

 

4.4.1 Reed-Solomon Code 

RS codes are special and a very popular class of non-binary BCH codes that are over 𝐺𝐹 (𝑞) , 

where 𝑞 > 2. Even though RS codes are subclass of BCH codes, they were constructed 
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independently using a different approach by I. Reed and G. Solomon in 1960 [66]. RS codes have 

high capacity to correct both random and burst errors. They were initially designed for deep-space 

communication, but they have found several other applications such as in mass storage devices, 

broadband modems, wireless mobile communications systems and so forth. 

A 𝑞-ary Reed-Solomon code (RS code) is a 𝑞-ary BCH code of length 𝑞 − 1 generated by: 

 𝑔(𝑥) = (𝑥 −∝𝑎+1)(𝑥 −∝𝑎+2)… (𝑥 −∝𝑎+𝛿−1) ( 4.3 ) 

 

With 𝑎 ≥ 0 and 2 ≤  𝛿 ≤ 𝑞 − 1, where ∝ is a primitive element of 𝐹𝑞. 

Concatenation of RS code as outer codes with a simple binary codes (convolutional codes) as inner 

codes provides reliable communication and data storage with reduced decoding complexity and 

higher error correction capability.  

 

4.4.2 Interleaving 

In many communication systems errors occur in burst. Sometimes, these burst errors are long and 

exceeds the error correction capability of the coding scheme and fails to retrieve the original code 

word. Interleaving mitigates this problem by changing the positions of each symbol in the code 

word before transmission and rearranging them at the receiver. This can cause burst errors to 

spread apart making error correction easier.  

According to Ramsey [68] a device that rearranges the ordering of a sequence of symbols in some 

one-to-one deterministic manner is known an interleaver. 

Interleaving is used as an accessory to assist error correction techniques to perform better in worst 

conditions. To correct burst errors one technique is to place an interleaver between the channel 

encoder and the channel. This spreads the channel symbols in such a way that symbols of each 

code word are separated by more than the length of a typical burst of errors, making channel look 

like a random-error channel to the decoder.  
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Another type of interleaver is block interleaver linked with block codes. Block interleaver divide 

symbol sequences into blocks in the form of two dimensional arrays. The symbols are read in row 

wise and read out column wise [69]. 

In this research, the information blocks were first encoded using a non-binary (15, 7) Reed-

Solomon code by adding parity check bits row wise. These code words were then fed into the 

convolutional encoder by taking bits column wise. This makes code words to interleave and help 

improve the performance of the outer code. 

 

1 2 3 4 5 6 7 8 9

1 4 7 2 5 8 3 6 9

1 4 7 2 5 8 3 6 9

1 2 3 4 5 6 7 8 9

Original Bit Stream

Interleaved Bit Stream

Error Bits Stream

Deinterleaved Bit Stream

 

Figure 4-5: The Interleaving Process 

 

Figure 4-5 describes the randomization of burst error; a burst of errors on the channel is converted 

into isolated errors by using interleaving process.  
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4.4.3 Reed-Solomon (RS) Decoding 

The decoding of non-binary BCH codes (Reed-Solomon codes) is a complex operation and 

involves more computation than decoding binary BCH codes [67]. It involves the determination 

of the location and value of errors. Gorenstein and Zierler [70] founded the first decoding 

procedure for non-binary BCH and RS codes, which was later improved by Chien [71] and Forney 

[72]. The first efficient decoding algorithm for both binary and non-binary BCH codes was 

presented by Berlekamp [73]. The Euclidean algorithm can also be used for decoding BCH and 

Reed-Solomon codes [74]. The Euclidean decoding algorithm is simple and easy to implement. 

Gore [75] introduced a mechanism to decode BCH and Reed-Solomon code in the frequency 

domain, which was later modified by Blahut [76] to improve the decoding performance. An 

overview of the decoding procedure is given below: 

 

Preliminary Decoding Concepts 

The received polynomial 𝑅(𝑥) can be divided into two parts: 

 𝑅(𝑥) = 𝐶(𝑥) + 𝐸(𝑥) 

 

( 4.4 ) 

Where 𝐶(𝑥) the code word and 𝐸(𝑥) is the error polynomial.  

Let 𝐸(𝑥) =  𝐸0 + 𝐸1𝑥 + ⋯+ 𝐸𝑠−1𝑥
𝑠−1 is the expansion of the error polynomial and that there are 

no more than 𝑧 errors in the received polynomial. Let 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑧 denote the positions of the 

errors. Therefore each error location 𝑙𝑖 is a distinct integer between 0 and 𝑠 − 1. 

The error location 𝑋𝑖 is defined as 𝑋𝑖 = 𝛼𝑙𝑖. Hence the error locations 𝑋1, 𝑋2, … , 𝑋𝑧 are another 

way of representing the error indices. 

 

Stages of the Decoder: 

Figure 4-6 describes the main stages involved in the decoding process. The decoder receives the 

code word 𝑅(𝑥) and outputs the corrected code word 𝐶(𝑥). 
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Syndrome Calculation
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Forney s Formula
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R(x)

C(x)

 

Figure 4-6: Decoding Stages 

 

The steps involved in decoding process are described below [77]: 
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1. Syndrome Calculation: 

The first step involves the calculation of syndromes 𝑆𝑖 of the received data, where 𝑖  =

 1, 2, … , 2𝑡. 

2. Berlekamp-Massey Algorithm: 

The second step involves computation of error locator 𝜎(𝑋) and error evaluator 

polynomials 𝜔(𝑋). After solving for these polynomials the error locations and error 

magnitudes can be found. 

3. Chien’s Search: 

The next step involves finding the roots of the error locator polynomial. 𝐺𝐹(𝑞𝑚) is a finite 

field therefore, the idea of Chien’s search is to enumerate all the elements of the field to 

determine the roots. There are some other methods to determine the roots but Chien’s 

search may be the most efficient. 

4. Forney’s Formula: 

After knowing the error locations {𝑋𝑖} the next step is to calculate the error 

magnitudes {𝑌𝑖}. Chien’s algorithm provides the locations of the errors and Forney’s 

formula the magnitude of error at those locations. Thus, the code word 𝐶(𝑥) can be 

calculated using the formula 𝐶(𝑥) = 𝑅(𝑥) − 𝐸(𝑥), and the decoding process is complete. 

 

4.5 Summary 

Chapter 4 presented the details of the research work done. The system used path pruned 

convolutional codes as inner codes and the RS code as an outer code presented as a concatenated 

coding scheme. This chapter also explained how the codebook was designed and how the 

synchronization patterns were generated using pruned convolutional codes. 
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Chapter 5: Computer Simulation and Results 

5.0 Introduction 

In this chapter, the various aspects of the computer simulation needed in order to evaluate the 

performance and the effectiveness of the proposed system will be discussed. 

Generally, simulations determine efficiency of a coding scheme on the basis of substitution error 

correction and not how effectively insertion and deletions are detected and corrected. Hence, a 

conventional bit error rate (BER) versus error probability computer simulation scheme cannot 

conclusively determine the performance of the proposed concatenated coding system, because the 

elementary function of the scheme is to detect deletions/insertions and to re-establish the 

synchronization.  

Alternatively, a more complex and detailed simulation is executed by randomly deleting bits from 

the transmitted code word during the transmission and then at the receiver. The performance is 

evaluated by resynchronizing and decoding the sequence. By repeating this simulation for several 

bit deletion probabilities a graph is obtained to show the deletion probability 𝑃𝑑 versus bit error 

rate.  

The graphs depict the performance of proposed synchronization error correction scheme using 

path-pruned convolutional codes in concatenation with RS codes. 

 

5.1 Channel Model 

A channel model is required to conduct a simulation. The channel model describes the natural 

events that can happen during the transmission of a signal on a channel, in this case the occurrence 

of insertion deletion and substitution errors.  The channel model is meant to provide a test bet to 

measure or estimate the performance of the coding scheme on the basis of parameters extracted 

from real physical channel. 
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The channel models that have been used for the insertion/deletion error correction are not generally 

accepted models, rather they have been designed particularly for the research being carried out. 

Some of the commonly used insertion deletion channels are Gilbert-Elliot model [15] and Davey-

MacKay (DM) binary channel model [12][78][79].  

The proposed scheme uses the following simplified channel model based on the binary symmetric 

channel to carry out the research. Similar model was also used by Swat in [80] and Ferreira dos 

Santos in [81].  

 

11

0 0

del

P1

D1

D0

P0
 

Figure 5-1: Simulation Channel Model 

 

 

The description of the model parameter is defined in table below. 
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The above channel model can be presented by the following equation 5.1: 

 𝑃0 + 𝑃1 + 𝐷0 + 𝐷1 = 1 

 

( 5.1 ) 

Let’s consider that when a 0 or a 1 is transmitted over the channel their deletion probabilities are 

equal, therefore the equation 5.1 can be modified into the following equations 5.2 and 5.3: 

 

 𝑃0 = 𝑃1 = 𝑃 ( 5.2 ) 

 

 𝐷0 = 𝐷1 = 𝑃𝑑 ( 5.3 ) 

 

By substituting the values, the equation 5.3 is written as follows: 

 

 2(𝑃) + 2(𝑃𝑑) = 1 ( 5.4 ) 

 

 𝑃 + 𝑃𝑑 = 1/2 ( 5.5 ) 

 

This is the simplified form of channel used for the simulation. The probability of the deletion errors 

𝑃𝑑  that was introduced in the simulation ranged from 10−3 to 10−4. 

Parameters Description 

𝑃0 Probability of receiving 0 when 0 is transmitted 

𝑃1 Probability of receiving 1 when 1 is transmitted 

𝐷0 Probability of not receiving 0 (Deletion probability of 0) 

𝐷1 Probability of not receiving 1 (Deletion probability of 1) 

Table 5-1: Channel Model Parameters 
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5.2 Simulation Methodology 

Random bits are generated at the information source and saved for comparison at the later stages. 

These randomly generated bits are then encoded using (15, 7) Reed-Solomon code, then 

interleaved before feeding them to the convolutional encoder. These bits are then divided into 

small chunks on the basis of pruning period, such that each chunk represents one frame. The first 

bit of each frame is mapped into a corresponding sequence (which will generate one of the code 

words from the extended prefix codebook) depending on the state of the convolutional encoder 

before feeding the whole frame to the convolutional encoder. The convolutional encoder is the 

normal (𝑛, 𝑘,𝑚) encoder with puncturing.  

The punctured code word is then transmitted over the channel defined in the channel model section 

above, which introduces deletion errors in the coded sequence. At the receiver end this sequence 

is pretreated to look for deletion errors and frames are resynchronized by looking for the predefined 

extended prefix pattern sequences from codebook. The resynchronized patterns are then fed into 

the Viterbi decoder which corrects the most substitution errors caused by the resynchronization 

process. The ability of the decoder to correct substitution errors depends on the free distance of 

the code. After decoding, the frames are remapped to their corresponding bits, de-interleaved and 

then fed into the RS decoder. The RS decoder corrects the remaining substitution errors depending 

upon its error correction capability. The same process is repeated for different deletion error 

probabilities to evaluate the extent of error correction ability of the concatenated system. 

A BER versus deletion probability 𝑃𝑑 graph is obtained. This graph compares the randomly 

generated bits and the decoded bits of the RS decoder. This BER vs. 𝑃𝑑 graph evaluates the overall 

performance of the concatenated coding scheme by comparing the data bits from the information 

source at the transmitter and the bits decoded by the decoder at the receiver.  

Similarly a BER versus deletion probability 𝑃𝑑 graph is obtained for the inner coding system which 

only involves the convolutional encoder and Viterbi decoder. By comparing the two graphs, the 

effectiveness of the RS codes is shown. 

The same process is repeated for different scenarios which include the change in the length of each 

code word of the extended prefix codebook, change in the conditions of the channel and by 

changing the code rate and constraint length of the parent encoder. 
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A RS (15, 7) Reed-Solomon code with 𝐺𝐹(24) was implemented using Matlab’s built in functions 

‘rsenc’ for encoder and ‘rsdec’ for decoder. This RS code can correct 4 errors within each 15 

symbol RS code word and require less processing and time to be implemented for simulation. 

Commercially a more powerful RS (255.223) code is used [82].  

A deletion probability 𝑃𝑑  ranged from 10−3 to 10−4 was used for this simulation. The deletion 

errors caused by the deletion probability were random through the transmitted code word. The 

encoding process of the convolutional encoder was continuous and there were no modifications 

made to the parent encoder. This is considered to be one of the advantages of this proposed 

concatenated coding scheme, where the pruning process is introduced without stopping or 

changing the convolutional encoder structure. The set of extended prefix code words and the frame 

length were known to both the transmitter and the receiver. The frame length can be varied on the 

base of channel conditions. The better the channel conditions, the lesser is the need for 

synchronization sequence, therefore the pruning period will increase making the frame length 

larger. The BER was calculated by comparing the source information and the decoded information 

at the decoder using: 

 

 BER = 𝑁𝑒𝑟𝑟𝑜𝑟/𝑁𝑏𝑖𝑡𝑠 ( 5.6 ) 

 

This process was repeated several times for each deletion probability with a very long randomly 

generated binary information sequence to get a dependable approximated assessment of the 

system. 

 

5.3 Simulation Results and Discussion 

 

In this section the results of the simulations that were introduced in the previous question will be 

presented, compared and discussed 
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The simulations was carried out using different scenarios on the basis of the coding system. These 

Scenarios include the following: 

1. Concatenated coding scheme (with RS code). 

2. Different extended prefix code word lengths. 

3. Inner coding scheme (without RS code). 

4. Different constraint lengths. 

A rate  𝑟 =  1/2 parent convolutional encoder with two different constraint length; 𝐾 =  3 & 𝐾 =

5 and two different extended prefix code word lengths (i.e. 𝐿 = 8 & 𝐿 = 16) to perform the 

simulation experiments of proposed coding scheme for the above mentioned scenarios. Each case 

will be individually discussed. 

Comparison of Concatenated coding scheme vs. Inner Coding Scheme: 

Figure 5-2 illustrates the performance of the concatenated coding scheme for synchronization error 

correction on the basis of BER vs. 𝑃𝑑. Figure 5-2 presents the results of above mentioned all four 

scenarios for the concatenated coding system. The outer code used is a non-binary Reed-Solomon 

code RS (15, 7) with 𝐺𝐹(24). The graph is drawn between deletion probabilities 𝑃𝑑 and the Bit  

Error Rate (BER). The code words transmitted over the channel were long enough to introduce an 

average of 50 random deletions at each deletion probability. There were no guard spaces or 

substitution errors introduced during the transmission. The deletions were totally random and there 

were no restrictions on the number of consecutive bits to be deleted. 
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Figure 5-2: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 convolutional code, with outer RS codes 

 

It can be seen from Figure 5-2 that the concatenated scheme with 𝐿 = 16 & 𝐾 = 3 outperformed 

all other coding scenarios shown. The system with 𝐿 = 16 & 𝐾 = 5 performed the worst out of 

all.  

The performance of the coding scheme depends on the number of unconstraint positions of the 

extended prefix that was chosen. The larger the unconstraint part the higher the chances of 

introducing long bursts of substitution errors after resynchronization. With 𝐿 = 16 & 𝐾 = 3 the 

constraint part is very long which helps in keeping a better synchronization and hence fewer 

substitution errors are produced. 
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If the code with 𝐿 = 16 & 𝐾 = 3 is compared to that of code with 𝐿 = 8 & 𝐾 = 3 the 

resynchronization process is better with longer extended prefix lengths having shorter unconstraint 

parts. This is because the code set is very large (i.e. 230 code words produced at each state of the 

convolutional encoder is very large as compare to 23 code words in the extended prefix codebook 

used as synchronization patterns) and very little chances are that synchronization pattern i.e. 

extended prefix code set will appear in the message portion of the frame. Whereas, in case of 

shorter extended prefix lengths the code set is not very large (i.e. 214 code words produced at each 

state of the convolutional encoder is not that large as compare to 23 code words in the extended 

prefix codebook used as synchronization patterns). 

It is better to use large extended prefix codes with shorter unconstraint parts as it will produce 

larger code sets at the convolutional encoder hence the probability of repeating synchronization 

patterns in the message part of the fame is less, and even if a deletion occurs during the 

transmission the chances of producing large substitution errors in a frame during resynchronization 

is also less. The longer the marker sequence of the extended prefix the better the result will be.  

Figure 5-3 shows the BER vs. 𝑃𝑑  for the inner coding system only. It can be seen that bit error rate 

without the outer coding system is higher than what it should be. The reason behind that is the 

coding rate that is being restricted. This restriction is because of the fact that it needs to have 

enough branches in the trellis of the punctured code that matches our extended prefix codebook. 

Because of high rate, the performance of the Viterbi decoder is affected and are not able to correct 

enough errors as it should. Therefore, the introduction of outer code RS code was essential to 

correct most of the remaining errors after Viterbi decoding (inner decoder). 
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Figure 5-3: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 convolutional code, without outer RS codes 

 

Comparison of Concatenated coding scheme (with RS code) between different Extended Prefix 

lengths having same Constraint length: 

The next two Figures compare the performance of the two concatenated coding systems with same 

constraint lengths 𝐾 but different extended prefix lengths. 

Figure 5-4 shows the coding performance of the parent code with constraint length 𝐾 =  3, 

therefore, both the codes have same unconstraint length of the extended prefix patterns, but the 

markers they have used are different. It can be seen that the longer extended prefix outperformed 

the shorter one at a lower constraint length. 
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Figure 5-5 shows the coding performance of the parent code with constraint length 𝐾 =  5. Since 

both the codes have the same unconstraint portion but it’s larger than what was discussed in the 

previous Figure 5-4 with constraint length 𝐾 =  3. With larger constraint length the extended 

prefix codebook size also increases, hence, making synchronization process harder. Also the larger 

unconstraint parts produce longer synchronization error burst which makes the decoding 

inefficient. 

 

 

Figure 5-4: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑲 =  𝟑 convolutional code, with outer RS codes 
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Figure 5-5: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑲 =  𝟓 convolutional code, with outer RS codes 

 

Comparison of inner coding scheme (without RS code) between different Extended Prefix lengths 

having same Constraint length: 

The next two Figures describe the inner code performance with same constraint length but different 

extended prefix code word lengths. 
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Figure 5-6: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑲 =  𝟑 convolutional code, without outer RS codes 

 

Figure 5-6 shows that the coding scheme with only convolutional encoder and decoder 

performance is not as good as was expected. It was realized that the performance of the Viterbi 

decoder depends on the punctured code rate. The high code rate was used due to the constraint of 

finding enough paths hence the performance of the decoder was degraded.  
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Figure 5-7: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑲 =  𝟓 convolutional code, without outer RS codes 

 

Similarly the performance of inner code by using different length extended prefix codes with 

constraint length 𝐾 =  5 is shown in Figure 5-7. In this case shorter length extended prefix codes 

performed better than the longer ones because the unconstraint part of the extended prefix is larger 

hence, chances of substitution errors are high. Therefore, when resynchronizing a frame the longer 

length codes will produce more substitution errors. 
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Comparison of Concatenated coding scheme (with RS code) between same Extended Prefix lengths 

having different Constraint length: 

The last comparison is shown by using same length extended prefix but with different constraint 

lengths. This means that the constraint part of the extended prefix is same for both constraint 

lengths. 

Figure 5-8 illustrate the performance of the concatenated system for 𝐿 = 16. The constraint length 

of the original code was varied and found that longer extended prefix codes perform better with 

the lower constraint length parent convolutional codes.  

 

 

Figure 5-8: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑳 =  𝟏𝟔 convolutional code, with outer RS codes 
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Figure 5-9: BER vs. 𝑷𝒅 for 𝒓 =  𝟏/𝟐 & 𝑳 =  𝟖 convolutional code, with outer RS codes 

 

 

Similarly shorter length extended prefix codes also performs better at lower parent convolutional 

code constraint lengths. Because with the same extended prefix length the unconstraint part of the 

code increases by increasing the constraint length which also decreases the marker length in the 

extended prefix.  

 

5.4 Summary 

In this chapter, firstly the channel model and the simulation methodology were presented. 

Secondly the simulation results were presented and discussed in a methodical manner. 
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Chapter 6: Research Summary and 

Conclusion 

6.0 Introduction 

This chapter provides a brief summary of this research report. Section 6.1 presents a chapter by 

chapter summary of the research discussed in this research report. Section 6.2 presents conclusion 

of the research carried out. In section 6.3 some future aspects of the research will be discussed. 

 

6.1 Research Summary 

The first chapter defines the problem statement of the research study carried out and constructs the 

environment in which the research is been conducted. 

In Chapter 2, a literature review of the concerned work was introduced in which the channel model, 

error correction codes and synchronization error correction codes were discussed in detail. These 

topics are the core of the research and directly linked to it. 

In Chapter 3, a background of the techniques was created that were used to accomplish this 

research. An overview of the synchronization error channel model, convolutional codes, the 

encoding and decoding of convolutional codes were provided in detail. The puncturing and path 

pruning techniques were also introduced and discussed and were used for the construction of 

codebook. 

In Chapter 4, the proposed coding scheme that uses path pruned convolutional codes and extended 

prefix codes were presented. A detailed methodology to design and construct the codebook that 

uses extended prefix codes and marker sequence was also presented in this chapter. The whole 

methodology was explained and comprehended with the aid of examples which clarified the whole 

process step by step. These examples were extracted from the results of the research simulations. 



  

60 

 

In Chapter 5, the focus was on simulation results. The channel model and the simulation 

methodology were also presented. The results of these simulations were presented for different 

scenarios that included concatenated coding scheme with Reed-Solomon codes, inner coding 

scheme (without RS codes), different extended prefix lengths of the codebook designed and 

different constraint lengths of the original code. 

 

6.2 Conclusion 

A novel coding approach to correct insertion/deletion errors based on rate-compatible 

convolutional codes and extended prefix codes was presented in this research report. The 

codebooks were designed using the concepts of extended prefix codes. Each code word in the 

codebook comprised of a constraint (marker sequence) and an unconstraint part. This results in a 

set of code words that can be used as synchronization patterns instead of using a single sequence. 

These code words were then periodically transmitted during the transmission. 

The conventional convolutional codes were punctured and path-pruned in this research. The 

coding scheme used consists of a feedback mapper that lies just before the convolutional encoder. 

The state of the encoder was fed back to the mapper which decides/maps the information data into 

input bits to the encoder. The coding process was a continuous process in which the original rate 

convolutional code was punctured at a certain rate. This puncturing rate was same as that was used 

in searching the codebook and its corresponding inputs to create the mapping table. The pruning 

process was introduced periodically by mapping the first bit of the data information frame into a 

corresponding input to the encoder by feeding its state back to the mapper. Pruning was followed 

by the normal encoding process with puncturing for the rest of the frame. Hence each frame 

consisted of an extended prefix code in front and the rest was the normal encoded code word. 

Therefore the frame was distinguished by looking for these extended prefix at the front of each 

frame at the receiver to keep synchronization.  

After resynchronization the Viterbi decoder decodes these synchronized frames. During the 

resynchronization process the receiver adds or removes bits when the deletion or insertion error 

occurs respectively. This introduces substitution errors to the received code word hence the 

decoding performance of the Viterbi decoder was affected. To improve the performance of the 
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system a concatenated Reed-Solomon code as outer code and interleaving was introduced in the 

system. 

Different simulations were carried out to evaluate the performance of the new proposed coding 

system by varying different parameters in the system. A simplified binary symmetric channel was 

used in the simulation experiments to introduce insertion/deletion errors. The designed 

concatenated coding scheme successfully resynchronized the frames at the receiver and corrected 

majority of the substitution errors caused due to the resynchronization process. 

The system was tested for deletion errors with a rate 𝑟 =  1/2 parent convolutional encoder. The 

simulation was designed for four different scenarios having two different constraint length 𝐾 =

 3 & 𝐾 = 5 and two different extended prefix code word lengths (i.e. extended prefix lengths of 8 

& 16). The results showed that the coding system performed better at lower constraint lengths and 

extended prefix with longer constraint part (marker sequence). The reason it performed better was 

because at lower constraint lengths the unconstraint part of the extended prefix is shorter. During 

the resynchronization at the receiver the extended prefix with larger unconstraint part produced 

longer bursts of substitution errors as compared to the extended prefix with shorter unconstraint 

part. Because the size of unconstraint part of the extended prefix designed depends on the 

constraint length of the original code, therefore lower constraint lengths outperformed the higher 

constraint lengths. By adding Reed-Solomon code as outer coding scheme in concatenation with 

the new coding scheme the results were improved to greater extent.  

To the author’s knowledge, this is the first implementation of insertion/deletion error correction 

coding system using existing path-pruned convolutional codes and extended prefix codes. The 

performance of this new concatenated scheme showed a great prospect and more developments 

and improvements are possible in this scheme.    
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6.3 Future Recommendations 

Some possible improvements and developments related to the new coding scheme are now 

presented: 

The higher rate convolutional codes as parent code have not been considered with respect to the 

new coding scheme. The simulations conducted were for 𝑟 =  1/2 rate convolutional code. 

Therefore considering higher rates e.g. 𝑟 =  2/3 , 3/4  as parent codes may further improve the 

performance of the system.  

By lowering the puncturing rate and finding an optimum extended prefix codebook can also 

improve the performance of the Viterbi decoder. The Viterbi decoder will be able to correct higher 

number of substitution errors with more information available and lower puncturing rates.  
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Appendix A:  Some Example Extended Prefix Codes Designed 

In this Appendix some extended prefix example codebooks designed in chapter 4 are presented.  

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

11100 000 11100000 

11100 001 11100001 

11100 010 11100010 

11100 011 11100011 

11100 100 11100100 

11100 101 11100101 

11100 110 11100110 

11100 111 11100111 

 

Table A- 1:  Extended Prefix Code for Constraint Length 𝑲 =  𝟑 and 𝑳 =  𝟖 

 

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

1110 0000 11100000 

1110 0001 11100001 

1110 0010 11100010 

1110 0011 11100011 

1110 0100 11100100 

1110 0101 11100101 

1110 0110 11100110 

1110 0111 11100111 

1110 1000 11101000 

 1110 1001 11101001 

 1110 1010 11101010 

1110 1011 11101011 

1110 1100 11101100 

1110 1101 11101101 

1110 1110 11101110 

1110 1111 11101111 

 

 
 

Table A- 2: Extended Prefix Code for Constraint Length 𝑲 =  𝟒 and 𝑳 =  𝟖 
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Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

110 00000 11000000 

110 00001 11000001 

110 00010 11000010 

110 00011 11000011 

110 00100 11000100 

110 00101 11000101 

110 00110 11000110 

110 00111 11000111 

110 01000 11001000 

 110 01001 11001001 

 110 01010 11001010 

110 01011 11001011 

110 01100 11001100 

110 01101 11001101 

110 01110 11001110 

110 01111 11001111 

110 10000 11001000 

110 10001 11010001 

110 10010 11010010 

110 10011 11010011 

110 10100 11010100 

110 10101 11010101 

110 10110 11010110 

110 10111 11010111 

110 11000 11011000 

110 11001 11011001 

110 11010 11011010 

110 11011 11011011 

110 11100 11011100 

110 11101 11011101 

110 11110 11011110 

110 11111 11011111 

 

Table A- 3: Extended Prefix Code for Constraint Length 𝑲 =  𝟓 and 𝑳 =  𝟖 
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Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

1111111110000 000 1111111110000000 

1111111110000 001 1111111110000001 

1111111110000 010 1111111110000010 

1111111110000 011 1111111110000011 

1111111110000 100 1111111110000100 

1111111110000 101 1111111110000101 

1111111110000 110 1111111110000110 

1111111110000 111 1111111110000111 

 

Table A- 4: Extended Prefix Code for Constraint Length 𝑲 =  𝟑 and 𝑳 =  𝟏𝟔 

 

Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

111111110000 0000 11111111100000000 

111111110000 0001 11111111100000001 

111111110000 0010 11111111100000010 

111111110000 0011 11111111100000011 

111111110000 0100 11111111100000100 

111111110000 0101 11111111100000101 

111111110000 0110 11111111100000110 

111111110000 0111 11111111100000111 

111111110000 1000 11111111100001000 

 
111111110000 1001 11111111100001001 

 
111111110000 1010 11111111100001010 

111111110000 1011 11111111100001011 

111111110000 1100 11111111100001100 

111111110000 1101 11111111100001101 

111111110000 1110 11111111100001110 

111111110000 1111 11111111100001111 

 

 
 

Table A- 5: Extended Prefix Code for Constraint Length 𝑲 =  𝟒 and 𝑳 =  𝟏𝟔 
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Marker Sequence (Constraint Part) Unconstraint Part Extended Prefix Code Word 

11111110000 00000 1111111000000000 

11111110000 00001 1111111000000001 

11111110000 00010 1111111000000010 

11111110000 00011 1111111000000011 

11111110000 00100 1111111000000100 

11111110000 00101 1111111000000101 

11111110000 00110 1111111000000110 

11111110000 00111 1111111000000111 

11111110000 01000 1111111000001000 

 11111110000 01001 1111111000001001 

 11111110000 01010 1111111000001010 

11111110000 01011 1111111000001011 

11111110000 01100 1111111000001100 

11111110000 01101 1111111000001101 

11111110000 01110 1111111000001110 

11111110000 01111 1111111000001111 

11111110000 10000 1111111000001000 

11111110000 10001 1111111000010001 

11111110000 10010 1111111000010010 

11111110000 10011 1111111000010011 

11111110000 10100 1111111000010100 

11111110000 10101 1111111000010101 

11111110000 10110 1111111000010110 

11111110000 10111 1111111000010111 

11111110000 11000 1111111000011000 

11111110000 11001 1111111000011001 

11111110000 11010 1111111000011010 

11111110000 11011 1111111000011011 

11111110000 11100 1111111000011100 

11111110000 11101 1111111000011101 

11111110000 11110 1111111000011110 

11111110000 11111 1111111000011111 

 

Table A- 6: Extended Prefix Code for Constraint Length 𝑲 =  𝟓 and 𝑳 =  𝟏𝟔 
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Appendix B:  Some Example Mapping Tables 

In this Appendix some example mapping tables for some specific parent convolutional codes are 

presented. 

Initial State Info Input Extended Prefix Code Word 

0 0 1101000 11100100 

0 1 1101011 11100010 

1 0 0111100 11100111 

1 1 0111111 11100001 

2 0 1000000 11100000 

2 1 1000011 11100110 

3 0 0010100 11100011 

3 1 0010111 11100101 

 

Table B- 1: Mapping Table of a Constraint length 𝑲 =  𝟑 Parent Convolutional Encoder 

and 𝑳 =  𝟖 

 

Initial State Info Input Extended Prefix Code Word 

0 0 1001000 11101111 

0 1 1001111 11100101 

1 0 0101000 11100111 

1 1 0101111 11101101 

2 0 0011000 11100011 

2 1 0011111 11101001 

3 0 1111000 11101011 

3 1 1111111 11100001 

4 0 0000000 11100000 

4 1 0000111 11101010 

5 0 1100000 11101000 

5 1 1100111 11100010 

6 0 1010000 11101100 

6 1 1010111 11100110 

7 0 0110000 11100100 

7 1 0110111 11101110 

 

Table B- 2: Mapping Table of a Constraint length 𝑲 =  𝟒 Parent Convolutional Encoder 

and 𝑳 =  𝟖 
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Initial State Info Input Extended Prefix Code Word 

0 0 1110000 11010111 

0 1 1111111 11001111 

1 0 0100000 11010100 

1 1 0101111 11001100 

2 0 1010000 11000011 

2 1 1011111 11011011 

3 0 0000000 11000000 

3 1 0001111 11011000 

4 0 0110000 11011111 

4 1 0111111 11000111 

5 0 1100000 11011100 

5 1 1101111 11000100 

6 0 0010000 11001011 

6 1 0011111 11010011 

7 0 1000000 11001000 

7 1 1001111 11010000 

8 0 1010000 11010011 

8 1 1011111 11001011 

9 0 0000000 11010000 

9 1 0001111 11001000 

10 0 1110000 11000111 

10 1 1111111 11011111 

11 0 0100000 11000100 

11 1 0101111 11011100 

12 0 0010000 11011011 

12 1 0011111 11000011 

13 0 1000000 11011000 

13 1 1001111 11000000 

14 0 0110000 11001111 

14 1 0111111 11010111 

15 0 1100000 11001100 

15 1 1101111 11010100 

 

Table B- 3: Mapping Table of a Constraint length K = 5 Parent Convolutional Encoder and 

𝑳 =  𝟖 
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Appendix C:  Matlab Simulation Code 

Code to construct transition table used to create all possible code words at each state of the 

encoder 

function [Transition_Table] = transition_table 

ConstraintLength = 3; 

CodeGenerator = [5 7]; 

Transition_Table = []; 

trellis = poly2trellis(ConstraintLength,CodeGenerator); 

i_s = 0; 

 

for j = 1:1:length(trellis.outputs) 

    Transition_Table = [Transition_Table;  i_s, 0, trellis.nextStates(j,1), 

trellis.outputs(j,1); i_s, 1, trellis.nextStates(j,2), 

trellis.outputs(j,2)]; 

    i_s = i_s+1; 

end 

 

end 

 

 

Code to search extended prefixes and create mapping table 

function [Table_Mapping] = marker_search_mapping_table 

 

%  disp('    i_s  input  n_s  output'); 

Transition_Table = transition_table; % inputs the transition table from the 

function 

 

 sequence=[]; % Record the code words generated 

 state_hist=[]; % Record the state history for each transition 

 input_hist =[]; % Record the input sequence for each code word 

 

 Extended_Prefix = [ 1 1 1 0 0 0 0 0; 

   1 1 1 0 0 0 0 1; 

   1 1 1 0 0 0 1 0; 

   1 1 1 0 0 0 1 1; 

   1 1 1 0 0 1 0 0; 

   1 1 1 0 0 1 0 1; 

   1 1 1 0 0 1 1 0; 

   1 1 1 0 0 1 1 1]; 

 

 i_s=[]; 

 n_s=[]; 

 

 % loop to generate all possible code words at each state 

 

for r = 1:1:length(Transition_Table) 

 

i_s=Transition_Table(r,1); 

n_s=Transition_Table(r,3); 
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      [a]= find( Transition_Table(:,1)== n_s); 

        for b=1:1:length(a) 

 

         n_s= Transition_Table(a(b),3); 

 

            [c]= find( Transition_Table(:,1)== n_s); 

                for d=1:1:length(c) 

 

                   n_s= Transition_Table(c(d),3); 

 

                    [e]= find( Transition_Table(:,1)== n_s); 

                        for f=1:1:length(e) 

 

                            n_s= Transition_Table(e(f),3); 

 

                              [g]= find( Transition_Table(:,1)== n_s); 

                                  for h=1:1:length(g) 

 

                                      n_s= Transition_Table(g(h),3); 

 

                                        [i]= find( Transition_Table(:,1)== 

n_s); 

                                            for j=1:1:length(i) 

 

                                                n_s= 

Transition_Table(i(j),3); 

 

                                                    [k]= find( 

Transition_Table(:,1)== n_s); 

                                                        for 

lt=1:1:length(k) 

 

 

sequence=[sequence;Transition_Table(r,4),Transition_Table(a(b),4),Transitio

n_Table(c(d),4),Transition_Table(e(f),4),Transition_Table(g(h),4),Transitio

n_Table(i(j),4),Transition_Table(k(lt),4)]; % creates all possible code 

words generated at all states of the encoder for N time intervals 

 

state_hist = [state_hist;Transition_Table(r,1),Transition_Table(k(lt),3)]; 

% stores the state history for the code word produced for N time intervals 

 

input_hist = 

[input_hist;Transition_Table(r,2),Transition_Table(a(b),2),Transition_Table

(c(d),2),Transition_Table(e(f),2),Transition_Table(g(h),2),Transition_Table

(i(j),2),Transition_Table(k(lt),2)]; % stores the input sequence for each 

code word produced by the encoder during N time intervals 

 

 

                                                        end 

                                            end 

 

                                  end 

 

                        end 

 

                end 
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        end 

 

 

 

end 

 

sequence; 

sequence2 = reshape(sequence.',1,[]); 

sequence_dec = sequence2; 

 

sequence_bin = []; 

for dec = 1:1:length(sequence_dec); 

    sequence_bin = [sequence_bin dec2bin(sequence_dec(1,dec),2)- '0']; 

end 

input = reshape(sequence_bin.',1,[]); 

t1= reshape(input, size(sequence,2)*2 , 

size(input,2)/(size(sequence,2)*2))'; % contains all possible code words at 

each state 

 

 

        t = t1(:,[1 3 5 7 9 11 13 14]); % Puncturing pattern determines the 

positions of 1s i.e. bits that are kept 

 

      figure; 

 

hh = []; 

in = []; 

ot = []; 

for e = 1:1:size(Extended_Prefix,1) 

 

    l= 

ismember(t(:,1:size(Extended_Prefix,2)),Extended_Prefix(e,:),'rows'); % 

find the element of Z (Extended_Prefix) in t (punctured sequence) 

    hh= [hh; state_hist([find(l)],:)]; % state history of the found pattern 

in t 

    in= [in; input_hist([find(l)],:)]; % input sequence of the found 

patterns 

    ot = [ot; t([find(l)],:)]; % code words found 

 

 

    hh_r=reshape(hh.',1,[]); % reshaping state history for ploting 

    hh_dec = hh_r; 

 

 

 

    hhh= reshape(hh_dec, 2,length(hh_dec)/2); 

 

 

    plot(hhh); % plotting state history 

    set(gca,'YDir','reverse'); 

    xlabel('Trellis'); 

    ylabel('States'); 

end 

table1 = []; 

for z = 1:1:length(in) 
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    table1 = [table1; hh(z,1) in(z,:) ot(z,:)]; 

end 

 

table2 = []; 

for z = 1:1:length(in) 

    table2 = [table2; hh(z,1) bin2dec(cellstr(sprintf('%d',in(z,:))))]; 

end 

 

table2 = sortrows(table2); 

 

Table = []; 

in_put = 0; 

for z = 1:1:length(table2) 

    Table = [Table; table2(z,:) in_put]; 

    in_put = xor(in_put,1); 

end 

limit = 2^2; 

count1 = 1; 

count2 = limit; 

Table_Mapping = []; % creating mapping table required for the pruning 

process 

 

for u = 1:1:length(Table)/limit 

    Table_Mapping = [Table_Mapping; Table(count1,:); Table(count2,:)]; 

    count1 = count1 + limit; 

    count2 = count2 + limit; 

end 

end 
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Simulation code for the concatenated scheme that includes RS code, interleaving, 

convolutional encoding, puncturing, pruning, resynchronization, Viterbi decoding and RS 

decoding 

 

function [] = simulation 

Mapping_Table = marker_search_mapping_table;       %   mapping table for 

introduction of pruning. it consists of initial_state input and info. 

 

p_m =[1 1 1 1 1 1 1; 0 0 0 0 0 0 1]; % puncturing matrix 

 

Extended_Prefix = [ 1 1 1 0 0 0 0 0; 

   1 1 1 0 0 0 0 1; 

   1 1 1 0 0 0 1 0; 

   1 1 1 0 0 0 1 1; 

   1 1 1 0 0 1 0 0; 

   1 1 1 0 0 1 0 1; 

   1 1 1 0 0 1 1 0; 

   1 1 1 0 0 1 1 1]; 

 

 

probability = linspace(0.00001,0.001,10); % Error Probabilities. 

Bit_Error_Rate = []; 

Bit_Error_Rate_inner = []; 

for prob = 1:1:length(probability) % loop will run for each deletion 

probability i.e. 10 time 

data_info = []; 

op_info =[]; 

data_info2 = []; 

op_info2 =[]; 

N = 1; 

 

for nn = 1:1:N % loop will run N times to for each deletion probability 

 

 msg_complete = []; % records the complete information message sent 

 input2 = []; % records the encoded data after deletion errors 

 input3 = []; % recodes the resynchronized code word 

 

 

% Reed-Solom Encoder 

 

    k = 7; 

    m = 4; 

    x = []; 

    c = []; 

    b1 = 616*80; % produce more than 50 thousand bits 

     information1=floor(2*rand(1,b1)); % Generate random information bits 

equal to the length of b1 

 

     for j = 1:m:length(information1) 

         x = [x bin2dec(sprintf('%d',information1(j:j+(m-1))))]; 

     end 

         x = vec2mat(x,k); 

         msg_rs = gf(x,m); % Create a Galois array in GF(2^m). 
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         n = 2^m-1; 

 

 

         code_rs = rsenc(msg_rs,n,k); 

         interleaved = reshape(code_rs,1,[]); 

         for r = 1:1:length(interleaved) 

             c = [c interleaved(r)]; 

         end 

 

                    GFInput =[]; 

                    DecOutput = []; 

                    prim_poly = primpoly(m,'nodisplay'); 

                    information = []; 

                    % GFInput = GFInput(:)';% force a row vector 

                    GFInput = c; 

                    GFRefArray = gf([0:(2^m)-1],m,prim_poly); 

                    for i=1:length(GFInput) 

                        for k1=0:(2^m)-1 

                            temp = isequal(GFInput(i),GFRefArray(k1+1)); 

                            if (temp==1) 

                                DecOutput(i) = k1; 

                            end 

                        end 

                    end 

 

             for u = 1:1:length(DecOutput) 

  information = [information dec2bin(DecOutput(u),4) - '0']; 

             end 

 

 

 

    pruning_period = 21;  % Pruning Period i.e. after every 21 bits 1 bit 

is pruned to produce Extended_Prefix for synchronization 

 

    pruning_bit_positions = (1 : pruning_period : length(information)); 

    count1 = 1; % counter for the bit to be pruned 

    count2 = 22;% counter for the bits to be encoded normally 

   init_state = 0; 

 

 

 

 

% Mapping 

 

 i_s2 = Mapping_Table(1,1); %   Encoder Starts from all zero state 

 

for j = 1:1:length(information)/22; % loop will run to map the information 

                                    % bits according to the pruning period 

                                    % and encode the information per frame 

                                    % i.e for 22 bits per loop 

 

    info = information(count1); % stores the pruning bit 

    info_puncture = information(count1+1:count2); % stores next 21 bits 

after pruning bit 

 

    count1 = count1 + 22; 

    count2 = count2 + 22; 
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 % Mapping Process 

 

 

    info_check= find(Mapping_Table(:,3)==bin2dec(sprintf('%d',info))); % 

Checks the location of pruning bit in the Mapping table 

 

    istate2_check= find(Mapping_Table(:,1)==i_s2); % Checks the initial 

state which is the final state of the encoder after encoding previous frame 

 

    d = intersect(info_check,istate2_check); % finds the position of the 

information bit for pruning from Mapping table 

 

    data1 = dec2bin(Mapping_Table(d,2),7); % Maps 1 bit into 7 bits 

 

 

data_dec = bin2dec(data1); 

data_bin =dec2bin(data_dec,length(p_m))- '0'; 

msg1 = reshape(data_bin.',1,[]); 

msg = [msg1 info_puncture]; % 7 mapped bits plus 21 normal bits makes it 28 

msg bits that are encoded by the encoder 

msg_complete = [msg_complete msg]; % Complete message bits (mappped and 

normal) to check BER over the length of information 

 

 

 

% Encoding 

 

ConstraintLength = 3; 

CodeGenerator = [5 7]; 

tblen = 5*ConstraintLength; 

opmode = 'trunc'; 

dectype = 'hard'; 

puncpat = [1 0 1 0 1 0 1 0 1 0 1 0 1 1]; % Puncturing Matrix 

trellis = poly2trellis(ConstraintLength,CodeGenerator); % Trellis formation 

[code_conv,final_state] = convenc(msg,trellis,puncpat,init_state); % 

Encoding 

input2 = [input2 code_conv]; % Code word to be transmitted to the receiver 

% i_s2 = str2num(dec2bin(final_state,2)); 

i_s2 = final_state; % Final state of the Encoder after each frame i.e. 

after 22 bits of information or 28 bits of mapped information 

% msg_info = [msg_info msg]; 

init_state = final_state; % Initial state for the encoder to start from 

i.e. final state of the previous encoded frame 

end 

 

 

 

% Introducing deletion error 

 

out = rand(1, length(input2)) <= probability(prob); % Randomly generate the 

bits for deletion on the basis of probability 

 

error_pos = find(out==1);% Positions of the bits to be deleted 
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input2(:,error_pos) = []; % Code word Received by the Receiver after 

deletion of random bits from it on the basis of probability 

 

 

% Resynchronization 

 

sliding_window =zeros(1,length(input2)); % Generates a sequence of zeros of 

the length of received code word 

 

 

% Creating sliding_window 

 

for i = 1:1:length(input2)-(size(Extended_Prefix,2)-1) 

    window = [input2(i:i+(size(Extended_Prefix,2)-1))]; 

    for s = 1:1:size(Extended_Prefix,1) 

        e_w = ismember(window, Extended_Prefix(s,:), 'rows'); 

        if e_w ==1 

            sliding_window (1,i)= 1; 

            break; 

        else 

        end 

    end 

end 

 

pattern = [1 zeros(1,31)]; % Generates the correct sliding window pattern 

of an error free frame 

 

sliding_window = [sliding_window pattern]; % concatenate the correct 

pattern of the sliding window at the end of the generated sliding window 

 

find1 = find(sliding_window); % Finds the positions of 1s in the sliding 

window (1 shows the starting point of the frame) 

 

temp_vector = []; % to store the unmatched pattern in the sliding window 

ref_point = find1(1); 

 

 

if find1(1) ~= 1; % Case when one of the synchronization bits get deleted 

and its the 1st frame of the transmission 

 

    sliding_window = [pattern sliding_window]; % concatenate the correct 

pattern of the sliding window at the start of the generated sliding window 

for reference 

 

    find1 = find(sliding_window); % Finds the positions of 1s in the 

sliding window (1 shows the starting point of the frame) 

 

    ref_point = find1(1); % Reference point for resynchronization purpose 

 

    for i = 1+1:1:length(find1); % Loop through the sliding window to check 

for deletions 

 

        if i == length(find1); % case when its the last frame of the 

received code word and the synchronization patterns occurs within the 

message sequence 
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        temp_vector = [sliding_window(ref_point:find1(i)-1)]; % to store 

the unmatched pattern of a frame in the sliding window 

 

        dd = length(temp_vector); % length of unmatched pattern to find if 

there are bits deleted in the frame 

 

        dz = round(dd/length(pattern)) * length(pattern) - dd; % determines 

the number of deleted bits in the frame 

 

        input3 = [input3 zeros(1,dz) input2(ref_point:end)]; % 

Resynchronizes the received code word by adding zeros in front of the frame 

in which bits get deleted 

 

        else 

            if mod((find1(i) - ref_point),length(pattern)) == 0 || 

find1(i)-find1(i-1) == length(pattern); % Case when the correct frame is 

received 

 

            temp_vector = [temp_vector sliding_window((find1(i-

1)):find1(i)-1)]; % stores the frame for resynchronization 

 

            dd = length(temp_vector); % length of frame (unmatched 

/matched) 

 

            dz = round(dd/length(pattern)) * length(pattern) - dd; % 

determines the number of deleted bits in the frame 

 

            input3 = [input3 zeros(1,dz) input2(ref_point : (find1(i)-1)-

length(pattern))]; % Resynchronizes the received code word by adding zeros 

in front of the frame if bits get deleted 

 

            ref_point = find1(i)-length(pattern); % changes reference point 

to the current Correctly received frame 

 

            temp_vector = []; % Empty the current temporarily stored frames 

            else 

                temp_vector = [temp_vector sliding_window((find1(i-

1)):find1(i)-1)]; % Case when if the correct pattern is not found store the 

frames 

            end 

        end 

    end 

else % Case when one of the synchronization bits get deleted other than the 

1st frame of the transmission 

 

    for i = 2:1:length(find1); % Loop through the sliding window to check 

for deletions 

 

        if i == length(find1); % case when its the last frame of the 

received code word and the synchronization patterns occurs within the 

message sequence 

 

            temp_vector = [sliding_window(ref_point:find1(i)-1)]; % to 

store the unmatched pattern of a frame in the sliding window 

 

            dd = length(temp_vector); % length of unmatched pattern to find 

if there are bits deleted in the frame 
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            dz = round(dd/length(pattern)) * length(pattern) - dd; % 

determines the number of deleted bits in the frame 

            input3 = [input3 zeros(1,dz) input2(ref_point:end)]; % 

Resynchronizes the received code word by adding zeros in front of the frame 

in which bits get deleted 

        else 

            if mod((find1(i) - ref_point),length(pattern)) == 0 || 

find1(i)-find1(i-1) == length(pattern); % Case when the correct frame is 

recived 

                temp_vector = [temp_vector sliding_window(find1(i-

1):find1(i)-1)]; % stores the frame for resynchronization 

 

                dd = length(temp_vector); % length of frame (unmatched 

/matched) 

 

                dz = round(dd/length(pattern)) * length(pattern) - dd; % 

determines the number of deleted bits in the frame 

 

                input3 = [input3 zeros(1,dz) input2(ref_point:find1(i)-1)]; 

% Resynchronizes the received code word by adding zeros in front of the 

frame if bits get deleted 

 

                ref_point = find1(i); % changes reference point to the 

current Correctly received frame 

 

                temp_vector = []; % Empty the current temporarily stored 

frames 

            else 

                    temp_vector = [temp_vector sliding_window(find1(i-

1):find1(i)-1)]; % Case when if the correct pattern is not found store the 

frames 

            end 

        end 

    end 

end 

 

 

% decoding 

 

% Input3 is the resynchronized code word that is fed into the decoder 

 

op = vitdec(input3,trellis,tblen,opmode,dectype,puncpat); % Decoder 

 

 

% Converting Output Back to its corresponding data for each Extended_Prefix 

used 

 

out_put = []; 

 

for H = 1:28:length(op) 

ham_dist =[]; 

 

 

    for T = 1:1:length(Mapping_Table) 

        ham_out = [dec2bin(Mapping_Table(T,2),7) - '0'; op(H:H+6)]; 

        h_out =  pdist(ham_out,'hamming')*7; 
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        ham_dist = [ham_dist; h_out]; 

    end 

    indi = find(ismember(ham_dist,min(ham_dist), 'rows')); 

    out_put = [out_put, Mapping_Table(indi(1),3),op(H+7:H+27)]; 

end 

 

x2 = []; 

for j2 = 1:m:length(out_put) 

    x2 = [x2 bin2dec(sprintf('%d',out_put(j2:j2+(m-1))))]; 

end 

msg2 = gf(x2,m); 

msg2 = reshape(msg2,length(msg2)/n,n); 

decoded = rsdec(msg2,n,k); 

input = reshape(decoded.',1,[]) ; 

 

                    GFInput1 = input; 

                    DecOutput2 =[]; 

                    information_decoded =[]; 

                    GFRefArray2= gf([0:(2^m)-1],m,prim_poly); 

                    for ii=1:length(GFInput1) 

                        for k2=0:(2^m)-1 

                            temp = isequal(GFInput1(ii),GFRefArray2(k2+1)); 

                            if (temp==1) 

                                DecOutput2(ii) = k2; 

                            end 

                        end 

                    end 

                    for u2 = 1:1:length(DecOutput2) 

                        information_decoded = [information_decoded 

dec2bin(DecOutput2(u2),4) - '0']; 

                    end 

 

    BB1 = xor(information1,information_decoded); % Determines the flipped 

bits 

 

    BER1 = sum(BB1)/length(information1); % Determines the BER per N 

iterations 

 

    BB2 = xor(msg_complete,op); % Determines the flipped bits 

    BER2 = sum(BB1)/length(msg_complete); % Determines the BER per N 

iterations 

 

data_info = [data_info information1]; % Stores message (mapped information 

that was encoded by the encoder) bits for the whole N iterations 

 

op_info = [op_info information_decoded]; % Stores Decoded bits for the 

whole N iterations 

 

data_info2 = [data_info2 msg_complete]; % Stores message (mapped 

information that was encoded by the encoder) bits for the whole N 

iterations 

 

op_info2 = [op_info2 op]; % Stores Decoded bits for the whole N iterations 

 

end 
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BB = xor(data_info,op_info); % Determines the flipped bits for the while N 

iterations per Probability 

 

BER = sum(BB)/length(data_info) % Determines the BER for the while N 

iterations per Probability 

 

BB_inner = xor(data_info2,op_info2); % Determines the flipped bits for the 

while N iterations per Probability 

 

BER_inner = sum(BB_inner)/length(data_info2) % Determines the BER for the 

while N iterations per Probability 

 

Bit_Error_Rate = [Bit_Error_Rate BER]; % Stores the values of BER for 

plotting 

 

Bit_Error_Rate_inner = [Bit_Error_Rate_inner BER_inner]; % Stores the 

values of BER for plotting 

end 

 

%   plot 

close all 

figure 

plot(probability,Bit_Error_Rate,'b.-'); 

hold on 

plot(probability,Bit_Error_Rate_inner,'mx-'); 

grid on 

legend('outer','inner'); 

xlabel('probability, Pdel'); 

ylabel('Bit Error Rate'); 

title('Bit Error Rate vs Deletion Probability Curve'); 

 

end 

 


