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Abstract

Malaria is a public health problem for more than 2 billion people globally. About

219 million cases of malaria occur worldwide and 660, 000 people die, most (91%)

in the African region despite decades of efforts to control the disease. Although

the disease is preventable, it is life-threatening and parasitically transmitted by the

bite of the female Anopheles mosquito. A deterministic mathematical model with

intervention strategies is developed in order to investigate the effectiveness, optimal

control and cost effectiveness of Indoor Residual Spraying (IRS), Insecticide Treated

Nets (ITNs) and treatment on the transmission dynamics of malaria in Karonga

District, Malawi. The effective reproduction number is analytically computed, and

existence and stability conditions of the equilibria are explored. The model does not

exhibit backward bifurcation. A structured questionnaire was developed, a one-to-

one interview with a randomly sampled set of individuals conducted to assess the

knowledge level of inhabitants of Karonga district about the disease in general and

their awareness and application of the intervention strategies. Applying Pontryagin’s

Maximum Principle which uses both the Langragian and Hamiltonian principles

with respect to a constant time dependent, we derive the necessary conditions for

the optimal control of the disease. An economic evaluation of the strategies is carried

out by performing a cost-effectiveness analysis to determine the most cost-effective

combination of the three intervention measures. The incremental cost-effectiveness

ratio (ICER) is calculated in order to compare the costs and effectiveness of all the

possible combinations of the three measures. The results show that the combination

of treatment, ITNs and IRS is the most cost-effective combination strategy for

malaria control. Numerical simulations indicate that the prevention strategies lead

to the reduction of both the mosquito population and infected human individuals.

Effective treatment consolidates the prevention strategies. Thus, malaria can be
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eradicated by deployment of combined strategies such as vector control via ITNs

and IRS complemented with timely treatment of infected people.
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Chapter 1

Introduction

1.1 General introduction

Malaria is an infectious disease which continues to be a major problem in many

tropical and sub-tropical countries of Africa, Asia, South and Central America,

and the Middle East; around 40% of the world’s population live in endemic areas;

90% of deaths occur in sub-Saharan African countries such as Malawi, Zimbabwe,

Zambia, mostly in young children [41, 98]. While progress is being made in reducing

prevalence in Malawi, malaria is one of the major causes of morbidity and mortality,

with approximately 6 million suspected cases treated annually [7, 97]. Despite being

prevalent in all parts of Malawi, malaria is more prevalent in lake shore areas

like Karonga District, and the lower Shire districts like Chikhwawa. Apart from

Malawi being in the tropics, the additional factors that make Malawians vulnerable

to malaria are: poverty, inadequate health care infrastructures and low income of the

country. Its effects are greatest among children under 5 years of age and pregnant

women [82].
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In Malawi most hospital admissions and deaths from Malaria are from children

under 5 years of age and pregnant women because there immunity is compromised

at these levels of life. Inhorn and Brown [43] explained that infectious diseases like

malaria, have had a profound effect on human populations, including their evolution

and cultural development. Despite significant advances in medical science, infectious

diseases continue to impact human population in many parts of the world.

1.1.1 Causes, incidence, and risk factors

Malaria is a life-threatening disease caused by a parasite, Plasmodium, which infects

red blood cells. It is transmitted to humans through the bites of infected female

mosquitoes. The female Anopheles mosquito is infected when it bites someone

carrying malaria.

The World Health Organisation [126] emphasized that there are four different types

of Plasmodium parasites: Plasmodium falciparum is the only parasite which causes

malignant malaria. It causes symptoms straight away which can be mild or severe.

Plasmodium falciparum accounts for the majority of malaria cases in southern Africa

and may be associated with severe and fatal disease. Secondly, Plasmodium vivax

causes benign malaria with less severe symptoms. The vector can remain in the

liver for up to three years and can lead to a relapse. Thirdly, Plasmodium malarie

also causes benign malaria and is relatively rare. Lastly, Plasmodium ovale also

causes benign malaria and can remain in the blood and liver for many years without

causing symptoms. Plasmodium falciparum is responsible for about three-quarters

of reported malaria cases in Karonga District, Malawi. Most of the other cases

of malaria are caused by Plasmodium vivax with just a few caused by the other

two species. However, Medicinenet, [72] reported another relatively new species,
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Plasmodium knowlesi which has triggered malaria in Malaysia and areas of South-

East Asia. It is also a dangerous species that is typically found only in long-tailed

and pigtail macaque monkeys, and like P. falciparum, P. knowlesi may be deadly

to anyone infected. It is possible to be infected with more than one species of

Plasmodium parasite at the same time. Each parasite causes a slightly different

type of illness. This study focuses on malignant malaria which is fatal in Malawi.

After infection, the parasites called sporozoites travel through the bloodstream to

the liver, where they mature and release another form, the merozoites which then

enter the bloodstream and infect red blood cells. Thereafter, the parasites multiply

inside the red blood cells, which then break open within 48 to 72 hours, infecting

more red blood cells. The first symptoms usually occur 10 days to 4 weeks after

infection, though they can appear as early as 8 days or as long as a year after

infection [71]. Malaria can also be transmitted from a mother to her unborn baby

(congenitally) and by blood transfusions [99]. This is the reason why in Malawi all

pregnant women who visit health facilities for their antenatal check-up are given

the anti-malaria drug to prevent this transmission. But the transmission of malaria

from mother to child is still a challenge in Malawi because most women live in rural

areas where most health services are absent. Some pregnant women do not go to

health facilities because they believe the anti-malaria drugs will lead to abortion.

1.1.2 Symptoms and complications

The first symptoms of malaria resemble that of flu. The patient may have: a

headache, aching muscles, tummy ache, and weakness or lack of energy. A day or so

later, the body temperature may rise (up to 40 degrees Celsius) and the patient may

have: a fever, shivers, mild chills, severe headache, vomiting, diarrhoea, and loss of
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appetite. Since most Malawians live far away from health facilities, they opt to

buying drugs over the counter whenever they have symptoms, and sometimes they

are not healed but the situation worsens and they may even develop complicated

malaria. However, it takes at least six days for symptoms to appear; and the time it

takes for symptoms to appear can vary with the type of parasite that the mosquito

was carrying and the immunity of an individual [13, 80].

If the person is infected with Plasmodium falciparum, malaria can progress to

a more severe form called complicated malaria. The following symptoms may

appear: low blood sugar levels, severe anaemia, jaundice, fluid on one’s lungs

(pulmonary oedema), acute respiratory distress syndrome, meningitis, kidney

failure, spontaneous bleeding (hemorrhage), state of shock (circulatory collapse),

fits (convulsions), paralysis and coma. Severe malaria can affect the patient’s brain

and central nervous system and can be fatal [13, 126]. Complications are likely to

be more severe in pregnant women, children, older people and people who have a

weakened immune system, such as persons living with HIV.

1.1.3 Transmission

Malaria transmission rates can differ depending on local factors such as rainfall

patterns (mosquitoes breed in wet conditions), the proximity of mosquito breeding

sites to people, and types of mosquito species in the area. Some regions have a fairly

constant number of cases throughout the year, these countries are termed “malaria

endemic”, while in other areas, there are “malaria seasons”usually coinciding with

the rainy season [125]. In Malawi, the lake shore and the lower Shire areas are

most prevalent to malaria because of the large water bodies from Lake Malawi

and Shire river, which make these areas swampy in rainy season making them a
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favourable breeding environment for mosquitoes. Large and devastating epidemics

can occur when the mosquito-borne parasite is introduced into areas where people

have had little prior contact with the infecting parasite and have little or no

immunity to malaria, or when people with low immunity move into areas where

malaria is endemic; these epidemics can be triggered by wet weather conditions

and further aggravated by floods or mass population movements driven by conflict

[93]. Non-immune pregnant women and travelers from malaria-free regions, with

little or no immunity, who travel or move to areas with high disease prevalence

are very vulnerable and are at high risk of being infected with malaria [41, 80].

Karonga District bordering with Tanzania and Zambia, it is prone to immigrants

who come for business or employment in mines. These immigrants who are exposed

to malaria in their countries act as carriers of malaria parasite, thereby increasing

the vulnerability of more people in Karonga District, despite the campaign being

carried out in the district to reduce the malaria epidemic. The illness can result in

high rates of miscarriage and can cause over 10% of maternal deaths (soaring to a

50% death rate in cases of severe disease) annually; semi-immune pregnant women

risk severe anemia and impaired fetal growth even if they show no signs of acute

disease [126].

1.1.4 Prevention and treatment

The World Health Organisation [125] emphasises that early treatment of malaria

shortens its duration, prevents complications and avoids a majority of deaths.

Because of its considerable drag on health in low-income countries, malaria disease

management is an essential part of global health development. Pan American Health

Organisation [93] explained further that treatment aims to cure patients of the

disease rather than to diminish the number of parasites carried by an infected
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person. The best available treatment, particularly for Plasmodium falciparum

malaria, is a combination of drugs known as artemisinin-based combination therapies

(ACTs). However, the growing potential for parasite resistance to these medicines

is undermining malaria control efforts. WHO [126] recommends: use of insecticide-

treated nets (ITNs) for night-time prevention of mosquito bites; for pregnant women

in highly endemic areas, preventive doses of sulfadoxine-pyrimethamine (IPT/SP)

to periodically clear the placenta of parasites, indoor residual spraying(IRS) to kill

mosquitoes that rest on the walls and ceilings of houses.

Beyond the human toll, malaria wreaks significant economic havoc in high-rate

areas, decreasing Gross Domestic Product (GDP) by as much as 1.3% in countries

with high levels of transmission. Over the long-term, these aggregated annual

losses have resulted in substantial differences in GDP between countries with and

without malaria (particularly in Africa) [93]. Malaria’s health costs include both

personal and public expenditures on prevention and treatment. In some heavy-

burden countries, the disease accounts for: up to 40% of public health expenditures,

30% to 50% of inpatient hospital admissions, up to 60% of outpatient health clinic

visits. Malaria disproportionately affects poor people who cannot afford treatment

or have limited access to health care, and traps families and communities in a down

spiral of poverty [126].

1.2 Problem statement

Malaria is by far the world’s most threatening tropical parasitic disease. The

disease is endemic in Malawi especially along the lake-shore areas such as Karonga

District, and claims many lives. Mathematical models of the dynamics of this disease

with special emphasis on Malawi are uncommon. The optimal combination of an
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intervention strategy scheme for patients remains the subject of intense debate [56].

Also, no previous mathematical study (in Malawi) has been conducted using optimal

control theory to obtain the conditions under which it is optimal to eradicate the

disease and examine the impact of combined prevention interventions such as ITNs,

IRS and treatment on the disease transmission. Therefore, this study intends to

investigate optimal intervention strategies for control of malaria epidemic in Karonga

District, Malawi.

1.3 Research objectives

1.3.1 General objective

The main purpose of this study is first to understand the dynamics of malaria

infection and transmission through a suitable mathematical model. Secondly, to

investigate different intervention strategies and propose an optimal control strategy

for the malaria epidemic in the Karonga District of Malawi.

1.3.2 Specific objectives

The objectives of this study are to:

1. develop and mathematically analyze a deterministic model which incorporates

the basic epidemiological features of the dynamics of malaria.

2. investigate the transmission dynamics of malaria disease.

3. assess the impact of the intervention strategies of malaria in terms of the basic

reproduction number, ℛ0, (i,e., the number of secondary infections generated

by single infected individuals in a totally naive/susceptible population).
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4. perform sensitivity and uncertainty analyses wherever data or model parameters

values are taken from different sources (mainly theoretical work), since results

may be very sensitive to the parameter values.

5. carry out a cost-effectiveness analysis of the control strategies.

1.4 Research hypothesis

(a). Mathematically, models with intervention strategies formulated and analyzed

have a locally asymptotically stable disease-free equilibrium when their

reproductive threshold is less than unity (that is ℛ0 < 1). But the disease

may not die out owing to the phenomenon of backward bifurcation, a situation

in which both a (locally) stable disease-free and a stable endemic equilibrium

co-exist when the model reproduction number is less than unity.

(b). The malaria models with intervention strategies exhibit the phenomenon of

backward bifurcation (co-existence of a stable disease-free equilibrium with

a stable endemic equilibrium), an epidemiological situation where although

necessary, having the basic reproduction number less than unity is not

sufficient for disease elimination [117].

(c). Assuming that parameters are fixed, the threshold ℛ0 is influenced by

intervention parameter values. The disease can be eliminated from the

community when ℛ0 < 1. The intervention strategies are not enough to

maintain ℛ0 below unity: An application close to 100% is needed.

(d). The multi-strategies are cost-effective if the number of deaths averted is high

and the cost associated with providing the services is minimal.
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1.5 Methodology

The compartmental model will be formulated as a deterministic system of ordinary

differential equations, and dynamical systems techniques will be employed to analyse

this model.

Key parameters that drive the disease transmission dynamics and effects any of

the control measures will be investigated. Thereafter, the qualitative analysis of

the model will be carried out in order to determine the possibility of existence and

stability of endemic and disease-free equilibria. A variety of methods including

Lyapunov function techniques will be used to determine the global stability of the

model.

The basic reproduction number (ℛ0) which is a fundamental parameter governing

the spread of the disease will be computed. The next generation operator approach

will be used to calculate the reproduction number (ℛ0) which provides the necessary

condition for the disease to be eradicated or minimized.

The qualitative optimal control analysis will be carried out to determine the

necessary conditions for optimal control of the disease using Pontryagin’s Maximum

Principal in order to determine optimal strategies for controlling the spread of the

disease.

Estimated and heuristic data will be used for numerical analysis of the model.

In analyzing the model, sub-models will be considered namely: malaria only, malaria

and treatment of infected individuals, malaria and individuals using insecticide
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treated bed nets, malaria and individuals using insecticide house sprayed. The

real data on death rate, cost per person per intervention, number of infected

individuals during the use of Sulfadoxine-Pyrimethamine (SP) and Artemisinin-

based Combination Therapies (ACTs) obtained from Ministry of Health in Lilongwe,

Malawi, will be used for the model simulation. Other data will be collected from the

field based on: the number of people using insecticide treated bed nets, the number

of people staying in the insecticide treated houses, and prevalence rates data before

and after provision of preventive interventions.

The computer packages (MatLab, Mathematica and Maple) will be used for

the model simulations. A cost-effectiveness analysis of the different strategies

individually and combined using economic concepts will be carried out.

Finally, local sensitivity analysis will be carried out to compute sensitivity indices

of the reproduction number which enables us to single out parameters that have a

high impact to the effective reproduction number ℛ𝑒 and which are used to enhance

the intervention strategies.
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Chapter 2

Literature review

Infectious diseases have had a profound effect on human populations, including

their evolution and cultural development. Despite significant advances in medical

science, infectious diseases like malaria continue to impact human populations in

many parts of the world [93]. In Africa, national governments such as that of

Malawi and international organizations are focusing on rapidly scaling up malaria

control interventions to at least 60% in vulnerable populations. Countries that

have successfully eliminated malaria have shown considerable economic growth when

compared to other countries that have not done so. Poor households living in malaria

regions struggle to meet the financial cost of treating repeated bouts of illness. Direct

and indirect costs of seeking appropriate health care result in households seeking

treatment nearer their home [77]. This occurs in Malawi, where despite the free

provision of healthcare through the formal health system, these services are under-

utilized and home treatment is common using left over drugs or those obtained from

vendors. Consequences of private purchasing of drugs include inappropriate drug

selection and dosing, potentially leading to death and disability and the emergence

and increase of drug resistance.
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2.1 Social economic consequences of malaria

epidemic

Malaria affects the health and the wealth of nations and individuals alike. In Africa

today, malaria is understood to be both a disease of the poor and a cause of poverty.

Malaria has significant measurable direct and indirect costs, and has been shown

to be a major constraint to economic development [110]. This means the gap in

prosperity between countries with malaria and countries without malaria becomes

wider every year as it has been shown that where malaria has been eliminated,

economic growth has increased substantially [30, 106]. For instance in Malawi, a

lot of money is spent on purchasing malaria drugs, test kits, insecticide spraying

chemicals and ITNs. This money could be used for other development purposes if

malaria was eradicated. Hence the need of determining cost effective interventions.

Mathanga et al., [68] analyzed the present inequalities in access to malaria

interventions in Malawi. Equity in access to malaria control measures was assessed

using the Malawi Demographic Health Survey (DHS) 2000 and the 2004 national

survey on malaria control. Utilization of malaria control methods was compared

across the wealth quintiles, to determine whether the poor were being reached with

malaria control measures. The researchers concluded that the present distributions

strategies for ITNs were not addressing the needs of the vulnerable groups, especially

the poor. No income related inequalities were associated with prompt treatment,

ITNs and intermittent preventive treatment (IPT) use and the potential health

and economic benefits of scaling up depends on equitable access to malaria control

measures by the poor.

Prompt access to effective treatment for malaria is unacceptably low in Malawi and
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less than 20% of children under the age of five years with fever receive appropriate

anti-malaria treatment within 24 hours of fever onset [17]. Chibwana et al.,

[17] assessed socio-cultural factors associated with delayed treatment of children

with fever in Mwanza district, Malawi via a qualitative study using focus group

discussions and key informant interviews. Despite sufficient knowledge of malaria,

prompt treatment and health-seeking behavior were poor, with the majority of

children first being managed at home with treatment regimens other than effective

anti-malarial drugs. Traditional beliefs about causes of fever, unavailability of anti-

malarial drugs within the community, barriers to accessing the formal health care

system, and trust in traditional medicine were all associated with delays in seeking

appropriate treatment for fever. For example in Mwanza District, some people

believe that fever is an indication that the mother of a child has a problem with

her reproductive tract, or maybe she had extra marital affairs. They would then

go to the traditional healer for medication for the mother and not the child. The

study demonstrated that in order to facilitate prompt and appropriate health-seeking

behavior, behavioral change messages must address the prevailing local beliefs about

causes of fever and the socio-economic barriers to accessing health care. Hence the

need to perform a cost-effective analysis of the malaria interventions.

Larson et al., [54] noted that in Malawi, health ministries and providers are

rapidly scaling up insecticide-treated nets (ITNs) distribution to control malaria,

yet possession and proper use typically remain below targeted levels. In some

areas there are situations whereby instead of using the nets properly, the nets are

being used for fishing, and in some cases the nets are washed but not retreated

thereby reducing their effectiveness. Health facilities are currently the principal

points of ITNs distribution, making it important to understand how access to these

ITN sources affects ownership, possession and use. The study revealed that health
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providers should look towards community-based distribution services that take ITNs

directly to community members to scale up ITN possession more effectively and

regular use aimed at protecting children from malaria.

Global malaria programmes and rehabilitation programmes are organized as vertical

and separate programmes, and as such they focus on prevention, cure and control,

and disability respectively [15]. Despite a local-based health services system, people

living in poor rural areas are confronted with a multitude of barriers when accessing

malaria prevention and treatment. Lack of skilled health personnel and equipment

add to the general burden of poverty; insufficient knowledge about health care,

problems connected to accessing the health facility in time, insufficient initiatives to

prevent malaria attacks, and a general lack of attention to the long term debilitating

effects of a malaria [15, 42]. The importance of building malaria programmes,

research and statistics that take into consideration the consequences of permanent

impairment after a malaria attack, as well as the context of poverty in which they

often occur can be carried out through qualitative and quantitative approaches in

local communities.

2.2 Mosquito-human contacts and drug resistance

In Malawi, the main malaria vector Anopheles culicifacies breeds primarily in river

bed pools during dry periods, but also in other breeding sites such as seepage areas

next to irrigation tanks, hoof prints, and abandoned pits [126]. Briet et al., [12]

explained that the extreme south west of Sri Lanka has always been virtually

free of malaria. It is attributed to the wet climate in which rivers flow year

round without pooling, and this brings to our attention that some areas will affect

our assumptions of the model because the continuous flow of rivers reduces the
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availability of mosquitoes hence reducing the rate of mosquito human contacts.

Mosquitoes acquire infection from humans after a blood meal [74, 91]. Although

malaria is a life-threatening disease, it is preventable and curable when the infected

individuals seek treatment early. However, malaria still persists as a major public

health problem and the disease burden may rise again. This is due to the costs

of interventions, availability of treatment and its adverse effects and also to the

increasing rate of parasite drug-resistance and mosquito insecticide resistance.

Prompt treatment of uncomplicated malaria with effective antimalarial drugs is

a cornerstone of malaria control efforts, provided individuals benefit by curing the

infection and preventing disease progression by reducing the infectious reservoir and

thus averting the emergence and spread disease resistance [58, 125]. The emergence

of resistance to former first-line antimalarial drugs such as chloroquine (CQ) has

been an unmitigated disaster. In recent years, artemisinin-based combination

therapy (ACT) class drugs have become standard and the drugs are recommended

as an essential tool for helping to eradicate malaria [52]. However ability of

these drugs to reduce morbidity and mortality and to slow down transmission

requires effective maintenance. Malawi replaced first-line medication, sulfadoxine-

pyrimethamine, a single-dose regimen, for treating uncomplicated malaria, with

artemether-lumefantrine (AL), an artemisinin-based combination therapy that

requires a 6-dose, 3-day course. Because of concerns about the complex dosing

schedule, Mace et. al., [58] assessed patient adherence to treatment with AL for

uncomplicated malaria in rural Malawi. They found that adherence to AL treatment

for uncomplicated malaria was moderate, and children, who are most likely to die

of malaria, were less adherent than adults. Efforts to improve adherence should be

focused on this vulnerable group.
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These challenges call for urgent need for a better understanding of important

parameters in the disease transmission and develop effective and optimal strategies

for prevention and control of the spread of malaria disease. Tchuenche et al., [117]

developed a model which incorporated both sensitive and resistant strains of the

parasites. The analytical results revealed that the model exhibits the phenomenon

of backward bifurcation (co-existence of a stable disease-free and endemic equilibira).

This occurred despite varying treatment level in high transmission area with different

levels of resistance. This agrees with the findings of Chiyaka et al., [20], that an

increase in the period within which partial immunity is lost increases the spread of

the disease. However these studies did not consider cost-benefit analysis and optimal

treatment rate which will be addressed in this study.

White [123] explained the phases of eradication of an infectious disease as defined

by Molyneux et al., [75] as follows:

• Elimination of disease: Reduction to zero of the incidence of a specified disease

in a defined geographical area as a result of deliberate efforts. Continued

intervention measures are required.

• Control: Reduction of disease incidence, prevalence, morbidity or mortality

to a locally acceptable level as a result of deliberate efforts. Continued

intervention measures are required to maintain the reduction.

• Elimination of infection: Reduction to zero of the incidence of infection caused

by a specific agent in a defined geographical area as a result of deliberate

efforts. Continued measures to prevent re-establishment of transmission are

required.

• Eradication: Permanent reduction to zero of the worldwide incidence of
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infection caused by a specific agent as a result of deliberate efforts. Intervention

measures are no longer needed.

• Extinction: The specific infectious agent no longer exists in nature or the

laboratory.

A simple mathematical structure is used to consider “control and elimination of

infection” phases. The potential of combining multiple strategies that were applied

singly in Karonga District, Malawi, would not necessarily result in elimination, but

applied in combination have the potential to achieve this aim within the timelines

predicted by other complex modeling exercises. Non-treatment control measures

such as deployment of an effective vaccine or insecticide-treated bed nets (ITNs)

could prevent the spread of drug resistance as suggested in Mackinnon [60] and

White [123] in a similar way to drug combination therapy, but at the population

rather than individual level as with multiple first-line therapies. In many scenarios

even a failure to eliminate the disease would result in a lower cumulative morbidity

and mortality than if the attempt were never made. The key exception to this

result is the scenario where drug resistance is spreading; and then if the same drugs

are used in an elimination strategy, an acceleration of the spread of resistance is

predicted, in some cases resulting in higher morbidity following failed elimination

attempts.

The ownership and use of insecticide treated mosquito nets is the primary prevention

strategy for reducing malaria transmission in Malawi. The long lasting insecticide

nets (LLITNs) policy includes free distribution of LLITNs for children born in

health facilities and for pregnant women at their first visit to an antenatal care

(ANC) clinic. In addition, the LLITN distribution policy also includes giving a free

LLITN to children attending their first clinic visit under the Expanded Program on
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Immunization (EPI) if an LLITN was not received at birth. In the past five years,

over six million ITNs have been distributed countrywide in Malawi [82, 83]. Despite

this intervention, malaria remains a challenge in Malawi because the LLITNs or

ITNs are given when a woman visits a health facility for antenatal purposes, and

since most women live in rural areas, they do not go to hospitals but to traditional

birth attendants.

Eradication of any disease is an ambitious aim that to date has only been achieved for

smallpox [123]. There are only a few WHO sanctioned disease targets for eradication

or elimination and malaria is not listed among them. Therefore, considering

the potential outcomes of failure to eliminate this disease is an important task

for mathematical modeling. Okosun and Makinde [88] derived and analyzed a

deterministic model for the transmission of malaria disease that included classes

of individuals with drug resistance and treatment measures in order to study

the impact of the drug resistance in transmission. Numerical results for effective

control of individuals with drug resistance showed positive impact in reducing the

spread of the disease. Most studies are focusing on the disease resistance due

to host population. Not much research has been done on insecticide-resistant

mosquitoes. This can strongly challenge the fight against mosquito-borne disease.

Blayneh and Mohammed-Awel [10] formulated a system of nonlinear difference

equations for malaria transmission cycle with the aim of researching insecticide-

resistant mosquitoes and malaria control. They showed that the mosquito-human

transmission cycle of malaria and its prevalence could be impacted by mutation rate,

the personal protection of hosts and the density of mosquitoes. In addition, their

results highlighted that given a large mosquitoes population, the presence of even

a small number of resistant mosquitoes to an insecticide could cause the insecticide

to be ineffective for malaria control.
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The World Health Organization [125] recommends artemisinin-based combination

therapy (ACT) as the first-line treatment for all falciparum malaria in endemic areas.

ACT is available in various formulations, which are generally administered over a

period of days. Pongtavornpinyo et. al., [96] applied a comprehensive mathematical

model to describe malaria transmission and the spread of drug resistance during

the study of spread of anti-malarial drug resistance with applications for ACT drug

policies.

There is an increase in Plasmodium falciparum resistance to cheap first line

antimalarial drugs and this has increased in malaria-associated morbidity and

mortality in sub-Saharan Africa including Malawi. Research has established that

malaria is resistant to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) [84].

Malpractice in drug usage such as over-prescription of anti-malarials (confusion with

other febrile diseases) and the uncontrolled selling of poor quality drugs contribute

to the increase in drug resistant parasites. The widespread and increasing occurrence

of Plasmodium falciparum resistant against affordable anti-malarial drugs (CQ and

SP) is more and more hampering the fight against malaria. CQ and SP are still

the most widely used drugs for treatment of malaria in Malawi because of low

cost and availability even though WHO recommends use of combination therapies,

preferably artemisinin-based combination therapies (ACTs). The advantage of using

ACT is that it uses a combination of anti-malaria drugs, one of which is artemisinin

derivative.

Antimalarial drug resistance has emerged as one of the greatest challenges facing

malaria control today; it is a factor in the economic constraints of malaria

elimination, and has been implicated in enhanced mortality from malaria [117, 119].
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In the absence of any scientific breakthrough for the complete control or eradication

of malaria, antimalarial drugs will continue to be needed. It is therefore imperative

to understand how drug resistance develops and spreads. Plasmodium falciparum

has developed resistance to nearly all available antimalarial drugs. Resistance to

infection occurs when there is a low level of continued infection by the parasite,

which may also be due to drug failure, a process not directly related to the parasite,

but solely dependent on the host organism and the properties (pharmacodynamics)

of the drug [117, 124]. Drug resistance necessitates the use of drugs that are more

expensive and may have dangerous side effects and creates such an impediment

to the successful eradication of malaria as a child is known to die from malaria

every 12 or so seconds. In order to combat the continuous pattern of drug

resistance developing sequentially to antimalarials used as monotherapy (single drug

therapy), combination chemotherapy, preferably including an artemisinin derivative,

is recommended [40]. Additional benefits of artemisinin-based combination therapy

(ACT) include improved treatment outcomes and decrease in malaria transmission,

resulting in greater cost-effectiveness. Partial immunity may be acquired after long-

term, repeated exposure to P. facilparum infection, as occurs in residents of perennial

high transmission areas, such as in parts of Mozambique, Malawi, Tanzania and some

other sub-Saharan African countries.

2.3 Transmission of parasite and global warming

Interventions to prevent or reduce the transmission of malaria are currently being

used, with some degree of success, in some parts of the world. Some of the methods

include; house spraying with residual insecticides and most recently the use of

insecticide treated bed-nets. The methods operate by reducing the contacts rates

(hence exposure to infection) between the mosquitoes and humans. Other measures
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that employ the use of antimalarial drugs as a control measure may not be very

effective when compared with control measures that directly affect the dynamics

of transmission of a parasite (that is based on the human mosquito interaction).

This is because in endemic areas drug coverage can only be effective if permanent

prophylaxis is employed across an entire endemic human population. In most

developed countries, where malaria has been eradicated but the mosquito vector

is still present, changes in world climate through global warming indicate that these

malaria free zones risk being re-colonized by malaria [67, 80]. Given these challenges

be it in endemic areas or otherwise, predictive mathematical modeling and computer

simulations remain our greatest hope.

Yang, [130] developed a mathematical model for malaria transmission relating

global warming and local socio-economic conditions in which sensitivity analysis

was applied. The effects of global warming and local socio-economic conditions

were assessed analyzing the equilibrium points calculated at different but fixed

values of the parameters of the model. By performing sensitivity analysis on

equilibrium points which represent the level of malaria infection in a community,

different possible scenarios were obtained when the parameters were changed. Then

depending on malaria risk, the efforts to control its transmission can be guided

by a subset of parameters used in the mathematical model. Regarding malaria

transmission, it was observed that the effects of global warming posed a major

challenge in the following year, and the effects of variation in local socio-economic

conditions were much stronger than the effects of the increasing global temperature.

Malaria is predominantly present in the tropical countries. Even though the disease

has been investigated for hundreds of years, it still remains a major public health

problem in 109 countries declared as endemic to the disease in 2008 [65]. There
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were 243 million malaria cases reported, and nearly a million deaths-primarily of

children under 5 years of age [65, 126]. With no effective vaccine in sight and many

of the older anti-malarial drugs losing effectiveness due to the parasite evolving

drug resistance, prevention (using bed nets) is still the only advice given to affected

persons. Malaria has also gained prominence in recent times since climate change

or global warming is predicted to have unexpected effects on its incidence [65].

Both increase and fluctuation in temperature affects the vector and parasite life

cycle. This can cause reduced prevalence of the disease in some areas, while it may

increase it in the others. Global warming which include the increasing extreme

weather conditions has brought many climatic changes that influence diseases like

malaria which is so sensitive to climate. Malawi has been experiencing increase

in temperatures, changes in rainfall patterns thus providing good environment for

mosquitoes to increase their reproduction and shorten incubation period. Karonga

District which is the study area is one of the districts with high temperatures. Thus

climate change can affect the malaria prevalence pattern by moving away from lower

latitudes to regions where populations have not developed immunity to the disease.

Chaves et al., [16] suggested that the intervention using ITNs represents an excellent

example of implementing an infectious disease control programme. The results

emphasize the need to implement infectious disease control programmes focusing

on the most vulnerable populations which is the basis of this study. Over the

past decade malaria intervention coverage has been scaled up across Africa. Eisele

et. al., [27] and Griffin et. al., [31] developed an individual-based simulation

model for Plasmodium falciparum transmission in an African context incorporating

the three major vector species (Anopheles gambiae s.s., Anopheles arabiensis, and

Anopheles funestus) with parameters obtained by fitting parasite prevalence data

from 34 transmission settings across Africa. The researchers incorporated the effect
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of the switch to artemisinin-combination therapy (ACT) and increasing coverage

of long-lasting insecticide treated nets (LLITNs). The impact of transmission

of continued roll-out of LLITNs, additional rounds of indoor residual spraying

(IRS), mass screening and treatment (MSAT), and a future RTS, S/AS01 vaccine

in six representative settings with varying transmission intensity, vector-species

combinations, and patterns of seasonality were explored. The researchers concluded

that interventions using current tools can result in major reductions in P. falciparum

malaria transmission and the associated disease burden in Africa. Malawi which is

also malaria endemic is also trying to apply the same ways of reducing malaria cases,

whereby they are encouraging prevention through the use of LLITNs or ITNs and

IRS. Hence the need for optimal control analysis of the intervention strategies.

Whilst the pattern of reducing the disease in some parts of sub-Saharan Africa

countries is encouraging, there remain many countries within Africa that continue

to have a high burden of disease and hence malaria remains a leading cause of

mortality in children under five years of age [27, 127]. Malawi is one of the countries

where malaria remains a great concern. The control of the disease, and ultimately

elimination of the parasite in this continent, remain a major public health goal.

However, Africa poses the biggest challenge to a global eradication initiative, given

the heterogeneous yet ubiquitous nature of Plasmodium falciparum transmission

across much of the continent. Levels of transmission in Africa range from absent

or low in many urban areas, through epidemic outbreaks in the highlands, to

highly seasonal or perennial transmission in rural areas [27, 34, 38]. This variable

transmission pattern is complicated by local variation in the major Anopheles vector

populations that sustain transmission (principally Anopheles gambiae s.l. and

Anopheles funestus, although approximately 70 relevent species have been identified

worldwide [39]). Of the 47 countries within sub-Saharan Africa, the majority are

23



currently classified by WHO/Roll-Back Malaria as being the control stage and thus

burden of disease via a reduction in transmission [107]. On the northern countries of

the continent, transmission is already low, with Egypt and Algeria in the elimination

phase and Morocco and Mauritius having interrupted local transmission. Similarly,

in the southernmost countries, a sustained move towards local control and potential

elimination in border areas has been agreed upon via cooperation with neighboring

countries [27, 63]. On the island of Zanzibar, a highly successful control program

has reduced transmission to very low levels [31]. However, a recent assessment of the

feasibility of moving to elimination concluded that whilst it is technically feasible to

reduce local transmission to zero in this setting, the resources, both financial and

operational, required to sustain elimination in the face of repeated reintroduction

from mainland Africa make this a difficult prospect.

Compared to the past campaigns in the 1950s, additional tools are now available

which, combined with sustained policy commitment, may make local elimination

achievable in some settings and can aid control of the disease by dramatically

reducing malaria prevalence in countries with high rates of ongoing transmission

[27, 31]. These include new LLITNs which have increased elimination effects on

the vectors compared to traditional nets and are more durable, and ACTs, which,

through their gametocytocidal effect, can impact transmission from humans to

vectors [85, 86]. In addition, a pre-erythrocytic malaria vaccine, RTS,S/AS01

vaccine, has shown promising results in Phase II trials [4, 5, 109] and could not

contribute to the elimination programs. National control agencies have varying

levels of resources but can rarely implement all major control interventions at a given

time. Understanding how to choose policy that is appropriate to the local setting

is therefore key to effective control. Whilst the efficacies of most interventions have

been individually evaluated in the field, the impact of different combinations of these
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is not clear. Field trials will be important to inform control policies but will be able

to test only a few of the combinations of interventions in a limited number of settings.

Households in malaria endemic countries experience considerable costs in accessing

formal health facilities because of childhood malaria. The Ministry of Health in

Malawi has defined certain villages as hard-to-reach on the basis of either their

distance from health facilities or inaccessibility [28]. This definition gives a limitation

already in as far as the reduction of malaria is concerned because it means part of

the population does not access the interventions. Some of these villages have been

assigned a community health worker responsible for referring febrile children to a

health facility. Health facility utilization and household costs of attending a health

facility were compared between individuals living near the district hospital and

those in hard-to-reach villages. Researchers conducted two cross-sectional household

surveys in the Chikhwawa district of Malawi: one during each of the wet and dry

seasons. Half of the participating villages were located near the hospital while others

were in areas defined as hard-to-reach. Data were collected on attendance to formal

health facilities and economic costs incurred due to recent childhood febrile illness.

Those living in hard-to-reach areas were less likely to attend a health facility for

a childhood febrile event and experience greater associated household costs [28].

Health services in Malawi are provided by three bodies, namely Ministry of Health,

Christian Health Association of Malawi (CHAM) and private sector. On CHAM

and the private sector, people have to pay for services. Some Malawians who are

poor may not be able to pay for the malaria intervention services if the only health

facilities close to them are CHAM and private hospitals. Geographic and financial

barriers are potential barriers to accessing public health facilities (interventions).
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2.4 Cost-utility analysis

The burden of malaria is a key challenge to both human and economic development

in malaria endemic countries. Morel et al., [76] used a cost-utility analysis to

examine the costs and the effects of scaling-up seven interventions strategies against

malaria and their promising combinations. The results showed that high coverage

with artimisinin based combination treatments were found to be cost effective

for control of malaria in most countries in sub-Saharan Africa. Since researchers

have pointed out that, on cost-effective grounds, in most areas in sub-Saharan

Africa, greater coverage with highly effective combination treatment should be

the cornerstone of malaria control, this study will also determine cost-effectiveness

of the selected malaria control interventions using primary data obtained from

Malawi. Insecticide-treated nets (ITNs) are a proven intervention to reduce the

burden of malaria, yet there remains a debate as to the best method of ensuring

they are universally utilized. Mueller et al., [78] and Stevens et al., [114] studied

cost-effectiveness analysis of an intervention in Malawi in which the costs were

calculated retrospectively through analysis of expenditure data. Costs and effects

were measured as cost per treat-net year (cost/TNY) and cost per distributed nets.

Combining targeting and social marketing has the potential of being both cost-

effective and capable of achieving high levels of coverage.

The debate as to the best way to achieve long-term shifts in levels of ITN utilization

in malaria endemic countries has centered on the trade-off between the need for

immediate health impact and the need for long-term sustainability of such a

change in coverage. Those who advocate the universal distribution of free nets

have prioritized the need for immediate results in terms of health gain, whereas

those who argue for the development of domestic markets for ITNs wish to ensure

26



the long term sustainability of utilization of ITNs. The third way combines

traditional social marketing with heavily subsidized highly-targeted distribution

through the nationwide network of public health facilities. Social marketing

has been defined as the application of commercial marketing technologies to the

analysis, planning, execution, and evaluation of programmes designed to influence

the voluntary behavior of target audiences in order to improve their personal welfare

and their society [3, 114]. Currently the literature on the cost-effectiveness of ITN

distribution interventions is measured using only the immediate, directly relevant

health outcomes, and ignores any benefits from developing the market for future

accessibility. This is understandable as conventional forms of economic evaluation

tend to over-look issues of sustainability. Nevertheless its value comes in practicality,

in the ability to make comparisons between different methodologies with broadly

similar goals.

Also, during the study of impact of malaria morbidity on gross domestic product

(GDP) in Uganda by Orem et al., [92], the impact of malaria was categorized from

three dimensions namely: health, social and economic. The impact of malaria

morbidity on GDP of Uganda was estimated using a double-log econometric model.

The results showed that malaria morbidity comes out in a substantive loss in GDP of

Uganda. The high burden of malaria leads to decreased long-term economic growth,

and works against poverty eradication efforts and socio-economic development of the

country. This is also true in Malawi whereby socio-economic and poverty eradication

efforts are hindered by the burden of health challenges including malaria.

Unprecedented efforts are now underway to eliminate malaria from many regions.

Despite the enormous financial resources committed, if malaria elimination is

perceived as failing it is likely that this funding will not be sustained. It is
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imperative that methods are developed to use the limited data available to design

site-specific, cost-effective elimination programmes. Mathematical modeling is a way

of including mechanistic understanding to use available data to make predictions.

Different strategies can be evaluated much more rapidly than is possible through

trial and error in the field. Mathematical modeling has great potential as a

tool to guide and inform current elimination efforts. Economic modeling weighs

costs against characterized effects or predicted benefits in order to determine the

most cost-efficient strategy but has traditionally used static models of disease not

suitable for elimination [69]. In this study dynamic mathematical modeling and

economic modeling techniques are to be combined to contribute most effectively to

the intervention strategies.

2.5 Optimal control strategies and cost-effective

analysis

Optimal control theory is a powerful mathematical tool to make decisions involving

complex dynamical systems, while optimal control is a set of ordinary differential

equations describing the paths of the control variables that minimize the cost

function [57]. A control problem includes a cost functional that is a function of

state and cost variables. The optimal control problem is solved using direct or

indirect methods. The direct method uses the optimal functional and the state

system while the indirect method uses an iterative method with a Runge-Kutta

scheme. Rodrigues et. al., [103] explained that the state system with an initial

guess is solved forward in time and then the adjoint system with the transversality

conditions is solved backward in time. The optimal control efforts are carried out

to limit the spread of the disease, and in some cases, to prevent the emergence
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of drug resistance. It deals with the problem of finding a control law for a given

system such that a certain optimality criterion is achieved. It is one of the primary

reasons for studying infectious diseases such as malaria in order to improve control

and ultimately to eradicate the infection from the population. The percentage of the

population which uses ITNs as a means of prevention from acquiring Plasmodium,

those who stay in indoor sprayed houses as well as those given or who seek treatment

are considered in order to minimize the number of individuals who are exposed to

and infected with malaria and the cost of implementing the intervention strategies.

Studies have shown that epidemiological models may provide some basic guidelines

for public health practitioners to compare the effectiveness of different potential

management strategies. The cost functional equation with weights related to

the costs of intervention strategies and implementation is used. Optimal control

functions were used in the study of optimal control applied to a vector borne

disease related to Dengue disease in order to determine the best intervention

methods [102]. The optimal control is qualitatively derived using Pontryagin’s

Maximum Principle or by solving the Hamilton-Jacobi-Bellman equation. This

principle has provided research with suitable conditions for optimization problems

with differential equations as constraints. Kar and Jana [48] developed and analyzed

a theoretical study on a mathematical epidemic problem on infectious disease with

application of optimal control. They aimed at minimizing the infected population

as well as the costs required to control the disease. It was observed that the

simultaneous use of vaccination and treatment control was the most favorable case

to prevent the disease from being epidemic. Furthermore, the researchers considered

controls as time dependent and obtained the optimal control strategy to minimize

both the infected populations and the associated costs. Vaccination and treatment

were the only interventions considered. Vaccination is not practised in Malawi as a
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means of malaria intervention. Therefore, this study aims to minimize the exposed

and infected individuals as well as the costs required to control the disease through

preventive strategies (ITNs and IRS) and treatment.

Kong et. al., [53] presented a vector-host epidemic model with control measures to

assess the impact of control measures on the prevalence of the vector-host diseases.

Mosquito-reduction strategy and host medical treatment were incorporated into the

model. One control strategy, i.e. ITNs for reduction of contact between host and

vector was investigated. This is one of the strategies which is intensely used in

Karonga District, Malawi. Using optimal control theory, the optimal levels of the two

controls are characterized, and then existence and uniqueness for the optimal control

pair are established. Numerical results suggested that optimal multi-control strategy

is a more beneficial choice in fighting the outbreak of the vector-host diseases.

Culshaw et. al., [21] presented an optimal control model of drug treatment of the

human immunodeficiency virus (HIV). Yan and Zou [128] discussed the application

of optimal and sub-optimal controls to a SEQIJR SARS model via Pontryagin’s

Maximum Principle.

Optimal control approach is also applied during the study of vaccination models

of Dengue disease [101]. The researchers observed that using the optimal strategy

of vaccination produced better costs for the disease when compared to not being

vaccinated. The optimal control problem was solved using direct and indirect

methods. In another study, the dynamic model is described by a set of nonlinear

ordinary differential equations that depend on the dynamics of Dengue mosquito,

the number of infected individuals, and people’s motivation to combat the mosquito

[104]. The cost functional did not only depend on the costs of medical treatment

of the infected people but also on the costs related to educational and sanitation
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campaigns. The researchers used optimal control theory and nonlinear programming

after discretizing the problem. The cost functional reflected a compromise between

financial spending on insecticides and educational campaigns and the population’s

health.

The mathematical model which included the dynamics of the Dengue mosquito,

the affected persons, the people’s motivation to combat the mosquito and the

inherent social cost of the disease, such as cost to ill individuals, education and

sanitary campaigns were incorporated during the research of optimizing the Dengue

epidemics: a test case with different discretization schemes was considered [105].

The problem was discretized through Euler and Runge Kutta schemes. An optimal

control problem was solved by direct methods using nonlinear optimization software.

The impact of antimalaria control measures can be assessed by formulating the

model as an optimal control problem. The nonlinear optimal control framework

is used. Then, it is approached by establishing a characterization of the optimal

control via adjoint variables. Lashari et. al., [55] used a competitive Gauss-Seidel-

like implicit difference method to solve the optimality system numerically during

the study of malaria epidemics using multiple optimal controls. Optimal control

problems are generally nonlinear and therefore, generally do not have analytic

solutions. As a result, it is necessary to employ numerical methods to solve optimal

control problems. Using this principle, Makinde and Okosun, [62] established the

optimal strategies for malaria control with infected immigrants. Okosun, [87],

Makinde and Okosun, [62], and Okosun et. al., [91] applied optimal control theory

to a continuous malaria model that includes treatment and vaccination with waning

immunity to study the impact of possible vaccination with treatment strategies in

controlling the spread of malaria. Silva and Torres [111] presented an optimal control
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approach to malaria prevention via ITNs in which supervision control was introduced

representing information, education, communication (IEC) campaigns for improving

the ITN usage. The optimal control problem was developed and solved with the

aim of minimizing the number of infected humans while keeping the cost low. The

numerical results showed the effectiveness of the optimal control interventions. Only

one prevention strategy, i.e. ITN, was investigated.

Lashari and Zaman, [56] argued that the optimal combination of intervention

strategy scheme for patients remains the subject of intense debate. The desired

outcome depends on the particular situation. The application of optimal control to

investigate the most economical use of active and passive immunization in controlling

infectious disease is reported in Gupta and Rink, [35]. Kbenesh et al., [49], and

Makinde and Okosun, [62] presented an autonomous ordinary differential equation

model with vector-control and treatment model and time dependent version of the

model involving an optimal control of vector-borne diseases with treatment and

prevention as control measures. Thome et al., [118] present a mathematical model

to describe the dynamics of a mosquito population when male mosquitoes produced

by irradiation are introduced as a biological control, besides the application of

insecticide. The optimal control was used by considering the cost of insecticide

application, the cost of the production of irradiated mosquitoes and their delivery

as well as the social cost in order to analyze the minimal effort to reduce the fertile

female mosquitoes. In addition, Yan et al., [129] applied optimal control methods to

study the outbreak of severe acute respiratory syndrome (SARS) using Pontryagins

Maximum Principle and genetic algorithm. Also Rafikov et al., [100] and Okosun

et. al., [91] formulated a continuous model for malaria vector control with the

aim of studying how genetically modified mosquitoes should be introduced in the

environment using optimal control problem strategies. When providing vaccines to a
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susceptible population, consequences of the SIR epidemic model (where SIR means

Susceptible Infected Recovered) have received much attention from researchers

whose main concerns are control and eradication of diseases. Kar and Batabyal, [47]

looked at the consequences of providing vaccination to the susceptible population on

the SIR dynamics. Optimal control strategies were used in the form of vaccination

to control the number of infected individuals and increase the number of recovered

individuals. Further, although optimal control methods have been used to study the

dynamics of some diseases such as dengue fever, HIV/AIDS [9, 45], these studies

did not consider the use of ITNs and IRS. To the best of the researcher’s knowledge,

no such methods have been used in Malawi to determine the optimal combination

of intervention strategies for malaria epidemic with direct transmission.

Okosun et al., [91] showed that a possible vaccination combined with an effective

treatment regime would reduce the spread of the disease. Their research based

on the combined vaccination and treatment strategy, ruled out insecticide treated

bed-nets (ITNs) and indoor residual spraying (IRS) which are highly practised as a

means of malaria interventions in Malawi.

Optimal control strategy for Plasmodium vivax malaria transmission in Korea was

investigated using a deterministic system of differential equations. If the cost of

reducing the reproduction rate of the mosquito population is more than that of

prevention measures to minimize mosquito-human contacts, the control of mosquito-

human contacts needs to be taken for a longer period of time, comparing the other

situations [51]. Mathematical model and numerical simulations suggested that the

use of mosquito-reduction strategies was more effective than personal protection in

some cases but not always. More knowledge about the actual effectiveness and costs

of control intervention measures would provide more realistic strategies.
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Magombedze et al., [61] studied optimal control of malaria chemotherapy in which

an intra-host mathematical model of malaria that describes the interaction of the

immune system with the blood stage malaria merozoites was presented. The model

was modified by incorporating the effects of malaria drugs that target blood stage

parasites. The optimal control represented percentage effects of the chemotherapy of

chloroquine in combination with chlorpheniramine on the reproduction of merozoites

in erythrocytes. Their results indicated that highly toxic drugs and small dosage

sizes have the potential of improving the quality of life and reduce economic costs

of therapy.

2.6 Malaria mathematical models

Mathematical models that study transmission of malaria are based on the threshold

number, which defines the most important aspects of transmission for any infectious

disease. Specifically it is calculated by determining the expected number of infected

organisms that can trace their infection directly back to a single organism after one

disease generation. The solution of controlling the disease is to arrive at a threshold

number at which the disease-free state can be established and maintained. Previous

studies used ordinary differential equations to model the transmission of malaria,

in which human populations are classified as susceptible, exposed, infectious and

recovered. Likewise, mosquito populations are divided into susceptible, exposed

and infectious groups. The threshold below which the disease-free equilibrium can

be maintained is determined by varying these parameters [120].

The key conclusions of several malaria mathematical models are reviewed in order to

increase and influence the theory and practice with emphasis on disease management
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and relevance for control. This is because they can assist in figuring out decisions

that are of significant importance on the outcomes and provide comprehensive

examinations that enter into decisions in a way that human reasoning debate

cannot. The Ross-Macdonald model of malaria transmission [108] originates many

studies of malaria control and other diseases, and has had major influences. A

mathematical model showed that bringing a mosquito population below a certain

threshold was sufficient to eliminate malaria. This threshold naturally depends

on biological factors such as the biting rate and vectorial capacity. Furthermore,

mathematical models are used to provide an explicit framework for understanding

malaria transmission dynamics in human and mosquito populations. Mandal et.

al., [65] made a critical assessment of the existing models in order to explore

their evolution and efficacy in describing the host-parasite biology. Deaths and

disabilities caused by malaria due to change in environmental and socio-economic

conditions prompted researchers to carry out a review of different mathematical

models of malaria. The emphasis was more on the evolution of the deterministic

differential equation based on epidemiological compartment models and a discussion

on data based statistical models. The approach has summarized the modeling

activity so that it helps reach a wider range of researchers working on epidemiology,

transmission and other aspects of malaria so that it facilitates mathematicians to

develop suitable models relevant to the present scenario. This will assist biologists

and public health personnel to adopt a better understanding of modeling strategies

to control the disease.

Mathematical models have been widely used by epidemiologists as tools to predict

the occurrence of epidemics of infectious diseases, and also as a tool for guiding

research for eradication of malaria at the present time [65]. There is a vast amount of

literature available for malaria and it has been studied for a long time from all angles.
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Different modeling methodologies have been adopted in addition to differential

equation-based models, for instance habitat-based models [33], individual-based

models [32] and integrated models [59, 113]. The major modeling approach still

remains the transmission of infection through the epidemiological compartments

of human and vector populations in spite of the wide range of these models

and methodologies. Sir Ronald Ross is among the first to publish papers in

which in one of his papers a simple model termed the Ross Model was developed

[108]. The simple model highlighted the relationship between the number of

vectors and incidence of malaria in humans. These types of models cannot

accommodate more complex interactions of the population compartments and give

limited predictions. Therefore several models have been developed extending the

Ross model by incorporating different factors such as latent period of infection

in mosquito and human populations [116], age-related differential susceptibility

to malaria in human population [2, 24] antimalarial drug resistance [117], and

spatial and genetic heterogeneity of parasite and host [36, 37]. Different approaches

are helpful in guiding different stages of disease through synthesizing available

information and extrapolating it.

Some malaria interventions are based on personal protection, house spraying,

treatment, and possible vaccination. Chiyaka et. al., [19] formulated a mathematical

deterministic model in order to theoretically assess the potential impact of personal

protection, treatment and vaccination strategies on the transmission dynamics of

malaria. They deduced from analysis that personal protection has a positive impact

on disease control but to eradicate the disease in the absence of any other control

measures, efficacy and compliance should be very high. Their results showed that

vaccination and personal protection can suppress the transmission rate of parasite

from human to vector and vice-versa. Further they argued that if the treated
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population are infectious then certain conditions should be satisfied for treatment

to reduce the spread of malaria in the community.

It is important to evaluate the effectiveness of malaria control interventions on the

basis of their impact on transmission as countries move from malaria control to pre-

elimination programs. Mathematical modeling can examine relationships between

malaria indicators, allowing translation of easily measured data into measures of

transmission, and addressing key concerns with traditional methods for quantifying

transmission [115]. Results from such models can provide public health officials

with accurate estimates of transmission, by seasonal patterns, that are necessary for

assessing and tailoring malaria control and elimination programs to specific settings.

A deterministic mathematical model for the transmission of malaria formulated

by Ducrot et. al., [25] considered two host types in the human population. The

first type is called “non-immune” comprising all humans who have never acquired

immunity against malaria and the second type is called “semi-immune”. Here

the possibility of a control of malaria through a specific sub-group such as non-

immune or semi-immune or mosquitoes was explored. Mathematical modeling

combines mechanical understanding with available data from multiple sources to

make predictions. It could potentially be used for preliminary evaluation of different

strategies for malaria elimination in different epidemiological contexts much more

rapidly and a lower cost than is possible through trial and error in the field [70].

This can assist with preliminary optimization of local malaria elimination strategies

before commitment of valuable resources.

The main goal of this research is to formulate the malaria model with intervention

strategies aiming to set the disease management question into an optimal control
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problem requiring the maximization or minimization of some objective function that

depends on the biological issues and economic issues subject to initial conditions.

The model is based on the combined insecticide treated bed-nets (ITNs), indoor

residual spraying (IRS) and treatment strategies on mass action form of infection.

The cost functions will be incorporated into the model in order to study and

determine the possible impacts of these three intervention measures in controlling

the disease in Karonga District, Malawi. This will allow us to propose practical

control measures to the authorities to assess and forecast the disease burden such

as progression rate, hospitalization, morbidity and mortality.
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Chapter 3

Formulation of malaria model with

prevention and control strategies

3.1 Formulation of malaria model

The optimal control model for malaria disease is formulated in order to derive

optimal control strategies with minimal implementation cost. We formulate the

model with the population under study being subdivided into compartments

according to individuals’ disease status. The total host population 𝑁ℎ(𝑡) at time 𝑡 is

partitioned into the populations of susceptible 𝑆ℎ(𝑡), exposed 𝐸ℎ(𝑡), infected 𝐼ℎ(𝑡),

and recovered 𝑅ℎ(𝑡). 𝑆ℎ(𝑡) represents the number of individuals not yet infected with

the malaria parasite at time 𝑡, or those susceptible to the disease. Many diseases

like malaria have what is termed a latent or exposed phase, 𝐸ℎ(𝑡), during which

an individual is said to be infected but not infectious. 𝐼ℎ(𝑡) denotes the number of

individuals who have been infected with malaria and are capable of spreading the

disease to those in the susceptible category, and this is done through infecting the

susceptible mosquitoes. The dynamic transmission of the malaria parasite between
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and among individuals in both species is driven by the biting habit of the mosquito.

𝑅ℎ(𝑡) is the compartment of individuals who have temporarily recovered from the

disease. These humans cannot transmit the infection to the mosquitoes as we assume

that they have no plasmodium parasites in their bodies. We assume that the human

and mosquito population are non-constant, and that the infectious humans recover

without any immunity against reinfection.

The transfer rates between the sub-classes are composed of several epidemiological

parameters. Killeen et al., [50] explained that a susceptible human bitten by an

infectious Anopheles mosquito may become infected with a finite probability that

depends on the abundance of infectious mosquitoes and human hosts. The model

assumes a horizontal standard incidence with homogeneous mixing meaning that

susceptible individuals become infected through contact with infected mosquitoes.

The susceptible human population is increased by recruitment. Some individuals

are recruited through birth by Λℎ, where all newborns are susceptible to infection

and there is no vertical transmission, while the immigrants are generated through

(1− 𝜅1)𝜃, where 𝜅1 is the proportion of exposed immigrants into the exposed class,

and 𝜃 is the rate at which people migrate into the Karonga District. Karonga

District has many migrants from Tanzania, and Zambia through the neighboring

Chitipa District. Individuals migrate from other districts of Malawi to Karonga to

seek employment in different companies found in the district such as the Kayerekera

Uranium Mine and Mwaulambo Coal Mine. We assume that the infectious people

will not migrate, and that most humans who are sick will not travel. Hence this

inflow does not enter the infectious class.

When an infectious female Anopheles mosquito bites a susceptible human, there

is some finite probability, 𝛽𝑣ℎ that the parasites (in the form of sporozoites) will
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be passed onto the humans. The parasites then move to the liver where they

develop into their next life stage, merozoites. Susceptible individuals acquire

malaria through contact with infectious mosquitoes at biting probability 𝜗 such

that
𝜗𝑁𝑣

𝑁ℎ

is the contact rate of mosquitoes per individual in unit time where 𝑁𝑣

denotes the total mosquito population. The proportion of infectious mosquitoes

is
𝐼𝑣
𝑁𝑣

such that
𝜗𝑁𝑣

𝑁ℎ

𝐼𝑣
𝑁𝑣

𝑆ℎ is the total number of contacts between the infectious

mosquitoes and individuals per unit time. Thereafter the infection rate of humans

is 𝜆ℎ = 𝛽𝑣ℎ
𝜗𝑁𝑣

𝑁ℎ

𝐼𝑣
𝑁𝑣

𝑆ℎ =
𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁ℎ

. The infected person moves to the exposed class

at rate (1 − 𝑢1)𝜆ℎ𝑆ℎ where 1 − 𝑢1(𝑡) describes the failure rate of using ITNs. The

preventive variable 𝑢1(𝑡) ∈ [0, 1] represents the use of ITNs as a means of minimizing

or eliminating mosquito-human contacts.

After a certain period of time, the parasite (in the form of merozoites) enters the

bloodstream, usually signaling the clinical onset of malaria. Then the exposed

individuals become infectious and progress to the infected state at a constant

rate 𝛼ℎ. The proportion of individuals 𝜌 who have experienced infection recover

with immunity and move to the recovered class while some infectious humans

after recovery without immunity become immediately susceptible again. Infectious

individuals recover due to rate of effective treatment 𝜂 whose effect is influenced

by control function 𝑢2(𝑡) ∈ [0, 1] representing the control effort on treatment of

infectious individuals; and 𝜑 is the spontaneous recovery rate from infectious class

to recovered class of the human population. We assume that the recovered humans

have temporary immunity to malaria and they do not harbor parasite in their

bloodstream and cannot pass the infection to mosquitoes. After some period of

time, they lose their immunity and return to the susceptible class at the rate 𝜓.

The natural and disease induced death rates are 𝜇ℎ and 𝛿ℎ respectively. The disease

induced death rate is very small in comparison to the recovery rate in order to
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maintain the population.

The mosquito population 𝑁𝑣 is divided into three compartments: susceptible

𝑆𝑣(𝑡), exposed 𝐸𝑣(𝑡), and infectious 𝐼𝑣(𝑡). Female Anopheles mosquitoes (the male

Anopheles mosquito is not included in the model because only the female mosquito

bites animals for blood meals) enter the susceptible class through birth at a rate

Λ𝑣. The parasites in the form of gametocytes enter the susceptible mosquito with

probability 𝛽ℎ𝑣 after being in contact with the infectious individuals. As we

assume that the mosquito population is infected only by contacting infectious

humans and with the proportion of infectious individuals
𝐼𝑣
𝑁ℎ

, then the term

𝜆𝑣 = Λ
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

describes the infection rate of mosquitoes through contact with

infectious individuals. This happens when the mosquito bites an infectious human

and the mosquito moves from the susceptible to the exposed. The susceptible

mosquito acquires malaria through contact with infected humans at a force of

infection 𝜆𝑣 and progresses to the exposed class. Mosquitoes are assumed to suffer

death due to natural causes at a rate 𝜇𝑣. The exposed class of the mosquitoes

progresses to the class of symptomatic mosquitoes, 𝐼𝑣, at a rate 𝛼𝑣. The prevention

rate of using IRS 𝜏 whose effect is affected by the effort of using IRS house 𝑢3(𝑡)

affect the whole mosquito population.

The model’s force of infections, 𝜆ℎ and 𝜆𝑣, depend on the total population of humans

𝑁ℎ because we assume that mosquitoes bite human hosts randomly. In Chitnis

et. al., [18] the total number of mosquito bites on humans depends on both the

human and mosquito population sizes, while in our model, the total number of bites

depends only on the number of mosquitoes. The effective contact rates between

individual and mosquito populations depend on the biting rate of the mosquitoes,

the transmission probabilities between the species and the number of individuals in
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both populations. If 𝜗 is the biting rate of the mosquito, then there are 𝜗𝑁𝑣/𝑁ℎ

bites per human per time. The percentage of the total number of bites that are

possibly infectious to individuals is 𝐼𝑣/𝑁𝑣 since there are 𝑆ℎ susceptible individuals,

and the number of potentially infectious bites given to susceptible individuals is

𝜗𝐼𝑣𝑆ℎ/𝑁ℎ bites per time. Hence we have

exposed rate of individuals =
𝛽𝑣ℎ𝜗𝐼𝑣
𝑁ℎ

𝑆ℎ,

and

exposed rate of mosquitoes = 𝜆𝑉 =
𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

𝑆𝑣.

Malaria control is an increasingly important focus for the international body

concerned with public health and disease control [6]. ITNs and IRS are the most

available effective prevention strategies for malaria vector control in Africa. ITNs

are being promoted throughout Africa as fundamental preventive strategies to Roll

Back Malaria [106]. The ITNs are nets that need to be treated once a year with

a special chemical solution that ensures their effectiveness. The chemical used to

treat ITNs (LLINs) kills the mosquito without harming the person underneath the

net. Currently permethrin is the chemical most commonly used to treat mosquito

nets. ITNs help to reduce human-mosquito contacts, a decrease in the number

of mosquitoes and a reduction in malaria transmission which leads to a decline

in malaria -related morbidity and mortality. In addition, ITNs provide protection

against nuisance mosquitoes and kill head lice and bedbugs. The IRS is the organized

spraying of an insecticide on the inside walls of houses prior to peak malaria

transmission. It is designed to interrupt malaria transmission by either killing adult

female mosquitoes when they enter houses and rest on the walls after feeding or

by repelling mosquitoes from entering houses. This method leads to increase in

mortality of the mosquitoes. But malaria control in Africa is less successful because

of the occurrence of drug resistant parasites and insecticide resistant vectors.
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The model flow is shown in Figure 3.1.
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Figure 3.1: The malaria model with interventions flowchart
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The dash line from the infected human class, 𝐼ℎ, to the susceptible mosquito

population, 𝑆𝑣, shows that the infected human individuals infect the susceptible

mosquito population whilst the dash line from the infected mosquito population,

𝐼𝑣, to the susceptible human population, 𝑆ℎ, shows the transfer of Plasmodium

parasites from the infected mosquito population to susceptible individuals. The

state variables in the compartmental model are represented in Table 3.1. Table 3.2

Symbol Description

𝑆ℎ(𝑡) Number of susceptible individuals at time 𝑡

𝐸ℎ(𝑡) Number of exposed individuals at time 𝑡

𝐼ℎ(𝑡) Number of infectious humans at time 𝑡

𝑅ℎ(𝑡) Number of recovered humans at time 𝑡

𝑆𝑣(𝑡) Number of susceptible mosquitoes at time 𝑡

𝐸𝑣(𝑡) Number of infected mosquitoes at time 𝑡

𝐼𝑣(𝑡) Number of infectious mosquitoes at time 𝑡

𝑁ℎ(𝑡) Total number of individuals at time 𝑡

𝑁𝑣(𝑡) Total mosquito population at time 𝑡

Table 3.1: State variables of the malaria model

represents prevention and control strategies practised in the district.
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Symbol Description

𝑢1(𝑡) Preventive measure using insecticide treated bed-nets (ITNs)

𝑢2(𝑡) The control effort on treatment of infectious individuals

𝑢3(𝑡) Preventing measure using indoor residual spraying (IRS)

𝜏 Prevention rate of effective use of indoor residual spraying

𝜂 Treatment recovery rate

Table 3.2: Prevention and control variables in the model

Table 3.3 shows parameters of the model.
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Symbol Description

Λℎ Recruitment rate of individuals

Λ𝑣 Recruitment rate of mosquitoes

𝜅1 Proportion of exposed immigrants into exposed class

𝜃 Rate at which people migrate into Karonga District

𝜇ℎ Per capita natural death rate of humans

𝜇𝑣 Per capita natural death rate of mosquitoes

𝛿ℎ Per capita disease-induced death rate for humans

𝛼ℎ Progression rate of exposed humans to the infectious state

𝛼ℎ Progression rate of exposed mosquitoes to infectious state

𝛽𝑣ℎ Probability that a bite results in transmission of infection to

human

𝛽ℎ𝑣 Probability that a bite results in transmission of the parasite

from an infectious human to the susceptible mosquitoes

𝜗 Average biting rate of a mosquito on an individual

𝜆ℎ Rate at which individuals get infected by infected mosquitoes

𝜆𝑣 Rate at which susceptible mosquitoes are infected by infected

individuals

𝜌 Proportion of individuals who recover with immunity

𝜑 Spontaneous individual recovery rate

𝜓 Loss temporary immunity by recovered individuals

𝛼𝑣 Progression of exposed mosquitoes into infected mosquitoes

Table 3.3: Parameters variables of the malaria model
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The state variables in Table 3.1, the prevention and control parameters in Table 3.2

and the parameters in Table 3.3 for the malaria model satisfy equations (3.2). It is

assumed that all state variables and parameters of the model which monitor human

and mosquito populations are positive for all 𝑡 ≥ 0, we will therefore analyse the

model in a suitable region.

The above assumptions and the model flowchart together lead to the following

deterministic system of nonlinear ordinary differential equations which describe the

evolutionary dynamics of a malaria model with a combination of interventions:

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + (1− 𝜅1)𝜃 + (𝜑+ 𝜂𝑢2)(1− 𝜌)𝐼ℎ

− (1− 𝑢1)𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ,

𝑑𝐸ℎ
𝑑𝑡

= (1− 𝑢1)𝜆ℎ𝑆ℎ + 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ,

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= (𝜑+ 𝜂𝑢2)𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ,

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − 𝜆𝑣𝑆𝑣 − (𝜇𝑣 + 𝜏𝑢3)𝑆𝑣,

𝑑𝐸𝑣
𝑑𝑡

= 𝜆𝑣𝑆𝑣 − (𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)𝐸𝑣,

𝑑𝐼𝑣
𝑑𝑡

= 𝛼𝑣𝐸𝑣 − (𝜇𝑣 + 𝜏𝑢3)𝐼𝑣,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where 𝜆ℎ =
𝛽𝑣ℎ𝜗𝐼𝑣
𝑁ℎ

, 𝜆𝑉 =
𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

.

The term
𝛽𝑣ℎ𝐼𝑣𝑆ℎ
𝑁ℎ

denotes the rate at which the human host, 𝑆ℎ, becomes infected

by infected mosquitoes, 𝐼𝑣, and
𝛽ℎ𝑣𝑆𝑣𝐼ℎ
𝑁ℎ

refers to the rate at which the susceptible

mosquitoes, 𝑆𝑣, are infected by the infected human hosts, 𝐼ℎ. It indicates that the

rate of infection of susceptible human, 𝑆ℎ, by infected mosquito, 𝐼𝑣, is dependent on

the total number of humans, 𝑁ℎ, available per vector.
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3.2 Qualitative analysis of model

In this section, the basic properties of model system (3.1) such as invariant region

and positivity, which are useful in the proofs of stability are studied using the

autonomous model. The autonomous model is developed by considering the control

functions in 3.1 as 𝑢1 = 0, 𝑢2 = 0 and 𝑢3 = 0. Hence the system becomes

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + (1− 𝜅1)𝜃 + 𝜑(1− 𝜌)𝐼ℎ − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ,

𝑑𝐸ℎ
𝑑𝑡

= 𝜆ℎ𝑆ℎ + 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ,

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝜑𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ,

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣,

𝑑𝐸𝑣
𝑑𝑡

= 𝜆𝑣𝑆𝑣 − (𝛼𝑣 + 𝜇𝑣)𝐸𝑣,

𝑑𝐼𝑣
𝑑𝑡

= 𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The invariant region describes the region in which the solutions of the system (3.2)

make biological sense while positivity of the solutions describes nonnegativity of the

solutions.

3.2.1 Invariant region

Since the malaria model displays human and mosquito populations, it is assumed

that all the state variables are non-negative for all time 𝑡 ≥ 0 and that the solutions

of the model (3.2) with positive initial data remain positive for all time 𝑡 ≥ 0.

The associated parameters are assumed as non-negative for all time 𝑡 ≥ 0. The

autonomous version of the model (3.2) will therefore be analyzed in a suitable feasible

region, obtained as follows.

49



The model sub-divides the total human population at time 𝑡, denoted by 𝑁ℎ(𝑡),

so that 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡), and the total mosquito population

𝑁𝑣(𝑡) is also sub-divided so that 𝑁𝑣(𝑡) = 𝑆𝑣(𝑡)+𝐸𝑣(𝑡)+𝐼𝑣(𝑡), or form the differential

equations

𝑑𝑁ℎ

𝑑𝑡
= Λℎ + 𝜃 − 𝛿ℎ𝐼ℎ − 𝜇ℎ𝑁ℎ, (3.3)

and

𝑑𝑁𝑣

𝑑𝑡
= Λ𝑣 − 𝜇𝑣𝑁𝑣. (3.4)

We show that all feasible solutions are uniformly bounded in a proper subset

Φ = Φℎ × Φ𝑣.

Without loss of generality, we assume that the dynamics of system (3.2) without

infection are asympotically stable. Hence

𝑑𝑁ℎ

𝑑𝑡
≤ Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ. (3.5)

Applying Birkhoff and Rota’s theorem [8] on differential inequality (3.5) gives

𝑑𝑁ℎ

Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ

≤ 𝑑𝑡. (3.6)

Integrating (3.6 on both sides gives∫︁
𝑑𝑁ℎ

Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ

≤
∫︁
𝑑𝑡

=⇒ −1

𝜇ℎ
ln(Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ) ≤ 𝑡+ 𝑐

=⇒ ln(Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ) ≥ −𝜇ℎ(𝑡+ 𝑐)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.7)

Therefore,

Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ ≥ 𝐾𝑒−𝜇ℎ𝑡, where 𝐾 is constant. (3.8)

Furthermore, applying the initial conditions 𝑁ℎ(0) in (3.8) we obtain

𝐾 = Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ(0). (3.9)
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Substituting 3.9 into 3.8 gives

Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ ≥ (Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ(0))𝑒
−𝜇ℎ𝑡. (3.10)

Calculating for 𝑁ℎ in (3.10) gives

𝑁ℎ ≤ Λℎ + 𝜃

𝜇ℎ
−

[︂
Λℎ + 𝜃 − 𝜇ℎ𝑁ℎ(0)

𝜇ℎ

]︂
𝑒−𝜇ℎ𝑡. (3.11)

As 𝑡→ ∞ in (3.11), the population size, 𝑁ℎ, approaches

0 ≤ 𝑁ℎ ≤
Λℎ + 𝜃

𝜇ℎ
=⇒ 𝑁ℎ −→

Λℎ + 𝜃

𝜇ℎ
.

Therefore all feasible solutions of the human population of the model system (3.2)

enter the region

Φℎ =

{︂
(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ) ∈ R4

≥0 : 𝑁ℎ(𝑡) ≤
Λℎ + 𝜃

𝜇ℎ

}︂
.

Similarly, the feasible solutions of the mosquito population only enter the region

Φ𝑣 =

{︂
(𝑆𝑣, 𝐸𝑣, 𝐼𝑣) ∈ R3

≥0 : 𝑁𝑣(𝑡) ≤
Λ𝑣
𝜇𝑣

}︂
.

Hence the feasible solution set for the model system (3.2) is

Φ =
{︀
(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣) ∈ R7

+ : 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣 ≥ 0;

𝑁ℎ ≤
Λℎ + 𝜃

𝜇ℎ
; 𝑁𝑣 ≤

Λ𝑣
𝜇𝑣

}︂
⎫⎪⎪⎬⎪⎪⎭ . (3.12)

In this case, whenever 𝑁ℎ >
Λℎ + 𝜃

𝜇ℎ
, then

𝑑𝑁ℎ

𝑑𝑡
< 0 (similarly whenever 𝑁𝑣 >

Λ𝑣
𝜇𝑣

then
𝑑𝑁𝑣

𝑑𝑡
< 0) which means that the host population reduces asymptotically to

its carrying capacity. Hence every solution with initial condition in R7
+ remains in

that region for 𝑡 > 0, which is a positively invariant set under the flow induced

by the model (3.2). Hence the system (3.2) is epidemiologically meaningful and

mathematically well-posed in the interior of domain Φ. Therefore, in this domain it

is sufficient to consider the dynamics of the flow generated by model (3.2).
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3.2.2 Positivity of state variables

It is important to prove that all the state variables remain non-negative for all 𝑡 ≥ 0

for the system (3.2).

Lemma 1. Let the initial data be

{𝑆ℎ(0), 𝑆𝑣(0) > 0, (𝐸ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 𝐸𝑣(0), 𝐼𝑣(0)) ≥ 0} ∈ Φ.

Then the solution set {𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣}(𝑡) of the model system (3.2) is

positive for all 𝑡 > 0.

Proof. Let that 𝑡 = 𝑠𝑢𝑝{𝑡 > 0 : 𝑆ℎ > 0, 𝐸ℎ > 0, 𝐼ℎ > 0, 𝑅ℎ > 0,

𝑆𝑣 > 0, 𝐸𝑣 > 0, 𝐼𝑣 > 0} ∈ [0, 𝑡], gives 𝑡 > 0. The first equation of the model (3.2)

gives

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + (1− 𝜅1)𝜃 + 𝜑(1− 𝜌)𝐼ℎ − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ

𝑑𝑆ℎ
𝑑𝑡

≥ − [𝜆ℎ + 𝜇ℎ]𝑆ℎ,

which on solving gives

𝑑

𝑑𝑡

⎡⎢⎣𝑆ℎ(𝑡)𝑒
∫︁ 𝑡

0

𝜆ℎ(𝑠)𝑑𝑠+ 𝜇ℎ𝑡

⎤⎥⎦ ≥ 𝑒

∫︁ 𝑡

0

𝜆ℎ(𝑠)𝑑𝑠+ 𝜇ℎ𝑡
.

Therefore,

𝑆ℎ(𝑡)𝑒

∫︁ 𝑡

0

{𝜆ℎ(𝑠)𝑑𝑠}+ 𝜇ℎ𝑡
− 𝑆ℎ(0) ≥

∫︁ 𝑡

0

𝑒

∫︁ 𝑡*

0

𝜆ℎ(𝑤)𝑑𝑤 + 𝑢ℎ𝑡
*

𝑑𝑡*,

so that

𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒

−

⎛⎜⎝
∫︁ 𝑡

0

𝜆ℎ(𝑠)𝑑𝑠+ 𝜇ℎ𝑡

⎞⎟⎠
+

𝑒

−

⎛⎜⎝
∫︁ 𝑡

0

𝜆ℎ(𝑠)𝑑𝑠+ 𝜇ℎ𝑡

⎞⎟⎠
⎧⎪⎪⎨⎪⎪⎩
∫︁ 𝑡

0

𝑒

∫︁ 𝑡*

0

𝜆ℎ(𝑤)𝑑𝑤 + 𝜇ℎ𝑡
*

𝑑𝑡*

⎫⎪⎪⎬⎪⎪⎭ > 0.
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Hence 𝑆ℎ is always positive for 𝑡 > 0.

From the second equation of (3.2) we have

𝑑𝐸ℎ
𝑑𝑡

= 𝜆ℎ𝑆ℎ + 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ ≥ −(𝛼ℎ + 𝜇ℎ)𝐸ℎ∫︁
1

𝐸ℎ
𝑑𝐸ℎ ≥ −

∫︁
(𝛼ℎ + 𝜇ℎ)𝑑𝑡.

=⇒ 𝐸ℎ(𝑡) ≥ 𝐸ℎ(0)𝑒
−(𝛼ℎ+𝜇ℎ)𝑑𝑡 > 0.

This shows that 𝐸ℎ is always positive for 𝑡 > 0.

We also obtain the following from the third equation of (3.2)

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ ≥ −(𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ∫︁
1

𝐼ℎ
𝑑𝐼 ≥ −

∫︁
(𝜑+ 𝜇ℎ + 𝛿ℎ)𝑑𝑡

=⇒ 𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝜑+𝜇ℎ+𝛿ℎ)𝑡 > 0.

Therefore 𝐼ℎ is always positive for 𝑡 > 0.

It follows also from the fourth equation of (3.2) that

𝑑𝑅ℎ

𝑑𝑡
= 𝜑𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ ≥ −(𝜇ℎ + 𝜓)𝑅ℎ∫︁

1

𝑅
𝑑𝑅 ≥ −

∫︁
(𝜇ℎ + 𝜓)𝑑𝑡.

=⇒ 𝑅(𝑡) ≥ 𝑅(0)𝑒−(𝜇ℎ+𝜓)𝑡 > 0.

Hence 𝑅ℎ is always posotive for 𝑡 > 0.

Since we are dealing with two populations, it is important also to discuss (as in

the human population) the state variables of the mosquito population. Determining

𝑆𝑣(𝑡), we consider the fifth equation of (3.2) which gives

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣

= Λ𝑣 − (𝜆𝑣 + 𝜇𝑣)𝑆𝑣 ≥ −(𝜆𝑣 + 𝜇𝑣)𝑆𝑣
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which can be solved as

𝑑

𝑑𝑡

⎡⎢⎢⎢⎣𝑆𝑣(𝑡)𝑒
⎧⎪⎨⎪⎩𝜇𝑣𝑡 +

∫︁ 𝑡

0

𝜆𝑣(𝑠)𝑑𝑠

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ≥ 𝑒

⎧⎪⎨⎪⎩𝜇𝑣𝑡 +

∫︁ 𝑡

0

𝜆𝑣(𝑠)𝑑𝑠

⎫⎪⎬⎪⎭
.

Hence

𝑆𝑣(𝑡)𝑒

⎧⎪⎨⎪⎩𝜇𝑣𝑡 +

∫︁ 𝑡

0

𝜆𝑣(𝑠)𝑑𝑠

⎫⎪⎬⎪⎭
− 𝑆𝑣(0) ≥

∫︁ 𝑡

0

𝑒

⎧⎪⎨⎪⎩𝜇𝑣𝑡*+
∫︁ 𝑡*

0

𝜆𝑣(𝑤)𝑑𝑤

⎫⎪⎬⎪⎭
𝑑𝑡*,

so that

𝑆𝑣(𝑡) ≥ 𝑒

−

⎧⎪⎨⎪⎩𝜇𝑣𝑡+
∫︁ 𝑡

0

𝜆𝑣(𝑠)𝑑𝑠

⎫⎪⎬⎪⎭
⎛⎜⎜⎜⎝𝑆𝑣(0) +

∫︁ 𝑡

0

𝑒

⎧⎪⎨⎪⎩𝜇𝑣𝑡*+
∫︁ 𝑡*

0

𝜆𝑣(𝑤)𝑑𝑤

⎫⎪⎬⎪⎭
𝑑𝑡*

⎞⎟⎟⎟⎠ > 0.

Therefore 𝑆𝑣 remains positive for 𝑡 > 0.

Also the sixth equation of (3.2) gives

𝑑𝐸𝑣
𝑑𝑡

= 𝜆𝑣𝑆𝑣 − (𝛼𝑣 + 𝜇𝑣)𝐸𝑣 ≥ −(𝛼𝑣 + 𝜇𝑣)𝐸𝑣.∫︁
1

𝐸𝑣
𝑑𝐸𝑣 ≥ −

∫︁
(𝛼𝑣 + 𝜇𝑣)𝑑𝑡.

=⇒ 𝐸𝑣(𝑡) ≥ 𝐸𝑣(0)𝑒
−(𝛼𝑣+𝜇𝑣)𝑡 > 0.

This gives the result that 𝐸𝑣 is always positive for 𝑡 > 0.

Lastly, the seventh equation of (3.2) gives

𝑑𝐼𝑣
𝑑𝑡

= 𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣 ≥ −𝜇𝑣𝐼𝑣.∫︁
1

𝐼𝑣
𝑑𝐼𝑣 ≥ −

∫︁
𝜇𝑣𝑑𝑡.

=⇒ 𝐼𝑣(𝑡) ≥ 𝐼𝑣(0)𝑒
−𝜇𝑣𝑡 > 0.

Hence 𝐼𝑣 is always positive for 𝑡 > 0.

Additionally, we need to show that the feasible region Φ is positively invariant so
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that it satisfies the dynamics of the system. The right hand sides of equations (3.3)

and (3.4) are both bounded by Λℎ+𝜃−𝜇ℎ𝑁ℎ and Λ𝑣−𝜇𝑣𝑁𝑣, respectively. It follows

that

𝑑𝑁ℎ

𝑑𝑡
< 0 if 𝑁ℎ(𝑡) >

Λℎ + 𝜃

𝜇ℎ
and

𝑑𝑁𝑣

𝑑𝑡
< 0 if 𝑁𝑣(𝑡) >

Λ𝑣
𝜇𝑣
.

Using a standard comparison theorem [131], we have shown above that

𝑁ℎ(𝑡) ≤
Λℎ + 𝜃

𝜇ℎ
(1− 𝑒−𝜇ℎ𝑡) +𝑁ℎ(0)𝑒

−𝜇ℎ𝑡,

and

𝑁𝑣(𝑡) ≤
Λ𝑣
𝜇𝑣

(1− 𝑒−𝜇𝑣𝑡) +𝑁𝑣(0)𝑒
−𝜇𝑣𝑡.

In particular, if 𝑁ℎ(0) <
Λℎ + 𝜃

𝜇ℎ
then 𝑁ℎ(𝑡) ≤

Λℎ + 𝜃

𝜇ℎ
and if 𝑁𝑣(0) <

Λ𝑣
𝜇𝑣

then 𝑁𝑣(𝑡) ≤
Λ𝑣
𝜇𝑣
. Therefore, Φ is positively invariant. If 𝑁ℎ(0) >

Λℎ + 𝜃

𝜇ℎ

and 𝑁𝑣(0) >
Λ𝑣
𝜇𝑣
, then either the solution enters Φ in finite time, or

𝑁ℎ(𝑡) →
Λℎ + 𝜃

𝜇ℎ
and 𝑁𝑣(𝑡) →

Λ𝑣
𝜇𝑣

asymptotically, and the infected state variables

𝐸, 𝐼ℎ, 𝑅ℎ, 𝐸𝑣 and 𝐼𝑣 approach zero.

3.2.3 Existence and stability of steady-state solutions

Π = (𝑆*
ℎ, 𝐸

*
ℎ, 𝐼

*
ℎ, 𝑅

*
ℎ, 𝑆

*
𝑣 , 𝐸

*
𝑣 , 𝐼

*
𝑣 ) is the steady-state solution of the system (3.2) which

can be determined by setting the right hand side of the model (3.2) equal to zero.
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Thus

Λℎ + (1− 𝜅1)𝜃 + 𝜑(1− 𝜌)𝐼ℎ − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ = 0

𝜆ℎ𝑆ℎ + 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0

𝛼ℎ𝐸ℎ − (𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ = 0

𝜑𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ = 0

Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣 = 0

𝜆𝑣𝑆𝑣 − (𝛼𝑣 + 𝜇𝑣)𝐸𝑣 = 0

𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.13)

For as long as Λℎ the human recruitment term through birth, 𝜃 for immigrants and

Λ𝑣 the mosquito recruitment term are nonzero, the population will not be extinct.

This implies that there is no trivial equilibrium, thus

(𝑆*
ℎ, 𝐸

*
ℎ, 𝐼

*
ℎ, 𝑅

*
ℎ, 𝑆

*
𝑣 , 𝐸

*
𝑣 , 𝐼

*
𝑣 ) ̸= (0, 0, 0, 0, 0, 0, 0).

Disease-free equilibrium

Disease-free equilibrium (DFE) of the disease model is the steady-state solution of

the disease in the absence of infection or disease (malaria). We denote a disease-

free equilibrium as 𝐸0 and define the “diseased” classes as the human or mosquito

populations that are either exposed or infected, that is, 𝐸ℎ, 𝐼ℎ, 𝐸𝑣 and 𝐼𝑣 in the

system (3.2). Hence, the DFE of the malaria optimal control model with no

immigration of infectious individuals (3.2) is given by

𝐸0 = (𝑆*
ℎ, 𝐸

*
ℎ, 𝐼

*
ℎ, 𝑅

*
ℎ, 𝑆

*
𝑣 , 𝐸

*
𝑣 , 𝐼

*
𝑣 ) =

(︂
Λℎ + 𝜃

𝜇ℎ
, 0, 0, 0,

Λ𝑣
𝜇𝑣
, 0, 0

)︂
. (3.14)

This represents the state in which there is no infection in the society and is known

as the DFE.
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3.2.4 The reproduction number ℛ0

We use the next generation operator approach as described by Deikman, [23] to

define the effective reproduction number, ℛ0, as the number of secondary infections

that one infectious individual would create during the infectious period, provided

that everyone else is susceptible. It is an important parameter that plays a large

role in the control of the malaria infection.

ℛ0 = 1 is a threshold below which the generation of secondary cases is insufficient

to maintain the infection within the human community. If ℛ0 < 1, each individual

produces on average, less than one new infected individual and hence the disease dies

out while if ℛ0 > 1, each individual produces more than one new infected individual

and hence the disease is able to invade the susceptible population. It is therefore a

useful quantity in the study of a disease as it sets the threshold for its establishment.

The effective reproduction number cannot be determined from the structure of the

mathematical model alone, but depends on the definition of infected and uninfected

compartments. We define 𝑋𝑠 to be the set of all disease free states. That is

𝑋𝑠 = {𝑥 ≥ 0 | 𝑥𝑖 = 0, 𝑖 = 1, . . . ,𝑚},

where 𝑚 is the number of diseased (infected) classes.

In order to compute ℛ0 it is important to distinguish new infections from all other

changes in the population. Let

• ℱ𝑖 be the rate of appearance of new infections in compartment 𝑖,

• 𝒱𝑖 = 𝒱−
𝑖 −𝒱+

𝑖 be the difference between the rate of transfer of individuals out

of compartment 𝑖, (𝒱−
𝑖 ), by all other means and the rate transfer of individuals

in the compartment 𝑖, (𝒱+
𝑖 ), by all other means.
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• 𝑥0 be the DFE.

It is assumed that each function is at least twice continuously differentiable in each

variable. The disease transmission model consists of non-negative initial conditions

together with the following system of equations

�̇� = 𝑓𝑖(𝑥) = ℱ𝑖(𝑥)− 𝒱𝑖(𝑥), 𝑖 = 1, · · · , 𝑛;

where 𝑛 is number of compartments with new infection.

Let 𝐹 =

[︂
𝜕ℱ𝑖

𝜕𝑥𝑗
(𝑥0)

]︂
and 𝑉 =

[︂
𝜕𝒱𝑖
𝜕𝑥𝑗

(𝑥0)

]︂
with 1 ≤ (𝑖, 𝑗) ≤ 𝑚.

Further, 𝐹 is non-negative, 𝑉 is a non-singular𝑀 -matrix. Both are 𝑚×𝑚 matrices,

where 𝑚 is the number of infected classes. Hence ℛ0 is the largest eigenvalue of

𝐹𝑉 −1, where

• the (𝑖, 𝑗) entry of 𝐹 is the rate at which infected individuals in compartment

𝑗 produce new infections in compartment 𝑖,

• the (𝑗, 𝑘) entry of 𝑉 −1 is the average length of time this individual spends in

compartment 𝑗 during its lifetime, assuming that the population remains near

the DFE and barring reinfection.

Hence, the (𝑖, 𝑘) entry of the product 𝐹𝑉 −1 is the expected number of new infections

in compartment 𝑖 produced by the infected individual originally introduced in

compartment 𝑘. Following Diekmann et al., [22] 𝐹𝑉 −1 is termed the next generation

matrix for the model and we set

ℛ0 = 𝜌(𝐹𝑉 −1),

where 𝜌(𝐴) denotes the spectral radius of a matrix 𝐴.
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Rewriting the system (3.2) starting with the infected compartments for both

populations; 𝐸ℎ, 𝐼ℎ, 𝐸𝑣, 𝐼𝑣 and followed by uninfected classes; 𝑆ℎ, 𝑅ℎ, 𝑆𝑣 also from

the two populations, results in

𝑑𝐸ℎ
𝑑𝑡

=
𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁ℎ

+ 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ

𝑑𝐼ℎ
𝑑𝑡

= 𝛼ℎ𝐸ℎ − (𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ

𝑑𝐸𝑣
𝑑𝑡

=
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

− (𝛼𝑣 + 𝜇𝑣)𝐸𝑣

𝑑𝐼𝑣
𝑑𝑡

= 𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + (1− 𝜅1)𝜃 + 𝜑(1− 𝜌)𝐼ℎ −
𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

− 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ

𝑑𝑅ℎ

𝑑𝑡
= 𝜑𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆ℎ
𝑁ℎ

− 𝜇ℎ𝑆𝑣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.15)

The rate of appearance of a new infection in compartments 𝐸ℎ and 𝐸𝑣 has been

derived by using the method of next generation matrix, from the system (3.15) for

ℱ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

+ 𝜅1𝜃

0

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁ℎ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Jacobian matrix of ℱ at the DFE 𝐸0 (see equation (3.14)) where

0 ≤ 𝑁ℎ ≤
Λℎ + 𝜃

𝜇ℎ
and 𝑁𝑣 ≤

Λ𝑣
𝜇𝑣

is

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 𝛽𝑣ℎ𝜗

0 0 0 0

0
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.16)
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The transfer of individuals out of the compartments of the system (3.15) by all other

means is

𝒱 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝛼ℎ + 𝜇ℎ)𝐸ℎ

(𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ − 𝛼ℎ𝐸ℎ

(𝛼𝑣 + 𝜇𝑣)𝐸𝑣

𝜇𝑣𝐼𝑣 − 𝛼𝑣𝐸𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Jacobian matrix of 𝒱 is given by

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼ℎ + 𝜇ℎ 0 0 0

−𝛼ℎ 𝜑+ 𝜇ℎ + 𝛿ℎ 0 0

0 0 𝛼𝑣 + 𝜇𝑣 0

0 0 −𝛼𝑣 𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)

The inverse of 𝑉 is

𝑉 −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝛼ℎ + 𝜇ℎ
0 0 0

𝑓 𝑔 0 0

0 0
1

(𝛼𝑣 + 𝜇𝑣)
0

0 0 ℎ
1

𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.18)

where 𝑓 =
𝛼ℎ

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)
, 𝑔 =

1

(𝜑+ 𝜇ℎ + 𝛿ℎ)
, ℎ =

𝛼𝑣
(𝛼𝑣 + 𝜇𝑣)𝜇𝑣

.

Therefore

𝐹𝑉 −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 𝑎 𝑏

0 0 0 0

𝑐 𝑑 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.19)

where 𝑎 =
𝛽𝑣ℎ𝜗𝛼𝑣

(𝛼𝑣 + 𝜇𝑣)𝜇𝑣
, 𝑏 =

𝛽𝑣ℎ𝜗

𝜇𝑣
, 𝑐 =

𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ𝛼ℎ
(Λℎ + 𝜃)(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)𝜇𝑣

,
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𝑑 =
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ

(Λℎ + 𝜃)(𝜑+ 𝜇ℎ + 𝛿ℎ)𝜇𝑣
.

The eigenvalues of 𝐹𝑉 −1 are calculated from 𝑀 = |𝐹𝑉 −1 − 𝜆𝐼| = 0, that is

𝑀 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

−𝜆 0 𝑎 𝑏

0 −𝜆 0 0

0 0 −𝜆 0

𝑐 𝑑 0 −𝜆

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
= 0, (3.20)

which gives

𝜆𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0√︀
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣Θ*𝛽𝑣ℎ𝜗𝛼ℎ𝛼𝑣

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣

−
√︀

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣Θ*𝛽𝑣ℎ𝜗𝛼ℎ𝛼𝑣
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Θ* =

(︂
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

)︂
, which can be simplified further

𝜆𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0√︀
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣𝛽ℎ𝑣𝛽𝑣ℎ𝜗2𝛼ℎ𝛼𝑣Θ**

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣

−
√︀

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣𝛽ℎ𝑣𝛽𝑣ℎ𝜗2𝛼ℎ𝛼𝑣Θ**)

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.21)
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where Θ** =
Λ𝑣𝜇ℎ

𝜇𝑣(Λℎ + 𝜃)
.

Hence, the reproduction number, ℛ0, is the dominant eigenvalue of 𝐹𝑉 −1 given by

ℛ0 =

√︃
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣Λ𝑣𝜇ℎ
(𝛼ℎ + 𝜇ℎ)2(𝜑+ 𝜇ℎ + 𝛿ℎ)2(𝛼𝑣 + 𝜇𝑣)2𝜇3

𝑣(Λℎ + 𝜃)
.

After further simplification, the reproduction number ℛ𝑒 becomes

ℛ0 =

√︃
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣Λ𝑣𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)(Λℎ + 𝜃)𝜇2

𝑣

, (3.22)

where

•
𝛼ℎ

𝛼ℎ + 𝜇ℎ
is the probability of survival of the individuals from the latent stage

into the infectious stage.

•
𝛼𝑣

𝛼𝑣 + 𝜇𝑣
is the probability of survival of the mosquitoes from the exposed stage

into the infectious stage of the mosquito population.

The expression for the reproduction number, ℛ0, has a biological meaning that is

readily interpreted by terms under the square root sign.

• The term
𝛽𝑣ℎ𝜗𝛼𝑣

(𝛼𝑣 + 𝜇𝑣)𝜇𝑣
describes the number of humans that one mosquito

infects (through contacts) during the lifetime it survives as infectious, when

all humans are susceptible.

• The term
𝛽ℎ𝑣𝜗𝛼ℎ

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)
describes the number of mosquitoes that

are infected through contacts with one infectious human, while the human

survives as infectious, assuming no infection among vectors (female Anopheles

mosquitoes). The reproduction number is given by

ℛ0 =
√︀

ℛ0𝑣ℛ0ℎ,

where
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• ℛ0𝑣 =
𝛽ℎ𝑣𝛼𝑣𝜗Λ𝑣
𝜇2
𝑣(𝛼𝑣 + 𝜇𝑣)

is the contribution of the mosquito population when it

infects the humans, and

• ℛ0ℎ =
𝛽𝑣ℎ𝜗𝜇ℎ𝛼ℎ

(Λℎ + 𝜃)(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)
is the human contribution when they

infect the mosquitoes.

The square root represents the geometric mean of the average number of secondary

host infections produced by one vector, and the average number of secondary vector

infections produced by one host. The reproduction number serves as an invasion

threshold both for predicting outbreaks and evaluating control strategies that would

reduce the spread of the disease.

The threshold quantity, ℛ𝑒, measures the average number of secondary cases

generated by a single infected individual in a susceptible human population, where a

fraction of the susceptible human population is under prevention through the use of

ITNs and IRS, and the infected class is under treatment. The value of the effective

reproduction number, ℛ𝑒, for the model (3.1) with 𝑢1 ̸= 𝑢2 ̸= 𝑢3 ̸= 0 is obtained

from the expression of basic reproduction,ℛ0, of the autonomous model (3.2). Hence

the effective reproduction number of the model with intervention strategies is given

by

ℛ𝑒 =

√︃
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ(1− 𝑢1)𝛼𝑣Λ𝑣𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)(𝜏𝑢3 + 𝜇)2𝑣(Λℎ + 𝜃)

. (3.23)

In the absence of any protective measure, the effective reproduction number, ℛ𝑒,

with treatment is

ℛ𝑒𝑡 =

√︃
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣Λ𝑣𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇2

𝑣(Λℎ + 𝜃)
.

Also if the protection by using ITNs as the only intervention strategy, then

ℛ𝑒𝑁 =

√︃
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣Λ𝑣𝜇ℎ(1− 𝑢1)

(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇2
𝑣(Λℎ + 𝜃)

.
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Similarly, if IRS is the only means of protection, then

ℛ𝑒𝑠 =

√︃
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣𝜇ℎΛ𝑣
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)(𝜇𝑣 + 𝜏𝑢3)2(Λℎ + 𝜃)

.

From the two reproduction numbers, it is easy to prove that

ℛ𝑒 ≤ ℛ0,

for 0 ≤ 𝑢1, 𝑢3 ≤ 1, due to reduction of likelihood of infection by using ITNs and IRS.

This implies that ITNs and IRS have a positive impact on the malaria dynamics as

they contribute to the reduction of secondary infections. Therefore, from Van den

Driessche and Watmough [122], (Theorem 2), the following result holds;

Lemma 2. The DFE, 𝐸0, of the malaria model with intervention strategies (3.2)

given by (3.14) is locally asymptotically stable if

ℛ𝑒 < 1, and unstable if ℛ𝑒 > 1.

Proof. The Jacobian matrix of the model (3.2) with 𝑆ℎ = 𝑁ℎ − (𝐸ℎ + 𝐼ℎ + 𝑅ℎ)

calculated at the DFE is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝛼ℎ + 𝜇ℎ) 0 0 0 0 𝑚1

𝛼ℎ −𝑛1 0 0 0 0

0 𝜑𝜌 −(𝜇ℎ + 𝜓) 0 0 0

0 −𝑝 0 −𝜇𝑣 0 0

0 𝑝 0 0 −𝑓1 0

0 0 0 0 𝛼𝑣 −𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 𝑚1 = 𝛽𝑣ℎ𝜗, 𝑛1 = (𝜑+ 𝜇ℎ + 𝛿ℎ), 𝑝 =
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

,

𝑓1 = (𝛼𝑣 + 𝜇𝑣).

The third and fourth columns have diagonal entries. Hence, the diagonal entries
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−(𝜇ℎ+𝜓) and −𝜇𝑣 are two eigenvalues of the Jacobian. Therefore, excluding these

columns and the corresponding rows, we solve for the remaining eigenvalues using

the following matrix;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝛼ℎ + 𝜇ℎ) 0 0 𝛽𝑣ℎ𝜗

𝛼ℎ −(𝜑+ 𝜇ℎ + 𝛿ℎ) 0 0

0
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ

(Λℎ + 𝜃)𝜇𝑣
−(𝛼𝑣 + 𝜇𝑣) 0

0 0 𝛼𝑣 −𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These eigenvalues are the solutions of the characteristic equation of the reduced

matrix of dimension four which is given by

(𝑥+ 𝜇𝑣)(𝑥+ 𝛼ℎ + 𝜇ℎ)(𝑥+ 𝜑+ 𝜇ℎ + 𝛿ℎ)(𝑥 + 𝛼𝑣 + 𝜇𝑣)−
𝛽𝑣ℎ𝛽ℎ𝑣𝛼𝑣𝛼ℎ𝜗

2Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

= 0.

(3.24)

For simplicity, let 𝐵0 = 𝜇2
𝑣, 𝐵1 = 𝛼ℎ + 𝜇ℎ, 𝐵2 = 𝛼𝑣 + 𝜇𝑣, 𝐵3 = 𝜑 + 𝜇ℎ + 𝛿ℎ.

This reduces the effective reproduction number to ℛ2
𝑒 =

𝛽𝑣ℎ𝛽ℎ𝑣𝜗
2𝛼𝑣𝛼ℎΛ𝑣𝛼ℎ

(Λℎ + 𝜃)𝐵0𝐵1𝐵2𝐵3

and

equation (3.24) to

𝑥4 + 𝐴3𝑥
3 + 𝐴2𝑥

2 + 𝐴1𝑥+ 𝐴0 = 0, (3.25)

where

𝐴3 = 𝐵1 +𝐵3 + 2𝐵0 + 𝛼𝑣

𝐴2 = (𝐵3 +𝐵1)(2𝐵0 + 𝛼𝑣) +𝐵0𝐵2 +𝐵1𝐵3

𝐴1 = 𝐵0𝐵3𝐵2 +𝐵1𝐵3(2𝐵0 + 𝛼𝑣) +𝐵0𝐵1𝐵2

𝐴0 = 𝐵0𝐵1𝐵2𝐵3 − 𝛼𝑣𝛼ℎ𝜗
2𝛽𝑣ℎ𝛽ℎ𝑣

Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The Routh-Hurwitz conditions [95], which usually have different forms, are the

sufficient and necessary conditions on the coefficients of the polynomial in equation

(3.25). These conditions ensure that all roots of the polynomial given by equation

(3.25) have negative real parts. For this polynomial, the Routh-Hurwitz conditions
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are 𝐴0 > 0, 𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0, 𝐻1 = 𝐴3 > 0,

𝐻2 =

⃒⃒⃒⃒
⃒⃒𝐴3 1

𝐴1 𝐴2

⃒⃒⃒⃒
⃒⃒ > 0,

𝐻3 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝐴3 1 0

𝐴1 𝐴2 𝐴3

0 𝐴0 𝐴1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ > 0,

𝐻4 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝐴3 1 0 0

𝐴1 𝐴2 𝐴3 1

0 𝐴0 𝐴1 𝐴2

0 0 0 𝐴0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
> 0.

Clearly 𝐻4 = 𝐴0𝐻3. Since 𝐵0 > 0, 𝐵1 > 0, 𝐵2 > 0, 𝐵3 > 0, we have 𝐴𝑖 > 0,

𝑖 = 1, 2, 3. Moreover, if ℛ𝑒 < 0, it follows that 𝐴0 > 0. Thus, it is sufficient to prove

that 𝐻2 > 0 and 𝐻3 > 0. Clearly 𝐻3 = 𝐴1(𝐴3𝐴2−𝐴1)−𝐴0𝐴
2
3 and 𝐻2 = 𝐴3𝐴2−𝐴1.

Hence checking the positivity, we have

𝐻2 = 𝐴3𝐴2 − 𝐴1

= 𝐵2
3(𝐵0 +𝐵2 +𝐵1) +𝐵2𝐵3(2𝐵0 +𝐵2 + 2𝐵1)

+𝐵2
0(𝐵3 +𝐵1 +𝐵2) +𝐵2

1(𝐵0 +𝐵2 +𝐵3)

+ 2𝐵0𝐵1(𝐵3 +𝐵2) +𝐵2
2(𝐵1 +𝐵0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

which is positive. We can also see that

𝐻3 = 𝐴1(𝐴3𝐴2 − 𝐴1)− 𝐴0𝐴
2
3

= (𝐵3 +𝐵0)(𝐵0 +𝐵2)(𝐵3 +𝐵2)(𝐵1 +𝐵0)(𝐵3 +𝐵1)

(𝐵1 +𝐵2) + 𝛼ℎ𝜗
2𝛼𝑣𝛽𝑣ℎ𝛽ℎ𝑣

Λ𝑣𝜇ℎ
(Λℎ + 𝜃)𝜇𝑣

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which is clearly a positive quantity. Therefore, all the eigenvalues of the Jacobian

matrix have negative real parts when ℛ𝑒 < 1. However, ℛ𝑒 > 1 implies that 𝐴0 < 0,
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and since all of coefficients (𝐴1, 𝐴2 and 𝐴3) of the polynomial in equation (3.25) are

positive, not all roots of this polynomial can have negative real parts. This means,

when ℛ𝑒 > 1, the DFE is unstable.

Note that the results in Lemma 2 are local, that is we can only conclude that

solutions with fairly small initial size in the invariant set Φ are attracted to the

DFE. It is possible to further reduce the dimension of the Jacobian in the proof of

Lemma 2 by using 𝑆𝑣 = 𝑁𝑣 − (𝐸𝑣 + 𝐼𝑣) and

𝑆ℎ = 𝑁ℎ − (𝐸ℎ + 𝐼ℎ +𝑅ℎ) without any technical difficulty.

The following theorem establishes the global stability of the DFE 𝐸0;

Theorem 1. The DFE 𝐸0 of system of equations (3.2) is globally asymptotically

stable if ℛ𝑒 ≤ 1 and unstable if ℛ𝑒 > 1.

Proof. Let us define the new variables and break the system given by (3.2) into

subsystems. We use notation 𝑋1 = (𝑆ℎ, 𝑅ℎ, 𝑆𝑣) which denotes the numbers of

susceptible and recovered individuals, and susceptible mosquitoes. In addition the

notation 𝑌1 = 𝐸ℎ, 𝐼ℎ, 𝐸𝑣, 𝐼𝑣 denotes the numbers of latent and infectious individuals

and mosquitoes in different compartments. The system can be presented as

𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 𝑌1)

𝑑𝑌1
𝑑𝑡

= 𝐺(𝑋1, 𝑌1)

⎫⎪⎬⎪⎭ where 𝑋1 ∈ R3
+, 𝑌1 ∈ R4

+.

Then the two vector-valued functions are

𝐹 (𝑋1, 𝑌1) =

(︂
Λℎ + (1− 𝜅1)𝜃 + 𝜑(1− 𝜌)𝐼ℎ −

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

− 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ,

𝜑𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ, Λ𝑣 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

− 𝜇ℎ𝑆𝑣

)︂𝑇

𝐺(𝑋1, 𝑌1) =

(︂
𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁ℎ

+ 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ, 𝛼ℎ𝐸ℎ − (𝜑+ 𝜇ℎ + 𝛿ℎ)𝐼ℎ,

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁ℎ

− (𝛼𝑣 + 𝜇𝑣)𝐸𝑣, 𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣

)︂𝑇

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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where 𝑇 denotes the transpose. For simplicity we identify 𝑋1 with (𝑋1, 0) and 𝑌1

with (0, 𝑌1) in R3
+ × R4

+. Hence the reduced system:
𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 0);

𝑑𝑆ℎ
𝑑𝑡

= Λℎ + (1− 𝜅1)𝜃 − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ

𝑑𝑅ℎ

𝑑𝑡
= −(𝜇ℎ + 𝜓)𝑅ℎ

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − 𝜇𝑣𝑆𝑣

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.26)

and 𝑋* = (𝑆**
ℎ , 𝑅

**
ℎ , 𝑆

**
𝑣 ) =

(︂
Λℎ + (1− 𝜅1)𝜃

𝜇ℎ
, 0,

Λ𝑣
𝜇𝑣

)︂
is a global asymptotically

stable equilibrium point for the reduced system
𝑑𝑋1

𝑑𝑡
= 𝐹 (𝑋1, 0). This can easily be

shown by solving the second equation in (3.26) by integrating

𝑑𝑅ℎ

𝑑𝑡
= −(𝜇ℎ + 𝜓)𝑅ℎ

=⇒ 𝑅ℎ(𝑡) = 𝑅ℎ(0)𝑒
−(𝜇ℎ+𝜓)𝑡

⎫⎪⎪⎬⎪⎪⎭ . (3.27)

It approaches zero as 𝑡 −→ ∞. Similarly integrating and simplifying the third

equation in (3.26) gives 𝑆𝑣(𝑡) =
Λ𝑣
𝜇𝑣

+

(︂
𝑆𝑣(0)−

Λ𝑣
𝜇𝑣

)︂
𝑒−𝜇𝑣𝑡 which approaches

Λ𝑣
𝜇𝑣

as 𝑡 −→ ∞. Finally integrating and simplifying the first equation in (3.26) gives

𝑆ℎ =
Λℎ + (1− 𝜅1)𝜃

𝜇ℎ
− 𝑅ℎ(0)𝑒

−(𝜇ℎ+𝜓)𝑡 +

(︂
𝑆ℎ(0) +𝑅ℎ(0)−

Λℎ + (1− 𝜅1)𝜃

𝜇ℎ

)︂
𝑒−𝜇ℎ𝑡

which approaches to
Λℎ + (1− 𝜅1)𝜃

𝜇ℎ
as 𝑡 −→ ∞. These asymptotic dynamics are

independent of initial conditions in Φ. Clearly 𝐺(𝑋1, 𝑌1) satisfies the following two

conditions given as assumptions H3 and H4 in [46] namely;

𝐺(𝑋1, 0) = 0 and 𝐺(𝑋1, 𝑌1) = 𝐴*𝑌1 − �̄�(𝑋1, 𝑌1), �̄�(𝑋1, 𝑌1) ≥ 0 in Φ, where

𝐴* = 𝐷𝑌𝐺(𝑋1, 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝛼ℎ + 𝜇ℎ) 0 0 𝛽𝑣ℎ𝜗

𝛼ℎ −(𝜑+ 𝜇ℎ + 𝛿ℎ) 0 0

0
𝛽ℎ𝑣𝜗Λ𝑣𝜇ℎ

(Λℎ + 𝜃)𝜇𝑣
−(𝛼𝑣 + 𝜇𝑣) 0

0 0 𝛼𝑣 −𝜇𝑣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

�̄�(𝑋1, 𝑌1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽𝑣ℎ𝜗𝐼𝑣(1−
𝑆ℎ
𝑁ℎ

)

0

𝛽ℎ𝑣𝜗𝐼ℎ

(︂
Λ𝑣𝜇ℎ

𝜇𝑣(Λℎ + (1− 𝜅1)𝜃)
− 𝑆𝑣
𝑁ℎ

)︂
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that since the human and the mosquito populations assume a steady-state value

𝑁ℎ =
Λℎ + (1− 𝜅1)𝜃

𝜇ℎ
and 𝑁𝑣 =

Λ𝑣
𝜇𝑣
, then term 𝛽ℎ𝑣𝜗𝐼ℎ

[︂
Λ𝑣𝜇ℎ

𝜇𝑣(Λℎ + (1− 𝜅1)𝜃)
− 𝑆𝑣
𝑁ℎ

]︂
in �̄�(𝑋1, 𝑌1) is nonegative. Moreover by Lemma 2 the DFE is locally asymptotically

stable for ℛ𝑒 < 1.

We have shown that the DFE 𝐸0 is globally asymptotically stable if ℛ𝑒 ≤ 1. This

concludes that the infected mosquitoes and humans eventually vanish and the disease

dies out.

Theorem 2. The malaria model 3.2 has a unique endemic equilibrium in Φ if

ℛ𝑒 > 1.

Proof. The equilibrium equations for 𝑆ℎ, 𝐸ℎ, 𝐼ℎ and 𝑅ℎ, with

𝑆ℎ = 𝑁ℎ − (𝐸ℎ + 𝐼ℎ +𝑅ℎ) on which (from system of equation (3.2))

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

= (𝛼ℎ + 𝜇ℎ)𝐸ℎ − 𝜅1𝜃,

for 𝐼ℎ : 𝐼ℎ =
𝛼ℎ𝐸ℎ

𝜑+ 𝜇ℎ + 𝛿ℎ
and

for 𝑅ℎ : 𝑅ℎ =
𝜑𝜌𝐼ℎ
𝜇ℎ + 𝜓

=
𝜑𝜌𝛼ℎ𝐸ℎ

(𝜇ℎ + 𝜓)(𝜑+ 𝜇ℎ + 𝛿ℎ)
, yield

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

=
𝛽𝑣ℎ𝜗𝐼𝑣
𝑁ℎ

(𝑁ℎ − (𝐸ℎ + 𝐼ℎ +𝑅ℎ)) = (𝛼ℎ + 𝜇ℎ)𝐸ℎ − 𝜅1𝜃.
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Simplifying further we get

𝛽𝑣ℎ𝜗𝐼𝑣
𝑁ℎ

[︂
𝑁ℎ −

[︂
𝐸ℎ +

𝛼ℎ𝐸ℎ
𝜑+ 𝜇ℎ + 𝛿ℎ

+
𝜑𝜌𝛼ℎ𝐸ℎ

(𝜇ℎ + 𝜓)(𝜑+ 𝜇ℎ + 𝛿ℎ)

]︂]︂
+ 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0.

(3.28)

Also, from steady-state equations for 𝑆𝑣, 𝐸𝑣 and 𝐼𝑣, with 𝑆𝑣 = 𝑁𝑣− (𝐸𝑣+ 𝐼𝑣) where

𝐼𝑣 =
𝛼𝑣𝐸𝑣
𝜇𝑣

and
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

= (𝛼𝑣 + 𝜇𝑣)𝐸𝑣 (3.29)

yield

𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

=
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

(𝑁𝑣 − (𝐸𝑣 + 𝐼𝑣)) = (𝛼𝑣 + 𝜇𝑣)𝐸𝑣,

𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

[︂
𝑁𝑣 −

𝜇𝑣 + 𝛼𝑣
𝜇𝑣

𝐸𝑣

]︂
− (𝛼𝑣 + 𝜇𝑣)𝐸𝑣 = 0. (3.30)

But 𝐼ℎ =
𝛼ℎ𝐸ℎ

𝜑+ 𝜇ℎ + 𝛿ℎ
, and substituting in (3.30), we get

𝛽ℎ𝑣𝜗𝛼ℎ𝐸ℎ
𝑁ℎ(𝜑+ 𝜇ℎ + 𝛿ℎ)

[︂
𝑁𝑣 −

𝜇𝑣 + 𝛼𝑣
𝜇𝑣

𝐸𝑣

]︂
− (𝛼𝑣 + 𝜇𝑣)𝐸𝑣 = 0. (3.31)

Using notations 𝐴𝐸 =
𝛽ℎ𝑣𝜗

𝑁ℎ(𝜑+ 𝜇ℎ + 𝛿ℎ)
and 𝐵𝐸 =

𝜇𝑣 + 𝛼𝑣
𝜇𝑣

, the equation 3.31

becomes

𝐴𝐸𝛼ℎ𝐸ℎ(𝑁𝑣 −𝐵𝐸𝐸𝑣)− 𝜇𝑣𝐵𝐸𝐸𝑣 = 0,

𝐸ℎ =
𝜇𝑣𝐵𝐸𝐸𝑣

𝐴𝐸𝛼ℎ(𝑁𝑣 −𝐵𝐸𝐸𝑣)
. (3.32)

The equation (3.28) is transformed by replacing 𝐼𝑣 with its new value (see the first

equation in 3.29) to

𝛽𝑣ℎ𝜗𝛼𝑣𝐸𝑣
𝑁ℎ

(𝑁ℎ − 𝐶𝐸𝐸ℎ) + 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ = 0, where

𝐶𝐸 = 1 +
𝛼ℎ

𝜑+ 𝜇ℎ + 𝛿ℎ

(︂
1 +

𝜑𝜌

𝜇ℎ + 𝜓

)︂
.

(3.33)

We can deduce that if 𝑁𝑣 − 𝐵𝐸𝐸𝑣 = 0, then 𝐸𝑣 + 𝐼𝑣 = 𝑁𝑣 which leads to 𝑆𝑣 = 0

because 𝑆𝑣+𝐸𝑣+ 𝐼𝑣 = 𝑁𝑣. As a results of this, we notice that
𝑑𝑆𝑣
𝑑𝑡

= 0 =⇒ Λ𝑣 = 0,

which means that 𝑁𝑣 = 0. This is true only if 𝐸𝑣 = 𝐼𝑣 = 0, which is not of interest
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to us because there are vectors in the environment. Thus, 𝑆𝑣 > 0 and

𝑁𝑣 > 𝐸𝑣 + 𝐼𝑣 = 𝐵𝐸𝐸𝑣 at equilibrium. Furthermore, as 𝑁𝑣 − 𝐵𝐸𝐸𝑣 > 0 we have

𝐸ℎ > 0 as long as 𝐸𝑣 > 0, which we verify in the next argument. Using the notations

introduced in this proof and equation (3.32), the equation (3.33) becomes

𝛽𝑣ℎ𝜗𝛼𝑣𝐸𝑣
𝑁ℎ

[︂
𝑁ℎ −

𝐶𝐸𝜇𝑣𝐵𝐸𝐸𝑣
𝐴𝐸𝛼ℎ(𝑁𝑣 −𝐵𝐸𝐸𝑣)

]︂
+ 𝜅1𝜃 −

[𝛼ℎ + 𝜇ℎ]𝜇𝑣𝐵𝐸𝐸𝑣
𝐴𝐸𝛼ℎ(𝑁𝑣 −𝐵𝐸𝐸𝑣)

= 0.

A unique nonzero solution of this equation satisfies

𝐸𝑣 =
𝛼ℎ𝜗𝛽𝑣ℎ𝛼𝑣𝑁𝑣𝐴𝐸𝑁ℎ − (𝛼ℎ + 𝜇ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣𝑁ℎ

𝐵𝐸𝛼ℎ𝐴𝐸𝛼𝑣𝑁𝑣𝛽𝑣ℎ𝜗

𝜇𝑣
+ 𝛽𝑣ℎ𝜗𝛼𝑣𝐶𝐸𝐵𝐸

=
(ℛ2

𝑒 − 1)(𝛼ℎ + 𝜇ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇𝑣𝑁ℎ

𝐵𝐸𝛼ℎ𝐴𝐸𝛼𝑣𝑁𝑣𝛽𝑣ℎ𝜗

𝜇𝑣
+ 𝛽𝑣ℎ𝜗𝛼𝑣𝐶𝐸𝐵𝐸

.

Note that 𝐸𝑣 > 0 if and only if

Φ3 =
𝛽ℎ𝑣𝛽𝑣ℎ𝜗

2𝛼ℎ𝛼𝑣Λ𝑣𝜇ℎ
(𝛼ℎ + 𝜇ℎ)(𝜑+ 𝜇ℎ + 𝛿ℎ)(𝛼𝑣 + 𝜇𝑣)𝜇2

𝑣(Λℎ + 𝜃)
> 1, but

ℛ2
𝑒 = Φ3. Thus, a unique endemic equilibrium point is possible only if ℛ𝑒 > 1.

3.2.5 Global stability of the endemic equilibrium

Herein, we investigate the global behavior of the endemic equilibrium of the model

(3.2) for the special case when there is no loss of immunity (𝜓 = 0). It can be shown

that the region

Φ̃ = Φ̃ℎ ∪ Φ̃𝑣 ⊂ R4
+ × R3

+

where

Φ̃ℎ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ) ⊂ Φℎ : 𝑆ℎ ≤ 𝑆*
ℎ}

Φ̃𝑣 = {(𝑆𝑣, 𝐸𝑣, 𝐼𝑣) ⊂ Φ𝑣 : 𝑆𝑣 ≤ 𝑆*
𝑣}

⎫⎪⎬⎪⎭ ,

is positively-invariant for the special case of the system (3.2). It is appropriate to

define

Φ̃ = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣, 𝐸𝑣, 𝐼𝑣) ∈ Φ : 𝐸ℎ = 𝐼ℎ = 𝑅ℎ = 𝐸𝑣 = 𝐼𝑣 = 0}.
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Theorem 3. The unique endemic equilibrium of the malaria model (3.2) is globally

asymptotically stable in Φ̃∖{𝐸ℎ = 𝐼ℎ = 𝑅ℎ = 𝐸𝑣 = 𝐼𝑣 = 0} whenever ℛ̃𝑒|𝜓=0
> 1.

Proof. Let ℛ̃𝑒 > 1 so that the unique endemic equilibrium of the model exists.

Consider the following non-linear Lyapunov function

𝐿𝑓 = 𝑆*
ℎ

(︂
𝑆ℎ
𝑆*
ℎ

− ln
𝑆ℎ
𝑆*
ℎ

)︂
+ 𝐸*

ℎ

(︂
𝐸ℎ
𝐸*
ℎ

− ln
𝐸ℎ
𝐸*
ℎ

)︂
+
𝑎1
𝛼ℎ
𝐼*ℎ

(︂
𝐼ℎ
𝐼*ℎ

− ln
𝐼ℎ
𝐼*ℎ

)︂
+

𝑎2𝑎1
𝛼ℎ𝛾1

𝑅*
ℎ

(︂
𝑅ℎ

𝑅*
ℎ

− ln
𝑅ℎ

𝑅*
ℎ

)︂
+ 𝑆*

𝑣

(︂
𝑆𝑣
𝑆*
𝑣

− ln
𝑆𝑣
𝑆*
𝑣

)︂
+ 𝐸*

𝑣

(︂
𝐸𝑣
𝐸*
𝑣

− ln
𝐸𝑣
𝐸*
𝑣

)︂
+

𝑎4
𝛼𝑣
𝐼*𝑣

(︂
𝐼𝑣
𝐼*𝑣

− ln
𝐼𝑣
𝐼*𝑣

)︂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where 𝑎1 = 𝛼ℎ+𝜇ℎ, 𝑎2 = 𝜑+𝜇ℎ+ 𝛿ℎ, 𝛾1 = 𝜑𝜌, 𝑎3 = 𝜇ℎ+𝜓 and 𝑎4 = 𝛼𝑣 +𝜇𝑣. The

derivative of Lyapunov function is

�̇�𝑓 =

(︂
1− 𝑆*

ℎ

𝑆ℎ

)︂
�̇�ℎ +

(︂
1− 𝐸*

ℎ

𝐸ℎ

)︂
�̇�ℎ +

𝑎1
𝛼ℎ

(︂
1− 𝐼*ℎ

𝐼ℎ

)︂
𝐼ℎ +

𝑎2𝑎1
𝛼ℎ𝛾1

(︂
1− 𝑅*

ℎ

𝑅ℎ

)︂
�̇�ℎ

+

(︂
1− 𝑆*

𝑣

𝑆𝑣

)︂
�̇�𝑣 +

(︂
1− 𝐸*

𝑣

𝐸𝑣

)︂
�̇�𝑣 +

𝑎4
𝛼𝑣

(︂
1− 𝐼*𝑣

𝐼𝑣

)︂
𝐼𝑣

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(3.34)

Substituting the derivatives from (3.2) with 𝜓 = 0 into (3.34) gives

�̇�𝑓 = Λℎ + (1− 𝜅1)𝜃 − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ −
𝑆*
ℎ

𝑆ℎ
(Λℎ + (1− 𝜅1)𝜃 − 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ)

+ 𝜆ℎ𝑆ℎ + 𝜅1𝜃 − 𝑎1𝐸ℎ −
𝐸*
ℎ

𝐸ℎ
(𝜆ℎ𝑆ℎ + 𝜅1𝜃 − 𝑎1𝐸ℎ)

+
𝑎1
𝛼ℎ

(𝛼ℎ𝐸ℎ − 𝑎2𝐼ℎ)−
𝑎1
𝛼ℎ

𝐼*ℎ
𝐼ℎ
(𝛼ℎ𝐸ℎ − 𝑎2𝐼ℎ)

+
𝑎2𝑎1
𝛼ℎ𝛾1

(𝛾1𝐼ℎ − 𝑎3𝑅ℎ)−
𝑎2𝑎1
𝛼ℎ𝛾1

𝑅*
ℎ

𝑅ℎ

(𝛾1𝐼ℎ − 𝑎3𝑅ℎ)

+ Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣 −
𝑆*
𝑣

𝑆𝑣
(Λ𝑣 − 𝜆𝑣𝑆𝑣 − 𝜇𝑣𝑆𝑣)

+ 𝜆𝑣𝑆𝑣 − 𝑎4𝐸𝑣 −
𝐸*
𝑣

𝐸𝑣
(𝜆𝑣𝑆𝑣 − 𝑎4𝐸𝑣)

+
𝑎4
𝛼𝑣

(𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣)−
𝑎4
𝛼𝑣

𝐼*𝑣
𝐼𝑣
(𝛼𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Hence

�̇�𝑓 = 𝜆ℎ𝑆
*
ℎ

(︂
1− 𝑆*

ℎ

𝑆ℎ

)︂
+ 𝜇ℎ𝑆

*
ℎ

(︂
2− 𝑆ℎ

𝑆*
ℎ

− 𝑆*
ℎ

𝑆ℎ

)︂
+ 𝜆ℎ𝑆

*
ℎ −

𝐸*
ℎ

𝐸ℎ
𝜆ℎ𝑆ℎ

+ 𝑎1𝐸
*
ℎ − 𝑎1

𝐼*ℎ
𝐼ℎ
𝐸ℎ +

𝑎2𝑎1
𝛼ℎ

𝐼*ℎ −
𝑎2𝑎1
𝛼ℎ

𝑅*
ℎ

𝑅ℎ

𝐼ℎ +
𝑎3𝑎2𝑎1
𝛼ℎ𝛾1

𝑅ℎ

− 𝑎3𝑎2𝑎1
𝛼ℎ𝛾1

𝑅ℎ + 𝜆𝑣𝑆
*
𝑣

(︂
1− 𝑆*

𝑣

𝑆𝑣

)︂
+ 𝜇𝑣𝑆

*
𝑣

(︂
2− 𝑆𝑣

𝑆*
𝑣

− 𝑆*
𝑣

𝑆𝑣

)︂
+ 𝜆𝑣𝑆

*
𝑣 −

𝐸*
𝑣

𝐸𝑣
𝜆𝑣𝑆𝑣 + 𝑎4𝐸

*
𝑣 − 𝑎4

𝐼*𝑣
𝐼𝑣
𝐸𝑣 +

𝑎4𝜇𝑣
𝛼𝑣

𝐼*𝑣 −
𝑎4𝜇𝑣
𝛼𝑣

𝐼*𝑣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.35)

The Lyapunov equation (3.35) is simplified further to become

�̇�𝑓 = 𝜇ℎ𝑆
*
ℎ

(︂
2− 𝑆*

ℎ

𝑆ℎ
− 𝑆ℎ
𝑆*
ℎ

)︂
+ 𝑎2𝐸

*
ℎ

(︂
5− 𝑆*

ℎ

𝑆ℎ
− 𝐸*

ℎ

𝐸ℎ
− 𝐸ℎ
𝐸*
ℎ

𝐼*ℎ
𝐼ℎ

− 𝐼ℎ
𝐼*ℎ

𝑅*
ℎ

𝑅ℎ

− 𝑅ℎ

𝑅*
ℎ

)︂
+ 𝜇𝑣𝑆

*
𝑣

(︂
2− 𝑆*

𝑣

𝑆𝑣
− 𝑆𝑣
𝑆*
𝑣

)︂
+ 𝑎4𝐸

*
𝑣

(︂
4− 𝑆*

𝑣

𝑆𝑣
− 𝐸*

𝑣

𝐸𝑣
− 𝐸𝑣
𝐸*
𝑣

𝐼*𝑣
𝐼𝑣

− 𝐼𝑣
𝐼*𝑣

)︂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We find that the arithmetic mean exceeds the geometric mean, then it follows that

2− 𝑆*
ℎ

𝑆ℎ
− 𝑆ℎ
𝑆*
ℎ

≤ 0, 2− 𝑆*
𝑣

𝑆𝑣
− 𝑆𝑣
𝑆*
𝑣

≤ 0,

5− 𝑆*
ℎ

𝑆ℎ
− 𝐸*

ℎ

𝐸ℎ
− 𝐸ℎ
𝐸*
ℎ

𝐼*ℎ
𝐼ℎ

− 𝐼ℎ
𝐼*ℎ

𝑅*
ℎ

𝑅ℎ

− 𝑅ℎ

𝑅*
ℎ

≤ 0,

4− 𝑆*
𝑣

𝑆𝑣
− 𝐸*

𝑣

𝐸𝑣
− 𝐸𝑣
𝐸*
𝑣

𝐼*𝑣
𝐼𝑣

− 𝐼𝑣
𝐼*𝑣

≤ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Since the model parameters are assumed to be non-negative, it follows that

�̇�𝑓 ≤ 0 for ℛ̃𝑒|𝜓=0
> 1. Hence, from LaSalles’ Invariance Principle, we conclude

that every solution to the equations in the model (3.2) with initial conditions in

Φ̃∖{𝐸ℎ = 𝐼ℎ = 𝑅ℎ = 𝐸𝑣 = 𝐼𝑣 = 0} approaches the endemic equilibrium point as

𝑡 −→ ∞ whenever ℛ̃𝑒|𝜓=0
> 1.

The malaria model has a locally asymptotically stable DFE whenever ℛ𝑒 < 1, and

a unique endemic equilibrium is possible whenever ℛ𝑒 > 1. In addition, the unique

endemic equilibrium is globally asymptotically stable for the case
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𝜓 = 0 if ℛ𝑒 > 1.

The DFE is achieved if the intervention strategies for malaria (ITNs, IRS and

treatment) are effectively implemented and followed. When the ℛ0 > 1, the health

personnel need to check if the ITNs are still effective, usability of the ITNs and if

every member of the households is sleeping under the ITNs. On the other hand,

the IRS chemical effectiveness must be verified. In addition, the available treatment

should be checked and verified if the procedures of taking the pills are followed. The

monitoring of treatment should be extended to the type of treatment given to the

malaria patients taking into account parasite resistance to some medicines. If all

these are checked and made available to the members of the society, it is likely that

the effective reproduction number ℛ𝑒 < 1, showing the reduction of malaria in the

community.

In chapter 4, we apply the optimal control method using Pontryagin’s Maximum

Principle to determine the necessary conditions for the combined optimal control

of ITNs, IRS and treatment effort which are being practised in Karonga District,

Malawi.
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Chapter 4

Optimal control analysis

In this chapter we investigate the analytical part of the optimal control of the

intervention strategies and its numerical analysis. Optimal control has been applied

to vector-borne disease problems and it has proved to be a good method for

determining how best to prevent and treat a disease. We formulate an optimal

control model for malaria disease in order to determine optimal prevention (ITNs

and IRS) and treatment strategies with minimal implementation cost.

4.1 Analysis of optimal control of the malaria

model with intervention strategies

The force of infection in the human population in the model (3.1) is reduced by a

factor (1− 𝑢1(𝑡)) where 𝑢1(𝑡) represents the fraction of susceptible individuals who

make use of ITNs as a means of minimizing or eliminating mosquito-human contacts.

The control function 𝑢2(𝑡) ∈ [0, 1] represents the control effort on treatment of

infectious individuals. This indeed represents the situation when individuals in the
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community seek treatment after visiting the hospitals or dispensary in their areas.

For the mosquito population, we have a third control variable, 𝑢3(𝑡). The use of

IRS affects the whole mosquito population by increasing its mortality rate by 𝑢3(𝑡).

The control functions are practised on the time interval [0, 𝑇𝑓 ]. In this study we

will use Pontryagin’s Maximum Principle to determine the conditions under which

eradication of the disease can be achieved in finite time. Following the dynamics of

the model system (3.1) with appropriate initial conditions, the bounded Lebesgue

measurable control is used with the objective functional defined as

Γ(𝑢1, 𝑢2, 𝑢3) =

∫︁ 𝑇𝑓

0

(𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁𝑣 +
1

2
(𝐴1𝑢

2
1 + 𝐴2𝑢

2
2 + 𝐴3𝑢

2
3))𝑑𝑡, (4.1)

subject to the differential equations in (3.1), where 𝑇𝑓 is the final time, 𝐶1, 𝐶2, and 𝐶3,

positive weights to balance the factors of the exposed individuals, infected individuals

and total mosquito population respectively, while 𝐴1, 𝐴2 and 𝐴3 are positive weight

constants for use with ITNs, treatment effort and IRS effort respectively which

regularize the optimal control. The total mosquito population (𝑁𝑣 = 𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣)

is part of the objective function because it is affected by the use of IRS. In addition,

𝐸ℎ and 𝐼ℎ are included in the objective function because individuals in these classes

are affected by the use of ITNs and treatment respectively. We choose a quadratic

cost on the controls in line with what is known in the literature on epidemic controls

for example Okosun et al., [91], Lashari and Zaman [56], Thome et al., [118]. The

objective is to minimize the cost functional (4.1) which includes the exposed and

infectious human population and the total mosquito population. In addition, it

includes the cost of implementing personal protection using ITNs, 𝐴1𝑢
2
1, treatment

of infected individuals, 𝐴2𝑢
2
2, and spraying of houses, 𝐴3𝑢

2
3. A linear function has

been chosen for the cost incurred by exposed individuals 𝐶1𝐸ℎ, infected individuals,

𝐶2𝐼ℎ and the mosquito population, 𝐶3𝑁𝑣. A quadratic form is used for the cost on

the controls 𝐴1𝑢
2
1, 𝐴2𝑢

2
2 and 𝐴3𝑢

2
3, such that the terms

1

2
𝐴1𝑢

2
1,

1

2
𝐴2𝑢

2
2 and

1

2
𝐴3𝑢

2
3

describe the cost associated with the ITNs, treatment and mosquito control (IRS)
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respectively. The weights 𝐴1, 𝐴2 and 𝐴3 depend on the relative importance of each

of the control efforts in vindicating the spread of the disease as well as the cost of

implementing each of the control strategies per unit time. The cost of treatment

could be from cost of drugs, surveillance and follow up of drug management and

fighting emergence of drug-resistance strains. The cost of prevention is related to

cost of pesticide sprays, cost of ITNS and educating the community about personal

protection. Our aim is to minimize the number of latent humans 𝐸ℎ(𝑡) and infected

humans 𝐼ℎ(𝑡) while minimizing the cost of control 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡). We select

to model the control efforts via a linear combination of quadratic terms 𝑢2𝑖 (𝑡),

constants 𝐶𝑖 and 𝐴𝑖, where 𝑖 = (1, 2, 3), represent a measure of the relative cost

of the interventions over [0, 𝑇𝑓 ]. We seek an optimal control 𝑢*1(𝑡), 𝑢
*
2(𝑡) and 𝑢

*
3(𝑡)

such that

Γ(𝑢*1, 𝑢
*
2, 𝑢

*
3) = 𝑚𝑖𝑛

(𝑢1,𝑢2,𝑢3)∈Φ2

Γ(𝑢1, 𝑢2, 𝑢3),

where

Φ2 = {𝑢 = (𝑢1, 𝑢2, 𝑢3)|𝑢𝑖(𝑡) is Lebesgue measurable, 0 ≤ 𝑢𝑖(𝑡) ≤ 𝑢𝑖 𝑚𝑎𝑥(𝑡) ≤ 1

for 𝑡 ∈ [0, 𝑇𝑓 ] → [0, 1] , 𝑖 = 1, 2, 3}

is the control set, subject to the system (3.1) and appropriate initial conditions.

Thus 𝑢1, 𝑢2, and 𝑢3 lie between 0 and 1 while 𝑢𝑖 𝑚𝑎𝑥(𝑡) depend on the amount of

resources available to implement each of the control strategies. The basic framework

of an optimal control problem is to prove the existence of the optimal control and

then characterize the optimal control through the optimality system. We develop

the optimal system for which the necessary conditions that an optimal control must

satisfy come from Pontryagin’s Maximum Principle.
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4.2 Existence of an optimal control problem

Pontryagin’s Maximum Principle converts the state system (3.1) and objective

functional (4.1) into a problem of minimizing pointwise the Lagrangian 𝐿, and

Hamiltonian𝐻, with respect to 𝑢1, 𝑢2 and 𝑢3. The Lagrangian of the control problem

which is the Hamiltonian augmented with penalty terms for control constraints

consists of the integrand of the objective functional and is given by

𝐿 = 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁𝑣 +
1

2
(𝐴1𝑢

2
1 + 𝐴2𝑢

2
2 + 𝐴3𝑢

2
3).

We search for the minimum value of the Lagrangian. This can be achieved by

defining the Hamiltonian 𝐻 for the control problem which consists of the integrand

of the objective functional (Lagrangian, 𝐿) and the inner product of the right

hand sides of the state equations and the co-state variables or adjoint variables
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(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7) as

𝐻 = 𝐿+ 𝜆1
𝑑𝑆ℎ
𝑑𝑡

+ 𝜆2
𝑑𝐸ℎ
𝑑𝑡

+ 𝜆3
𝑑𝐼ℎ
𝑑𝑡

+ 𝜆4
𝑑𝑅ℎ

𝑑𝑡
+ 𝜆5

𝑑𝑆𝑣
𝑑𝑡

+ 𝜆6
𝑑𝐸𝑣
𝑑𝑡

+ 𝜆7
𝑑𝐼𝑣
𝑑𝑡

= 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁𝑣 +
1

2
(𝐴1𝑢

2
1 + 𝐴2𝑢

2
2 + 𝐴3𝑢

2
3) + 𝜆1

𝑑𝑆ℎ
𝑑𝑡

+ 𝜆2
𝑑𝐸ℎ
𝑑𝑡

+ 𝜆3
𝑑𝐼ℎ
𝑑𝑡

+ 𝜆4
𝑑𝑅ℎ

𝑑𝑡
+ 𝜆5

𝑑𝑆𝑣
𝑑𝑡

+ 𝜆6
𝑑𝐸𝑣
𝑑𝑡

+ 𝜆7
𝑑𝐼𝑣
𝑑𝑡

= 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁𝑣 +
1

2
(𝐴1𝑢

2
1 + 𝐴2𝑢

2
2 + 𝐴3𝑢

2
3)

+ 𝜆1

[︂
Λℎ + (1− 𝜅1)𝜃 + (𝜑+ 𝜂𝑢2)(1− 𝜌)𝐼ℎ −

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

− 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ]

+ 𝜆2

[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁ℎ

+ 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ

]︂
+ 𝜆3 [𝛼ℎ𝐸ℎ − (𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ]

+ 𝜆4 [(𝜑+ 𝜂𝑢2)𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ]

+ 𝜆5

[︂
Λ𝑣 −

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁ℎ

− (𝜇𝑣 + 𝜏𝑢3)𝑆𝑣

]︂
+ 𝜆6

[︂
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁ℎ

− (𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)𝐸𝑣

]︂
+ 𝜆7 [𝛼𝑣𝐸𝑣 − (𝜇𝑣 + 𝜏𝑢3)𝐼𝑣]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)

The state and the control variables of the system (3.1) are non-negative values. The

control set Φ2 is closed and convex. Corollary 4.1 in Fleming [29] shows that the

existence of optimal control due to the closeness and convexity of the integrand of

the objective cost function Φ2 expressed by (3.1) is a convex function of (𝑢1, 𝑢2, 𝑢3)

on the control set Φ2. Therefore, there exist positive numbers 𝜉1, 𝜉2 and a constant

𝜖 > 1 such that

Γ(𝑢1, 𝑢2, 𝑢3) ≥ 𝜉1(|𝑢1|2 + |𝑢2|2, |𝑢3|2)𝜖/2 − 𝜉2 where 𝜉1 > 0, 𝜉2 > 0, and 𝜖 > 1.
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The state and the control variables of the system (3.1) are non-negative values and

non-empty. The control set Φ2 is closed and convex. The integrand of the objective

cost function Γ expressed by (3.1) is a convex function of (𝑢1, 𝑢2, 𝑢3) on the control

set Φ2. The Lipschitz property of the state system with respect to the state variables

is satisfied since the state solutions are bounded. It can easily be shown that there

exist positive numbers 𝜉1, 𝜉2 and a constant 𝜖 > 1 such that

Γ(𝑢1, 𝑢2, 𝑢3) ≥ 𝜉1(|𝑢1|2 + |𝑢2|2, |𝑢3|2)𝜖/2 − 𝜉2.

This concludes existence of an optimal control since the state variables are bounded.

4.3 Classification of the optimal control problem

We use Pontryagin’s Maximum Principle to develop the necessary conditions for this

optimal control since there exists an optimal control for maximizing the functional

(4.1) subject to the system of equations (3.1). Using the approach similar of

Mwamtobe et. al., [79] that if (𝜒, 𝑢) is an optimal solution of an optimal control

problem, then there exists a non trivial vector function 𝜆* = (𝜆*1, 𝜆
*
2, 𝜆

*
3, · · · , 𝜆*𝑛)

satisfying the following equations;

0 =
𝜕𝐻(𝑡, 𝜒, 𝑢, 𝜆*)

𝜕𝑢

𝜆*′ =
𝜕𝐻(𝑡, 𝜒, 𝑢, 𝜆*)

𝜕𝜒

𝑑𝜒

𝑑𝑡
= −𝜕𝐻(𝑡, 𝜒, 𝑢, 𝜆*)

𝜕𝜆*

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.3)

Hence the necessary conditions of Hamiltonian, 𝐻, and Pontryagin’s Maximum

Principle can be applied in the system of equations (4.2).

Theorem 4. For the optimal control triple (𝑢*1, 𝑢
*
2, 𝑢

*
3) with their optimal state
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solutions (𝑆*
ℎ, 𝐸

*
ℎ, 𝐼

*
ℎ, 𝑅

*
ℎ, 𝑆

*
𝑣 , 𝐸

*
𝑣 , 𝐼

*
𝑣 ) that minimize Γ(𝑢1, 𝑢2, 𝑢3) over Φ2, there exist

adjoint variables (𝜆*1, 𝜆
*
2, 𝜆

*
3, 𝜆

*
4, 𝜆

*
5, 𝜆

*
6, 𝜆

*
7) satisfying

−𝜆*′1 =

[︂
−(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

+
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

− 𝜇ℎ

]︂
𝜆1

+

[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

− (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

]︂
𝜆2 +

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

𝜆5

− 𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

𝜆6

−𝜆*′2 =
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

𝜆1 −
[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ (𝛼ℎ + 𝜇ℎ)

]︂
𝜆2

+ 𝛼ℎ𝜆3 +
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆5 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆6 + 𝐶1

−𝜆*′3 =

[︂
(𝜑+ 𝜂𝑢2)(1− 𝜌) +

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

]︂
𝜆1

− (1− 𝑢1)𝛽𝑣ℎ𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆2 − (𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3

+ (𝜑+ 𝜂𝑢2)𝜌𝜆4 +

[︂
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

− 𝛽ℎ𝑣𝜗𝑆𝑣
𝑁ℎ

]︂
𝜆5

+

[︂
𝛽ℎ𝑣𝜗𝑆𝑣
𝑁ℎ

− 𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

]︂
𝜆6 + 𝐶2

−𝜆*′4 =

[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝜓

]︂
𝜆1 −

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆2

+ (𝜇ℎ + 𝜓)𝜆4 +
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆5 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆6

−𝜆*′5 =

[︂
−𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

− (𝜇𝑣 + 𝜏𝑢3)

]︂
𝜆5 +

𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

𝜆6 + 𝐶3

−𝜆*′6 = −(𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)𝜆6 + 𝛼𝑣𝜆7 + 𝐶3

−𝜆*′7 =
−(1− 𝑢1)𝛽𝑣ℎ𝜗𝑆ℎ

𝑁ℎ

𝜆1 +
(1− 𝑢1)𝛽𝑣ℎ𝜗𝑆ℎ

𝑁ℎ

𝜆2

− (𝜇𝑣 + 𝜏𝑢3)𝜆7 + 𝐶3
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, (4.4)

81



with transversality conditions

𝜆*1(𝑇𝑓 ) = 𝜆*2(𝑇𝑓 ) = 𝜆*3(𝑇𝑓 ) = 𝜆*4(𝑇𝑓 ) = 𝜆*5(𝑇𝑓 ) = 𝜆*6(𝑇𝑓 ) = 𝜆*7(𝑇𝑓 ) = 0. (4.5)

Additionally, the optimal control triple (𝑢*1, 𝑢
*
2, 𝑢

*
3) that minimize Γ over Φ2 satisfy

the optimality condition

𝑢*1 = max

{︂
0,min

(︂
1,
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

)︂}︂

𝑢*2 = max

{︂
0,min

(︂
1,
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

)︂}︂

𝑢*3 = max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.6)

Proof. The adjoint equations can be determined by using the differential equations

governing the adjoint variables. The Hamiltonian function 𝐻, is differentiated with

respect to 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑣, 𝐸𝑣 and 𝐼𝑣 and evaluated at the optimal control. The
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adjoint equations are given by

−𝑑𝜆
*
1

𝑑𝑡
=
𝜕𝐻

𝜕𝑆ℎ
=

[︂
−(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

+
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

− 𝜇1

]︂
𝜆1

+

[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

− (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

]︂
𝜆2 +

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

𝜆5

− 𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

𝜆6

−𝑑𝜆
*
2

𝑑𝑡
=

𝜕𝐻

𝜕𝐸ℎ
=

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆1 −
[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ (𝛼ℎ + 𝜇ℎ)

]︂
𝜆2

+ 𝛼ℎ𝜆3 +
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆5 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆6 + 𝐶1

−𝑑𝜆
*
3

𝑑𝑡
=
𝜕𝐻

𝜕𝐼ℎ
=

[︂
(𝜑+ 𝜂𝑢2)(1− 𝜌) +

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

]︂
𝜆1

− (1− 𝑢1)𝛽𝑣ℎ𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆2 − (𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)𝜆3

+ (𝜑+ 𝜂𝑢2)𝜌𝜆4 +

[︂
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

− 𝛽ℎ𝑣𝜗𝑆𝑣
𝑁ℎ

]︂
𝜆5

+

[︂
𝛽ℎ𝑣𝜗𝑆𝑣
𝑁ℎ

− 𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

]︂
𝜆6 + 𝐶2

−𝑑𝜆
*
4

𝑑𝑡
=

𝜕𝐻

𝜕𝑅ℎ

=

[︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝜓

]︂
𝜆1 −

(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆2

+ (𝜇ℎ + 𝜓)𝜆4 +
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆5 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

𝜆6

−𝑑𝜆
*
5

𝑑𝑡
=
𝜕𝐻

𝜕𝑆𝑣
=

[︂
−(1− 𝑢1)𝛽ℎ𝑣𝜗𝐼ℎ

𝑁ℎ

− (𝜇𝑣 + 𝜏𝑢3)

]︂
𝜆5 +

𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

𝜆6 + 𝐶3

−𝑑𝜆
*
6

𝑑𝑡
=
𝜕𝐻

𝜕𝐸𝑣
= −(𝛼ℎ + 𝜇𝑣 + 𝜏𝑢3)𝜆6 + 𝛼𝑣𝜆7 + 𝐶3

−𝑑𝜆
*
7

𝑑𝑡
=
𝜕𝐻

𝜕𝐼𝑣
=

−(1− 𝑢1)𝛽𝑣ℎ𝜗𝑆ℎ
𝑁ℎ

𝜆1 +
(1− 𝑢1)𝛽𝑣ℎ𝜗𝑆ℎ

𝑁ℎ

𝜆2 − (𝜇𝑣 + 𝜏𝑢3)𝜆7 + 𝐶3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

with the transversality conditions

𝜆*1(𝑇𝑓 ) = 𝜆*2(𝑇𝑓 ) = 𝜆*3(𝑇𝑓 ) = 𝜆*4(𝑇𝑓 ) = 𝜆*5(𝑇𝑓 ) = 𝜆*6(𝑇𝑓 ) = 𝜆*7(𝑇𝑓 ) = 0.

Solving
𝜕𝐻

𝜕𝑢1
= 0,

𝜕𝐻

𝜕𝑢2
= 0 and

𝜕𝐻

𝜕𝑢3
= 0, and evaluating at the optimal control

on the interior of the control set, where 0 < 𝑢𝑖 < 1, for 𝑖 = 1, 2, 3 and letting
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𝑆ℎ = 𝑆*
ℎ, 𝐸ℎ = 𝐸*

ℎ, 𝐼ℎ = 𝐼*ℎ, 𝑅ℎ = 𝑅*
ℎ, 𝑆𝑣 = 𝑆*

𝑣 , 𝐸𝑣 = 𝐸*
𝑣 , 𝐼𝑣 = 𝐼*𝑣 yields

𝜕𝐻

𝜕𝑢1
= 𝐴𝑢*1 + 𝛽𝑣ℎ𝜗𝜆

*
1𝐼

*
𝑣𝑆

*
ℎ − 𝛽𝑣ℎ𝜗𝜆

*
2𝐼

*
𝑣𝑆

*
ℎ = 0

𝜕𝐻

𝜕𝑢2
= 𝐴2𝑢2 + (1− 𝜌)𝜂𝜆*1𝐼

*
ℎ − 𝜂𝜆*3𝐼

*
ℎ + 𝜂𝜌𝜆*4𝐼

*
ℎ = 0

𝜕𝐻

𝜕𝑢3
= 𝐴3𝑢

*
3 − 𝜏𝜆*5𝑆

*
𝑣 − 𝜏𝜆*6𝐸

*
𝑣 − 𝜏𝜆*7𝐼

*
𝑣 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (4.7)

from which we obtain the following optimal controls

𝑢*1 =
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

𝑢*2 =
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

𝑢3 =
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (4.8)

Then the optimal controls are characterized as

𝑢*1 = max

{︂
0,min

(︂
1,
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

)︂}︂
𝑢*2 = max

{︂
0,min

(︂
1,
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

)︂}︂
𝑢*3 = max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We achieve the uniqueness of the optimal control for small 𝑇𝑓 due to the prior

boundedness of the state system, adjoint functions and the resulting Lipschitz

structure of the ordinary differential equations. The uniqueness of the optimal

control triple trails from the uniqueness of the optimal system, which consists of the

state system (3.1), with initial conditions, the co-state (adjoint) system (4.4), with

the terminal conditions (4.5), with characterization of the optimal control conditions

(4.6).

The optimality system is comprised of the state system (3.1), the adjoint system

(4.4), initial conditions at 𝑡 = 0, boundary conditions (4.5), and the characterization
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of the optimal control (4.6). Therefore the state and optimal control can be

calculated using the optimality system. Hence using the fact that the second

derivatives of the Lagrangian with respect to 𝑢1, 𝑢2, and 𝑢3 respectively are

positive indicates that the optimal problem is a minimum at controls 𝑢*1, 𝑢
*
2 and 𝑢*3.

Substituting 𝑢*1, 𝑢
*
2 and 𝑢*3 in the system (3.1), we obtain strategies:

𝑑𝑆*
ℎ

𝑑𝑡
= Λℎ + (1− 𝜅1)𝜃 + (𝜑+ 𝜂𝑢2)(1− 𝜌)𝐼*ℎ

− 𝛽𝑣ℎ𝜗𝐼
*
𝑣𝑆

*
ℎ

(︂
1−max

{︂
0,min

(︂
1,
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

)︂}︂)︂
− 𝜇ℎ𝑆

*
ℎ + 𝜓𝑅*

ℎ

𝑑𝐸*
ℎ

𝑑𝑡
= 𝛽𝑣ℎ𝜗𝐼

*
𝑣𝑆

*
ℎ

(︂
1−max

{︂
0,min

(︂
1,
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

)︂}︂)︂
+ 𝜅1𝜃 − 𝛼ℎ𝐸

*
ℎ − 𝜇ℎ𝐸

*
ℎ

𝑑𝐼*ℎ
𝑑𝑡

= 𝛼ℎ𝐸
*
ℎ −

(︂
𝜑+ 𝜂

(︂
max

{︂
0,min

(︂
1,
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

)︂}︂)︂
+ 𝜇ℎ + 𝛿ℎ) 𝐼

*
ℎ

𝑑𝑅*
ℎ

𝑑𝑡
=

(︂
𝜑+ 𝜂

(︂
max

{︂
0,min

(︂
1,
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

)︂}︂)︂)︂
𝜌𝐼ℎ

− (𝜇ℎ + 𝜓)𝑅ℎ

𝑑𝑆*
𝑣

𝑑𝑡
= Λ𝑣 −

(︂
𝜇𝑣 + 𝜏

(︂
max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂)︂)︂
𝑆*
𝑣

− 𝛽ℎ𝑣𝜗𝐼
*
ℎ𝑆

*
𝑣

𝑑𝐸*
𝑣

𝑑𝑡
= 𝛽ℎ𝑣𝜗𝐼

*
ℎ𝑆

*
𝑣 −

(︂
𝜇𝑣 + 𝜏

(︂
max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂)︂)︂
𝐸*
𝑣 − 𝛼𝑣𝐸

*
𝑣

𝑑𝐼*𝑣
𝑑𝑡

= 𝛼𝑣𝐸𝑣 −
(︂
𝜇𝑣 + 𝜏

(︂
max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂)︂)︂
𝐼*𝑣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4.9)
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with 𝐻* at (𝑡, 𝑆*
ℎ, 𝐸

*
ℎ, 𝐼

*
ℎ, 𝑅

*
ℎ, 𝑢

*
1, 𝑢

*
2, 𝑢

*
3, 𝜆

*
1, 𝜆

*
2, · · · , 𝜆*7) :

𝐻* = 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁𝑣

+
1

2

[︃
𝐴1

(︂
max

{︂
0,min

(︂
1,
𝛽𝑣ℎ𝜗(𝜆

*
2 − 𝜆*1)𝐼

*
𝑣𝑆

*
ℎ

𝐴1

)︂}︂)︂2

+ 𝐴2

(︂
max

{︂
0,min

(︂
1,
𝜂(𝜆*3 + 𝜌(𝜆*1 − 𝜆*4)− 𝜆*1)𝐼

*
ℎ

𝐴2

)︂}︂)︂2

+ 𝐴3

(︂
max

{︂
0,min

(︂
1,
𝜏(𝜆*5𝑆

*
𝑣 + 𝜆*6𝐸

*
𝑣 + 𝜆*7𝐼

*
𝑣 )

𝐴3

)︂}︂)︂2
]︃

+ 𝜆*1
𝑑𝑆*

ℎ

𝑑𝑡
+ 𝜆*2

𝑑𝐸*
ℎ

𝑑𝑡
+ 𝜆*3

𝑑𝐼*ℎ
𝑑𝑡

+ 𝜆*4
𝑑𝑅*

ℎ

𝑑𝑡
+ 𝜆*5

𝑑𝑆*
𝑣

𝑑𝑡

+ 𝜆*6
𝑑𝐸*

𝑣

𝑑𝑡
+ 𝜆*7

𝑑𝐼*𝑣
𝑑𝑡

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.10)

We solve the system (4.9) and (4.10) numerically to determine the optimal control

and the state.

4.4 Numerical results on optimal control analysis

In this section we discuss the method and present the results obtained from solving

the optimality system numerically. The parameter values used in this section are

from Table 6.12. The initial state variables are chosen as 𝑆ℎ(0) = 360,

𝐸ℎ(0) = 30, 𝐼ℎ(0) = 10, 𝑅ℎ(0) = 10, 𝑆𝑣(0) = 960, 𝐸𝑣(0) = 30, and 𝐼𝑣(0) = 40.

The following weight factors 𝐴1 = 20, 𝐴2 = 65, 𝐴3 = 10, 𝐶1 = 100, 𝐶2 = 92, and

𝐶3 = 20 were used for our model numerical simulation purposes on which there

is no significant meaning attached. We balance the host populations and control

functions in the cost function 4.1 by choosing weight constant values because the

magnitudes of the host populations and control functions are on different scales. It

is assumed that the weight factor of 𝐶3 < 𝐶2 < 𝐶1. We assign the weight factor

𝑢1 when using ITNs greater than the weight factors for treatment 𝑢2 and IRS 𝑢3.

This assumptions is based on the cost associated with 𝑢1 which includes buying of
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bed-nets, buying of insecticide chemicals, labor cost on treating bed-nets, educating

the community on the importance of sleeping under the treated mosquito nets and

expenses on the supplying of ITNs, the cost associated with treatment are medical

examinations and antimalarial drugs. The prevention strategy IRS is associated

with cost of insecticide chemical and labor cost on spraying the houses.

4.4.1 Effective reproduction numbers as functions of the

intervention strategies

Here we consider the optimal control values of the three intervention strategies

namely: ITNs, IRS and treatment which are common strategies in Karonga

District, Malawi. The effective reproduction number 3.23 is plotted against the

control functions 4.8 in which unity is regarded as perfect, effective prevention and

treatment while zero is considered as unavailability of prevention and treatment

in a community. The objective here is to determine, using the threshold quantity

ℛ𝑒, (3.23) whether or not treating those in the infected malaria stage (modelled

by 𝑢2) can lead to elimination of the disease in the community. We also determine

the effect of using preventive strategies such as long lasting insecticide treated nets

(LLITNs) (modelled by 𝑢1) and using indoor residual spraying (IRS) (modelled by

𝑢3) on population growth.

lim
𝑢1→1

ℛ𝑒 = 0, (4.11)

lim
𝑢2→1

ℛ𝑒 = 0, (4.12)

lim
𝑢3→1

ℛ𝑒 = 0, (4.13)
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while

lim
𝑢1→1

ℛ𝑒 = 0, (4.14)

lim
𝑢2→1

ℛ𝑒 =

√︃
𝛼ℎ𝛼𝑣𝛽ℎ𝑣𝛽𝑣ℎΛ𝑣𝜇ℎ (1− 𝑢1)𝜗2

(𝛼ℎ + 𝜇ℎ)(𝜃 + Λℎ) (𝜇𝑣 + 𝜏𝑢3) 2(𝛿ℎ + 𝜂 + 𝜇ℎ + 𝜑) (𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)
,

(4.15)

lim
𝑢3→1

ℛ𝑒 =

√︃
𝛼ℎ𝛼𝑣𝛽ℎ𝑣𝛽𝑣ℎΛ𝑣𝜇ℎ (1− 𝑢1)𝜗2

(𝛼ℎ + 𝜇ℎ)(𝜃 + Λℎ)(𝜇𝑣 + 𝜏)2(𝛼𝑣 + 𝜇𝑣 + 𝜏) (𝛿ℎ + 𝜇ℎ + 𝜂𝑢2 + 𝜑)
. (4.16)

Thus, a sufficient effective malaria treatment or preventive program that focuses on

infected individuals (at a high rate, 𝑢2 → 1) or preventive strategy that focuses on

the susceptible (at a rate 𝑢1 → 1), respectively, can lead to effective control. The

profiles of ℛ𝑒 as a function of treatment rate 𝑢2 and interventions 𝑢1 with 𝑢3, are

shown in Figure 4.1. For the set of parameters used in the model simulation, it is

evident that the insecticide treated nets (ITNs) or long lasting insecticide treated

nets (LLTINs) can dramatically reduce ℛ𝑒. As we intensify treatment strategies

(𝑢1 → 1), ℛ𝑒 → 0. Figure 4.2 shows the comparisons of the intervention strategies

strengths.
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Figure 4.1: The malaria reproduction number ℛ𝑒 as a function of intervention. (a) strategy using

LLITNs, (b) using treatment of malaria, (c) using IRS, and (d) all the strategies effectiveness with

𝑖 = (1, 2, 3). Plotted using parameters from Table 6.12.

The effectiveness of the intervention strategies is assessed in relation to the effective

reproduction number. Different combination of the intervention strategies are set
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Figure 4.2: The malaria reproduction number ℛ𝑒 as a function of intervention. (a) LLITNs

vs treatment with 𝑖 = (1, 3), (b) LLTINs vs IRS with 𝑖 = (2, 3), and (c) treatment vs IRS with

(𝑖 = 1, 2). The graphs are drawn using parameters from Table 6.12.
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(see Figure 4.2 (a), (b), (c) and (d)). The combinations indicate that as the

intervention demand increases, there is a decrease of the reproduction number,

evidencing the decrease of malaria disease in the community. The most effective

and needed intervention strategy can easily be identified within combination of the

strategies. The results lead to the best strategy.
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Figure 4.3: The model 3.2 is displaying effects of intervention measures with initial state variables

𝑆ℎ(0) = 12000, 𝐸ℎ(0) = 1050, 𝐼ℎ(0) = 1000, 𝑅ℎ(0) = 800, 𝑆𝑣(0) = 1500, 𝐸𝑣(0) = 1100,

and 𝐼𝑣(0) = 900. The parameters remain the same as those in Table 6.12.

The model with intervention strategies (3.1) is analyzed with availability of one or
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two intervention strategies and setting the other strategies equal to zero. Different

initial values have been used in order to find the effects of intervention strategies in

a large population with long time interval. We see that if the three intervention

strategies are effectively implemented and used, the results show that there is

positive impact compared to having ITNs and IRS (𝑢1 and 𝑢3 respectively) as

the only intervention strategies in the community (see Figure 4.3(a)). The initial

increase in the infected human population in the graph with interventions of ITNs

and IRS, may be due to the fact that some people refused to have their houses

sprayed with insecticide chemicals due to their primitive traditional beliefs. In

addition, as Karonga District is along the shore of Lake Malawi, some members of

the community do not use ITNs owing to negative beliefs on the chemicals used

and also due to hot weather in the districts. On the other hand, the district is

waterlogged; hence this leads to an increase in the breeding of mosquitoes.

Similar results appear in Figure 4.3(b) where the impact of the campaigned

intervention strategies are compared with the use of ITNs (𝑢1) and treatment (𝑢2).

The results show that the concurrent administered intervention strategies lead to a

decrease in the number of infected human population much faster than when ITNs

and treatment are used as the only intervention strategies in the community. A

similar occurrence is observed when IRS (𝑢3) and treatment (𝑢2) are used as the

only means of intervention strategies in the society (see Figure 4.3(c)).

In addition, we also looked at the effects of these intervention measures as a

stand alone approach of preventing or controlling malaria disease in the society.

Figure 4.3(d) depicts the comparison of the effects of each intervention strategy and

the effect of multi-intervention strategies. This figure indicates that if the three

intervention measures are effectively practised, the infected human population is
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much lower compared to a situation where only one intervention strategy is used.

The graph of treatment (𝑢2) practised as the only means of intervention measure,

shows a high number of infected human population owing to a number of reasons.

One of the reasons is that in this situation, the mosquito population is unaffected;

hence the infected mosquitoes will still be available in the community causing more

infections to susceptible humans. Furthermore, most people in the area do not

visit the nearby dispensary or hospital for medication when they observe signs or

symptoms of malaria disease since they need to cover long distances to reach the

hospital. The interview conducted revealed that some individuals opt for using the

medication left by the previous patient or they buy medicines from the shops and use

it before being diagnosed. Hence the reason why treatment needs to be consolidated

with preventive measures such as ITNs and IRS for optimal control.

The epidemiological implication of the above result is that malaria could be

eliminated from the community if prevention and treatment can lead to a situation

where ℛ𝑒 is less than unity. However, other factors need to be considered.

In the chapter 5 we look at cost effective analysis by using optimal control theory

by developing the objective function and the corresponding Hamiltonian equation.
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Chapter 5

Cost effective analysis of malaria

model with intervention strategies

After using the optimal control to investigate the optimality of the intervention

strategies being practised in Karonga District, Malawi, we now carry out an

economic evaluation of the strategies by performing a cost-effectiveness study to

determine the most cost-effective combination of the three intervention strategies

namely ITNs, treatment effort of infected individuals and IRS. Program evaluation

can be effectively assessed by using the economic tools such cost-benefit analysis

(CBA) and cost-effectiveness analysis (CEA). Cost-effectiveness analysis will be

applied in this study as a tool or technique that relates the costs of a program such

as the campaign for prevention and treatment of malaria to its key outcomes (health

effects of an intervention strategies) such as a disease free and beneficial community

or nation. The analysis is undertaken in order to assess the extent to which the

intervention strategies are beneficial and cost effective. We aim at maximizing the

level of benefits (health effects) relative to the level of resources available.
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5.1 Economic assessment

The economic estimation for all three intervention techniques will be evaluated in

which effectiveness and cost-effectiveness of the interventions are investigated in

order to minimize or eradicate malaria disease in the area under study. This can be

achieved by using the following cost objective function

𝐸𝑐(𝑢1, 𝑢2, 𝑢3) = 𝑚𝑖𝑛
(𝑢1,𝑢2,𝑢3)∈Φ2

∫︁ 𝑇𝑓

0

[𝑏1𝑢1(𝑡)(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡)) + 𝑏2𝜂𝑢2(𝑡)𝐼ℎ(𝑡)

+ 𝑏3𝜏𝑢3(𝑡)𝑁𝑣(𝑡)] 𝑒
−𝜙𝑡𝑑𝑡

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

(5.1)

subject to the system of differential equations (3.1), where 𝑏1 denotes the per

capita cost of ITNs 𝑢1 which takes in account surveillance, the administration and

educating the community; 𝑏2 denotes the per capita cost of treating an individual

who has malaria 𝑢2 includes screening patients, administering drug intake and

outpatients’ conditions and patients in hospitals, and 𝑏3 represents the per capita

area cost of IRS effort 𝑢3 which includes administrations and spraying houses.

The compartments of the model which are highly affected by the use of ITNs and

treatment are the susceptible, latent and infected individuals, hence the inclusion

of these in the cost function. Part of objective function uses the sprayed houses

(IRS) which affects the whole mosquito population. The discount rate has been

exponentially considered with a parameter 𝜙. The Lagrangian of the cost objective

function is

𝐿𝑏 = [𝑏1𝑢1(𝑡)𝑆ℎ(𝑡) + 𝑏1𝑢1(𝑡)𝐸ℎ(𝑡) + 𝑏2𝜂𝑢2(𝑡)𝐼ℎ(𝑡) + 𝑏3𝜏𝑢3(𝑡)𝑁𝑣(𝑡)] 𝑒
−𝜙𝑡.

Then the Hamiltonian equation with Lagrangian, state variables and adjoint

variables is

𝐻𝑏 = 𝐿𝑏 + 𝜆*1
𝑑𝑆ℎ
𝑑𝑡

+ 𝜆*2
𝑑𝐸ℎ
𝑑𝑡

+ 𝜆*3
𝑑𝐼ℎ
𝑑𝑡

+ 𝜆*4
𝑑𝑅ℎ

𝑑𝑡
+ 𝜆*5

𝑑𝑆𝑣
𝑑𝑡

+ 𝜆*6
𝑑𝐸𝑣
𝑑𝑡

+ 𝜆*7
𝑑𝐼𝑣
𝑑𝑡
.
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The developed corresponding Hamiltonian equation is as follows;

𝐻𝑏 = [𝑏1𝑢1(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡)) + 𝑏2𝜂𝑢2𝐼ℎ(𝑡) + 𝑏3𝜏𝑢3𝑁𝑣(𝑡)] 𝑒
−𝜙𝑡

+ {Λℎ + (1− 𝜅1)𝜃 + (𝜑+ 𝜂𝑢2)(1− 𝜌)𝐼ℎ(𝑡)

− (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
− 𝜇ℎ𝑆ℎ(𝑡) + 𝜓𝑅ℎ(𝑡)

}︂
𝜆*1

+

{︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
+ 𝜅1𝜃 − (𝛼ℎ + 𝜇ℎ)𝐸ℎ(𝑡)

}︂
𝜆*2

+ {𝛼ℎ𝐸ℎ(𝑡)− (𝜑+ 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)𝐼ℎ(𝑡)}𝜆*3

+ {(𝜑+ 𝜂𝑢2)𝜌𝐼ℎ(𝑡)− (𝜇ℎ + 𝜓)𝑅ℎ(𝑡)}𝜆*4

+

{︂
Λ𝑣 −

𝛽ℎ𝑣𝜗𝐼ℎ(𝑡)𝑆𝑣(𝑡)

𝑁ℎ(𝑡)
− (𝜇𝑣 + 𝜏𝑢3)𝑆𝑣(𝑡)

}︂
𝜆*5

+

{︂
𝛽ℎ𝑣𝜗𝐼ℎ(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
− (𝛼ℎ + 𝜇𝑣 + 𝜏𝑢3)𝐸𝑣(𝑡)

}︂
𝜆*6

+ {𝛼𝑣𝐸𝑣(𝑡)− (𝜇𝑣 + 𝜏𝑢3)𝐼𝑣(𝑡)}𝜆*7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5.2)

where 𝜆*1, 𝜆
*
2, 𝜆

*
3, 𝜆

*
4, 𝜆

*
5, 𝜆

*
6 and 𝜆*7 denote the marginal value linked to their corresponding

classes. The 𝜆*𝑖 where 𝑖 = (1, 2, . . . , 7) represent the changes in the objective value

of an optimal solution of an optimization problem by relaxing the constraint by one

unit [90]. These can be calculated by using Pontryagin’s Maximum Principle as we

did previously and give

𝑑𝜆*1
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑆ℎ
,
𝑑𝜆*2
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐸ℎ
,
𝑑𝜆*3
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐼ℎ
,
𝑑𝜆*4
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑅ℎ

,

𝑑𝜆*5
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑆𝑣
,
𝑑𝜆*6
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐸𝑣
,
𝑑𝜆*7
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐼𝑣
.
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Hence using the Hamiltonian equation (5.2) gives

𝑑𝜆*1
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑆ℎ
= − 𝑏1𝑢1𝑒

−𝜙𝑡

+

(︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

− (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

+ 𝜇ℎ

)︂
𝜆*1

−
(︂
1− 𝑆ℎ

𝑁ℎ

)︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣

𝑁ℎ

𝜆*2 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

(𝜆*5 − 𝜆*6)

𝑑𝜆*2
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐸ℎ
= − 𝑏1𝑢1𝑒

−𝜙𝑡 − (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁2
ℎ

𝜆*1

+

(︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

+ 𝛼ℎ + 𝜇ℎ

)︂
𝜆*2 −

𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

(𝜆*5 − 𝜆*6)

𝑑𝜆*3
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐼ℎ
= −

(︂
(𝜑+ 𝜂𝑢2)(1− 𝜌)− (1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

)︂
𝜆*1

− 𝑏2𝜂𝑢2𝑒
−𝜙𝑡 +

(︂
𝛽ℎ𝑣𝜗𝑆𝑣
𝑁ℎ

− 𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣
𝑁2
ℎ

)︂
(𝜆*5 − 𝜆*6)

𝑑𝜆*4
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑅ℎ

= −
(︂
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

− 𝜓

)︂
𝜆*1 + (𝜇ℎ + 𝜓)𝜆*3

+
(1− 𝑢1)𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ

𝑁2
ℎ

𝜆*2 −
𝛽ℎ𝑣𝜗𝐼ℎ𝑆𝑣

𝑁2
ℎ

(𝜆*5 − 𝜆*6)

𝑑𝜆*5
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝑆𝑣
= − 𝑏3𝜏𝑢3𝑒

−𝜙𝑡 +

(︂
𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

+ 𝜇𝑣 + 𝜏𝑢3

)︂
𝜆*5 −

𝛽ℎ𝑣𝜗𝐼ℎ
𝑁ℎ

𝜆*6

𝑑𝜆*6
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐸𝑣
= − 𝑏3𝜏𝑢3𝑒

−𝜙𝑡 + (𝛼𝑣 + 𝜇𝑣 + 𝜏𝑢3)𝜆
*
6 − 𝛼𝑣𝜆

*
7

𝑑𝜆*7
𝑑𝑡

= −𝜕𝐻𝑏

𝜕𝐼𝑣
= − 𝑏3𝜏𝑢3𝑒

−𝜙𝑡 +
(1− 𝑢1𝛽𝑣ℎ𝜗𝑆ℎ)

𝑁ℎ

(𝜆*1 − 𝜆*2) + (𝜇𝑣 + 𝜏𝑢3)𝜆
*
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Each intervention strategy is assessed by developing the Hamiltonian equation

thereafter the economic tool will be employed.

5.1.1 Economic estimation of ITNs

The prevention parameter for the ITNs is denoted by 𝑢1(𝑡). The Hamiltonian

equation, 𝐻𝑏, is differentiated with respect to 𝑢1 to obtain

𝜕𝐻𝑏

𝜕𝑢1
= 𝑏1𝑒

−𝜙𝑡(𝑆ℎ(𝑡) + 𝐸ℎ(𝑡)) +
𝛽𝑣ℎ𝜗𝐼𝑣(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
(𝜆*1 − 𝜆*2),

in which
𝛽𝑣ℎ𝜗𝐼𝑣(𝑡)𝑆ℎ(𝑡)

𝑁ℎ(𝑡)
(𝜆*1−𝜆*2) is the total marginal benefit due to the use of ITNs

while 𝑏1(𝑆ℎ(𝑡) +𝐸ℎ(𝑡)) is the marginal cost of acquiring the ITNs. The equivalency
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of the marginal cost and marginal benefit leads one to achieve the optimal policy.

Hence;

𝑢1(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 𝑏1𝑒
−𝜙𝑡(𝑆ℎ + 𝐸ℎ) >

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

(𝜆*1 − 𝜆*2),

(0, 1) if 𝑏1𝑒
−𝜙𝑡(𝑆ℎ + 𝐸ℎ) =

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

(𝜆*1 − 𝜆*2),

1 if 𝑏1𝑒
−𝜙𝑡(𝑆ℎ + 𝐸ℎ) <

𝛽𝑣ℎ𝜗𝐼𝑣𝑆ℎ
𝑁ℎ

(𝜆*1 − 𝜆*2).

(5.3)

The third equation of (5.3), shows that if this is achieved then the total marginal

benefit of using ITNs is more than the total marginal cost; hence the gain of

optimal malaria prevention. Then we can conclude that the susceptible and exposed

individuals should best (effectively) use this prevention strategy in order to fight the

epidemic. On the other hand, few susceptible and exposed individuals will use ITNs

if the marginal cost is more than the marginal benefit. The effective use of this

strategy will lead to achieve the optimal policy which says that increasing the use

of ITNs increases the number of susceptible humans and uninfected mosquitoes.

5.1.2 Economic appraisal of treatment effort of infected

individuals

Here the control parameter for treatment of infectious individuals is given by 𝑢2(𝑡).

The Hamiltonian equation, 𝐻𝑏, (5.2) is differentiated with respect to 𝑢2(𝑡), giving;

𝜕𝐻𝑏

𝜕𝑢2
= 𝑏2𝜂𝐼ℎ𝑒

−𝜙𝑡 + 𝜂𝐼ℎ((1− 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4),

in which 𝑏2𝜂𝐼ℎ is the marginal cost and 𝜂𝐼ℎ((1 − 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4) is the marginal

benefit of treating infectious individuals. Hence;

𝑢2(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑏2𝜂𝐼ℎ𝑒

−𝜙𝑡 > 𝜂𝐼ℎ((1− 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4),

(0, 1) if 𝑏2𝜂𝐼ℎ𝑒
−𝜙𝑡 = 𝜂𝐼ℎ((1− 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4),

1 if 𝑏2𝜂𝐼ℎ𝑒
−𝜙𝑡 < 𝜂𝐼ℎ((1− 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4).

(5.4)
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The optimal policy is to guarantee that the marginal costs for being treated is

equal to the marginal benefit for the individuals being treated. Therefore, from

(5.4) all infected individuals must look for full treatment if the marginal benefit,

𝜂𝐼ℎ((1 − 𝜌)𝜆*1 − 𝜆*3 + 𝜌𝜆*4), must be greater than the marginal cost, 𝑏2𝜂𝐼ℎ𝑒
−𝜙𝑡, for

being treated. Otherwise, only few infected individuals will look for treatment.

5.1.3 Economic evaluation of IRS

Insecticide residual spraying (IRS) prevention parameter in the system (3.2) and in

the Hamiltonian equation, 𝐻𝑏, (5.2) is 𝑢3(𝑡). Then differentiating 𝐻𝑏 with respect

to 𝑢3 gives

𝜕𝐻𝑏

𝜕𝑢3
= 𝑏3𝜏(𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣)𝑒

−𝜙𝑡 − 𝜏(𝑆𝑣𝜆
*
5 + 𝐸𝑣𝜆

*
6 + 𝐼ℎ𝜆

*
7),

where 𝑏3𝜏(𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣) is the marginal cost for IRS and 𝜏(𝑆𝑣𝜆
*
5 + 𝐸𝑣𝜆

*
6 + 𝐼ℎ𝜆

*
7) is

the marginal benefit for using the sprayed houses. Furthermore, it can be deduced

that the optimal policy for a sprayed house is given by

𝑢3(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑏3𝜏(𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣) > 𝜏(𝑆𝑣𝜆

*
5 + 𝐸𝑣𝜆

*
6 + 𝐼𝑣𝜆

*
7),

(0, 1) if 𝑏3𝜏(𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣) = 𝜏(𝑆𝑣𝜆
*
5 + 𝐸𝑣𝜆

*
6 + 𝐼𝑣𝜆

*
7),

1 if 𝑏3𝜏(𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣) < 𝜏(𝑆𝑣𝜆
*
5 + 𝐸𝑣𝜆

*
6 + 𝐼𝑣𝜆

*
7).

(5.5)

The spraying of insecticides against mosquitoes is optimal for malaria disease control

if the marginal cost 𝑏3𝜏(𝑆𝑣(𝑡) + 𝐸𝑣(𝑡) + 𝐼𝑣(𝑡)), is less than the marginal benefit,

𝜏(𝑆𝑣(𝑡)𝜆
*
5 + 𝐸𝑣(𝑡)𝜆

*
6 + 𝐼𝑣(𝑡)𝜆

*
7).

In addition, we will quantitatively analyze the marginal benefit and marginal costs

of the three interventions.
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5.1.4 Numerical evaluation of cost effectiveness analysis

Cost-effectiveness is only one of a number of criteria that should be employed

in determining whether intervention strategies are made available. The cost-

effectiveness analysis has been defined by the National Institute for Health and

Clinical Excellence (NICE) [81] as an economic study in which consequences of

different interventions are measured using a single outcome, usually in natural units

such as life-years gained, death avoided, heart attacks avoided or cases detected.

The analysis compares the costs and health effects of an intervention to assess the

extent to which it can be regarded as providing value for money and the choice of

the technique depends on the nature of the benefits specified [81, 94]. This analysis

helps to decide the most cost effective measure to use against malaria (ITNs only,

treatment only, IRS and combination of the strategies).

The appraisal of the difference between the costs and health outcomes of the

considered intervention strategies will help to achieve the purpose of this study.

The health-care effects of the intervention strategies campaigned in the community

are maximized under minimal resources. The intervention strategies in practice are

mutually exclusive interventions, therefore it is essential to use incremental cost-

effectiveness ratios. Mutually exclusive interventions occur where the implementation

of one intervention results in changes to the cost and effects of the other. The

incremental cost-effectiveness ratio (ICER) is calculated in order to achieve our goal

on the comparison of the costs and the effectiveness of the intervention strategies.

The ICER is mostly defined as the additional cost per additional health outcome

(effect). It provides a means of comparing interventions across various disease status

and interventions strategies being implemented in the community or in the nation.

The different intervention measures are compared to determine which provides a
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most cost-effective control to malaria disease. The ICER provides an opportunity to

help contain healthcare costs without adverse health consequences. It also provides

policymakers with information on where resources should be allocated when these

are limited. This technique requires the ranking of the alternative intervention

strategies according to their effectiveness on the basis of securing maximum effect

rather than considering cost. Then one intervention strategy should be compared

with the next less effective alternative intervention strategy when relating two

or more competing intervention strategies. The ICER numerator includes the

differences in the intervention strategy costs, averted disease costs, costs of prevented

cases and averted productivity losses if applicable. The ICER denominator is the

differences in health effects for instance total number of infections avoided, number

of susceptibility cases prevented. Hence mathematically

ICER for Q =
Cost of Intervention Q− Cost of Intervention P

Effect of Intervention Q− Effect of Intervention P
(5.6)

where P and Q are the two intervention strategies being compared in this case, and

the effect or benefits in health status are measured in terms of quality-adjusted life

years (QALYs) gained or lost.

The intervention strategies practised in Karonga District are ranked in increasing

order of effectiveness based on the model simulation results as follows: treatment and

ITNs only (strategy A), treatment and IRS (strategy B), ITNs and IRS (strategy

C) and combination of ITNs, IRS and treatment (strategy D).

The oral interviews conducted in June 2013 with the District Health Office at

Karonga District Hospital in Karonga District revealed that on average the Karonga

District Hospital spends US$0.407 per patient for treating patients who have

malaria. This expenditure is minus laboratory costs, clinical examinations and

household costs but this is the cost for screening patients, administering drug
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intake and patients’ conditions in hospital or as outpatients. In addition the cost

per house spray for IRS is US$1.8722 on average for spraying the houses in the

area. Furthermore the District Health Officer said that the ITNs cost US$0.1896

on average per net. The cost of prevention is associated with costs of pesticide

sprays, educating the public about personal protection and supply of treated bed

nets. The analysis in Table 6.2 in which 500 people were interviewed and the cost of

each intervention given above is used to determine the cost-effectiveness of different

combinations of the three intervention strategies.

Method Percentage interviewed Infection averted

Use of ITNs 90.4% 453.808

IRS 16.5% 82.83

Seek treatment 9.2% 46.184

Table 5.1: Percentage of people interviewed and its corresponding infection averted.

Different combinations of these intervention measures are developed from Table 5.1

in order to determine total infection averted. The combination of treatment and

ITNs gives 499.992; of treatment and IRS gives 129.014; of ITNs and IRS gives

536.638 and the combination of treatment, ITNs and IRS gives 582.882. Then there

is need of determining the total cost of the combined intervention strategies as

follows: the combination of ITNs and treatment gives

ITNs & Treatment =

⎧⎪⎨⎪⎩
453.808× 0.1896 = $86.042

46.184× 0.407 = $18.797

⎫⎪⎬⎪⎭ = $104.8389, (5.7)

the combination of treatment and IRS gives

Treatment & IRS =

⎧⎪⎨⎪⎩
46.184× 0.407 = $18.797

82.83× 1.8731 = $155.1528

⎫⎪⎬⎪⎭ = $173.9498, (5.8)
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the next combination is for ITNs and IRS gives

ITNs & IRS =

⎧⎪⎨⎪⎩
453.808× 0.1896 = $86.042

82.83× 1.8731 = $155.1528

⎫⎪⎬⎪⎭ = $241.1948, (5.9)

and the final combination is for ITNs, treatment and IRS gives

ITNs, Treatment & IRS =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
453.808× 0.1896 = $86.042

46.184× 0.407 = $18.797

82.83× 1.8731 = $155.1528

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= $259.9918,

(5.10)

The total number of infections averted as shown in Table 5.2 is determined

by calculating the difference between the total of infectious humans without

intervention strategies and the total of infectious humans with intervention strategies

(see Table 5.7 and 5.8). Table 5.2 indicates the following values for the ICER;

Strategy Total infection averted Total cost($)

Strategy A 499.992 104.8389

Strategy B 129.014 173.9498

Table 5.2: Cost-effectiveness analysis of approaches A and B

ICER(A) =
104.8389

499.992
= 0.20968

ICER(B) =
173.9498− 104.8389

129.014− 499.992
= −0.18629

⎫⎪⎬⎪⎭ . (5.11)

The results of the comparison between ICER(A) and ICER(B) indicates a cost

saving of 0.18629 for strategy B over strategy A. The negative ICER for strategy B

indicates the strategy A is strongly dominated. This shows that strategy A is more

costly and less effective than strategy B. Hence the strongly dominated strategy A,

is excluded and we now compare strategies B and C using the values in Table 5.8

and 5.9. The table 5.3 leads to the following calculations for the ICER values;
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Strategy Total infection averted Total cost($)

Strategy B 129.014 173.9498

Strategy C 536.638 241.1948

Table 5.3: Cost-effectiveness analysis of approaches B and C

ICER(B) =
173.9498

129.014
= 1.34830

ICER(C) =
241.1948− 173.9498

536.638− 129.014
= 0.16497

⎫⎪⎬⎪⎭ . (5.12)

The comparison between ICER (B) for strategy B and the ICER (C) for strategy

C displays a cost of 0.16497 for strategy C over strategy B. Similarly, the ICER for

strategy C shows that strategy B strongly dominates which explains that strategy B

is more costly and less effective than strategy C. Therefore, strategy B is excluded

and then we compare the strategies C and D using the values in Table 5.9 and 5.10.

Then calculating the ICER values using values in Table 5.4;

Strategy Total infection averted Total cost($)

Strategy C 536.638 241.1948

Strategy D 582.822 259.9918

Table 5.4: Cost-effectiveness analysis of approaches C and D

ICER(C) =
241.1948

536.638
= 0.44946

ICER(D) =
259.9918− 241.1948

582.822− 536.638
= 0.40700

⎫⎪⎬⎪⎭ . (5.13)

The comparison between the ICER(C) and ICER(D) expresses a cost saving of

0.40700 for strategy D over strategy C. This means strategy C is more costly and

less effective than strategy D. Therefore, strategy C which dominates strongly is

excluded.
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The cost-effectiveness calculations are further verified using the computation of

incremental cost-effectiveness ratios in table form in order to have a complete

overview of the outcome. In Table 5.5 the strategy B is associated with a negative

Strategy Cost ($) Strategy Incremental Incremental ICER

[C] effects [E] cost [△𝐶] effect [△𝐸] [△𝐶]/[△𝐸]

A 104.8389 499.9920 104.8389 499.9920 0.20968

B 173.9498 129.0140 69.1109 -370.9780 -0.18629

C 241.1948 536.6380 67.2450 407.6240 0.16497

D 259.9918 582.8220 18.7970 46.1840 0.40700

Table 5.5: Incremental cost-effectiveness ratios of all combined strategies.

ICER. In other words, strategy A is followed by strategy that has increased

effectiveness and reduced cost. Therefore strategy A is excluded.

Having excluded strategy A, ICERs are recalculated for strategies B, C and D

and are shown in Table 5.6. Strategy B is dominated by strategy C as the latter

Strategy Cost ($) Strategy Incremental Incremental ICER

[C] effects [E] cost [△𝐶] effect [△𝐸] [△𝐶]/[△𝐸]

B 173.9498 129.0140 173.9498 129.0140 1.34830

C 241.1948 536.6380 67.2450 407.6240 0.16497

D 259.9918 582.8220 18.7970 46.1840 0.40700

Table 5.6: Exclusion of more costly and less effective intervention strategies.

is more effective and costs less to produce an additional unit of effect ($0.16497

compared with $1.34830). The dominated strategy is then excluded and the ICERs

are recalculated (see Table 5.7).
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Strategy Cost ($) Strategy Incremental Incremental ICER

[C] effects [E] cost [△𝐶] effect [△𝐸] [△𝐶]/[△𝐸]

C 241.1948 536.6380 241.1948 536.6380 0.44946

D 259.9918 582.8220 18.7970 46.1840 0.40700

Table 5.7: Exclusion of dominated intervention strategy.

In Table 5.7 strategy C is dominated by strategy D. Therefore strategy D is more

effective and costs less

In deciding between strategy C and strategy D, the available budget must be

brought to bear. If the available budget is $241.1948, the intervention strategy C

should be made available to the community members, while if the available budget is

$259.9918 the community members should have access to the more effective strategy

D. However, if the budget is $250, then since the cost difference between strategy C

and strategy D is $18.797 and the budget surplus is $8.8052, it is possible to switch

half of the need community members for intervention strategy to strategy D and

still the expenditure remains within the budget.

From the above outcomes, we therefore conclude that strategy D which is the

combination of the three strategies (treatment 𝑢2, ITNs 𝑢1 and IRS 𝑢3,) is the

most cost-effective of all the combined strategies developed in this study for malaria

disease control and prevention. The result confirms the role which the three

intervention strategies are playing in order to eradicate or minimize the spreading of

the malaria disease. The ITNs help to increase the death of the mosquito population,

and to reduce the contact rate between human and mosquito populations; IRS

also increases the mortality rate of mosquito population; and treatment targets the
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infected individuals. The outcome of calculations has also shown that strategy C

(combination of ITNs and IRS) can be the second option to strategy D if treatment

is expensive or not available or the parasite is resistance to available medicine.
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Chapter 6

Numerical simulations and

analysis

A structured questionnaire was developed and administered in Karonga District,

Malawi in May - August, 2013 in order to determine how the intervention strategies

of malaria disease are being practised and their effectiveness. The questionnaire

was used to conduct a directed one to one interview, with the respondents who were

randomly sampled with total size 500, which means that 500 questionnaires were

administered. The enumerators were engaged in four days training on which they

were trained questioning techniques and recording skills before they went to the

field. The questionnaire was thoroughly discussed with the respondents.

We consider statistical results of how intervention strategies are practised. Different

graphs and tables are depicted for all the prevention and treatment strategies.
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6.1 Demographic results

As illustrated in Table 6.1 there were 500 respondents who participated in the study

of which 205 were male and 295 were female.

Characteristic Number of people (𝑁 = 500) Percentage

Sex

Male 205 41

Female 295 59

Marital status

Married 432 86.4

Single 33 6.6

Divorced 35 7

Period of stay (years)

Less than 1 year 6 1.2

1–2 years 20 4

3–4 years 18 3.6

More than 4 years 456 91.2

Table 6.1: Demographic characteristic of the participants.

Table 6.1 shows that about 86.4% of the respondents were married and 6.6% are

single. Table 6.1 shows that approximately 91.2% of the respondents have stayed in

the area of study for more than 4 years.

The respondents were asked about major diseases experienced in their community

and malaria was mentioned by 93.2% of the respondents. Malaria was ranked highest

common diseases that are encountered in the study community of Karonga District,

Malawi. Tuberculosis (TB) is the least mentioned disease (about 8%, see Table 6.2).
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Disease Number of people (𝑁 = 500) Percentage

Malaria Yes 466 93.2

No 34 6.8

Diarrhea Yes 282 56.4

No 218 43.6

Cough Yes 268 53.6

No 232 46.4

HIV/AIDS Yes 200 40

No 300 40

Bilharzia Yes 72 14.4

No 428 85.6

Tuberculosis Yes 40 8

No 460 92

Others (Flue, rushes) Yes 82 16.4

No 418 83.6

Table 6.2: Major diseases commonly experienced in the community.

6.1.1 Knowledge of transmission dynamics of malaria

Knowledge of malaria transmission is a key to malaria prevention [1]. Figure

6.1 shows that 409 respondents (81.8%) stated that malaria transmission occurs

when bitten by an infected mosquito. Contrary to popular belief in developing

countries [41] that someone may be infected with malaria when soaked in water,

most respondents 97.2% answered “no”. Table 6.3 shows the number of individuals

who mentioned that malaria disease and malaria transmission is through a bite from
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Figure 6.1: Knowledge of malaria transmission.

112



an infected mosquito; 79.9% responded “yes” to both malaria being a major disease

and malaria transmission being acquired through a bite from an infected mosquito.

Knowledge of malaria

transmission

No Yes Total

in the community

No Count 11 15 26

Presence of malaria % of Total 2.3% 3.0% 5.3%

Yes Count 73 393 466

% of Total 14.8% 79.9% 94%

Total
Count 84 408 492

% of Total 17.1% 82.9% 100.0%

Table 6.3: Cross tabulation of presence of malaria in the community and Knowledge of malaria

transmission.

6.1.2 Control and prevention measures

According to the Center for Disease Control and Prevention [14], prevention is better

than cure and there are a number of methods which people can use to prevent

malaria. Most of the respondents (90.4%) stated that they use ITN or long lasting

insecticide treated bed-net (LLITN) as a method of preventing occurrence of malaria.

Only 16.5% of the respondents mentioned that their houses are sprayed (IRS) and

9.2% are those who seek treatment when they are sick.
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Figure 6.2: Method used in prevention and treatment of malaria.
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Figure 6.3 illustrates that 93% of the respondents did not mention anything

prioritizing who uses bed nets. Hence we conclude that everyone is prioritized to

use the ITNs. However, 23 respondents (4.6%) mentioned that priority is given to

children while 0.4% gave priority to pregnant women.
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Figure 6.3: Priority on use of ITNs.
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The interviewed members of the community gave different ways as a source of

information on the importance of the IRS (see Figure 6.4). The health surveillance

(HSA) and the village head played a role to educated the community on the

importance of spraying their houses. The implementation of this campaign was

well welcomed by the community just because the members of the community were

involved.

 

Figure 6.4: Source of information about IRS.

Figure 6.5 illustrates that 384 of the respondents who had heard about IRS had their

houses sprayed as a preventive measure against malaria, thus reducing the number

of female Anopheles mosquitoes. Two of the respondents had not heard anything

about IRS but they have had their houses sprayed.
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Figure 6.5: Knowledge about IRS versus house sprayed.

6.1.3 Malaria occurrence: assessing impact of interventions

Despite the use of ITN or LLITN and other preventive measures, cases of malaria

are still evident. Table 6.4 shows that 49.2% of the respondents had experienced a

malaria occurrence even though treated bed nets were in use.

Number of people Percentage (%)

No 231 46.2

Yes 246 49.2

Don’t know 23 4.6

Total 500 100.0

Table 6.4: Use of net and malaria occurrence.
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Furthermore, about 39.0% of malaria cases occur once in every four months as shown

in Table 6.5.

Number of people Percentage (%)

Every month 55 22.4

Once in two months 46 18.7

Once in three months 49 19.9

Once in four months 96 39.0

Total 246 100.0

Table 6.5: Malaria occurence frequency despite use of net.

From Table 6.6, there are about 1% cases of malaria occurrences and about 2.2%

respondents had not experienced any malaria cases after spraying their houses with

IRS.

Number of people Percentage (%)

No 11 2.2

Yes 5 1.0

No response 484 96.8

Total 500 100.0

Table 6.6: Malaria occurance after spraying and without using net.

Some of the respondents used nets as well as sprayed their houses. Table 6.7 shows

that 35.6% of the respondents had experienced malaria occurrence after their houses

were sprayed and also used bed nets.
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Number of people Percentage (%)

No 195 39.0

Yes 178 35.6

No response 127 25.4

Total 500 100.0

Table 6.7: Malaria occurrence after spraying and using net.

From the respondents who had been using ITNs or LLITNs, 44.9% did not have any

malaria occurrence (see Table 6.8). However about 45.9% have had an occurrence

of malaria despite the use of bed nets (see Table 6.8).

Use of net and malaria

occurrence

No Yes Total

-use of ITN or LLITN

No Count 17 27 44

Method of preventing % of Total 3.6% 5.7% 9.2%

Yes Count 214 219 433

% of Total 44.9% 45.9% 90.8%

Total
Count 231 246 477

% of Total 48.4% 51.6% 100.0%

Table 6.8: Method of preventing malaria - use of ITN or LLITN (Use of net and malaria

occurrence cross tabulation).

119



A Chi-Square test of independence was conducted with a Chi-Square value of 1.454

since the cross tabulation is a two by two table. The assumption of no cells having

an expected value less than 5 was not violated and hence the use of Chi-Square

test. Table 6.9 shows that a calculated value of 1.454 was obtained. The level of

significance used for the Chi-Square test was 0.05 which was compared to a p-value

of 0.228. Since 0.228 > 0.05, the null hypothesis was rejected hence there was an

association between malaria occurrence and preventive methods (use of ITNs or

LLITNs) and their proportions are not significantly different.

Value df Asymp. sig. (2-sided)

Pearson Chi-Square 1.861𝑎 1 0.173

Continuity Correction𝑏 1.454 1 0.228

Table 6.9: Chi-Square of use of ITN or LLITN and use of net and malaria occurrence where 𝑎

indicates the number of cells with expected count less than 5 while 𝑏 shows the Yates continuity

correction which is calculated for 2 by 2 table.

The relationship of indoor residual spraying (IRS) against the occurrence of malaria

after the house was sprayed and use of bed nets was examined. From Table 6.10 the

respondents who had not had their houses sprayed, 42.5% did not have an occurrence

of malaria, while for those respondents who had had their houses sprayed, 38.4%

had an occurrence of malaria.
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Malaria occurrence after

spraying and using net

No Yes Total

-house spray (IRS)

No Count 158 143 301

Method of preventing % of Total 42.5% 38.4% 80.9%

Yes Count 36 35 71

% of Total 9.7% 9.4% 19.1%

Total
Count 194 178 372

% of Total 52.2% 47.8% 100.0%

Table 6.10: Method of preventing malaria-house sprayed (IRS): (Malaria occurrence after

spraying and using net cross tabulation).

Value df Asymp. Sig. (2-sided)

Pearson Chi-Square 0.074𝑎 1 0.786

Continuity Correction𝑏 0.019 1 0.889

Table 6.11: House sprayed (IRS): Malaria occurrence after spraying and using net where 𝑎

indicates the number of cells with expected count less than 5 while 𝑏 shows the Yates continuity

correction which is calculated for 2 by 2 table.

A Chi-Square test of independence was conducted with a Chi-Square value of 0.019.

The assumption of no cells having an expected value less than 5 was not violated

hence the use of Chi-Square test. The level of significance used for the Chi-Square

test was 0.05 which was compared to a p-value of 0.889. Table 6.11 shows that the

p-value of 0.889 > 0.05, which means there was an association between preventive

method (IRS) and malaria occurrence after spraying and using ITNs. However

there were no significant differences in proportions between preventive methods and

malaria occurrence after spraying.
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6.2 Demographic findings summary

Malaria is a disease that causes morbidity and claims many lives in a year, more

especially in the sub Saharan Africa region [126]. This is confirmed by the outcome

of this study where about 93% of the respondents in Karonga district, Malawi stated

that malaria is a major disease in their community. According to Center for Disease

Control and Prevention [14], malaria has forced a change in treatment owing to

resistance to previously prescribed medication.

Malaria transmission is assumed to occur by means of a bite of an infected female

Anopheles mosquito. Ninety three respondents knew how malaria is transmitted.

However 409 respondents out of 500 were able to state that the transmission of

malaria is caused through the bite of infected mosquitoes. Contrary to old beliefs

that one is infected with malaria when soaked in rain water, 486 respondents

mentioned this as a mode of malaria transmission.

Malaria prevention is a key to reducing morbidity and deaths [44]. Knowledge

of the use of treated bed nets was mentioned by 454 respondents in Karonga district

as a preventive measure of the occurrence of malaria. Other respondents (418) also

mentioned spraying their homes (IRS) as another means of getting rid of mosquitoes.

However preventive measures like getting rid of the breeding sources of malaria were

not mentioned by any of the respondents. This is in line with the heavy campaigns

done by the government of Malawi against use of such means of intervention practices

due to biological and environmental issues.

Despite knowledge of malaria transmission and prevention, malaria cases still occur

[64]. About 50% of the respondents who used ITNs mentioned that malaria still
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occurred and they still had malaria cases in their households. This is probably

because bed nets are only used when going to bed and hence the vulnerability.

Furthermore the proportion of those respondents who used ITNs or LLITNs and

suffered from malaria was not significantly different from those who did not use ITN

or LLITNs but suffer from malaria (𝜒2 = 1.454, calculated value = 0.228, and

level of significance = 0.05). Of the respondents who had had their houses sprayed

(about 3.2%), 1% experienced an occurrence of malaria. Those respondents who

had their houses sprayed and suffered from malaria even though they had used ITNs

or LLITNs had no significant difference with those respondents who had had their

houses sprayed and had not suffered from malaria even though they had used ITNs

or LLITNs (𝜒2 = 0.019, calculated value = 0.889, level of significance = 0.05).

6.3 Numerical results

The numerical simulations and analysis were carried out using a fourth order Runge-

Kutta scheme in Matlab. Our aim was to determine and verify the analytic results

and the stability of the model system (3.1). Some of the parameter values were

calculated from the data collected in Karonga District, Malawi between the months

of January to September, 2013. The other parameter values were obtained from the

National Statistical Office (NSO) in Zomba, Malawi, some have been assumed, and

very few have been taken from the literature (see Table 6.12). The assumed model

parameters are considered based on malaria disease. The Government of Malawi

has organized a number of intervention strategies in order to fight malaria in the

country through the National Malaria Control Program (NMCP) [82].
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6.3.1 Calculations and estimation of parameters

The simulations of the malaria model incorporate the average values of parameters

such as incubation period, infection rate, length of infection period in host and

mosquito populations, natural death rate, recovery rate, biting rate and contact

rate between the host and mosquito populations. Table 6.12 provides a summary of

the estimated values of all parameters. The parameters are explained and described

as given by World Health Organization and Center for Disease and Prevention.

∙ Most malaria parasites are not highly fatal therefore we keep the disease

induced death rate 𝛿ℎ small.

∙ The duration of a mosquito’s stay in the community is 1/𝜇𝑣 until it dies or

migrates elsewhere. Hence the life expectancy of an adult mosquito 1/𝜇𝑣 is

estimated based on the range 15 to 20 days.

∙ For humans, the natural death rate is estimated based on life of 60 years in

Malawi.

∙ Humans become infectious 10 to 30 days after being bitten by female infectious

anopheles mosquitoes and the average period is 20 days. [15]. Therefore the

incubation period is approximated in the range 0.05479 ≤ 𝛼ℎ ≤ 0.08219.

∙ The recovered individuals can become susceptible within 1 to 20 days after

treatment. Therefore, we assume that the recovered individuals lose temporary

immunity at a value ranging between 1/365 and 1/(20× 365).

∙ Malaria parasite takes 10 to 26 days to develop in the female Anopheles

mosquito’s salivary gland after a blood meal from infectious individuals [14].

The progression rate value 𝛼𝑣 from latent mosquitoes to infectious mosquitoes

ranges from 1/26 to 1/10.
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6.3.2 Sensitivity analysis and model simulation

Simulations are carried out to monitor the dynamics of the full malaria model for

various values of the associated reproduction threshold. In an attempt to reduce

human mortality and morbidity due to malaria, we need to know the relative

importance of the different factors responsible for its transmission and prevalence.

Initial disease transmission is directly related toℛ𝑒, and disease prevalence is directly

related to the endemic equilibrium. We also compute sensitivity indices of the

reproduction number which enable us to single out parameters that have a high

impact on ℛ𝑒 and which are used to enhance the intervention strategies. We assume

that the time unit for parameters with small initial values of state variables used in

the analysis is days.

Parameter Value Source Parameter Value Source

𝜇ℎ 1/(58× 365) [83] Λℎ 60 Assumed

𝜇𝑣 0.1429 [62] Λ𝑣 1000 [9]

𝛼ℎ 1/17 [9] 𝜑 0.005 Assumed

𝛼𝑣 1/18 [9] 𝜂 0.4 Assumed

𝛽ℎ𝑣 0.09 [9] 𝛿ℎ 0.05 [83]

𝛽𝑣ℎ 0.8333 [73] 𝜏 0.01 Assumed

𝜗 0.5 – 0.6502 [18] 𝜃 0.3 Assumed

𝜅1 0.003 Assumed 𝜌 0.035 Assumed

𝜓 1/365 [82]

Table 6.12: Values and ranges for parameters for the full malaria model.

In addition the units for parameters values for analysis of model with higher initials

values are years and estimated as follows, Λ𝑣 = 1000 year−1, Λℎ = 60 year−1,
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𝜇𝑣 = 17.5 year−1, 𝜇ℎ = 0.01667 year−1, 𝜗 = 209.9115 year−1, 𝜑 = 1.825 year−1,

𝛼𝑣 = 20.27778 year−1 and 𝛼ℎ = 21.47056 year−1.

6.3.3 Sensitive indices of ℛ𝑒

The sensitivity indices allow us to measure the relative change in a state variable

when a parameter changes. When the state variable is a differentiable function of a

certain parameter, the sensitivity index may be defined using partial derivatives.

Definition 6.1. The normalized forward sensitivity index of a variable 𝜓 that

depends differentiably on a parameter 𝑝 is defined as:

ϒ𝜓
𝑝 =

𝜕𝜓

𝜕𝑝
.
𝑝

𝜓
(6.1)

Since we have an explicit formula for ℛ𝑒, we derive an analytical expression for the

sensitivity of ℛ𝑒, ϒ
𝜓
𝑝𝑖

= 𝜕𝜓/𝜕𝑝𝑖 × 𝑝𝑖/𝜓, to each of the different parameters. For

instance, the sensitivity of ℛ𝑀 with respect to 𝛽ℎ𝑣 and 𝜑, respectively, is

ϒℛ𝑒
𝛽ℎ𝑣

=
𝜕ℛ𝑒

𝜕𝛽ℎ𝑣
.
𝛽ℎ𝑣
ℛ𝑒

=
1

2
, (6.2)

ϒℛ𝑒
𝜑 =

𝜕ℛ𝑒

𝜕𝜑
.
𝜑

ℛ𝑒

= − 𝜑

2 (𝛿ℎ + 𝜇ℎ + 𝜂𝑢2 + 𝜑)
. (6.3)

Note that the sensitivity with respect to 𝛽ℎ𝑣 does not depend on any parameter

values. Similarly, the sensitivity values with respect to 𝛽𝑣ℎ, 𝜗 and Λ𝑣 do not depend

on any parameter.

Most of the expressions for the sensitivity indices are complex with little obvious

structure. We therefore evaluate the sensitivity indices at the parameter values given
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in Table 6.12. Worth noting is the fact that the particular values of the sensitivity

indices of the various reproductive numbers to different parameters depend on the

parameter values chosen and on the assumptions upon which the model is based.

The resulting sensitivity indices of ℛ𝑒 to the different parameters in the model are

shown in Table 6.13.

The most sensitive parameter to ℛ𝑒 is the mosquito’s natural death rate,

𝜇𝑣 (ϒℛ𝑒
𝜇𝑣 = −1.35959). This is followed by the mosquito per capita biting rate,

𝜗, (ϒℛ𝑒
𝜗 = 1). Further, this is followed by the transmission probability per bite

from infectious human to susceptible mosquito, 𝛽ℎ𝑣, the transmission probability

of infection to humans per bite, 𝛽𝑣ℎ, and the recruitment rate of mosquitoes,

Λ𝑣. Other key parameters include the recruitment rate of individuals, Λℎ. With

ϒℛ𝑒
𝛼ℎ

= 0.0003398, the progression rate of individuals from the exposed to infectious

malaria state, 𝛼ℎ, is the least sensitive. We have that ϒℛ𝑒
𝜗 = 1, then decreasing

(or increasing) 𝜗 by 10% decreases (or increases) ℛ𝑒 by 10%. Similarly, as

ϒℛ𝑒
𝜇ℎ

= 0.499531, increasing (or decreasing) 𝜇ℎ by 10% increases (or decreases) ℛ𝑀

by 4.99%.

For some parameters, ϒℛ𝑒 depends on the human and mosquito demographic

parameters. For instance, ϒℛ𝑒
𝜇𝑣 depends on 𝛼ℎ, 𝜏 , 𝛿ℎ and 𝜑. Hence, changing the

equilibrium sizes would affect the sensitivity indices for the human and mosquito

biting rates. Therefore, we would need a thorough knowledge of the demographic

parameters to estimate their importance. However, for some parameters such as

𝛽ℎ𝑣, 𝛽𝑣ℎ, 𝜗 and Λ𝑣, ϒ
ℛ𝑀 does not depend on other parameter values. Reducing any

of these parameters would have a huge effect on disease transmission regardless of

other parameters.

For most of the parameters, the signs of the sensitivity indices of ℛ𝑒 agree with
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intuitive expectations. For instance, for the mosquito recruitment rate Λ𝑣, the

malaria reproduction number ℛ𝑒 increases as Λ𝑣 increases. The understanding is,

as Λ𝑣 increases and the number of mosquitoes increases, the death rate also increases

because the environment can only support a certain number of mosquitoes. Further,

when the mosquito recruitment rate, Λ𝑣, is equal to the death rate 𝜇𝑣, the mosquito

population is at equilibrium. Thus, at equilibrium the recruitment rate, Λ𝑣, is also

the per capita death rate. If 1/Λ𝑣 is the life span of the mosquitoes, then increasing

Λ𝑣 reduces the life span. Reducing the life span of the vector population reduces ℛ𝑒

as more infected mosquitoes die before they become infectious.

Effective reproduction number ℛ𝑒

Parameter Sensitivity Indices 𝑆𝐼 Parameter Sensitivity Indices 𝑆𝐼

𝜇ℎ 0.499531 Λℎ -0.498504

𝜇𝑣 -1.53959 Λ𝑣 0.5

𝛼ℎ 0.000339769 𝜑 -0.0161249

𝛼𝑣 0.360065 𝜂 -0.322497

𝛽ℎ𝑣 0.5 𝛿ℎ -0.161249

𝛽𝑣ℎ 0.5 𝜏 -0.000475714

𝜗 1 𝜃 -0.00149551

Table 6.13: Sensitivity indices (𝑆𝐼) of ℛ𝑒 to parameters for the malaria model, evaluated at the

parameter values given in Table 6.12.

6.3.4 Model simulation

The autonomous malaria model 3.2 was simulated. This was done with the absence

of any intervention strategies. Thereafter, the simulation of the optimal malaria
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model with intervention strategies was carried out.

Karonga District is the busy district harboring people who come to work for uranium

and coal mines. The district is also a precious Kilombero rice growing district and

situated along the lake-shore area. Karonga District is flat, prone to flooding and

it is highly populated. The district has many mosquitoes due to good breeding

sites caused by rice schemes and flooding. Hence it is a malaria endemic area.

Therefore, the following estimated initial conditions for the state variables were

used: 𝑆ℎ0 = 12000, 𝐸ℎ0 = 1050, 𝐼ℎ0 = 1000, 𝑅ℎ0 = 800, 𝑆𝑣0 = 1500, 𝐸𝑣0 = 1100,

and 𝐼𝑣0 = 9000. These values are an average of estimated values of the individuals

who participated in the malaria survey in Karonga District, Malawi.

6.3.5 Dynamics of malaria model without intervention

measures

The analysis of the model without intervention strategies was carried out in order

to determine the dynamics of the disease in the population. The simulation was

generated in a four year time frame since the first campaign of malaria intervention

strategies in Karonga District was performed in the year 2010. The susceptible

human population is decreasing exponentially (see Figure 6.6 (a)) showing that most

susceptible humans are exposed to the disease due to unavailability of intervention

strategies. This has led to an exponential increase in the exposed human population

(Figure 6.6 (b)) and the infected population (Figure 6.6 (c)) with ℛ0 = 1.8894.

The infected human population increases due to an increase in the exposure of

susceptible individuals to Plasmodium falciparum. This means that Plasmodium

falciparum will continue to multiply in the human and mosquito populations since

there are no intervention strategies to reduce or eradicate the disease. The outcome
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Figure 6.6: Shows the dynamics of (a) susceptible humans, (b) exposed humans, (c) infected

humans and (d) recovered humans in the model without intervention strategies, with time. The

parameter values are those in Table 6.12.
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of this analysis supports Lemma 2 that the disease is endemic when ℛ0 > 1. The

recovered individual population (Figure 6.6(d)) decreases exponentially due to the

steady increase in the infected human population. Figure 6.6(d) at its initial stage

shows some individuals recovering, which might be due to natural immunity. Hence

there is a need for intervention strategies in order to reduce or eradicate this malaria

disease epidemic.
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6.3.6 Prevalence in the malaria model without intervention

strategies

Prevalence is defined as the ratio of the number of cases of the disease in a population

to the total number of individuals in population at a given time.
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Figure 6.7: Prevalence of infection in humans as a function of time in years with two different

levels of force of infection due to different values of biting probability rate and other parameter

values are in Table 6.12.

The disease prevalence of infection in Figure 6.7 shows a steady increase during the

first days of infection due to a high number of cases of individuals with Plasmodium

falciparum. The graph drops asymptotically due to a reduced number of susceptible

human population and thereafter the prevalence becomes constant. This might be

due to increased immunity in some individuals as they are repeatedly exposed to

Plasmodium. In addition, the campaigned intervention strategies have effects on the

132



transmission of the parasite. Interestingly, the graph drops when the probability of

biting rate is low, (𝜗 = 0.5).

Some numerical simulations of the full model are carried out to illustrate some of

the analytical results. Table 6.12 gives the parameter values used in the simulations,

some of which were obtained from the literature while others were assumed (within

realistic range) for the purpose of simulations. Some of the parameters were

introduced for the first time to mosquito population. For instance, the effective

use of LLITNs helps to increase the mortality of mosquitoes and this is ignored

in most models. These parameter values were assumed in accordance with their

intuitive functions. For example, the mosquitoes’ death rate due to use of IRS is

assumed to be 𝜏 = 0.01. The idea is that some but not all of the mosquitoes that

come into contact with the IRS fumes die. There are some mosquitoes that are

resistant/immune to such sprays or just that individuals are using expired sprays.

Malaria thrives in conditions of poverty and worsens poverty. With malaria being a

disease of poverty, a higher value of 𝜏 would mean that people can afford effective

and sophisticated IRS.

The baseline control parameter values chosen for the simulations in Figure 6.8 are

𝑢1 = 0.5, 𝑢2 = 0.5 and 𝑢3 = 0.5. The values of 𝑢𝑖 chosen above have no significant

meanings but chosen merely for simulation purposes. Different values of 𝑢𝑖 will result

in different equilibrium rates. Figure 6.8 shows the dynamics of human and mosquito

populations illustrating the effects of intervention strategies on the whole population.

The susceptible individuals increase with time due to positive impact of LLITNs,

IRS and treatment (see Figure 6.8(a)). At the same time Figure 6.8(d) shows the

decrease of the exposed and infected mosquito population, hence evidencing the

reduction of Plasmodium in the population. The analysis of Figure 6.8 is different

from other figures on the initial state variables with the idea of seeing the impact of
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Figure 6.8: Simulations of the model (3.1) in years with parameter values from Table 6.12 and

initial state variables 𝑆ℎ(0) = 360, 𝐸ℎ(0) = 30, 𝐼ℎ(0) = 10, 𝑅ℎ(0) = 10, 𝑆𝑣(0) = 960, 𝐸𝑣(0) =

30, 𝐼𝑣(0) = 40. (a) shows the susceptible individuals evolution over time, (b) shows the plots of the

susceptible and infected human population over time, (c) shows the susceptible mosquitoes, and

(d) shows the evolution of the infected and susceptible vector population over time.
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having different initial values.

6.3.7 Dynamics of malaria model with intervention measures

Simulations were carried out in order to determine the impact of the intervention

strategies practised in Karonga District, Malawi and to investigate how parameter

values affect the dynamics of human population state variables over time. The

analysis of the sub-model of malaria and treated infected individuals, malaria and

individuals using ITNs, malaria and individuals living in IRS was performed. We

also carried out simulation of the optimal control malaria model with all the three

intervention strategies. With the introduction of better treatment to malaria in the
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Figure 6.9: Shows the changes in the (a) exposed and (b) infected individuals’ state variables of

the malaria model with treatment as the only intervention strategies, with time, where 𝑢1 = 𝑢3 = 0

and parameter values are from Table 6.12.

area, the number of the exposed individuals dropped exponentially and then picked
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up again with a sharp gradient. This might be due to availability of Plasmodium

falciparum in the female Anopheles mosquitoes and the people who do not seek

treatment. In addition, the parasite may be resistance to medication being given to

patients. The targeted group with treatment are people who have shown signs of

malaria disease but nothing is done in this case to the mosquito population which

is a carrier of this parasite. Hence the recurrence of the disease in the society as

shown in Figure 6.9(b). Therefore prevention strategies are needed which target

the mosquito population or which can reduce contact between the human and

mosquito populations. Here we assume the situation whereby IRS is the only means
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Figure 6.10: Represents the phase plane of the exposed humans and infected mosquitoes with

the use of IRS as the only means of intervention strategy for which 𝑢1 = 𝑢2 = 0. The parameter

values are from Table 6.12.

of intervention strategy practised in the area. Figure 6.10(a) shows a decrease in

exposure to the disease by exposed individuals. Thereafter, the graph shows an

increase of the exposed individual to the disease. This might be due to reduction of
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effectiveness of the insecticide chemical sprayed with time. The additional reason

might be due to unavailability of the ITNs which reduces contact between the two

population. The effectiveness of the intervention is indicated by the asymptotically

dropping number of exposed individuals (see Figure 6.10(a)). The number of infected

mosquito population decreases exponentially due to IRS intervention strategy which

aims at eradicating those mosquitoes which land on the walls of the house (see Figure

6.10(b)). This prevention strategy to be effective needs to be accompanied by other

intervention strategies, taking into account of resistance to insecticides by mosquito

population, some mosquitoes might find its way to individuals without landing on

the walls of the house, and the effectiveness period of the insecticide sprayed. With
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Figure 6.11: Indicates the dynamics of the exposed and infected individuals using ITNs as

malaria prevention strategy while 𝑢2 = 𝑢3 = 0. The parameter values are in Table 6.12.

the use of ITNs as the only intervention in the community, Figure 6.11(a) shows

a decrease to exposure to the disease or Plasmodium falciparum to a certain level

without reaching zero. The contact between the ITNs and the female Anopheles
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mosquitoes increases with time due to mosquitoes looking for blood meal and leads

to an increase in the death of the mosquitoes, and the same time there is reduction

in contact between the human and mosquito populations. Hence the number of

infected mosquitoes in the society get reduced. This results in an exponential drop

of the exposure of the human population to the disease (see Figure 6.11(a)). The

graph could not drop further may be because other members of the society were not

using the ITNs. This is evidenced in the demographic results in which the outcome

shows that 88.4% of the household members interviewed use ITNs. Furthermore,

there is exposure of human beings to the female Anopheles mosquitoes outside the

ITNs. The same behavior of graphical outcome is observed in the infected human

population (see Figure 6.11(b)) where the number of infected humans drops and

remains constant thereafter. Hence there is need of other two or more different

intervention strategies to help in reducing or eradicating malaria. We now consider

the effects of the three intervention strategies (ITNs, IRS and treatment) which are

campaigned concurrently in Karonga District, Malawi. It appears that if the three

intervention strategies are effectively monitored and implemented, then there is a

positive impact of combating malaria in the society. Figure 6.12 shows a steady

decrease in the susceptible human population at the initial period as the exposure

of humans to disease increases. Thereafter the graph of susceptible humans increases

as the exposed and infected human population decrease due to positive effects of

the intervention strategies implemented. This is evidenced that during this period

chemicals which are available in the ITNs and sprayed in the houses are effective in

reducing the mosquito population and at the same time reducing the contact rate

between the human population and the mosquito population. Treatment strategy

has also played an important role in reducing the number of infected individuals

thus leading to an increase in susceptible individuals.
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Figure 6.12: Illustrates the dynamics of susceptible, latent and infected humans in malaria model

with intervention strategies using parameters in Table 6.12.
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Despite being given ITNs and spraying long lasting chemicals in the houses, the

campaign needs to be revisited to confirm whether the chemicals are still effective.

The initial decrease of the graph explains that the effectiveness of the ITNs and the

IRS deteriorates with time. Hence it is necessary to assess the right time interval to

carry out the respraying of the houses and the resupply of ITNs.
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Chapter 7

Conclusion and recommendations

7.1 Conclusion

An optimal control model (using a deterministic system of nonlinear ordinary

differential equations) for the transmission dynamics of malaria in Karonga District,

Malawi was presented. The model considered a varying total human population that

incorporated recruitment of new individuals into the susceptible class through birth

or immigration, and those immigrant individuals who were exposed to the disease

were recruited into the exposed class. The prevention (IRS and ITNs) and other

treatment intervention strategies were included in the model to assess the potential

impact of these strategies on the transmission dynamics of the disease.

Our model incorporated features that were effective in controlling or reducing

the transmission of malaria disease in Malawi. Analysis of the optimal control

model revealed that there exists a domain where the model is epidemiologically and

mathematically well-posed. We also computed the effective reproduction number,

ℛ𝑒, then qualitatively analyzed the existence and stability of the model equilibria.
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The basic reproduction number, ℛ0, was obtained from the threshold reproduction

number by eliminating all the intervention strategies. Then it was proved that if

ℛ𝑒 < 1, the disease cannot survive in the district. Hence the effective reproduction

number, ℛ𝑒, is an essential indication of the effort required to eliminate the disease.

It was also found that ℛ𝑒 ≤ ℛ0 which implied that increased preventive and control

intervention practices had a positive impact on the reduction of ℛ𝑒. Thus, malaria

can be eradicated in the district by deployment of a combination of intervention

strategies such as effective mass drug administration and vector control (LLITNs or

ITNs and IRS) to combat and eventually eliminate the disease.

Analysis of the model supported that effective control or eradication of malaria can

be achieved by the combination of protection and treatment measures. We have seen

that when the three intervention strategies are combined, there is a greater reduction

in the number of exposed and infected individuals. The prevention strategies

played a greater role in reducing the number of infected individuals by lowering

the contact rate between the mosquito and human populations for instance through

the use of ITNs or LLITNs. On the other hand both prevention strategies led to

the reduction of the mosquito population, hence lowering the infected mosquito

population. Effective treatment consolidated the prevention strategies. Hence

making control strategies readily available to both populations can play an important

role in reducing or eradicating malaria disease in Karonga District, Malawi or in the

country.

This study agrees with Chavez et al. [16] who suggested that the intervention

strategy of using ITNs represents an excellent example of implementing an infectious

disease control programme, and the Smith and Hay [112] study, which showed

that both regular and non-fixed spraying resulted in a significant reduction in
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the overall number of mosquitoes, as well as the number of malaria cases in the

human population. Hence the combination of these two findings, and treatment

as an additional intervention measure, showed great impact in the reduction of the

spreading of the disease. Therefore the combination of these intervention strategies

can play a more important role in reducing or eradicating the transmission of malaria

disease in the district. This study provides useful tools for assessing the effectiveness

of a combination of the three intervention strategies and analyzing the potential

impact of prevention with treatment.

Malaria is a common disease in sub-Saharan Africa which most people suffer from

despite their knowledge of how it is transmitted as well as the preventive measures

[1]. The probable reasons for malaria mortality are that the preventive measures are

only within an individual’s home. As such when an individual is not within their

home environment then they are vulnerable to mosquito bites.

Demographic findings also showed that the preventive measures namely ITNs and

IRS if effectively practised, can help to reduce malaria transmission. These primary

health intervention strategies are very important as they reduce the mosquito

population, and contacts between the human and mosquito populations. These

practices will lead to a reduction in the transfer of Plasmodium between the host

and the vector. However, Dzinjalamala [26] states that malaria control in Malawi

is still heavily reliant on chemotherapy. Hence the approach needs to change and

effectively accommodate the campaign strategy taking place in Karonga District in

order to combat the disease. Therefore, the presumptive treatment for fever and the

primary health intervention practices (LLITNs and IRS) should both be effectively

implemented or practised in order to reduce or eliminate malaria disease.
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Using the optimal values of the three intervention practices (LLITNs, IRS and

presumptive treatment), the results showed that the combination of the three

intervention strategies has a positive and greater impact in eliminating or reducing

the epidemic of malaria. This can be achieved when the measures are effectively

implemented by the suppliers and effectively practised by the beneficiaries (the

community members). Therefore the results indicate that treatment needs to be

consolidated with preventive measures (ITNs and IRS) to circumvent the malaria

epidemic effectively.

The combination of the three strategies has also shown that the approach is cost-

effective compared to the other combinations of the three intervention measures

such as the combination of ITNs and IRS, treatment and IRS, and treatment

and ITNs. The second in the effectiveness and less costs in order to overcome

the malaria epidemic is the combination of LLITNs and IRS. Therefore from the

results obtained, it can be deduced that the intervention strategy of combining

two preventive measures (ITNs and IRS) and presumptive treatment is the best

and cost-effective method when carried out well in order to eliminate or eradicate

malaria disease. This can be well achieved with the positive response and active

participation of the community members in control programs in order to succeed in

this malaria control strategy in Karonga District, Malawi.

In order to have a realistic chance of effectively controlling and eradicating the spread

of malaria, the treatment programs must be complemented with other intervention

strategies such as vector reduction and personal protection. Intervention practices

that involve both prevention and treatment controls yield relatively better results.

The combination of these strategies can play a positive role in Karonga District in

reducing or eradicating malaria disease. Therefore, control and prevention efforts
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aimed at lowering the infectivity of infected individuals to the mosquito vector will

contribute greatly to the reduction of malaria transmission and this will eventually

lower the prevalence of malaria and the incidence of the disease in the community.

This can be achieved by prompt provision of effective prevention measures and

antimalarial drugs for treatment to reduce transmission and death.

Other preventive measures need also to be considered. Individuals need to eliminate

the existence of mosquitoes by eradicating breeding grounds for mosquitoes such

as stagnant water and bushes by using biological and environmentally friendly

preventive measures. If every home in a community could clear bushes and remove

stagnant water within their surroundings, they could move away breeding grounds

for mosquitoes to a significant distance away so that they are unable to reach the

houses of the population.

7.2 Recommendations

As the resurgence of malaria continues to take its toll on individuals and communities

in Karonga District and in Malawi as a whole, the policy makers need to be informed

about the research results. The following recommendations should be taken into

consideration:

1. Community participation and health education strategies promote awareness

of malaria and the importance of control measures. Hence the community

members should be aware of the intervention strategy being supplied to them

and they should also take part during the implementation. This helps to

reduce the incidence of malaria.

2. Since most of the reductions in transmission come from the protection of a few
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humans, it is far more important to improve the elimination effects of LLITNs

and the IRS around those who are mostly exposed to malaria. However,

complete coverage and improved elimination effects may be necessary to reach

control goals.

3. Vector control intervention strategies such as ITNs and IRS are proving

effective in combating and preventing the disease in Karonga District, Malawi.

The ITNS and IRS with insecticidal and diversionary properties, would reduce

the availability of hosts, and kill mosquitoes that are attempting to feed on

human blood, and thus reduce malaria transmission.

4. Since the set of intervention strategies is appropriate for the transmission

regime, such as a combination of prevention and treatment, and it is

implemented at the appropriate targeted scale in many endemic areas in the

district or in the country, the malaria related millennium development goals

can be achieved well before an effective vaccine is available.

5. Optimal control programs lead to effectively reduce the number of infectious

individuals in all cases. Numerical simulations of the malaria model suggest

that the use of of mosquito-reduction strategies (ITNs and IRS) is more

effective in reducing the disease cost than person protection. Hence much

emphasis needs to be put forward on the mosquito-reduction strategies to

get rid of Plasmodium and thereafter treatment should follow to deal with

those affected. Therefore the campaign of the combination of preventive-

reduction and treatment which is taking place in Karonga District should

be implemented in all districts in the country if the government commits itself

to eradicate the malaria epidemic.

6. Because of the complications of measuring malaria at different transmission

levels with different immunological status prevalent in different age and gender
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groups, and across different locations, some guidelines should be developed to

give researchers and health professionals a more accurate foundation on which

to select indicators.

7.3 Future work

The proposed model has some limitations. We did not consider infective immigrants.

Also, the population was not stratified by vulnerable groups such as children and

pregnant women as it is well-known that malaria disproportionately affects children

under the age of five years and pregnant women [41]. Hence the inclusion of

immigrants and vulnerable groups in the model could shed more light on which

intervention strategy to prioritize to specific groups.

In addition, the model can be extended by including the effects of environment such

as the impact of climatic change on the spread of malaria. Seasonal environmental

factors such as temperature, rainfall and humidity affect some parameters in the

model, such as, the incubation period of mosquitoes and birth rate of mosquito

population. The parameters can be modeled as periodic functions of time.
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