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Abstract

In this thesis we will establish effective numerical schemes appropriate for the solution

of a non-linear partial differential equation modelling heat transfer in one dimensional

longitudinal fins. We will consider the problem as it stands without any physical sim-

plification. The main methodology is based on balancing the non-linear source term

as well as the application of numerical relaxation techniques. In either approach we

will incorporate the no-flux condition for singular fins. By doing so, we obtain ap-

propriate numerical schemes which improve results found in literature. To generalize,

we will provide a relaxed numerical scheme that is applicable for both integer and

fractional order non-linear heat transfer equations for one dimensional longitudinal

fins.
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Chapter 1

Introduction

The main purpose of this thesis is to provide an effective numerical schemes appro-

priate for the solution of partial differential equations modelling the non-linear heat

transfer in one-dimensional longitudinal fins. This problem is modeled by

ut(x, t) = ▽x [f(u(x, t))▽xu(x, t)]− g(u(x, t))

where f(u(x, t)), and g(u(x, t)) are non-linear functions of u(x, t). The equation un-

der consideration has been shown to be difficult to solve especially for special types of

profiles such as those defined to be singular [1]. However, their solution is of impor-

tance given the wide range of applications for extended surfaces, mostly called fins,

in problems considering temperature propagation or heat flow. Obvious examples

may be found in several applications of mechanical engineering and in many home

appliances [2]. In support of their use, Sparrow and Vemuri [3] have shown that

with finned surfaces the heat transfer increases six times in comparison to un-finned

surfaces. Kiwan and Al-Nimr [4] proposed the use of porous fins for heat transfer

enhancement. Similarly, Kim et al. [5], due to experimental data, advocated the use

of porous fins with low permeability and low porosity as plate-porous heat exchang-
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ers. Lee et al. [6, 7], when employing sectional oblique fins, illustrated the effective

reduction of boundary layer thickness resulting in better heat transfer. Hassanzadeh

and Pekel [8] have used functionally graded materials (FGM) for annular fins. Com-

pared to homogeneous fins, the outcome was that FGM annular fins enhanced the

heat transfer rates between the annular fin and the surrounding fluids. Jang et al. [9]

performed research for the optimum span angle and location of vortex generators in a

plate-fin and tube heat exchanger. Furthermore Tao et al. [10] conducted a numerical

study of the local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat

exchangers.

As can be seen, much research has been conducted regarding the enhancement by

considering a variety of different influential factors. Another factor which has import

when solving such problems pertains to the ‘singularity’ of the fin. In such instances

it is essential to remember that triangular fin profiles are classified by Kraus [11] as

singular. This is due to the fact that it is analytically impossible to characterize them

by any linear transformation. Kraus [11] proposed that one assume triangular profiles

to be trapezoidal in nature so as to render the problem solvable, however in this man-

ner the original problem becomes oversimplified so as to guarantee a solution to the

model. We find that such a methodology may lead to inaccurate results given that

fins with trapezoidal profiles are already considered profiles in their own right and as

such classified as different profiles entirely. A key feature of the work conducted in

this thesis is that we do not simplify the geometry of the fins considered but rather

provide a numerical approach that effectively deals with the proper form of the fin.

While much work has been done showing the applicability and thus importance of fins
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for heat transfer, solutions are often found for simplified models. It has been found by

many researchers that the fin orientation, height, length and spacing in arrays play

major roles in the manner and efficiency of heat transfer [12, 13, 14, 15, 16, 17]. Given

that these parameters play a fundamental role in the structure of the problem, and

even though these inter-linked factors increase the complexity of the problem, they

should not be removed for the sake of simplicity. The consequence of this however

is that we end up considering a non-linear partial differential equation (PDE), the

solution of which cannot always be obtained analytically. In fact, the use of analyt-

ical methods has often led to the consideration of a simplified model, especially for

complex geometries, whereas this is not necessary when using appropriate numerical

methods.

This thesis is outlined as follows. Chapter 1 serves as an Introduction to the work

to be discussed and Chapter 2 provides an overview of the physics and construction

of the model relevant to the work conducted in this thesis. The model is derived by

using Fourier’s Law and the first law of thermodynamics. Fundamental steps em-

ployed to structure the model are provided as is the non-dimensionalization of the

model at hand. After non-dimensionalization we obtain a non-linear heat transfer

equation with a non-linear source term; we provide a brief justification for the use of

numerical schemes in this case given that their need is well known. However, when

using numerical schemes as the solution method it is fundamental to recognize that

without a proper numerical treatment of the source term we may not be able to elim-

inate possible spurious steady state numerical solutions [18]. In fact, if a numerical

scheme does not preserve the fundamental balance at the discrete level, this may

result in spurious oscillations or ‘numerical storms’ [19]. In the work of modelling
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Lake Rursee at rest [19], it was showed how waves form as pure numerical artifacts.

Some of the results were unrealistic and were found to occur due to the use of a non

well-balanced numerical scheme and a naive treatment of the source term. In turn,

the well-balanced scheme reproduced results for when the lake is at rest extremely ac-

curately. In [20], when modelling gas for sub-orbital Earth re-entry, similar outcomes

have been obtained. The test was performed for reacting flows by introducing a small

perturbation to the velocity from steady state. The obtained results showed that

the non well-balanced schemes responded badly in a very oscillatory fashion while

the well-balanced schemes were able to capture the small perturbation excellently.

On the other hands, we should deal with simple numerical schemes that can handle

discontinuities near steady states. We need schemes that are use neither Riemann

solvers spatially nor systems of algebraic equations temporally and that can achieve

higher orders of accuracy and pick up weak solutions. Chapter 2 elaborates on these

issues and hence paves the way for Chapters 3 and 4 which are dedicated to the im-

plementation of the numerical well-balanced and relaxation schemes respectively.

In Chapter 3 we will focus on an appropriate treatment of the source term of the

problem under consideration. The well-balancing approach will be considered and

implemented as per the work in [21]. More precisely, this approach is applied to

triangular fins which have been characterized by singularities in the literature [1, 11].

It shall be noticed that the no-flux condition along with the well-balancing property

are of prime importance in Chapter 3.

For discretization, we implement the finite volume method and illustrate how it re-

duces the order of differentiation by one. In this manner, by using volume averaging
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and the Taylor series expansion, we are able to obtain a numerical balance law. As

described in [18, 22, 23], we take advantage of this to establish a balance law from

information obtained through a consideration of the steady state equation, which

in turn is incorporated into the transient heat transfer equation. This approach is

referred to as the well-balancing technique and maintains steady state solutions. It

is through this approach that we will obtain solutions to the unsteady heat transfer

problem for a triangular fin. Contrary to the suggestion made by Kraus [11], that the

profile of the triangular fin should be altered in order to solve the problem under con-

sideration, we maintain the original profile and when implementing the well-balancing

approach we incorporate the no-flux condition. In this manner we eliminate any ad-

ditional assumptions which would usually be required in order to solve the PDE.

Rather, we establish a numerical well-balanced scheme via the incorporation of the

no-flux condition and we validate the results obtained through the use of benchmark

results [1, 24, 25]. This method of solution is novel and to the authors’ best knowl-

edge has not been previously used in the literature to solve the problem pertaining

to singular fins [26]. Furthermore, the approach used can easily be applied to other

singular profiles such as the concave parabolic and convex parabolic profiles.

In Chapter 4 relaxation schemes are investigated as in [27]. In fact, relaxation schemes

are commonly seen as simple to deal with and more general in handling discontinuities

near steady states. Relaxation uses neither Riemann solvers spatially nor systems of

algebraic equation temporally and can achieve higher-order accuracy and pick up the

right weak solutions [27]. More generally, relaxation numerical schemes are used in

several numerical problems. To cite a few, the research in [28] established a zero relax-

ation numerical scheme for non-linear hyperbolic conservation laws by constructing
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a relaxation system that converts a non-linear conservation law into a system of lin-

ear equations with non-linear source terms. The proposed scheme was efficient even

when other TVD (Total Variation Diminishing) schemes failed. For the investigated

Sod shock tube problem, their relaxation scheme was able to capture the right shock,

rarefaction and solve the contact discontinuity. The scheme was able to suppress oscil-

lations and errors were less than the second order accurate Lax-Wendroff scheme [28].

Another example comes from the work in [29] that constructed a relaxation scheme

applied to a degenerate diffusion problem. The relaxation approximation helped to

reduce the order of the equation and to numerically solve the semi-linear problem.

Results provided for second order matched with analytical results and this inspired

us to extend the idea to our non-linear heat transfer equation. The only challenge

is that our problem seems to be much more complex due to the non-linear nature

of the equation coupled with the non-linear source term. This work constitutes a

remarkable contribution as no such scheme has been established previously for this

problem. The established scheme is applied to heat transfer equations where the fin

has an exponential shape profile and results are validated via steady state benchmark

solutions [30]. Due to the efficiency and ability of the scheme to achieve higher or-

der accuracy in capturing weak solutions without using Riemann Solvers, the same

scheme is also used in Chapter 6. We analyse the convergence of the schemes imple-

mented in Chapters 3 and 4 and compare their results in Chapter 5.

In Chapter 6 we will focus on numerically computing the mean action time. A com-

mon question is how long a process takes to reach equilibrium. Several researchers

[31, 32, 33] have suggested that one compute an average quantity namely the mean

action time in order to answer this question. In their findings, through the use of
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initial and final steady state information, it was possible to compute the mean action

time without solving the full problem. For processes such as freezing the final steady

state temperature is fixed and this process is well known. However, in the instance

of heat transfer in fins we are unable to specify the final steady state temperature

before the end of the process. This motivates the work conducted in Chapter 5 where

a numerical method is used to estimate such mean action times. Suryanarayana [24]

tried to obtain the time to steady state but even for a simple linear case, he was

unable to compute such a time exactly. Instead, he computed the time τs for which

the temperature reaches within one percent of its steady state value. This instance

demonstrates clearly the difficulties involved in obtaining such an equilibrium time

even for simple linear cases. Our work follows the methodology used in [31, 32] and

even so, we do not implement their technique exactly. McNabb and Wake [31] and

McNabb [32] focussed on the heat conduction and finite measures for transition times

between steady states. One of those finite times was the mean action time associated

with the conductive transition from a constant initial temperature to thermal equi-

librium at a constant ambient temperature. However, our problem does not provide a

final constant temperature such as in freezing processes; rather the final temperature

is unknown. In addition, our heat transfer equation is non-linear with a non-linear

source term. It is hence impossible to proceed as in [24, 25] or get transformations

that may lead us to a Poisson equation to exploit the Green’s function properties as

done in [31, 32]. This is the key motivation which led us to requiring novel approaches

such as the numerical scheme developed in Chapter 4.

In Chapter 7 we investigate the fractional non-linear heat transfer equation. There

are many applications of fractional heat transfer equations. Heat transfer in heteroge-
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neous media, beam heating, bioheat, and heat arising in fractal transient conduction

can be modelled via fractional heat transfer equations [35, 36, 39, 40]. In heteroge-

neous media, heat transfer can be modelled either by a sub-diffusion or hyper-diffusion

equation which results in a fractional order PDE [35]. For heat transfer in skin tis-

sues, the Pennes bioheat model is preferred and it has been recently modelled via a

fractional PDE [39]. As none of these articles considered the case of non-linear heat

transfer with non-linear source terms, Chapter 7 is an extension of said work. The

Chapter introduces fractional calculus systematically with a solid mathematical back-

ground focused essentially on necessary tools that assist in establishing the fractional

numerical scheme of our non-linear heat equation. This Chapter is an extension of

previous Chapters since it combines integer and fractional partial derivatives. The

powerful findings of this Chapter have demonstrated that the results obtained in pre-

vious Chapters are justified.

Chapter 8 is a conclusion discussing the key achievements and findings of this study

as well as highlighting further possible avenues of research.

In this thesis, the aim was to establish effective and efficient numerical schemes ap-

propriate to the solution of non-linear partial differential equations modelling heat

transfer in one dimensional longitudinal fins. The true motivation was to further

investigate results which have till now been misunderstood - see [1] for details. Via

the implementation of appropriate numerical schemes and the proper implementation

of the no-flux boundary condition we have been able to solve the model under con-

sideration effectively and efficiently; more importantly we have been able to provide

some insights into the unresolved questions posed in [1]. The numerical well-balanced
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scheme and the numerical relaxation scheme have been employed due to certain ad-

vantages as has already been briefly discussed above. However, in an attempt to

explain more fully why standard finite difference schemes or even in-built schemes

(such as pdepe in MATLAB) have not been employed we elaborate as follows. Sim-

ply these schemes have shown an inability to solve a model such as the one posed in

this thesis while taking into account the various issues at hand. These issues include

the non-linear nature of the PDE, the singularity of the profile, the possibility of

producing numerically artificial results, discontinuities near the steady state and pos-

sible oscillations in the solutions obtained. As such we turned to the use of the Finite

Volume Method, and then more specifically the well-balanced scheme and relaxation

scheme. The FVM is an integral approach and can be performed in the presence of

piecewise discontinuities whereas standard finite difference schemes cannot be applied

under such circumstances. The integral form of the method allows for the order of

differentiation to be reduced by one. Given that the model under consideration has

a divergence operator enclosing non-linear factors of the temperature gradient, the

integral approach can then in a very elegant fashion remove the divergence opera-

tor without any difficulty. Furthermore, FVMs unlike finite difference methods are

not limited to discrete point values as they employ higher-order local cell moments.

Hence these methods are able to simulate problems with large gradients or jump dis-

continuities in non-linear conservation laws [60]. As a last point in favour of the use

of FVMs it is important to note that previous standard finite difference schemes em-

ployed for the solution of models describing the heat transfer in singular fins (see [1]

and references therein) were unable to maintain the adiabatic condition. The FVM

made the proper implementation of this condition effortless.
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More particularly the well-balanced and relaxation schemes have been strongly sup-

ported in the literature [18, 19, 20, 21, 22, 23, 27, 28, 29]. The well-balanced scheme

has been shown to be powerful when solving partial differential equations (with dif-

ferent structures) while avoiding numerical artifacts. In turn, the relaxation has been

strongly advocated given the avoidance of Riemann solvers and its ability to man-

age discontinuities near steady states. Furthermore, the method has been shown to

suppress oscillations - see [28]. In either case, the schemes have been validated by

comparisons to analytical results in the literature and their use has been extended to

the computation of the time taken to reach the steady state. As such, the work done

in this thesis has provided novel approaches for the solution on models such as the

one under discussion. As will be discussed later there is still scope for further research

in terms of establishing the analytical stability and convergence of the methods.
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Chapter 2

Derivation of model equation

2.1 General introduction

The energy occurring as an outcome of a temperature gradient is referred to as heat

transfer and this temperature difference is taken as a major force leading to heat

flow. It is natural that heat flows from hot objects to cold ones [41]. Heat transfer

occurs in three mechanisms namely: conduction, convection and radiation [11, 41].

Specifically, conduction is defined as the transfer of heat in solids and fluids without

bulk motion while the convection is defined as a heat transferred between a solid

surface and the adjacent fluid that is in motion. Lastly, radiation is quite different

since it does not require a medium of transfer. It is the transfer of energy, passing in

different directions at the speed of light.

The purpose of this Chapter is to discuss the derivation of the model which will

be the focus of this thesis and in so doing justify the use of numerical schemes for its

solution.
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2.1.1 Fourier’s Law of heat conduction

The heat flux −→q , resulting from thermal conduction is proportional to the magnitude

of the temperature gradient and opposite to it in sign [41, 42].

This means that

−→q α −−→∇T. (2.1)

Let k be the coefficient of proportionality, then

−→q = −k
−→∇T. (2.2)

In one dimension we have

q = −k
∂T

∂x
. (2.3)

The coefficient of proportionality k is referred to as the thermal conductivity param-

eter. It is clearly seen that Fourier’s law involves two dependent variables T and q.

It is best to eliminate q from the equation by using the first law of thermodynamics

and the heat transfer rate.

2.1.2 First law of thermodynamics

As highlighted by Lienhard IV and Lienhard V [41], the heat transfer rate Q is

provided by

Q =
dU

dt
+ wk (2.4)

with
dU

dt
the rate of change of the internal thermal energy, and wk the work transfer

rate, where
dU

dt
= mcv

∂T

∂t
with m = ρAdx the mass, cv the specific heat capacity, A

the surface area, and ρ defined as the density. Therefore,

Q = mcv
∂T

∂t
+ wk

12



Figure 2.1: Heat flow process

That is

Q = ρAcv
∂T

∂t
dx+ wk. (2.5)

In Fig. 2.1.1, we simulate the heat transfer rate computation from a flux q(x) at x

and q(x + dx) at x + dx traversing an area A of width dx. The heat traversing the

surface area A of width dx is provided by

Aq(x+ dx)− Aq(x) =
Aq(x+ dx)−Aq(x)

dx
dx.

From equation (2.3) we have q(x) = −k
∂T (x)

∂x
and q(x + dx) = −k

∂T (x + dx)

∂x
.

Hence, the total heat transfer rate that goes out is provided by

Q =
∂

∂x

(

kA
∂T

∂x

)

dx. (2.6)

From equation (2.5) and (2.6) we have

∂T

∂t
=

1

ρAcv

∂

∂x

(

kA
∂T

∂x

)

+ S. (2.7)

where S = − wk

ρAcvdx
is a source term generated by the work done from the thermal

energy supplied to the system. This can come from the heat transferred to the sur-
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rounding fluid by convection that depends on the heat transfer coefficient given by

the power law used in most of industrial applications [43].

Equation (2.7) is referred to as a heat diffusion equation with source term. The

purpose of this Section was to sketch the heat transfer processes by use of fundamen-

tal laws of thermodynamics to model different types of heat transfer like conduction

and convection. It serves as a powerful introduction and it provides the needed math-

ematical tools used in the remaining part of this thesis. From this structure, we are

able to expand the model to consider the heat transfer within longitudinal fins, as

per the next Section.

2.2 Mathematical model formulation

We consider a longitudinal one-dimensional fin with a profile area Ap referred to

wedge-shaped fins by Kraus [11]. The perimeter of the fin is denoted by P and the

length of fin by L. The fin is attached to a fixed base surface of temperature Tb and

extends into a fluid of temperature Ta. The fin profile is given by the function F (X),

and the fin thickness at the base is δb. The energy balance for a longitudinal fin is

given by [11]

ρcv
∂T

∂t
= Ap

∂

∂X

(

F (X)K(T )
∂T

∂X

)

− PH(T ) (T − Ta) , 0 < X < L (2.8)

whereK andH are the non-uniform thermal conductivity and heat transfer coefficient

depending on the temperature (see e.g. [34, 44, 45, 46]). The fin length is measured

from the tip to the base as shown in Fig. 2.2 (see also, [11, 44, 45]). An insulated fin

at one end with the base temperature at the other implies boundary conditions are
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Figure 2.2: Schematic representation of a longitudinal fin with arbitrary profile F (X).

given by [11]

T (t, L) = Tb, and
∂T

∂X

∣

∣

X=0
= 0 (2.9)

and initially the fin is kept at the temperature of the fluid (the ambient temperature)

T (0, X) = Ta. (2.10)

Introducing the dimensionless variables

x =
X

L
, τ =

kat

ρcvL2
, θ =

T − Ta

Tb − Ta

, h =
H

hb

, k =
K

ka
,
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M2 =
2PhbL

2

kaδbAp

and f(x) =
2

δb
F (X), (2.11)

then equation (2.8) reduces to the relevant dimensionless energy equation given by

∂θ

∂τ
=

∂

∂x

[

f(x)k(θ)
∂θ

∂x

]

−M2θh(θ), 0 < x < 1. (2.12)

The above equation represents the non-linear heat transfer equation when the thermal

conductivity and heat transfer coefficients depend on temperature. The heat transfer

coefficient is given by the power law used in most industrial applications [1, 43] as

H(T ) = hb

(

T − Ta

Tb − Ta

)n

. (2.13)

The exponent n varies between −6.6 and 5, however it tends to lie between −3 and 3

in most practical applications [1]. Furthermore, the thermal conductivity of the fin is

assumed to vary linearly with the temperature [1] as is the case for many engineering

applications. As such we find that

K(T ) = ka [1 + β (T − Ta)] (2.14)

which in dimensionless variables gives k(θ) = 1+Bθ where B = β (Tb − Ta) is nonzero

with β as the thermal conductivity gradient. However, we should not exclude the case

where the thermal conductivity parameter follows the power law of the temperature

profile. In that case, k(θ) = θm [30].

Hence, the dimensionless heat transfer equation for a longitudinal one-dimensional

fin is given by [1, 24, 25]

∂θ

∂τ
=

∂

∂x

(

f(x)k(θ)
∂θ

∂x

)

−M2θn+1, 0 < x < 1, τ ≥ 0 (2.15)
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where boundary conditions are as follows

∂θ

∂x

∣

∣

x=0
= 0 at the fin tip (2.16)

and

θ(τ, 1) = 1, at the base (2.17)

with initial condition

θ(0, x) = 0. (2.18)

It is very important to point out that equation (2.15) is not easy to solve in general;

given that our choices for f(x) and k(θ) heavily affect the equation’s solvability.

In fact, the ease of the equations solution can vary depending on the choice made

for these functions. All types of fin profiles that are mentioned in this thesis are

defined in Table 2.1. It is also crucial to recognize the effect of non-linearity as a

major contributor to the complexity of the problem. The purpose of this thesis is

to appropriately solve this equation as it stands without simplification to maintain

all effects of the original problem. As per the work of Noelle et al. [19], a numerical

scheme that does not preserve the fundamental balance at discrete level may result

in spurious oscillations or numerical storms. In the literature - see for instance [11] -

models describing fins with singular profiles (such as triangular fins) were simplified

so as to assure their solution; in turn when the model was considered as it stands the

use of inappropriate methods and the inappropriate implementation of the adiabatic

condition lead to the latter not being maintained in the solutions obtained [1]. In the

Chapter that follows we provide a novel means for the solution of the model under

consideration which overcomes these problems.
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Table 2.1: Types of fin profiles mentioned in the thesis

Types Fin profile function

Rectangular f(x) = 1, 0 ≤ x ≤ 1

Triangular f(x) = x, 0 ≤ x ≤ 1

Concave parabolic f(x) = x2, 0 ≤ x ≤ 1

Convex parabolic f(x) =
√
x, 0 ≤ x ≤ 1

Exponential f(x) = eαx, 0 ≤ x ≤ 1

18



Chapter 3

Numerical well-balanced scheme

The work conducted in this Chapter has been published in the Journal of Mathematical

Problems in Engineering [26].

3.1 Introduction

In this Chapter, we consider a one dimensional non-linear heat transfer equation of

the form

θt + Fx = Q(θ) (3.1)

with

Fx =
∂

∂x

(

f(x)k(θ)
∂θ

∂x

)

and

Q(θ) = M2θn+1.

For the homogeneous case where Q(θ) = 0, the case is simpler. In fact, many nu-

merical schemes were conceived so as to solve non-reactive flows [47] which is the

case when Q(θ) = 0. For similar equations in conservation laws with source terms,
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fraction step splitting methods are most used and can be structured for our case as

follows

θt + Fx = 0 (3.2)

and

θt = Q(θ) (3.3)

which excludes the inclusion of the source term into the numerical scheme [21]. Ac-

cording to Leveque [47], the fraction step splitting method has successfully been used

for many problems. However, when θt is small with respect to Fx and Q(θ), the solu-

tion is close to steady state where Fx and Q(θ) should balance exactly [21]. Therefore,

the accurate solution for a transient equation must rely on this balancing rule prin-

ciple. It has been highlighted by Leveque that fractional step methods may fail [21].

On the other hand, aside from the fractional step method, Leveque [47] has indicated

that most of the numerical algorithms used in solving problems related to reacting

flows were conceived to solve problems related to non-reacting flows and hence those

schemes perform quite poorly to preserve steady states due to the presence of source

terms. Therefore, a well-balanced numerical scheme preserving steady state solutions

is more appropriate for solving transient equation with source term. In this Chap-

ter we focus on well-balanced numerical schemes for one dimensional non-linear heat

transfer equations with source terms. For further reading, the well-balanced method

is well described in [18, 20, 21, 23, 47, 48, 49, 50].

In this Chapter, we have applied a well-balanced numerical scheme to triangular

fins which had been characterized as singular profiles in the literature [11, 1]. When

solving the problem of heat transfer in a triangular geometry it is essential to re-

member that triangular fin profiles have been classified by Kraus et al. [11] among
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singular profiles because it is analytically impossible to characterize them by any

linear transformation. In much research the triangular fin has been considered in

an inappropriate manner due to a misunderstanding of the unusual physics of the

problem, especially when pertaining to the tip of the fin. Through a consideration of

unsuitable boundary conditions the numerical solution of the problem had led to inac-

curate and unusual results - see [1] for such discussions. Through an incorporation of

the zero-flux boundary condition however, we eliminated any additional assumptions

which would usually be required in order to solve the PDE. Rather, we established a

numerical well-balanced scheme via the incorporation of the zero-flux condition and

we validated the results obtained through the use of benchmark results [1, 24, 26, 30].

This method of solution is novel and to the authors best knowledge has not previously

been used in the literature to solve the problem of singular fins. Furthermore, the

approach used can easily be applied to other singular profiles such as the concave

parabolic and convex parabolic profiles.

3.2 Numerical approach

3.2.1 The Finite Volume Method and Numerical Balance

Law

At first we intend to briefly introduce the manner in which we will employ the finite

volume method (FVM) and its advantages within the context of heat transfer prob-

lems. In this scenario, due to its integral approach, the FVM reduces the order of

the spatial derivative by one. This motivates its use for the heat transfer equation

under consideration given the presence of a second derivative in its conduction term.
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In current case, we would consider the partial differential equation of the form

∂θ

∂τ
− ∂

∂x

(

g(x, θ)
∂θ

∂x

)

= q(θ) (3.4)

where g(x, θ) = f(x)k(θ) is a function of x and the thermal conductivity k, involved

in the convective term, and q(θ) = −M2θn+1 a function from the heat transfer coef-

ficient, which represents the source term.To discretise the spatial grid we define the

points xi+ 1
2
with mesh width ∆xi = xi+ 1

2
−xi− 1

2
as well as the time step ∆τj = τj+1−τj

such that θji denotes the approximation cell average of θ in the cell
[

xi− 1

2
, xi+ 1

2

]

at

time τj while θj
i+ 1

2

is the approximation of θ at x = xi+ 1
2
and τ = τj.

In order to reduce the order of the spatial derivatives by one we integrate equation

(3.4) over the grid cell [xi− 1
2
, xi+ 1

2
] to obtain

∫ x
i+1

2

x
i− 1

2

∂θ

∂τ
dx−

∫ x
i+1

2

x
i− 1

2

∂

∂x

(

g(x, θ)
∂θ

∂x

)

dx =

∫ x
i+1

2

x
i− 1

2

q(θ)dx.

By cell averaging we find that

∆xi
dθ̃i(τ)

dτ
−

(

g(x, θ)
∂θ

∂x

)

∣

∣

∣

∣

∣

x
i+1

2

x
i− 1

2

=

∫ x
i+1

2

x
i− 1

2

q(θ)dx (3.5)

where

f̃i =
1

∆xi

∫ x
i+1

2

x
i− 1

2

fdx (3.6)

is the cell-averaged quantity of f over the grid cell [xi− 1
2
, xi+ 1

2
]. It is obvious that the

order of the partial differential equation under consideration has been reduced by one

and this increases the accuracy of the results we are to obtain.

In the next Section we will employ the numerical approach described above for equa-

tion (2.15) and in so doing develop a numerical balance law of (3.5). In this manner
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we obtain a well-balanced scheme which preserves specific non-trivial steady state so-

lutions and may help to minimize some of the oscillations which occur around steady

states [20]. Thus for the more general heat transfer equation (3.4) a well-balanced

scheme can provide a solution that must satisfy

∂

∂x

(

g(x, θ)
∂θ

∂x

)

= q(θ)

for steady states. An easily understandable and effective procedure has been estab-

lished by Wang [18] which will be implemented in this work for the one-dimensional

heat transfer problem given by equation (2.15). It should also be kept in mind that

this methodology may easily be extended to higher dimensions.

3.2.2 Numerical well-balanced scheme

In considering equation (2.15) we find that the one dimensional steady heat equation

for regular fins is expressed by

d

dx

(

f(x)k(θ)
dθ

dx

)

= M2θn+1, 0 < x < 1, (3.7)

dθ

dx

∣

∣

x=0
= 0, θ(1) = 1.

Integrating over the grid cell

[

0, x+
∆x

2

]

, as discussed previously within the context

of the FVM, we obtain

∫ x+∆x
2

0

(

d

dx

(

f(x)k(θ)
dθ

dx

))

dx = M2

∫ x+∆x
2

0

θn+1dx, 0 < x < 1,

which is equivalent to

(

f(x+
∆x

2
)k

(

θ(x+
∆x

2
)

))

dθ(x+ ∆x
2
)

dx
= M2

∫ x+∆x
2

0

θn+1dx, 0 < x < 1. (3.8)
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Similarly over [0, x− ∆x

2
] we find that

(

f(x− ∆x

2
)k

(

θ(x− ∆x

2
)

))

dθ(x− ∆x
2
)

dx
= M2

∫ x−∆x
2

0

θn+1dx, 0 < x < 1. (3.9)

From mean value theorem we have

∫ x+∆x
2

0

θn+1dx =

(

x+
∆x

2

)

θn+1 (ϕ) , 0 < ϕ < x+
∆x

2
. (3.10)

A Taylor series approximation of θn+1(ϕ) around x provides

θn+1 (ϕ) = θn+1 (x) + (n+ 1) (ϕ− x) θn(x)
dθ

dx
+ o

(

(ϕ− x)2
)

(3.11)

where o stands for the order of accuracy here and in the whole remaining part of this

thesis when applicable. Hence,

∫ x+∆x
2

0

θn+1dx =

(

x+
∆x

2

)(

θn+1 (x) + (n + 1) (ϕ− x) θn(x)
dθ

dx
+ o

(

(ϕ− x)2
)

)

.

(3.12)

For ϕ → x+
∆x

2
we have

∫ x+∆x
2

0

θn+1dx =

(

x+
∆x

2

)(

θn+1 (x) + (n+ 1)
∆x

2
θn(x)

dθ

dx
+ o

(

∆x2
)

)

. (3.13)

Similarly

∫ x−∆x
2

0

θn+1dx =

(

x+
∆x

2

)(

θn+1 (x)− (n + 1)
∆x

2
θn(x)

dθ

dx
+ o

(

∆x2
)

)

. (3.14)

Therefore

∫ x+∆x
2

x−∆x
2

θn+1dx = ∆x

(

θn+1 (x) + (n+ 1)xθn(x)
dθ

dx
+ o

(

∆x2
)

)

. (3.15)
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3.2.3 Balance law

From (5.2) we have

∫ x

0

d

dx

(

f(x)k(θ)
dθ

dx

)

dx = M2

∫ x

0

θn+1dx (3.16)

which is equivalent to

f(x)k(θ(x))
dθ(x)

dx
= M2

∫ x

0

θn+1dx. (3.17)

By mean value integral theorem and Taylor series approximation we have

f(x)k(θ(x))
dθ(x)

dx
= M2xθn+1(ϕ), 0 < ϕ < x

= M2x

(

θn+1 (x) + (n+ 1) (ϕ− x) θn(x)
dθ

dx
+ o

(

(ϕ− x)2
)

)

.
(3.18)

For ϕ → x− ∆x

2
and ∆x very small we have

f(x)k(θ(x))
dθ(x)

dx
= M2x

(

θn+1(x)− (n+ 1)
∆x

2
θn(x)

dθ

dx
+ o

(

∆x2
)

)

. (3.19)

Hence,

dθ

dx
= 2M2x

(

θn+1

2f(x)k(θ(x)) + (n + 1)M2∆xxθn(x)
+ o

(

∆x2
)

)

. (3.20)

From the equations (3.15) and (3.20), the source term balancing law can be established

as follows

∫ x+∆x
2

x−∆x
2

θn+1dx = ∆x

(

θn+1 (x) +
2(n + 1)M2x2

2f(x)k(θ(x)) + (n+ 1)M2∆xxθn(x)
θ2n+1(x) + o

(

∆x2
)

)

.

(3.21)
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Integrating equation (2.15) over

[

x− ∆x

2
, x+

∆x

2

]

and incorporating expression

(3.21) into the resulting expression we obtain

∂θ

∂τ
=

1

(∆x)2

{

f(x+
∆x

2
)k(θ(x+

∆x

2
))
∂θ(x+ ∆x

2
)

∂x
− f(x− ∆x

2
)k(θ(x− ∆x

2
))
∂θ(x− ∆x

2
)

∂x

}

−M2

(

θn+1(x) +
2(n+ 1)M2x2

2f(x)k(θ(x)) + (n+ 1)M2x∆xθn(x)
θ2n+1(x)

)

.

(3.22)

We now substitute finite difference approximations to our derivatives into equation

(3.22). We consider

[

xi −
∆x

2
, xi +

∆x

2

]

for a particular time tj which provides us

with the following approximations

∂θ(xi +
∆x
2
)

∂x

∣

∣

j
=

θj(xi +∆x)− θj(xi)

∆x
=

θji+1 − θji
∆x

∂θ(xi − ∆x
2
)

∂x

∣

∣

j
=

θj(xi)− θj(xi −∆x)

∆x)
=

θji − θji−1

∆x

∂θ

∂τ
|i =

θj+1
i − θji
∆t

.

Hence, our well-balanced numerical scheme is given by the following recurrence rela-

tion

θj+1
i = θji +

∆t

(∆x)2

[

fi+ 1
2
k(θj

i+ 1
2

)(θji+1 − θji )− fi− 1
2
k(θj

i− 1
2

)(θji − θji−1)
]

−∆tM2

(

(θji )
n+1 +

2(n+ 1)M2x2
i

2fik(θ
j
i ) + (n+ 1)M2xi∆x(θji )

n
(θji )

2n+1

) (3.23)

where a linear interpolation is used to determine fi+ 1

2
, fi− 1

2
, θi+ 1

2
and θi− 1

2
.

No-flux at origin

In order to implement our well-balanced numerical scheme we need to first incorporate

the relevant boundary conditions. According to the work by Kraus [11], some fins’

shapes require special interpretation - a clear example thereof is the triangular fin
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profile. Longitudinal fins of triangular profile have been classified among singular fins

that cannot be characterized by any linear transformation. As such it is important

to remember that the fin profile tapers to zero thickness at the tip and hence there

will be a zero flux at this point. This means that

∂

∂x

(

f(x)k(θ)
∂θ

∂x

)
∣

∣

∣

∣

x=0

= 0. (3.24)

We now implement a time forward discretisation at the origin and employ the no-flux

condition given by (3.24) to obtain

θj+1
0 = θj0 −∆tM2

(

θj0
)n+1

. (3.25)

As one can see the physical reality of zero thickness at the tip complicates the so-

lution of the problem. If one were to only employ the no-flux condition, given the

initial condition of zero temperature, one would always have a zero temperature at

the origin as per (3.25). This does not make physical sense however, given that after

a considerable time the temperature would be expected to increase at the tip of the

fin. At this stage we turn to the well-balancing principle as a means of overcoming

this problem.

We employ the well-balancing principle at the origin as a means of incorporating

the expression of θj0 into equation (3.25). As such, we consider the steady sate equa-

tion as follows

∫ x0+
∆x
2

x0

d

dx

(

f(x)k(θ)
dθ

dx

)

dx =
∆x

2
M2θn+1(x0)

f(x0 +
∆x

2
)k(θ(x0 +

∆x

2
))

d

dx
θ(x0 +

∆x

2
)− f(x0)k(θ(x0))

dθ

dx
(x0) =

∆x

2
M2θn+1(x0)
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f(x0 +
∆x

2
)k(θ(x0 +

∆x

2
))

d

dx
θ(x0 +

∆x

2
)− 0 =

∆x

2
M2θn+1(x0), because

dθ

dx
(x0) = 0

f(x0 +
∆x

2
)k(θ(x0 +

∆x

2
))

d

dx
θ(x0 +

∆x

2
) =

∆x

2
M2θn+1(x0).

Through the use of a central difference approximation we then obtain

θj0 = θj1 −
∆x2

2f(x 1
2
)k(θj1

2

)
M2(θj0)

n+1. (3.26)

The coupled equations (3.25) and (3.26) provide a numerical well-balanced discreti-

sation for a triangular fin profile at the origin.

Flux at origin

For regular fin profiles the flux at the origin is non-zero and adiabatic conditions are

governed by the boundary conditions. At the origin we have

∂θ

∂τ
− f(x)k(θ)

∂2θ

∂x2
+M2(θ)n+1

∣

∣

∣

∣

x=0

= 0 because
d

dx
(f(x)k(θ))

dθ

dx
(x0) = 0

Implementing the forward difference approximation for time and the central difference

approximation for space we find that

θj+1
0 = θj0 −

2∆τf(x0)k(θ
j
0)

∆x2
(θj1 − θj0) + ∆τM2(θj0)

n+1 (3.27)

and using similar finite difference approximations on the steady state equation of

regular fins we obtain

θj0 = θj1 −
∆x2

2f(x0)k(θ
j
0)
M2(θj0)

n+1. (3.28)

Equations (3.27) and (3.28) summarize the discretisation at the origin for regular fin

profiles.
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3.3 Results and discussion

3.3.1 Triangular fin profiles

As stated earlier, previous researches have proposed that one approximate the shape

of triangular fins by considering the trapezoidal profile as a means of facilitating lin-

ear transformations. Aside from proposed simplifications, work has also been done

while maintaining the profile in its original triangular form. In [1] for instance, nu-

merical solutions were obtained for the heat transfer in a triangular fin which did not

maintain the adiabatic condition - this was thought to be due to thermal instability

within the fin as discussed in Yeh and Liaw [43].

The importance of the work conducted here is that the numerical scheme developed

did not rely on any simplifying assumptions as proposed by Kraus [11]. Further-

more, the results obtained in [1] are shown to be due to an inaccurate methodology,

specifically related to the boundary conditions for profiles which lead to singulari-

ties. In applying the no-flux condition in a novel manner we were able to obtain a

recursive scheme able to capture the true behaviour of the model under consideration.

We obtained numerical solutions via our well-balanced scheme to equation (2.15) for

a triangular fin profile with B = 1, n = 1, M = 0.01, 1, 1.5, and M = 5 at different

values of τ . Figures 3.1 and 3.2 indicate that the temperature decreases from the base

to tip of the fin and that the temperature at the tip increases with time. These results

make physical sense and also match the behaviour of the temperature distribution

found for other fin profiles. Interestingly, for small values of time τ the response
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temperature is virtually independent of the value of M and this is why a single curve

is shown for τ = 0.0001, τ = 0.001, and τ = 0.01. This has been explained in Surya-

narayana [24] where it is said that at small values of τ , the bulk of the thermal energy

entering at the base remains stored in the fin with only a small fraction available for

dissipation through surface convection. Thus, the heat transfer coefficient has very

little direct impact on the temperature profile - rather its impact may be related to

the length of the fin which in turn influences the temperature profile [1].

In turn, as τ increases it is seen that the role of convection and hence M becomes

progressively significant as shown by Figure 3.3 and Figure 3.4. Another point is that

the steady state is reached quicker for longer fins or fins with higher values of M as

shown by Figure 3.2 for τ = 0.5. This same Figure 3.2 shows clearly that at τ = 0.5

only a stationary state has been reached for the fin profile where M = 5, which is the

largest value chosen. This is a consequence of the fact that the dimensionless time

τ =
kat

ρcL2
should decrease with an increase in M.

While the numerical results we have obtained for the heat transfer in triangular fins

matches those obtained by Suryanarayana [24] for other types of fin profiles in linear

cases we still require further verification of our results. The results provided in [24] in

and of itself cannot justify the accuracy of the results obtained via our well-balanced

numerical scheme given the fact that no other concrete analysis currently exists and

that all previous attempts at obtaining solutions for the triangular case were done

with reservations regarding the results obtained [1]. For this reason, our model has

been applied to the rectangular case, where we do have confirmed results, as a means

of validating the scheme implemented.
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3.3.2 Model validation

For a rectangular fin profile the solution profiles from our well-balanced numerical

scheme are depicted by the Figures 3.5, 3.6 and 3.7. It is clearly visible that the tem-

perature is an increasing function of time and it decreases from the base to the tip.

Figure 3.5 depicts the effect of the thermo-geometric fin parameter on the tempera-

ture. We can see that the temperature is a decreasing function of M. In contrast,

the temperature distribution is an increasing function of parameter n as shown by

Figure 3.7. What is important to realise is that the results we have obtained for the

rectangular case via the well-balanced scheme employed for the triangular case, verify

the benchmarks results of [1, 24] and hence act as a validation of our well-balanced

numerical scheme.

3.4 Conclusion

The well-balanced numerical scheme which we have established in this work has been

shown to effectively and efficiently obtain results for the rectangular fin profile, match-

ing previous results found in the literature [1, 24, 30]. Our discretisation incorporates

the flux condition for the rectangular case as is appropriate, however for the triangu-

lar fin profile we incorporated the no-flux condition into our established well-balanced

numerical scheme and this constitutes the originality of our work.

Several researchers [30, 46] have proposed some exact solutions, but the main problem

was that they were simplifying the problem by adjusting the geometric form of the

fin as a means of guaranteeing analytical solutions. Kraus[11] for example, suggested

one assume triangular profiles to be trapezoidal so as to guarantee the existence of
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linear transformations.

In our work however, such simplifications are not needed. The well-balanced nu-

merical scheme which we developed is able to handle the triangular case without any

assumption due to the incorporation of the appropriate conditions, namely the no-

flux condition. This approach can easily be extended to other singular profiles, such

as the convex and concave parabolic profiles, and hence it constitutes a clear path to

a generalized numerical scheme for the solution of problems in heat transfer.
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Figure 3.1: A triangular fin profile with B = 1, n = 1, M = 0.01, M = 1, M = 1.5,

and M = 5 for τ = 0.0001(top) and τ = 0.001(bottom).
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Figure 3.2: A triangular fin profile with B = 1, n = 1, M = 0.01, M = 1, M =

1.5, and M = 5 for τ = 0.1(top) and τ = 0.5(bottom).
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Figure 3.3: A triangular fin profile with B = 1, n = 1, M = 0.01, M = 1, M =

1.5, and M = 5 for τ = 0.75(top) and τ = 1(bottom).
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Figure 3.4: A triangular fin profile with B = 1, n = 1, M = 0.01, M = 1, M =

1.5, and M = 5 for τ = 5(top) and τ = 10(bottom).
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Figure 3.5: A rectangular fin profile with B = 1, n = 1, M = 1, M = 3, M = 5,

and M = 8 for τ = 2.5
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Figure 3.6: A rectangular fin profile with B = 1, n = 1, M = 1 and varying τ .
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Figure 3.7: A rectangular fin profile with B = 1, M = 6, τ = 2.5 and varying n.
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Chapter 4

Numerical relaxation scheme

The work conducted in this Chapter has been published in the Journal of Applied

Mathematics and Computation [51].

4.1 Introduction

The analytical solution of equations of the kind as considered in this work are not

easily obtained, and may often only be found through a simplification of the model.

As such, given that we aim to investigate a highly non-linear partial differential

equation, we will employ computational methods for the solution of the equation.

Wang et al. [18] stated that one needs to treat a system of highly coupled equations

with stiff non-linear source terms in the proper manner computationally so that one

does not obtain spurious steady state numerical solutions - this is an appropriate

consideration given the nature of the computational method we wish to employ in

the Chapter. The literature [27, 52, 53] motivates the use of numerical relaxation

schemes given that they are simple to implement and are able to achieve higher order

accuracy in capturing weak solutions without using Riemann Solvers spatially or
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systems of algebraic equations temporally. Thus we choose to establish a relaxation

system for the corresponding problem under consideration. We consider the one-

dimensional case, not due to its simplicity, but rather so that we are able to validate

our results through a clear visualization against benchmark results. An extension to

higher dimensions is straight forward given the methodology employed in this work

and in [26]. Due to its robustness [53] the scheme shall be applied to the transient

heat equation under consideration and as such be used to compute the mean action

time for which there is no analytical technique available to us.

4.2 Relaxation schemes: An overview

As per the work in [54, 55], the main idea in relaxation is to avoid Riemann solvers

when constructing numerical schemes for non-linear conservation laws. It is for this

reason that our approach consists of reducing the order of differentiation of the heat

transfer equation under consideration to a first order non-linear hyperbolic system of

equations with source terms. As such, the equation considered is treated in a similar

fashion to conservation laws [27, 56].

Scalar conservation laws

To be more practical, let us take a scalar PDE or conservation law

ut + [f(u)]x = 0, x ∈ R, t ∈ R+, u ∈ R (4.1)

u(x, 0) = u0(x).
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By employing the relaxation approach, equation (4.1) is transformed into a linear

system of equations termed a relaxation system

ut + vx = 0, v ∈ R

vt + aux = −1

ǫ
(v − f(u))

u(x, 0) = u0(x)

(4.2)

For ǫ → 0 we have

v = f(u) (4.3)

ut + [f(u)]x = 0 (4.4)

Equation (4.4) is the original conservation law and equation (4.3) is called the local

equilibrium. The parameter ǫ is called the relaxation rate and is very small while a

is a sub-characteristic parameter and it is always positive.

We will now introduce the Chapman-Enskog expansion as a means of deriving the

relaxed schemes that have been shown to be a consistent and stable discretisation of

the original conservation laws [27]. Let

v = v0 + ǫv1 + ǫ2v2 + .... + ǫnvn + .... (4.5)

For ǫ → 0, the first order Chapman-Enskog expansion of v is

v(ǫ) = v0(ǫ) + ǫv1. (4.6)

Substituting the local equilibrium equation (4.3) into (4.6) we get

v(ǫ) = f(u(ǫ)) + ǫv1. (4.7)
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Substituting (4.7) into the relaxation system (4.2) we get

[u(ǫ)]t + [f(u(ǫ))]x + ǫ [v1(ǫ)]x = 0

[f(u(ǫ))]t + ǫ [v1(ǫ)]t + a [u(ǫ)]x =
1

ǫ
(f(u(ǫ))− v(ǫ))

=
1

ǫ
[f(u(ǫ))− (f(u(ǫ)) + ǫv1)]

= −v1(ǫ)

(4.8)

that is

[u(ǫ)]t + [f(u(ǫ))]x + ǫ [v1(ǫ)]x = 0

[f(u(ǫ))]t + ǫ [v1(ǫ)]t + a [u(ǫ)]x = −v1(ǫ) .

(4.9)

Equating coefficients of ǫ polynomials with the same degree we obtain

[v1(ǫ)]t = 0

v1(ǫ) = − [f(u(ǫ))]t − a [u(ǫ)]x .

(4.10)

In fact

[f(u)]t = f ′(u) [u]t

and from (4.1) we have

[u]t = − [f(u)]x

and

[u]t = −f ′(u) [u]x .

Therefore

[f(u)]t = −f ′(u)2 [u]x (4.11)
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and by inserting (4.11) into (4.10) we obtain

v1 = −
[

a− f ′(u)2
]

[u]x . (4.12)

Given (4.12)

∂v1
∂x

= −
[

(

a− f ′(u)2
) ∂u

∂x

]

x

. (4.13)

Substituting (4.13) into the first equation of the system (4.9) we obtain

∂u

∂t
+

∂f(u)

∂x
=

[

(

a− f ′(u)2
) ∂u

∂x

]

x

(4.14)

which is a diffusion equation. This equation physically models dissipation if

(

a− f ′(u)2
)

≥ 0.

From this requirement we have

a ≥ f ′(u)2

that is

f ′(u)2

a
≤ 1

that is

|f ′(u)|√
a

≤ 1.

Therefore,

−
√
a ≤ f ′(u) ≤

√
a (4.15)

for all u.

The above relation (4.15) is referred to as the sub-characteristic condition and is

necessary for convergence. From Chalabi and Seghir, the sub-characteristic stability

condition plays a key role and is essential to obtain zero relaxation as is the CFL

condition for convergence in numerical schemes [54, 55].
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Scalar conservation laws with source term

In order to tackle our problem we need to first consider the structure of conservation

laws with source terms. The approach employed follows the work of Chalabi and

Seghir [55]. The general problem is expressed by the following equations

ut + [f(u)]x = q(u), x ∈ R, t ∈ R+, u ∈ R (4.16)

u(x, 0) = u0(x).

From equation (4.16), the corresponding relaxation system is given by

ut + vx = q(u), v ∈ R

vt + aux = −1

ǫ
(v − f(u))

u(x, 0) = u0(x).

(4.17)

For ǫ → 0 we have

v = f(u) (4.18)

ut + [f(u)]x = q(u). (4.19)

Equation (4.19) is the original conservation law and equation (4.18) is called the local

equilibrium. By the Chapman-Enskog approximation, the first order approximation

of the relaxation system becomes

∂u

∂t
+

∂f(u)

∂x
= q(u) + ǫ [f ′(u)q(u)]x + ǫ

[

(

a− f ′(u)2
) ∂u

∂x

]

x

(4.20)

which is dissipative if

−
√
a ≤ f ′(u) ≤

√
a (4.21)
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for all u.

The sub-characteristic condition is similar to that obtained for homogeneous conser-

vation laws.

Employing the relaxation technique is quite straight forward at this stage. Trans-

formations are used as a means of reducing the order of differentiation by one as per

the work in [29, 57]. After appropriate transformations, we obtain an equation in

the form of a conservation law with a source term. Relaxation techniques can be

employed as per the work of Chalabi and Seghi [54]. In the next Section, an upwind

scheme is considered as an alternative means of solving our problem. This method is

appropriate given that Jin and Xin [27] described them as schemes having a correct

zero relaxation limit.

4.3 Numerical relaxation scheme for one dimen-

sional heat transfer

The relaxation scheme is structured via the introduction of a linear system with source

term. We consider

∂θ

∂τ
=

∂

∂x

(

f(x)k(θ)
∂θ

∂x

)

−M2θn+1, 0 < x < 1, τ ≥ 0 (4.22)

where boundary conditions are as follows

∂θ

∂x

∣

∣

x=0
= 0 at the fin tip and θ (τ, 1) = 1. (4.23)
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The corresponding relaxation system is

∂θ

∂τ
+

∂v

∂x
= −M2θn+1

∂v

∂τ
+ a2

∂θ

∂x
=

1

ǫ
(F − v)

∂θ

∂x

∣

∣

x=0
= 0 and θ (τ, 1) = 1

v (τ, 0) = F (0) = 0 and v (τ, 1) = F (1)

. (4.24)

with F = −f(x)k(θ)
∂θ

∂x
, a the characteristic speed and ǫ the relaxation parameter.

The key concept of this theory is that the relaxation system should reduce to (4.22)

for ǫ 7→ 0 and the partial differential operator of the relaxation system is linear and

diagonalizable with two characteristics

v ± aθ.

With this approach, special care should be taken when discretising the system (4.24)

so that there is still a discrete analogy for the zero relaxation limit which is consistent

with the original equation (4.22).

4.3.1 Numerical discretisation

In order to discretise the spatial grid we define the points xi+ 1

2
with mesh width

∆xi = xi+ 1
2
− xi− 1

2
as well as the time step ∆τj = τj+1 − τj such that θji denotes the

approximation cell average of θ in the cell
[

xi− 1
2
, xi+ 1

2

]

at time τj while θj
i+ 1

2

is the

approximation of θ at x = xi+ 1
2
and τ = τj .
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Relaxation scheme

Using the integral approach and spatial cell averaging of equation (4.24) we get

dθi
dτ

+
1

∆xi

(

vi+ 1
2
− vi− 1

2

)

= −M2θn+1
i

dvi
dτ

+ a2
1

∆xi

(

θi+ 1
2
− θi− 1

2

)

=
1

ǫ
(Fi − vi)

1

∆xi

∫ x
i− 1

2

x
i− 1

2

F (θ)dx+ o
(

∆x2
)

= Fi

(4.25)

as established and similarly defined by Jin and Xin [27]. By employing an upwind

scheme, quantities θi+ 1
2
and vi+ 1

2
are easily defined. This is due to the fact that the

system (4.24) has two characteristic variables v ± aθ travelling with characteristic

speeds ±a respectively. Hence

(v + aθ)i+ 1
2

= (v + aθ)i (4.26)

(v − aθ)i+ 1
2

= (v − aθ)i+1 . (4.27)

From (4.26) we get

vi+ 1
2
+ aθi+ 1

2
= vi + aθi (4.28)

and from (4.27) we get

vi+ 1
2
− aθi+ 1

2
= vi+1 − aθi+1. (4.29)

By adding (4.28) with (4.29) and after some algebraic manipulation we obtain

vi+ 1
2
=

1

2
(vi + vi+1)−

a

2
(θi+1 − θi) . (4.30)

Similarly, by subtracting (4.29) from (4.28) we find

θi+ 1
2
=

1

2
(θi + θi+1)−

1

2a
(vi+1 − vi) . (4.31)
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From equation (4.30) and (4.31) we obtain the following important expressions

vi+ 1
2
− vi− 1

2
=

1

2
(vi+1 − vi−1)−

a

2
(θi+1 − 2θi + θi−1) (4.32)

and

θi+ 1
2
− θi− 1

2
=

1

2
(θi+1 − θi−1)−

1

2a
(vi+1 − 2vi + vi−1) . (4.33)

By introducing equations (4.32) and (4.33) into the system (4.25) we finally obtain a

relaxing scheme as expressed by the system

dθi
dτ

= − 1

2∆xi
(vi+1 − vi−1) +

a

2∆xi
(θi+1 − 2θi + θi−1)−M2θn+1

i

dvi
dτ

=
−a2

2∆xi

(θi+1 − θi−1) +
a

2∆xi

(vi+1 − 2vi + vi−1) +
1

ǫ
(Fi − vi)

Fi = f(xi)k(θi)
θi+1 − θi−1

2∆xi

(4.34)

for the one dimensional heat transfer equation under consideration.

4.3.2 Zero relaxation numerical scheme

When structuring the relaxation scheme it was required that the numerical discreti-

sation must have a discrete analogy to the zero relaxation limit which should be

consistent with the original partial differential equation. In our case, for ǫ → 0, we

have vi → Fi and hence the zero relaxation numerical scheme becomes

dθi
dτ

= − 1

2∆xi
(Fi+1 − Fi−1) +

a

2∆xi
(θi+1 − 2θi + θi−1)−M2θn+1

i

Fi = f(xi)k(θi)
θi+1 − θi−1

2∆xi

F0 = 0.

(4.35)
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Hence the first order fully discretized scheme can be expressed as

θj+1
i = θji −

∆τ

2∆xi
(Fi+1 − Fi−1) +

a∆τ

2∆xi
(θi+1 − 2θi + θi−1)−∆τM2θn+1

i

F0 = 0.

(4.36)

The above expression stands for a relaxed numerical scheme for heat transfer in

one dimensional longitudinal fin profile. In this research we will test this scheme

via a comparison against analytical solutions of the steady state equation solved by

Turkyilmazoglu [30].

4.4 Results and discussion

4.4.1 Parametric exponential shape profiles and model vali-

dation

We consider equation (4.22) and define the fin profile as a parametric exponential

profile. We note here that in the context of this Chapter and throughout the rest of

the thesis reference to an ‘exponential fin’ or ‘exponential fin profile(s)’ serve as a

means of easily distinguishing between fins with an exponential shape function eαx

and those with other shape functions. We note here that for α > 0 Kraus et al. [11]

referred to this shape as the ‘convex fin’. Given this choice of the fin shape profile

and the thermal conductivity as a power law it follows that

f(x) = eαx,

and

k(θ) = θm
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Figure 4.1: Temperature distribution for a rectangular fin profile where α = 0 (top)

and an exponential fin profile α = 1 (bottom) with n = m = 1/4 obtained via the

relaxation scheme ( ) compared to a steady state solution (◦ ◦ ◦◦).
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Figure 4.2: Temperature distribution for an exponential fin profile where α = 2 (top)

and α = 3 (bottom) with n = m = 1/4 obtained via the relaxation scheme ( )

compared to a steady state solution (◦ ◦ ◦◦).
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which gives

∂θ

∂τ
=

∂

∂x

(

eαxθm
∂θ

∂x

)

−M2θn+1, 0 < x < 1, τ ≥ 0 (4.37)

where the boundary conditions are as follows

∂θ

∂x

∣

∣

x=0
= 0 at the fin tip. (4.38)

In this research we have chosen to consider a fin with exponential profile which reduces

to the rectangular profile when α = 0. This problem has been solved analytically for

steady states [30] and as such we use those results to validate our numerical relaxation

scheme. While analytical solutions do exist for steady states [30], it is difficult to ob-

tain such solutions for the time dependent case of equation (4.37). In this Section we

consider the heat flow in one dimensional exponential fins with varying values of the

exponential parameter, thermo-geometric parameter and nonlinear thermal conduc-

tivity exponent. In much research regarding heat transfer, rectangular fins are often

considered when multiple numerical and analytical methods are employed [1, 46, 58].

In addition, exact analytical solutions are available for the steady state equation of

heat transfer in straight fins of exponential shape [30]. Therefore, we consider these

fin shapes in the transient case so as to better validate our numerical results. We ob-

tain numerical solutions via the relaxation scheme and then discuss the results. The

variation of the exponential parameter is essential as it allows us to consider different

profiles, one of which is the rectangular profile when α = 0, allowing for a comparison

to analytical steady state solutions. In order to compute steady state solutions from

the time dependent model, we allow our numerical solutions to converge over large

time to within a certain tolerance. In this manner we are able to compare our nu-

merical solutions to steady state solutions established analytically by Turkyimazoglu

[30]. Figures 4.1 and 4.2 depict analytical steady state solutions (◦ ◦ ◦ ◦ ◦) as well
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as the time dependent numerical solutions ( ) at M = 0.25, 0.5, 0.75, 1.00 and

1.50. These Figures show that the numerical relaxation results of the transient heat

equation converges reasonably well to the analytical solutions from the steady state

heat equation. As such, our numerical results have been validated via the comparison,

allowing us to assume that using the same scheme to compute the mean action time

is reasonable.

4.4.2 Temperature distribution and fin efficiency

In our figures we have compared the analytical solution of the steady state case to

our numerical solutions for the rectangular case and the cases where α = 1, 2, 3 and

4. This was used to highlight how the temperature distribution increases with the

increase of the parameter α and hence to show that the fin performance, in terms

of a high heat distribution, becomes better with the parameter increase. For each

case, we vary M to better compare our results across different fin lengths as well - it

has been shown by Harley [59] that M is proportional to the fin length allowing for

this approach. From Figures 4.1 and 4.2 it is clear that the temperature distribution

decreases as one moves along the fin from the base to the tip. Furthermore, we find

that the overall temperature distribution is higher for larger values of the fin shape

parameter α which complies with [30]. The temperature distribution is also shown to

be higher across the fin length the shorter the fin which complies with the idea that

short fins shall transfer heat quicker than long fins with similar properties as per the

work of Moitsheiki and Harley [1].
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4.5 Conclusion

In this Section, we have used a numerical relaxation scheme to solve a time dependent

one dimensional heat transfer equation with different exponential fin profiles. The

numerical relaxation scheme was implemented due to its simplicity and accuracy as

described in the literature by Jin and Xin [27]. To the best of the authors’ knowledge

this is the first time that this method has been employed within the context of such

a problem. The results obtained complied with steady state analytical solutions [30]

upon computational convergence. As such we are able to use this scheme to further

investigate the mean action time of the process, as we will discuss in Chapter 6.
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Chapter 5

Comparison of numerical schemes

5.1 Introduction

It is important to compare results from different utilized methods, not necessarily with

each other, but more importantly with some known analytical or semi-analytical so-

lution as a means of investigating their efficiency. We paraphrase Tadman [60] who

explained that there does not necessarily exist a “best” numerical method but rather

that each method of particular interest is used within a context and will display its

own strengths and weaknesses. Therefore, neither the numerical well-balanced scheme

nor the numerical relaxation scheme should be considered the best scheme to use for

the solution of the non-linear heat transfer equation under consideration since each

method has its own advantages and disadvantages. As stipulated in the Introduction

the methods employed have certain strengths which is why we have employed them in

this work. While standard finite difference schemes may also perform sufficiently we

employed these methods with the express intention of applying the adiabatic bound-

ary condition in the appropriate fashion.
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The true motivation for the use of the methods employed here is due to the work

conducted in [1] where it was found that the results obtained were not maintaining

the physical conditions for singular fins. The idea was to use an integral approach

method such as the Finite Volume Method since it reduces the order of differentia-

tion by one through the Gauss divergence theorem. The well-balanced and relaxation

methods are applied via the FVM allowing each to take advantage of the latter’s ad-

vantages. Given each method’s particular advantages as discussed in the Introduction

and Chapters 3 and 4 their use is justified. Therefore, the next Section consists in

comparing the results obtained in these Chapters as well as drawing some conclusions

regarding their performance.

5.2 Comparison and convergence of numerical schemes

Since numerical schemes produce only approximations to the exact solution of a

relevant PDE an investigation into the stability, consistency and convergence of the

scheme is of prime importance. Unfortunately, we are dealing with a non-linear PDE

which means that investigations into the stability can become extremely complex.

Given that the consistency, i.e. the order of accuracy of the schemes are well known

via the finite difference approximations employed, we will focus on a convergence

analysis in this Chapter. As such, we shall compare the numerical results to the

exact solution for the following particular case of

∂θ

∂t
− ∂2θ

∂x2
= −M2θ. (5.1)

where initial and boundary conditions are given as

θ(x, 0) = 0
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∂θ

∂x
(0, τ) = 0, τ > 0

and

θ(1, τ) = 1, τ > 0.

As a linear PDE, an analytical solution is straight forward and well known [24]. In

addition, we will also consider different cases for the PDE which models fins with an

exponential profile since its steady state equation modelled by

d

dx

(

e(αx)θm
dθ

dx

)

= M2θn+1, 0 ≤ x ≤ 1 (5.2)

dθ

dx
(0) = 0; θ(1) = 1

admits some analytical solutions [30]. These analytical solutions will be used as a

benchmark for our numerical solutions as a means of discussing the convergence of

these schemes.

5.2.1 Convergence for small τ

Establishing the convergence of many non-linear problems is not always a simple

matter. In fact, unlike many linear differential equations, there is no well established

approach which can be used to analyse the convergence of numerical methods for

non-linear PDEs [60]. The challenges vary from problem to problems and the specific

characteristics of the non-linearity. Also, here are certain requirements regarding the

norms to be employed in order to enforce compactness. So, matching these norms to

initial boundary values coupled with the non-linearity is a delicate task and some-

times impossible to prove analytically.
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Figure 5.1: Exact solutions for M = 0.5, at τ = 0.0005; τ = 0.001; τ = 0.005; τ =

0.01.
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In this Section, we shall present the results of equation (5.1) obtained via the nu-

merical well-balanced and relaxation schemes, compare their results and compute the

errors with respect to the exact solutions and discuss the convergence. In all numer-

ical computations we have taken ∆τ = 10−5 and ∆x = 1.75× 10−2 and the use of τ

refers to the final time at which a numerical solution is presented.

At first glance - see Figures 5.1 and 5.2 - it would seem that there are differences

between the exact solution to equation 5.1 and the numerical solutions obtained via

our two schemes. However, to quantitatively represent this we have computed the

mean square errors for the well-balanced and relaxation schemes against the exact

solution and displayed this information in Table 5.1 where the second column rep-

resents the comparison with the well-balanced numerical scheme, the third column

represents the comparison with the relaxation scheme and the last column represents

the mean square error between the well-balanced and relaxation schemes. At this
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Figure 5.2: Numerical well-balanced (◦ ◦ ◦◦) and relaxation ( ) solutions for M =

0.5, at τ = 0.0005; τ = 0.001; τ = 0.005; τ = 0.01.
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stage we also note that we have considered various values of τ as a means of asserting

the time taken to convergence as well.

In Table 5.1 we can see that the schemes employed in Chapters 3 and 4 converge

to the exact solution to two decimal places for small values of τ . This makes sense

given the order of accuracy of the schemes employed having been of second order.

We also notice that as τ increases the errors between the numerical solutions and the

exact solutions decrease and as such we find the former are accurate to within three

decimal places. This confirms that our numerical schemes perform more accurately

for larger values of τ which is not unreasonable. Furthermore, we find that there is

a negligible difference between the two schemes for these values of τ which indicates

that the two schemes are on par in terms of their performance in terms of convergence.

For large values of τ , the steady state solutions are more appropriate to use as a
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Table 5.1: Mean squared error obtained via a comparison between the steady state

solution and our numerical solutions; and the mean squared difference between the

two schemes for small values of τ

τ WBS RS WBS vs RS

0.0005 0.0036 0.0048 0.0002

0.001 0.0025 0.0031 0.0000

0.005 0.0011 0.0012 0.0000

0.01 0.0007 0.0008 0.0000

benchmark. As such we now turn to the work of Turkyilmazoglu [30] who has ob-

tained exact solutions of the steady state equation given by equation (5.2).

5.2.2 Convergence for large τ

In this Subsection we present a comparison between the well-balanced scheme, the

relaxation scheme and a steady state solution respectively. We consider the following

equation as a means of investigating the convergence of our numerical schemes

∂θ

∂τ
=

∂

∂x

(

θm
∂θ

∂x

)

−M2θn+1, 0 < x < 1, τ ≥ 0 (5.3)

where the initial and boundary conditions are as follows

∂θ

∂x

∣

∣

x=0
= 0 at the fin tip, θ(1, τ) = 1 and θ(x, 0) = 0, (5.4)
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where m = n = 1/4. This equation has steady state solutions as stated in [30]. The

error between this steady state solution and the solutions computed via the different

numerical schemes employed for equation (5.3) are presented below for different val-

ues of M. We have also provided the values of τ at which the value of the numerical

solution was obtained in each case.

Table 5.2: Mean squared error obtained via a comparison between the steady state

solution and our numerical solutions; and the mean squared difference between the

two schemes for τ = 0.01

M WBS RS WBS vs RS

0.01 0.8500 0.8497 0.0001

0.5 0.7124 0.7120 0.0000

1.5 0.2882 0.2879 0.0000

5 0.0296 0.0294 0.0000

Firstly we can see that the solutions to both schemes start to converge at relatively

small values of τ - compare Tables 5.2 and 5.3. It becomes clear from Tables 5.3 and

5.4 that both numerical schemes converge at least up to two decimal places, which

is consistent with the accuracy of the finite difference approximations employed. By
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Table 5.3: Mean square error obtained via a comparison between the steady state

solution and our numerical solutions; and the mean squared difference between the

two schemes for τ = 1

M WBS RS WBS vs RS

0.01 0.0071 0.0084 0.0001

0.5 0.0038 0.0044 0.0000

1.5 0.0002 0.0002 0.0000

5 0.0005 0.0004 0.0000

the point at which τ = 5 sufficient convergence has been reached over various values

of M. In principle, the steady state solution is reached when τ is relatively large

and as such taken to be infinity. Furthermore, we note that for smaller values of

M convergence can be up to four decimal places. As M increases we find that the

error between the computational solutions and the steady state solutions increase,

indicating the impact of the approximations employed on the non-linear term.

As a result, it can clearly be seen that the numerical solutions follow to the physical

behaviour of transient heat transfer and verify the results of the literature [11, 24, 30].

This is indicative of the efficiency and appropriateness of the schemes employed. Fur-

thermore, we can also strengthen our claims at convergence by considering the fact

that, as per [26, 62], the temperature distribution is an increasing function for both
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Table 5.4: Mean squared error obtained via a comparison between the steady state

solution and our numerical solutions; and the mean squared difference between the

two schemes for τ = 5

M WBS RS WBS vs RS

0.01 0.0000 0.0000 0.0000

0.5 0.0000 0.0000 0.0000

1.5 0.0001 0.0001 0.0000

5 0.0005 0.0004 0.0000

x and τ . Our numerical results have shown that they obey the same behaviour

and are bounded by the steady state solutions. It is known that any monotonically

bounded sequence converges [61] and this is the case here. Unfortunately, due to the

non-linear term in the equation it is not a simple exercise to prove convergence in a

theoretical fashion and as such we have provided computational justification instead.

5.3 Conclusion

The numerical well-balanced and relaxation schemes have been compared to analytical

solutions as a means of investigating their convergence. We have tested numerically

whether the obtained results converge to the true solutions for both small and large

values of time. The non-linearity of the equation under consideration limits our
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Figure 5.3: Steady state solution for m = n = 1/4, M = 0.01; M = 0.5; M =

1.5;M = 5
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Figure 5.4: Well-balanced and relaxation results for τ = 5, m = n = 1/4, M =

0.01; M = 0.5; M = 1.5;M = 5
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ability to investigate convergence in an analytical fashion and as such this remains to

be done. However, our results have confirmed the efficiency and appropriateness of

the numerical schemes employed. As such, our choices have justification and provide

us with comfort regarding their usefulness in the solution of equations of the form

considered in this thesis.
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Chapter 6

Mean action time

The work conducted in this Chapter has been published in the Journal of Applied

Mathematics and Computation [51].

6.1 Introduction

A common concern in heat transfer is the time taken by the process to reach a specific

state when initial and limited boundary information is provided. However, it is more

complex when the governing equation is non-linear such as is the case in this thesis.

Complications arise not only due to the non-linearity of the equation, but also due to

the fact that it is unknown at what temperature the steady state has been reached.

In heat transfer this is frequently the case. McNabb and Wake [31] and McNabb [32]

suggested that to compute the averaged quantity known as the mean action time may

be a more realistic approach to gaining such information. This approach can easily

be applied to scenarios with special boundary values providing the final state. In our

case however, we do not have such information and as such we approach the problem

differently.
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6.2 Particle lifetime: Similar insights

Any transition process from a temperature θi to a steady state temperature θs is

associated with a finite transition time ts. It is very important to point out that this

process is similar in nature to the decay time of a disintegrating particle [31]. Let

m(t) be the mass of the matter at time t satisfying

dm

dt
= −λm. (6.1)

Hence

m = m0e
−λt (6.2)

where m decays exponentially such that for t → ∞, m → 0. In the field of life science,

it is common to ask questions such as how long does it take for a particle of mass m0

at the beginning to reach its half mass. The answers are obtained from a very simple

algebraic manipulation, however we recall it here to better prepare the ground work

of the next Section. For m =
m0

2
we have

m0

2
= m0e

−λt

that is

1

2
= e−λt

such that

ln(2) = λt.

If we call this time t 1
2
we obtain

t 1
2
=

ln(2)

λ
.

The question which comes to mind is why t 1
2
and not any other particular moment?

As an alternative methodology, one can rather consider the mean particle lifetime
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that can be sketched via a probabilistic path approach. In this way we have

tmean =

∫

∞

0

tJ(t)dt (6.3)

with J(t) an associated density function. Let c be the normalizing factor to convert

this quantity to a probability density function. Then

∫

∞

0

cm0e
−λtdt = 1

and

c =
1

∫

∞

0
m0e−λtdt

(6.4)

or

c =
λ

m0

.

Therefore,

J(t) = λe−λt. (6.5)

Then, substituting (6.5) into (6.3) we obtain the particle mean lifetime as computed

here bellow

tmean =

∫

∞

0

tλe−λtdt

=
1

λ
.

(6.6)

Alternatively, using (6.2) in (6.4) we obtain

c =
1

∫

∞

0
mdt

(6.7)

and incorporating (6.1) into (6.7) leads to

c =
λ

∫

∞

0
−dm
dt

dt
(6.8)

Hence the probability density generated is then
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J(t) = cm0e
−λt

= cm(t)

= c

(−1

λ

dm

dt

)

.

(6.9)

From (6.8) and (6.9) the generated probability density becomes

J(t) =

(

−dm
dt

)

∫

∞

0

(

−dm
dt

)

dt
. (6.10)

Therefore, the mean time shall be expressed by

tmean =

∫

∞

0
t
(

−dm
dt

)

dt
∫

∞

0

(

−dm
dt

)

dt
. (6.11)

It is straight forward to confirm results obtained in (6.6) by using (6.11).

In fact,
∫

∞

0

t
dm

dt
dt = tm|∞0 −

∫

∞

0

mdt

= o−
∫

∞

0

mdt

=
1

λ

∫

∞

0

dm

dt
dt.

(6.12)

Substituting (6.12) into (6.11) we obtain

tmean =
1

λ
. (6.13)

Therefore, the transition mean time is provided by

tmean =

∫

∞

0
tdm
dt
dt

∫

∞

0
dm
dt
dt

. (6.14)

As stated previously, the same idea can be extended to the heat transfer transition

time computation as introduced by McNabb and Wake [31].
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6.3 Numerical Mean Action Time

Landman and McGuiness [33] explain that because diffusive processes often take an

infinite amount of time to come to equilibrium it is much simpler and more convenient

to consider an averaged time. Thus, given that we do not know what the final steady

state temperature is, the best approach to use for a non-linear heat transfer problem

with temperature dependent thermal conductivity is to consider the mean average

time instead as a measure for when the process has reached some kind of equilibrium.

From the energy balance for a one dimensional fin we have

∂θ

∂τ
=

∂

∂x

[

f(x)k(θ)
∂θ

∂x

]

−M2θn+1, 0 < x < 1. (6.15)

As proposed by McNabb and Wake [31] we define the mean action time as follows

τ ∗mean =
X

Sup

∫

∞

0

τJ(x, τ)dτ (6.16)

where J(x, τ) is the density function. In our case, the appropriate density function

can be established by using a similar approach with regard to the decay process.

However, given the presence of a source term we make the additional assumption

that M << ǫ where ǫ is some small parameter. This allows us to follow a procedure

which requires the equation to be in conserved form. We let J(x, τ) = c(x)
∂θ

∂τ
be

the density function associated with
∂θ

∂τ
. Then, as per the definition of the density

function, we have
∫

∞

0

J(x, τ)dτ =

∫

∞

0

c(x)
∂θ

∂τ
dτ = 1.

This means that

J(x, τ) =
∂θ
∂τ

∫

∞

0
∂θ
∂τ
dτ

. (6.17)

From equation (6.16) and equation (6.17) we have

τ ∗mean =
X

Sup
A

C
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A =

∫

∞

0

τ
∂θ

∂τ
dτ

C =

∫

∞

0

∂θ

∂τ
dτ.

That is

τ ∗mean =
X

Sup

∫

∞

0
τ ∂θ
∂τ
dτ

∫

∞

0
∂θ
∂τ
dτ

. (6.18)

In our case we don’t know details regarding the final steady state. Furthermore, given

the non-linearity of the equation and the presence of a source term which makes the

equation quite complex, it is difficult to find an associated Green function in order to

structure a Poisson equation for the mean action time as proposed by McNabb and

Wake [31]. As a consequence, we instead use the results obtained via our relaxation

scheme. This approach has been explicitly displayed below.

Let

D(x, τ) =
∂

∂x

[

f(x)k(θ)
∂θ

∂x

]

−M2θn+1

then

A(x) =

∫

∞

0

τD(x, τ)dτ (6.19)

C(x) =

∫

∞

0

D(x, τ)dτ. (6.20)

By employing the finite difference method we have

D(xi, τ) =
1

∆x2
i

(

d(xi+1, xi+ 1
2
, xi)− d(xi, xi− 1

2
, xi−1)

)

−M2θn+1(xi, τ) + o(∆x)2

(6.21)

with

d(xi, xi− 1
2
, xi−1) = f(xi− 1

2
)k(θ(xi− 1

2
, τ)) (θ(xi, τ)− θ(xi−1, τ))

where we compute θ(xi, τ) via our numerical relaxation scheme.

Therefore

A(xi) =n−→∞
lim

n
∑

j=1

τjD(xi, τj)∆τj (6.22)
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Figure 6.1: Comparison of the fin efficiency (η) between a rectangular and exponential

profile for α = 3, n = m = 1/4 with varying M.
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C(xi) =n−→∞
lim

n
∑

j=1

D(xi, τj)∆τj (6.23)

and

τ ∗(xi) =
A(xi)

C(xi)
. (6.24)

Therefore

τ ∗mean =
xi

Sup{τ ∗(xi)}. (6.25)

This constitutes our explicit numerical mean action time. The next Section uses these

results as a means of measuring the performance of the fin.
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6.4 Mean action time as a measure of fin perfor-

mance

One of the most studied and important fin characteristics is the fin efficiency defined

as

η(µ) =

∫ 1

0

θ(x, µ)dx.

Figure 6.1 depicts the fin efficiencies for both a rectangular fin and an exponential fin

profile with parameter α = 3. As depicted we find that the exponential fin profiles

are more efficient than the rectangular fin profiles. This complies with our results

which showed that the higher the exponential parameter the more efficient the tem-

perature distribution - see Figures 4.1 and 4.2. The same results have been obtained

from steady states solutions by [30] as shown in the graphics provided. Transient

solutions are able to provide us with more than just solutions through time how-

ever. As shown above these solutions are able to provide us with the transition time

between two steady states which plays a major role in the evaluation of the fin perfor-

mance. Thus far the fin performance is mostly described by the fin tip temperature

rise, the fin efficiency and the base heat transfer rate [30] none of which consider the

time taken by the temperature distribution process to reach some type of equilibrium.

Even if it is difficult to know exactly how long a process may take to reach an equilib-

rium, the mean action time is able to provide us with an approximation of the total

time taken as suggested by McNabb and Wake [31] and Landman and McGuiness

[33]. Therefore, to better analyse the fin performance, we consider the mean action

time as a means of obtaining an averaged transition time.
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In order to obtain τ ∗mean, given how well our relaxation scheme performed against

well known benchmark results in Chapter 4, we use the same numerical scheme as

a means of computing the mean action time as described in the previous Section.

This is done for small values of the thermo-geometric parameter, as per previous

discussions, due to the nature of our equation. A computational measure, τmax, of

our time taken to equilibrium is obtained by fixing the maximum error between the

iterants, i.e. we fix the error allowed as a means of defining computational conver-

gence. This is required, given that in actuality, as per Landman and McGuiness [33],

diffusion processes take an infinite amount of time to come to equilibrium. We fix

the tip temperature error allowed between the solutions as ǫ = 5× 10−3. In order to

compare τ ∗mean and τmax we employ the temperature at the tip; this choice was pro-

vided by Turkyilmazoglou [30] where the tip temperature was classified among the

most important characteristics of fins studied in engineering heat transfer problems.

In many cases, our numerical results took extremely long to converge and as such

the time taken to stabilize could not be determined with the hardware available to

us. This again is an indication of the difficulties involved in finding the time taken

for equilibrium to be reached. Our intention is to propose the mean action time as

an additional performance index based on the duration of the process. Tables 6.1,

6.2 and 6.3 show the mean action time for different types of exponential fin profiles.

Table 1 is for α = 0 (rectangular case), Table 2 for α = 1 and Table 3 for α = 2. For

various values of the thermo-geometric parameter we give the ratio of the solution

at the mean action time against the exact solution at the tip, the computed mean

action time and the maximum time used for convergence of our numerical solution.

We find that the highest times taken to approximately converge to the steady state

analytical solutions were extremely high when compared to the mean action times
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that were computed. In fact we find that the tip temperature at the mean action

time reaches approximately two thirds (
2

3
) of the tip temperature associated with the

maximum time taken to convergence. Furthermore, we notice that τmax/τ
∗

mean ≈ 3.7

(as M increases this ratio decreases slightly) across the various values of the thermo-

geometric parameter which again shows that our methodology produces consistent

results especially for small M.

Table 6.1: Mean action time τ ∗mean against M for α = 0 and n = m = 1/4

M 0.25 0.50 0.75 1.00 1.50

θτ∗mean
(0)

θexact(0)
% 66.94 66.91 66.80 66.61 65.88

τ ∗mean 0.6016 0.5701 0.5267 0.4797 0.3944

τmax 2.2784 2.1306 1.9149 1.6677 1.2039

As such we find that, as per Landman and McGuiness’s suggestion [33], we have

taken a more averaged approach and determined when the average temperature is a

fixed fraction of the final equilibrium value, instead of obtaining the final time taken

to reach the steady state. However the fact that this fraction is fixed at two thirds

means that this information is useful in determining the time taken for the process

to reach equilibrium and hence acts as a means of assessing the performance of the

fin in terms of the length of time taken by this process. Furthermore, Tables 6.1,

6.2 and 6.3 show that the mean action time taken to reach a steady state is less for

the exponential profiles than for the rectangular case. It is seen that the higher the
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values of the exponential parameter α, the lower are the corresponding mean action

times. This means that for applications that require the process to reach equilibrium

fast it would be better to use exponential fin profiles with a larger exponential coef-

ficient parameter. Therefore, one may select an appropriate profile which fulfills the

requirement for reaching equilibrium at a certain speed; the only useful performance

indicator which can assist in this regard is the mean action time.

Table 6.2: Mean action time τ ∗mean against M for the exponential profile with α = 1

and n = m = 1/4

M 0.25 0.50 0.75 1.00 1.50

θτ∗mean
(0)

θexact(0)
% 66.95 66.92 66.86 66.77 66.44

τ ∗mean 0.3217 0.3131 0.3001 0.28447 0.2507

τmax 1.1856 1.1461 1.0847 1.007 0.8292

6.5 Conclusion

In this Chapter, we have used a numerical approach to compute the mean action

time for the process of heat being transferred from the base to the tip of the fin

till equilibrium is reached. The novelty of this work is based on the fact that no

such numerical study has been conducted previously. Excellent researches have been

conducted in [31, 32, 33] on the mean action time of a process but the limitation of

these works is that the two steady state temperatures are constant and well known
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Table 6.3: Mean action time τ ∗mean against M for the exponential profile with α = 2

and n = m = 1/4

M 0.25 0.50 0.75 1.00 1.50

θτ∗mean
(0)

θexact(0)
% 66.90 66.88 66.82 66.76 66.52

τ ∗mean 0.1812 0.1786 0.1744 0.1691 0.1563

τmax 0.6492 0.6353 0.6133 0.5847 0.5155

from the beginning of the computation. However this is not the case for several heat

transfer problems including our case where the final temperature is not know at start.

Suryanarayana [24, 25] attempted to obtain the equilibrium time, but did so while

considering the simplest linear case. He did not manage to obtain the time to steady

state exactly even for this linear case. He only computed the time for which the

temperature reaches within one percent of its steady state value.

A key contribution of our work is that we managed to numerically compute a mean

action time for any physical circumstance without restriction and our results are

meaningful as interpreted above. As such we propose the mean action time as a new

measure of fin performance. In this manner we are able to contribute to assessment

of a fin as an object of heat transfer.
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Chapter 7

Numerical scheme for a time

fractional non-linear heat transfer

equation

7.1 Introduction

It is important to point out that standard mathematical models of integer order

derivatives do not represent all physical cases which are observed among natural phe-

nomena. Several physical phenomena are in part or in full modelled by heat transfer

equation with fractional ordered derivatives. Furthermore, these problems are usu-

ally modelled by non-linear partial differential equations which often cannot be solved

analytically [62] especially for fractional order PDEs. The applications and theory

of fractional calculus has been exhaustively investigated and discussed by several re-

searchers [63, 64, 65, 66, 67, 68]. The literature shows that fractional heat transfer can

be observed in several situations such as: heat transfer in heterogeneous media [35],
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in beam heating [36], in bioheat equation [39], and heat arising in fractal transient

conduction [40]. Those are only few situations where the heat transfer modelled via

fractional PDE has been considered within a practical context.

In this Chapter, we would like to consider and investigate numerical methods for

the solution of nonlinear fractional PDEs. In the literature [35, 36, 37, 38, 39, 69, 70,

71, 72], most problems modelling heat transfer via fractional PDEs, are either linear

or quasi-linear and few consider the nonlinear model with a source term; this is then

the prime motivation for this work.

In this work, we provide new insights by comparing fractional against integer or-

der numerical schemes to better open doors for further research in this field.

Sierociuk et al. [35] have shown that the differential equation with integer order

derivatives describes the heat transfer in solid materials while the heterogeneous me-

dia is described either by a sub-diffusion or by hyper-diffusion equations resulting from

fractional order PDEs. They have proven that heat transfer in heterogeneous media

is better modelled by fractional order PDEs and hence the supremacy of fractional

against integer order derivatives to deal with real life problems. Similarly, Dzielinski

et al. [36] presented some applications of fractional order calculus and one of the

examples considered was the beam heating problem where the fractional order model

better represented the physical process. Alkhasov et al. [37] investigated the influ-

ence of non-locality of the heat conduction equation in time and space via fractional

order derivatives. The findings are that fractional order PDEs permit one to naturally

consider the spatial and temporal non-localities in a process of heat transfer. Also,
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Kulish and Lage [38] have shown that the transient heat diffusion equation can be

transformed into a fractional PDE. Recently, Damor et al. [39] have modelled the

heat transfer in biological tissues via fractional order PDEs and they have recorded

an elevation in the temperature as the value of the fractional order parameter γ de-

creases; the temperature decreases as the depth of the skin tissue increases.

In most of the literature, it was established that the results for the fractional PDEs

matched the corresponding integer-order results. Thus there is no loss of accuracy

when one models these problems via fractional order PDEs. Most of the above men-

tioned literature was limited to considering only linear cases which allowed for the

use of transform methods. In addition, most of the real life situations for heteroge-

neous mediums are more complex and cannot be modelled by linear equation. In this

Chapter we will establish a numerical scheme for a one-dimensional time fractional

non-linear heat transfer equation and we will compare this against the numerical

scheme for the integer order heat transfer equation. Within the scope of fractional

calculus, we shall consider a one dimensional heat transfer equation with source term

of the form

∂γθ

∂τγ
=

∂

∂x

(

f(x)k(θ)
∂θ

∂x

)

−M2θn+1, 0 < γ ≤ 1 (7.1)

with boundary conditions

∂θ

∂x
|x=0 = 0, θ(1, τ) = 1, τ > 0

θ(x, 0) = 0.

As such, we are considering a non-linear time fractional partial differential equation.

Several approaches have been used to solve fractional partial differential equations

[64, ?, 66]. In some cases, the philosophy of Green function together with some inte-
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gral transforms with special functions have played a major role in solving some special

problems in fractional calculus [63]. However, the non-linear nature of the problem

does not allow us to use the Green’s function via either Laplace, Fourier or Mellin

transforms and hence take advantage of the convolution theorem.

Therefore, numerical techniques are among the remaining feasible alternatives. On

the other hand, numerical techniques can be more complex to implement: finite dif-

ference methods require complex discretisations given that numerical differentiation

and integration are coupled. For this reason, it is logical to provide fundamental

tools of fractional calculus to better provide a logical numerical scheme. The key

component shall be a proper discretisation of

∂γθ

∂τγ

with the use of a suitable fractional order derivative. As such we need to first establish

a suitable derivative for the development of an appropriate numerical scheme.

7.2 Fractional order derivative: Background

In fractional calculus we deal with taking real or complex numbers as powers of either

the differentiation or integration operators. Therefore, to better build a suitable

framework for the remaining part in this Chapter, we introduce basic principles and

definitions used in fractional calculus.
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7.2.1 Successive integration and differentiation operators

Let J stands for an integral operator such that

J{f(x)} =

∫ x

a

f(x1)dx1

that is

Jn{f(x)} =

∫ x

a

∫ xn

a

∫ xn−1

a

∫ x2

a

f(x1)dx1dx2 dxn.

Therefore,

Jn{f(x)} =
1

(n− 1)!

∫ x

a

(x− z)n−1 f(z)dz (7.2)

and this can be established by recurrence via Leibniz’s rule of differentiating integrals.

Equivalently, equation (7.2)can be written as

Jn{f(x)} =
1

Γ (n)

∫ x

a

(x− z)n−1 f(z)dz (7.3)

with Γ the gamma function defined by

Γ(x) =

∫

∞

0

τx−1e−τdτ. (7.4)

For n = γ real, equation (7.3) becomes

aJ
γ{f(x)} =

1

Γ (γ)

∫ x

a

(x− z)γ−1 f(z)dz. (7.5)

From this expression it is straight forward that

aJ
γ+β{f(x)} =

1

Γ (γ + β)

∫ x

a

(x− z)γ+β−1 f(z)dz (7.6)

aJ
n−γ{f(x)} =

1

Γ (n− γ)

∫ x

a

(x− z)n−γ−1 f(z)dz. (7.7)
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7.2.2 Riemann-Liouville fractional order integral

Equation (7.5) constitutes a fundamental expression from which, the Riemann-Liouville

fractional integral is defined as

aD
−γ
x {f(x)} = aI

γ
x{f(x)} =

1

Γ (γ)

∫ x

a

(x− z)γ−1 f(z)dz. (7.8)

Here, D− stands for the inverse of derivative operator or integral operator. It is from

this expression (7.8) that we are able to define the fractional derivative as an inverse

of the fractional integral.

7.2.3 Riemann-Liouville fractional order derivative

From the definition of the Riemann-Liouville fractional order integral, if we substitute

γ by n− γ with n− 1 < γ < n we get

aD
−n+γ
x {f(x)} = aI

n−γ
x {f(x)} =

1

Γ (n− γ)

∫ x

a

(x− z)n−γ−1 f(z)dz. (7.9)

Differentiating the above expression (7.9) n times (by applying the operator Dn)

we obtain

aD
γ
x{f(x)} = aI

−γ
x {f(x)} =

1

Γ (n− γ)

dn

dxn

∫ x

a

(x− z)n−γ−1 f(z)dz. (7.10)

However, the Riemann-Liouville fractional order derivative presents difficulties when

dealing with a constant function.
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For example, let f(x) = c where c is a constant, then

0D
1

3
x {f(x)} =

1

Γ(1− 1
3
)

d

dx

(
∫ x

0

(x− z)(1−
1

3
−1) cdz

)

=
c

Γ(2
3
)

d

dx

(
∫ x

0

(x− z)−
1
3 dz

)

=
c

Γ(2
3
)

d

dx

[

−3

2
(x− z)

2
3

]x

0

=
c

Γ(2
3
)

d

dx

[

3

2
x

2

3

]

=
c

Γ(2
3
)
x−

1
3

6= 0.

(7.11)

From this example, it is clear that the Riemann-Liouville fractional order derivative

of a constant is not zero. This property disagrees with the variational aspect of

derivatives which usually provides information on variation of the functions.

7.2.4 Caputo fractional order derivative

One alternative manner of considering fractional order derivatives in a different man-

ner is via the Caputo fractional order derivative defined by

c
aD

γ
x{f(x)} =

1

Γ (n− γ)

∫ x

a

(

(x− z)n−γ−1 dn

dzn
f(z)

)

dz, n− 1 < γ < n. (7.12)

This time the fractional derivative of a constant is defined as zero as required. How-

ever, the Caputo fractional derivative works only for differentiable functions which is
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limiting.

There exist a lot of fractional derivative formulae but our aim here is just to intro-

duce tools of fractional calculus that we might need to build our relevant numerical

scheme for our fractional non-linear heat transfer equation. In the remaining part of

this Chapter, we shall use the fractional derivative in the sense of Caputo represented

by equation (7.12).

7.3 Numerical scheme

In this Section we consider the non-linear one dimensional time fractional heat equa-

tion of the form

∂γθ

∂τγ
=

∂

∂x

(

f(x)k(θ)
∂θ

∂x

)

−M2θn+1, 0 < γ ≤ 1 (7.13)

under initial and boundary conditions as provided by (7.1). Let the value of θ(x, τ)

at grid point (xi, τj) be denoted by θji = θ(xi, τj). Let us first provide a discrete

approximation of the Caputo fractional derivative
∂γθ

∂τγ
at (xi, τj+ 1

2
). In fact, by the

definition of the Caputo fractional order derivative we have

∂γθ

∂τγ
(xi, τj+ 1

2
) =

1

Γ(1− γ)

∫ τ
j+1

2

0

(

(τj+ 1
2
− z)−γ dθi(z)

dz

)

dz. (7.14)

The right hand side of equation (7.14) is a definite integral which shall be approxi-

mated via Riemann sums. Let

I =

∫ τ
j+1

2

0

(

(τj+ 1

2
− z)−γ dθi(z)

dz

)

dz. (7.15)

By linearity of the definite integral we have

I = I1 + I2 (7.16)
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with

I1 =

∫ τj

0

(

(τj+ 1
2
− z)−γ dθi(z)

dz

)

dz

and

I2 =

∫ τ
j+1

2

τj

(

(τj+ 1
2
− z)−γ dθi(z)

dz

)

dz.

At τj+ 1
2
we have

∂θi(τj+ 1
2
)

∂τ
=

θi(τj+1)− θi(τj)

∆τ
+ o(∆τ) (7.17)

as per a forward finite difference approximation. Therefore

I2 =
θi(τj+1)− θi(τj)

∆τ

∫ τ
j+1

2

τj

(

(τj+ 1
2
− z)−γdz

)

dz + o(∆τ)

=
θj+1
i − θji
∆τ

−1

1− γ

[

(τj+ 1
2
− z)1−γ

](j+1/2)∆τ

j∆τ
+ o(∆τ)

=
θj+1
i − θji
∆τ

1

1− γ

[

((j + 1/2)∆τ − j∆τ)1−γ
]

+ o(∆τ)

=
θj+1
i − θji
∆τ

1

1− γ

(

1

2
∆τ

)1−γ

+ o(∆τ).

(7.18)

It means that

I2 =
θj+1
i − θji
∆τ

1

1− γ

1

21−γ
(∆τ)1−γ + o(∆τ). (7.19)
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If we subdivide the intervals [τk−1, τk], k = 1, 2, 3, ..., j of [0, τj], then

I1 =

∫ τj

0

(

(τj+ 1
2
− z)−γ dθi(z)

dz

)

dz

=

j
∑

k=1

∫ k∆τ

(k−1)∆τ

(

((j + 1/2)∆τ − z)−γ dθi(z)

dz

)

dz

=

j
∑

k=1

θki − θk−1
i

∆τ

∫ k∆τ

(k−1)∆τ

((j + 1/2)∆τ − z)−γ dz + o(∆τ)

=

j
∑

k=1

θki − θk−1
i

∆τ

−1

1− γ

[

((j + 1/2)∆τ − z)1−γ]k∆τ

(k−1)∆τ
+ o(∆τ).

(7.20)

Therefore

I1 =
∆τ (1−γ)

1− γ

j
∑

k=1

θki − θk−1
i

∆τ

[

(

(j − k +
3

2
)

)1−γ

−
(

(j − k +
1

2
)

)1−γ
]

+ o(∆τ).

(7.21)

Substituting equations (7.19) and (7.21) into (7.16) gives

I =
∆τ (1−γ)

1− γ

j
∑

k=1

θki − θk−1
i

∆τ

[

(

(j − k +
3

2
)

)1−γ

−
(

(j − k +
1

2
)

)1−γ
]

+
1

21−γ

∆τ (1−γ)

1− γ

θj+1
i − θji
∆τ

+ o(∆τ).

(7.22)

From (7.14), (7.15) and (7.22), we get at (τj+ 1
2
)

∂γθi
∂τγ

=
∆τ (1−γ)

Γ(2− γ)

j
∑

k=1

θki − θk−1
i

∆τ

[

(

(j − k +
3

2
)

)1−γ

−
(

(j − k +
1

2
)

)1−γ
]

+
1

21−γ

∆τ (1−γ)

Γ(2− γ)

θj+1
i − θji
∆τ

+ o(∆τ).

(7.23)
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Equation (7.23) represents the discrete approximation of the left hand side of the

fractional partial differential equation (7.13).

As it has been exhaustively motivated in Chapter 4, the relaxation numerical schemes

are simple to implement and are able to achieve higher order accuracy in capturing

weak solutions without using Riemann solvers [27, 52, 53]. Following all steps as

established in Chapter 4, the zero relaxation numerical scheme for the fractional heat

transfer equation under discussion is

∂γθ

∂τγ
= − 1

2∆xi

(Fi+1 − Fi−1) +
a

2∆xi

(θi+1 − 2θi + θi−1)−M2θn+1
i (7.24)

with

Fi = f(xi)k(θi)
θi+1 − θi−1

2∆xi
.

From equation (7.13), matching its left hand side provided by (7.23) with its right

hand side (7.24) we obtain

∆τ (1−γ)

Γ(2− γ)

j
∑

k=1

θki − θk−1
i

∆τ

[

(

(j − k +
3

2
)

)1−γ

−
(

(j − k +
1

2
)

)1−γ
]

+
1

21−γ

∆τ (1−γ)

Γ(2− γ)

θj+1
i − θji
∆τ

= − 1

2∆xi
(Fi+1 − Fi−1) +

a

2∆xi

(

θji+1 − 2θji + θji−1

)

−M2(θji )
n+1.

(7.25)

Therefore,

θj+1
i = θji + 21−γ

j
∑

k=1

[

(

(j − k +
3

2
)

)1−γ

−
(

(j − k +
1

2
)

)1−γ
]

(

θki − θk−1
i

)

+21−γΓ(2− γ)∆τγ
[

− 1

2∆xi

(Fi+1 − Fi−1) +
a

2∆xi

(

θji+1 − 2θji + θji−1

)

−M2(θji )
n+1

]

.

(7.26)
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Equation (7.26) represents an explicit numerical scheme of our one dimensional time

fractional non-linear heat equation with source term.

7.4 Numerical results

7.4.1 Model validation

It is very important to point out that no results in the literature have been found as

benchmark results to use for our computational solutions obtained in this Section.

It is important to validate our numerical results so that we may confirm the rele-

vance of our scheme; inaccurate physical results need to be avoided. The non-linear

nature and presence of a source term may make it impossible to study analytically

the stability and convergence of our numerical scheme. Therefore, we would like to

validate the approach before implementation.

For this reason, we are going to test our fractional numerical scheme by consider-

ing the case when γ = 1. This will allow us to either validate the model or question

it since we have a number of benchmark results to compare with.

For practical purposes we consider the heat transfer in a one dimensional exponential

fin profile. In this case,

f(x) = eαx

and

k(θ) = θm.
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Figure 7.1: Temperature distribution for exponential fin profiles for M = 2.5, α = 1

(top) and α = 2 (bottom) with n = m = 0, 1/3, 2 and 3 obtained via the numerical

scheme ( ) compared to a steady state solution (◦ ◦ ◦◦).
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Figure 7.2: Temperature distribution for exponential fin profiles for M = 2.5, α = 3

(top) and α = 4 (bottom) with n = m = 0, 1/3, 2 and 3 obtained via the numerical

scheme ( ) compared to a steady state solution (◦ ◦ ◦◦).
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Figure 7.3: Temperature distribution for different values of γ and M = 0.01.
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Figure 7.4: Temperature distribution for γ = 0.91 and different values of M .
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Figure 7.5: Temperature distribution for γ = 0.95 and different values of M .
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That is

∂γθ

∂τγ
− ∂

∂x

(

eαxθm
∂θ

∂x

)

= −M2θn+1. (7.27)

This problem has steady state exact solutions and we will compare these exact solu-

tions against the numerical solutions obtained via our numerical scheme for τ → ∞.

We will do so for four different cases.

Case 1: n=m=0

In this case we have a constant heat flow [30]

∂γθ

∂τγ
− ∂2θ

∂x2
= −M2θ. (7.28)

This is the case considered mostly by different researchers often without the source

term as well. Figures 7.1 and 7.2 indicate that the results differ significantly for
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different values of n and m. In each Figure we find that the four curves are clearly

different highlight the fact that any simplification rendering n = m = 0 will change

the problem dramatically.

Case 2: n=m=1/3

∂γθ

∂τγ
− ∂

∂x

(

eαxθ1/3
∂θ

∂x

)

= −M2θ4/3. (7.29)

This case has been referred to as turbulent natural convection and considered in [30].

Case 3: n=m=2

∂γθ

∂τγ
− ∂

∂x

(

eαxθ2
∂θ

∂x

)

= −M2θ4. (7.30)

This case has been referred to as nucleate boiling and discussed in [30].

Case 4: n=m=3

∂γθ

∂τγ
− ∂

∂x

(

eαxθ3
∂θ

∂x

)

= −M2θ4. (7.31)

This case has been referred to as radiation [30]. In cases 2-4 one finds that these

equations cannot easily be handled analytically. In Figures 7.1 and 7.2, for different

values of the exponential coefficient α, we showed the different curves for m = n =

0, m = n = 1/3, m = n = 2 and m = n = 3 in each figure to point out the effect

when one simplifies the problem into trivial cases. We have varied the exponential

parameters from α = 1 till α = 4 and it is always clear that the solutions differ from

the linear to the non-linear case.
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Figure 7.6: Temperature distribution for γ = 1, M = 0.01 and varying time τ .

7.4.2 Results for 0 < γ < 1

It is seen that for γ = 1 the scheme (7.26) reduces to the scheme (4.36). In this Section,

we analyse different values of the fractional-order parameter γ and various values

of the thermo-geometric fin parameter M. We consider two-and three-dimensional

profiles for this analysis. Fig. 7.3 indicates that a decrease of γ implies a dramatic

increase of the temperature and the temperature decreases as the length of the fin

increases. This complies exactly with the findings of Damor et al. [39]. Furthermore,

for varying values of the thermo-geometric parameter M, γ = 0.91 and γ = 0.95, the

temperature profile decreases with the increase of M as presented in Fig. 7.4 and

Fig. 7.5. The scheme reproduces similar behaviour such as classical solutions where

the temperature distribution is a decreasing function of M [26].

For better visualization we consider a three-dimensional representation which shows

how the temperature is distributed spatially across time. Fig.7.6 shows the surface
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Figure 7.7: Temperature distribution for γ = 0.99, M = 0.01 and varying time τ .

Figure 7.8: Temperature distribution for γ = 0.95, M = 0.01 and varying time τ .
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Figure 7.9: Temperature distribution for γ = 0.91, M = 0.01 and varying time τ .

plot of the temperature distribution for γ = 1, Fig. 7.7 is for γ = 0.99, Fig. 7.8 is

for γ = 0.95, and Fig. 7.9 is for γ = 0.91. These figures show that the temperature

profile is a decreasing function of γ and an increasing function of time τ and this

complies with results in literature [1, 26, 39].

7.5 Conclusion

Equation (7.26) is an explicit numerical scheme established from a one dimensional

time fractional non-linear heat transfer equation with source term (7.1). This scheme

was obtained via a relaxation approach coupled with the discrete approximation for

the Caputo fractional derivative of
∂γθ

∂τγ
. The novelty of our numerical scheme comes

from the above combination of techniques attempted for the first time to the best of

our knowledge.
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It is very important to point out that for γ = 1 our fractional numerical scheme

verifies the benchmark results obtained by classical schemes. Further, it also matches

solutions obtained in earlier Chapters.

One important outcome is that our fractional scheme is more general given that

it is able to reproduce results for 0 < γ ≤ 1. For 0 < γ < 1 results behave similar to

classical results and this confirms that our numerical scheme is able to provide phys-

ically meaningful results. Establishing an effective numerical scheme for a fractional

heat transfer equation is an important contribution given the wide range of physical

applications such as modelling heat transfer in heterogeneous media, beam heating,

and bioheat [35, 36, 39] of this model.
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Chapter 8

Conclusion

The solution of equations modelling heat transfer in one dimensional longitudinal

fins has been investigated in this thesis. Due to the limitation of analytical methods,

different numerical schemes have been established. The complexity of the problem is

increased due to the non-linear nature of the PDE and the presence of a non-linear

source term. In the literature some singular geometries were approximated by sim-

pler geometries as a means of guaranteeing analytical solutions [11]. Similarly, some

numerical attempts encountered problems for those singular geometries as adiabatic

conditions were not fulfilled [1].

In order to obtain solutions to the problem at hand, we developed numerical schemes

such as the well-balancing and relaxation numerical schemes. Each numerical scheme

contributes new insights while the assumptions made are physically appropriate and

meaningful. Moreover, in all of our computations we have maintained the original

geometries of our problem. The numerical schemes established have improved upon

the results in literature [1, 11]. Furthermore, we have extended our problem to its
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variant with fractional order derivatives and the corresponding fractional numerical

scheme reproduces consistent results when the fractional order parameter is one.

8.1 Limitations of analytical methods

It is already known that analytical solutions are most sought after given their accuracy

and usefulness in validating numerical results; unfortunately obtaining these solutions

is not always possible. In the literature it is found that the problem is often simplified

in order to implement analytical methods [11]. We choose to deal with the original

non-linear problem instead of the simplified expression just for the sake of obtaining

an analytical solution. Therefore, we turned to numerical methods which allow us

to solve the problem as it stands. For this purpose we have successfully constructed

powerful numerical schemes that may be used even for cases with singularities for

which some techniques have failed in the past [1].

8.2 Numerical analysis

From the literature, see [1], some numerical approaches provided unreasonable results

for singular fin-types such as the triangular profile. In our research, we managed to

establish a scheme which requires no additional assumptions and is capable of deal-

ing with physical singularities in the problem. We have constructed a numerical

well-balanced scheme as well as a relaxation numerical scheme both of which obtain

efficient and highly accurate solutions [26, 62]. The key contribution of this thesis is

the incorporation of the zero-flux boundary condition and the source balancing law

obtained from the steady state condition for the well-balanced scheme. Furthermore,

the constructed numerical schemes reduce the order of differentiation of the heat
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transfer equation to a first order non-linear hyperbolic system of equations. This

reduction of order simplifies the problem without omitting any component of the

original problem. The results have been validated in Rusagara and Harley [62] where

we established a numerical mean action time scheme and proposed it as a measure of

fin performance.

Finally, as the integer order PDEs cannot describe heat transfer in heterogeneous

media we decided to establish a numerical scheme appropriate to fractional PDEs

which can describe heat transfer in heterogeneous media according to Sierociuk et

al. [35]. The same established scheme can handle models for beam heating and

it has been shown by Dzielinski et al. [36] that the fractional order model allows

one to better represent the physical process. The numerical scheme established in

this thesis was tested for the case γ = 1 which confirmed the behaviour of the re-

sults obtained. Figures 7.1 and 7.2 show that our fractional numerical scheme for

γ = 1 matches benchmark results obtained via more classical schemes. This work

contributes a generalized numerical scheme which provide solutions to problems with

many applications [39, 63, 69].

8.3 Concluding remarks

The aim of this thesis was to provide effective numerical schemes appropriate for the

solution of a non-linear partial differential equation modelling the heat transfer in a

one dimensional longitudinal fin. We established three novel numerical approaches to

our problem namely the well-balanced, and relaxation scheme as well as an explicit

scheme for the fractional version of the heat transfer equation.
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All of our numerical schemes verify the benchmark results discussed. As such, we

were able to use one of them to construct a numerical expression for the mean ac-

tion time which was proposed as a measure of fin performance for the first time.

This measure has not previously been proposed by researchers as a measure of fin

performance because it is difficult to compute in most cases. Further expansions to

the research conducted would be to consider higher dimensions. Given the methods

employed however this can easily be done.
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