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ABSTRACT 

This Research Report sets out to find out how the use of Empirical Mode 

Decomposition (EMD) for block selection impacts on the performance of the 

Variable Length Bootstrap (VLB) stochastic rainfall generator. Empirical Mode 

Decomposition (EMD), a relatively new data-adaptive approach, decomposes a time 

series into a group of component time series’ termed Intrinsic Mode Functions 

(IMFs) that are considered to quantify the impact of the multiple physical processes 

that affect the variability in the original time series. Therefore using IMFs may be 

better than the subjective method currently used in the VLB for block 

determination.  The performance of the resulting model is tested by comparing 

historic with generated rainfall statistics using a 10-site rainfall generator problem.  

The hybrid EMD-VLB model is further compared with the standard VLB model using 

8 statistics. The EMD-VLB generator is found to replicate the statistics at par with 

the VLB generator on a monthly time scale while the standard VLB model performs 

better on a yearly time scale. 
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1.  INTRODUCTION 

1.1  Background 

In the hydrological cycle, the movement of water is seen to follow a well understood 

deterministic path, but the magnitude and timing of the various processes (e.g. 

extreme rainfalls) that constitute the cycle are partly stochastic due to irregularities 

in the atmospheric circulation (Shaw, 1994). This is evident in studies of rainfall time 

series data that exhibit non stationarity properties despite the prevalence of 

ergodicity in the data. General climatological studies in support of this include global 

precipitation (Tsonis, 1996; Peel et al., 2009), temperature and stratospheric ozone 

(Diodato and Bellochi, 2010; Yang et al., 2010) and Pacific mean sea-level pressure 

(Trenberth, 1990). These examples demonstrate that although certain means and 

periodicities of the climatic variables are expected, they exhibit large variabilities 

that are not straightforwardly predictable hence necessitating the use of stochastic 

hydrology.  

Water resources are planned and designed for the future and the available historic 

hydrologic records are highly unlikely to be replicated during the life of the water 

resource system. They however provide a plausible sample of the many possibilities 

that could be expected. Stochastic hydrology enables the generation of ensembles 

of artificial hydrologic sequences to enable assessment of the broad range of 

hydrologic conditions that could occur. This enables a statistical evaluation of 

system reliability that cannot be achieved with a single historic sequence. The 

artificial sequences however need to possess the statistical characteristics of the 

historic sequence for the assessment to be realistic. This is a non-trivial task that has 

been researched on for several decades (examples include Yevjevich (1987; 1972), 

Koutsoyiannis (2000) and Pegram (2003)). 
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For monthly water resources assessment in Southern Africa, streamflow stochastic 

generators have been used much more extensively than rainfall generators. 

However according to Ndiritu and Nyaga (2014), applying stochastic rainfalls rather 

than streamflows may yield many advantages since rainfall is the main input in the 

hydrologic cycle and probabilistic analysis can be included more realistically and 

easily in the analysis of catchment hydrological processes. The impact of climate 

variability/change on basin hydrology and water resources can be studied with 

more ease with rainfall rather than streamflow (Ndiritu and Nyaga, 2014). Among 

the needs for rainfall data is rainfall-runoff modelling to produce monthly flows for 

the estimation of water yield from large catchments (Srikanthan et al., 2002), and 

modelling of rainfall dependent activities such as irrigation and sediment transport. 

Stochastic hydrology has been dominated by both parametric and non-parametric 

data generation approaches and the complexity as well as ease of applicability, 

influences the choice of the models to apply. Parametric and linear approaches are 

typically characterized by high sensitivity of model results to model parameters 

(Rajagopalan et al., 1999), and this has led to the development of non-linear and 

non-parametric approaches for hydrological prediction. In addition, parametric 

approaches assume that data can be fitted into a specific probability distribution 

with temporary fixed parameters but this stationarity no longer serves as the default 

assumption for water infrastructure planning and management (Milly et al., 2008; 

Peel and Blöschl, 2011). While exceptions to the use of large number of parameters 

in stochastic parametric models exist (Koutsoyiannis, 2001; Koutsoyiannis et al., 

2008; Ndiritu, 2011a), a majority of those approaches become computationary 

intensive due to the complexities that characterize them. Although many models 

that are complex and computationally-intensive are considered to provide reliable 

results, water resources planners and managers often prefer models that are easier 

to understand and use for practical short and long term planning of water resources 

systems. 



3 
 

Several stochastic models exist and daily (and sub-daily) rainfall generators form the 

majority of these (Wilks, 1998; Rajagopalan and Lall, 1999; Srikanthan et al., 2002; 

Sharma et al., 2003; Clark et al., 2004; Mehrotra et al., 2006; Mehrotra and Sharma, 

2007; Wang and Nathan, 2007; Eisinger and Wiegand, 2008; Kim et al., 2008; 

Mehrotra and Sharma, 2009; Srikanthan and Pegram, 2009; Wang et al., 2011). For 

the planning and management of water resources, a monthly time step is often 

(though not always) adequate and modelling at this time step is much simpler than 

at a daily time step. The need for effective stochastic monthly rainfall generators can 

therefore not be overstated. Though there is limited literature on monthly rainfall 

generators, notable ones include those by Sharma et al. (2002), Yates et al. (2003) , 

Ünal et al. (2004), Brissete et al. (2007), Wang and Nathan (2007) and Serinaldi and 

Kilsby (2012). The scope for research and development of effective and efficient 

rainfall generators at the monthly time step is therefore wide. 

Most of the climatic processes originate from dynamic physical processes, and the 

resulting climatic time series are usually non-linear and non-stationary thus 

requiring adaptive modelling methods. Since an important goal of hydrological data 

analysis is to unearth the physical insights and implications hidden in the non-

stationary and non-linear data, adaptive approaches need to be applied (Huang and 

Wu, 2008). In search of a stochastic monthly rainfall generator that is simple, reliable 

and possesses data adaptive properties, two relatively new methods; Empirical 

Mode Decomposition (EMD) pioneered by Huang et al. (1998) coupled with the 

Variable Length Bootstrap (Ndiritu, 2011) stand out. The two approaches represent 

a shift from complex and computationally intensive methods and are conceptually 

well grounded. Empirical Mode Decomposition (EMD) is a non-linear, data-adaptive, 

step wise procedure that is capable of breaking down a historic rainfall time series 

into rainfall amounts that are segmented within their respective time scales. 

Quantification of the proportion of hydro-climatic time series variations at different 

time scales due to fluctuations occurring at those time scales (monthly, seasonal, 
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annual inter-annual and inter-decadal) is particularly important for the sustainable 

management of land and water resources systems (Peel et al., 2005). Decomposition 

in this context means the breaking down of a composite into separate and simpler 

constituents (Victor, 2012). This segmentation results into datasets herein referred 

to as Intrinsic Mode Functions (IMFs) and a trend that are realized after 

decomposition. The VLB pioneered by Ndiritu (2011a,b) is a non-parametric monthly 

streamflow generator that has the ability to overcome one of the greatest 

limitations of a classical bootstrap; being able to generate extreme values of data 

beyond (higher or lower than) those in the historic record. As stated earlier, since 

rainfall amounts and their corresponding occurrence times are unlikely to be 

repeated in future, stochastic simulated sequences are therefore needed as long as 

the generated sequences replicate the statistical characteristics of the historic data. 

The VLB, in addition overcomes another common problem in stochastic generators; 

preservation of monthly serial correlation between end of one year and the 

beginning of the next (Ndiritu, 2011a) by using simple approaches. The VLB obtains 

sampling blocks fairly subjectively by terminating the blocks during the dry periods 

of the time series. It is likely that block selection can be improved by first 

decomposing the time series using EMD and then selecting the block start and 

termination locations based on the characteristics of the IMFs. EMD and the VLB can 

therefore complement each other to obtain a more robust stochastic generator. The 

EMD method is comprehensively described and applied in the various stages of this 

research report while a detailed description of the adaptation of the VLB generator 

for rainfall generation can be found in Ndiritu and Nyaga (2014). 
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1.2 Problem statement 

The problem statement can hereby be summarized by the following points; 

1. Scarcity of simple and robust stochastic models that can easily be used by 

water resources planners. 

2. Presence of several parametric stochastic generators that are 

cumbersome due to the complexities involved in choosing model 

parameters that fit specific probability distributions of those generators. 

These distributions tend to represent linearity and non-adaptability of 

natural systems thus the need for data adaptive approaches that 

represent those systems. 

3. Scarcity of rainfall stochastic models especially at the monthly time step. 

1.3 Objectives of the study 

1. To develop a simple, data-adaptive monthly stochastic rainfall generator by 

complementing the strengths of Empirical Mode Decomposition (EMD) and the 

Variable Length Bootstrap (VLB). 

2.  To assess the performance of the generator using representative rainfall data 

from South Africa. 

1.4 Organization of the research report 

The report presents a review of stochastic hydrologic generation that merits the 

choice of VLB and EMD for rainfall generation in chapter 2. Chapter 3 describes the 

EMD and VLB models and then presents the methodology that is used to develop 

the hybrid EMD-VLB generator. This is followed by chapter 4 which presents the 

results obtained from the developed generator and their comparison with the 

standard VLB generator. Chapter 5 then presents the conclusions and 

recommendations of the study. 
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LITERATURE REVIEW 

2.1 Introduction 

An overview of both Empirical Mode Decomposition (EMD) and the Variable Length 

Bootstrap (VLB) generator highlighting their respective modelling strengths has been 

presented in Chapter 1. Ndiritu and Nyaga (2014) reviewed stochastic hydrologic 

generation with the main aim of identifying a suitable non-parametric model for 

rainfall generation at the monthly time step. Five non-parametric models; the 

wavelet (Bayazit et al., 2001; Ünal et al., 2004; Wang et al., 2011), the Reordering 

model (Clark et al., 2004a, b; Mehrotra and Sharma, 2009), Nearest Neighbour (Lall 

and Sharma, 1996; Rajagopalan and Lall, 1999; Srikanthan et al., 2002; Yates et al., 

2003; Mehrotra et al., 2006; Mehrotra and Sharma, 2006a; Prairie et al., 2006), 

Kernel Density approach (Sharma et al., 2003; Srikanthan et al., 2005; Wang and 

Ding, 2007; Mehrotra and Sharma, 2007, 2009) and the VLB (Ndiritu, 2011a, b) were 

identified. After a comparison of the five approaches on the basis of 5 criteria 

reproduced here as Table 2.1, the VLB streamflow generator was selected and 

adapted for monthly rainfall generation. 
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Table 2.1 A comparison of five approaches for nonparametric stochastic hydrologic generation (Ndiritu and Nyaga, 2014) 

Criterion 

Stochastic generation approach. 

Wavelet Reordering Nearest neighbour Kernel density Bootstrap 

Ability to 
preserve historic 
characteristics 

If the simple Haar wavelet is 
used, then skewness is not 
preserved. If a more 
generalized wavelet is used, 
then within-year historic 
statistics are preserved. Long-
term variability and persistence 
may not be preserved 
sufficiently  

Preserves within-year 
statistics satisfactorily but 
does not include 
replication of long-term 
variability and persistence 
in its currently used forms. 

Preserve within-year 
statistics adequately and 
have also been modified to 
replicate inter-annual 
dependence. Current forms 
of this method are not 
designed to replicate inter-
decadal variability and 
persistence. 

Preserve within-year statistics 
well and formulations for 
replicating inter-annual 
dependence have been 
formulated. Longer-term 
dependence is however not 
modeled in these approaches.  

Preserve within-year statistics if 
the simple method of fragments 
is used in disaggregation. Use of 
a pair of weighted and 
perturbed fragments preserves 
most within-year statistics but 
over-estimates the minimum 
flow. The methods can preserve 
inter-annual and longer term 
statistics easily by the selection 
of long building blocks. 

Ability to 
extrapolate 
beyond the range 
of historic data 
(to generate new 
data). 

Has full ability to extrapolate 
beyond the historic values 

Does not have this ability Most of the formulations do 
not have this ability. A 
formulation with limited 
extrapolation ability has 
been developed. 

Has full ability to extrapolate 
beyond the historic values 

Most bootstrap methods do not 
have this ability but a bootstrap 
that has the full ability to 
extrapolate has been 
developed. 

Limitations of 
applicability 

If the Haar wavelet is used, the 
historic data is required to 
possess a normal distribution. 
More generalized wavelets do 
not require this. 

May not generate 
effectively if there are 
many historic values that 
take on similar values (e.g. 
daily rainfall with many 
zeros). 

No known limitation. No known limitation. No known limitation. 

Possibility of 
generating 
negative values 

The structure of the approach 
enables this possibility although 
this is not mentioned in the 
studies cited. 

Not possible Not possible It is possible and an effective 
approach for dealing with this 
problem has been devised. 

Not possible 
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Ease of use The fundamentals of the 
approach and easy to grasp. 
The Haar wavelet is easy to 
understand but understanding 
more generalized wavelets may 
be more involving.  

Method is easy to 
understand and set up. 
The length of the moving 
window for reordering is 
subjectively selected. 

Generally easy to 
understand although the 
approach could be 
computation intensive. The 
number of neighbours and 
method of computing 
distance between data 
points are subjective 

The method is complex and 
computationally intensive. 
There is subjectivity in the 
selection of the bandwidth 
and the type of kernel to use. 

Bootstrap methods are 
generally easy to understand 
and apply. The selection of the 
block length is subjective. 
Where weighting and 
perturbation is done, the 
selection of the form of 
weighting and level of 
perturbation is also subjective. 
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Ndiritu and Nyaga (2014) revealed the VLB as robust in tests using two multiple-site 

rainfall generation problems. The VLB replicated most historic statistics very well 

and performed better than a recently developed parametric rainfall generator, 

PEGRAIM-W (Pegram, 2011). In spite of the successful performance of the VLB, 

there is still scope for improving the conceptual aspects of the model that could lead 

to even better performance. As stated in Chapter 1, this study aimed to find out if 

VLB performance could be improved if the block beginning and termination 

locations were based on EMD. In the standard VLB model, block start and 

termination is subjectively located at low flow periods of the time series. The 

strengths of EMD in frequency-time segmentation as well as its ability to identify 

and quantify trends (Radic et al., 2004) lead to its consideration for possible 

improvement of the VLB generator.  

 

2.2 Empirical Mode Decomposition procedure 

Although a detailed description of EMD will be carried out in the methodology, its 

effective review requires a brief introduction of its general aspects. 

1. An original time series data is split into two, classified by the minimum and 

maximum values within the specified time steps in consideration. These 

extrema values are used to construct the upper and the lower envelopes of 

the plot joined together by cubic splines. 

2. The differences between the two stated maxima in a given time step are 

used to obtain the mean loop in a process referred to as sifting. Each sifting 

results to a sequence referred to as an intrinsic mode function (IMF). The 

mean loop is then subtracted from the original signal (time series) to obtain 

an inner loop. 
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3. If in step 2 above the inner loop qualify to be an IMF, it is stored and then 

subtracted from the original time series, and the remainder signal is treated 

as the original signal for consecutive analysis. 

4. If in step 2 above the inner loop does not qualify as an IMF, treat it as an 

original signal for more analysis (computations). 

5. Steps 1 to 4  are repeated until several IMFs and a residual trend (the last 

IMF) are obtained from the original time series. The last IMF (that is referred 

to as the residual) is characteristic of a monotonic trend because no 

meaningful frequencies are obtained from it. It should however be noted 

that the residual might display significance if longer time series data is 

analysed where variations become more evident. 

The different IMFs obtained represent various modes of an original time series that 

are separated by significantly different frequencies in different time periods. Sifting 

results into various sequences from an original time series that have different 

amplitudes and frequencies in different time periods. The more frequent 

occurrences (with smaller but sharper troughs) appear initially and the less frequent 

ones appear last on each IMF. Therefore in a rainfall time series, EMD allows us to 

compute the proportion of rainfall magnitudes variation in a time series that can be 

attributed to fluctuations in varying frequencies at different time scales (McMahon 

et al., 2008), where each individual IMF represents time sequences of almost similar 

frequencies different from the other IMFs; all derived from the original time series. 

The summation of the different IMFs will result into the original time series. 

Mathematically this summation can be expressed by; 

𝑥(𝑡) =  ∑ 𝐼𝑀𝐹 (𝑖) +  𝑒(𝑛)

𝑛

𝑖=1

                                                                 (2.1) 

where, 𝑥(𝑡) is the time series data being analyzed. 

𝐼𝑀𝐹 (𝑖) is the Intrinsic mode functions at time 𝑡. 
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𝑒(𝑛)  is the Residual of the data set. 

𝑖=1,2,3,…,𝑛  is the number of extracted IMFs. 

With this basic description of EMD, a review of EMD ultimately aimed at identifying 

an appropriate method of applying it with the VLB generator now follows. 

 

2.3 Review of relevant studies on Empirical Mode Decomposition 

The literature review identified 26 studies that were considered relevant to the 

current one. To ease the presentation of the review, it was decided to use a tabular 

format (Table 2.2) that informs for each study; the author(s), the main objective/s, 

the sources and main features (e.g. time scales) of the data used, the methodologies 

applied and the major findings from the study.  

Although this is not exhaustive, it is considered to be adequately comprehensive for 

this study.  



12 
 

Table 2.2 Brief description of relevant studies on Empirical Mode Decomposition 

 

Author(s) Main objectives Data, source, length and time 
step 

Methodology Main findings 

Zhao and 
Huang (2001) 

To explore the 
effectiveness of mirror 
extending and circular 
spline function for 
Empirical Mode 
Decomposition 

Same data in the examples 
provided in Huang et al (1998) 

1)_Data decomposition by EMD.2)_ 
Determination of data envelopes by cubic 
spline fitting 3) _Mirroring at the end of data 
such that extrapolation of data by extension of 
data image  symmetrical to the data is formed. 
4)_ A connecting curve between the two 
mirrors with the original data altogether 
presents a circular pattern 5)_Extrapolation is 
done by extending data to the lower mirror but 
only the output from the upper mirror is used. 

The method utilizes data to 
extrapolate and is thus data 
adaptive, reasonable and 
reliable and can be used for 
any kind of characteristic data. 

Huang et al. 
(2003) 

To identify a 
confidence limit for 
empirical mode 
decomposition and 
Hilbert spectral 
analysis 

Daily Length of Day (LOD) 
dataset produced by Gross 
(2001) from 20

th
 January 

1962-6
th

 January 2001 in a 
total of 14232 days. 

Introduction of statistical measures of 
confidence limits tested on non-stationary and 
non-linear data and the experimentation of 
various stopping criterion 

If mode mixing is observed to 
occur, determination of scales 
should be carried out so that 
each IMF contains results of 
one narrow time-scale range. 
The method increases  more 
rigour of the EMD method thus 
making it more robust and 
more useful 

Rilling  et al. 
(2003) 

To provide a step-wise 
insight on EMD and its 
algorithms. 

Analysis on the use of 
sinusoidal Frequency 
Modulation components and 
Gaussian wave pockets. 

1)_Sampling, interpolation and use of border 
effects in the cubic splines, over sampling and 
use of mirror symmetry to achieve smooth 
boundary conditions 2)_Determining the 
stopping criteria for sifting 3)_Performance 
elements in-terms of tones sampling and 
separation 

Provides new insights on EMD 
and its use experimentally but 
a need for further studies 
devoted to theoretical 
approaches is required. 

Coughlin and 
Tung (2004) 

Investigating climate 
variability by the use of 
EMD. 

Monthly averages of daily 
Global pressures from Jan 
1749-Sept 2002 

1)_Calculation of envelopes by cubic splines 
and end extensions of typical waves by  nearest 
local extrema. 2) Decomposition of the 
sequences into 5 modes and a residue in which 
statistical tests of significance and noise 
distribution are conducted. 

Each mode remained 
orthogonal to each other and 
has great significant 
interpretation in the climatic 
cycle from each other. 
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Radic et al. 
(2004) 

The use of empirically 
decomposed intrinsic 
mode functions (IMFs) 
to analyze 
climatological data 

EMD applied to a series of 
annual and seasonal averages 
of temperature, cloudiness, air 
pressure and annual and 
seasonal sums of global 
radiation and precipitation in 
Zagreb-Gric, Croatia, 
between1862-2002. 

Analysis of the influence of the particular 
seasonal and annual averages as well as 
correlations. This is carried out by discarding 
the climatic noise and summing up the low 
frequency IMFs and the residual. 

The decomposition in the IMFs 
with the associated time scales 
could be used in future climatic 
predictions. 

Peel et al. 
(2005) 

Identification of the 
prevalent issues in the 
application of EMD  

8135 annual precipitation 
records around the world 

1)_Undertaking sifting involving a tradeoff 
between under-sifting that leads to under-
defined IMFs  and over-sifting to produce 
smooth amplitudes but less physical 
meaningful IMFs. 2)_Comparison of 3 different 
end condition rules (mirror (Rilling et al 
(2003)),(average (Chiew et al, 2005)) and Szero 
(Coughlin and K. K. Tung, 2005) methods) 
tested on the data 

The SZero rule that assumes 
that the slope of the spline is 
zero at the end points 
decomposes it into fewer IMFs 
and is recommended as the 
more efficient and physically 
meaningful end condition rule. 

Sinclair and 
Pegram (2005) 

Exploration of the 
effects of lower and 
higher frequency 
components of spatial 
rainfall data on 
temporal persistence 
by use of 2-
dimensional EMD. 

Analysis of a large set of 800 
radar 
rainfall images in South Africa 

1)_Decomposition of spatial rainfall data into 
its Intrinsic Mode 2-D Surfaces (IMS). 
2)_Computation and removal of the least 
persistent IMS from the raw rainfall data. 
3)_Decompositions are carried out until the 
monotone trend residual left is more 
persistent, and of low frequency, where the 
IMIS surface function is almost zero. 
 

The decomposed spatial 
rainfall (into IMSs) is mutually 
orthogonal and adds up to the 
original data. 
The method successfully 
demonstrates that lower 
frequency components (with 
large spatial extent), of spatial 
rainfall exhibit greater 
temporal persistence than the 
higher frequency ones. 

Wu and Huang 
(2005) 

The use of white noise 
in data analysis to aid 
Empirical Mode 
Decomposition 

Analysis of El Nino-Southern 
Oscillation (ENSO) between 
the western and Southern 
Pacific.from January 1870 to 
December 2002 provided 
by the Hadley Center for 
Climate Prediction and 
Research (Rayner et al., 1996) 

Addition of white noise of finite amplitude to 
the original time sequences and then 
decomposition using EMD approach. 
 

The approach separates signals 
of different scales without 
undue mode mixing. 
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Molla et al. 
(2006) 

The use of EMD to 
establish the relation 
between rainfall 
variability and global 
warming.  

15 year daily rainfall data for 
the years between 1989-
2004,from the Agricultural 
Experimental Farm, Giridih, 
India. 

EMD of the data and the identification of 
Instantaneous frequency (signal’s frequency at 
every time instance), Hilbert spectrum (The 
joint distribution of the amplitude and 
frequency as a function of time), marginal 
Hilbert spectra (measure of total energy 
contribution from each frequency value), PDF 
of the IMFs, stationarity test as well as the 
completeness and orthogonality of the 
decomposition. Reconstruction of the original 
data.  

Majority IMFs are normally 
distributed and hence they 
satisfy X

2
 distribution. 

The study suggests that the 
recent global warming and 
decadal climate variability 
contribute to more extreme 
events and more frequent, 
floods and long lasting 
droughts. 

Huang and Wu 
(2008) 

A review of the Hilbert 
spectral analysis and 
the EMD processes in 
data adaptivity. 

Remote Sensing Systems (RSS) 
T2, the channel 2 troposphere 
temperature of the microwave 
sounding unit (Mears et al, 
2003) during various time 
steps. 

1)_Brief explanation and the review of the 
construction of the IMF components. 
2)_The optimum S stoppage criteria whereby 
zero crossings and extrema are equal or differ 
by 1 and stay the same for S consecutive times. 

EMD offers a potentially viable 
method for non-linear ad non-
stationary data analysis 
especially for time frequency 
representations. 
Mathematical foundations are 
required to make the method 
more rigorous, robust and 
friendlier. 

McMahon et 
al. (2008) 

The use of EMD to 
stochastically generate 
six monthly rainfall 
sequences that takes 
into account the 
natural climate 
phenomena 

Six rainfall stations consisting 
of 135 years long. The study 
timescale is on a 6 monthly 
time step. 

1)_Decomposition of a historical rainfall series 
by use of EMD.2)_Recombination of the 
decomposed series into two components-intra-
decadal and inter-decadal time 
series.3)_Stochastic hybrid generation by use 
of Matalas (1967)-AR(1)-EMD multisite model 
4) Comparison of the results with the 
traditional AR(1) models 

Both the EMD and the 
traditional methods preserved 
the historical input parameters 
But the EMD generated more 
multi-year extreme rainfalls. 
EMD is a favourable method to 
study the effects of 
anthropogenic climate changes  

Wu and Qu 
(2008) 

Presentation of an 
improved method for 
restraining the end 
effect in EMD and its 
applications to the 
fault diagnosis of large 
rotating machinery. 

Analysis of vibrational 
displacements with a 
sensitivity of 200Mv/mil, each 
data set consisting of 1024 
data points sampled at a rate 
of 2000Hz 

Comparison of the performances of cubic 
spline end conditions namely; 1)_Mirror 
Method (MM)_(Zhao and Huang,2001), 
2)_Slope Based Method (SBM)_(Dätig and 
Schlurmann, 2004) and the 3)_Improved Slope 
Based Method (ISBM)_(Wu and Qu, 2008), by 
evaluating the orthogonality of the IMFs of 
several numerical simulated time series. 

The ISBM improved the 
performance of the EMD 
method as compared to the 
other end condition methods 
and hence is recommended for 
the analysis of non-stationary, 
non-linear signals. 
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Zhang et al. 
(2008) 

To provide a secondary 
segmentation 
algorithm of EMD to 
sift areas that  do not 
satisfy the EMD 
criteria.  

Yarn signal in the drawing 
frame is acquired from Uster-I 
yarn. Evenness-meter in a 
Textile mill.  
 

1)_Subdivision of original data into segments 
.2)_The segmented IMFs are joined again and 
EMD is applied again on the joint segments to 
obtain the original IMF and a residue. 

The algorithm reduces the 
computing time of EMD. 
 

Xinxia et al. 
(2009) 

The use of EMD and 
the RBF neural network 
prediction model for 
rainfall prediction 

39 year Rainfall sequences 
between1956-1995, Handan 
city, China. 

Decomposition of the historic time series into 
IMFs and a residual 2) phase-space 
reconstruction by use of RBF mode 3) 
Reconstruction of the series by adding the RBF 
prediction models to obtain the stochastic 
sequence 

The model’s prediction is 
superior to direct prediction as 
it accurately predicts rainfall 
significantly. 

Sang et al. 
(2010) 

The prediction of non-
stationarity climate 
series based on EMD. 

Monthly mean surface air 
temperature anomaly in the 
northern hemisphere (SATA) 
covering 1752 months 

1)_Decomposition of the time series 
2)_Use of the time index method (Yu et al 
,1998) to inspect the non-stationarity of the 
series. 
3)_Running prediction experiments for a non-
linear and non-stationary signal 

The EMD process effectively 
decomposes the non-linearity 
and non-stationarity hence 
improving the prediction skill. 
Prediction errors may arise 
from the end effects. 
A transformed time series in-
terms of finite number of 
modes and low non-
stationarity improves its 
prediction capability by a 
segregation technique. 

Zheng et al. 
(2010) 

The use of EMD in the 
prediction of 
agricultural drought 
trend. 

58 years of precipitation data 
from 1951-2008 in Guangdong 
province, China 

1)_Step-wise decomposition of the trend with 
different scales in signals thus generating series 
of data sequences with different 
characteristics. 
2)_Use of precipitation anomalies percentages 
to calculate and analyze medium, heavy and 
mega disasters quasi-drought periods. 

 

The analysis provides a 
reference for analysis and 
predictions of agricultural 
drought. 
The precipitation anomalies 
presented a rising trend from 
1960 – 1980 with a maximum 
in 1989 which corresponds 
with the drought periods  

Karagiannis 
and 
Constantinou 
(2011) 

The processing of 
white Gaussian noise 
biomedical signals with 
EMD. 

A sampling frequency of 
1000Hz from 
electrocardiogram signals 

Pre-processing by addition of white noise and 
EMD and carrying out several iterations to 
establish statistical samples 

Preprocessing results into a 
reduced number of siftings and 
as well as computational time. 
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Sang et al. 
(2012) 

The combined use of 
EMD and Maximum 
Entropy spectral 
analysis for period 
identification in 
hydrologic time series 

9 hydrological series rainfall 
data from various locations in 
China.  

1)_Decomposition of the analyzed series into 
components 2)_Removal of noise and trend 
from the decomposition results 3) separation 
of different deterministic components 
4)_Application of MESA (Parker, 1975) into 
each component to identify trends. 

Period identification avoids the 
influence of noise and trend. 
Removal of the influence of 
multi-scale characteristics of 
hydrologic series makes period 
identification more accurate 
and reliable. 

Victor (2012) Introducing Empirical 
mode Decomposition 
Method and its 
algorithms 

Various data sources 1)_Introduction into the various terms as 
involved in Empirical mode decomposition. 
2)_A brief explanation of the  EMD algorithm 
3)_Implementation of the EMD using a C++ 
programming language 

Sets forth the essence of EMD 
and demonstrates the 
application of the method in 
data analysis. The method can 
as well be applied to linear and 
stationary sequences 

Karthikeyan 
and Kumar 
(2013) 

Assessment of the 
Wavelet and EMD 
coupled ARMA models 
in forecasting non-
stationary hydrologic 
data. 

Four site monthly streamflow 
volume data, two site rainfall 
data, USA. 

1)_Decomposition of time series data by 
wavelet and EMD into simpler components 
2)_ARMA models are fitted to calibrate and 
predict each component independently 3)_ 
Addition of component predictions to obtain 
series forecasts 

With reasonable accuracy, 
wavelet has a better accuracy 
in predicting some maxima of 
the data at lesser time-steps  

Tianlu and 
Zengli (2013) 

To determine the 
effects of Envelope 
correction Method on 
EMD’s end effect. 

Experimental analysis from 
various simulation signals. 

1)_Use of local maxima and minima as 
interpolation points to fit up and low 
envelopes.2)_ Regard the first maximum as the 
endpoint reference on the left.3)_Set the 
maximum value of signal where each maxima 
of it is an internal reference 
point.4)_Determine sub-waves by subtracting 
different maxima from the determined highest 
maximum point. 

The method solves the 
problem of envelope distortion 
thus improving overall EMD 
accuracy. 
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Wang et al. 
(2013) 

Incorporation of 
Ensemble EMD in a 
hybrid annual rainfall-
runoff forecasting 
model 

Annual rainfall series from the 
upper Longyangxia, the sub-
water resources region 
between Longyangxia and 
Lanzhou and the natural 
annual runoff series in the 
Lanzhou station between 
1956-2000. 

1)_Decomposition of annual rainfall in a run-off 
model based on a Support Vector Machine 
(SVM) (Vapnik,1995;Wang et al, 2009).2)_Use 
of Particle Swarm Optimization (PSO)( Kenndey 
and Eberhart, 1995) to establish the 
parameters of SVM. 3)_Evaluation of the 
model’s performance by its forecasting 
capability.4)_ Least squares regression and a 
three feed forward Artificial Neural Network 
(ANN) are the benchmark models. 
 

PSI-SVM model based on the 
Ensemble EMD approach can 
significantly enhance rainfall-
runoff forecasting. 
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The studies outlined in Table 2.2 on EMD demonstrate its wide applicability in 

many fields and reveals the robustness of this data driven technique. The 

acceptance of the method as a processing tool is stressed by the large number 

of applications in diverse areas including biomedical signal processing 

(Karagiannis and Constantinou, 2010; Dragomiretskiy and Zosso, 2013), 

machine fault diagnosis, (Gao et al., 2008; Wu and Qu, 2008), stock exchange 

(Qian et al., 2011) and hydrological time series analysis and prediction (Sinclair 

and Pegram, 2005; Molla et al., 2006; McMahon et al., 2008; Peel et al., 2009; 

Diodato and Bellocchi, 2010; Yang et al., 2010; Zheng et al., 2010; Sang et al., 

2012; Karthikeyan and Kumar, 2013; Wang et al., 2013). There is limited 

literature on the use of EMD for stochastic hydrologic simulation of new 

sequences that can be used for time series prediction. Most EMD studies relate 

to; the improvement of the method (Rilling et al., 2003; Wu and Qu, 2008; Peel 

et al., 2009; Hofreiter and Trnka, 2011),comparison of the online and offline 

EMD(Hofreiter and Trnka, 2011) analysis and reviews of the algorithm (Huang 

et al., 2003; Huang and Wu, 2008; Victor, 2012) analysis of the resultant 

decomposed IMF segments (Coughlin and Tung, 2004; Radic et al., 2004; 

Sinclair and Pegram, 2005; Molla et al., 2006),detrending fluctuation analysis 

(Qian et al., 2011) and predictions of the resultant trends (Zheng et al., 2010). 

The few notable studies in stochastic hydrologic simulations using EMD include 

McMahon et al. (2008), Xinxia et al. (2009), Yang et al. (2010), Wang et al. 

(2011) and Karthikeyan and Kumar ( 2013). These studies decompose a time 

series into various IMFs that are then fitted into auto-regressive models to 

construct new stochastic sequences. However, as explained in Chapter 1, the 

objective of this research is to apply a simple and robust non-parametric 

method and not a parametric generator.  

EMD method identifies various IMFs having almost similar modes in frequency 

and time and thus the oscillations in a particular IMF are almost similar. 

Therefore an irregularity in any IMF can be attributed to faults or a random 

occurrence that happened in the course that are physically meaningful. This has 
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been useful in identifying faults in machinery (Wu and Qu, 2008) and 

identification of extreme droughts (Zheng et al., 2010). 

In order to complement the strengths of EMD and VLB, coupling of both 

methods is proposed to come up with a more effective model because; 

1. The EMD method is able to intuitively separate and quantify cyclic 

patterns of rainfall occurring at various inter and intra-decadal time 

scales. These patterns can be considered to be the result of physical 

processes that are not explicitly identifiable or well understood at the 

current state of knowledge. Identifying these patterns and basing VLB 

block on them could improve the generation of stochastic sequences. 

2. The VLB is able to adequately replicate variability and so the multiple 

length blocks from the EMD will be a vital input into VLB’s stochastic 

rainfall generator. It is considered likely that the variability identified 

and expressed by these EMD blocks will be replicated in the synthetic 

series by the hybrid model. 

The choice of VLB to replicate observed variability is further demonstrated by 

its ability to adequately model climate-related change by Ndiritu and Nyaga 

(2014). Though the scope of the research does not include this, the robustness 

of the generator in modelling different hydrological components as opposed to 

generators that can only model the components that they were specifically 

designed for makes it ideal for this study. 

 

2.4 Summary of the Literature Review  

Although not much literature is available in the use of EMD for stochastic 

rainfall generation, applications in one field are generally applicable to others. 

One notable contribution in support of this is demonstrated by Wu and Qu 

(2008) in modelling end effects in cubic splines where findings derived from 

climate modelling as detailed by Huang et al. (1998), Rilling et al. (2003), 

Coughlin and Tung (2004), Dätig and Schlurmann (2004) and Chiew et al. (2005) 
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and are compared and effectively modified for use in the diagnosis of industrial 

machinery. This demonstrates the adaptivity of EMD as a data generation 

method and hence its growth as a suitable choice for modelling nonlinear and 

non-stationary data as shown in Table 2.2. It is in line with this that though 

EMD as a new data generation tool has not developed much, various studies 

listed in Table 2.2 will be used to enhance the development of the generator. 

After obtaining adequate justification from literature to use EMD and VLB 

methods, the next step entails the development of the hybrid EMD-VLB 

generator. This is described in the next Chapter. 
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3 DEVELOPMENT OF THE HYBRID EMD-VLB GENERATOR 

3.1 Introduction 

Due to the fact that both EMD and VLB are data based, the development of the 

hybrid EMD-VLB model requires the use of data.  This chapter therefore first 

describes the data used in the analysis. This is followed by a description of EMD 

and then the VLB with emphasis on the block identification (start and 

termination) procedure. A description of the hybrid EMD-VLB model is finally 

presented. 

3.2 Data for model development and testing 

The aim of the project is to develop a rainfall generator by utilizing data 

adaptive properties of EMD and the strengths of VLB. The VLB has been 

previously tested on 10 rainfall stations problem using rainfall stations that are 

widely-spaced over South Africa (Ndiritu and Nyaga (2014)). The stations are 

shown in Figure 3.1, and have been selected for the development of the hybrid 

model. This allows for easy comparison of the hybrid with the standard VLB as 

the VLB had been assessed using the same problem. The rainfall data is 

obtained from an extensive data base by Lynch (2003) and consists of a 

consecutive record of 93 years of observed monthly rainfall with minimum 

patching (averaging 3.5 %). The basic characteristics of the rainfall stations 

illustrated below in Figures 3.1 -3.5 and Tables 3.1- 3.2 are extracted from 

Ndiritu and Nyaga (2014). Table 3.1 highlights the basic statistics of the stations 

and Figure 3.2 shows the monthly rainfall distributions of the stations. From 

Figure 3.2, the presence of both dry and wet seasons is observed. 
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Figure 3.1 Location of selected stations in South Africa (Ndiritu and Nyaga, 2014) 

Table 3.1 Basic statistics of rainfall stations (Ndiritu and Nyaga, 2014)  

Station 0020866W 0555567W 0474255W 0320348W 0258894W 0678776W 0052590W 0142805W 0149082W 0240891W 

Mean 605 830 579 325 394 843 238 320 588 995 

Stdev 115 221 151 138 140 285 90 103 141 218 

CV 0.19 0.27 0.26 0.42 0.35 0.34 0.38 0.32 0.24 0.22 

Skewness 0.31 0.93 0.36 1.53 0.84 0.86 0.85 0.43 -0.01 0.6 
Minimum 349 556 209 104 159 405 69 113 247 549 

Maximum 857 1501 1061 959 793 1577 607 627 990 1741 

% patching 0.5 2 7.1 0.6 4.4 6.3 8 0.3 2.4 3.4 

CV: Coefficient of variation 
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Figure 3.2 Monthly rainfall distributions of selected rainfall stations (Ndiritu and Nyaga, 

2014). The hydrological year starting with January is applied for the winter region and the 

hydrologic year starting with July for the winter region. 

Table 3.2 shows the cross correlations and the serial correlation coefficients of 

the rainfall stations. It can be seen that station 0020866W has a very low cross 

correlation with the other stations; with the highest being 0.16 with station 

0240891W.This might be attributed to the station being situated in a winter 

rainfall zone while the other 9 are in the summer rainfall zone. The stations 

have very low annual serial correlation coefficients thus highlighting very weak 

annual temporal dependence structures even within each of the stations.  
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Table 3.2 -Cross correlation and serial correlation coefficients of annual rainfalls (Ndiritu and 

Nyaga, 2014) 

 
ACC 

ASC 
Station 

0020866
W 

0555567
W 

0474255
W 

0320348
W 

0258894
W 

0678776
W 

0052590
W 

0142805
W 

0149082
W 

0240891
W 

0020866W 1 
         

0.09 

0555567W 0 1 
        

-0.06 

0474255W 0 0.44 1 
       

0.05 

0320348W -0.12 0.46 0.3 1 
      

-0.08 

0258894W 0 0.39 0.37 0.73 1 
     

-0.15 

0678776W -0.05 0.76 0.32 0.46 0.42 1 
    

-0.07 

0052590W -0.07 0.2 0.13 0.39 0.37 0.31 1 
   

0.1 

0142805W -0.03 0.37 0.32 0.66 0.66 0.41 0.55 1 
  

-0.07 

0149082W 0 0.42 0.31 0.52 0.64 0.43 0.42 0.6 1 
 

-0.16 

0240891W 0.16 0.27 0.22 0.23 0.35 0.23 0.19 0.34 0.31 1 0.01 

ACC – Annual cross correlation coefficient; ASC – Annual serial correlation coefficient 

Figure 3.3 shows the monthly cross correlation coefficients for the 10 stations 

which follows a fairly distinct pattern in all the stations. Figure 3.4 shows the 

monthly serial correlations from which a distinct pattern is not observed. 

Therefore although there is a monthly spatial dependence structure within the 

stations, the monthly temporal dependence structure is minimal. This is further 

demonstrated by Figure 3.5 which shows the overall average monthly cross and 

serial correlations. It is noted that the highest annual serial correlation 

coefficient is 0.1 in station 0052590W the lowest being -0.16 in station 

0149082-W. These properties are illustrated graphically in Figures 3.3-3.5. 
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Figure 3.3 Monthly cross correlation coefficients for rainfall stations (Ndiritu and Nyaga, 

2014). The x-axis denotes lag-1 monthly correlation. 

 

Figure 3.4 Monthly serial correlation coefficients for rainfall stations (Ndiritu and Nyaga, 

2014) 

Figures 3.3 and 3.5 can both be summarized by Figure 3.5. The average serial 

correlation in one month for all the stations is calculated and plotted as a single 

value for that month. This is carried out for all the months in the hydrological 

year. The same is done for the cross correlations. 
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Figure 3.5 Average monthly cross and serial correlation coefficients of rainfall stations 

(Ndiritu and Nyaga, 2014).  

From Table 3.2 and Figures 3.3-3.5, the low cross and serial correlation 

coefficients, then means that there is no requirement for the proposed 

generator to preserve them.  
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3.3 Empirical Mode Decomposition (EMD) 

There have been several modifications in the EMD algorithm since the initial 

development by Huang et al. (1998) in various aspects of its methodology 

including the sifting process stoppage criteria, sifting modifications and in 

splines’ end effects, but a consensus on the generalized algorithm still exists. A 

description of the EMD as used in this study now follows. 

1. The input (original) time series x(t) is classified on the high values herein 

referred to as the maxima and the low values referred to as the minima 

as described in Chapter 2 (Section 2.2). The enclosure in between the 

maxima and the minima that is referred to as the envelope is defined by 

a cubic spline illustrated in Figure 3.6. Cubic splines are piece-wise 

polynomial approximations that are very widely used in fitting each 

successive pair of data points due to their smooth functions and hence 

their use as interpolation functions in EMD. Extrapolations are 

necessary to determine the cubic spline values at the end extrema at 

both ends of the time series and their poor determination leads to 

unrepresentative IMFs during sifting. A detailed description of cubic 

splines, their formulation, and the role they play in EMD’s interpolations 

and extrapolations is presented in appendix A. 

 

2. The mean of the minima and the maxima is calculated and plotted on 

the same graph as shown in figure 3.6 is given by; 

𝑚𝑒𝑎𝑛, 𝑚1 = (
𝑚𝑎𝑥𝑖𝑚𝑎 + 𝑚𝑖𝑛𝑖𝑚𝑎

2
)                                (3.1) 

3. The mean is subtracted from the original time series to obtain h1, 

defined by; 

ℎ1   = 𝑥(𝑡) −  𝑚1                                                                   (3.2) 
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This defines the first sifting and ℎ1 is expected to satisfy the 

definition of an IMF but this is not the case since changing a local 

zero from a rectangular to a curvilinear coordinate system may 

introduce new extrema, and further adjustments are needed 

(Huang and Wu, 2008). 

Steps 1-3 are carried severally on the residual until the detail signal ℎ1(𝑡) can 

be considered as an IMF in which; 

i. The number of zero crossings (of the graph on which the loop is 

plotted on) and extrema must be zero or at least differ at most by 

one in the complete data sets. This is necessary in order to remove 

riding waves (Prah and Okine, 2008). 

ii. The mean value of the envelope (defined by the local minima and the 

maxima of the new constructed loop) must be zero (Prah and Okine, 

2008). 

 

 

Figure 3.6 Illustration of cubic splines  

Therefore in various iterations, ℎ1 is treated as model signal from which more 

iterations are derived from, so the next iteration will be defined by; 

ℎ1,1  = ℎ1  −  𝑚1,1                                                                                              (3.3)

  

And after 𝑘 iterations, (𝑘 is dependent on the series in consideration) 
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ℎ1,𝑘           =  ℎ1,(𝑛−1) − 𝑚1,𝑘                                                                           (3.4)

  

is realized if the detail signal can be considered as an IMF. ℎ1,𝑘  becomes the 

first IMF and can be denoted by   𝐼𝑀𝐹1. This is because there are 𝑘 iterations 

that are carried out to obtain an IMF in a particular series in consideration. 

The first IMF contains the shortest–scale oscillation and it is removed from the 

original time series to obtain the residue, 𝑒(1)by the expression, 

  𝑒(1) =    𝑥(𝑡) −  𝐼𝑀𝐹1                                                                              (3.5) 

where, 𝑒(1) is the residue after removal of the first IMF. This 𝐼𝑀𝐹1 is 

characteristic of longer-period variations as compared to the other IMFs. More 

siftings are carried out from the residue  𝑒(1), which is treated as new data of 

longer frequencies from where subsequent shorter time shorter frequency 

IMFs are extracted from. 

Thus, after repeating the process 𝑛 times, the following expressions are 

obtained. 

𝑒(2) =  𝑒(1) − 𝐼𝑀𝐹 1. 

 𝑒(3) =   𝑒(2) − 𝐼𝑀𝐹2  .                                                                                   (3.6) 

. 

. 

 𝑒(𝑛) = 𝑒(𝑛 − 1) −  𝐼𝑀𝐹𝑛   . 

The above process results into 𝑛 IMFs and a residual   𝑒(𝑡) that is a monotonic 

function or a function that contains one extremum from which no more IMFs 

can be extracted. The realization of this monotonic function is the stoppage 

criterion. An elaborate flowchart of the EMD process is illustrated in Figure 3.7.  
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Figure 3.7 A flowchart of Empirical Mode Decomposition  

An original time series together with its constituent four IMFs and a residue 

that result from a step-wise decomposition by EMD from station 0320348 W is 

illustrated in Figure 3.8. From the figure, both intra and inter-decadal 

fluctuations of rainfall are revealed. These can be considered to inform how 

various physical processes of different time scales affected the rainfall over the 

93 year period. These will therefore be used in identifying block start and 

termination locations on the original time series.   

Yes 

No 
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Figure 3.8 Decomposition of a rainfall time series from station 0320348W into 4 IMFs and a 

residue. 

From Figure 3.8, decomposition results into shorter length variabilities in the 

initial IMFs whose length increase in the successive IMFs.  
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3.4  The Variable Length Block (VLB) rainfall generator  

The VLB rainfall generator (Ndiritu and Nyaga, 2014) is a variation and 

development from the streamflow generator (Ndiritu, 2011 a,b). The VLB 

partitions the observed time series into blocks of variable lengths unlike the 

traditional bootstrap that divides the time series into blocks of constant length. 

The blocks are then resampled with repetition to create the first synthetic 

annual time series of the desired length. The traditional bootstrap (e.g. Vogel 

and Shallcross (1996)) would take this series as the final one which implies that 

the generated sequences would only contain values from the observed record 

that are simply temporally re-ordered in different ways. Since the future is 

expected to have observations that will be at times higher and at other times 

lower than any of the values in the historic record, the traditional bootstrap is 

considered substantially limiting. The VLB uses a weighted averaging of the 

monthly fragments (monthly value/annual value) from different years to obtain 

perturbations on the annual rainfall to and thereby obtain annual values that 

are not in the historic record. These new annual values also exceed the historic 

extremes at times. Ndiritu and Nyaga (2014) provides the complete description 

of the VLB rainfall generator. Block determination is the main aspect of interest 

in this study and is now described in more detail.  

3.4.1 Block selection by the VLB generator 

 

The following steps describe how blocks of variable length are obtained from 

the historic time series. 

i. A low-rainfall year is defined as that having an annual rainfall lower than 

that exceeded for a set proportion of time. This proportion is obtained 

as a random value from a uniform distribution within a specified range. 

For the rainfall generation by Ndiritu and Nyaga (2014) a range of 60-
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90% exceedance was applied. The rainfall value corresponding to this 

proportion is obtained by a plotting position approach (e.g. the Weibull 

method).  

ii. The minimum length of the block in years is decided and set (a value of 

3 years has been found reasonable) 

iii. Starting with the first year of the series, move forwards by a length 

equal to the minimum block length and then proceed at a yearly time 

step and locate the first low-rainfall year as defined in step i.  

iv. Specify this year as the last year of the first block. Obtain the other 

blocks in a similar manner considering the following year as the new 

beginning of the time series and check that the last block also meets the 

minimum block length requirement.  

Figure 3.9 from Ndiritu and Nyaga (2014) shows 16 blocks of variable length 

obtained using this method. Since the method uses randomly selected 

percentage exceedances (within a range) to obtain the low rainfall threshold 

(step i), the blocks obtained for each generation vary accordingly thereby 

creating the desired variability.   
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Figure 3.9 The generation of variable length blocks by the VLB generator. The black 

horizontal line defines the low rainfall threshold and the vertical red lines the 

termination and starting location of the blocks. The blocks are numbered as 1 

to 16 above the x-axis (Ndiritu and Nyaga, 2014). 

3.5 The proposed hybrid EMD-VLB model 

The VLB block identification method described in Section 3.4.1 is reasonable as 

it allows the low rainfall periods to recombine in a large number of possibilities 

when the random resampling is done. The method is however subjective and  

EMD that is considered to implicitly identify the effects of the short-term (intra-

decadal) and the longer term (inter-decadal) hydro meteorological processes 

on rainfall could form a basis for a more rational basis of block identification. 

This assumes that block termination using EMD will prevent identification of 

blocks at locations where the processes were still happening as could happen 

with the VLB method as described in Section 3.4.1. Considering the minima and 

the maxima of the IMFs (see Figure 3.8) as the locations where processes 

impacting on rainfall start and end, the minimum and maxima are therefore 

used as the locations to start and to terminate the blocks. This is illustrated in 

Figure 3.10 for an IMF of one of the 10 rainfall stations used in this study.  

With these considerations, the EMD-VLB generator is formulated as follows; 

1. Decomposition of the original historic time series by EMD to identify 

representative IMFs and residual trends. 

2.  Generation of variable length blocks based on the extrema of the 

different IMFs generated in step 1 as illustrated in Figure 3.10.  
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3. Random resampling with replacement of the blocks using the lengths 

obtained in step 2 above to generate initial synthetic sequences of 

various lengths. Resampling is weighted from various IMFs based on the 

average block length from each IMF. This is done indirectly by weighting 

in direct proportion to the number of blocks generated by each IMF. For 

example, the chance of obtaining a block from an IMF that produced 10 

blocks is twice that of an IMF that produced 5 blocks. This prevents bias 

towards favouring the replication of the effects of longer-term 

processes at the expense of shorter-term processes. This is because a 

block takes up a period equal to its length in the generated rainfall. 

4. Synthetic generation of stochastic sequences by the use of VLB rainfall 

generator. 

 

 

 

 
Figure 3.10 Illustration of block start and termination location for IMF4 of station 0320348W. 

It shows the creation of five blocks that begin and end at the crests and the 

troughs and proceed along the series as shown by the red arrows. 

 


