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Abstract 

The prediction of aeroelastic instabilities such as flutter is important in the multi-disciplinary 

design and preliminary testing of missiles. Flutter prediction software varies in the fidelity of 

analysis, with accurate solutions being computationally expensive and involving the use of 

CFD. 

In this dissertation, a review is given of approximate methods for supersonic aeroelastic 

analysis. A general formulation of piston theory is developed to encompass both classical and 

local piston theory, and the literature on piston theory and its application in aeroelastic 

analysis is reviewed. 

An aeroelastic prediction method is developed for cantilevered trapezoidal plates in 

supersonic flows based on shock-expansion theory and local piston theory. The method is 

validated against 3D unsteady Euler aeroelastic computations in the Edge CFD solver and 

against experimental flutter data in literature. 

The prediction method is shown to be suitable for computationally inexpensive aeroelastic 

parametric studies applicable to missile fin design. 
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1 INTRODUCTION 

1.1 Introduction 

A multidisciplinary approach is essential in missile design to ensure that all the required 

missile performance specifications are achieved. Various discipline often place conflicting 

requirements on design parameters: for example, minimization of aerodynamic drag may 

require the thickness of a missile fin to be decreased; however, this reduces the structural 

stiffness and strength in bending of the missile fin. The interaction between several 

disciplines is typical of aerospace structures, as is evident from the research [1] conducted on 

aeroelasticity (interaction of aerodynamics and structure), aero-thermo-elasticity (interaction 

of aerodynamics, thermal effects, and structure), aero-servo-elasticity (interaction of 

aerodynamics, control, and structure), and aero-thermo-servo-elasticity (interaction of 

aerodynamics, thermal effects, control, and structure). These interactions are shown in Figure 

1.1. 

 

Figure 1.1: Multidisciplinary Interaction in Aerospace Design [1]  
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Consideration of the aeroelastic response of the missile under loading is typically performed 

in the detailed development phase of the design cycle, as aeroelastic analysis is generally 

time-consuming and requires modelling of the missile aerodynamics and structural dynamics. 

If it is found that the design exhibits aeroelastic instabilities or undesirable structural response 

at this stage, the "fixes" required will add weight to the structure, impacting the predicted 

performance of the missile. 

Preliminary analysis of aeroelastic effects early in the design cycle would broaden the scope 

of evaluation of design concepts. The more holistic analysis would better filter feasible 

concepts, thus reducing the risk and cost of corrective modifications later in the design cycle. 

Aeroelastic effects on missile fins may have a further impact on other disciplines. Not only 

must the structural integrity be assessed, but the effectiveness of the missile control must be 

considered. Controller and actuator design must account for the reduced effectiveness of 

control input. Furthermore, the shift in centre of pressure due to aeroelastic effects changes 

the hinge moment required for trim -- this may vary dynamically for a flexible fin undergoing 

vibration, which poses a control, or aero-servo-elastic, problem. 

The prediction of aeroelastic effects, particularly of flutter, is also important from the point of 

view of operational safety during the development and testing of missiles. Once the design 

has progressed sufficiently far, wind-tunnel tests of a model of the missile will typically be 

conducted. When a geometrically-scaled model is tested, the aerodynamic effects and the 

structural effects scale differently due to the differences in physics for the structure and for 

aerodynamics. Thus, it may occur that it is unsafe to test a geometrically-scaled model of a 

full-scale missile, even if the full-scale model was designed with aeroelastic effects 

accounted for. The loss of wind-tunnel models to unanticipated aeroelastic effects has 

occurred even with models that were designed to investigate aeroelasticity, as in the case of 

the loss of Flexible Semi-span Model of NASA's High Speed Civil Transport project to 

"hard" flutter [2]. The prediction of the aeroelastic behaviour of a model before it is 

constructed is therefore important not only out of consideration of cost, but also important for 

safe testing. 
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1.2 Review of Software for Approximate Aeroelastic Analysis 

Several commercial software packages are available which allow the aeroelasticity of various 

geometries to be modelled. Such software varies in the fidelity of the analysis performed. 

Generally, the lower-order modelling consists of the coupling of a structural finite element 

code with unsteady aerodynamic panel methods; however, the number of codes implementing 

supersonic panel methods is limited. High fidelity analysis may be conducted through the 

coupled solution of the structural and aerodynamic physics with a coupling of structural finite 

elements and computational fluid dynamics. Lower-order modelling is implemented earlier in 

the design phase to obtain approximate solutions at relatively low computational cost. These 

approximate solutions allow for design refinement, and serve as a filter and guide for higher 

fidelity analysis later in the design cycle. 

In general, the variety of software packages for lower-order modelling that is commercially 

available allow the user to analyse the aeroelastic response of a general body with lifting 

surfaces and stores. A variety of aerodynamic methods are used, as well as a variety of 

methods for the prediction of the flutter speed. Whilst the literature and software available for 

subsonic aerodynamic panelling and aeroelastic analysis is relatively broad, there are few 

software packages that allow for approximate aeroelastic analysis. The two main codes for 

low-order  supersonic and hypersonic aeroelastic modelling are the MSC NASTRAN 

Aeroelasticity module [3] and the ZAERO [4] range of codes. 

1.2.1 MSC NASTRAN 

MSC NASTRAN incorporates approximate aerodynamic modelling alongside advanced 

analysis of structural dynamics. For flutter analysis, the aerodynamic modelling includes the 

double-lattice method and strip theory for subsonic flow, and the Mach box method, piston 

theory, and ZONA51 for supersonic flow [3]. The flutter calculation may be made using three 

classical flutter calculation methods, including the 𝑘 method, and efficient 𝑘 method, and the 

𝑝-𝑘 method [3]. 
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1.2.2 ZONA7 

Zona Technology Inc. offers a wide range of software for high-fidelity aeroelastic analysis 

[4]. The software ranges from aeroelastic panel methods to a fully coupled nonlinear 

aeroelastic unsteady Euler solver. ZONA7 is the unsteady supersonic aerodynamics module 

of the ZAERO software suite, with the capability to analyse unsteady supersonic/hypersonic 

(ZONA7U) aerodynamics for wing-body/aircraft configurations with external stores/nacelles 

[5]. It is a high-order panelling method which is linked in the ZAERO formulation to a flutter 

solver, allowing for flutter solution using the 𝑘- / 𝑝-𝑘 / 𝑔-methods [5]. 

ZONA51U is related to ZONA7U, being an older version of the software, and is 

implemented in the aeroelastic module of MSC NASTRAN. 

1.2.3 NeoCASS 

NeoCASS is an aero-structural design tool originally developed at the Dipartimento di 

Ingegneria Aerospaziale of Politecnico di Milano, which has been embedded in the open 

source MDD environment CEASIOM [6]. NeoCASS is written as a suite of MATLAB, and 

combines semi-empirical and analytical methods for weight estimation and sizing of transport 

aircraft (although the suite may be applied to other configurations). The suite includes a 

structural FEM solver, panel-method aerodynamics for subsonic flows (vortex-lattice and 

doublet-lattice methods), and a flutter solver. The results of structural modal analysis in 

NeoCASS may be exported for high-fidelity aeroelastic analysis in the Edge CFD solver. As 

of the date of publication, NeoCASS does not include aerodynamic methodology for 

supersonic flows. 

1.2.4 NEAR Software 

Nielsen Engineering and Research Inc. (NEAR) have developed a number of codes for the 

aerodynamic analysis of missiles, with output to FEM solvers such as NASTRAN [7]. The 

codes vary in complexity from engineering-level prediction codes for missile aerodynamics 

to reduced-order modelling codes. The MISDL code provides detailed loading on the various 

components of the missile, including the load distribution over the fin; the effects of body and 

fin vortices as well as damping due to rotational rates is included. NEAR has also developed 
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a nonlinear Volterra kernel identification system [7] for the prediction of unsteady 

aerodynamics. The Volterra kernel represents a modelling of nonlinear systems with memory 

effects through the use of multi-dimensional convolutions [8]. Whilst the NEAR software 

provides the aerodynamic loading on the structure, no structural or aeroelastic analysis is 

performed within the software. 

1.3 Objectives of the Dissertation 

Whilst the study of aeroelasticity in supersonic flows is by no means a new topic, the 

literature available on the approximate aeroelastic modelling of cantilevered plates in 

supersonic flow is relatively sparse compared to the literature on the modelling of 2-

dimensional airfoils with rigid cross-section. 

Recent literature [1; 9; 10; 11; 12] has shown a renewal in the application of piston theory for 

the approximate modelling of unsteady aerodynamic pressures, and further developments in 

its application have been made. Among these developments is the extension to local piston 

theory and the use thereof to provide the unsteady aerodynamics about a high-fidelity, 

dynamically linearized steady-state solution [11]. This application of local piston theory has 

been shown [11] to model the unsteady aerodynamics with good accuracy, leading to vastly 

reduced computation time for aeroelastic studies. The literature on the application of local 

piston theory with approximate aerodynamic methods for the steady-state aerodynamics is 

very limited. 

Flight vehicles that operate at high speeds and altitudes are susceptible to potentially 

catastrophic aeroelastic phenomena, such as "hard" flutter [2]. The design of these vehicles 

requires aeroelastic analysis to be applied during the design cycle; in practice, it is often 

applied relatively lately in the design. The implementation of approximate aeroelastic 

analysis would make it computationally feasible to include the consideration of aeroelastic 

effects earlier in the design cycle. This carries the potential to save costs associated with more 

lengthy design cycle, and may identify potentially hazardous test conditions for wind-tunnel 

or flight testing. 
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In light of the above considerations, objectives of this dissertation are to: 

1. Add to the literature on the modelling of aeroelasticity in cantilevered plates in 

supersonic flows, 

2. Develop a tool suitable for preliminary parametric studies of the effect of fin 

geometry on flutter boundaries, 

3. Compare the performance of flutter prediction methods applied to an analytical 

system with no signal noise, and to hence determine the metric most suitable for 

implementation in an approximate aeroelastic analysis method, 

4. Investigate the ability of approximate aeroelastic modelling to model dangerous 

aeroelastic phenomena such as "hard" flutter. 

1.4 Outline of the Dissertation 

The dissertation is divided into seven chapters, the content and purpose of which is as 

follows. 

Chapter 1 introduces the topic of aeroelastic prediction software for supersonic flows, and the 

importance of aeroelastic analysis in both the design of new products and their testing. A 

short review of commercial software packages for low-order aeroelastic analysis in made, 

and the objectives of the dissertation are introduced. 

Chapter 2 provides a literature review on the various facets of aeroelastic modelling. The 

topics of the review include: approximate methods of modelling steady and unsteady 

supersonic aerodynamics; the coupling of structural dynamics and aerodynamics; dynamic 

and spatial linearity and nonlinearity; the characterization of aeroelastic response below 

flutter speed; literature on experimental investigation of supersonic flutter of cantilevered 

plates; and flutter prediction methods. 

Chapter 3 gives an exposition on piston theory and the differences between classical and local 

piston theory. The differences introduced in the physics modelled by higher order piston 

theories are investigated. 
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Chapter 4 consists of an overview of the methodology used in the structural, aerodynamic, 

and aeroelastic modelling of a cantilevered plate in supersonic flow, as implemented in the 

development of an aeroelastic prediction tool for missile fins. 

Chapter 5 is on the validation of the developed aeroelastic prediction method through 

comparison with aeroelastic modelling through computational fluid/structural dynamics. The 

chapter covers the validation of the structural solver against MSC NASTRAN, and the 

validation of the aerodynamic solver against 3D Euler computations in the CFD solver Edge. 

The aerodynamic validation includes the validation of the steady aerodynamics of a rigid, 

undeformed cantilevered plate, the validation of the transient deformation to steady-state of 

an elastic cantilevered plate, and the validation of the aerodynamic response to prescribed 

step motions of the plate. 

Chapter 6 shows the application of the developed aeroelastic prediction method in the 

aeroelastic analysis and flutter prediction for various fin geometries. Comparison to 

experimental results in literature, where available, is made. 

Chapter 7 summarizes the work accomplished in the dissertation and provides 

recommendations for future work. 
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2 REVIEW OF APPROXIMATE METHODS OF 

MODELLING OF AEROELASTICITY IN SUPERSONIC 

FLOWS 

2.1 Approximate Modelling of Supersonic Aerodynamics 

2.1.1 Shock-Expansion Theory 

Shock-expansion theory assumes local Prandtl-Meyer expansion or compression along the 

surface of an airfoil behind a shock; the properties immediately behind the shock are 

calculated using oblique shock theory, or using the Taylor-Maccoll cone results for bodies of 

revolution [13]. The reflection of expansion wave characteristics off of streamlines and the 

bow shock is neglected, and it is assumed that the nose is sharp, the leading-edge shock is 

attached, and flow is locally supersonic everywhere. Shock-expansion theory may be 

modified for application to 3D flows [14]; here, however, only the application to 2D flows is 

given. 

The equations for the gas properties behind an oblique shock are given [15] below, with 

reference to Figure 2.1 for the nomenclature: 

 tan𝛿 =
2 cot𝛽  𝑀1

2 sin2 𝛽 − 1 

𝑀1
2 𝛾 + cos 2𝛽 + 2

 ( 2.1 ) 

 
𝑃2

𝑃1
= 1 +

2𝛾

𝛾 + 1
 𝑀1

2 sin2 𝛽 − 1  ( 2.2 ) 
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𝜌2

𝜌1
=

 𝛾 + 1 𝑀1
2 sin2 𝛽

 𝛾 − 1 𝑀1
2 sin2 𝛽 + 2

 ( 2.3 ) 

 
𝑇2

𝑇1
=
𝑃2𝜌1

𝑃1𝜌2
 ( 2.4 ) 

 𝑀2 sin 𝛽 − 𝛿 =  
 

2
𝛾 − 1

 + 𝑀1
2 sin2 𝛽

 
2𝛾

𝛾 − 1 𝑀1
2 sin2 𝛽 − 1

 

1
2

 ( 2.5 ) 

 

 

Figure 2.1: Definition of Nomenclature for Oblique Shock Calculations 

 

The equations for the gas properties behind a Prandtl-Meyer expansion fan may be calculated 

from the Prandtl-Meyer function and from the equations for isentropic flow [15], listed below 

together with Figure 2.2: 

 

𝜈 =  
𝛾 + 1

𝛾 − 1
 tan−1   

𝛾 − 1

𝛾 + 1
 𝑀2 − 1   − tan−1   𝑀2 − 1  ( 2.6 ) 

 𝜈1 = 𝜈2 − 𝛿 ( 2.7 ) 

 

𝑃2

𝑃1
=  

1 +  
𝛾 − 1

2  𝑀1
2

1 +  
𝛾 − 1

2  𝑀2
2
 

𝛾
𝛾−1

 ( 2.8 ) 
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Figure 2.2: Definition of Nomenclature for Prandtl-Meyer Expansion Calculations 

 

Hayes and Probstein [16] reviewed the investigation of the assumption of the absorption of 

the expansion wave by the bow shock, and reviewed the application and extension of shock-

expansion theory by various authors, including extension to axisymmetric bodies at angle of 

attack. Among the review is the work of Eggers [17], Savin [18], Syverston [17; 19] and 

Dennis [19]. Shock-expansion theory has been shown to give consistently good results for 

values of the hypersonic similarity parameter 𝑀∞𝛿 > 1. Generally, the method gives accurate 

results for bodies which do not have high curvature at the nose; Hayes and Probstein [16] 

review the correction that may be applied to surface pressures on the afterbody to account for 

the reflection of expansion waves from the bock shock. 

In the Mark IV version of SHABP [14], shock-expansion theory may be used to find the 

pressure on body surfaces as well as to compute the shock shape and flowfield. 

Shock-expansion theory may be applied over successive chordwise segments for 2D flow; in 

doing so, the solution marches downstream and the influence of upstream perturbations is 

accounted for. However, shock-expansion theory assumes steady flow, and the flow history 

of dynamic perturbations is not washed downstream. 

The extension to quasi-steady shock-expansion theory is made in accounting for the 

downwash contribution in the flow turning-angle 𝛿 due to motion at the leading and trailing-

edges [10]. For example, for the lower surface of at the leading-edge with wedge angle 휃, the 

flow turning-angle, as shown in Figure 2.3 is given by: 

 𝛿 = 휃 + 𝛼′  ( 2.9 ) 

where 𝛼′ is the quasi-steady angle of attack given by 𝛼′ = 𝛼 +
𝑑𝑧

𝑑𝑡
,  
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Figure 2.3: Flow Turning-Angle in Quasi-Steady Shock-Expansion Theory  

2.1.2 Slender Body Theory 

Slender body theory (SBT) has been extended by various authors and its treatment has been 

widely published. A simple treatment of slender body theory based on linearized supersonic 

small-disturbance theory, with extension to Munk's airship theory [20] based on the 

assumption of incompressible cross flow, is given by Gülçat [21]. This places a limit on the 

range of angles-of-attack for which SBT is valid at supersonic Mach numbers. The treatment 

provides an expression for the normal-force distribution on the slender body in terms of an 

axial variation in body cross-section and camber. The equation for unsteady flow is given 

[21] as: 

 
𝑑𝐿

𝑑𝑥
= −𝜌𝑈∞

𝑑𝑆

𝑑𝑥
 
𝜕𝑧𝑎
𝜕𝑡

+ 𝑈∞
𝜕𝑧𝑎
𝜕𝑥

 − 𝜌𝑆  
𝜕2𝑧𝑎
𝜕𝑡2

+ 2𝑈∞
𝜕2𝑧𝑎
𝜕𝑥𝜕𝑡

+ 𝑈∞
2
𝜕2𝑧𝑎
𝜕𝑥2   ( 2.10 ) 

Where 
𝑑𝐿

𝑑𝑥
 is the distribution of normal force and 𝑧𝑎  denotes the position of the axis of 

the body (or camberline, for an airfoil with symmetrical thickness). Note that  
𝜕𝑧𝑎

𝜕𝑡
+

𝑈∞
𝜕𝑧𝑎

𝜕𝑥
  is equivalent to the upwash of the camberline of the body as it passes through a 

stationary reference plane (see Section 3.3). 

Ashley and Landhal [22] considered SBT without linearizing the potential equation and 

applying only the small-disturbance approximation. Analytical expressions obtained for the 

perturbation velocity potential are given in terms of the rate of change of cross-sectional area, 

from which the surface pressure coefficient may be found. The treatment assumed a smooth 

variation in cross-section, and was evaluated at low supersonic Mach numbers (𝑀 ≈ 1.1). 

Van Dyke [23] treated the extension of SBT to the second-order to extend the range of 

validity in the parameter 𝑚𝛿 (where 𝑚 =  𝑀2 − 1), and provided an equation for the 

pressure coefficient on the surface of a cone from second-order SBT as a function of the cone 
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semi-vertex angle. Excellent agreement to exact results was obtained for very small cone 

angles  𝛿 = 5°  for Mach numbers in the range 1 < 𝑀∞ < 5 as shown in Figure 2.4, whilst 

poorer agreement was obtained for moderately small cone angles  𝛿 = 15°  at Mach 

numbers higher than 2, as seen in Figure 2.5. Van Dyke noted that the slender body 

assumption implied that not only was the thickness small, but that the unified supersonic-

hypersonic similarity parameter 𝑚𝛿 was also small. Van Dyke also discussed restrictions on 

body shape, noting that second-order SBT required a body with sharp ends, with small 

curvature and a continuous, slow change in curvature. 

 

Figure 2.4: Second-Order Slender Body Theory for a Cone with Semi-Vertex Angle 5° [23] 

 

Figure 2.5: Second-Order Slender Body Theory for a Cone with Semi-Vertex Angle 15° [23]  
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Pivko [24] investigated the effect of non-linear velocity perturbation terms on the pressure 

coefficient predicted by SBT, and also provided a brief review of the development of SBT. 

Pivko stated that neglecting non-linear terms in the pressure-velocity relation may result in 

errors in the predicted loading distribution of the order of 100%. 

2.1.3 Semi-Empirical Methods 

Semi-empirical methods use a combination of empirical data for a variety of body 

geometries, and of simple analytical expressions (in which empirical approximations are 

used), to predict the aerodynamic characteristics of a body. Examples of semi-empirical 

codes for the prediction of supersonic aerodynamics include SHABP [14], the NSWC 

AeroPrediction codes [25], Missile DATCOM [26]. Typically, the overall aerodynamic 

coefficients and derivatives are given, with no detailed loading (pressure distribution) given. 

The load prediction is for rigid geometry; damping derivatives are generally predicted for 

specified rates of rotation. 

2.1.4 Van Dyke's Unified Supersonic/Hypersonic Potential Theory 

Hypersonic small-disturbance theory was extended to the supersonic range by Van Dyke [27] 

through the replacement of the hypersonic similarity parameter 𝑀∞𝛿 by the unified 

supersonic-hypersonic similarity parameter   𝑀2 − 1 𝛿. For small deflections with 𝛿 < 15° 

for wedge flow and 𝛿 < 10° for cones, results from the extension closely correlated [27] to 

results obtained with the small-disturbance approximation not made, as shown in Figure 2.6. 

Van Dyke also compared the results of the unified small-disturbance theory with other 

analytical methods, including Newtonian flows and first-order shock expansion theory. The 

unified small-disturbance theory was found to give very good results even at small numbers 

of the unified similarity parameter  𝑚𝛿 < 0.5  (where 𝑚 =  𝑀2 − 1) for small deflection 

angles. Van Dyke extended existing solutions, as detailed by Hayes and Probstein [16], for 

the pressure coefficient on the surface of wedges and cones in compression through the use of 

the unified similarity parameter. The equation for wedges is a function of only the deflection 

and the unified similarity parameter. 
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Figure 2.6: Surface Pressure on Wedges from Van Dyke's Unified Supersonic-Hypersonic Small-Disturbance Theory [27] 

SHABP(PD) [14] includes the wedge equation derived by Van Dyke for wedges in 

compression, given below: 

 𝐶𝑃 = 𝛿2  
𝛾 + 1

2
+   

𝛾 + 1

2
 

2

+
4

 𝑚𝛿 2  ( 2.11 ) 

as well as a similar equation for expansion flow with no leading-edge shock: 

 𝐶𝑃 = 𝛿2
2

𝛾 𝛽𝛿 2   1 +
𝛾 − 1

2
𝑚𝛿 

2𝛾
𝛾−1

− 1  ( 2.12 ) 

where in both equations, 𝑚 =  𝑀2 − 1  and 𝛿 is the turning angle of the flow. 

Hayes and Probstein [16] investigated the extension of application of small-disturbance 

theory to a variety of bodies, and discussed the extension to large incidences and the 

correlation to other similarity parameters. 
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2.1.5 Piston Theory 

Piston theory is a method of modelling unsteady aerodynamics in which the local pressure on 

a surface is approximated by the pressure on an equivalent piston in a 1D cylinder. Several 

developments and extensions to the method have been made, and will be briefly noted here. 

The equation for the pressure coefficient at a point (see Chapter 3 for a more general 

formulation and detailed development) is given by Liu et al [12] as: 

 𝐶𝑃 =
2

𝑀∞
2  𝑐1  

𝑤

𝑎∞
 + 𝑐2  

𝑤

𝑎∞
 

2

+ 𝑐3  
𝑤

𝑎∞
 

3

  ( 2.13 ) 

   

 

Figure 2.7: The Concept of the Piston in Piston Theory 

 

Gülçat [21] stated that linearized (first-order) piston theory is valid only for values of the 

hypersonic similarity parameter 0 < 𝑀∞𝜏 < 0.15, where 𝜏 is the thickness ratio of the lifting 

surface (see Figure 2.8), and provided that the body remains at small angles of attack during 

the motion. 

 

Figure 2.8: Relationship Between Hypersonic Similarity Parameter 𝑲 = 𝑴𝝉 and Downwash Mach Number 
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Ashley and Zartarian [28] expanded on the work of Lighthill and Hayes and reviewed related 

work by other authors at the time, with consideration of a broad range of aeroelastic 

problems. From the review of literature collected, the limitation on validity of linearized 

piston theory was made to flows where 𝑀 ≫ 1, 𝑘𝑀2 ≫ 1 or 𝑘2𝑀2 ≫ 1, where 𝑘 is the 

reduced frequency of oscillation (𝑘 = 𝜔𝑐 2𝑈∞ ). 

Liu et al. [12] reviewed later developments related to piston theory and investigated the range 

of validity of piston theory in its various formulations. Particular attention was given to third-

order formulations to include nonlinear thickness and angle of attack effects [12] (see Section 

3.4 and Section 3.6), with the results of Busemann and Donov cited. It was noted that 

differences in the third-order terms between piston-theory formulations arose from the 

theoretical basis for the series-expansion [12] (see also Section 3.4). 

 

Figure 2.9: Pressure Coefficient on a 15° Wedge from Various Piston Theories [12] 

 

Liu et al. deduced that piston theory has a limited range of validity for a wedge of semi-angle 

10° of 2.1 < 𝑀 < 6.0. From these considerations, Liu et al. [12] developed an extension to a 

"unified lifting surface method"  applicable from low supersonic speeds to hypersonic speeds. 

The method is essentially a combination of third-order piston theory with a supersonic lifting 

surface theory. The method was developed into the ZONA51U code. Good agreement of 

results to more exact analyses and experimental data (where available) was obtained (as 

shown in Figure 2.9), with good results obtained for stiffness and damping moments, stability 
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derivatives, and flutter boundaries. Pending further validation, a limitation to wings with 

sharp leading-edges of thickness 𝜏 = tan 15° for supersonic Mach numbers up to 10 was 

estimated [12].  

Zhang et al. [11] integrated the use of a local piston theory with a steady mean flow solution 

by an Euler method. The mean flow was solved by the Euler method to account for 3D 

effects and upstream influence, and the unsteady component was treated locally by 

application of piston theory to surface deviations. It was found that the combined analysis 

gave very accurate results [10; 11; 29] (compared to full unsteady Euler computation) even 

for airfoils with round leading-edges (such as the NACA 0012), and for reduced frequencies 

as high as 𝑘 = 0.1, as seen in Figure 2.10. Flutter analysis using local piston theory also 

produced results in good agreement with full Euler solutions, as shown in Figure 2.11. The 

method is an extension of piston-theory to CFD, with vastly increased computational 

efficiency over a full unsteady solution as only a single steady-state solution is required for 

the method. 

 

Figure 2.10: Time History of Aerodynamic Loading on a NACA 0012 Airfoil from Local Piston Theory [11] 
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Figure 2.11: Flutter Speed vs α for a NACA 64A010 Airfoil from Local Piston Theory [11] 

 

McNamara et al. [10] reviewed the current state of approximate modelling of unsteady 

aerodynamics for the computation of hypersonic aeroelasticity. First-order, third-order, and 

local piston theory were investigated relative to other approximate methods (including 

unsteady shock-expansion, Van Dyke's second-order theory, and unsteady Newtonian 

impact), relative to methods employing Euler solutions (piston-theory corrected steady-state 

solutions), and relative to full unsteady Navier-Stokes solutions. Results were compared for a 

3.36% thick double-wedge airfoil for Mach numbers 𝑀∞ > 5. Results from second-order and 

third-order piston theory for the flutter boundary prediction were in excellent agreement with 

the Navier-Stokes results for values of the hypersonic similarity parameter 0.25 < 𝑀𝜏 < 1. It 

was found that first-order local piston theory gave excellent correlation, and it was deduced 

that aeroelastic stability is strongly influenced by thickness effects, the influence of which on 

the generalized aerodynamic forces may be modelled using steady-state flow analysis [10]. 

The reader is referred to Chapter 3 for a more detailed discussion on piston theory. 



19 

 

2.1.6 Mach Box Method 

The Mach Box method is a numerical solution to determine the unsteady perturbation 

potential for the linearized supersonic potential flow equations for unsteady 3-dimensional 

flows [30]: 

 ∇2𝜙 −
1

𝑎∞
2  

𝜕2𝜙

𝜕𝑡2
+ 2𝑈∞

𝜕2𝜙

𝜕𝑥𝜕𝑡
+ 𝑈∞

2
𝜕2𝜙

𝜕𝑥2
 = 0 ( 2.14 ) 

or, rearranged with alternative notation for the differentiation with respect to variables: 

  1 −𝑀2 𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧 =
1

𝑎∞
2 𝜙𝑡𝑡 +

2𝑀

𝑎∞
𝜙𝑥𝑡  ( 2.15 ) 

The potential function is assumed to vary sinusoidally. 

 𝜙 = 𝜙  𝑥,𝑦, 𝑧 𝑒𝑖𝜔𝑡  ( 2.16 ) 

The resulting equation for the potential function at a point in the flowfield is an integral of the 

downwash over  the surface of the flowfield bounded by upstream-facing Mach cone at the 

point, and the portion of the upstream flowfield which is influenced by the wing. The 

equation for the amplitude of the harmonically oscillating potential function at a point 

(𝑥∗, 𝑦∗, 0) is given [30] by: 

 𝜙  𝑥∗,𝑦∗, 0 =
−𝑏

2𝜋
  𝑤  𝜉∗,휂∗ 𝑒−𝑖𝜔  𝑥

∗−𝜉∗ 
cos  

𝜔 𝑟∗

𝑀  

𝑟∗
𝑑𝜉∗𝑑휂∗

𝑦∗+ 
2𝑐
𝑏
 
 𝑥∗−𝜉∗ 

𝑚

𝑦∗− 
2𝑐
𝑏
 
 𝑥∗−𝜉∗ 

𝑚

𝑥∗

0

 ( 2.17 ) 

where 𝜔 =
2𝑘𝑀2

𝑀2−1
,    𝑘 =

𝜔𝑐

2𝑈∞
,    𝑥∗, 𝜉∗ =  

𝑥

𝑐
,
𝜉

𝑐
 ,    𝑦∗, 휂∗ =  

2𝑦

𝑏
,

2휂

𝑏
 ,    𝑚 =  𝑀2 − 1, 

and 𝑟∗ =   𝑥∗ − 𝜉∗ 2 −𝑚2  
𝑏

2𝑐
 

2
 𝑦∗ − 휂∗ 2 

Here, 𝑏 and 𝑐 represent the full wing span and chord, respectively, and 𝜉 and 휂 

represent the integration variables along the 𝑥 and 𝑦 directions. The variable 𝑤  

represents the downwash. 

In the Mach Box method, the wing and the relevant portions of the influenced flowfield are 

discretized using rectangular panels. An example of the discretization for a rectangular wing 

at 𝑀 = 1.2 is given by [31] in Figure 2.12. The integral equation ( 2.17 ) is approximated by 

differences, and the downwash is assumed to be constant over a panel. The equation is then 
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evaluated at each panel to obtain a matrix of aerodynamic influence coefficients. The 

application of boundary conditions on the surface of the wing as well as in the flowfield 

allows for the potential function and the downwash to be solved; this in turn allows for the 

oscillating pressures on the wing to be calculated. The Mach Box method thus accounts for 

the 3-dimensional upstream influence of the wing and the influenced flowfield. 

 

Figure 2.12: Example of Mach Box Spatial Discretization [31] 

 

The equations from which the unsteady aerodynamic pressures are derived assume simple 

harmonic oscillation of the potential function (and implicitly, of the surface of the wing). The 

mathematical basis of the equations allows the unsteady pressure to be expressed as a 

function of the frequency of the oscillations, 𝜔. This is of great practical importance in 

aeroelastic analysis, as it allows for the solution of the flutter determinant in terms of the 

frequency, and allows the flutter frequency to be found by methods such as the 𝑉-𝑔, 𝑝-𝑘, and 

𝑔 methods, in which the flutter determinant is formulated in terms of the frequency of 

oscillation. 

Several improvements to the Mach Box method have been made [32; 33], and other 

supersonic lifting surface formulations and panel methods [12; 34]  have been implemented. 
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2.1.7 Quasi-Steady Approximation to Unsteady Aerodynamics 

The degree of the unsteadiness of the flow may be estimated [28] from the reduced frequency 

of motion, which is given by: 

 𝑘 =
𝜔𝑐

2𝑈∞
 ( 2.18 ) 

Scanlan [35] notes the difference between the Strouhal number, which is associated with a 

frequency of the fluid, and reduced frequency, which is associated with a structural frequency 

of motion. The reduced frequency gives an approximate ratio between the rate of unsteady 

motion and the rate at which it is washed downstream. Ashley [36] states that for sufficiently 

small (0.01 -- 0.02) reduced frequencies, the instantaneous aerodynamic loading may be 

approximated by steady flow at an equivalent quasi-steady angle of attack, and the flow 

history may be ignored. This allows the use of simpler methods for steady aerodynamics in 

modelling unsteady motion, provided that the reduced frequency is low. 

In quasi-steady modelling, the flow history is not accounted for, and there is thus no lag 

between structural motion and aerodynamic loading, as would be introduced by accounting 

for flow history. 

2.2 Coupling of Aerodynamics and Structural Dynamics 

The essence of aeroelasticity is the interaction of fluid and structure; in modelling 

aeroelasticity, both the aerodynamics and the structural dynamics must be modelled. Various 

approaches to the modelling exist which reflect various degrees of complexity in the 

formulation of the aeroelastic problem. 

McNamara and Friedmann [9] classify the methods of fluid-structure coupling as monolithic 

or partitioned. In monolithic solvers, the equations of both the fluid and the structure are 

combined into a consistent set of equations which are marched forward in time 

simultaneously; it should be noted that it is implied that the physics of both the structure and 

the fluid are solved using the same spatial discretization (mesh) and time-step. 

In partitioned solvers, the fluid and the structure are modelled using separate solvers [9], each 

modelling the physics of the fluid and the structure in isolation, respectively. Different spatial 
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discretizations and time-steps are employed, each most suited to the physics. McNamara and 

Friedmann identify that the issues of interpolation of results between the fluid and structural 

grids, and of time advancement in both solvers, have been solved through various schemes. 

The issue of grid-interpolation has been broadly studied, including the interpolation onto a 

common manifold for reduced-order models [37] and studies in coupling the fluid and 

structure using meshless methods [38]. 

As the aerodynamic loading is dependent on the structural response (and vice versa), the 

advancement of the solution in one of the solvers requires an assumption of the response or 

loading at the next time-step in the other solver. This results in a lag [9] of response and 

loading, and physically equates to a dynamic imbalance between the aerodynamic and 

structural forces. This may be overcome (the imbalance may be eliminated) through sub-

iterations between the structural and fluid solvers within each time step. The sub-iterations 

are said to occur in "pseudo-time" [1], whilst the coupled solution marches forward in 

"physical" time with a global time-step. When sub-iterations are used to achieve dynamic 

equilibrium between the fluid and structure, it is said that the solvers are strongly coupled [9]; 

the solvers are loosely coupled when no sub-iterations are performed to achieve dynamic 

equilibrium. 

2.3 Time Variance in Dynamic Systems 

In the analysis of dynamic systems, the time-variance of the system affects the methods 

which can be used to predict the response of the system in time. Consider the response a of an 

underdamped single degree of freedom mass-spring-damper system with a linear damper and 

linear spring under harmonic base excitation, shown in Figure 2.13 (example from Rao [39]): 

 𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 = 𝑐𝑦 + 𝑘𝑦 ( 2.19 ) 

 𝑦 = 𝐴0 sin𝜔𝑡 ( 2.20 ) 

From Rao [39], the solution may be expressed as the sum of a transient component and a 

steady component, in the following general form: 

 𝑥 𝑡 = 𝑥𝑡 𝑡 + 𝑥𝑠 𝑡  ( 2.21 ) 

in which: 
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 𝑥𝑡 𝑡 = 𝐴1𝑒
−휁𝜔𝑛 𝑡 cos 𝜔𝑑𝑡 − 𝜙0  ( 2.22 ) 

 𝑥𝑠 𝑡 = 𝐴2 cos 𝜔𝑡 − 𝜙1 + 𝐴3 sin 𝜔𝑡 − 𝜙1  ( 2.23 ) 

where all the coefficients in to preceding equations are constant with time. 

 

 

Figure 2.13: Example of a Simple Second-Order System[39] 

 

It may clearly be seen that the displacements vary nonlinearly (sinusoidally) with time. 

However, when considering the displacements as sinusoidal vibrations, it may be seen that 

there exists a component for which the nature of the vibration varies with time (transient, 

𝑥𝑡 𝑡 ), and there exists a component for which the nature of the vibration is time-invariant 

(steady, 𝑥𝑠 𝑡 ). In particular, the amplitude of the transient component decays with time, 

whilst the amplitude of the steady component is constant in time. It is worth mentioning that 

the frequency of each component is constant with time. The response of the example system 

is shown in Figure 2.14, the total response may clearly be seen as the superposition of the 

transient and steady responses. 

This example highlights the essence of steady and unsteady response. A steady response is 

one in which the parameters which are used to describe the response are constant with time 

(in this example, the amplitude and frequency of the sinusoid). An unsteady response is one 

in which the describing parameters are time-variant (in this example, the amplitude of the 

sinusoid varied with time, although the frequency of the sinusoid remained constant). 
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Figure 2.14: Example of Transient and Steady Responses [39] 

 

Consider another example, in which the frequency of a sinusoidal response is linearly time 

variant. The sinusoid is described by: 

 𝑦 𝑡 = sin 𝜔𝑡  ( 2.24 ) 

in which: 

 𝜔 𝑡 = 1 +
𝑡

10𝜋
 ( 2.25 ) 

Although the amplitude remains constant with time, the vibration is clearly unsteady due to 

the time-variance in the frequency of the vibration. The response is depicted in Figure 2.15. 

If the change in the describing parameter of a response is small over the time period under 

consideration, the response may be considered to be quasi-steady for that time period. 

Effectively, the time-variant describing parameter (e.g., frequency) is evaluated at an instant 

in time, and for the purpose of dynamic analysis is assumed to remain time-invariant at that 

value over the time period of the analysis. 
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Figure 2.15: Example of a Sinusoid with Variable Frequency 

 

An unsteady response may be analysed by successive quasi-steady approximations, with the 

describing parameters of the response being updated at each (or at selected) time interval(s) 

to provide a more accurate representation of the unsteady response. A comparison of the 

results of single quasi-steady approximation and successive quasi-steady approximations is 

given in Figure 2.16 for the example sinusoid previously considered. 

In this example, for a single quasi-steady approximation (left-hand side plots), the frequency 

of the sinusoid is evaluated at the start of the time-window 𝑡 = 0, 𝜔 0 = 1 rad/s, and is 

assumed to remain at that value for the duration of the analysis, 0 ≤ 𝑡 ≤ 2𝜋 s. The actual 

wave-form is given by the solid line, whilst the quasi-steady approximation to the wave-form 

is shown as a dashed line. At each time step, the displacement 𝑦 at the next time step is 

predicted from the first evaluation of the sinusoid, 𝑦 = sin 𝜔 𝑡=0  𝑡 . 

For successive quasi-steady approximations, the frequency of the sinusoid is re-evaluated at 

each time-step, and a new approximation (shown as the dashed line) to the true wave-form 

(shown as the solid line) is made. At each time step, the displacement 𝑦 at the next time step 

is predicted from the current evaluation of the sinusoid, 𝑦 = sin 𝜔 𝑡=𝑡  𝑡 . It may be seen from 

Figure 2.16 that successive quasi-steady approximations yield better approximations to the 

unsteady process (sinusoid) than a single quasi-steady approximation. 
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Figure 2.16: Comparison of Quasi-Steady Approximations to Unsteady Phenomena 

 

Single quasi-steady approximation Successive quasi-steady approximations 
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It may be seen from the example and Figure 2.17 that the quasi-steady approximation can 

yield accurate results if applied over a sufficiently small time period (in which the change in 

the frequency is small). However, the error between the actual response and the approximated 

response grows with time, even when successive quasi-steady approximations are made. The 

size of the interval over which the successive quasi-steady approximations are made also has 

an influence on the accuracy of the representation. 

 

 

Figure 2.17: Comparison of the Effect of Time-Step in Quasi-Steady Approximations 
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2.4 Linearity and Nonlinearity 

In a spatially linear system, forces may be described as varying directly in only 𝑑 , 𝑣  and 𝑎 , 

without cross-coupling or higher order terms appearing. The forces may therefore be 

described in terms of the associated stiffness-, damping-, and mass-coefficient matrices. This 

is an important characteristic of linear or linearized systems. Another important characteristic 

of linear systems is that the principle of superposition may be used [39]. Thus, modal analysis 

may be used to solve the aeroelastic eigenproblem. Furthermore, the system response may 

generally be described with sufficient accuracy through considering the contributions of only 

the first few modes of the system, as the contribution from higher modes is generally 

negligible in comparison [40] -- this allows a potentially significant reduction in the order of 

the system. 

Non-linearity in a system may introduce coupling between terms. In considering the 

downwash contributions in piston theory (see Section 3.3), for example, it is seen that 

nonlinear downwash terms (𝑤2) introduce coupling between the thickness-dependent terms 

(𝑤0) and the motion-dependent terms (𝑤1). 

First-order downwash (linear):    𝑤 = 𝑤0 + 𝑤1           ( 2.26 ) 

Second-order downwash (nonlinear):   𝑤2 = 𝑤0
2 + 𝑤1

2 + 2𝑤0𝑤1         ( 2.27 ) 

The solution approach to a nonlinear system depends on whether the system is nonlinear in 

the unknown parameter being solver for. If the system is linear in the unknown parameter, the 

solution is straightforward. For a system that is nonlinear in the parameter being solved for, 

the solution will generally be arrived at iteratively. 

Nonlinearity may also be introduced into a linear system if the parameters of the system are 

time dependent, as may be illustrated through the following example. Consider a spring in 

which the stiffness is dependent on the deflection of the spring, depicted in Figure 2.18. The 

equilibrium of the system is given by: 

 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑  ( 2.28 ) 

where 

 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 𝑥 ( 2.29 ) 
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and 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘0 + 𝑘1𝑥 ( 2.30 ) 

and hence 

 𝑘1𝑥
2 + 𝑘0𝑥 = 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑  ( 2.31 ) 

 

 

Figure 2.18: Example of a Nonlinear Spring 

 

This is an example of a spatially nonlinear system. In this particular case, the system is 

nonlinear in the displacement 𝑥. The nonlinearity arises from the fact that the stiffness 

coefficient 𝑘𝑠𝑝𝑟𝑖𝑛𝑔  is not constant in 𝑥 -- it itself is a function of 𝑥. The example above is a 

static system. Consider an extension of the problem to a dynamic system through introducing 

a mass, and consider the free response of the system: 

 𝑚𝑥 + 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 𝑥 = 0 ( 2.32 ) 

where 

 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘0 + 𝑘1𝑥 ( 2.33 ) 

and 

 𝑥 = 𝑥 𝑡  ( 2.34 ) 

 𝑥 = 𝑥  𝑡  ( 2.35 ) 
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Whilst the above representation of the system is correct, it is not immediately obvious that the 

system is nonlinear in 𝑥 (since the stiffness coefficient 𝑘𝑠𝑝𝑟𝑖𝑛𝑔  is a function of 𝑥). If the 

equation is expanded, the spatial nonlinearity is more obvious: 

 𝑚𝑥 + 𝑘0𝑥 + 𝑘1𝑥
2 = 0 ( 2.36 ) 

In this formulation, it can be clearly seen that the system is a nonlinear differential equation 

with time-invariant coefficients 𝑚, 𝑘0, and 𝑘1. 

Consider the same problem in the original formulation, from equation ( 2.36 ): 

𝑚𝑥 + 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 𝑥 = 0 

In this formulation, it may be seen that since 𝑥 is time-variant (dynamic problem), the 

stiffness coefficient 𝑘𝑠𝑝𝑟𝑖𝑛𝑔  (which is a function of 𝑥) is time-variant by association. The 

system can thus be equivalently considered to be a linear differential equation with the time-

variant coefficients (although 𝑚 is time-invariant, 𝑘𝑠𝑝𝑟𝑖𝑛𝑔  is time-variant). 

Parameters may also be linear (or constant) or nonlinear in time. In the simplest case, 

consider the motion of a single degree of freedom: 

 𝑥 = 𝑎3𝑡 + 𝑎2 ( 2.37 ) 

 𝑥 = 𝑎3𝑡
2 + 𝑎2𝑡 + 𝑎1 ( 2.38 ) 

 𝑥 = 𝑎3𝑡
3 + 𝑎2𝑡

2 + 𝑎1𝑡 + 𝑎0 ( 2.39 ) 

in which 𝑎0, 𝑎1, 𝑎2 and 𝑎3 represent arbitrary constants. 

If the degree of freedom undergoes acceleration (whether linear or constant), the velocity will 

vary in one higher order of time (quadratic or linear), and the displacement will vary 

nonlinearly in time (cubic or quadratic). In considering the time-variation of a system, the 

concepts of a steady (or quasi-steady) and an unsteady system are used. 

2.4.1 Nonlinear effects 

A body undergoing large motions will be subject to nonlinear effects arising from structural 

nonlinearity and from nonlinear aerodynamics [41]. The system characteristic effectively 

becomes time-variant, and the structural response of the body is non-trivial. The response of 
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nonlinear systems may be very sensitive to initial conditions, such as initial velocity of the 

body [41]. A system exhibiting bounded response to a set of initial conditions may become 

unbounded for a small change in the initial conditions. A structure which is aeroelastically 

stable close to the critical flutter speed (decaying response) may become unstable if it is 

subjected to a sufficiently large perturbation. 

Limit-cycle oscillations (LCO) are an example of the effect of nonlinearity in aeroelastic 

systems. The unstable growth of oscillations post-flutter is attenuated, and a large-amplitude 

steady oscillation occurs; LCO may also occur when large oscillations dampen to smaller 

LCO. Limit-cycle oscillations may be obtained for dynamically-linearized aerodynamics 

coupled with a nonlinear structure [42], such as plates undergoing large deformations [41]. 

However, LCO due to fluid nonlinearities is not modelled when the fluid modelling is time-

linearized [42]. 

For further information on LCO and nonlinear effects in aeroelasticity, the reader is referred 

to Thomas et al [43] and Dotson et al [44]. 

2.5 Time Integration 

The Newmark-𝛽 time-integration scheme is broadly used for transient analysis of dynamic 

systems, and offers flexibility in implementation. Appropriate selection of the 𝛽 and 𝛾 

parameters allow for the use of various explicit or implicit schemes; numerical damping may 

also be introduced directly into the scheme through the parameter 𝛾. An outline of the 

Newmark-𝛽 method follows. Consider a system which is subjected to dynamic loading: 

 𝑀𝑢 + 𝐶𝑢 + 𝐾𝑢 = 𝐹 𝑡  ( 2.40 ) 

Fully knowing the initial conditions of the system at a time 𝑡, the velocity and displacement 

of the system at the next time-step may be expressed as follows [40]: 

 𝑢 𝑡+∆𝑡 = 𝑢 𝑡 + ∆𝑡  1 − 𝛾 𝑢 𝑡 + 𝛾𝑢 𝑡+∆𝑡  ( 2.41 ) 

 𝑢𝑡+∆𝑡 = 𝑢𝑡 + ∆𝑡𝑢 𝑡 +
 ∆𝑡 2

2
  1 − 2𝛽 𝑢 𝑡 + 2𝛽𝑢 𝑡+∆𝑡  ( 2.42 ) 

It may be shown [45] that the equations are in essence derived from a constant acceleration 

over the time-step; however, different parameters are used in deriving the expressions for 
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velocity (factor of 𝛾) and displacement (factor of 2𝛽). It may be seen that in the above 

equations, 𝑢 𝑡+∆𝑡 ≠
𝑑

𝑑𝑡
 𝑢𝑡+∆𝑡  unless 𝛾 = 2𝛽. 

The appropriate selection of the parameters 𝛾 and 𝛽 allows the Newmark-𝛽 method to be 

rendered equivalent to a number of other time-marching schemes. The parameters also 

influence the accuracy and numerical stability of the procedure. In particular, values of 𝛾 ≠
1

2
 

introduce numerical damping into the solution [40]. Katona et al [40] also provide an 

equation to estimate the error in the frequency for a particular set of time step ∆𝑡 and 𝛽: 

 

𝑇 

𝑇
=

2𝜋  
∆𝑡
𝑇
 

sin−1   1 −
𝑏2

4  

 ( 2.43 ) 

where 

 𝑏 =
2 −  1 − 2𝛽  2𝜋

∆𝑡
𝑇  

2

1 + 𝛽  2𝜋
∆𝑡
𝑇  

2  ( 2.44 ) 

where 
𝑇 

𝑇
 represents the ratio of the approximate (achieved by the numerical solution) period to 

the actual period. The trends generated by the equation diverge from the curves provided by 

Katona et al [40] around 
∆𝑡

𝑇
> 0.2, but agree for lower values. Farhat [46] provides estimates 

for error in periodicity and classifications of algorithms for particular pairs of 𝛾 and 𝛽 in 

Table 2.1. 

 

Table 2.1: Algorithm Selection Through Choice of Parameters in the Newmark-β Scheme [46] 

Algorithm 𝛾 𝛽 Stability limit   
∆𝑡

𝑇
 Periodicity error    

∆𝑇

𝑇
 

Central difference 
1

2
 0 0.318 −

𝜋2

6
 
∆𝑡

𝑇
 

2

 

Linear acceleration 
1

2
 

1

6
 0.551 

𝜋2

6
 
∆𝑡

𝑇
 

2

 

Average constant 

acceleration 

1

2
 

1

4
 ∞ 

𝜋2

3
 
∆𝑡

𝑇
 

2
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Katona et al [40] provide the following equation for the maximum time step allowable for 

numerical stability in the solution: 

 
∆𝑡

𝑇𝑚𝑖𝑛
≤

1

2𝜋
 

4

1 − 4𝛽
 ( 2.45 ) 

where 𝑇𝑚𝑖𝑛  is the shortest period of vibration of the system. 

Katona el at [40] suggest that provided the time step is chosen such that the highest frequency 

mode is numerically stable for the given algorithm, the accuracy-requirement on the time-

step of 
∆𝑡

𝑇𝑚𝑖𝑛
< 0.1 may be relaxed. The reasoning behind this is that in general the higher 

modes will have very low modal participation factors (modal displacements) compared to the 

lower modes. This means, even though the higher modes are integrated with significant error, 

their contribution to the overall response is negligible in comparison to the large participation 

factors of the dominant lower modes; the integration of the lower modes being more accurate 

due to their longer periods [40]. 

2.6 Characterization of Dynamic Aeroelastic Response 

The dynamics of linear time-invariant (LTI) second-order systems may be defined by the 

damped modal frequencies and modal damping ratios. For second-order LTI systems, these 

parameters are well defined, and are given by the eigenvalues of the system equations of 

motion. 

If, however, the system is second-order linear time-variant, the damping and stiffness 

matrices are changing with time. The eigenvalues of the system are therefore also time-

variant, and so the frequencies and damping ratios become time-variant. The time-variation 

of instantaneous frequencies and damping ratios may be insightful to the stability of the 

system, but a graphical representation of the response may provide a clearer representation of 

the physical response. In such cases, the time-history of the modal response may provide a 

better representation of the physical response; the stability of the response may be well 

represented by the phase-plane trajectory of the modal response. 
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The response of a nonlinear system may best be represented by the time-history of the modal 

response (as shown in Figure 2.19), or by the phase-plane trajectory of modal responses [44] 

(as shown in Figure 2.20). An example of the response of a nonlinear system is shown in 

Figure 2.19 for the Goland wing undergoing limit-cycle oscillations. It may be seen from the 

response that the concepts of instantaneous damping ratios and frequencies are insufficient to 

describe the system response. 

It has also been shown [47] that identification of a nonlinear aeroelastic system with a 

NARMAX model allows the nonlinear response to be accurately reproduced. 

 

 

Figure 2.19: Limit-Cycle Oscillations of the Goland Wing [48] 
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Figure 2.20: Examples of the Phase-Plane Representation of Limit-Cycle Oscillations [44] 

 

2.7 Aeroelastic Response at Airspeeds Below Flutter Speed 

Multi-mode aeroelastic flutter occurs when two aeroelastic modes excite one another; this is 

occurs as the frequencies of the two modes shift towards a coalesced frequency [49]. The 

damping of one of the coalescing modes will decrease and become negative, whilst the 

damping of the other mode increases. The frequency coalescence and damping separation of 

the two modes is a general trend for two-mode flutter, regardless of the flow regime 

(subsonic/supersonic) and sharpness of onset of flutter. These trends are shown in Figure 2.21 

and Figure 2.22. 
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Figure 2.21: Typical Trends in the Variation of Aeroelastic System Parameters with Airspeed [50] 

 

 

Figure 2.22: Variation of Aeroelastic System Parameters in Hypersonic Flow [1] 
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It may be seen that whilst the general trend of frequency coalescence is observed, the rate of 

coalescence varies. Together with this, the rate of separation of damping ratios also varies; it 

is proportional to the difference between the frequencies. The behaviour of the frequency and 

damping trends at conditions below the flutter speed are of great importance in the ability to 

predict flutter in flutter flight tests. "Hard" or "explosive" flutter is characterized by a very 

sharp decrease in the damping ratio of the flutter mode immediately prior to flutter, with no 

gradual decrease in damping ratio prior to the sharp drop [51]. The plot in the bottom-left of 

Figure 2.23 is an example of hard flutter. Flutter prediction methods that rely on damping-

ratio trends (such as the damping extrapolation method [51]) tend to give highly un-

conservative estimates of the flutter speed for systems which experience "hard flutter", as the 

sharp drop in damping cannot be predicted by these methods [51]. 

 

 

Figure 2.23: Example of the Variation in Aeroelastic System Parameters Produced by ZAERO [52] 
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2.8 Experimental Data for Supersonic Flutter of Cantilevered Plates 

The literature on experimental tests on flutter for cantilevered plates is relatively limited. 

More literature is available for test specimens which are free to rotate (with a spring 

providing the restoring moment) at the root; the literature in this regard is relatively broad in 

comparison to that for cantilevered wing models. The literature that is available for 

cantilevered wings with sharp leading-edges in supersonic flow may be roughly categorized 

by the geometry considered, and is represented by the following three groups: 

 low aspect-ratio (𝐴𝑅 < 0.5), highly swept (Λ𝐿𝐸 > 45°), highly tapered (or delta) 

planforms [12; 53], including the HSCT model [2], as depicted in Figure 2.24, 

 

Figure 2.24: A Typical Delta-Planform Cantilevered Plate in Literature 

 

 moderately low aspect-ratio (0.5 < 𝐴𝑅 < 3), swept (0° ≤ Λ𝐿𝐸 ≤ 60°), untapered 

(λ = 1) planforms [12; 53; 54; 55], as shown in Figure 2.25, 
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Figure 2.25: A Typical Untapered Cantilevered Plate in Literature 

 

 moderately low aspect-ratio (1 < 𝐴𝑅 < 2), swept (0 < Λ0.25𝑐 < 60°), tapered 

(0.2 < 𝜆 < 0.7) planforms [11; 53], as represented by Figure 2.26. 

 

Figure 2.26: A Typical Tapered Cantilevered Plate in Literature 
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Other literature (here, literature with purely computational modelling is included) is available 

for low-supersonic and transonic flow, largely focusing on wing profiles such as the NACA 

64A004 [55], NACA 65A004 [56; 57], and NACA 64A010 [58]. These airfoils cannot be 

analysed using shock-expansion theory, as they have rounded leading-edges. 

Amongst the literature for swept, untapered planforms, the publications on two series of tests 

are of particular interest: 

 Torii [54] and Matsuzaki [55] performed a wind-tunnel flutter test on a single geometry and 

provided estimates of the variation of modal parameters and flutter prediction metrics with 

dynamic pressure. The wing was found to undergo hard flutter. The results of Torii and 

Matsuzaki were used in the present work for the validation of computational aeroelastic 

analysis and flutter prediction in Chapter 5 and Chapter 6. 

Tuovali and McCarty [53] performed a battery of wind-tunnel flutter tests for various 

geometries at a set of Mach numbers, with experimental determination of the structural modal 

parameters by Hanson and Tuovila [59]. This provides an experimental reference case for 

validation of parametric studies (of geometry variation) in computational aeroelasticity. The 

test results serve as a validation of computational flutter prediction methods by Morgan et al 

[50], Chen et al [52], and Xianxin [60]. The results of the aforementioned authors were used 

in the present work for the validation of computational flutter prediction in Chapter 6. 

2.9 Flutter Prediction Methods 

The prediction of the flutter speed from measurements of structural response at subcritical 

speeds is a critical part of flutter flight testing. In performing flutter calculations for analytical 

systems (computational problems), several methods are available for calculating the flutter 

point; however, many of the classical methods rely on the aerodynamic loading being 

expressed in terms of the reduced frequency of motion, 𝑘. 

Where this is not possible, the aerodynamic transfer function 𝐻 𝑖𝜔  (in which 𝜔 represents 

angular frequency) may be deduced from the aerodynamic response to impulse inputs [42]. 

This allows for further calculations to be performed in the frequency domain. 
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Methods for flutter identification in the time domain are available [29], and do not require the 

aerodynamic response to a sweep of frequencies to be known. This is particularly useful in 

cases where the aerodynamic loading is calculated from CFD, where the computational cost 

of generating the aerodynamic transfer function may be prohibitively high. These time-

domain methods generally require some estimate of the damping ratio and frequency to be 

made, involving system identification. 

A number of linear flutter prediction methods were considered, and are briefly reviewed here. 

2.9.1 Zimmerman-Weissenburger Flutter Margin 

The Zimmerman-Weissenburger flutter margin was developed to predict two-mode flutter for 

a continuous-time system. The application of the method requires the eigenvalues of the 

aeroelastic system to be known; that is, the modal frequencies and damping ratios must be 

known. It is assumed that the response of the unforced aeroelastic system may be described 

as a damped sinusoidal oscillation[61]: 

 𝑴𝑥 + 𝑪𝑥 + 𝑲𝑥 = 0 ( 2.46 ) 

 𝑥 = 𝑥0𝑒
𝜆𝑡  ( 2.47 ) 

Let the eigenvalues be described by: 

 𝜆1,2 = 𝜍1 ± 𝑖𝜔1 ( 2.48 ) 

 𝜆3,4 = 𝜍2 ± 𝑖𝜔2 ( 2.49 ) 

Recall [39] that for a mode with damping ratio 휁, natural frequency 𝜔𝑛 , and damped 

frequency 𝜔𝑑 : 

 𝜆 = −휁𝜔𝑛 ± 𝑖𝜔𝑑  ( 2.50 ) 

This leads to a quartic characteristic equation [61], given here with coefficients 

normalized such that 𝜆4  has a coefficient of 1: 

 𝜆4 + 𝐴3𝜆
3 + 𝐴2𝜆

2 + 𝐴1𝜆 + 𝐴0 = 0 ( 2.51 ) 

The Routh-Hurwitz stability criterion may be applied, giving the limit for a stable 

system as [61]: 
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 𝐹𝑀 =  𝐴2  
𝐴1

𝐴3
 −  

𝐴1

𝐴3
 

2

+ 𝐴0 > 0 ( 2.52 ) 

This may be recast in terms of the real and imaginary parts of the eigenvalues as [62]: 

 

𝐹𝑀 =  
 𝜔2

2 − 𝜔1
2 

2
+
 𝜍2

2 − 𝜍1
2 

2
 

2

+ 4𝜍1𝜍2  
 𝜔2

2 + 𝜔1
2 

2
+ 2  

𝜍2 + 𝜍1

2
 

2

 

−   
𝜍2 − 𝜍1

𝜍2 + 𝜍1
 
 𝜔2

2 −𝜔1
2 

2
+ 2  

𝜍2 + 𝜍1

2
 

2

 

2

 

( 2.53 ) 

The flutter margin 𝐹𝑀 is seen to reach a value of 0 when the real part of either mode 

(and thus, the damping of the mode) becomes zero. 

It is noted [54; 61; 62] that the flutter margin varies quadratically with dynamic pressure 𝑞. 

Yildiz [62] also remarks that the  flutter margin is relatively insensitive to uncertainty in 

modal damping, whilst being sensitive to the modal frequencies (which may generally be 

obtained with much greater accuracy). Due to the monotonic behaviour of the flutter margin 

with dynamic pressure, it may be used for the prediction of flutter even when the system 

exhibits hard flutter [62]. 

2.9.2 Flutter Margin for Discrete Systems 

The flutter margin for discrete systems (FMDS) developed by Matsuzaki and Torii [54] is 

mathematically equivalent to the Zimmerman-Weissenburger flutter margin for two-mode 

flutter, as has been noted by several authors. The coefficients of the system characteristic are 

estimated from the coefficients of the auto-regressive moving average (ARMA) model used 

to describe the time-domain response of a body. The time-domain data is preprocessed 

through a bandpass filter to include only the frequencies of coupled modes [54], and is 

described at the time 𝑡 by 𝑦𝑡 . The system is assumed to contain white noise, represented by 

𝑒𝑡 . The ARMA model describing the system is then given [29; 54] by: 

 𝑦𝑡 +  𝛼𝑖𝑦𝑡−𝑖

𝑛

𝑖=1

= 𝑒𝑡 +  𝛽𝑖𝑒𝑡−𝑖

𝑚

𝑖=1

 ( 2.54 ) 

where 𝑛 is the order of the auto-regressive (AR) component, and 𝑚 is the order of the 

moving average (MA) component. 
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McNamara and Friedmann [29] suggest an alternative formulation, stating that one MA 

coefficient is sufficient to describe the aeroelastic static offset: 

 𝑦𝑡 +  𝛼𝑖𝑦𝑡−𝑖

𝑛

𝑖=1

= 𝛽1𝑒𝑡−1 ( 2.55 ) 

Recommendations on the selection of the orders 𝑛 and 𝑚 varies between authors depending 

on the application of the modelling. Torii [54] and Yildiz [62] recommend that for two-mode 

flutter, the order of the AR component should be 𝑛 = 4. Both these authors recommend that 

the MA component 𝑚 be determined by minimization of the Akaike Information Criteria, 

which is a measure of the goodness of fit of a statistical model [62]. Dimitriadis [61] 

recommends that in the absence of noise, the order of the AR component should be selected 

to be equal to twice the number of the modes 𝑛 = 4; however, with experimental noise, 

Dimitriadis recommends a selection of 𝑛 > 4. In both cases, Dimitriadis uses 𝑚 = 𝑛 − 1. 

Torii shows that the system characteristic 𝐺 𝑠  is then given[54] by: 

 𝐺 𝑠 = 𝑠4 + 𝛼1𝑠
3 + 𝛼2𝑠

2 + 𝛼3𝑠 + 𝛼4 ( 2.56 ) 

The Jury stability criterion is then applied, and the flutter margin for the 2-mode system is 

given [54] by: 

 𝐹𝑀𝑠 =
det 𝑋3 − 𝑌3  

 1 − 𝛼4 
2

 ( 2.57 ) 

where   𝑋3 =  
1 𝛼1 𝛼2

0 1 𝛼1

0 0 1
    and   𝑌3 =  

𝛼2 𝛼3 𝛼4

𝛼3 𝛼4 0
𝛼4 0 0

  

The flutter point is reached when 𝐹𝑀𝑠 reaches a value of 0. 

2.9.3 Damping Extrapolation 

Flutter is observed when the modal damping of one of the aeroelastic modes becomes zero. 

As the flight speed is increased towards flutter, the damping trends usually indicate a 

separation in the damping trends of the coalescing modes; that is, a decrease in the damping 

ratio of the flutter mode is generally observed close to flutter. The method of damping 

extrapolation considers the set of damping ratio data at a number of sub-critical speeds, and 
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through curve-fitting the data [61], extrapolates the trend to higher speeds. From this, the 

flutter speed is estimated as the point at which the extrapolated curve shows zero damping. 

The damping extrapolation method is one of the earliest methods used for flutter prediction 

[51]. However, the method may represent some difficulty in implementing due to the 

difficulty in extracting the modal damping [62] (due to low signal-to-noise ratios, or due to 

the inaccuracies in extracting modal data from measurements at individual points on the 

structure), or due to hard flutter [51; 62]. 

2.9.4 Envelope Function 

The envelope function is a simple method to estimate the closeness of the system to flutter 

through consideration of only the time-history of response to an impulse. The method offers 

no estimate of damping or frequency, but looks at the tendency of the response to decay. The 

envelope of oscillation will be larger as the damping in the system decreases, and the stability 

of the system is estimated by the bias of the data (the position of its centroid) towards the 

start or end of the time window; flutter is reached when the envelope is rectangular, and the 

centroid is approximately at the middle of the time window [61].  

The envelope may be calculated [62] from the Hilbert transform, 𝑦𝐻 𝑡 , of the signal (𝑦 𝑡 ) 

as: 

 𝑒𝑛𝑣 𝑡 =   𝑦 𝑡  
2

+  𝑦𝐻 𝑡  
2
 ( 2.58 ) 

The centroid of the envelope over the time window defined by 0 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥  is given[62] by: 

 𝑡 =
 𝑒𝑛𝑣 𝑡 𝑡𝑑𝑡
𝑡𝑚𝑎𝑥

0

 𝑒𝑛𝑣 𝑡 𝑑𝑡
𝑡𝑚𝑎𝑥

0

 ( 2.59 ) 

The shape factor of the envelope is defined by [61; 62]: 

 𝑆 =
1

𝑡 
 ( 2.60 ) 

For which the onset of flutter is indicated by the condition [61; 62]: 
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 𝑆𝐹 ≈
2

𝑡𝑚𝑎𝑥
 ( 2.61 ) 

The prediction of the onset of flutter is then achieved through curve-fitting the shape 

parameter at a number of sub-critical velocities and extrapolating. It must be noted that 

extrapolation of the shape parameter, due to it being an indirect damping estimate, is unable 

to predict the onset of hard flutter. The shape parameter may be redefined in order to be equal 

to indicate flutter by a value of zero as: 

 𝑆𝐹
∗ =

𝑡𝑚𝑎𝑥
𝑡 

− 2 ( 2.62 ) 

2.9.5 Analytical Methods 

A number of classical methods for calculating the flutter point are available, and are often 

implemented in software for aeroelastic analysis using panel method aerodynamics. A key 

aspect of these methods is that the motion of assumed to be described by either a damped or 

undamped sinusoid of a specified frequency, and the aerodynamic loading is calculated in 

terms of that frequency. Two of the classical flutter calculation methods that are outlined are 

the 𝑉-𝑔 method (also known as the American 𝑘 method [3]) and the 𝑝-𝑘 method (also known 

as the British flutter method [3]). 

2.9.5.1 V-g Method 

In the 𝑉-𝑔 method, motion is assumed to be purely sinusoidal: 

 𝑥 𝑡 = 𝑥0𝑒
𝑖𝜔  ( 2.63 ) 

The aerodynamic matrices are evaluated in terms of an assumed flutter frequency 𝜔; only 

artificial structural damping proportional to the stiffness matrix is assumed; the equations of 

motion become [63]: 

 −𝜔2𝑴𝒔𝒕𝒓 𝑥 +  1 + 𝑖𝑔 𝑲𝒔𝒕𝒓 𝑥 −
𝜌𝑉2

2
𝑸 𝑖𝑘  𝑥 = 0 ( 2.64 ) 
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where 𝑔 represents the artificial damping required to make the system oscillate 

harmonically -- this is negative for stable systems [64]; and 𝑸 𝑖𝑘  represents the GAFs 

evaluated for the specified 𝜌, and 𝑘. 

The problem is rearranged to give the following eigenvalue problem [63]: 

 Ω 𝑥 =  𝑲𝒔𝒕𝒓
−𝟏  𝑴𝒔𝒕𝒓 −

𝜌𝑐2

8𝑘2
𝑸 𝑖𝑘    𝑥  ( 2.65 ) 

where   Ω =  
1+𝑖𝑔

𝜔2
  

The solution procedure is as follows [63]: 

1. Specify the altitude (through 𝜌), 

2. For a sweep of 𝑘, calculate the GAFs and solve the eigenvalue problem 

For each eigenvalue 𝑧𝑖 = 𝑟𝑖 + 𝑖𝑠𝑖 , the following are obtained [63]: 

𝜔𝑖 =  
1

𝑠𝑖
 ,      𝑈∞ 𝑖

=
𝜔 𝑖𝑐

2𝑘
 ,   and   𝑔𝑖 =

𝑠𝑖

𝑟𝑖
 

3. Find the flutter speed as the speed at which 𝑔 becomes positive. 

4. Find the divergence speed as both 𝑔 and 𝜔 approach 0 for 𝑘 → 0. 

An advantage offered by the 𝑉-𝑔 method is that the divergence speed is found as a by-

product of the flutter calculation. 

2.9.5.2 p-k Method 

The 𝑝-𝑘 method assumes damped sinusoidal motion [65], in the form: 

 𝑥 𝑡 = 𝑥0𝑒
𝑝𝑡  ( 2.66 ) 

where   𝑝 = 𝜍 + 𝑖𝜔 

This allows the free response of the system to be written as: 

 𝑝2𝑴𝒔𝒕𝒓 𝑥 + 𝑝 𝑪𝒔𝒕𝒓 − 𝑪𝒂𝒆𝒓𝒐  𝑥 +  𝑲𝒔𝒕𝒓 −𝑲𝒂𝒆𝒓𝒐  𝑥 = 0 ( 2.67 ) 

This is seen to be an eigenvalue problem. The aerodynamic matrices have terms dependent 

on the Mach number, altitude, and reduced frequency of vibration, 𝑘. The solution procedure 

followed in the p-k method is outlined [65] below: 



47 

 

1. Specify altitude (through 𝜌) and Mach number (through 𝑈∞), 

2. Assume a value of 𝑘 (through 𝜔𝑎𝑠𝑠𝑢𝑚𝑒𝑑 ), where 𝑘 =
𝜔𝑐

2𝑈∞
, 

3. Compute the aerodynamic matrices 𝑲𝒂𝒆𝒓𝒐 and 𝑪𝒂𝒆𝒓𝒐 for the assumed values, 

4. Solve the eigenvalue problem for 𝑝, where 𝑝 = 휁𝜔𝑠𝑜𝑙𝑣𝑒𝑑 + 𝑖𝜔𝑠𝑜𝑙𝑣𝑒𝑑  for small values 

of damping, 

5. Check that the frequencies are matched: 𝜔𝑠𝑜𝑙𝑣𝑒𝑑 ≈ 𝜔𝑎𝑠𝑠𝑢𝑚𝑒𝑑 ? 

6. Iterate steps 2 through 5 as necessary to obtain a matched-point solution at the 

specified flight conditions, 

7. Sweep the altitude or Mach number (repeat steps 1 through 6 for different values in 

step 1) to obtain the variation in system parameters with altitude/Mach number and to 

obtain the flutter point. 

The 𝑝-𝑘 method provides matched-point solutions, and is useful in providing the variation of 

system parameters not only at the flutter point.  
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3 DEVELOPMENT OF PISTON THEORY 

3.1 Fundamental formulation 

The early development of piston theory is generally accredited to Lightill [66] around 1953, 

and was reviewed by Ashley and Zartarian [28] in 1956. Further developments and higher 

order theories were developed since; Liu [12] et al in 1997 reviewed the higher order 

expansions developed by several authors. The various higher order expressions differ to 

certain extents, due to differences in the fundamental formulation which the series-expansion 

is based upon, which will expanded upon below. McNamara et al [10] consider the 

similarities between Van Dyke's second-order theory and Lightill's piston theory, and 

consider some differences in the formulation of "classical" and "local" piston theory. 

The surface pressure on a body is calculated assuming that the downwash resulting from 

motion of the body and from the body shape can be modelled as a piston moving in a 1D 

cylinder. This is an application of the equivalence between steady flow in two dimensions 

around a surface and unsteady flow in one dimension in hypersonic/supersonic flows [13], as 

is shown in Figure 3.1. 

The various formulations of piston theory differ in the theoretical basis used to describe the 

instantaneous pressure on the surface of the piston; thereafter, the expression for the surface 

pressure is expanded in a binomial series to the order required. The equation for the surface 

pressure in Lighthill's piston theory is from the equations of 1D compressible flow for a 

piston generating isentropic simple waves [28]. The equation for pressure on a slightly curved 

wall in potential flow from Van Dyke's second-order theory [67] may also be expanded in a 

binomial series, yielding a similar expression to Lighthill's piston theory; for this reason, Van 
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Dyke's second-order theory is often referred to as second-order piston theory [10] (although 

the coefficients differ to those given by Lighthill). Donov [68] derives an expression up to the 

fourth-order for the pressure on the surface a gently curved wall from consideration of the 

Prandtl-Meyer function for flow expansion; the equation is for irrotational, isentropic flows 

resulting from small disturbances [68]. Donov suggests [68] that for small disturbances, the 

pressure on the surface due to flow compression (shock waves) may be approximated using 

the expression obtained from Prandtl-Meyer function.  

Lighthill's piston theory, based on the equations of 1D compressible isentropic flow, gives 

[28] the instantaneous pressure on the face of a as: 

 𝑃

𝑃𝑐𝑦𝑙
=  1 +

𝛾 − 1

2
 
𝑤

𝑎𝑐𝑦𝑙
  

2𝛾
 𝛾−1 

 ( 3.1 ) 

where 𝑤 is the downwash on the piston face, 𝑎𝑐𝑦𝑙  is the speed of sound at the reference 

point in the cylinder, and 𝑃𝑐𝑦𝑙  is the corresponding reference pressure. 

The pressure coefficient is by definition referenced to free-stream quantities. If the reference 

pressure in the cylinder, 𝑃𝑐𝑦𝑙 , is different to that of the free-stream pressure 𝑃∞ , an offset term 

is obtained for the pressure coefficient. The cylinder reference conditions depend on the 

reference frame in which piston theory is applied -- this is one of the differences between 

classical piston theory and local piston theory, which is discussed in Section 3.2.1 and 

Section 3.2.2. 

Consider that the binomial expansion for the surface pressure is given by: 

 
𝑃

𝑃𝑐𝑦𝑙
= 1 + 𝛾𝐸 ( 3.2 ) 

where 𝐸 denotes the series in the terms  
𝑤

𝑎𝑐𝑦𝑙
 , for generality. 

Referencing the surface pressure, 𝑃, to the free-stream conditions, one obtains: 

 𝐶𝑃 = 𝐶𝑃 𝑐𝑦𝑙 +  
𝑃𝑐𝑦𝑙

𝑃∞
 

2

𝑀∞
2 𝐸 ( 3.3 ) 

where 
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 𝐶𝑃 =
𝑃 − 𝑃∞

1
2
𝛾𝑃∞𝑀∞

2
 ( 3.4 ) 

 𝐶𝑃 𝑐𝑦𝑙 =
𝑃𝑐𝑦𝑙 − 𝑃∞
1
2
𝛾𝑃∞𝑀∞

2
 ( 3.5 ) 

 𝐸 =  𝑐1  
𝑤

𝑎𝑐𝑦𝑙
 + 𝑐2  

𝑤

𝑎𝑐𝑦𝑙
 

2

+ 𝑐3  
𝑤

𝑎𝑐𝑦𝑙
 

3

  ( 3.6 ) 

in which 𝑐1, 𝑐2 and 𝑐3 represent the coefficients associated with the binomial 

expansion of whichever pressure relation the piston theory is based upon. 

Equations ( 3.2 ), ( 3.3 ) and ( 3.6 ) in may be considered the generalized expressions for the 

pressure on the piston surface for any piston theory. No assumptions have been made 

regarding the cylinder reference conditions, and no assumptions (other than that the pressure 

series may be expressed in the form of equation ( 3.2 )) have been made regarding the 

pressure relation upon which the piston theory is based. 

It may be seen that if the cylinder reference conditions are chosen to be equal to the free-

stream conditions (classical piston theory), then: 

 𝑃𝑐𝑦𝑙 = 𝑃∞  ( 3.7 ) 

 𝑎𝑐𝑦𝑙 = 𝑎∞  ( 3.8 ) 

leading to the expression for the pressure coefficient at the piston surface from 

equations ( 3.2 ) and ( 3.6 ): 

 𝐶𝑃 =
2

𝑀∞
2  𝑐1  

𝑤

𝑎∞
 + 𝑐2  

𝑤

𝑎∞
 

2

+ 𝑐3  
𝑤

𝑎∞
 

3

  ( 3.9 ) 

This expression is equivalent to the equation given by Liu et al [12], with the coefficients 

obtained from various theoretical formulations provided [12] in Table 3.1 and Table 3.2. 
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Table 3.1: Comparison of Piston Theories and Associated Coefficients [12] 

𝐶𝑃 =
2

𝑀∞
2  𝑐1  

𝑤

𝑎∞
 + 𝑐2  

𝑤

𝑎∞
 

2

+ 𝑐3  
𝑤

𝑎∞
 

3

 ,              𝑚 =  𝑀2 − 1 

 
Lighthill's 

piston theory 

Van Dyke's 

second-order 

theory 

Busemann Donov 

𝑐1  1 
𝑀

𝑚
 

𝑀

𝑚
 

𝑀

𝑚
 

𝑐2  
𝛾 + 1

4
 

𝑀4 𝛾 + 1 − 4𝑚2

4𝑚4
 
𝑀4 𝛾 + 1 − 4𝑚2

4𝑚4
 
𝑀4 𝛾 + 1 − 4𝑚2

4𝑚4
 

𝑐3  
𝛾 + 1

12
 — 𝑐3 𝐵  𝑐3 𝐷  

 

 

Table 3.2: Comparison of Busemann and Donov Expansions [12] 

 Busemann Donov 

Equation 
𝑐3 𝐵 =  

1

6𝑚7
  𝑎𝑀8 + 𝑏𝑀6

+ 𝑐𝑀4 + 𝑑𝑀2 + 𝑒  

𝑐3 𝐷 =  
1

6𝑀𝑚7
  𝑎𝑀8 + 𝑏𝑀6 + 𝑐𝑀4

+ 𝑑𝑀2 + 𝑒  

𝑎  3  
𝛾 + 1

4
 

2

 𝛾 + 1 

𝑏  
3𝛾2 − 12𝛾 − 7

4
 2𝛾2 − 7𝛾 − 5 

𝑐  
9 𝛾 + 1 

2
 10 𝛾 + 1  

𝑑  −6 −12 

𝑒  4 8 
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3.2 Cylinder conditions 

The formulation presented thus far has remained general in terms of the specification of the 

cylinder reference conditions. These conditions are defined through the choice of the 

reference frame in which the cylinder is placed. The difference between classical piston 

theory and local piston theory arises primarily from the difference in reference frames 

applied. 

Consider a sectioning-plane, or "cutting plane" fixed in space. Also consider a body 

undergoing general motion (translation and rotation), passing through (normal to) the cutting 

plane at constant speed. For a 2D body or airfoil, the cutting plane is effectively a line in the 

plane of the airfoil -- it is a "cylinder" of infinitesimal width. The cylinder over time would 

show the movement of the loci of the upper and lower surfaces of the airfoil as it passes 

through the cutting plane, as shown in Figure 3.1. The loci of the surfaces are considered 

infinitesimally narrow "piston" surfaces moving down the length of a cylinder (the cutting 

plane) perpendicular to the freestream velocity vector, 𝑉∞ . 

 

Figure 3.1: Definition of the Cylinder in Piston Theory 

 

3.2.1 Classical piston theory 

In Lighthill's formulation of classical piston theory, one may consider the cylinder to be fixed 

in space (earth-fixed reference system), with the atmosphere at rest. Under these conditions, 

the cylinder conditions are given by the free-stream conditions; that is: 
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 𝑃𝑐𝑦𝑙 = 𝑃∞  ( 3.10 ) 

 𝑎𝑐𝑦𝑙 = 𝑎∞  ( 3.11 ) 

The reference conditions in classical piston theory are modelled as remaining unchanged as 

the body passes through the cylinder. The use of the free-stream conditions as cylinder 

reference conditions in equations ( 3.3 ) and ( 3.6 ) leads to the pressure on the surface of the 

piston given by Lighthill's classical piston theory [12]: 

 𝐶𝑃 =
2

𝑀∞
2   

𝑤

𝑎∞
 +  

𝛾 + 1

4
  

𝑤

𝑎∞
 

2

+  
𝛾 + 1

12
  

𝑤

𝑎∞
 

3

  ( 3.12 ) 

The cylinder-piston relationship in classical piston theory is shown in Figure 3.2 on page 55. 

3.2.2 Local piston theory 

In local piston theory, the cylinder is fixed to an axial location on the body, at a fixed height 

in space; movement of the body results in motion of the piston surfaces down the length of 

the cylinder, and there is no motion through the cylinder (through the cutting plane). This 

reference frame is analogous to the laboratory reference frame for a body mounted in a wind-

tunnel, with pitch and plunge motion permitted, but translation down the length of the test 

section restricted. The relationship between the cylinder and piston motion is shown in Figure 

3.3 on page 56. 

The choice of this reference frame renders the cylinder to be local (axially) to the body. For 

no motion of the body, the cylinder conditions are seen to be determined by the steady 

flowfield around the stationary body. In applying local piston theory, McNamara et al [10] 

use the local steady flow conditions as cylinder reference conditions. This may be motivated 

as follows. 

In each of the theoretical formulations from which the pressure equation has been 

derived for supersonic free-stream flow (that is: from Van Dyke's second-order theory 

[67], from isentropic Prandtl-Meyer expansion [12; 68], and from the oblique shock 

equations [12; 68]), the pressure equation derived gives the ratio of the surface pressure 

to the pressure in the undisturbed flow. The equations have the form: 
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𝑃

𝑃∞
= 1 + 𝛾  𝑐1  

𝑤

𝑎∞
 + 𝑐2  

𝑤

𝑎∞
 

2

+ 𝑐3  
𝑤

𝑎∞
 

3

  ( 3.13 ) 

In which the 𝑃∞  and 𝑎∞  are the undisturbed flow conditions. 

The equations for the piston pressure are derived for the steady flow around a stationary 

geometry from an undisturbed state. The same equations may be used to describe the 

unsteady pressure due to airfoil motion at a point in time. In an extension of the 

reasoning of equivalence in hypersonic/supersonic flow between unsteady flow in one 

dimension and steady flow in two dimensions, the unsteady flow at a point is modelled 

as being equivalent to the steady flow over the two-dimensional surface traced by the 

point through time. This is shown in Figure 3.4 on page 57. The undisturbed flow 

conditions for the surface in time correspond to the steady flow conditions for the 

stationary two-dimensional geometry. 

Thus, in local piston theory, the "undisturbed" (reference) conditions for the cylinder are 

taken to be the steady flow conditions at the piston surface for no motion of the airfoil. 

 𝑃𝑐𝑦𝑙 = 𝑃𝑠𝑠  ( 3.14 ) 

 𝑎𝑐𝑦𝑙 = 𝑎𝑠𝑠  ( 3.15 ) 

where the subscript "ss" denotes the local flow conditions at the mean steady state. 

This allows the same formulations of piston theory to be used through substitution of the 

local flow properties for cylinder conditions: 

 
𝑃

𝑃𝑠𝑠
= 1 + 𝛾  𝑐1  

𝑤

𝑎𝑠𝑠
 + 𝑐2  

𝑤

𝑎𝑠𝑠
 

2

+ 𝑐3  
𝑤

𝑎𝑠𝑠
 

3

  ( 3.16 ) 

where 𝑃 represents the total pressure at the surface of the piston, including the unsteady 

pressure due to motion. 

However, care should be taken to note that the pressure coefficient is still referenced to free-

stream conditions in local piston theory, i.e.: 

 𝐶𝑃 =
𝑃𝑠𝑠 − 𝑃∞
1
2 𝛾𝑃∞𝑀∞

2
+  

𝑃𝑠𝑠
𝑃∞
 

2

𝑀∞
2  𝑐1  

𝑤

𝑎ss
 + 𝑐2  

𝑤

𝑎𝑠𝑠
 

2

+ 𝑐3  
𝑤

𝑎𝑠𝑠
 

3

  ( 3.17 ) 
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Figure 3.2:The Piston-Cylinder Relationship in Classical Piston Theory 
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Figure 3.3: The Piston-Cylinder Relationship in Local Piston Theory 
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Figure 3.4: Equivalence Between Piston Theory and Van Dyke's Second Order Theory 

 

The essence of local piston theory, as noted by Zhang [11], is the dynamic-linearization of 

the flow; small perturbations about a mean steady flow are considered. It is assumed that the 

oscillation (or unsteady deviation from its mean location) of the airfoil surface is assumed to 

be small enough in amplitude that the local flowfield does not deviate significantly from its 

mean steady state. The mean steady flow solution is then obtained through another 

aerodynamic method (in the case of Zhang [11] et al, by a full Euler method), which may be 

accurately describe complex effects arising from airfoil geometry or flow conditions.  
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3.3 Downwash terms 

The downwash terms in piston theory, 
𝑤

𝑎𝑐𝑦𝑙
, arise due to "steady" and "unsteady" 

contributions; the "steady" contributions include effects due to the body shape, whilst the 

"unsteady" contributions arise from motion of the airfoil down the length of the cylinder. The 

general motion of a body, as shown in Figure 3.5, may be separated into what will be termed 

"steady" motion and "unsteady" motion without a loss in generality, as per Figure 3.6. 

 

Figure 3.5: General Motion for a 2-Dimensional Body 

 

 

Figure 3.6: "Steady" and "Unsteady" Motion of a Body in Piston Theory 

 

It may be seen that for steady motion, all time-derivatives of the motion are zero; in contrast, 

for unsteady motion, all time-derivatives of the motion (except in the direction of the steady 

motion) are non-zero. The steady motion may be aerodynamically modelled as steady flow 

over a stationary body; this will be done in considering the upwash contribution due to steady 

motion. Unsteady motion corresponds to pitch and plunge, as well as dynamic deformations 

of the camberline.  
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The downwash, 𝑤, on the piston face is given [28] by: 

 𝑤 =   
𝜕

𝜕𝑡
 + 𝑉𝑐𝑦𝑙  

𝜕

𝜕𝑋
  𝑧 ( 3.18 ) 

in which 𝑉𝑐𝑦𝑙  is the velocity in the cylinder parallel to the free-stream, 𝑋 is the 

coordinate parallel to the free-stream (the cylinder is perpendicular to 𝑋), and 𝑧 

represents the position of the piston in the cylinder. 

Here, the two sources of downwash are evident, and are shown in Figure 3.7 for classical 

piston theory in which the cylinder conditions are given by the free-stream. The first term in 

the equation, 
𝜕𝑧

𝜕𝑡
, consists of the unsteady contribution arising from motion of the piston down 

the cylinder, in particular from: 

 rigid body pitching of the airfoil, 

 rigid body plunging of the airfoil, 

 local dynamic deformations (vibration) of the airfoil surface. 

 

 

Figure 3.7: Contributions to Downwash in Piston Theory 
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The second term in the equation, 𝑉𝑐𝑦𝑙  
𝜕𝑧

𝜕𝑋
 , consists of "convection" terms, or a steady 

contribution from the body shape and angle of attack (as would arise from steady motion (see 

Figure 3.6) of the airfoil through the "cutting plane" (cylinder)); contributions to this term are 

from: 

 the local inclination of the chordline to the free-stream (angle of attack), 

 the local inclination of the camberline to the free-stream (including static 

deformations of the camberline), 

 the local rate of change of thickness down the chordline. 

These contributions to the downwash may also be deduced from a consideration of the 

disturbances produced, and considering the formulation of Van Dyke's second-order theory 

[67], adapted for comparison in Figure 3.4. 

Whilst the contribution of the body shape, flow incidence, and unsteady motion to downwash 

in piston theory are immediately obvious, the contribution to the flow physics requires a more 

thorough consideration of the piston theory modelling. To this end, the downwash equation is 

recast, following the notation of Liu et al [12], as: 

 𝑤 = 𝑤0 + 𝑤1 ( 3.19 ) 

where 

𝑤0 = 𝑉𝑐𝑦𝑙
𝜕𝑧

𝜕𝑋
       represents the contribution from body shape and angle of attack 

𝑤1 =
𝜕𝑧

𝜕𝑡
               represents the contribution from body motion 

The expressions for the surface pressure in piston theory are dependent on the series 

expansion in terms of the downwash. In order to maintain generality of description between 

the various formulations, let the downwash terms be considered in isolation; considering up 

to third-order terms: 

 𝑤  =    𝑤0    +    𝑤1 ( 3.20 ) 

 𝑤2 =    𝑤0
2    +    𝑤1

2      +    2𝑤0𝑤1 ( 3.21 ) 

 𝑤3 =    𝑤0
3    +    𝑤1

3      +    3𝑤0
2𝑤1    +    3𝑤0𝑤1

2 ( 3.22 ) 

  

coupled contributions 

uncoupled 

contributions 
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From the consideration of the downwash terms, it may be seen that from second-order 

terms and higher, coupling terms between the steady and the unsteady contributions 

arise. 

The 𝑤0, 𝑤0
2 and 𝑤0

3 terms represent the contribution to downwash arising purely from 

the steady motion of the airfoil. These terms effectively give the steady flow around the 

stationary airfoil. In a wind-tunnel analogy, these terms are for "wind on" and "motion 

off". 

The 𝑤1, 𝑤1
2 and 𝑤1

3 terms are associated with the unsteady motion of the airfoil. These 

terms account only for the motion of the airfoil surface down the length of the cylinder. 

In a wind-tunnel analogy, these terms are the downwash due to "wind off" with "motion 

on". 

The terms involving products of 𝑤0 and 𝑤1 (i.e., 2𝑤0𝑤1, 3𝑤0
2𝑤1, and 3𝑤0𝑤1

2) are 

coupled; these terms represent the nonlinear effects associated with a "wind on" and 

"motion on" state. 

Recall that the 𝑤0 terms are associated with the body shape and steady flow, whilst 𝑤1 terms 

are associated with body motion. When these terms are substituted into the expression for 

pressure, these terms will represent (to an extent) the aerodynamic stiffness and aerodynamic 

damping, respectively. 

Hence it may be seen that the second-order downwash term introduces thickness and angle of 

attack effects into the aerodynamic damping (through 2𝑤0𝑤1). 

The third-order introduces nonlinear damping with linear thickness dependency (through 

3𝑤0𝑤1
2), as well as extending the linear damping to include nonlinear thickness and angle of 

attack effects (through 3𝑤0
2𝑤1). 

3.3.1 Downwash terms in local piston theory 

In applying local piston theory, the reference conditions in the cylinder are set to the quasi-

steady flow conditions at the point in time under consideration. When the solution to the 

mean steady flow is obtained from other aerodynamic methods, the terms in the pressure 
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equation from local piston theory associated with the steady flow (𝑤0, 𝑤0
2 and 𝑤0

3) are 

replaced by the steady pressure calculated using the other methods. That is: 

 
𝑃

𝑃𝑠𝑠
= 1 + 𝛾  𝑐1  

𝑤1

𝑎𝑠𝑠
 + 𝑐2  

2𝑤0𝑤1 + 𝑤1
2

𝑎𝑠𝑠
2  + 𝑐3  

3𝑤0
2𝑤1 + 3𝑤0𝑤1

2 +    𝑤1
3

𝑎𝑠𝑠
3    ( 3.23 ) 

or, rearranging: 

 
𝑃

𝑃𝑠𝑠
= 1 + 𝛾   

𝑐1

𝑎𝑠𝑠
+

2𝑤0𝑐2

𝑎𝑠𝑠
2 +

3𝑤0
2𝑐3

𝑎𝑠𝑠
3  𝑤1 +  

𝑐2

𝑎𝑠𝑠
2 +

3𝑤0𝑐3

𝑎𝑠𝑠
3  𝑤1

2 +  
𝑐3

𝑎𝑠𝑠
3  𝑤1

3  ( 3.24 ) 

in which 𝑃𝑠𝑠  is the steady pressure calculated for the mean steady flow, and 𝑃 is the 

total pressure on the piston face. 

3.4 Third-order terms 

It has been shown [10; 12] that the third-order downwash terms in piston theory introduce 

nonlinear thickness and angle of attack effects on the aerodynamic damping, as well as 

increasing the order of the damping to two. 

Furthermore, the third-order terms in piston theory represent an important extension in the 

flow physics that is modelled relative to second-order piston theory. The coefficients of the 

third-order terms begin to differ between various piston theories due to the difference in the 

flow physics: a difference is shown [12; 68] to exist between the pressure due to isentropic 

expansion of the flow, and due to small compressions resulting in oblique shocks. 

Donov shows that effects from the leading-edge shock on an airfoil only enter into his 

expression for the pressure on the surface from third-order terms and higher; these effects 

include the vorticity caused by the shock [68]. Liu et al [12] similarly show that the pressure 

on the piston surface differs for shocks and expansions only from the third-order term 

onwards in piston theory; the approach adopted by Liu et al to show this is significantly 

shorter and simpler than the rigorous treatment of Donov [68], and is based on consideration 

of the expressions for the surface pressure in the hypersonic limit on a wedge in compression 

and expansion [12]. This is outlined as follows. 
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Consider the equations for 𝐶𝑃 as based on irrotational, isentropic expansions, and from 

oblique shocks: 

From the equation for the pressure due isentropic expansion in the hypersonic limit 

[12]: 

 𝐶𝑃 =
2

𝛾𝑀2   1 +
𝛾 − 1

2
𝐾 

2𝛾
𝛾−1

− 1  ( 3.25 ) 

This may be expanded to the third-order term to yield: 

 𝐶𝑃 =
2

𝑀2  𝐾 +  
𝛾 + 1

4
 𝐾2 +  

𝛾 + 1

12
 𝐾3  ( 3.26 ) 

It may be seen that the same coefficients are obtained as in Lighthill's piston 

theory [28], because the pressure equation which is subsequently expanded is the 

same [12]. 

From the equation for the pressure behind an oblique shock on a wedge in the 

hypersonic limit [12]: 

 𝐶𝑃 =
2𝐾2

𝑀2  
𝛾 + 1

4
+   

𝛾 + 1

4
 

2

+
1

𝐾2  ( 3.27 ) 

This may be expanded to the third-order term to yield: 

 𝐶𝑃 =
2

𝑀2
 𝐾 +  

𝛾 + 1

4
 𝐾2 +

 𝛾 + 1 2

32
𝐾3  ( 3.28 ) 

Here, the third-order term differs from that given by the pressure coefficient due 

to isentropic expansion. Liu et al [12] note that the difference in the coefficient, 

∆𝑐3 =  3𝛾2 − 2𝛾 − 5 96 < 0 , represents the rotationality in the flow due to the 

shock wave. 

In summary, the third-order terms in piston theory allow nonlinear thickness and angle of 

attack effects on aerodynamic damping to be modelled, and model the difference in flow 

physics for small disturbances between expansion and compression of the flow. 
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3.5 Generalized Formulation 

A generalized formulation of piston theory is put forward, which encompasses both classical 

piston theory and local piston theory through description of the pressure equation in terms of 

cylinder reference conditions. The specification of these reference conditions allows the 

general formulation to reduce to classical or local piston theory. The formulation is put 

forward as: 

 
𝑃𝑝𝑖𝑠𝑡𝑜𝑛
𝑃𝑐𝑦𝑙

= 1 + 𝛾  𝑐1  
𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 + 𝑐2  

𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 

2

+ 𝑐3  
𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 

3

  ( 3.29 ) 

in which the coefficients 𝑐1, 𝑐2, and 𝑐3 are given as in Table 3.1 and Table 3.2. The 

reference pressure and speed of sound in the cylinder, 𝑃𝑐𝑦𝑙  and 𝑎𝑐𝑦𝑙 , respectively, are 

determined by the application of classical or local piston theory. The downwash to be 

used in the pressure equation, 𝑤𝑐𝑦𝑙 , similarly depends on the reference system used in 

the piston theory. The differences are summarized in Table 3.3. 

 

Table 3.3: Definition of Terms in Generalized Piston Theory 

Variable Classical Piston Theory Local Piston Theory 

𝑃𝑐𝑦𝑙  𝑃∞  𝑃𝑠𝑠  

𝑎𝑐𝑦𝑙  𝑎∞  𝑎𝑠𝑠  

𝑤0 
𝑉∞

𝜕𝑧

𝜕𝑋
 𝑉𝑠𝑠

𝜕𝑧

𝜕𝑋
 

𝑤1 𝜕𝑧

𝜕𝑡
 

𝜕𝑧

𝜕𝑡
 

𝑤𝑐𝑦𝑙  𝑤0 + 𝑤1 𝑤1 

𝑤𝑐𝑦𝑙
2  𝑤0

2 + 2𝑤0𝑤1 + 𝑤1
2 2𝑤0𝑤1 + 𝑤1

2 

𝑤𝑐𝑦𝑙
3  𝑤0

3 + 3𝑤0
2𝑤1 + 3𝑤0𝑤1

2 + 𝑤1
3 3𝑤0

2𝑤1 + 3𝑤0𝑤1
2 + 𝑤1

3 

 



65 

 

The equation for the pressure coefficient is similarly given by: 

 𝐶𝑃 = 𝐶𝑃𝑐𝑦𝑙 +  
𝑃𝑐𝑦𝑙

𝑃∞
 

2

𝑀∞
2  𝑐1  

𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 + 𝑐2  

𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 

2

+ 𝑐3  
𝑤𝑐𝑦𝑙

𝑎𝑐𝑦𝑙
 

3

  ( 3.30 ) 

where 

 𝐶𝑃𝑐𝑦𝑙 =
𝑃𝑐𝑦𝑙 − 𝑃∞
1
2 𝛾𝑃∞𝑀∞

2
 ( 3.31 ) 

It may be shown that the generalized formulation reduces to that given by Liu et al [12] when 

cylinder conditions are chosen corresponding to classical piston theory. Similarly, if the 

cylinder conditions are assumed to be equal to the steady flow conditions at the surface of the 

body, the equation reduces to that used by Zhang et al [11] in using first-order local piston 

theory. 

From consideration of the similarity in the theoretical basis of the formulation of piston 

theory to that of Van Dyke's second order theory, and the similarity by extension to the work 

by Donov [68], it is recommended that the coefficients provided for Donov's third-order 

formulation by Liu et al [12] be evaluated with due consideration of the cylinder conditions. 

3.6 Physical Effects Modelled by Classical Piston Theory 

Having established the "steady" and "unsteady" contributions to the downwash terms, further 

insight may be obtained into the modelling achieved by piston theory through consideration 

of the contributions to the "steady" term of thickness, camber, and angle-of-attack effects. In 

considering the physical effects modelled, the analysis will be limited to classical piston 

theory. The physical interpretation may be extended to local piston theory as well. 

Consider that the steady downwash 𝑤0 consists of downwash from the thickness distribution 

(𝑤𝑡), downwash from the camber distribution (𝑤𝑐), and downwash from the angle-of-attack 

(𝑤𝛼 ), as shown in Figure 3.8. 

 𝑤0 = 𝑤𝑡 + 𝑤𝑐 + 𝑤𝛼  ( 3.32 ) 
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It may be seen from the Figure 3.8 that for the camber and angle-of-attack contributions, the 

flow turning angle at a point differs for the upper and lower surfaces; though the magnitude 

of the angle is the same, the flow is alternately turned into or away from itself, resulting in 

compression or expansion, respectively. 

 

Figure 3.8: Contributions to the Steady Downwash Terms 

In the following development, the camber and angle-of-attack contributions will be referred 

to as "anti-symmetric" between the upper and lower surfaces; the thickness contribution to 

the downwash may be seen to be "symmetric" between the surfaces. It is seen that: 

 𝑤𝑡𝑈 = 𝑤𝑡𝐿  ( 3.33 ) 

 𝑤𝑐𝑈 = −𝑤𝑐𝐿  ( 3.34 ) 

 𝑤𝛼𝑈 = −𝑤𝛼𝐿  ( 3.35 ) 

where the subscripts "U" and "L" denote the upper and lower surfaces, respectively. 

Extending this classification to the unsteady contribution to downwash, 𝑤1, it may be seen 

that it is anti-symmetric. 

 𝑤1𝑈 = −𝑤1𝐿  ( 3.36 ) 

The classification of the downwash contributions is summarized on page 71. The symmetry 

or anti-symmetry of the downwash terms becomes important when computing the lift and 
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moment about the airfoil, as this involves the difference between the pressures on the upper 

and lower surfaces. 

For classical piston theory, the pressure coefficient on the surface of the airfoil is given by 

 𝐶𝑃 =
2

𝑀∞
2  𝑐1  

𝑤

𝑎∞
 + 𝑐2  

𝑤

𝑎∞
 

2

+ 𝑐3  
𝑤

𝑎∞
 

3

  ( 3.37 ) 

in which the coefficients 𝑐1, 𝑐2, and 𝑐3 are determined by the piston theory selected, as 

detailed in Table 3.1 and Table 3.2. 

The normal-force coefficient for a 2D airfoil is given by 

 𝐶𝑁 =
1

𝑐
  𝐶𝑃𝐿 − 𝐶𝑃𝑈  𝑑𝑋 ( 3.38 ) 

in which 𝑐 is the airfoil chord, and 𝑋 is the chordwise coordinate. 

Thus, it is seen that the lift is proportional to the difference in pressure between the upper and 

lower surfaces. For classical piston theory, in which the coefficients 𝑐1, 𝑐2, and 𝑐3 are 

computed for the same conditions (𝑀∞  and 𝑎∞) for the upper and lower surfaces, the 

difference in pressure will then be directly proportional to the difference in downwash. That 

is, 

 𝐶𝑃𝐿 − 𝐶𝑃𝑈 =
2𝑐1

𝑎∞𝑀∞
2
 𝑤𝐿 −𝑤𝑈 +

2𝑐2

𝑎∞
2 𝑀∞

2
 𝑤𝐿

2 −𝑤𝑈
2 +

2𝑐3

𝑎∞
3 𝑀∞

2
 𝑤𝐿

3 −𝑤𝑈
3  ( 3.39 ) 

The influence of the symmetry or anti-symmetry in downwash terms between the upper and 

lower surface may thus be seen to directly influence their contribution to the lift modelled by 

piston theory. The contributions of the terms in various orders of piston theory will now be 

investigated. 

Introduce the notation ∆ to represent the difference between the lower and upper surfaces of 

some quantity, as below: 

 ∆𝑤 ≡ 𝑤𝐿 −𝑤𝑈  ( 3.40 ) 

where for higher-order terms, for example: 

 ∆𝑤2 ≡ 𝑤𝐿
2 −𝑤𝑈

2 ( 3.41 ) 
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and where for mixed terms, for example: 

 ∆ 𝑤0𝑤1 = 𝑤0𝐿𝑤1𝐿 −𝑤0𝑈𝑤1𝑈  ( 3.42 ) 

Equation ( 3.39 ) may then be re-written as: 

 𝐶𝑃𝐿 − 𝐶𝑃𝑈 =
2𝑐1

𝑎∞𝑀∞
2
 ∆𝑤 +

2𝑐2

𝑎∞
2 𝑀∞

2
 ∆𝑤2 +

2𝑐3

𝑎∞
3 𝑀∞

2
 ∆𝑤3  ( 3.43 ) 

It may be shown that the difference ∆ for terms which are symmetric between the upper and 

lower surfaces will be zero; the difference ∆ will be non-zero for anti-symmetric terms. 

Consider for example, the thickness contribution and the camber contribution: 

symmetric:    ∆𝑤𝑡 = 𝑤𝑡𝐿 − 𝑤𝑡𝑈 = 𝑤𝑡𝐿 −  𝑤𝑡𝐿 = 0 

anti-symmetric:    ∆𝑤𝑐 = 𝑤𝑐𝐿 −𝑤𝑐𝑈 = 𝑤𝑐𝐿 −  −𝑤𝑐𝐿 = 2𝑤𝑐𝐿  

Similarly, it may be shown that the multiplication of symmetric and anti-symmetric terms 

follows the guidelines outlined in the 2x2 matrix of Table 3.4. 

Table 3.4: Multiplication of Symmetric and Anti-Symmetric Terms 

Terms multiplied: Symmetric Anti-symmetric 

Symmetric Symmetric Anti-symmetric 

Anti-symmetric Anti-symmetric Symmetric 

 

For example, consider the following symmetric/anti-symmetric multiplication: 

 ∆ 𝑤𝑡𝑤𝑐 = 𝑤𝑡𝐿𝑤𝑐𝐿 −𝑤𝑡𝑈𝑤𝑐𝑈  ( 3.44 ) 

 ∴ ∆ 𝑤𝑡𝑤𝑐 = 𝑤𝑡𝐿𝑤𝑐𝐿 −   𝑤𝑡𝐿  −𝑤𝑐𝐿   ( 3.45 ) 

 ∴ ∆ 𝑤𝑡𝑤𝑐 = 2𝑤𝑡𝐿𝑤𝑐𝐿 ≠ 0 ( 3.46 ) 

Furthermore, for an anti-symmetric/anti-symmetric multiplication: 

 ∆ 𝑤𝑐
2 = 𝑤𝑐𝐿

2 −𝑤𝑐𝑈
2  ( 3.47 ) 

 ∴ ∆ 𝑤𝑐
2 = 𝑤𝑐𝐿

2 −  −𝑤𝑐𝐿  −𝑤𝑐𝐿  ( 3.48 ) 

 ∴ ∆ 𝑤𝑐
2 = 𝑤𝑐𝐿

2 −𝑤𝑐𝐿
2 = 0 ( 3.49 ) 
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To gain insight into the contributions of the downwash terms to lift, as in equation ( 3.43 ), 

the difference in the downwash terms must be considered. The downwash terms may be 

expanded as follows. 

First-order downwash terms: 

 𝑤 = 𝑤0 + 𝑤1 ( 3.50 ) 

with 

 𝑤0 = 𝑤𝑡 + 𝑤𝑐 + 𝑤𝛼  ( 3.51 ) 

Second-order downwash terms: 

 𝑤2 =  𝑤0
2 + 𝑤1

2 + 2𝑤0𝑤1 ( 3.52 ) 

in which 

 𝑤0
2 = 𝑤𝑡

2 + 𝑤𝑐
2 + 𝑤𝛼

2 + 2𝑤𝑡𝑤𝑐 + 2𝑤𝑡𝑤𝛼 + 2𝑤𝛼𝑤𝑐  ( 3.53 ) 

Third-order downwash terms: 

 𝑤3 =  𝑤0
3 + 𝑤1

3 +  3𝑤0
2𝑤1 + 3𝑤0𝑤1

2  ( 3.54 ) 

where 

 
𝑤0

3 =  𝑤𝑡
3 + 𝑤𝑐

3 + 𝑤𝛼
3 +  3 𝑤𝛼 + 𝑤𝑐 𝑤𝑡

2 + 3 𝑤𝛼 + 𝑤𝑡 𝑤𝑐
2 + 3 𝑤𝑡 + 𝑤𝑐 𝑤𝛼

2 

+ 6𝑤𝑡𝑤𝛼𝑤𝑐  
( 3.55 ) 

 

The difference equations may then be expressed as follows. 

First-order downwash terms: 

 ∆𝑤 = ∆𝑤0 + ∆𝑤1 ( 3.56 ) 

with 

 ∆𝑤0 = ∆𝑤𝑡 + ∆𝑤𝑐 + ∆𝑤𝛼  ( 3.57 ) 
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Second-order downwash terms: 

 ∆𝑤2 =  ∆𝑤0
2 + ∆𝑤1

2 + 2∆ 𝑤0𝑤1  ( 3.58 ) 

in which 

 ∆𝑤0
2 = ∆𝑤𝑡

2 + ∆𝑤𝑐
2 + ∆𝑤𝛼

2 + 2∆(𝑤𝑡𝑤𝑐)  + 2∆ 𝑤𝑡𝑤𝛼 + 2∆(𝑤𝛼𝑤𝑐) ( 3.59 ) 

and 

 ∆ 𝑤0𝑤1 = ∆ 𝑤𝑡𝑤1 + ∆ 𝑤𝑐𝑤1 + ∆ 𝑤𝛼𝑤1  ( 3.60 ) 

 

Third-order downwash terms: 

 ∆𝑤3 =  ∆𝑤0
3 + ∆𝑤1

3 +  3∆ 𝑤0
2𝑤1 + 3∆ 𝑤0𝑤1

2   ( 3.61 ) 

where 

 

∆𝑤0
3 =  ∆𝑤𝑡

3 + ∆𝑤𝑐
3 + ∆𝑤𝛼

3 

+  3∆ 𝑤𝛼𝑤𝑐
2 + 3∆ 𝑤𝑡𝑤𝑐

2 + 3∆ 𝑤𝛼𝑤𝑡
2 + 3∆ 𝑤𝑐𝑤𝑡

2 + 3∆ 𝑤𝑡𝑤𝛼
2 

+ 3∆ 𝑤𝑐𝑤𝛼
2  + 6∆ 𝑤𝑡𝑤𝛼𝑤𝑐  

( 3.62 ) 

and 

 
∆ 𝑤0

2𝑤1 = ∆ 𝑤𝑡
2𝑤1 + ∆ 𝑤𝑐

2𝑤1 + ∆ 𝑤𝛼
2𝑤1 + 2∆ 𝑤𝛼𝑤𝑐𝑤1 + 2∆ 𝑤𝑡𝑤𝑐𝑤1 

+ 2∆ 𝑤𝛼𝑤𝑡𝑤1  
( 3.63 ) 

finally 

 ∆ 𝑤0𝑤1
2 = ∆ 𝑤𝑡𝑤1

2 + ∆ 𝑤𝑐𝑤1
2 + ∆ 𝑤𝛼𝑤1

2  ( 3.64 ) 

 

The symmetry and anti-symmetry of the downwash terms determine whether the difference 

in the terms will be zero or non-zero; the differences of the various terms are given in Table 

3.5 through Table 3.7.  
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Table 3.5: First-Order Downwash Terms and Differences 

Term 𝑥 Difference ∆𝑥 

𝑤𝑡  0 

𝑤𝑐  ≠ 0 

𝑤𝛼  ≠ 0 

𝑤1 ≠ 0 

 

Table 3.6: Second-Order Downwash Terms and Differences 

Term 𝑥 Difference ∆𝑥 Term 𝑥 Difference ∆𝑥 

𝑤𝑡
2 0 𝑤𝑐𝑤𝛼  0 

𝑤𝑐
2 0 𝑤𝑡𝑤1 ≠ 0 

𝑤𝛼
2 0 𝑤𝑐𝑤1 0 

𝑤𝑡𝑤𝑐  ≠ 0 𝑤𝛼𝑤1 0 

𝑤𝑡𝑤𝛼  ≠ 0 𝑤1
2 0 

 

Table 3.7: Third-Order Downwash Terms and Differences 

Term 𝑥 
Difference 

∆𝑥 
Term 𝑥 

Difference 

∆𝑥 
Term 𝑥 

Difference 

∆𝑥 

∆𝑤𝑡
3 0 3∆ 𝑤𝛼

2𝑤𝑡  0 6∆ 𝑤𝑡𝑤𝛼𝑤1  0 

∆𝑤𝑐
3 ≠ 0 3∆ 𝑤𝛼

2𝑤𝑐  ≠ 0 6∆ 𝑤𝑐𝑤𝛼𝑤1  ≠ 0 

∆𝑤𝛼
3 ≠ 0 6∆ 𝑤𝑡𝑤𝑐𝑤𝛼  0 3∆ 𝑤𝑡𝑤1

2  0 

3∆ 𝑤𝑡
2𝑤𝑐  ≠ 0 3∆ 𝑤𝑡

2𝑤1  ≠ 0 3∆ 𝑤𝑐𝑤1
2  ≠ 0 

3∆ 𝑤𝑡
2𝑤𝛼  ≠ 0 3∆ 𝑤𝑐

2𝑤1  ≠ 0 3∆ 𝑤𝛼𝑤1
2  ≠ 0 

3∆ 𝑤𝑐
2𝑤𝑡  0 3∆ 𝑤𝛼

2𝑤1  ≠ 0 𝑤1
3 ≠ 0 

3∆ 𝑤𝑐
2𝑤𝛼  ≠ 0 6∆ 𝑤𝑡𝑤𝑐𝑤1  0   
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In summary, the contributions to the pressure difference between the upper and lower 

surfaces on an airfoil for classical piston theory may be given as: 

 ∆𝐶𝑃 = ∆𝐶𝑃1
+ ∆𝐶𝑃2

+ ∆𝐶𝑃3
 ( 3.65 ) 

where, from considerations of symmetry, the orders of contribution are given by: 

First-order pressure difference: 

 ∆𝐶𝑃1
=

2𝑐1

𝑎∞𝑀∞
2
 ∆𝑤𝑐 + ∆𝑤𝛼  +

2𝑐1

𝑎∞𝑀∞
2
 ∆𝑤1  ( 3.66 ) 

Second-order pressure difference: 

 ∆𝐶𝑃2
=

2𝑐2

𝑎∞
2 𝑀∞

2
 2∆ 𝑤𝑡𝑤𝑐 + 2∆ 𝑤𝑡𝑤𝛼  +

2𝑐2

𝑎∞
2 𝑀∞

2
 2∆ 𝑤𝑡𝑤1   ( 3.67 ) 

Third-order pressure difference: 

∆𝐶𝑃3
= 

2𝑐3

𝑎∞
3 𝑀∞

2
 ∆𝑤𝑐

3 + ∆𝑤𝛼
3 + 3∆ 𝑤𝛼𝑤𝑡

2 + 3∆ 𝑤𝛼𝑤𝑐
2 + 3∆ 𝑤𝑐𝑤𝛼

2   

+
2𝑐3

𝑎∞
3 𝑀∞

2
 3∆ 𝑤𝑡

2𝑤1 + 3∆ 𝑤𝑐
2𝑤1 + 3∆ 𝑤𝛼

2𝑤1 + 6∆ 𝑤𝑐𝑤𝛼𝑤1   

+
2𝑐3

𝑎∞
3 𝑀∞

2
 3∆ 𝑤𝑐𝑤1

2 + 3∆ 𝑤𝛼𝑤1
2   

+
2𝑐3

𝑎∞
3 𝑀∞

2
 ∆𝑤1

3  

( 3.68 ) 

The following conclusions may be drawn regarding the physical contributions to lift in 

classical piston theory: 

First-order piston theory models lift as directly proportional to the downwash resulting 

from the camber of the profile and the angle of attack. No coupling is modelled. Linear 

damping (proportional to 𝑤1) is modelled. 

Second-order piston theory adds thickness effects to the first-order damping term in the 

pressure difference. In the steady contribution to lift, it is seen that thickness effects on 

the linear contribution from angle-of-attack and from camber are included. Second-

order piston theory thus adds thickness effects to both the steady and unsteady 

contributions to lift. 
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Third-order piston theory includes nonlinear thickness, camber, and angle-of-attack 

effects in the steady contribution to the lift. This marks a jump in the degree of 

modelling, as second-order theory only adds thickness effects to otherwise linear terms 

in camber and angle-of-attack. Similarly, nonlinear effects on linear damping are 

added, and nonlinear damping terms are introduced. 

First-order classical piston theory is thus seen to ignore thickness effects in both the steady 

and unsteady lift. Thickness effects are only introduced from second-order piston theory, with 

nonlinear thickness effects only being modelled by third-order piston theory. With regards to 

the steady contribution to lift, first-order classical piston theory may be shown to reduced to 

supersonic linearized theory [69]. Nonlinearity in the steady and unsteady contributions to lift 

is only modelled from third-order piston theory; nonlinear thickness, camber, and alpha 

effects are modelled for the steady contribution. 

This is reflected in the comparison made by Zhang et al [11] between the flutter speeds given 

by various orders of piston theory for a 4% thickness circular arc airfoil, with the effect of 

Mach number shown in Figure 3.9 (for 𝛼 = 5°) and the effect of angle of attack shown in 

Figure 3.10 (for 𝑀 = 6); in Figure 3.10 the trends of first-order and second-order classical 

piston theory are the same, with an offset in flutter velocity index being introduced by 

thickness effects. The change in trends with angle-of-attack is only noted for piston theory of 

order greater than 2. 

The reader is reminded that in first-order local piston theory, linear damping is modelled, 

with no coupling between effects on damping. From Figure 3.10 it is seen that the aeroelastic 

behaviour of the airfoil is accurately modelled with first-order damping (through first-order 

local piston theory) if the nonlinearities in the steady contribution are accurately described. 

The more approximate modelling of the steady contribution by classical piston theory is 

clearly seen to lead to poorer modelling of the aeroelastic behaviour. The importance of the 

nonlinear effects in the steady contribution is highlighted in Figure 3.10 through the 

improvement in the modelling of the aeroelastic trends in extension to classical piston theory 

of order greater than two; this supports McNamara's assertion of the importance of thickness 

effects in hypersonic flows [1]. It is also seen that the modelling of the coupling between 

linear terms in the steady contribution that is achieved in second-order classical piston theory 

reduces the error in modelling at low angles of attack (see Figure 3.10), but does not correct 

the incorrect modelling of the trend with angle-of-attack.  
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Figure 3.9: Comparison of Mach Number Effects Between Piston Theories for a 4% Circular Arc Airfoil [11] 

 

 

Figure 3.10: Comparison of Angle-of-Attack Effects Between Piston Theories for a 4% Circular Arc Airfoil [11] 

  

𝜶 = 𝟓° 

𝑴 = 𝟔 
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4 DEVELOPMENT OF A FINITE ELEMENT BASED 

AEROELASTIC PREDICTION TOOL IN MATLAB FOR 

CANTILEVERED PLATES IN SUPERSONIC FLOWS 

4.1 Geometry and Material Properties of the Analysed Cantilevered Plate  

The analysis developed in MATLAB using approximate aerodynamic modelling and finite 

elements is limited in the geometries it may be applied to. The use of shock-expansion theory 

limits the plate geometry to a plate with sharpened leading- and trailing-edges; furthermore, 

the degree of sharpening is determined by the flow conditions -- the shock must remain 

attached. 

The use of the structural mesh for approximate aerodynamic modelling dictates that the wing-

tip be parallel to the root. This is so that the loci of trapezoidal element edges form chordwise 

lines (parallel to the free-stream) along which shock-expansion theory is applied. 

The finite element formulation that was implemented places further limitations on the range 

of geometries. The use of four-noded quadrilateral elements limits the plate planform to being 

trapezoidal; the trapezoid may be stepped, but the leading- and trailing-edges may not have 

discontinuities (e.g. dogtooth). The plate mechanics upon which the elements are modelled 

requires that the thickness distribution about the camberline be symmetrical; furthermore, the 

thickness-to-chord ratio should be sufficiently small 
𝑡

𝑐
≤ 0.10. 

The finite element formulation assumed that the material of the plate is isotropic and linear. 
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For more information on the finite element formulation used, the reader is referred to 

Appendix B. 

4.2 Structural Modelling of the Plate Using Finite Elements 

The plate was modelled using 4-noded bilinear quadrilateral bending panel elements, based 

on Mindlin-Reissner plate mechanics (see Appendix B). The modelling of the cantilevered 

plate reduced the structural representation of the plate to a 2D plane passing through the 

camberline of the plate. Elements were modelled with a bilinear thickness distribution over 

the surface of the element; this allowed the thickness to taper in both the spanwise and 

chordwise directions. The deformation of points on the physical surface of the plate was 

obtained through adding the symmetrical thickness distribution to the deformation of the 

camberline. 

The equations used for in the modelling of the plate-mechanics modelled each structural node 

as having three degrees of freedom (DOF) -- a transverse deflection, and two fibre rotations. 

(the reader is referred to the Appendix B). The cantilevered boundary-condition of the plate 

was modelled by restraining all three DOFs of each node in the root of the plate. 

The mass-matrix was formulated using lumped masses; the plate was modelled with uniform 

density, with no additional masses (e.g. mass balances) present. 

Stress-smoothing was applied in post-processing to smoothen the stresses across nodes. 

The plate was modelled as being subjected to bilinearly distributed transverse loading only 

(no point loads were included, other than reaction forces at the root). The resultant forces 

acting on the plate were resolved into components along each of the axes of the coordinate 

system; however, the contribution of non-transverse forces to the plate loading was not 

included. 

The coordinate system used in the structural modelling is shown in Figure 4.1: 
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Figure 4.1: Coordinate System Definition for Structural Analysis and Structural Discretization 

 

The range of validity of the linear plate equations is limited to transverse deflections of the 

order of the plate thickness. 

4.3 Aerodynamic Modelling of the Plate Using Shock-Expansion Theory and Piston 

Theory 

The application of local piston theory to model the damping of a body undergoing small 

oscillations about a mean steady state has been shown [10; 11] to compare very well (see 

Figure 2.10) to time-accurate Navier-Stokes modelling. This motivated the current attempt to 

model the aerodynamics of a vibrating plate through the use of local piston theory to 

calculate the damping terms, and the use of an approximate aerodynamic model (shock-

expansion theory) to model the mean steady flow about the plate. The combination of piston 

theory with approximate steady aerodynamic models has been investigated previously, with 

the combination of piston theory with conical flow theory being investigated by Xianxin [60]. 

In the current work, shock-expansion theory has been used to model the contribution to the 

aerodynamic loading from the plate deformation and shape, whilst local piston theory has 
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been used to model the damping contribution. The coefficients in local piston theory and the 

cylinder conditions are calculated from the local steady flow conditions as modelled by 

shock-expansion theory. The aerodynamic loading is thus given as: 

 𝐹𝑎𝑒𝑟𝑜 = 𝐹𝑆𝐸 + 𝐹𝑃𝑇  ( 4.1 ) 

where 

 𝐹𝑆𝐸 = 𝑓𝑛𝑆𝐸 𝑥 𝑡   ( 4.2 ) 

 𝐹𝑃𝑇 = 𝑓𝑛𝑃𝑇 𝑥 𝑡 , 𝑥  𝑡   ( 4.3 ) 

4.3.1 Shock-Expansion Contribution 

The loading from shock-expansion theory, 𝐹𝑆𝐸 , is calculated from the pressures over the wing 

given by shock-expansion theory. Strip-theory is applied (and hence, no 3-dimensional 

influence is modelled) along chordwise sections parallel to the direction of the free-stream (in 

terms of the coordinate system defined in Figure 4.1, shock-expansion is applied in the 𝑥-

direction for stations of constant 𝑦). 

Note that the full oblique-shock and Prandtl-Meyer expansion equations have been used. 

These have been given by equations ( 2.1 ) through ( 2.8 ). The turning angle 𝛿 is calculated 

from the difference in the slope of the element edges across nodes; the slope is calculated for 

the upper surface and lower surface from consideration of the thickness contribution and 

from the camber contribution, as shown in Figure 4.2. 

 

Figure 4.2: Contributions to the Surface Angle to the Flow 
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At the leading-edge, the turning angle accounts for the slope of the plate surface and for the 

angle of attack; at the trailing-edge, the turning angle is calculated such that the pressures in 

the "upper" and "lower" portions of the slip-plane are balanced. 

 

Figure 4.3: Definition of Angles for Flow Turning-Angle Determination at the Leading- and Trailing-Edges 

 

From Figure 4.3, for the leading-edge: 

 

upper surface:       𝛿 = 휃𝑠𝑒𝑔𝑥 − 𝛼            ( 4.4 ) 

lower surface:       𝛿 = 휃𝑠𝑒𝑔𝑥 + 𝛼            ( 4.5 ) 

where 𝛿 is defined positive for flow turning into itself (compression). 

From Figure 4.3, the flow turning angles at the trailing-edge are given by: 

upper surface:       𝛿 = 휃𝑠𝑒𝑔𝑥 + 휃𝑠𝑙𝑖𝑝             ( 4.6 ) 

lower surface:       𝛿 = 휃𝑠𝑒𝑔𝑥 − 휃𝑠𝑙𝑖𝑝             ( 4.7 ) 

where 𝛿 is again defined positive for flow turning into itself (compression), and 휃𝑠𝑙𝑖𝑝  is 

the angle of the slip-plane relative to the root chordline, as defined in the figure. 

The camber deformation of the plate is accounted for in the shock-expansion contribution to 

the aerodynamic loading. The pressures at the nodes are smoothed over elements in order to 

model a continuous pressure distribution. 
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When calculating the shock-expansion contribution, the effect of the motion-induced 

downwash is not accounted for, i.e. steady shock-expansion theory is used, as opposed to 

quasi-steady shock-expansion theory (see section 2.1.1). The motion-induced downwash is 

not accounted for here, as it is modelled in piston theory. With reference to equation ( 3.19 ) 

for the downwash in piston theory, shock-expansion theory is used to modelled the pressures 

resulting from 𝑤0, where 

 𝑤0 = 𝑉𝑐𝑦𝑙
𝜕𝑧

𝜕𝑋
 ( 4.8 ) 

4.3.2 Piston Theory Contribution 

The loading from piston theory, 𝐹𝑃𝑇 , is calculated from the unsteady pressures over the wing 

that arise from motion. The quasi-steady flow conditions at the instant in time in 

consideration are obtained from the shock-expansion calculation, and the cylinder conditions 

are calculated using these local conditions. The unsteady pressures at the structural nodes are 

then calculated using local piston theory: 

 𝑃𝑃𝑇 = 𝛾𝑃𝑆𝐸  𝑐1  
𝑤𝐿𝑃𝑇

𝑎𝑆𝐸
 + 𝑐2  

𝑤𝐿𝑃𝑇

𝑎𝑆𝐸
 

2

+ 𝑐3  
𝑤𝐿𝑃𝑇

𝑎𝑆𝐸
 

3

  ( 4.9 ) 

where 𝑎𝑆𝐸  is the local speed of sound from shock-expansion theory, and 𝑃𝑃𝑇  represents 

the unsteady increment to the steady pressure 𝑃𝑆𝐸 . Here, 𝑤𝐿𝑃𝑇  is the downwash as 

calculated for local piston theory. The coefficients 𝑐1, 𝑐2, and 𝑐3 are the first-, second-, 

and third-order coefficients, modelled here using Donov's [68] coefficients : 

 𝑐1 =
𝑀𝑆𝐸

𝑚𝑆𝐸
 ( 4.10 ) 

 𝑐2 =
 𝛾 + 1 𝑀𝑆𝐸

4 − 2𝑚𝑆𝐸
2

4𝑚𝑆𝐸
4  ( 4.11 ) 

 𝑐3 =
1

12𝑀𝑆𝐸𝑚𝑆𝐸
7
 𝑎𝑀𝑆𝐸

8 + 𝑏𝑀𝑆𝐸
6 + 𝑐𝑀𝑆𝐸

4 + 𝑑𝑀𝑆𝐸
2 + 𝑒  ( 4.12 ) 

where   𝑚𝑆𝐸 =  𝑀𝑆𝐸
2 − 1 , and 𝑀𝑆𝐸  is the local Mach number at the structural node as 

calculated from shock-expansion theory. The coefficients 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 in the 

equation for 𝑐3 are given by Donov [68] as: 
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 𝑎 =  𝛾 + 1  ( 4.13 ) 

 𝑏 = 2𝛾2 − 7𝛾 − 5 ( 4.14 ) 

 𝑐 = 10 𝛾 + 1  ( 4.15 ) 

 𝑑 = −12 ( 4.16 ) 

 𝑒 = 8 ( 4.17 ) 

In calculating the unsteady contribution to the total aerodynamic loading from local piston 

theory, the downwash terms for local piston-theory (as defined in Table 3.3 and discussed in 

Section 3.3.1) must be used: 

 𝑤𝐿𝑃𝑇 = 𝑤1 ( 4.18 ) 

 𝑤𝐿𝑃𝑇
2 = 2𝑤0𝑤1 + 𝑤1

2 ( 4.19 ) 

 𝑤𝐿𝑃𝑇
3 = 3𝑤0

2𝑤1 + 3𝑤0𝑤1
2 + 𝑤1

3 ( 4.20 ) 

in which 

 𝑤1 =
𝜕𝑧

𝜕𝑡
 ( 4.21 ) 

In the local piston theory contribution to the loading, the downwash calculated for shock-

expansion theory, 𝑤0, must be accounted for in second- and third-order local piston theory to 

model thickness- and angle-of-attack effects on the aerodynamic damping. 

4.3.3 Total Aerodynamic Loading 

The pressure distributions from the shock-expansion contribution and from the piston theory 

contribution are added to obtain the total pressure acting on the surface of the plate. This is 

integrated over the surface, accounting for surface inclination, to give the resultant forces in 

the 𝑥-, 𝑦-, and 𝑧-directions (corresponding to the axial force, side force, and the normal force, 

respectively). Moments are computed about the leading-edge of the wing root,  𝑥,𝑦, 𝑧 =

 0,0,0 . 

Due to the approximate aerodynamic models chosen, the plate is modelled with no 3-

dimensional effects; the portions of the plate that are influenced by the tip shock and the root 
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shock are modelled as being free of the influence of these shocks. However, the use of the 

full oblique shock and Prandtl Meyer equations render the aerodynamic loading nonlinear. 

The use of steady shock-expansion and of piston theory renders the aerodynamic loading as 

quasi-steady in flow-history. Although the unsteady pressures from piston theory contain 

terms with nonlinear terms in time-derivatives (𝑥 ), no aerodynamic lag with 𝑥  is modelled. 

The resulting aerodynamic loading is summarized as being nonlinear in displacement and 

velocity, with no 3-dimensional effects; the loading may be modelled as dynamically 

nonlinear (no assumption of small perturbation about a constant mean flow), with quasi-

steady modelling of the flow history. 

4.4 Formulation of the Coupled Aeroelastic Equations of Motion 

The aerodynamic loading was coupled as the external force to the structural equations of 

motion. The loading at the structural nodes was calculated using finite element methodology 

(see Appendix B), with the values of the distributed pressure at the nodes being provided 

directly from the aerodynamic modelling. In using approximate aerodynamic modelling to 

calculate the loading at the structural nodes, the inter-grid interpolation between a separate 

aerodynamic mesh and the structural mesh was avoided. 

The system dynamics may be represented in a number of ways, with varying degrees of 

simplification. The simplifications are made from the point-of-view of shorter computation 

time, and inevitably lead to some reduction in the accuracy of the. However, the 

simplifications may also give greater insight into the system dynamics, as in the case of the 

modal formulation. 

The formulation of and solution of the aeroelastic equations of motion was approached from 

the point of nonlinear aerodynamic loading, and from the point of linearized GAFs. The 

differences in the formulation and solution of the aeroelastic systems follow. 
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4.4.1 Full-Order Formulation with Dynamically-Nonlinear Unsteady Aerodynamic 

Loading 

In the full-order formulation, the full order of the FEM model is coupled to the full-order 

aerodynamic loading vector. The order of the system is very large, and its solution is 

computationally expensive. The aeroelastic equations of motion are given by: 

(full order) 𝑴𝒔𝒕𝒓 𝑎  + 𝑪𝒔𝒕𝒓 𝑣  + 𝑲𝒔𝒕𝒓 𝑑  =  𝐹 𝑎𝑒𝑟𝑜   ( 4.22 ) 

The equation is solved through implicit time-marching using the Newmark-Beta scheme, 

with sub-iterations to convergence being performed at each time-step. The aerodynamic 

loading is re-calculated from the structural response at each sub-iteration. No simplifications 

beyond those implicit in the structural and aerodynamic methods are made, and the full 

dynamics of the system is retained. 

4.4.2 Modal Formulation with Dynamically-Nonlinear Unsteady Aerodynamic Loading 

The structural dynamics of the system may be represented through the normal modes of the 

structure; it has been shown [62] that the system response may be well modelled whilst 

retaining the contribution from only a small number of the modes. This leads to a significant 

reduction in the order of the structural equations. A further advantage of the modal 

formulation is the insight gained into the system response and parameters. The modal 

formulation, retaining the dynamics of the aerodynamic loading, is given by: 

(modal order) 𝑴𝒎𝒐𝒅𝒔𝒕𝒓 𝑥 
  + 𝑪𝒎𝒐𝒅𝒔𝒕𝒓 𝑥 

  + 𝑲𝒎𝒐𝒅𝒔𝒕𝒓
 𝑥  = 𝑿𝑻 𝐹 𝑎𝑒𝑟𝑜   ( 4.23 ) 

The solution approach to the system is unchanged, with the aerodynamic loading being 

implicit; however, the number of equations being solved is significantly less, which results in 

faster computation. Nonetheless, the solution of the system is still computationally expensive, 

as the modal response must be transformed to full-order displacements and velocities, and the 

full-order aerodynamic loading must be recalculated at each step. The calculation of the 

aerodynamic loading was identified as the computational bottleneck using the aerodynamic 

methods described. Good accuracy of modelling of the aerodynamics is achieved for motions 

and loadings that may be well-described by the normal modes. 
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4.4.3 Modal Formulation with Linearized Quasi-Steady Aerodynamic Loading 

The system formulation may be further simplified to allow for significantly faster 

computation and for simple direct extraction of system parameters. The dynamically-

nonlinear aerodynamic loading may be linearized about a specific system state in order to 

yield time-invariant matrices for the first-order aerodynamic stiffness and damping in the 

modal formulation. This results in the system dynamics being simplified to a linear time-

invariant (LTI) system, the solution of which is straightforward. The computational 

requirements for the solution of the system response are reduced by a number of orders of 

magnitude; however, the simplifications lead to an associated loss in accuracy of the 

modelling of the actual system dynamics. The reader is referred to Section 4.5.1 for the 

linearization procedure adopted and for the development of the system equation, which is 

given below: 

(modal order) 𝑴𝒎𝒐𝒅𝒂𝒆 𝑥 
  + 𝑪𝒎𝒐𝒅𝒂𝒆 𝑥 

  + 𝑲𝒎𝒐𝒅𝒂𝒆
 𝑥  = 𝑄  𝑜𝑓𝑓𝑠𝑒𝑡  ( 4.24 ) 

where 𝑄  𝑜𝑓𝑓𝑠𝑒𝑡  is defined by equation ( 4.44 ). 

The linearization of the GAFs, which yields the aerodynamic stiffness and damping matrices, 

provides further insight into the system dynamics. The coupled aeroelastic system 

characteristic is seen to result from a combination of the structural and aerodynamic systems; 

from this it is seen why the aeroelastic characteristics and system parameters differ from the 

purely-structural system. The aerodynamic matrices have non-zero off-diagonal terms, which 

provide coupling between the structural modes. 

4.5 Linearization of the Generalized Aerodynamic Forces 

4.5.1 Linearization Procedure 

The equations of motion for the coupled aeroelastic system in modal order with dynamically-

nonlinear aerodynamic loading was given by equation ( 4.23 ) as: 

(modal order) 𝑴𝒎𝒐𝒅𝒔𝒕𝒓 𝑥 
  + 𝑪𝒎𝒐𝒅𝒔𝒕𝒓 𝑥 

  + 𝑲𝒎𝒐𝒅𝒔𝒕𝒓
 𝑥  = 𝑿𝑻 𝐹 𝑎𝑒𝑟𝑜    
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Recall that the aerodynamic loading is the sum of the shock-expansion contribution, 𝐹 𝑆𝐸 , and 

the piston-theory contribution, 𝐹 𝑃𝑇 . The notation of 𝑿𝑻 𝐹 𝑎𝑒𝑟𝑜   for the generalized 

aerodynamic forces is used to remind the reader that the aerodynamic loading is still 

calculated from full-order displacements and velocities. Expanding the aerodynamic loading 

vector: 

 𝐹 𝑎𝑒𝑟𝑜 = 𝐹 𝑆𝐸 + 𝐹 𝑃𝑇  ( 4.25 ) 

where 

 𝐹 𝑆𝐸 = 𝑓𝑛𝑆𝐸 𝑑   ( 4.26 ) 

 𝐹 𝑃𝑇 = 𝑓𝑛𝑃𝑇 𝑑 ,𝑣   ( 4.27 ) 

The loading contributions are calculated separately. It is required that the loading 

contributions be linearized about the steady-state displacements (or any other set of 

displacements and velocities) and be reduced to modal form as: 

 𝑿𝑻 𝐹 𝑆𝐸 = 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐
 𝑥   ( 4.28 ) 

 𝑿𝑻 𝐹 𝑃𝑇 = 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐 𝑥 
   ( 4.29 ) 

In the following procedure outline, the example system will be restricted to considering the 

first three modes for brevity in the equations. The system may be linearized as follows: 

1. Calculate 𝐹 𝑆𝐸  and 𝐹 𝑃𝑇  for the mean displacements and velocities about which the 

linearization is performed. 

 𝑿𝑻 𝐹 𝑆𝐸 𝑚𝑒𝑎𝑛 = 𝑓𝑛𝑆𝐸 𝑑 𝑚𝑒𝑎𝑛   ( 4.30 ) 

 𝑿𝑻 𝐹 𝑃𝑇 𝑚𝑒𝑎𝑛 = 𝑓𝑛𝑃𝑇 𝑑 𝑚𝑒𝑎𝑛 ,𝑣 𝑚𝑒𝑎𝑛   ( 4.31 ) 

 

2. Calculate the change in 𝐹 𝑆𝐸  associated with an incremental change (for the purposes 

of illustration, a modal displacement of magnitude 𝑏𝑖  is used) in each of the modal 

displacements. 

 

For example, for the first mode: 
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 ∆ 𝑿𝑻 𝐹 𝑆𝐸  = 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐∆  𝑥  1  ( 4.32 ) 

where 

 ∆  𝑥  1 =  𝑥  1 −  𝑥  𝑚𝑒𝑎𝑛 =  
𝑏1

0
0
  ( 4.33 ) 

and 

 ∆ 𝑿𝑻 𝐹 𝑆𝐸  = 𝑿𝑻 𝐹 𝑆𝐸 − 𝑿𝑻 𝐹 𝑆𝐸 𝑚𝑒𝑎𝑛 =  

∆𝑄𝑆𝐸1𝑚𝑜𝑑𝑒  1

∆𝑄𝑆𝐸2𝑚𝑜𝑑𝑒  1

∆𝑄𝑆𝐸3𝑚𝑜𝑑𝑒  1

  ( 4.34 ) 

where the subscript 𝑚𝑒𝑎𝑛 represents values at the linearization point, and where 

𝑿𝑻 𝐹 𝑆𝐸  is the loading computed for the geometry  𝑥  1. 

 

3. Compute each column of the aerodynamic stiffness matrix by considering the 

incremental change in loading with increments in modal displacements. 

 

For example, for the second mode: 

 ∆  𝑿𝑻 𝐹 𝑆𝐸 2
 = 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐∆  𝑥  2   

 ∴  

∆𝐹𝑆𝐸1𝑚𝑜𝑑𝑒  2

∆𝐹𝑆𝐸2𝑚𝑜𝑑𝑒  2

∆𝐹𝑆𝐸3𝑚𝑜𝑑 𝑒  2

 =  

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

  
0
𝑏2

0
  ( 4.35 ) 

whence 

  
𝐾12

𝐾22

𝐾32

 =
1

𝑏2
 

∆𝐹𝑆𝐸1𝑚𝑜𝑑𝑒  2

∆𝐹𝑆𝐸2𝑚𝑜𝑑𝑒  2

∆𝐹𝑆𝐸3𝑚𝑜𝑑𝑒  2

  ( 4.36 ) 

 

Note that here 𝐾𝑖𝑗  refers to the elements of the aerodynamic stiffness matrix, and are 

not to be confused with the elements of the structural stiffness matrix. 

 

4. Having computed 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐, assume that the system undergoes small perturbations 

about the linearization point. Calculate the piston-theory coefficients associated with 

the mean local flow conditions. Assume these coefficients do not vary with the small 

displacements. 
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5. Calculate the change in 𝐹 𝑃𝑇  associated with an incremental change (for the purposes 

of illustration, a modal velocity of magnitude 𝑒𝑖  is used) in each of the modal 

velocities. 

 

For example, for the first mode: 

 ∆ 𝑿𝑻 𝐹 𝑃𝑇  = 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐∆  𝑥 
  

1
  ( 4.37 ) 

where 

 ∆   𝑥   
1
 =  𝑥   

1
−  𝑥   

𝑚𝑒𝑎𝑛
=  

𝑒1 
0
0
  ( 4.38 ) 

and 

 ∆ 𝑿𝑻 𝐹 𝑃𝑇  = 𝑿𝑻 𝐹 𝑃𝑇 − 𝑿𝑻 𝐹 𝑃𝑇 𝑚𝑒𝑎𝑛 =  

∆𝐹𝑃𝑇1𝑚𝑜𝑑𝑒  1

∆𝐹𝑃𝑇2𝑚𝑜𝑑𝑒  1

∆𝐹𝑃𝑇3𝑚𝑜𝑑𝑒  1

  ( 4.39 ) 

where 𝑿𝑻 𝐹 𝑃𝑇  is the loading computed for the incremental modal velocity  𝑥   
1
. 

 

6. Compute each column of the aerodynamic damping matrix by considering the 

incremental change in loading with increments in modal velocities. 

 

For example, for the second mode: 

 ∆  𝑿𝑻 𝐹 𝑃𝑇 2
 = 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐∆  𝑥 

  
2
   

 ∴  

∆𝐹𝑃𝑇1𝑚𝑜𝑑𝑒  2

∆𝐹𝑃𝑇2𝑚𝑜𝑑𝑒  2

∆𝐹𝑃𝑇3𝑚𝑜𝑑𝑒  2

 =  

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

  
0
𝑒2

0
  ( 4.40 ) 

whence 

  

𝐶12

𝐶22

𝐶32

 =
1

𝑒2
 

∆𝐹𝑃𝑇1𝑚𝑜𝑑𝑒  2

∆𝐹𝑃𝑇2𝑚𝑜𝑑𝑒  2

∆𝐹𝑃𝑇3𝑚𝑜𝑑𝑒  2

  ( 4.41 ) 
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Note that here 𝐶𝑖𝑗  refers to the elements of the aerodynamic damping matrix, and are 

not to be confused with the elements of the structural damping matrix. 

The generalized aerodynamic forces are thus linearized about a set of modal displacements 

and velocities, 𝑥 𝑚𝑒𝑎𝑛  and 𝑥  𝑚𝑒𝑎𝑛 , with the associated generalized aerodynamic forces 𝑄  𝑚𝑒𝑎𝑛 . 

As such, the generalized aerodynamic forces for other modal displacements and velocities in 

the range of the linearization are given by (note that the notation has now shifted to 𝑄   to 

remind the reader that the aerodynamic loading is now calculated from the modal linearized 

aerodynamic matrices): 

 𝑄  = 𝑄  𝑚𝑒𝑎𝑛 + 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐
 𝑥 − 𝑥 𝑚𝑒𝑎𝑛  + 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐 𝑥 

 − 𝑥  𝑚𝑒𝑎𝑛   ( 4.42 ) 

The aerodynamic loading is then substituted back into the system equation of motion giving: 

 𝑴𝒎𝒐𝒅𝒂𝒆 𝑥 
  + 𝑪𝒎𝒐𝒅𝒂𝒆 𝑥 

  + 𝑲𝒎𝒐𝒅𝒂𝒆
 𝑥  = 𝑄  𝑜𝑓𝑓𝑠𝑒𝑡  ( 4.43 ) 

in which 

 𝑄  𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑄  𝑚𝑒𝑎𝑛 −𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐
 𝑥 𝑚𝑒𝑎𝑛  − 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐 𝑥 

 
𝑚𝑒𝑎𝑛   ( 4.44 ) 

 𝑴𝒎𝒐𝒅𝒂𝒆 = 𝑴𝒎𝒐𝒅𝒔𝒕𝒓 ( 4.45 ) 

 𝑪𝒎𝒐𝒅𝒂𝒆 = 𝑪𝒎𝒐𝒅𝒔𝒕𝒓 − 𝑪𝒎𝒐𝒅𝒂𝒆𝒓𝒐 ( 4.46 ) 

 𝑲𝒎𝒐𝒅𝒂𝒆 = 𝑲𝒎𝒐𝒅𝒔𝒕𝒓 −𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐 ( 4.47 ) 

In the linearization of the GAFs, it has been assumed that the change in the aerodynamic 

matrices is small for small perturbations about the linearization point. Under the assumption 

of constant matrices, the system is effectively assumed to be quasi-steady and is dynamically 

linearized. 

4.5.2 Effect of the Size of the Linearization Increment 

The linearization step-size was found to influence the linearization of the GAFs when 

analysed using SE/LPT in MATLAB. A step-size too small would lead to numerical issues 

and inflation of error, whilst a step-size too large would not be representative of the motion 

undergone by the wing for small vibrations. 
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The linearization step-size used was calculated such that the ∆𝑥2 would result in 2° twist at 

the wingtip, as the linearization results in MATLAB for the ATM-wing were relatively step-

size sensitive for smaller step sizes. 

An example of the influence that the linearization step-size has on the terms of the 

aerodynamic stiffness matrix are shown in Figure 4.4, where the notation follows the 

equation below (for a modal aerodynamic stiffness matrix limited to four modes): 

 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐 =

 
 
 
 
𝐾11 𝐾12

𝐾12 𝐾22

𝐾13 𝐾14

𝐾23 𝐾24

𝐾31 𝐾32

𝐾41 𝐾42

𝐾33 𝐾34

𝐾43 𝐾44 
 
 
 
 ( 4.48 ) 

 

 

Figure 4.4: Linearization Step-Size Influence on Aerodynamic Stiffness Terms from SE/LPT in MATLAB  
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4.6 Solution of the Aeroelastic Equations of Motion 

Whilst several methods are available for the linear and nonlinear analysis of systems with 

time-invariant coefficients, the solution of systems with time-variant coefficient matrices is 

generally less elegant. In such systems, the equations of motion are solved by time-marching, 

with the coefficient matrices being re-computed at each time-step. This is obviously a 

relatively more computationally expensive analysis. The time-marching scheme and its 

implementation influence the numerical stability of the solution, as well as whether the 

system is modelled as strongly or weakly coupled. 

4.6.1 Implicit Time-Marching of Systems with Dynamically-Nonlinear Aerodynamic 

Loading 

The Newmark-𝛽 scheme is used to integrate the aeroelastic equation of motion in time. 

Strong coupling is achieved through iteratively solving the structural and aerodynamic 

equations to convergence at each "physical" time step. The procedure followed is outlined 

below. 

The values chosen for  the Newmark-𝛽 scheme were as follows: 

 𝛾 = 1
2  ( 4.49 ) 

 𝛽 = 1
4  ( 4.50 ) 

 ∆𝑡 =
𝑇𝑚𝑖𝑛
𝜋2

 ( 4.51 ) 

where 𝑇𝑚𝑖𝑛  was the shortest modal period of the truncated mode set. 

The values were chosen such that the time-marching algorithm is unconditionally stable, with 

good resolution (>30 points per cycle) of the lower modes. The error in periodicity (or 

equivalently, frequency) estimated from Table 2.1 is approximately 3.4%. The choice of 

parameters for the Newmark-𝛽 scheme results in a single-step implicit time-marching 

scheme. 

 

Consider the equation of motion at time 𝑡 + Δ𝑡: 
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 𝑴𝑡+Δ𝑡 𝑢   𝑡+Δ𝑡 + 𝑪𝑡+Δ𝑡 𝑢   𝑡+Δ𝑡 + 𝑲𝑡+Δ𝑡 𝑢  𝑡+Δ𝑡 = 𝐹 𝑡+Δ𝑡  ( 4.52 ) 

Here, the notation has been modified to accommodate both the full-order and modal-

order formulation. The vector 𝑢   represents a displacement vector (whether modal or 

full-order), and the matrices 𝑴, 𝑪, and 𝑲 represent the structural mass, damping, and 

stiffness matrices (whether modal or full-order). The vector 𝐹  represents the 

aerodynamic loading (whether GAFs or full-order loading). 

In modelling the structure as being linear, the structural matrices are rendered time-invariant. 

It is assumed that the dynamic system response at the previous time step, as well as the 

associated aerodynamic load, is known. In the following equations, time subscript is dropped 

from the structural matrices, and the vector notation        is dropped. 

Define the following quantities, which are based on the known response of the previous time 

step and the solution parameters, and which are invariant in the iteration to convergence for 

the time step: 

 𝑯 = 𝑴 + 𝛾∆𝑡𝑪 + 𝛽∆𝑡2𝑲 ( 4.53 ) 

 𝑢  𝑡+Δ𝑡 = 𝑢 𝑡 + ∆𝑡 1 − 𝛾 𝑢 𝑡  ( 4.54 ) 

 𝑢 𝑡+Δ𝑡 = 𝑢𝑡 + ∆𝑡𝑢 𝑡 +
∆𝑡2

2
 1 − 2𝛽 𝑢 𝑡 ( 4.55 ) 

The Newmark-𝛽 expressions for velocity and displacement may then be written as: 

 𝑢 𝑡+Δ𝑡 = 𝑢  𝑡+Δ𝑡 +  𝛾∆𝑡 𝑢 𝑡+Δ𝑡   ( 4.56 ) 

 𝑢𝑡+Δ𝑡 = 𝑢 𝑡+Δ𝑡 +  𝛽∆𝑡2 𝑢 𝑡+Δ𝑡  ( 4.57 ) 

Substituting the above expressions (equations ( 4.53 ) through ( 4.57 )) into the equation of 

motion at time 𝑡 + Δ𝑡 (equation ( 4.52 )) gives: 

 𝑴𝑢 𝑡+Δ𝑡 + 𝑪 𝑢  𝑡+Δ𝑡 +  𝛾∆𝑡 𝑢 𝑡+Δ𝑡 + 𝑲 𝑢 𝑡+Δ𝑡 +  𝛽∆𝑡2 𝑢 𝑡+Δ𝑡 = 𝐹𝑡+Δ𝑡   

 ∴  𝑴 + 𝛾∆𝑡𝑪 + 𝛽∆𝑡2𝑲 𝑢 𝑡+Δ𝑡 = 𝐹𝑡+Δ𝑡 − 𝑪𝑢  𝑡+Δ𝑡 −𝑲𝑢 𝑡+Δ𝑡   

 ∴  𝑢 𝑡+Δ𝑡 = 𝑯−1 𝐹𝑡+Δ𝑡 − 𝑪𝑢  𝑡+Δ𝑡 −𝑲𝑢 𝑡+Δ𝑡  ( 4.58 ) 
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Consider that the aerodynamic force is a function of the shape (𝑢) and rate of deformation (𝑢 ) 

of the body. These are in turn a function of the acceleration (𝑢 ), through equations ( 4.56 ) 

and ( 4.57 ). Express this as: 

 𝐹𝑡+Δ𝑡 = 𝑓𝑛𝐴 𝑢 𝑡+Δ𝑡  ( 4.59 ) 

The solution of the equation of motion at time 𝑡 + Δ𝑡 thus requires the above equations to be 

implemented, and the equations for force and acceleration to be solved simultaneously. In 

modelling the aeroelastic system as strongly coupled, 𝐹𝑡+Δ𝑡  and 𝑢 𝑡+Δ𝑡  are solved iteratively 

until convergence to dynamic equilibrium is obtained. Let the solutions at the 𝑖-th sub-

iteration (the physical time remains 𝑡 + Δ𝑡) be represented by the superscript  𝑖 . The sub-

iteration procedure is then as follows: 

1. Start the sub-iteration procedure (for 𝑖 = 1) by assuming: 

 𝐹𝑡+Δ𝑡
 1 = 𝐹𝑡  ( 4.60 ) 

2. Calculate the structural response for the assumed loading: 

 𝑢 𝑡+Δ𝑡
 1 = 𝑯−1  𝐹𝑡+Δ𝑡

 1 − 𝑪𝑢  𝑡+Δ𝑡 −𝑲𝑢 𝑡+Δ𝑡  ( 4.61 ) 

 𝑢 𝑡+Δ𝑡
 1 = 𝑢  𝑡+Δ𝑡 +  𝛾∆𝑡 𝑢 𝑡+Δ𝑡

 1 
 ( 4.62 ) 

 𝑢𝑡+Δ𝑡
 1 = 𝑢 𝑡+Δ𝑡 +  𝛽∆𝑡2 𝑢 𝑡+Δ𝑡

 1 
 ( 4.63 ) 

This concludes the starting procedure. 

For the following sub-iterations, 𝑖 ≥ 2. 

 

3. Calculate the aerodynamic load for the current sub-iteration from the previous 

response: 

 𝐹𝑡+Δ𝑡
 𝑖 = 𝑓𝑛𝐴  𝑢 𝑡+Δ𝑡

 𝑖−1   ( 4.64 ) 

4. Calculate the structural response for the current sub-iteration: 

 𝑢 𝑡+Δ𝑡
 𝑖 

= 𝑯−1  𝐹𝑡+Δ𝑡
 𝑖 

− 𝑪𝑢  𝑡+Δ𝑡 −𝑲𝑢 𝑡+Δ𝑡  ( 4.65 ) 

 𝑢 𝑡+Δ𝑡
 𝑖 = 𝑢  𝑡+Δ𝑡 +  𝛾∆𝑡 𝑢 𝑡+Δ𝑡

 𝑖 
 ( 4.66 ) 
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 𝑢𝑡+Δ𝑡
 𝑖 

= 𝑢 𝑡+Δ𝑡 +  𝛽∆𝑡2 𝑢 𝑡+Δ𝑡
 𝑖 

 ( 4.67 ) 

5. Check for convergence between the sub-iterations: 

 
𝐹𝑡+Δ𝑡
 𝑖 

− 𝐹𝑡+Δ𝑡
 𝑖−1 

𝐹𝑡+Δ𝑡
 𝑖−1 

< 휀𝐹  ? ( 4.68 ) 

 
𝑢 𝑡+Δ𝑡
 𝑖 

− 𝑢 𝑡+Δ𝑡
 𝑖−1 

𝑢 𝑡+Δ𝑡
 𝑖−1 

< 휀𝑢  ? ( 4.69 ) 

 
𝑢 𝑡+Δ𝑡
 𝑖 

− 𝑢 𝑡+Δ𝑡
 𝑖−1 

𝑢 𝑡+Δ𝑡
 𝑖−1 

< 휀𝑢  ? ( 4.70 ) 

 
𝑢𝑡+Δ𝑡
 𝑖 

− 𝑢𝑡+Δ𝑡
 𝑖−1 

𝑢𝑡+Δ𝑡
 𝑖−1 

< 휀𝑢  ? ( 4.71 ) 

6. Repeat steps 3 through 5 to convergence. 

Once convergence of sub-iterations has been  reached, the solution for the aerodynamic 

loading and the structural response is taken to be the solution to the implicit problem at the 

physical time 𝑡 + Δ𝑡. The solution steps forward in physical time to 𝑡 + 2Δ𝑡, and the sub-

iteration procedure is then repeated for the new physical time. 

4.6.2 Explicit Time-Marching of Systems with Time-Linearized Aerodynamic Loading and 

Time-Invariant Matrices 

The time-history of response for LTI systems was obtained through explicit time-marching of 

the state-space formulation of the aeroelastic equations of motion. The state-space 

representation was constructed as: 

  𝑥 
 

𝑥  
 =  

−𝑴𝒎𝒐𝒅𝒂𝒆
−𝟏 𝑪𝒎𝒐𝒅𝒂𝒆 −𝑴𝒎𝒐𝒅𝒂𝒆

−𝟏 𝑲𝒎𝒐𝒅𝒂𝒆

𝑰 𝟎
  𝑥 
 

𝑥 
 +  

𝑄  𝑜𝑓𝑓𝑠𝑒𝑡

0  
  ( 4.72 ) 

The set of first-order differential equations was solved in MATLAB using either the ode23t 

or the ode45 functions. The ode23t function is a one-step implementation of the 

trapezoidal scheme of integration and gives a solution free of numerical damping [70]; the 

ode45 function is based on a one-step, explicit Runge-Kutta (4,5) formulation [70]. The 

ode23t function was used for the explicit time-marching as far as possible due to its lack of 

numerical damping. The ode45 function was used where the ode23t function failed due to 
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poor numerical conditioning of the Jacobian matrix. It was found that in the general case, the 

difference in results produced by the two solvers (ode23t and ode45) was negligible, as 

shown by the coinciding peaks of the two time-responses in Figure 4.5. 

 

Figure 4.5: Comparison of the ode23t and ode45 Solvers in MATLAB 

4.7 Representation of System Response 

The system response with time and with flight conditions was represented by consideration of 

the time-history of various modal responses, including displacements, velocities, and GAFs; 

similarly, histories of the aerodynamic coefficients 𝐶𝐿, 𝐶𝐷 and 𝐶𝑀𝐿𝐸
 were considered. 

For linearized systems, the trajectories of the system roots with flight conditions were 

considered, as were the  system parameters. 
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In characterizing the response of nonlinear systems, the time-histories of both modal and full-

order responses were considered, as were the phase-plane trajectories of modal 

displacements. 

4.7.1 Time-History of Modal Response 

The holistic time-response of the system may be well-described by the modal displacements 

and velocities of a small number of dominant modes. Moreover, the history of the generalized 

modal forces provides insight to the coupling between modes and the external loading. The 

structural response of any single degree of freedom may be found through superposition of 

the modal contributions at the point. An example of the time-history of modal response for a 

nonlinearly damped system is given in Figure 4.6. 

 

Figure 4.6: Example of Time-History of Modal Response for an Aeroelastic System in MATLAB 
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4.7.2 Phase-Plane Trajectory of Modal Response 

In a similar manner, the phase-plane trajectory of modal displacements and velocities may be 

used to assess the structural response and stability [44]. The phase-plane trajectory of a 

nonlinearly damped system is shown in Figure 4.7; the corresponding modal displacement 

history is given in Figure 4.6. 

 

Figure 4.7: Example of Phase-Plane Representation of an Aeroelastic System in MATLAB 

4.7.3  System Eigenvalues and Parameters 

For linear time-invariant systems, eigenanalysis may be performed on the coupled fluid-

structure system; the root loci of the system [11; 41]  may be plotted to give a condensed but 

detailed representation of the system characteristics. In particular, the information is directly 

relevant to analysing the system stability. An example of an root locus plot for a 6-mode 

system is given in Figure 4.8. The corresponding variation of the frequencies and damping 

ratios of the two lowest-frequency roots is shown in Figure 4.9. Note the coalescence of 

frequencies and separation of damping ratios, which is typical of aeroelastic systems 

approaching flutter. 
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Figure 4.8: Example of a Root Locus Plot for an Aeroelastic System in MATLAB 

 

 

Figure 4.9: Example of Variation in Aeroelastic System Parameters in MATLAB 
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4.7.4 Response of Individual Points on the Structure 

When the mode shapes and modal displacements are not known or are difficult to extract, the 

response of the structure at a number of points may be considered. Yildiz [62] provides 

recommendations on the selection of measurement (as well as excitation) points on the 

structure which provide the best insight into the individual modal contributions. The time-

history of response of the individual points may be plotted, but offers little insight to the 

system stability, or the response of the structure as a whole as shown in Figure 4.10. 

 

Figure 4.10: Example of the Response Obtained from an Individual Degree of Freedom in MATLAB 
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5 VALIDATION OF THE AEROELASTIC PREDICTION 

TOOL AGAINST COMPUTATIONAL FLUID DYNAMICS 

5.1 The Edge CFD Solver 

Edge is a computational fluid dynamics solver for unstructured grids of arbitrary elements 

developed by FOI of Sweden [71]. Edge solves the Reynolds-Averaged Navier Stokes 

compressible equations using a node-centred finite-volume technique, and has several 

turbulence models available [71]. The formulation is edge-based; control volumes are non-

overlapping and are formed from a dual grid obtained from the control surfaces of the 

element edges, as shown in Figure 5.1. The control volumes for the node-centred 

computations are given by the dual grid, which is derived from the input (primary) grid. 

 

Figure 5.1: The Primary (solid line) and Dual (dashed line) Grids in Edge [71] 
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For steady solutions, convergence may be accelerated through multi-gridding and implicit 

residual smoothing; however, for explicit time-accurate solutions, these features must be 

disabled. With implicit time-accurate solutions, multi-gridding and implicit residual 

smoothing are employed in the sub-iterations (in pseudo-time) at each real (or physical) time 

step [71]. 

Edge also allows for a number of options for aeroelastic analysis, including coupling to 

external structural solvers [71]. For solutions without coupling to external solvers, the 

structural analysis is performed using a modal description of the structure. The structural 

modal-mass, modal-damping, and modal-stiffness matrices are modelled to be time-invariant, 

and so the structural is effectively modelled as being linear. 

The deformation of the wetted surface boundary must be computed from specified structural 

mode-shapes; the boundary displacement is then used in Edge subroutines and helper 

programs to generate a deformed mesh corresponding to the structural modeshape. Since the 

displacements of the nodes on the wetted boundary corresponding to the mode-shapes are 

known, no transformation matrix is needed to interpolate loads between structural and fluid 

grids to obtain the generalized aerodynamic forces [71]. The mesh deformation is performed 

"offline" (before the flow computation) for deflections of a specified magnitude for each 

mode, and the resulting differences in nodal coordinates between the deformed and "base" 

meshes are used to compute the modal "perturbation field" [71]. 

The mesh deformation operations are applied to the primary grid nodes, requiring the dual 

grid and resulting cell volumes and surfaces to be recomputed for each incremental deflection 

[71]. The mesh deformation must also be limited to magnitudes that do not result in negative 

cell volumes. 

The aeroelastic solver in Edge is a partitioned solver, with the solution of the aerodynamic 

and structural equations being strongly coupled (sub-iterations in pseudo-time are performed 

to convergence at each real time step). The aeroelastic equations of motion are solved by 

implicit time-marching. The modal displacements and forces are evaluated using three-point 

averaging in time, and time derivatives are modelled using central differences in time [71]. 

This leads to [71] the following equations of motion, 

 𝑴𝒎𝒐𝒅𝒔𝒕𝒓
 𝑥  + 𝑪𝒎𝒐𝒅𝒔𝒕𝒓

 𝑥  + 𝑲𝒎𝒐𝒅𝒔𝒕𝒓
 𝑥 = 𝑄𝑎𝑒𝑟𝑜  ( 5.1 ) 

in which 
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 𝑥 =
1

4
 𝑥𝑡+Δ𝑡 + 2𝑥𝑡 + 𝑥𝑡−Δ𝑡  ( 5.2 ) 

 𝑄 =
1

4
 𝑄𝑡+Δ𝑡 + 2𝑄𝑡 + 𝑄𝑡−Δ𝑡  ( 5.3 ) 

where 𝑡 is the time at the current real time step. 

The time-marching scheme is implicit in 𝑥𝑡+Δ𝑡 , and is solved to convergence at each real time 

step, with the dual grid being recomputed at each pseudo-time step as the modal displacement 

𝑥𝑡+Δ𝑡  changes. 

5.2 Geometry and Structural Parameters of the ATM-Wing 

The geometry was modelled after the untapered cantilevered plate of Torii [54] and 

Matsuzaki [55]. The bevel on the leading- and trailing-edges was assumed to be 15mm in 

length on each edge, and the geometry is hence referred to as the approximated Torii-

Matsuzaki wing (ATM-wing). The geometry is given in Figure 5.2 and Figure 5.3 on page 

102. This geometry was chosen for the results published by Torii [54] and Matsuzaki [55], 

which include the flutter velocity and the variation in identified system parameters below 

flutter speed. 

A finite element model of the geometry was analysed in MSC NASTRAN Student Version to 

obtain the natural modal frequencies of the model. The plate was modelled using 2078 Tet 10 

solid elements, with 4412 nodes in the model. The material properties used are given in Table 

5.1, with the first three modal frequencies given in Table 5.2. The first three modeshapes are 

shown in Figure 5.4 through Figure 5.6. Structural damping was not modelled. 

Table 5.1: Material Properties of the FEM Model of the ATM-Wing 

Material Aluminium 

Young's Modulus, E [GPa] 73.1 

Poisson's Ratio, 𝜐 0.33 

Density, 𝜌 [kg/m
3
] 2780 

Mass [kg] 0.104 

 

  



102 

 

Table 5.2: Comparison of Natural Frequencies for the TM-Wing 

Mode No. Description Torii [54] FEM 

Frequency [Hz] 

Torii [54] Experimental 

Frequency [Hz] 

Estimated Model 

MSC NASTRAN 

Frequency [Hz] 

1 1st Bending 27.9 27.2 26.6 

2 1st Twist 145.7 142.0 148.5 

3 2nd Bending 207.1 192.3 195.0 

 

 

Figure 5.2: ATM-Wing Planform 

 

 

Figure 5.3: ATM-Wing Profile 
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Figure 5.4: ATM-Wing, Mode 1 -- First Bending, 26.6 Hz 

 

 

Figure 5.5: ATM-Wing, Mode 2 -- First Twist, 148.5 Hz 

 

 

Figure 5.6: ATM-Wing, Mode 3 -- Second Bending, 195.0 Hz 
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Higher natural frequencies and the associated structural mode-shapes are shown as viewed 

from the wing-tip, from above, in Figure 5.7 and Figure 5.8. 

 

 

 

 

Figure 5.7: ATM-Wing Structural Mode-Shapes 1 - 3, View from Wing-Tip 
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Figure 5.8: ATM-Wing Structural Mode-Shapes 4 - 6, View from Wing-Tip 
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5.3 Validation of the Finite Element Solver 

The Finite Element solver of the aeroelastic prediction tool developed in MATLAB was 

validated for ATM-wing against modelling in MSC NASTRAN. 

In MATLAB, the wing was modelled using trapezoidal bending-plate elements. The mesh 

consisted of 20 chordwise segments and 44 spanwise segments, to give the elements an 

aspect ratio of 1. The resulting mesh consisted of  880 elements and 945 nodes, with 2835 

degrees of freedom. The mesh is shown in Figure 5.9. All degrees of freedom of the root 

nodes (𝑦 = 0) were constrained to model the wing as cantilevered. 

 

Figure 5.9: Structural Mesh used for the ATM-Wing 

 

The modelling of the wing in MSC NASTRAN was described in Section 5.2, and the same 

material properties were used for each model, given in Table 5.1. Modal analysis was carried 

out (SOL103 in MSC NASTRAN), and the mode-shapes and natural frequencies of the 

ATM-wing were calculated. The first four modal frequencies were calculated to within 1.4% 

in MATLAB; the comparison of results is given in Table 5.3. The reader is referred to Figure 

5.7 and Figure 5.8 for the depiction of the mode-shapes. It was concluded that the Finite 

Element solver gave sufficiently accurate results. 
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Table 5.3: Computed Natural Frequencies for the TM Wing 

Mode 

number 

Mode description Frequency [Hz] -- 

MSC NASTRAN 

Frequency [Hz] -- 

MATLAB 
% error 

1 1st bending 26.56 26.37 -0.86% 

2 1st torsion 148.50 147.73 -0.52% 

3 2nd bending 194.97 192.37 -1.33% 

4 2nd torsion 417.77 415.42 -0.56% 

5 3rd bending 594.91 585.43 -1.59% 

6 3rd torsion 781.21 775.86 -0.68% 

 

Further comparison between the results of the MATLAB-based Finite Element solver and 

MSC NASTRAN were made for a series of cantilevered un-swept trapezoidal plates 

subjected to uniform transverse pressure. The taper ratio and thickness of the plates were 

varied for a constant value of root-chord to span of 
𝑐𝑅

𝑏
= 1. The error in maximum 

displacement calculated was found to decrease with decreasing plate thickness and with 

increasing taper ratio; the results are shown in Figure 5.10 and Figure 5.11. 

 

 

Figure 5.10: Variation in MATLAB-Based Finite Element Solver Accuracy with Taper Ratio 
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Figure 5.11: Variation in MATLAB-Based Finite Element Solver Accuracy with Plate Thickness 

 

The modal frequencies of the ATM-wing, as calculated in MATLAB, were used in the 

aeroelastic modelling in Edge. The mode-shapes from MATLAB were interpolated onto the 

fluid mesh, and the boundary displacement (.bdis) files for each mode (needed for mesh 

deformation) were written in MATLAB for use in Edge. 

5.4 Meshing of the Fluid Domain 

The fluid domain was discretized using two unstructured meshes; the shape and size of the 

domains differed, and the difference in results between the meshes were investigated. Both 

meshes were generated in ICEM. 

5.4.1 Mesh 1 

In Mesh 1, the fluid domain was modelled as cylindrical, with a hemispherical inlet. The 

mesh statistics are given in Table 5.4, and details of the mesh are given by Figure 5.12 

through Figure 5.16.  
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Table 5.4: Mesh 1 Statistics 

Total number of elements: 1 923 812 

Total number of nodes: 331 822 

Number of TETRA_4 elements: 1 843 997 

Number of TRI_3 elements: 77 840 

 

 

 

 

Figure 5.12: Mesh 1, Domain Side View 
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Figure 5.13: Mesh 1, Domain Perspective View 

 

 

Figure 5.14: Mesh 1, Symmetry Boundary Surface Mesh  
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Figure 5.15: Mesh 1, Wing Surface Mesh 

 

 

Figure 5.16: Mesh 1, Volume Mesh at the Mid-Span, 𝒚 = 𝟎.𝟏𝐦  



112 

 

5.4.2 Mesh 2 

In Mesh 2, the fluid domain was modelled as a rectangular prism, with a rounded inlet. The 

mesh statistics are given in Table 5.5, and details of the mesh are given by Figure 5.17 

through Figure 5.21. 

 

Table 5.5: Mesh 2 Statistics 

Total number of elements: 1 430 723 

Total number of nodes: 241 879 

Number of TETRA_4 elements: 1 393 356 

Number of TRI_3 elements: 35 828 
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Figure 5.17: Mesh 2, Domain Dimensions  
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Figure 5.18: Mesh 2, Domain Perspective View 

 

 

Figure 5.19: Mesh 2, Symmetry Boundary Surface Mesh  
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Figure 5.20: Mesh 2, Wing Surface Mesh 

 

 

Figure 5.21: Mesh 2, Volume Mesh at Mid-Span, 𝒚 = 𝟎.𝟏𝐦  
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5.4.3 Grid Independence 

The steady flow around the ATM-wing was computed using the two meshes in Edge and by 

shock-expansion theory in MATLAB for a sweep of Mach number and of angle-of-attack. 

The resultant aerodynamic loads were compared, with the results of Mesh 2 used as a 

baseline. 

For all the flight conditions analysed in the parameter sweep, the free-stream pressure and 

temperature were 101 325 Pa and 288.15K, respectively. An Euler solution was run, with a 

laminar turbulence model used for the sake of simplicity (the other options available in Edge 

5.2.0 being differential turbulence models, DES, and LES models [71]). 

The variation of aerodynamic coefficients at Mach 3 with angle-of-attack is shown for the 

undeformed ATM-wing in Figure 5.22 through Figure 5.24. For this Mach number, it may be 

seen that good agreement was obtained between 2D shock expansion theory in MATLAB 

and the Euler computations of Mesh 1 and 2 for 𝛼 < 5°. 

In Figure 5.25 and Figure 5.26, the difference in results are compared for Mach 3, with Mesh 

2 used as a baseline. The normal force and pitching moment coefficients are calculated to 

within 5% using shock-expansion theory. The difference in results between Mesh 1 and Mesh 

2 were within 1% for all angles-of-attack. 

Mesh 2 was used for all subsequent computations as the computation time per iteration was 

approximately 25% lower than required for Mesh 1. 

The reader is referred to Appendix D for further results of the parameter sweep. The 

difference in results computed by Mesh 1 and Mesh 2 is within 2% for all Mach numbers, 

within increasingly better agreement as the Mach number is increased. 
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Figure 5.22: Normal Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 3 

 

 

Figure 5.23: Axial Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 3 
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Figure 5.24: Pitching Moment Coefficient (LE root) vs Angle-of-Attack, Undeformed ATM-Wing, Mach 3 

 

 

Figure 5.25: Comparison of Normal Force Coefficients, Undeformed A TM-Wing, Mach 3 
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Figure 5.26: Comparison of Pitching Moment Coefficients, Undeformed ATM-Wing, Mach 3 
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 ∆𝜒𝑖 =  𝜒𝑖 − 𝜒0 ( 5.4 ) 

in which 𝜒0 represents the coordinates of the undeformed base mesh, 𝜒𝑖 is the 

coordinates field of the deformed mesh associated with the specified modal 

displacement of mode 𝑖, and ∆𝜒𝑖  is the perturbation field for mode 𝑖. 

The use of perturbation field allows the main deformation computation to be performed 

offline [71], only once for each mode shape. However, the disadvantage is that the deformed 

mesh, from which the perturbation field is extracted, is computed for an arbitrarily specified 

modal displacement, rather than for the actual deflection of the moving surface [71]. It is 

recommended that the modal displacements specified for computation of the mesh 

deformation be chosen to reflect the order of magnitude of the expected modal responses. 

Once the perturbation fields have been computed, the coordinates of each node are computed 

from calculated modal displacements as [71]: 

 𝜒 𝑡 =  𝜒0 +  𝑥𝑖 𝑡 

𝑛𝑚𝑜𝑑𝑒𝑠

𝑖=1

∆𝜒𝑖  ( 5.5 ) 

where 𝜒 𝑡  is the time-variant coordinates field of the mesh, 𝑛𝑚𝑜𝑑𝑒𝑠  is the number of 

modes, and 𝑥𝑖 𝑡  is the modal displacement (response) of mode 𝑖. 

The perturbation field may clearly be seen to be equivalent to the extension of the structural 

mode-shape into the fluid volume [71]. 

Whenever the modal displacements change, the new coordinates of the fluid nodes are 

calculated from Equation ( 5.5 ) and the primary grid (mesh) is moved, and the metrics of the 

dual grid are recomputed [71]. 

The modal displacements used in the boundary displacement files for the generation of the 

deformed meshes for the ATM-wing were as given in Table 5.6. 

Table 5.6: Modal Displacements used for Mesh Deformation Calculations in Edge 

𝑥1 1 x 10
-5

 

𝑥2 1 x 10
-5

 

𝑥3 1 x 10
-5

 

𝑥4 1 x 10
-5
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The deformed geometries associated with the given modal displacements are given in 

Appendix E. The deformed mesh associated with mode 2 (first twisting) is shown along the 

trailing-edge of the wing in Figure 5.27 and Figure 5.28. 

 

 

Figure 5.27: Cross-Section of the Deformed Mesh of Mode 2 of the ATM-Wing, Trailing-Edge 

 

 

Figure 5.28: Cross-Section of the Deformed Mesh of Mode 2 of the ATM-Wing, Trailing-Edge Tip  
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5.5 Validation of the Aerodynamic Modelling using Shock-Expansion Theory 

The results of shock-expansion theory in MATLAB and of Mesh 2 were seen to give 

increasingly better agreement as Mach number increases. This is shown in Figure 5.29 and 

Figure 5.30. Poor agreement is obtained at moderately low Mach numbers (𝑀 = 1.4), at 

which the leading-edge shock is close to detachment. At low Mach numbers, the portion of 

the wing affected by 3D tip effects (including the tip shocks) is larger than at higher Mach 

numbers -- this reduces the validity of the strip-theory approximation used for the shock-

expansion calculations. 

 

 

Figure 5.29: Variation in the Accuracy of MATLAB-Based Shock-Expansion Normal Force Coefficient with Angle-of-Attack 

and Mach Number 
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Figure 5.30: Variation in the Accuracy of MATLAB-Based Shock-Expansion Pitching Moment Coefficient with Angle-of-

Attack and Mach Number 

 

5.6 Steady Computation of the Undeformed ATM-Wing 

The aerodynamic loading on the undeformed ATM-wing was calculated at flight conditions 

corresponding to the wind-tunnel test conditions of Torii and Matsuzaki's test [55] just before 

flutter (𝑀 = 2.51, 𝑞 = 108 kPa). The angle-of-attack modelled, 𝛼 = 0.5°, was chosen to 

avoid numerical issues associated with 𝛼 = 0° (such as slower convergence of residuals due 

to small initial residuals). The aerodynamic coefficients as well as the generalized 

aerodynamic forces were computed in Edge and using the aeroelastic prediction tool 

developed in MATLAB. 

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 2 4 6 8 10 12 14 16 18

e
rr

o
r 

c M
LE

α [°]

M1.4

M1.8

M3.0

M5.0



124 

 

5.6.1 Flow Conditions 

The flow conditions were determined for a specified Mach number and dynamic pressure. 

The free-stream static pressure was determined from: 

 𝑃∞ =
2𝑞∞

𝛾𝑀∞
2  ( 5.6 ) 

The associated air temperature and density were interpolated from the 1976 US Standard 

Atmosphere for the determined pressure 𝑃∞ . The flow conditions that were used for the 

computation (𝑞∞) are compared to the conditions at the experimental flutter point (𝑞𝐹) are 

given in Table 5.7. 

Table 5.7: Flow Conditions for the ATM-Wing, 𝑴 = 𝟐.𝟓𝟏, 𝜶 = 𝟎.𝟓° 

 𝑞∞ = 108 kPa 𝑞𝐹 = 113.5 kPa 

𝑃∞  [Pa] 24 490 25 740 

𝑇∞  [K] 219.93 222.01 

𝜌∞  [kg.m
-3

] 0.3879 0.4038 

5.6.2 Results 

The aerodynamic coefficients obtained for the given flow conditions are compared in Table 

5.8. The results predicted by shock-expansion theory in MATLAB show a slightly higher 

aerodynamic stiffness (larger aerodynamic force for the same 𝛼). 

Also compared in Table 5.8 are the generalized aerodynamic forces (GAFs); it may be seen 

that a larger difference is shown between the 3D Euler computation of Edge, and the 2D 

strip-theory shock-expansion computation in MATLAB. 

As the GAFs represent the mode-shape weighted integral of lift, and as the deflection of the 

mode-shapes is generally greatest at the wingtip, it is expected that an important source of the 

larger error is the tip effects. The effect of the tip shocks is not modelled by 2D the strip-

theory application of shock-expansion theory in MATLAB; it is, however, modelled in the 

3D Euler computation in Edge. The differences are more heavily weighted when computing 

the GAFs; the contribution of the tip pressures becomes important due to the weighting  

provided by the tip displacement of the mode-shape. 
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Table 5.8: Steady Results for the Undeformed ATM-Wing, 𝑴 = 𝟐.𝟓𝟏, 𝜶 = 𝟎.𝟓°, 𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚 

Result Edge MATLAB % Error 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 3.6% 

𝑐𝐴 2.286 x 10
-3

 2.137 x 10
-3

 -6.5% 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 5.4% 

𝑄1 [N.m] -7.946 x 10
1
 -8.556 x 10

1
 7.7% 

𝑄2 [N.m] 5.349 x 10
1
 4.612 x 10

1
 -13.8% 

𝑄3 [N.m] -2.259 x 10
1
 -2.082 x 10

1
 -7.8% 

𝑄4 [N.m] 2.486 x 10
1
 3.078 x 10

1
 -23.8% 

 

The convergence of the aerodynamic coefficients in the steady computation in Edge is shown 

in Figure 5.31 through Figure 5.33. The multi-gridding strategy employed in Edge is seen as 

the four distinct jumps (corresponding to the four grids used) in the coefficients. 

 

 

Figure 5.31: Steady Computation for the Undeformed ATM-Wing, Normal Force Coefficient  
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Figure 5.32: Steady Computation for the Undeformed ATM-Wing, Axial Force Coefficient 

 

 

Figure 5.33: Steady Computation for the Undeformed ATM-Wing, Pitching Moment (LE root) Coefficient  
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In Figure 5.34, the chordwise pressure distribution given by Edge is compared to shock-

expansion theory at the spanwise station 𝑦 = 0.15m; this station corresponds to 

approximately the 68% span position. Good agreement is obtained, suggesting that the 2D 

strip-theory approximation is valid at this point. It is expected that better agreement would be 

obtained with a refined mesh, with the appropriate fineness over the bevel of the leading and 

trailing edges. The flowfield at this station is shown in Figure 5.35. 

 

Figure 5.34: Steady Computation for the Undeformed ATM-Wing, Chordwise Pressure Distribution 

 

The spanwise distribution of the normal force coefficient is given in Figure 5.36; again, the 

3D Euler computation of Edge is compared to the 2D strip-theory shock-expansion 

calculation in MATLAB. It may be seen that at the wingtip and at the wing root, the normal 

force is lower than predicted by 2D strip theory. This suggests that tip effects are important in 

these regions. This is confirmed by the visualization of the flowfield over the expansion 

(upper) surface of the wing in Figure 5.37, in which the tip shocks / expansion fans and the 

leading-edge root expansion fan are shown by the pressure contour lines. 

The extent of the leading-edge shock in the fluid domain is shown in Figure 5.38,. 
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Figure 5.35: Steady Computation, Undeformed ATM-Wing, Shock Front, 𝑴 = 𝟐.𝟓𝟏, 𝜶 = 𝟎.𝟓°, 𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚, 𝒚 =
𝟎.𝟏𝟓𝐦 

 

 

Figure 5.36: Steady Computation for the Undeformed ATM-Wing, Spanwise Normal Force Distribution  



129 

 

 

Figure 5.37: Steady Computation, Undeformed ATM-Wing, Planform, 𝑴 = 𝟐.𝟓𝟏, 𝜶 = 𝟎.𝟓°, 𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚, 𝒛 = 𝟎.𝟎𝟎𝟐𝐦 

 

 

Figure 5.38: Steady Computation, Undeformed ATM-Wing, Shock Front, 𝑴 = 𝟐.𝟓𝟏, 𝜶 = 𝟎.𝟓°, 𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚, 𝒚 =
𝟎.𝟎𝟎𝟓𝐦 
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5.7 Transient Computation of Static Aeroelastic Deflection 

The steady aeroelastic deformation of the ATM-wing at 𝑀 = 2.51,𝛼 = 0.5°,𝑞 = 108 kPa 

was computed from the initial solution obtained for the undeformed wing (Section 5.6). The 

solution was obtained through time-marching the coupled aeroelastic equations with heavy 

artificial damping (휁 ≈ 0.9 − 1) until convergence. 

The computations of the developed aeroelastic prediction tool in MATLAB were performed 

using 3rd order local piston theory, with the steady pressures obtained from shock-expansion 

theory (with a strip-theory approximation). 

The time-step was chosen such that ∆𝑡 =
𝑇6

𝜋2 = 1.306 x 10−4 s. to ensure numerical stability 

of the Newmark-𝛽 time-marching scheme for up to the 6th mode. This corresponds to 

∆𝑡

𝑇4
≈ 0.054. 

5.7.1 Results 

The steady-state aerodynamic coefficients obtained for the elastic ATM-wing at the given 

flow conditions are compared in Table 5.9. The normal force and pitching moment (about the 

leading-edge root) coefficients for the elastic wing show very good agreement, both within 

1% difference. 

The GAFs and the modal displacements in Table 5.9 show similar trends, with the 

displacement of the first mode and its GAF being computed in MATLAB to within 2% of the 

results given Edge. The error in the displacements and GAFs of the higher modes, however, 

is significantly larger. 

The transient computations of the aerodynamic coefficients for the elastic ATM-wing are 

shown in Figure 5.39 through Figure 5.41. 

The transient computations of the modal displacements for the elastic ATM-wing are  shown 

in Figure 5.42 through Figure 5.45. 

The transient computations of the generalized aerodynamic forces for the elastic ATM-wing 

are shown in Figure 5.46 through Figure 5.49.  
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Table 5.9: Steady Results for the Elastic ATM-Wing, 𝑴 = 𝟐.𝟓𝟏,𝜶 = 𝟎.𝟓°,𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚 

Result Edge MATLAB (time-marching) % Error 

𝑐𝑁  5.719 x 10
-3

 5.737 x 10
-3

 0.31% 

𝑐𝐴 2.262 x 10
-3

 2.147 x 10
-3

 -5.1% 

𝑐𝑀  -4.095 x 10
-3

 -4.898 x 10
-3

 -0.17% 

𝑥1 -5.696 x 10
-4

 -5.598 x 10
-4

 -1.7% 

𝑥2 2.196 x 10
-5

 1.903 x 10
-5

 -13.4% 

𝑥3 -9.083 x 10
-6

 -7.282 x 10
-6

 -19.8% 

𝑥4 2.723 x 10
-6

 2.394 x 10
-6

 -12.1% 

𝑄1 [N.m] -1.563 x 10
1
 -1.540 x 10

1
 -1.5% 

𝑄2 [N.m] 1.892 x 10
1
 1.688 x 10

1
 -10.8% 

𝑄3 [N.m] -1.327 x 10
1
 -1.117 x 10

1
 -15.8% 

𝑄4 [N.m] 1.855 x 10
1
 1.949 x 10

1
 -5.1% 

 

 

Figure 5.39: Determination of Steady-State Normal Force Coefficient for the Elastic ATM-Wing  
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Figure 5.40: Determination of Steady-State Axial Force Coefficient for the Elastic ATM-Wing 

 

 

Figure 5.41: Determination of Steady-State Pitching Moment (LE root) Coefficient for the Elastic ATM-Wing  
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Figure 5.42: Determination of Steady-State Displacement for the Elastic ATM-Wing, Mode 1 

 

 

Figure 5.43: Determination of Steady-State Displacement for the Elastic ATM-Wing, Mode 2  
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Figure 5.44: Determination of Steady-State Displacement for the Elastic ATM-Wing, Mode 3 

 

 

Figure 5.45: Determination of Steady-State Displacement for the Elastic ATM-Wing, Mode 4  
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Figure 5.46: Determination of Steady-State GAFs for the Elastic ATM-Wing, Mode 1 

 

 

Figure 5.47: Determination of Steady-State GAFs for the Elastic ATM-Wing, Mode 2  
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Figure 5.48: Determination of Steady-State GAFs for the Elastic ATM-Wing, Mode 3 

 

 

Figure 5.49: Determination of Steady-State GAFs for the Elastic ATM-Wing, Mode 4  
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5.8 Transient Computations of Prescribed Modal Motion of the Model 

Computations were run to determine the aerodynamic response to prescribed step modal 

displacements. The change in the GAFs in response to modal displacement were used in 

Section 5.9 to linearize the GAFs and find their derivatives with respect to modal 

displacement -- effectively allowing the columns of the aerodynamic stiffness matrix to be 

extracted. 

The prescribed modal displacements were about the steady-state deformed geometry of the 

elastic ATM-wing, for the same flow conditions of 𝑀 = 2.51,𝛼 = 0.5°,𝑞 = 108 kPa. The 

displacements of the first mode were scaled by a factor of 5 relative to the higher modes in 

order to give similar magnitudes of wingtip displacement. The same time-step was used for 

all the transient computations, with ∆𝑡 = 1.306 x 10−4 s as in Section 5.7. 

The displacements were stepped "up" (positive increment) and "down" (negative increment) 

to investigate nonlinearity with modal displacement. 

The effect of the linearization step size (amplitude of the prescribed step) was investigated by 

considering the response for displacements differing by an order of magnitude (∆𝑥 =

 1 x  10−5  vs  ∆𝑥 =  1 x  10−6). 

Finally, the response history of the 3D Euler computations in Edge were compared with the 

2D strip-theory shock-expansion calculations in MATLAB. In interpreting the results, it is 

important to recall that the modal displacements (and GAFs) in Edge are time-averaged over 

three points, as in Equation ( 5.2 ); thus, although a step input is prescribed, a pure step is not 

achieved due to the time-averaging of displacements. The modelling of aerodynamics using 

SE/LPT in MATLAB does not account for aerodynamic lag effects in the flow resulting from 

the instantaneous change in geometry. 

The results of the computations are summarized on the pages that follow; further results from 

the computations may be found in Appendix F. 

The results in Section 5.8.1 through Section 5.8.4 will show that better agreement of the 

SE/LPT computations in MATLAB is obtained for the larger prescribed step displacement. 

Even so, the accuracy of the change in GAFs predicted by SE/LPT is generally very poor for 

the GAFs of modes other than the excited (prescribed) mode. This leads to large errors in the 

prediction of the off-diagonal terms in the aerodynamic stiffness matrix (Section 5.9).  
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5.8.1 Prescribed Motion of Mode 1 Only 

The percentage difference between the results obtained by Edge and by MATLAB for the 

prescribed motion of mode 1 are given in Table 5.10. An example of the response in given in 

Figure 5.50. 

Table 5.10: Accuracy of MATLAB Computation for the ATM-Wing, Mode 1 Prescribed Step 

  ∆𝑥1 = 5 x  10−5  ∆𝑥1 = 5 x  10−6 

 up down up down 

% Error ∆𝑐𝑁 9.4% 7.2% 20.6% -1.8% 

% Error ∆𝑐𝐴 -9.3% 13.8% -94.6% 76.9% 

% Error ∆𝑐𝑀  11.7% 9.3% 18.4% -5.4% 

% Error ∆𝑄1 12.1% 10.3% 6.8% -12.0% 

% Error ∆𝑄2 -19.0% -18.6% -28.2% -24.5% 

% Error ∆𝑄3 37.5% 19.8% 198% 19.7% 

% Error ∆𝑄4 228% 220% 449% 350.1% 

 

 

Figure 5.50: Aerodynamic Response of the ATM-Wing to Prescribed Step Modal Displacement, Mode 1  
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5.8.2 Prescribed Motion of Mode 2 Only 

The percentage difference between the results obtained by Edge and by MATLAB for the 

prescribed motion of mode 2 are given in Table 5.11. An example of the response in given in 

Figure 5.51. 

Table 5.11: Accuracy of MATLAB Computation for the ATM-Wing, Mode 2 Prescribed Step 

  ∆𝑥2 = 5 x  10−5  ∆𝑥2 = 5 x  10−6 

 up down up down 

% Error ∆𝑐𝑁 17.8% 16.0% 72.9% 39.9% 

% Error ∆𝑐𝐴 -13.9% 22.8% -95.0% 48.6% 

% Error ∆𝑐𝑀  20.9% 19.3% 73.0% 42.5% 

% Error ∆𝑄1 21.4% 20.2% 60.3% 40.3% 

% Error ∆𝑄2 -50.6% -50.4% -49.9% -17.9% 

% Error ∆𝑄3 510.9% 356.6% 4540% 74.0% 

% Error ∆𝑄4 -57.0% -55.5% -102% 15300% 

 

 

Figure 5.51: Aerodynamic Response of the ATM-Wing to Prescribed Step Modal Displacement, Mode 2  
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5.8.3 Prescribed Motion of Mode 3 Only 

The percentage difference between the results obtained by Edge and by MATLAB for the 

prescribed motion of mode 1 are given in Table 5.12. An example of the response in given in 

Figure 5.52. 

Table 5.12: Accuracy of MATLAB Computation for the ATM-Wing, Mode 3 Prescribed Step 

  ∆𝑥3 = 5 x  10−5  ∆𝑥3 = 5 x  10−6 

 up down up down 

% Error ∆𝑐𝑁 11.9% 10.5% 54.8% 39.9% 

% Error ∆𝑐𝐴 -8.2% 12.6% -76.2% 48.6% 

% Error ∆𝑐𝑀  14.5% 13.1% 58.0% 42.5% 

% Error ∆𝑄1 15.9% 14.8% 53.2% 40.3% 

% Error ∆𝑄2 -21.6% -21.5% -21.0% -17.9% 

% Error ∆𝑄3 15.8% 12.1% 115% 74.0% 

% Error ∆𝑄4 8910% 11100% 18100% 15300% 

 

 

Figure 5.52: Aerodynamic Response of the ATM-Wing to Prescribed Step Modal Displacement, Mode 3  
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5.8.4 Prescribed Motion of Mode 4 Only 

The percentage difference between the results obtained by Edge and by MATLAB for the 

prescribed motion of mode 1 are given in Table 5.13. An example of the response in given in 

Figure 5.53. 

Table 5.13: Accuracy of MATLAB Computation for the ATM-Wing, Mode 4 Prescribed Step 

  ∆𝑥4 = 5 x  10−5  ∆𝑥4 = 5 x  10−6 

 up down up down 

% Error ∆𝑐𝑁 -23.1% -27.4% -26.4% -74.1% 

% Error ∆𝑐𝐴 -40.7% 18.7% -209% 205% 

% Error ∆𝑐𝑀  -79.7% -88.5% -134% -232% 

% Error ∆𝑄1 491.9% 514.3% 950% 1260% 

% Error ∆𝑄2 30.8% 31.0% 45.4% 47.2% 

% Error ∆𝑄3 26.3% 23.5% 28.5% -4.3% 

% Error ∆𝑄4 -50.5% -51.4% -5.5% -15.9% 

 

 

Figure 5.53: Aerodynamic Response of the ATM-Wing to Prescribed Step Modal Displacement, Mode 4  
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5.9 Linearization of the Generalized Aerodynamic Forces 

Using the results of the prescribed motion computations of Section 5.8, the GAF linearization 

procedure outlines in Section 4.5.1 was followed, and the partial derivatives of the GAFs 

with respect to modal displacements were obtained. These partial derivatives make up the 

modal aerodynamic stiffness matrix, 𝑲𝒎𝒐𝒅𝒂𝒆𝒓𝒐. The terms of the matrix are given in Table 

5.14 for the two linearization step-sizes investigated, and are given as estimated from the 

results of the 3D Euler computation in Edge and from the SE/LPT computation in MATLAB. 

It is noted that the aerodynamic stiffness matrix derived from Edge results is essentially 

independent of the linearization step-size for the two considered sizes. 

Table 5.14: Modal Aerodynamic Stiffness Matrix of the ATM-Wing,𝑴 = 𝟐.𝟓𝟏,𝜶 = 𝟎.𝟓°,𝒒 =
𝟏𝟎𝟖 𝐤𝐏𝐚 

 ∆𝑥 = 1 x 10−5 ∆𝑥 = 1 x 10−6 

Edge 1 x 104  

−13.2 −92.5
6.7 24.4

−96.3 4.1
41.3 70.4

−1.4 −0.7
0.6 −17.1

−30.2 −38.0
0.2 26.6

  1 x 104  

−13.2 −92.5
6.7 24.4

−96.3 4.1
41.3 70.4

−1.4 −0.7
0.6 −17.1

−30.2 −38.0
0.2 26.6

  

MATLAB 1 x 104  

−14.7 −111.7
5.4 12.1

−111.1 24.7
32.4 92.2

−1.8 −3.9
1.9 −7.5

−34.4 −47.5
9.3 13.0

  1 x 104  

−12.9 −142.0
4.9 12.8

−141.3 49.3
33.3 103.0

−2.9 −28.1
2.9 −1.2

−58.7 −42.6
15.6 23.7

  

 

The aeroelastic modal frequencies of the ATM-wing at 𝑀 = 2.51, 𝛼 = 0.5°, 𝑞 = 108 kPa 

were estimated by neglecting the aeroelastic damping matrix and finding the eigenvalues of 

the undamped aeroelastic system given by: 

 𝑴𝒎𝒐𝒅𝒂𝒆 𝑥 
  + 𝑲𝒎𝒐𝒅𝒂𝒆

 𝑥  = 0 ( 5.7 ) 

The estimated aeroelastic modal frequencies are given in Table 5.15 for the two linearization 

step-sizes investigated, and are given as estimated from the results of the 3D Euler 

computation in Edge and from the SE/LPT computation in MATLAB. As a result of the 

linearization step-size independence of the aerodynamic stiffness matrix derived from Edge 

results, the estimated aeroelastic modal frequencies from Edge are similarly independent. The 

frequencies estimated from the MATLAB results give better agreement for the larger 

linearization step-size. Even so, the MATLAB results for the first two modes show poor 

agreement with the Edge results -- the separation of the first and second modal frequencies is 

over-predicted by ≈700%. This will have in turn result in the flutter speed being over-
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predicted. From the results, it is evident that accurate prediction of the aerodynamic stiffness 

will be of great importance for accurate flutter speed prediction. 

 

Table 5.15: Estimated Aeroelastic Modal Frequencies of the ATM-Wing, 𝑴 = 𝟐.𝟓𝟏,𝜶 =
𝟎.𝟓°,𝒒 = 𝟏𝟎𝟖 𝐤𝐏𝐚 

 ∆𝑥 = 1 x  10−5 ∆𝑥 = −1 x  10−6 

 Edge MATLAB % Error Edge MATLAB % Error 

𝜔1 [Hz] 97.3 84.3 -15.4% 97.3 77.1 -26.2% 

𝜔2 [Hz] 102.8 128.1 19.8% 102.8 135.5 24.1% 

𝜔3 [Hz] 211.8 214.2 -3.5% 211.8 224.5 1.2% 

𝜔4 [Hz] 406.6 410.8 1.0% 406.6 407.7 0.27% 

 

  



144 

 

 

 

6 AEROELASTIC ANALYSIS AND FLUTTER PREDICTION 

OF CANTILEVERED PLATES IN SUPERSONIC FLOW 

6.1 Free Aeroelastic Response of the ATM-Wing 

6.1.1 Literature on the Experimentally Determined Flutter Conditions 

Torii [54] and Matsuzaki [55] provide data for flutter tests of a cantilevered plate, with 

parameter and stability estimation. The plate is made of 2mm thick aluminium alloy 

(unspecified alloy), with double-wedge leading and trailing-edges. Torii provides the 

frequencies of the 3 first structural modes, as determined from FEM and from experiment, as 

give in Table 6.1: 

Table 6.1: Natural Frequencies of the Torii and Matsuzaki Wing [54] 

 Frequencies (Hz) 

Mode FEM Experiment 

1 27.9 27.2 

2 145.7 142.0 

3 207.1 192.3 

 

The planform of the cantilevered plate is given in Figure 6.1; note that the geometry of the 

sharpening of the leading and trailing-edges was not specified: 
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Figure 6.1: Planform of the Torii and Matsuzaki Wing [54] 

 

The planform geometry is summarized in Table 6.2: 

Table 6.2: Geometry of the Torii and Matsuzaki Wing [54] 

𝑆𝑟𝑒𝑓  [m
2
] AR 𝑐  [m] ΛLE  [°] 𝜆 𝑡 𝑐  

0.022 2.2 0.100 30 1 0.02 

 

The geometry of the TM-wing was replicated, with the bevel length estimated to be equal to 

15mm on each bevel. This approximated geometry is described in Section 5.2, and the 

subsequent approximate Torii and Matsuzaki wing (ATM-wing) was used in the present work 

for all computations relating to the Torii [54] and Matsuzaki [55] test. 

The cantilevered plate was tested by Torii [54] and Matsuzaki [55] in a supersonic wind-

tunnel for a constant Mach number of 𝑀 = 2.51 at a range of dynamic pressures; the 

dynamic pressure at the experimentally determined flutter point is quoted as 𝑞𝐹 = 113.5 kPa. 

No forced excitation was provided to the model; the onset of flutter was caused by the 

random excitation of turbulence. The modal damping and frequencies were estimated through 

an ARMA (Auto-Regressive Moving Average) model [54; 55], and the FMDS (flutter margin 

for discrete systems) was calculated for two-mode flutter [55] and for three-mode flutter [54]. 

Tests were also conducted [55] in which the dynamic pressure was increased linearly with 

time until the onset of flutter. The time-history of the strain-gauge response shows a very 

slight growth in the amplitude of the strain oscillations (suggesting a decrease in damping) at 

a dynamic pressure of approximately 𝑞 = 110 kPa. The onset of flutter is extremely sharp, as 
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seen by the sudden growth in oscillations in Figure 6.2, indicating that the plate undergoes 

hard flutter. 

 

Figure 6.2: Time History of Response of the Torii-Matsuzaki Flutter Test [55] 

6.1.2 Outline of the Computational Procedure 

The aeroelastic response of the ATM-wing to a small initial disturbance was analysed using 

three different methods: transient 3D Euler computation in Edge (Section 6.1.3); time-

marching of the nonlinear coupled aeroelastic equations formulated from SE/LPT in 

MATLAB (Section 6.1.4); and stability analysis and time-marching of the linearized coupled 

aeroelastic equations formulated from SE/LPT in MATLAB (Section 6.1.5). These methods 

will be referred to in shorthand as Edge, MATLAB (nonlinear), and MATLAB (linear), 

respectively. 

With each analysis method, the free aeroelastic response was computed about the static 

aeroelastic deflection of the ATM-wing at the given flight conditions. 

Various methods were used for the estimation of the modal parameters. The linearized model 

rendered the system of equations a linear time-invariant (LTI) system (see Section 4.4.3), for 

which eigenanalysis was performed to determine the system roots. For the nonlinear models, 
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Auto-Regressive Moving-Average (ARMA) (see Section 2.9.2) and Auto-Regressive (AR) 

models were estimated using the MATLAB system identification toolbox. 

The variation in the modal parameters with dynamic pressure at 𝑀 = 2.51 and 𝛼 = 0.5° was 

investigated by each of the three analyses to determine the flutter dynamic pressure for the 

given M–𝛼 pair. 

The same time-step of ∆𝑡 = 1.306 x 10−4 s was used for all the transient computations for 

numerical stability of the implicit time-marching, as detailed in Section 5.7. 

For the initial modal excitation, the second mode (first twisting mode) of the ATM-wing was 

given an initial modal velocity of 𝑥 2 = 1 x 10−2 /s. This was implemented as initial 

conditions for the time-marching in MATLAB for both the nonlinear and linearized SE/LPT 

models. The given modal excitation was chosen as it was believed that the GAFs would be 

dominated by 𝛼-effects, and excitation of the second mode would result in the largest change 

in 𝛼. 

 

The computation of the free response of the ATM-wing in Edge consisted of the following 

steps: 

1. Steady computation of the flow about the undeformed ATM-wing, 

2. Transient computation of the steady-state response of the elastic ATM-wing with 

artificial structural damping to the initial steady aerodynamic loading, 

3. Transient computation of the transient response of the elastic ATM-wing with no 

structural damping to an initial modal excitation about the aeroelastic equilibrium 

deflection. 

A detailed description of the set-up of the computations in Edge for the analysis of the free 

response is given in Appendix C. 

The computation of the free response of the ATM-wing in MATLAB (nonlinear) followed 

the same procedure as the computation in Edge. 

The computation of the free response of the ATM-wing in MATLAB (linear) consisted of the 

following steps: 
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1. Quasi-steady determination of the aeroelastic equilibrium deflection through iterative 

linearization of the GAFs and calculation of the structural deflection under constant 

loading, 

2. Linearization of the GAFs about the static aeroelastic deflection, 

3. Time-marching of the state-space formulation of the linearized aeroelastic equations. 

The implementation of the initial modal excitation in Edge was through the prescription of 

the initial modal velocity in the modal parameters file (.amop) for the restart of the unsteady 

solution in Edge. It was found that due to the time-averaging of modal displacements and 

GAFs in the Edge solver, as per Equations ( 5.2 ) and ( 5.3 ), the initial modal velocity was 

"smoothed out", and was not properly modelled as an initial condition. However, the 

perturbation was found to be sufficient to disturb the equilibrium of the ATM-wing and 

induce a transient response. 

6.1.3 Analysis in Edge 

The aeroelastic free response of the ATM-wing was analysed in Edge at dynamic pressures 

between 100 kPa and 110 kPa. The flutter dynamic pressure was found to lie between 

108 kPa and 108.5 kPa, and was estimated as 𝑞𝐹 ≈ 108.3 kPa. 

6.1.3.1 System Response Below Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 100 kPa is shown in Figure 6.3 

through Figure 6.7. 
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Figure 6.3: ATM-Wing Response Below Flutter Speed, Mode 1 Displacement, Edge 

 

 

Figure 6.4: ATM-Wing Response Below Flutter Speed, Mode 1 Phase-Plane Trajectory, Edge  
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Figure 6.5: ATM-Wing Response Below Flutter Speed, Mode 2 Displacement, Edge 

 

 

Figure 6.6: ATM-Wing Response Below Flutter Speed, Mode 2 Phase-Plane Trajectory, Edge  
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Figure 6.7: ATM-Wing Response Below Flutter Speed, cZ, Edge 

 

The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.3 and Figure 6.4. Amongst the modal responses, Mode 1 showed the largest amplitude in 

response, as was expected due to the associated modal stiffness of Mode 1 being lower than 

that of other modes. The response is seen to decay with time (evidence of positive damping), 

and exhibits a periodic variation in amplitude (beating).s 

The beating shown in the response of Mode 1 (first bending, undamped structural mode-

shape) results due to the response being composed of two decaying sinusoids of dissimilar 

frequencies. It may be shown (as in Section 6.1.5) that the beat frequency suggests that the 

response of Mode 1 is made up of the first two aeroelastic modes. When the "spatial filter" of 

the undamped mode-shaped (Mode 1) is applied to the overall structural response, the 

response of the first two aeroelastic mode-shapes are "passed". Similar beating is shown in 

the response of Mode 2, as in Figure 6.5 and Figure 6.6, and in the normal-force coefficient 

history (which is dominated by the response of Mode 2), as in Figure 6.7. 
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The response of Mode 2 (first twisting, undamped structural mode-shape) is shown in Figure 

6.5 and Figure 6.6. It is seen that the trends of the response are similar to those of the 

response of Mode 1 -- the response of Mode 2 also shows the beating of two damped 

sinusoids. These sinusoids, again, represent the contribution from the first two aeroelastic 

modes. The magnitude of the response is seen to be lower than the magnitude of Mode 1, as 

expected due to the higher stiffness of Mode 2. 

From the phase-plane trajectory of Mode 2 in Figure 6.6, the implementation of the initial 

conditions in Edge is clearly shown (by the green triangle; the red square denotes the final 

point on the phase-plane); Mode 2 was given the initial condition of 𝑥 2 = 1 x 10−2, which 

was modelled in Edge as a modal velocity impulse (due to the time-averaging of modal 

displacements and velocities). 

The normal-force coefficient history is shown in Figure 6.7. It was found that the normal-

force response was driven by the response of Mode 2 (first twisting mode). This was 

expected, as the normal-force coefficient is dominated by 𝛼-effects rather than through 

plunge effects; Mode 2 is predominantly a twisting mode (giving rise to a change in 𝛼 down 

the span of the wing). The response is seen to decay with time and exhibits beating. 

6.1.3.2 Pre-Flutter System Response Near Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 108 kPa is shown in Figure 6.8 

through Figure 6.14. 
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Figure 6.8: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 1 Displacement, Edge 

 

 

Figure 6.9: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 1 Phase-Plane Trajectory, Edge  
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Figure 6.10: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 2 Displacement, Edge 

 

 

Figure 6.11: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 2 Phase-Plane Trajectory, Edge  
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Figure 6.12: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 3 Displacement, Edge 

 

 

Figure 6.13: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 4 Displacement, Edge 

  



156 

 

 

Figure 6.14: ATM-Wing Pre-Flutter Response Near Flutter Speed, cZ, Edge 

 

The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.8 and Figure 6.9. The response shows gradual decay after an initial growth, giving evidence 

of the aerodynamic damping approaching zero. The beating that was present at lower 

dynamic pressures (e.g., 𝑞 = 100 kPa, Figure 6.3) is no longer present. This suggests that the 

frequencies of the first two aeroelastic modes are close to one another (which would result in 

a low beat frequency). 

The varying rate at which the spacing between the spirals of the phase-plane trajectory of 

Mode 1 in Figure 6.9 changes highlights the change in the perceived damping of the 

response. This is reflected in the slight change in the slope of the envelope of the response in 

Figure 6.8 between 𝑡 = 0.05 s → 𝑡 = 0.08 s and 𝑡 = 0.08 s → 𝑡 = 0.15 s. Recalling that the 

response of Mode 1 (and Mode 2) is the sum of the contributions of the first two aeroelastic 

modes, the variation in the perceived damping suggests that one of the aeroelastic modes has 

near-zero damping, whilst the other has higher damping which decays the contribution of the 

mode significantly by 𝑡 = 0.08 s. 
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Similar trends are observed for the response of Mode 2 (first twisting, undamped structural 

mode-shape), as shown in Figure 6.10 and Figure 6.11. 

From the time-history of modal response, it is evident that at 𝑞 = 108 kPa, the ATM-wing is 

near flutter. 

Figure 6.12 and Figure 6.13 show the modal response of Mode 3 and Mode 4, respectively. 

The history of displacements suggests that the response is made up of two signals: a 

dampened transient free response of high frequency (the natural frequency of the aeroelastic 

mode); and a steady-state forced response of frequency corresponding to the GAF (which is 

dominated by Mode 2). The transient component of the response of Mode 3 and Mode 4 

suggests the modes are more heavily damped than Mode 2. 

The normal-force coefficient history is shown in Figure 6.14. Once again, the response is 

found to be nearly identical in its trends to the modal response of Mode 1 and Mode 2. 

6.1.3.3 Post-Flutter System Response Near Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 108.5 kPa is shown in Figure 6.15 

through Figure 6.21. 
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Figure 6.15: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 1 Displacement, Edge 

 

Figure 6.16: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 1 Phase-Plane Trajectory, Edge 
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Figure 6.17: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 2 Displacement, Edge 

 

 

Figure 6.18: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 2 Phase-Plane Trajectory, Edge  
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Figure 6.19: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 3 Displacement, Edge 

 

 

Figure 6.20: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 4 Displacement, Edge 
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Figure 6.21: ATM-Wing Post-Flutter Response Near Flutter Speed, cZ, Edge 

 

The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.15 and Figure 6.16. The response shows gradual further growth after an initial growth, 

showing that the aerodynamic damping is negative. The beating that was present at lower 

dynamic pressures (e.g., q = 100 kPa, Figure 6.3) is no longer present, suggesting that the 

frequencies of the first two aeroelastic modes are close to one another. 

Similar trends are observed for the response of Mode 2 (first twisting, undamped structural 

mode-shape), as shown in Figure 6.17 and Figure 6.18. 

From the time-history of modal response, it is evident that at q = 108.5 kPa, the ATM-wing 

is experiencing flutter at a speed slightly higher than the flutter speed. 

Figure 6.19 and Figure 6.20 show the modal response of Mode 3 and Mode 4, respectively. 

Once again, the history of displacements suggests that the response is made up of two signals: 

a dampened transient free response of high frequency (the natural frequency of the aeroelastic 

mode); and a steady-state forced response of frequency corresponding to the GAF (which is 
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dominated by Mode 2). The transient component of the response of Mode 3 and Mode 4 

suggests the modes are more heavily damped than Mode 2. 

The normal-force coefficient history is shown in Figure 6.21. Once again, the response is 

found to be nearly identical in its trends to the modal response of Mode 1 and Mode 2. 

6.1.3.4 Modal Parameter Estimation 

The time-history of the total displacement from modal contributions was computed at the 

leading-edge and at the trailing-edge of the wing-tip for each dynamic pressure analysed. 

These points were chosen due to the large deflections associated with the wing-tip. The 

history of the displacement was pre-processed before the system identification tool was 

applied, with the displacement being taken about the (initial) equilibrium deflection. The 

subsequent time-series was then band-filtered to pass frequencies between 80 Hz and 140 Hz. 

The modal parameters were obtained from the system model estimated using the armax 

system identification function in MATLAB, with order [4,1] (an ARMA model with an AR 

component of order 4 and a MA component of order 1). System identification was performed 

using the displacements at the leading-edge of the wing-tip, as the results obtained were a 

better representation of the time-history of response. 

The estimated modal parameters are shown in Figure 6.22, with the flutter dynamic pressure 

as estimated from the ARMA model being shown by the solid black line (𝑞𝐹 ≈ 106.2 kPa). 
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Figure 6.22: ATM-Wing Estimated Modal Parameters, Edge 

 

The quality of the estimation of the modal frequencies obtained is relatively good, as the 

predicted modal frequencies at 𝑞 = 100 kPa compare well with frequencies directly 

estimated from the time-history of the total displacement. The beat frequency at 𝑞 = 100 kPa 

may be estimated to be approximately 𝑓2 − 𝑓1 ≈ 30 Hz, which agrees well with the 

separation of the modal frequencies of 𝑓2 − 𝑓1 ≈ 27 Hz at 𝑞 = 100 kPa in Figure 6.22. This 

estimation may also be performed for the modal displacement histories in Figure 6.3 and 

Figure 6.5 for Mode 1 and Mode 2, respectively, with similar results being estimated. 

The source of the error in the estimation of modal damping ratios using the ARMA model 

remained unidentified, as the use of the trailing-edge data in the system identification yielded 

similarly poor results. It is suggested that better estimation of the system model might be 

obtained through application of the ARMA model at measurement points best suited to modal 

measurements, as outlined by Yildiz [62]. A further possible source of error could be slight 

nonlinearity in the response, in which case the accuracy of the ARMA identification method 

(used for the identification of linear systems) would be affected. 
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Nonetheless, the following general trends may be observed from the estimated modal 

parameters in Figure 6.22. The aeroelastic frequencies coalesce as flutter is approached; the 

frequency of the plunge (first-bending) mode, Mode 1, is seen to increase, whilst the 

frequency of the pitch (first-twisting) mode, Mode 2, is seen to decrease. However, the 

damping of the plunge mode (Mode 1) decreases towards flutter and post-flutter, whilst the 

damping of the pitch mode (Mode 2) is seen to increase -- this would suggest that the plunge 

mode is driving the flutter, which is unlikely. The damping of Mode 1 estimated from the 

ARMA model is seen to decrease gradually towards flutter; this is not representative of the 

hard-flutter of the TM-wing in experiment, as determined by Matsuzaki [55]. 

The flutter dynamic pressure as estimated from the ARMA model is approximately 𝑞𝐹 ≈

106.2 kPa. However, as may be seen from the time-history of modal responses in Section 

6.1.3.2 and Section 6.1.3.3, the flutter dynamic pressure lies between 𝑞 = 108 kPa and 

𝑞 = 108.5 kPa, and was consequently estimated to be 𝑞𝐹 ≈ 108.3 kPa. This is 4.6% lower 

than the experimental flutter dynamic pressure of 𝑞𝐹 = 113.5 kPa. as determined by 

Matsuzaki [55], and represents good correlation to experiment. 

6.1.4 Analysis in MATLAB (nonlinear) 

The aeroelastic free response of the ATM-wing was analysed in MATLAB using the 

nonlinear coupled aeroelastic equations formulated from SE/LPT at dynamic pressures 

between 113 kPa and 121 kPa. The flutter dynamic pressure was found to lie between 

120.5 kPa and 120.9 kPa, and was estimated as 𝑞𝐹 ≈ 120.8 kPa. 

6.1.4.1 System Response Below Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 113 kPa is shown in Figure 6.23 

through Figure 6.27. The general trends of the system response are similar to those exhibited 

by the analysis in Edge, as described in Section 6.1.3.1. The reader is referred back to Section 

6.1.3.1 for more detailed descriptions of the trends in the system behaviour. 
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Figure 6.23: ATM-Wing Response Below Flutter Speed, Mode 1 Displacement, MATLAB (nonlinear) 

 

 

Figure 6.24: ATM-Wing Response Below Flutter Speed, Mode 1 Phase-Plane Trajectory, MATLAB (nonlinear)  
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Figure 6.25: ATM-Wing Response Below Flutter Speed, Mode 2 Displacement, MATLAB (nonlinear) 

 

 

Figure 6.26: ATM-Wing Response Below Flutter Speed, Mode 2 Phase-Plane Trajectory, MATLAB (nonlinear)  
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Figure 6.27: ATM-Wing Response Below Flutter Speed, cZ, MATLAB (nonlinear) 

 

The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.23 and Figure 6.24. The modal response shows positive damping, with beating in the 

response. The trends are similar to those given by analysis in Edge for the response of the 

ATM-wing below flutter speeds. 

The response of Mode 2 (first twisting, undamped structural mode-shape) is shown in Figure 

6.25 and Figure 6.26. Once again, beating is present with positive damping of the response, 

and similar trends to those obtained in Edge are observed. 

The phase-plane trajectory of Mode 2 in Figure 6.26 shows the implementation of the initial 

conditions in MATLAB (nonlinear) using SE/LPT. (The green triangle denotes the initial 

conditions, and the red square denotes the final point on the phase-plane). It is seen that  the 

initial condition of 𝑥 2 = 1 x 10−2 is properly implemented, with a smooth trajectory in the 

phase-plane for the subsequent motion. This is in contrast to the implementation in Edge, as 

seen in Figure 6.6. 
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The normal-force coefficient history is shown in Figure 6.27. Again, the trends of the 

response are similar to those seen in Edge. 

6.1.4.2 Pre-Flutter System Response Near Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 120.5 kPa is shown in Figure 6.28 

through Figure 6.36. The system response shows similar trends to those exhibited by the 

analysis in Edge, as described in Section 6.1.3.2, although the system is not as near the flutter 

speed in the present case. The reader is referred to Section 6.1.3.2 for more detailed 

descriptions of the trends in the system behaviour. 

 

 

Figure 6.28: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 1 Displacement, MATLAB (nonlinear) 

 



169 

 

 

Figure 6.29: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 1 Phase-Plane Trajectory, MATLAB (nonlinear) 

 

 

Figure 6.30: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 2 Displacement, MATLAB (nonlinear)   
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Figure 6.31: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 2 Phase-Plane Trajectory, MATLAB (nonlinear) 

 

 

Figure 6.32: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 3 Displacement, MATLAB (nonlinear) 
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Figure 6.33: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 3 Displacement, Transition, MATLAB (nonlinear) 

 

 

Figure 6.34: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 4 Displacement, MATLAB (nonlinear) 

  



172 

 

 

Figure 6.35: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 4 Displacement, Transition, MATLAB (nonlinear) 

 

 

Figure 6.36: ATM-Wing Pre-Flutter Response Near Flutter Speed, cZ, MATLAB (nonlinear)   
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The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.28 and Figure 6.29. Positive damping of the response after an initial growth is evident; 

however, the sustain of the vibration in comparison to that at lower dynamic pressures (e.g., 

𝑞 = 113 kPa, Figure 6.23) shows that the system is approaching flutter speed. No beating is 

obvious in the response. This suggests that the frequencies of the first two aeroelastic modes 

are coalescing. The trends of the response are similar to those shown for the pre-flutter ATM-

wing response in Edge. 

The trends observed for the response of Mode 2 (first twisting, undamped structural mode-

shape), as shown in Figure 6.30 and Figure 6.31, are also in agreement with those observed in 

the results of analysis in Edge. However, the different implementation of the initial 

conditions is observed in the phase-plane trajectory of Figure 6.31. 

The system response at 𝑞 = 120.5 kPa suggests the ATM-wing is near flutter. 

Figure 6.32 and Figure 6.33 show the modal response of Mode 3 over two time-windows. 

The response suggests the presence of two signals: a dampened transient free response of 

high frequency (the natural frequency of the aeroelastic mode) which is evident in the tail-end 

of the response; and a steady-state forced response of frequency corresponding to the GAF 

(which is dominated by Mode 2), which dominates the initial phase of the response. No 

beating is evident, suggesting that (as expected), the transient natural response of Mode 3 is 

of significantly smaller magnitude in comparison to the forced response due to the action of 

the GAF. 

Figure 6.34 and Figure 6.35 show the modal response of Mode 4 over two time-windows. 

The response of Mode 4 differs from that of Mode 3 in that the transient and forced 

components of the response appear to be of similar magnitude. Rather than the initial growth 

in response shown by Mode 3, the initial response of Mode 4 appears to be dominated by the 

transient component, which shows moderate damping. The transient response is seen to be of 

higher frequency, as expected, than the forced response. 

The response of Mode 3 and Mode 4 computed in MATLAB (nonlinear) shows similar 

behaviour to that computed in Edge, with the transient and steady-state components being 

visibly distinct; however, the relative magnitudes of the components differ between the 

computational models used. It may also be seen that the magnitude of the response of Mode 3 

in MATLAB (nonlinear) (Figure 6.32) is greater than that computed in Edge (Figure 6.12). 
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This suggests that the GAF associated with Mode 3 (which gives rise to the forced response) 

is modelled as being larger than as modelled in Edge. This is in agreement with the poor 

correlation of results for the response of Mode 3 and Mode 4 between SE/LPT and Edge, as 

seen in Section 5.8.3 and Section 5.8.4. 

The normal-force coefficient history is shown in Figure 6.36. The response is again found to 

be similar in behaviour to the modal response of Mode 1 and Mode 2. 

6.1.4.3 Post-Flutter System Response Near Flutter Speed 

The system response to the initial modal excitation at 𝑞 = 120.9 kPa is shown in Figure 6.37 

through Figure 6.43. The system response shows similar trends to those exhibited by the 

analysis in Edge, as described in Section 6.1.3.3. The reader is referred to Section 6.1.3.3 for 

more detailed descriptions of the trends in the system behaviour. 

 

 

Figure 6.37: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 1 Displacement, MATLAB (nonlinear) 
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Figure 6.38: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 1 Phase-Plane Trajectory, MATLAB (nonlinear) 

 

 

Figure 6.39: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 2 Displacement, MATLAB (nonlinear)  
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Figure 6.40: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 2 Phase-Plane Trajectory, MATLAB (nonlinear) 

 

 

Figure 6.41: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 3 Displacement, MATLAB (nonlinear)  
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Figure 6.42: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 4 Displacement, MATLAB (nonlinear) 

 

 

Figure 6.43: ATM-Wing Post-Flutter Response Near Flutter Speed, cZ, MATLAB  
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The response of Mode 1 (first bending, undamped structural mode-shape) is shown in Figure 

6.37 and Figure 6.38. The response shows gradual further growth after an initial growth, 

showing that the aerodynamic damping is negative. Beating of the response is not evident, 

suggesting that the frequencies are coalescing. Similar trends are observed for the response of 

Mode 2 (first twisting, undamped structural mode-shape), as shown in Figure 6.39 and Figure 

6.40. 

The trends of the modal response of Mode 1 and Mode 2 obtained in MATLAB (nonlinear) 

agree with those obtained in Edge. It is evident that, for the analysis in MATLAB (nonlinear) 

at q = 120.9 kPa, the ATM-wing is post-flutter, close to the flutter speed. 

Figure 6.41 and Figure 6.42 show the modal response of Mode 3 and Mode 4, respectively. 

From the steady growth of the response of Mode 3, it is not visually obvious that the response 

consists of a transient component and a steady forced component; this was similarly noted at 

𝑞 = 120.5 kPa. The response of Mode 4, however, shows the two components, with an initial 

decay from the initially dominant transient component transitioning to the steady growth of 

the forced component. From the behaviour of the transient component, it is evident that Mode 

4 is positively damped, although the response grows due to the growing GAF. 

The normal-force coefficient history is shown in Figure 6.43 and reflects the growth in the 

GAF, which is dominated by the motion of Mode 2. 

6.1.4.4 Modal Parameter Estimation 

For the system identification of the modelling in MATLAB (nonlinear), the same pre-

processing of the total displacement was used as for Edge, as outlined in Section 6.1.3.4. 

The modal parameters were obtained from the system model estimated using the armax 

system identification function in MATLAB, with order [4,1] (an ARMA model with an AR 

component of order 4 and a MA component of order 1). System identification was performed 

using the displacements at the trailing-edge (as opposed to the leading-edge, for Edge) of the 

wing-tip, as the results obtained were a better representation of the time-history of response. 

The estimated modal parameters are shown in Figure 6.44, with the flutter dynamic pressure 

as estimated from the ARMA model being shown by the solid black line (𝑞𝐹 ≈ 120.6 kPa). 
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Figure 6.44: ATM-Wing Estimated Modal Parameters, MATLAB (nonlinear) 

 

The predicted modal frequencies at 𝑞 = 113 kPa compare well with frequencies directly 

estimated from the time-history of the total displacement. The beat frequency at 𝑞 = 113 kPa 

may be estimated to be approximately 𝑓2 − 𝑓1 ≈ 28 Hz, which agrees well with the 

separation of the modal frequencies of 𝑓2 − 𝑓1 ≈ 26 Hz at 𝑞 = 113 kPa in Figure 6.44. This 

estimation may also be performed for the modal displacement histories in Figure 6.23 and 

Figure 6.25 for Mode 1 and Mode 2, respectively, with similar results being estimated. 

The trends in the modal damping from the identified system model compare significantly 

better to typical aeroelastic trends (see Section 2.7) than the trends from the system model 

identified for the Edge data do (see Figure 6.22). From Figure 6.44, it is seen that the pitch 

mode (Mode 2) experiences a very sharp drop in damping close to the flutter speed 
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(estimated by system identification to be 𝑞𝐹 ≈ 120.6 kPa). This is in good agreement with 

the hard-flutter of the TM-wing, as tested by Matsuzaki [55]. 

However, the magnitude of the damping coefficients estimated is drastically too small -- 

inspection of the modal response in Figure 6.23 and Figure 6.25 suggests significantly higher 

damping coefficients than the system-estimated values of ≈ 0.002. The source of the error in 

the estimation of modal damping coefficients using the ARMA model could not be identified. 

It is hypothesized that a refinement in the pre-processing band-pass filtering could yield 

improved estimation of the damping coefficients. 

The flutter dynamic pressure as estimated from the ARMA model is approximately 𝑞𝐹 ≈

120.6 kPa. However, the time-history of modal responses in Section 6.1.4.2 and Section 

6.1.4.3, the flutter dynamic pressure is closer to 𝑞 = 120.9 kPa, and was consequently 

estimated to be 𝑞𝐹 ≈ 120.8 kPa. This is 6.4% higher than the experimental flutter dynamic 

pressure of 𝑞𝐹 = 113.5 kPa. as determined by Matsuzaki [55]. 

6.1.5 Analysis in MATLAB (linear) 

The aeroelastic free response of the ATM-wing was analysed in MATLAB using the 

linearized coupled aeroelastic equations formulated from SE/LPT over a range of dynamic 

pressures. The linearization of the GAFs about the equilibrium deflection allowed for the 

system stability to be directly assessed using eigenanalysis. The computation time of the 

system response and stability for a given flight condition using MATLAB (linear) was 

thereby considerably shorter than the computations in MATLAB (nonlinear) and Edge. This 

allowed a large number of points to be analysed, and made the rapid generation of flutter 

envelopes feasible. A linearization step size of ∆𝑥 = 1 x 10−4 was used; the recommended 

step-size based upon ∆𝑥2 producing 2° twist at the wing-tip was ∆𝑥𝑟𝑒𝑐𝑐 = 2.4 x 10−4. 

The flutter dynamic pressure was determined as 𝑞𝐹 ≈ 124.5 kPa. 

6.1.5.1 Time-History of Response 

Selected time-histories of modal responses at various dynamic pressures will be shown to 

give an example of the system behaviour. The response of Mode 2 (first twisting, undamped 
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structural mode-shape) will shown at dynamic pressures below flutter and near flutter. The 

response of Mode 3 will be shown at a selected dynamic pressures to highlight specific 

phenomena captured by the modelling. 

Figure 6.45 shows the response of Mode 2 (first twisting, undamped structural mode-shape) 

at 𝑞 = 120 kPa, which is below the flutter dynamic pressure. Beating is evident in the 

response, with both the contributing components being moderately damped. Thus, the beating 

due to the aeroelastic mode-shapes contributing to the structural modal response is captured, 

even with linearized GAFs. 

 

 

Figure 6.45: ATM-Wing Response Below Flutter Speed, Mode 2 Displacement, MATLAB (linear)  
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In Figure 6.46, the response of Mode 2 is shown at 𝑞 = 124 kPa, very close to the flutter 

dynamic pressure. No beating is visually obvious, although the damping of the response 

following an initial growth is seen to be positive. The sustain of the response shows that the 

damping is approaching zero. 

 

Figure 6.46: ATM-Wing Pre-Flutter Response Near Flutter Speed, Mode 2 Displacement, MATLAB (linear) 

 

The sharp transition to flutter is evident by the change in the response of Mode to between 

𝑞 = 124 kPa and 𝑞 = 125 kPa. The response at 𝑞 = 125 kPa is shown in Figure 6.47 on 

page 183. Once again, no beating is visually evident; the damping of the forced response is 

clearly negative, with the continued growth of the response. 

Examination of the response of Mode 3 at a dynamic pressure sufficiently below flutter 

conditions shows that modal response is modelled as consisting of a transient free-response 

component of higher frequency and of a steady forced component of lower frequency. This is 

shown in Figure 6.48. At higher dynamic pressures, the transient component of the response 

of Mode 3 is indistinguishable from the steady forced component; this was previously noted 

with the response as modelled in MATLAB (nonlinear), in Section 6.1.4.2. 
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Figure 6.47: ATM-Wing Post-Flutter Response Near Flutter Speed, Mode 2 Displacement, MATLAB (linear) 

 

 

Figure 6.48: ATM-Wing Response Below Flutter Speed, Mode 3 Displacement, MATLAB (linear)  
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6.1.5.2 System Eigenanalysis and Modal Parameters 

The stability of the system was assessed through eigenanalysis of the modal-order linearized 

aeroelastic system of equations. This yielded the roots of the system, from which the modal 

parameters could be identified as per Equation ( 2.50 ). The behaviour of the modal 

parameters as well as of flutter prediction metrics with dynamic pressure was investigated. 

The roots of the linearized aeroelastic system of equations were determined through 

eigenanalysis, and the trajectory of the roots through the complex-plane is shown in Figure 

6.49. Green triangles denote the location of the roots at 𝑞 = 60 kPa, and red squares denote 

the location of the roots at 𝑞 = 125 kPa. The roots associated with the first six modes are 

shown, with the roots associated with higher modes being located increasingly higher up on 

the imaginary axis (the higher modes have higher frequencies). 

 

Figure 6.49: ATM-Wing System Root Locus Plot, MATLAB (linear)  
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Several trends may be extracted from the root locus in Figure 6.49. Firstly, it is noted that as 

the dynamic pressure is increased, the damping ratio (indicated by far into the left-hand plane 

the root is along the real axis) of all the modes initially increases. Together with this, the 

frequencies (indicated by the vertical location of the root on the complex-plane) of the first 

two modes (the lowest roots on the plane) are seen to approach one another. This initial 

increase in damping and coalescence of frequencies is typical of aeroelastic systems (see 

Section 2.7). 

Secondly, as the dynamic pressure is increased further, the frequencies of the first two modes 

asymptotically approach one another, accompanied by a divergence of the damping ratios of 

Mode 1 and Mode 2; the damping ratio of Mode 1 increases, whilst the damping ratio of 

Mode 2 is seen to decrease and cross over into the right-hand plane -- indicating the transition 

to flutter. This is also typical behaviour. It is to be noted that the divergence of the damping 

ratios is very rapid, and the turn in the trajectory of the root associated with the flutter mode 

is very sharp -- this is an indicator of hard flutter occurring. 

Finally, the independence of the behaviour of Mode 3 from the behaviour of Mode 1 and 

Mode 2 show that the flutter is 2-mode. Mode 2 is seen to be the flutter mode which couples 

with Mode 1. 

These trends are more obviously displayed when considering the behaviour of the modal 

parameters, as shown in Figure 6.50 on page 186. Here, the frequency coalescence  of Mode 

1 and Mode 2 is clearly seen. Upon closer inspection, as per Figure 6.51 on page 187, it is 

seen that the frequencies are modelled as coalescing before the onset of flutter, with the 

frequency of Mode 2 at flutter being 𝑓𝐹 ≈ 108 Hz. This is in contrast to the results of the 

estimated system parameters from nonlinear analysis in Edge and MATLAB (nonlinear), in 

which flutter is reached whilst Mode 1 and Mode 2 are separated by at least 5Hz. However, 

the flutter frequency (frequency of Mode 2) predicted by MATLAB (linear) of 𝑓𝐹 ≈ 108 Hz 

is in good agreement with that predicted by Edge (𝑓𝐹 ≈ 107 Hz) and by MATLAB 

(nonlinear) (𝑓𝐹 ≈ 112 Hz). 
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Figure 6.50: ATM-Wing Modal Parameter Variation with Dynamic Pressure, MATLAB (linear) 
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Figure 6.51: ATM-Wing Modal Parameter Variation with Dynamic Pressure Near Flutter, MATLAB (linear) 

 

Also noted from Figure 6.50 and Figure 6.51, the drop in damping of Mode 2 is very sharp, 

indicating hard flutter; there is only a difference of approximately 1.2 kPa between the first 

sign of a decrease in damping of Mode 2 (around 𝑞 ≈ 123.3 kPa) and flutter. From the 

damping trend, the flutter dynamic pressure is seen to be approximately 𝑞𝐹 ≈ 124.5 kPa. 

This is 9.7% higher than the experimental flutter dynamic pressure determined by Matsuzaki 

[55]. 

The variation of the 2-mode Zimmerman-Weissenburger flutter margin (see Section 2.9.1) 

over the range of dynamic pressures is shown in Figure 6.52. The flutter margin was 

determined for coupling of different pairs of modes to investigate the behaviour of the flutter 
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margin if the coupling modes are incorrectly chose. It is seen that as long the flutter mode 

(Mode 2) is included, the flutter margin computed will become negative after flutter; 

however, the behaviour of the incorrectly chosen flutter margin before flutter will not follow 

the desired trend. The desired trend is that shown by the flutter margin based on the coupling 

modes - Mode 1 and Mode 2; a very nearly linear variation in the flutter margin with 

dynamic pressure is seen. The flutter margin crossed the x-axis at 𝑞𝐹 = 124.47 kPa. The 

near-linear variation of the flutter margin lends itself to rapid prediction of the flutter point. 

 

Figure 6.52: ATM-Wing Zimmerman-Weissenberger Flutter Margin Variation with Dynamic Pressure, MATLAB (linear)  
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The variation of the envelope function shape parameter with dynamic pressure was also 

investigated, as shown in Figure 6.53. The shape parameter was computed using Equation ( 

2.62 ) in order that at flutter, 𝑆∗ = 0. The shape parameter was evaluated from the modal 

response of Mode 1 and Mode 2. It may be seen that the behaviour of the parameter under 

hard flutter is not useful for flutter prediction, and will give highly non-conservative 

estimates of the flutter speed if extrapolated from points not very close to the flutter point. 

The shape parameter crossed the x-axis at 𝑞 = 124.4 kPa for both modes analysed. 

 

Figure 6.53: ATM-Wing Envelope Function Shape Parameter Variation with Dynamic Pressure, MATLAB (nonlinear) 

 

6.1.6 Comparison of Analysis Results 

A comparison of the variation in frequencies modelled by Edge, MATLAB (nonlinear), and 

MATLAB (linear) is given in Figure 6.54. The experimental flutter frequency of 𝑞𝐹 =

113.5 kPa as determined by Matsuzaki [55] is included for reference.  
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Figure 6.54: Comparison of Modal Frequencies Modelled for the ATM-Wing by Edge, MATLAB (nonlinear), and MATLAB (linear) 
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The flutter dynamic pressure of the ATM-Wing is bounded on either side by the simulated 

flutter dynamic pressures; the result from Edge is conservative, whilst the analysis using 

SE/LPT in MATLAB over-predicts the flutter dynamic pressure. The dynamic pressures at 

flutter predicted by the methods are summarized in Table 6.3. From Figure 6.54, it may be 

seen that there is good agreement in the trend of the aeroelastic modal frequencies; the 

nonlinear analysis methods both model flutter as occurring before the complete coalescence 

of the frequencies of Mode 1 and Mode 2. However, as was previously noted, accurate 

extraction of damping coefficients from the nonlinear analysis data using ARMA 

identification ; in contrast, the linear modelling in MATLAB provided damping trends which 

were representative of the response and which modelled hard flutter. 

Table 6.3: Comparison of the Flutter Points Predicted by Simulation 

Analysis Method 𝑞𝐹 [kPa] % Error in 𝑞𝐹 

Experiment (Matsuzaki) [55] 113.5 — 

Edge 108.3 -4.6% 

MATLAB (nonlinear) 120.8 6.4% 

MATLAB (linear) 124.5 9.7% 

 

It is hypothesized that the over-prediction of the flutter dynamic pressure by SE/LPT in 

MATLAB may be attributed to the inaccuracies in modelling the steady contribution to the 

aerodynamic loading (and consequently in modelling the GAFs and the aerodynamic stiffness 

matrix). 

The importance of accurately modelling the steady contribution to the aerodynamic loading is 

highlighted in Figure 3.10 on page 74 from Zhang et al [11]; the main difference between the 

results of (1st order) local piston theory and 1st order classical piston theory given by Zhang 

et al lies in the use of steady Euler results to model to steady contribution to aerodynamics in 

LPT. The better agreement in LPT to unsteady Euler over 1st order classical PT reported by 

Zhang et al [11] is due to improved fidelity in the modelling of the steady aerodynamics. It is 

expected that the flutter speed predicted by SE/LPT is similarly over-predicted (as the results 

from classical PT of Zhang et al [11] are when compared to an unsteady Euler computation) 

due to insufficient fidelity in the computation of the steady aerodynamic contribution to the 

overall loading. 
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A comparison of the typical computation time for a given flight condition (for the given 

structural model described in Section5.3) required for the ≈500 time steps of the computation 

to steady deformation and for ≈1000 time steps for the free response computation is given in 

Table 6.4. The computations in Edge were performed on a different computer to those 

performed in MATLAB, due to limitations on licensing of software. 

Table 6.4: Comparison of Typical Computation Times for the ATM-Wing 

Method of Analysis Typical computation time Remarks 

Edge ≈ 7 hours Parallel processing on 3 processors 

MATLAB (nonlinear) ≈ 9 hours Single processor 

MATLAB (linear) ≈ 3 min Single processor 

 

The linearization of the GAFs allowed for the holistic analysis (time-response and system 

stability analysis) of the aeroelastic response of the ATM-wing to be performed very rapidly 

in comparison to the computationally intensive time-marching of the implicit aeroelastic 

equations required by Edge and MATLAB (nonlinear). Through comparison of the order of 

computation times between Edge and MATLAB (linear) it may be seen that of the order of 

~140 flight conditions could be analysed in MATLAB (linear) in the time required for the 

analysis of a single flight condition in Edge. Thus, MATLAB (linear) was found to be useful 

as a rapid aeroelastic prediction tool, with the minimal computation time rendering it suitable 

to the generation of flutter envelopes and to parametric design studies. 

It should be noted that Edge provides the functionality to produce a reduced-order model 

(ROM) of the GAFs, which would also reduce the computation time required in Edge to 

assess the stability and response of the wing at the specified flight condition. The ROM-

generation functionality of Edge was not exploited, as this was outside the scope of the 

present dissertation. 

In summary, the results of SE/LPT in MATLAB slightly over-predicted the flutter dynamic 

pressure (to within 9.7% of the experimental value), whilst the flutter point was under-

predicted in Edge. The linearization of the GAFs from SE/LPT in MATLAB was shown to 

significantly reduce the time required to predict the flutter point of the ATM-wing at an 

acceptable cost in the accuracy of the prediction. 



193 

 

6.2 Flutter Envelope of the ATM-Wing 

The flutter envelope (as based on variation of angle-of-attack) of the ATM-wing at 𝑀 = 2.51 

was determined using the linearized aeroelastic equations from SE/LPT in MATLAB (linear). 

The effect of the selection of the linearization step-size on the predicted flutter envelope was 

also investigated. 

 

Figure 6.55: Flutter Envelope of the ATM-Wing at 𝑴 = 𝟐.𝟓𝟏, MATLAB (linear) 

 

Three distinct regions are seen to exist for the predicted results: a region with high sensitivity 

of the results to the linearization step-size (0° ≤ 𝛼 ≤ 1°); an intermediate region in which a 

larger linearization step-size predicts a higher flutter dynamic pressure (1° ≤ 𝛼 ≤ 3°); and a 

region in which the flutter trends show consistent behaviour with linearization step-size 

(𝛼 > 3°). 

It is believed that the sensitivity of the predicted results to the linearization step-size as seen 

at low angles-of-attack (0° ≤ 𝛼 ≤ 1°) is due to numerical issues in either the linearization 
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procedure (see Section 4.5.1) (inflation of numerical error due to division by a small 

linearization step-size), or due to numerical issues in the implementation of shock-expansion 

theory in the steady-aerodynamic solver. The numerical issues result in poor prediction of the 

aerodynamic stiffness matrix, as was discussed in Section 5.9. Inspection of the predicted 

flutter envelope at higher angles-of-attack (𝛼 > 5°) shows that the prediction becomes less 

sensitive to the linearization step-size. This suggests that the partial derivative of the GAFs 

with respect to modal displacements is largely independent of the linearization step-size at 

higher 𝛼. 

It is concluded that at lower angles-of-attack (𝛼 ≤ 3°), numerical issues arise in the accuracy 

of the prediction of the steady-aerodynamic contribution to the GAFs. This is believed to 

arise from numerical issues in the solution of the aerodynamic forces at small angles-of-

attack in the implemented solver. 

A notable trend in the flutter envelope predicted for each of the linearization step-sizes is that 

the flutter dynamic pressure is seen to increase with angle-of-attack. Careful interpretation of 

the trend is required when compared to other flutter envelopes, such as those computed by 

Zhang et al [11] in Figure 3.10 on page 74. Comparison to the trends of Zhang et al shows 

that the flutter envelope predicted for the ATM-wing at 𝑀 = 2.51 by the current work 

follows similar trends to the flutter enveloped computed for a (2-dimensional) 4% circular arc 

airfoil at 𝑀 = 6 using 1st- and 2nd-order classical PT. Several differences exist between the 

two cases, such as: different Mach numbers (different flow physics), different airfoil profiles 

(potentially different lifting characteristics), and different structural geometries and properties 

(including sweep and 2D vs. 3D effects). Whilst each of these factors may be argued 

influence the shape of the flutter envelope, the most rigorous assessment of the validity of the 

flutter envelope predicted by SE/LPT in MATLAB (linear) would be comparison to a flutter 

envelope produced from unsteady Euler computations in Edge for the ATM-wing. If it were 

found that the flutter envelope from Edge followed the same trend of decreasing flutter speed 

with 𝛼 that is observed for the geometry and flow of Zhang et al, then it would be concluded 

that the implementation of the shock-expansion component of SE/LPT does not describe the 

flow with sufficient fidelity, and another approximate aerodynamic method could be 

investigated for implementation with LPT for use as an aeroelastic prediction tool. 
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6.3 Flutter Prediction of the Tuovali-McCarty Models 

6.3.1 Literature on the Experimentally Determined Flutter Conditions 

Tuovali and McCarty [53] performed supersonic flutter tests on cantilevered plates of various 

aspect ratios, sweep angles, and taper ratios, for Mach numbers 𝑀 = 1.3, 𝑀 = 2.0 and 

𝑀 = 3.0 in the Langley supersonic flutter apparatus (an intermittent blow-down tunnel [53]) 

in 1955. Their work is a benchmark and serves for validation [52] of aeroelastic calculations 

by programs such as MSC NASTRAN's Aeroelastic Analysis module and ZAERO. Flutter 

speeds and frequencies are given for a range of wind-tunnel operating conditions. 

Examination of the published [53] test conditions for the various models shows that the test 

conditions were tailored to produce flutter at specified Mach numbers and flow velocities. 

Effectively, this means that the Mach number and temperature of the flow were kept constant, 

and the density of the flow was varied as the control variable. This is reflected in the variation 

of the published results for air density at flutter between the models and tests [53]. 

The tests of the untapered cantilevered plates are of interest, as these were constructed from a 

uniform sheet of material; the centre of mass of the models that are listed in this section were 

also at the 50% chord position (no mass was added or removed to the baseline plate). 

Detailed specifications of geometry and mass were given. The test models had the same 

thickness; the leading- and trailing-edges were both bevelled over a length of 1/8th of the 

chord. A general description of the model geometries is given in Table 6.5, and the reader is 

referred to Appendix A for the further specifications of the model geometries. The natural 

frequencies of the magnesium plate series of models were experimentally determined in still 

air by Hanson and Tuovila [59]. 

Table 6.5: Summary of Planform Geometry of the Tuovali and McCarty Test Models [53] 

Model ΛLE  [°] AR 𝑐  [mm] 𝑡 𝑐  𝑆𝑟𝑒𝑓  [m
2
] 

5151 15 2.67 52.6 0.0198 0.0074 

4301 30 2.08 58.7 0.0178 0.0072 

3451 45 1.38 71.8 0.0145 0.0071 

1601 60 0.69 101.6 0.0103 0.0072 
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The wind-tunnel operating conditions for the various tests are quoted in Table 6.6 through 

Table 6.9, together with the flutter velocity 𝑉𝐹, the dynamic pressure at flutter 𝑞𝐹 , and the 

flutter frequency 𝑓𝐹 . It should be noted that the "C-"series of tests were run with a plate cut 

from aluminium, whilst the "A-" and "B-" series of tests were run with magnesium plates. 

Table 6.6: Wind-Tunnel Condition and Flutter Parameters - Model 5151 [53] 

Test 𝑀 𝜌𝑎𝑖𝑟 [kg/m
3
] 𝑉𝐹 [m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

A 3.00 0.47930 618.7 91 740 146 

B 2.00 0.27315 512.1 35 810 134 

C 1.30 0.25254 390.1 19 220 102 

 

Table 6.7: Wind-Tunnel Condition and Flutter Parameters - Model 4301 [53] 

Test 𝑀 𝜌𝑎𝑖𝑟 [kg/m
3
] 𝑉𝐹 [m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

A 3.00 0.34530 618.7 66 100 158 

B 2.00 0.22161 512.1 29 055 142 

C 1.30 0.22677 390.1 17 260 94 

Table 6.8: Wind-Tunnel Condition and Flutter Parameters - Model 3451 [53] 

Test 𝑀 𝜌𝑎𝑖𝑟 [kg/m
3
] 𝑉𝐹 [m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

A 3.00 0.31438 618.7 60 180 170 

B 2.00 0.22677 512.1 29 730 148 

C 1.30 0.32469 390.1 24 710 180 

 

Table 6.9: Wind-Tunnel Condition and Flutter Parameters - Model 1601 [53] 

Test 𝑀 𝜌𝑎𝑖𝑟 [kg/m
3
] 𝑉𝐹 [m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

A 3.00 0.50917 618.7 68 070 180 

B 2.00 0.53131 512.1 48 650 166 

C 1.30 0.95931 390.1 50 990 174 
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6.3.2 Literature on Previous Computational Flutter Predictions 

6.3.2.1 Results of Morgan et al 

Flutter calculations based on the tests by Tuovali and McCarty for delta-wings and Model 

3451 (untapered, 45° sweep, see Table 6.8) were carried out by Morgan et al [50], with 

second-order piston theory and Van Dyke's second order theory being used to model the 

aerodynamics. It was noted that for the delta-wings tested, the flutter frequencies were 

predicted to within 15% at all Mach numbers, and the flutter boundary using piston theory 

was predicted to between 23% and 14% below and above the experimentally determined 

values, respectively. It was noted [50] that better agreement between theory and experiment 

was obtained at higher Mach numbers and consequently lower reduced frequencies. This is 

expected, as the quasi-steady modelling is valid only for low reduced frequencies. However, 

the calculations for the untapered wing showed a large error (as seen in Figure 6.56) in both 

the calculated flutter frequency (95% higher) and the flutter boundary [50]; it was 

hypothesized that the error was due to the large portion of the wing that is influenced by the 

wingtip. 

 

Figure 6.56: Theoretical Calculations of Morgan et al for Model 3451 of the Tuovali-McCarty Flutter Tests [50] 
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6.3.2.2 Results of Xianxin 

Flutter calculations based on conical flow theory and piston theory on the plates tested by 

Tuovali and McCarty were performed by Xianxin [60], and are shown as adapted from 

Xianxin in Figure 6.57 through Figure 6.60, with comparison to the experimental results of 

Tuovali and McCarty [53] and the computational results of Morgan et al [50]. A significant 

improvement in the results can be seen over the application of piston theory alone (as done by 

Morgan et al [50]) through comparison of the results of Figure 6.56 and Figure 6.59. It is 

noted that the use of conical flow theory to account for the 3-dimensional influence of the 

wing yields much greater accuracy compared to strip theory [60]. 

 

 

Figure 6.57: Theoretical Calculations of Xianxin for Model 5151 of the Tuovali-McCarty Flutter Tests [60] 
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Figure 6.58: Theoretical Calculations of Xianxin for Model 4301 of the Tuovali-McCarty Flutter Tests [60] 

 

 

Figure 6.59: Theoretical Calculations of Xianxin for Model 3451 of the Tuovali-McCarty Flutter Tests [60] 
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Figure 6.60: Theoretical Calculations of Xianxin for Model 1601 of the Tuovali-McCarty Flutter Tests [60] 

 

6.3.2.3 Results of Chen et al 

The application of the ASTROS* code (based upon the integration of ZAERO into ASTROS) 

and comparison of its results to the experimental data of Tuovali and McCarty was carried 

out by Chen et al [52]. Specifically, comparison of results was made to Test C of Model 5151 

(Table 6.6), and to Test A of Model 5151. The material properties were adjusted to match 

experimental data [52], though it is not specified whether the modal frequencies were 

matched to those published by Tuovali and McCarty [53] or by Hanson and Tuovali [59]. 

A summary of the comparison of results of Chen et al [52] with the flutter tests of Tuovali 

and McCarty [53] is given in Table 6.10 and Table 6.11. 
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Table 6.10: Comparison of Flutter Results from ASTROS* with Experimental Data - Model 5151, Test A [52] 

Method 𝑉𝐹[m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

Experiment [53] 618.7 91 740 146 

ASTROS*, k method / p-k method 

ZONA7 (no thickness) 722.1 / 746.2 124 960 / 133 440 158 / 154 

ZONA7U (thickness effect) 578.2 / 586.1 80 120 / 82 320 154 / 152 

 

Table 6.11: Comparison of Flutter Results  from ASTROS* with Experimental Data - Model 5151, Test C [52] 

Method 𝑉𝐹[m/s] 𝑞𝐹 [Pa] 𝑓𝐹 [Hz] 

Experiment [53] 390.1 19 220 102 

MSC/NASTRAN, p-k method 

MSC/NASTRAN (ZONA51) 480.4 29 140 132 

ASTROS*, k method / p-k method 

ZONA7 (no thickness) 482.5 / 488.0 29 400 / 30 070 132 / 130 

ZONA7U (thickness effect) 431.3 / 434.6 23 490 / 23 850 123 / 122 

 

6.3.3 Outline of the Computational Procedure 

The untapered, sweptback cantilevered plates used in flutter testing by Tuovali and McCarty 

[53] were modelled in MATLAB (linear) for further validation of the developed aeroelastic 

prediction tool with comparison to experimental data. The comparison to the tests of Tuovali 

and McCarty would be of particular interest, as the tests have served as validation and 

benchmarking for other flutter prediction methods (see Section 6.3.2), including the use of 

2nd order classical PT and 2nd order Van Dyke's by Morgan et al [50], the use of ZONA 

software by Chen et al [52], and the use of a hybrid of 1st order PT and conical flow theory 

by Xianxin [60]. 

The computations using SE/LPT in MATLAB (linear) were performed for 𝛼 = 0.01° at the 

flight conditions specified in Table 6.6 through Table 6.9, with the dynamic pressure (𝑞∞) used 

as a control variable. The linearization step-size was chosen such that the resulting 

deformation of the first-torsion mode would yield a twist of 2° at the wing-tip, following the 

approach adopted for the ATM-wing. This was changed to produce 1° of twist at the wing-tip 

at 𝑀 = 1.3 due to shock detachment at larger deflections.  
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The models were meshed in MATLAB (linear) using 20 chordwise elements, with the 

number of spanwise elements chosen such that the ratio of spanwise-to-chordwise elements 

matched the geometric aspect ratio of the models. The material properties were then tailored 

such that the frequencies of the first-torsion mode (𝑓2) matched the published experimental 

frequencies of Tuovali and McCarty [53], and that the wing mass was similarly matched. 

The results for each of the models is given in Section 6.3.5; fair accuracy is obtained in the 

prediction of the flutter dynamic pressure through SE/LPT at 𝑀 = 3.0 for most of the 

geometries considered. 

6.3.4 Representation of the Flutter Prediction Results 

The presentation of the results of the flutter predictions varies between authors, with the 

results of Chen et al [52] presented in terms of the flutter dynamic pressure (𝑞𝐹) and 

frequency (𝑓𝐹), whilst the results of Morgan et al [50], Tuovali and McCarty [53], and 

Xianxin [60] are presented in terms of an altitude-stiffness parameter [53]. There is some 

further difference in the nomenclature and definition of the parameter, which is clarified as 

follows, in the nomenclature of the present work: 

The altitude-stiffness parameter is influenced by the mass-ratio, 𝜇, which is defined as the 

ratio of the mass of the wing to the mass of air contained in a right-cylinder defined by swept 

wing: 

 𝜇 =
𝑚𝑤𝑖𝑛𝑔

𝑚𝑎𝑖𝑟
 ( 6.1 ) 

where 𝑚𝑎𝑖𝑟  is given by: 

 𝑚𝑎𝑖𝑟 =
𝜋

4
𝜌∞𝑏𝑐

2 cosΛ ( 6.2 ) 

leading to: 

 𝜇 =  
4𝑚𝑤𝑖𝑛𝑔

𝜋𝑏𝑐2 cosΛ
 

1

𝜌∞
 ( 6.3 ) 

The altitude-stiffness parameter used by Tuovali and McCarty [53] (𝐻𝑇𝑀𝐶 ) is scaled by a 

reference value for the mass-ratio (𝜇0 = 50), and is given by: 
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 𝐻𝑇𝑀𝐶 =
𝑐𝜔𝛼
2𝑎∞

 
𝜇

𝜇0
 ( 6.4 ) 

where 𝜔𝛼  is the angular frequency of the first-twisting mode and 𝑎∞  is the speed of 

sound in air. 

The altitude-stiffness parameter used by Xianxin [60] (𝐻𝑋) is not scaled, and is given by: 

 𝐻𝑋 =
𝑐𝜔𝛼
2𝑎∞

 𝜇 ( 6.5 ) 

Note that the altitude-stiffness parameter may be re-written in terms of the free-stream Mach 

number (𝑀∞) and the reduced frequency of the first-torsion mode (𝑘𝛼 ) as: 

 𝐻𝑋 = 𝑘𝛼𝑀∞ 𝜇 ( 6.6 ) 

The difference in the parameter definition is to be noted when interpreting the results of the 

different authors. With the altitude-stiffness parameter defined as in Equation ( 6.3 ) and 

Equation ( 6.5 ), the following relationship may be shown to hold between the altitude-

stiffness parameter at flutter (𝐻𝐹) and the dynamic pressure at flutter (𝑞𝐹): 

 𝑞𝐹 =  
𝑚𝑤𝑖𝑛𝑔 𝑉𝐹

2𝜔𝛼
2

2𝜋𝑏𝑎∞
2 cosΛ

 
1

𝐻𝐹
2 ( 6.7 ) 

where 𝑉𝐹 is the flutter velocity. 

Equation ( 6.7 ) was used to extract results for the flutter dynamic pressure from the work of 

Morgan et al [50] and Xianxin [60] for comparison to the results of Chen et al [52] and the 

results from MATLAB (linear). 

6.3.5 Analysis in MATLAB (linear) 

6.3.5.1 Model 5151 

The results of the flutter prediction for the 5151-series of models of Tuovali and McCarty 

[53] using SE/LPT in MATLAB (linear) are compared to the results of Xianxin [60], Chen et 

al [52], and experiment [53] in Figure 6.61 through Figure 6.65. 
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Figure 6.61: Tuovali-McCarty Model 5151A, Comparison of Flutter Predictions 

 

 

Figure 6.62: Tuovali-McCarty Model 5151C, Comparison of Flutter Predictions 
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Figure 6.63: Tuovali-McCarty Model 5151, Flutter Dynamic Pressure Variation with Mach Number 

 

 

Figure 6.64: Tuovali-McCarty Model 5151, Flutter Altitude-Stiffness Parameter Variation with Mach Number 
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Figure 6.65: Tuovali-McCarty Model 5151, Variation of Computational-Experimental Flutter Frequency Ratio with Mach 

Number 
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strip theory). However, the 1st CPT/conical flow hybrid of Xianxin [60] is seen to give better 

results than the predictions of ZONA7 and ZONA7U, which also account for 3D effects. This 

is likely due to the suitability of the more analytical approach of conical flow theory to the 

given simple geometry. 

Consideration of the flutter trends predicted by the ZONA7 and ZONA7U codes in Figure 

6.61 and Figure 6.62 reveals that for both Mach numbers considered, the inclusion of 

thickness effects by ZONA7U results in a lower flutter dynamic pressure predicted; as noted 

earlier, the thickness effects are seen to have a de-stabilizing effect. It is further noted that 

better prediction of the flutter frequency is obtained by ZONA7U than with ZONA7. 

Furthermore, the method of flutter prediction is seen have an effect on the predicted flutter 

values: at both Mach numbers, the p-k method predicts lower flutter frequencies, but higher 

flutter dynamic pressures than the k-method. 

Lastly, the similarity in the formulation of the MSC NASTRAN aeroelastic tool and of 

ZONA7 is seen to give rise to almost equivalent results in Figure 6.62 through Figure 6.65. 

Poor prediction of the flutter frequency at 𝑀 = 1.30 is noted in Figure 6.65 for all the 

methods, with improvement in the prediction achieved with increasing Mach number. It is 

suspected that poor modelling of the flow physics at the lower Mach number is achieved with 

the aerodynamic methods used. 

6.3.5.2 Model 4301 

The results of the flutter prediction for the 4301-series of models of Tuovali and McCarty 

[53] using SE/LPT in MATLAB (linear) are compared to the results of Xianxin [60] and with 

experiment [53] in Figure 6.66 through Figure 6.68. 
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Figure 6.66: Tuovali-McCarty Model 4301, Flutter Dynamic Pressure Variation with Mach Number 

 

 

Figure 6.67: Tuovali-McCarty Model 4301, Flutter Altitude-Stiffness Parameter Variation with Mach Number 
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Figure 6.68: Tuovali-McCarty Model 4301, Variation of Computational-Experimental Flutter Frequency Ratio with Mach 

Number 
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The best agreement to experiment is obtained at 𝑀 = 3.0 for both prediction methods. 

6.3.5.3 Model 3451 

The results of the flutter prediction for the 3451-series of models of Tuovali and McCarty 

[53] using SE/LPT in MATLAB (linear) are compared to the results of Xianxin [60], the 

results of Morgan et al [50], and with experiment [53] in Figure 6.69 through Figure 6.71. 

 

Figure 6.69: Tuovali-McCarty Model 3451, Flutter Dynamic Pressure Variation with Mach Number 
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Figure 6.70: Tuovali-McCarty Model 3451, Flutter Altitude-Stiffness Parameter Variation with Mach Number 

 

 

Figure 6.71: Tuovali-McCarty Model 3451, Variation of Computational-Experimental Flutter Frequency Ratio with Mach 
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The flutter trends predicted by SE/LPT show good correlation to experiment and to the 

results of Xianxin and of Morgan et al over the range of Mach numbers considered, with the 

exception of 𝑀 = 2.0. The flutter dynamic pressure is predicted non-conservatively, as is 

seen from Figure 6.69 and Figure 6.70. In contrast to the trend observed for other geometries, 

the accuracy of the flutter dynamic pressure of Model 3451 is best predicted by SE/LPT for 

𝑀 = 1.3. Good prediction of the flutter frequency is noted from Figure 6.71 for both 

𝑀 = 1.3 and 𝑀 = 3.0; the trend for the flutter frequency prediction correlates well to that 

observed for the other prediction methods. 

The trends of the flutter prediction of Xianxin [60] give good agreement to experiment over 

the range of Mach numbers considered. Better agreement with experiment is obtained for the 

dynamic pressure and altitude stiffness parameter at 𝑀 = 1.3 and 𝑀 = 2.0, whilst excellent 

frequency prediction is obtained for 𝑀 = 2.0 and 𝑀 = 3.0. Improved prediction at higher 

Mach numbers is typical of the results of Xianxin for the other geometries considered; the 

reason for the better agreement in dynamic pressure at lower Mach numbers for the geometry 

of Model 3451 is unknown. 

The results of Morgan et al [50] are seen to follow the experimental flutter trends well, whilst 

the accuracy of the predictions are generally poor. No relationship between improved 

accuracy of the prediction and Mach number is apparent. The flutter dynamic pressure is 

predicted non-conservatively, and the prediction of the flutter frequency is seen to be 

particularly poor, as in Figure 6.71. 

Of particular interest is the general improvement of the accuracy of the prediction achieved 

by SE/LPT over 2nd-order classical PT. Consideration of the physical effects modelled by 

2nd-order classical PT (see Section 3.6) suggests that better modelling of thickness effects is 

achieved by shock-expansion theory than by classical PT for the given geometry and flight 

conditions. This is further supported by the previous observation (Section 6.3.5.1) that 

inclusion (and improved modelling of) thickness effects provides a de-stabilizing effect. 

6.3.5.4 Model 1601 

The results of the flutter prediction for the 1601-series of models of Tuovali and McCarty 

[53] using SE/LPT in MATLAB (linear) are compared to the results of Xianxin [60] and with 

experiment [53] in Figure 6.72 through Figure 6.74. 
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Figure 6.72: Tuovali-McCarty Model 1601, Flutter Dynamic Pressure Variation with Mach Number 

 

Figure 6.73: Tuovali-McCarty Model 1601, Flutter Altitude-Stiffness Parameter Variation with Mach Number 
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Figure 6.74: Tuovali-McCarty Model 1601, Variation of Computational-Experimental Flutter Frequency Ratio with Mach 

Number 
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(Λ = 60°), the entire span of the wing would be affected by the shock at the leading-edge 

root for Mach numbers of 𝑀 ≤ 2.0; this would not be modelled by SE/LPT, but should be 

accounted for by conical flow theory. From this consideration, it is expected that the results 

of Xianxin [60] would give better flutter prediction than SE/LPT. As such, further 

investigation would be required for an informed observation to be made on the reason for the 

better prediction achieved by SE/LPT for the given geometry. 

6.4 Effect of Fin Taper Ratio on the Flutter Envelope 

The developed aeroelastic prediction tool based on SE/LPT in MATLAB (linear) was used to 

investigate the effect of fin taper ratio on the predicted flutter envelope of an un-swept 

cantilevered fin. The geometry and material properties of the untapered fin were chosen to be 

similar to those used for the experimental models of Tuovali and McCarty [53], with 𝑐 = 2". 

In performing the preliminary parametric study, it was intended to isolate the effect of the fin 

taper ratio on the flutter envelope from other geometric parameters; to this end, the geometric 

aspect ratio of the wing, the wing span, the wing thickness, and the wing reference area were 

kept constant. The root chord length was then varied with the taper ratio according to the 

simple geometric relationship: 

 𝑐𝑅 =  
2𝑆𝑟𝑒𝑓

𝑏
 

1

1 + 𝜆
 ( 6.8 ) 

The tip chord was subsequently calculated based on the chosen taper ratio. The bevel on the 

leading- and trailing-edges was of constant length down the span of the model, and was equal 

to 1/8
th

 of the root chord length. 

The general geometry of the wing is defined in Figure 6.75 and Figure 6.76, and the 

dimensions of the wing that were kept constant are listed in Table 6.12. 
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Figure 6.75: Planform of the Unswept Tapered Fins 

 

 

Figure 6.76: Profile of the Unswept Tapered Fins 
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Table 6.12: Geometry and Material Constants for the Parametric Study 

Constant Value 

𝑏 [m] 0.122 

𝑆𝑟𝑒𝑓  [m
2
] 6.198 x 10

-3
 

𝐴𝑅  2.40 

𝑡 [mm] 1.04 

Λ0.5𝑐  [°] 0 

𝐸 [GPa] 34.5 x 10
9
 

𝜌𝑤𝑖𝑛𝑔  [kg.m
-3

] 1744 

Poisson's ratio 𝜐 0.25 

 

The computations were run using SE/LPT in MATLAB (linear) at 𝑀∞ = 3.0, 𝑇∞ = 105.8 K 

(corresponding to the test conditions of Tuovali and McCarty [53]) for a range of dynamic 

pressures and angles-of-attack. The linearization step-size was chosen such that the resulting 

deformation of the first-torsion mode would yield a twist of 2° at the wing-tip. 

The models were meshed in MATLAB (linear) using 20 chordwise elements and 48 spanwise 

elements. The bevel lengths were modelled using 3 chordwise elements on each bevel. 

The variation of the dynamic pressure at flutter is shown in Figure 6.77. The individual flutter 

envelopes for each of the taper ratios follow the same trend with 𝛼 that was seen for the 

flutter envelope of the ATM-wing (see Figure 6.55). It may be argued that this further 

supports the hypothesis (see Section 6.2) that the trend of increasing flutter dynamic pressure 

with increasing 𝛼 is as a result of insufficient fidelity in the modelling of the steady-

contribution to the aerodynamic loading by the implementation of shock-expansion theory in 

SE/LPT. However, a flutter envelope determined from 3D unsteady Euler computations for 

either of the geometries considered (ATM-wing or the tapered geometries simulated) would 

serve as a more rigorous proof of this hypothesis. 
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Figure 6.77: Variation of the Flutter Dynamic Pressure Envelope with Fin Taper Ratio 
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Figure 6.78: Variation of the Flutter Frequency Envelope with Fin Taper Ratio 

 

The increased structural stiffness of the wing with increasing taper ratio is thus seen to result 
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The use of SE/LPT with linearized GAFs has been shown to enable the rapid prediction of 
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parametric studies.  
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7 CONCLUSIONS 

7.1 Work Accomplished 

With reference to the objectives set for this dissertation (Section 1.3), the following have 

been accomplished: 

1. The developments in piston theory were reviewed in Chapter 3, and a consistent 

definition of the assumptions, nomenclature, formulation, and application of the 

various forms of piston theory was made. This represents a collection of existing 

literature on piston theory along with expansion there upon, as a rigorous treatment of 

the basis from which the differences between local and classical piston theory stem 

could not be found in literature. 

Furthermore, a computational treatment of the experimental work on the supersonic 

flutter testing of a cantilevered plate performed by Torii [54] and Matsuzaki [55] was 

performed in Chapters 5 and 6, expanding on the literature on the use of CFD to 

analyse supersonic aeroelasticity of cantilevered plates referenced against 

experimental results. 

Similarly, work on approximate aerodynamic modelling in the aeroelasticity of 

supersonic cantilevered plates by Morgan et al [50], Chen et al [52], and Xianxin [60] 

was expanded on through the combined use of shock-expansion theory and local 

piston theory. The results of the present work in Chapter 6 were compared to the 

results of the aforementioned authors and to the experimental references (as tested by 

Tuovali and McCarty [53]) against which the methods were validated. 
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2. A tool for aeroelastic analysis of cantilevered plates in supersonic tools was 

developed in MATLAB, with FEM structural solver and with SE/LPT used for the 

aerodynamic solver, as outlined in Chapter 4. Linearization of the generalized 

aerodynamic forces was shown to drastically reduce the computational time required 

for aeroelastic analysis compared to computational aeroelastic simulations requiring 

the implicit time-marching of the coupled aeroelastic equations. A reduction in 

computational time of the order of ~140 was found, as detailed in Section 6.1.6, with 

an acceptable loss of accuracy (~5%) in the prediction of the flutter dynamic 

pressure. The linearized tool was shown to be suitable for preliminary parametric 

studies of the effect of fin geometry on the flutter envelope in Section 6.4. 

3. A number of flutter prediction tools were used in parallel with the assessment of the 

aeroelastic system stability where possible: the Zimmerman-Weissenburger flutter 

margin, the flutter margin for discrete systems (FMDS) of Torii [54] , the envelope 

function shape parameter, and extrapolation of the damping coefficient were 

investigated in Chapter 6. 

The implementation of an auto-regressive moving-average (ARMA) model to identify 

the aeroelastic system from computational modal response was successful in 

identifying the modal frequencies; however, anomalous identification of the modal 

damping coefficients was made. The incorrect identification of the damping 

coefficients resulted in poor pre-flutter trends of FMDS. 

The Zimmerman-Weissenburger flutter margin applied to the aeroelastic analysis 

using a linearized system was shown to be highly suitable for the prediction of the 

flutter point from a small number of simulated flight conditions in Section 6.1.5.2. 

Comparison to the performance of the other flutter prediction methods as 

implemented in the current work showed the clear superiority of the Zimmerman-

Weissenburger flutter margin for linearized systems. 

The extrapolation of the envelope shape parameter and damping coefficients was 

found to be entirely unsuitable in Section 6.1.5.2 for the geometry of Torii and 

Matsuzaki [54], as the wing experienced hard flutter. The use of these metrics were 

also found to be unsuitable for the non-linearized systems due to the inaccuracy of the 

damping coefficients estimated using the ARMA model. 



222 

 

4. The developed tool for aeroelastic prediction was shown to be fully capable of 

predicting hard flutter in Section 6.1.4 and 6.1.5. 

7.2 Recommendations for Future Work 

Comparison of the performance of the aeroelastic prediction tool based on SE/LTP to 

aeroelastic analyses in which 3D effects were accounted for showed that the fidelity of the 

analysis of the steady contribution to the aerodynamic loading is a critical factor in the 

accuracy and validity of the predicted flutter trends. The use of 2D strip theory effectively 

limits the accuracy of aerodynamic analysis of a large range of plate geometries and flow 

conditions. Therefore it is recommended that future implementations of LPT with 

approximate analytical methods for the steady aerodynamic contributions use a method in 

which 3D influence (such as tip effects and wing-body interference) is accounted for. This 

(along with the appropriate extension of the structural solver) would potentially further 

extend the applicability of the analysis to the missile body, as well as accounting for the 

influence of the body aerodynamics on the aeroelastic behaviour of the fins. 

It is further recommended that future computational work be done to determine the flutter 

envelope and its variation with angle-of-attack for the wing of Torii and Matsuzaki [54] using 

3D unsteady Euler computations. This would serve to extend the literature on supersonic 

flutter computation, and the work could be used as a further benchmark for the validation of 

future developments in approximate aeroelastic analyses. 
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APPENDICES 

A. GEOMETRY OF THE TUOVALI AND McCARTY TEST 

MODELS 

The data quoted in this section are from the reports by Tuovali and McCarty [53], and 

Hanson and Tuovali [59]. The models considered are untapered, backward-swept trapezoidal 

wings with constant thickness. The leading- and trailing-edges are sharpened, with a constant 

bevel length of 1 8 th of the chord-length. The cross-section of the models were the same 

when taken perpendicular to the leading-edge of each model. 

The dimensions of the models are given in Table A.1, with the nomenclature defined in Figure 

A.1 and Figure A.2. 

 

Table A.1: Dimensions of the Tuovali and McCarty Models 

Model Λ [°] AR 𝑏 [mm] 𝑐 [mm] 𝑡 [mm] 

5151 15 2.67 140 52.6 1.04 

4301 30 2.08 122 58.7 1.04 

3451 45 1.38 99.0 71.8 1.04 

1601 60 0.69 70.5 101.6 1.04 
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Figure A.1: Typical Planform of the Tuovali and McCarty Models 

 

 

 

Figure A.2: Typical Profile of the Tuovali and McCarty Models 
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B. FINITE ELEMENT FORMULATION 

Nomenclature 

The following nomenclature is adopted for this appendix; previous nomenclature does not 

apply. 

𝐴𝑒  element area 

𝐵 strain-displacement matrix 

𝑏 plate span 

𝐶𝑚  continuity of the 𝑚-th derivative 

𝐷 constitutive matrix 

𝑑 element displacement vector 

𝐸 young's modulus 

𝑓 element distributed loading vector 

𝐼 inertial matrix 

𝐽 Jacobian 

𝑗 Jacobian determinant 

𝐾 global stiffness matrix 

𝑘 element stiffness matrix 

𝑀 global mass matrix 

𝑚 element mass matrix 

𝑁 shape function 

𝑛𝑒𝑙  number of elements 

𝑛𝑛𝑜𝑑𝑒𝑠  number of nodes 

𝑃 global unsmoothed nodal strain vector 

𝑆 global strain-smoothing matrix 

𝑠 element strain-smoothing matrix 

𝑡 plate thickness 
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𝑢, 𝑣, 𝑤 displacements in 𝑥, 𝑦, and 𝑧, respectively 

𝑥, 𝑦, 𝑧 physical coordinates 

𝛾 shear strain 

휀 strain 

𝜖 element unsmoothed nodal strain vector 

휃 fibre rotation 

𝜅 shear stress factor 

𝜌 material density 

𝜍 stress 

𝜏 shear stress 

𝜐 Poisson's ratio 

𝜒 curvature 

𝜉, 휂 natural coordinates (corresponding to 𝑥 and 𝑦) in the computational plane 

 

Subscripts 

𝑐𝑒𝑛𝑡 centroid 

𝑖, 𝑗 node number 

𝑥, 𝑦, 𝑧, component in the respective direction 

𝜉, 휂 component in the respective direction 

 

Superscripts 

𝑏 bending 

𝑒 element 

𝑠 shear 

 

Finally, comma notation is used to denote partial differentiation, for example: 

𝜉,𝑥 ≡
𝜕𝜉

𝜕𝑥
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Plate Mechanics 

In the analysis of a beam in twisting and bending, the sectional properties are generally 

treated as remaining constant. Specifically, in the aeroelastic analysis of wings, the sectional 

shape (airfoil) of the wing is generally assumed to remain constant, and the wing is generally 

analysed as a beam. The description of the bending behaviour of plates is somewhat more 

complex than that of simple beams. In considering the deformation undergone by a 

cantilevered plate, the applicability of terms such as "bending" and "twist" becomes strained, 

as the local sectional shape of the plate is no longer constant. The complexity of plate 

mechanics precludes the use of a purely analytical description of the plate behaviour, and 

lends itself to finite element analysis. The description of plate mechanics is generally divided 

into two categories: thin-plate theory, and plate theory taking into account thickness effects. 

 

Linear Thin-Plate Theory 

In classical plate theory (Kirchhoff plate theory), transverse deformations in the plate are 

neglected, and the plate is assumed to be in plane stress [72]. Plates may be modelled to 

undergo only flexural action (bending), or to only undergo membrane action (in-plane 

tension), and the resulting thin-plate theories are linear; however, a plate undergoing 

membrane action only does not deform out of plane [73]. Aalami and Williams [73] describe 

how classical thin-plate theory (CPT) is applicable only to plates undergoing small 

deflections, due to a nonlinearity developing between displacements and transverse loading 

as the plate deforms out of plane. 

Hughes [74] notes that Kirchhoff plate theory requires 𝐶1-continuity (continuity of the 1st-

derivatives) across boundaries of displacements. Hughes [74] remarks the development of 

𝐶1-interpolation schemes for two-dimensional plate elements based on classical theory 

results in interpolation schemes which are extremely complicated. 
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Non-Linear Thin-Plate Theory 

Non-linearity in thin-plate theory may enters through the material non-linearity, finite 

(nonlinear) strains, and geometric non-linearity. For a thin isotropic plate undergoing large 

deflections, non-linearity enters through the use of Von Karman's nonlinear strain-

displacement relations in the formulation of mid-plane strains [75]. Chia [75] recommends 

that linear thin-plate theory be used with plates that have a thickness-to-span ratio of 
𝑡

𝑏
≤

1

15
 

 ≈ 0.067 , with a maximum transverse deflection of less than twice the plate thickness (for 

clamped plates) 
𝑤𝑚𝑎𝑥

𝑡
< 2; thereafter, nonlinear effects become important. 

Aalami and Williams [73] give empirical guidelines for the design of plates for transverse 

loading, and describe the large-deflection behaviour of plates as resulting from the interaction 

between the flexural (small-deflection) and membrane actions in the plate. 

The definition of what magnitude of deflection constitutes "large deflections" varies between 

authors and the applied constraints. Typically, though, nonlinearity is seen to occur once the 

transverse displacement of the plate is of the order of the plate thickness. 

 

Mindlin-Reissner Plate Theory 

Mindlin-Reissner plate theory accounts for transverse shear deformations in the plate, and is 

consequently applicable to thicker plates than CPT is. Slightly larger displacements are 

achieved for thin plates in comparison to CPT [74]. 

The equations of Mindlin-Reissner plate theory involve the rotations of fibres in the plate; 

two sign conventions exist for these rotations. The sign convention adopted here follows the 

"right-hand rule". 

The main assumptions, as given by Hughes [74], are repeated here: 

1. The domain 𝛺 is of the following special form: 

𝛺 =   𝑥,𝑦, 𝑧 ∈ 𝑅3 𝑧 ∈  
−𝑡

2
,
𝑡

2
 ,  𝑥,𝑦 ∈ 𝐴 ⊂ 𝑅2  

where 𝑡 is the plate thickness and 𝐴 is its area. 
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2. 𝜍𝑧𝑧 = 0    [plane stress] 

 

3. 𝑢 𝑥,𝑦, 𝑧 = 𝑧휃𝑦 𝑥,𝑦  [plane sections remain plane] 

𝑣 𝑥, 𝑦, 𝑧 = −𝑧휃𝑥 𝑥,𝑦  

 

4. 𝑤 𝑥,𝑦, 𝑧 = 𝑤 𝑥,𝑦    [transverse displacement does not vary through the  

    thickness] 

The derivation of the equations in Mindlin-Reissner theory is widely published in literature 

(see Kwon and Bang [72], Hughes [74], and Liu and Quek [76]), and only the main results 

will be repeated here. 

 

Finite Element Analysis 

Variational methods are used to discretize the continuous system physics into a set of simpler 

discrete equations. The weak form of the system equations are used, and trial solutions to the 

system are computed. For more information on variational methods and the weak and strong 

formulations in plate mechanics, the reader is referred to texts on the finite element method 

such as those by Hughes [74], Chia [75], Kwon and Bang [72], and Liu and Quek [76]. 

 

Bilinear Quadrilateral Elements 

Bilinear (4-node) quadrilateral elements (the formulation of which is covered by Hughes 

[74], Hughes and Tezduyar [77], Przemieniecki [78], Liu and Quek [76], and Ferreira [79]) 

are 𝐶0 elements (continuity of the 0-th derivative). This implies that whilst interpolated 

displacements are continuous across element boundaries, terms depending on the derivatives 

of the shape functions (e.g., strains) are not. 

The displacements 𝑤, 휃𝑥 , and 휃𝑦  are assumed and are interpolated by bilinear shape functions 

(see page 239). 

Bilinear quadrilateral elements offer the advantage of being simple in their formulation and 

coding, and have been broadly covered in literature -- this makes the elements a good choice 

for a first-development of finite-element code. Other low-order quadrilateral elements exist 
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which give better performance for a wide range of parameters, and which have correct rank 

for bending elements. Hughes [74] discusses the differences in formulation of these elements 

and their performance, considering elements such as McNeal's QUAD4, as well as the 

heterosis and T1 elements developed in part by Hughes. Some differences between the basic 

bilinear quadrilateral elements and other bilinear elements, such as T1, lies in the use of an 

assumed shear-strain field which is interpolated bilinearly, as well as various "tuning 

parameters" [74]. 

Higher order elements, as well as triangular elements, may also be used. In some cases, better 

results may be obtained using higher-order elements, however, they are computationally 

more complex and expensive. Under certain conditions, lower-order elements may perform 

better than higher-order elements (CQUAD4 is better for doubly curved surfaces than 

CQUAD8)[3]. 

 

Meshing 

The reader is referred to the MSC Nastran Guide [3] and to other texts on FEA on good 

meshing procedures. 

The following element distortions are considered acceptable [3] for the CQUAD4 element of 

Nastran, and are quoted here as a guideline: 

 

Table B.1: Acceptable QUAD4 Element Distortions 

Distortion Type Acceptable Limits 

Aspect Ratio < 4 

Warp < 5% 

Skewing < 60° 

Taper Angle < 30° 

Taper Ratio >
1

3
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Shape Functions 

The use of shape functions allows variables at any point on the interior of an element to be 

described in terms of (or interpolated from) the values those variables take at the nodes of the 

element. In displacement-type element formulations, shape functions are used to describe 

displacements and coordinates; however, element thicknesses, as well as applied pressures, 

may also be described by shape functions. 

Liu and Quek [76] explain the various properties that shape functions are required to satisfy; 

one such property is referred to as the property of unity. This requires that the value of the 

shape function of a node be equal to 1 at the node, and be equal to 0 at all other nodes. Such 

functions are often described as "tent-functions" [74]. The sum of the nodal shape functions 

at any point within the element boundary is necessarily equal to 1. This allows the shape 

functions to describe the value of a variable inside the element in terms of the value of the 

variable at the element nodes. 

Hughes [74] states that the basic conditions shape functions must satisfy to ensure 

convergence of the finite element solution are: 

1. smoothness (at least 𝐶1 continuity) on each element interior, 

2. continuity (at least 𝐶0) across each element boundary, 

3. completeness. 

The degree of smoothness is determined by the level of continuity of derivatives of the shape-

function. A shape function possessing 𝐶𝑚 -continuity has continuity of the 𝑚-th derivative of 

the shape function. Elements constructed from shape functions that have 𝐶1-continuity on the 

element interior and have 𝐶0-continuity across element boundaries are referred to as 𝐶0-

elements [74]. 

Hughes [74] remarks that conditions 1 and 2 ensure that all integrals necessary for the 

computation of element arrays are well-defined. 

It is noteworthy that condition 2 relates to 𝐶0-continuity across the element boundary -- the 

value of the shape function must be continuous. Recall that in displacement-type elements, 

shape functions are used to describe the displacements on an element interior. Thus, 

condition 2 requires that displacements be continuous across the element boundary; however, 
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terms dependent on derivatives of the displacements (i.e., strains), need not be continuous 

across the boundary. 

Regarding condition 3, Hughes [74] notes that completeness refers to the ability of the shape 

functions to represent rigid-body motions and constant strains. In 2-dimensional problems, 

the appropriate selection of basis functions (monomials) to include the linear terms leads to 

completeness for elements with 3 or more nodes [74]. 

Shape functions for bilinear quadrilateral elements are described in the natural coordinates 

(see page 240for the equations of the shape functions and their derivatives). The following 

shape functions have been used in the formulation of a variable-thickness, bilinear 

quadrilateral displacement-type element subjected to a non-uniform transverse pressure: 

 𝑤 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 𝑤𝑖

4

𝑖=1

 ( B.1 ) 

 휃𝑥 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 휃𝑥𝑖

4

𝑖=1

 ( B.2 ) 

 휃𝑦 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 휃𝑦𝑖

4

𝑖=1

 ( B.3 ) 

 𝑡 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 𝑡𝑖

4

𝑖=1

 ( B.4 ) 

 𝑓𝑧 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 𝑓𝑧𝑖

4

𝑖=1

 ( B.5 ) 

Smoothing (see page 246) will be applied to the Von Mises stress in the element, and the 

smoothed stress will be interpolated by shape functions. 

 

Coordinate Transformation 

In computing the shape functions and their derivatives, the quadrilateral element domain in 

the physical plane (described by physical coordinates  𝑥, 𝑦 ) is transformed into a square in 

the computational plane (described by natural coordinates  𝜉, 휂 ). This mapping, shown in 

Figure B.1, allows for simpler expressions to be developed for the shape functions, and also 
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lends itself directly to Gaussian quadrature, as the domain is the appropriate size and shape. 

Field variables may be interpolated using shape functions in the natural coordinates [76]. 

 

Figure B.1: Coordinate Transformation in the Finite Element Method 

 

Following the standard FEM numbering convention for nodes, the coordinates of the 

transformed quadrilateral in the natural space are: 

Node 1  𝑥1 ,𝑦1 , (𝑖 = 1):  𝜉1 , 휂1 =  −1,−1  ( B.6 ) 

Node 2  𝑥2 ,𝑦2 , (𝑖 = 2):  𝜉2 , 휂2 =  1,−1  ( B.7 ) 

Node 3  𝑥3 ,𝑦3 , (𝑖 = 3):  𝜉3 , 휂3 =  1,1  ( B.8 ) 

Node 4  𝑥4 ,𝑦4 , (𝑖 = 4):  𝜉4 , 휂4 =  −1,1  ( B.9 ) 

 

The equations that follow are cited from Hughes [74]. The shape functions are given by: 

 𝑁𝑖 𝜉, 휂 =
1

4
 1 + 𝜉𝑖𝜉  1 + 휂𝑖휂  ( B.10 ) 

and hence the natural derivatives are given by: 

 𝑁𝑖 ,𝜉 =
1

4
 1 + 휂𝑖휂  𝜉𝑖  ( B.11 ) 

 𝑁𝑖 ,휂 =
1

4
 1 + 𝜉𝑖𝜉  휂𝑖  ( B.12 ) 
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The physical coordinates of a point on the interior of an element are described in terms of the 

nodal coordinates  𝑥𝑖 ,𝑦𝑖  and the nodal shape functions 𝑁𝑖  evaluated at the point: 

 𝑥 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 

4

𝑖=1

𝑥𝑖  ( B.13 ) 

 𝑦 𝜉, 휂 =  𝑁𝑖 𝜉, 휂 

4

𝑖=1

𝑦𝑖  ( B.14 ) 

 

The following derivatives then follow from the previous equations: 

 𝑥,𝜉 =  
1

4
 1 + 휂𝑖휂 𝜉𝑖

4

𝑖=1

𝑥𝑖  ( B.15 ) 

 𝑥,휂 =  
1

4
 1 + 𝜉𝑖𝜉 휂𝑖

4

𝑖=1

𝑥𝑖  ( B.16 ) 

 𝑦,𝜉 =  
1

4
 1 + 휂𝑖휂 𝜉𝑖

4

𝑖=1

𝑦𝑖  ( B.17 ) 

 𝑦,휂 =  
1

4
 1 + 𝜉𝑖𝜉 휂𝑖

4

𝑖=1

𝑦𝑖  ( B.18 ) 

These may be collected into the Jacobian matrix: 

 𝐽 =  
𝑥,𝜉 𝑥,휂
𝑦,𝜉 𝑦,휂

  ( B.19 ) 

 𝑗 = 𝑑𝑒𝑡 𝐽  ( B.20 ) 

which is used to find the physical derivatives: 

  
𝜉,𝑥 𝜉,𝑦
휂,𝑥 휂,𝑦

 =  
𝑥,𝜉 𝑥,휂
𝑦,𝜉 𝑦,휂

 
−1

 𝑁𝑖 ,𝑥 ,𝑁𝑖 ,𝑦 =  𝑁𝑖 ,𝜉 ,𝑁𝑖 ,휂   𝐽  ( B.21 ) 

whence: 

 𝑁𝑖 ,𝑥 = 𝑁𝑖 ,𝜉𝜉,𝑥+ 𝑁𝑖 ,휂휂,𝑥  ( B.22 ) 

 𝑁𝑖 ,𝑦 = 𝑁𝑖 ,𝜉𝜉,𝑦+ 𝑁𝑖 ,휂휂,𝑦  ( B.23 ) 
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Element Matrices 

The following matrices and vectors are applicable to a 4-node, bilinear quadrilateral plate 

element, and have been collected from Hughes [74] and Liu and Quek [76]: 

Displacements: 𝑑𝑒 =  𝑑1;𝑑2;𝑑3;𝑑4  ( B.24 ) 

 𝑑𝑖 =  𝑤𝑖 ,휃𝑥𝑖 ,휃𝑦𝑖  ( B.25 ) 

Shape-function matrix: 𝑁 =  𝑁1 ,𝑁2 ,𝑁3 ,𝑁4  ( B.26 ) 

 𝑁𝑖 =  

𝑁𝑖 0 0
0 𝑁𝑖 0
0 0 𝑁𝑖

  ( B.27 ) 

B-matrix: (bending) 𝐵𝑏 =  𝐵1
𝑏 ,𝐵2

𝑏 ,𝐵3
𝑏 ,𝐵4

𝑏   ( B.28 ) 

 𝐵𝑖
𝑏 =  

0 0 −𝑁𝑖 ,𝑥
0 𝑁𝑖 ,𝑦 0

0 𝑁𝑖 ,𝑥 −𝑁𝑖,𝑦

  ( B.29 ) 

B-matrix: (shear) 𝐵𝑠 =  𝐵1
𝑠 ,𝐵2

𝑠 ,𝐵3
𝑠 ,𝐵4

𝑠  ( B.30 ) 

 𝐵𝑖
𝑠 =  

𝑁𝑖 ,𝑥 0 𝑁𝑖
𝑁𝑖 ,𝑦 −𝑁𝑖 0

  ( B.31 ) 

Curvatures: 𝜒 = 𝐵𝑏𝑑𝑒  ( B.32 ) 

Strain: (in-plane) 휀 = −𝑧𝜒 ( B.33 ) 

Strain: (shear) 𝛾 = 𝐵𝑠𝑑𝑒  ( B.34 ) 

Constitutive matrix: (bending) 𝐷𝑏 =
𝐸

1 − 𝜈2  

1 𝜈 0
𝜈 1 0

0 0
 1 − 𝜈 

2

  ( B.35 ) 

Constitutive matrix: (shear) 𝐷𝑠 =
𝐸

1 − 𝜈2  

 1 − 𝜈 

2
0

0
 1 − 𝜈 

2

  ( B.36 ) 

Stress: (in-plane) 𝜍 =  𝜍𝑥𝑥 ;𝜍𝑦𝑦 ; 𝜏𝑥𝑦   ( B.37 ) 

 𝜍 = 𝐷𝑏휀 ( B.38 ) 

Stress: (off-plane) 𝜏 =  𝜏𝑥𝑧 ; 𝜏𝑦𝑧   ( B.39 ) 

 𝜏 = 𝜅𝐷𝑠𝛾 ( B.40 ) 
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Inertial matrix: 𝐼 =

 
 
 
 
 
𝜌𝑧 0 0

0
𝜌𝑧3

12
0

0 0
𝜌𝑧3

12  
 
 
 
 

 ( B.41 ) 

Element mass matrix: 𝑚𝑒 =  𝑁𝑇𝐼𝑁𝑑𝐴𝑒

𝐴𝑒
 ( B.42 ) 

Stiffness matrix: (bending) 𝑘𝑏
𝑒 =  

𝑧3

12
 𝐵𝑏  𝑇𝐷𝑏𝐵𝑏𝑑𝐴𝑒

𝐴𝑒
 ( B.43 ) 

Stiffness matrix: (shear) 𝑘𝑠
𝑒 =  𝜅𝑧 𝐵𝑠 𝑇𝐷𝑠𝐵𝑠𝑑𝐴𝑒

𝐴𝑒
 ( B.44 ) 

Element stiffness matrix: 𝑘𝑒 = 𝑘𝑏
𝑒 + 𝑘𝑠

𝑒  ( B.45 ) 

Element loading vector: 𝑓𝑒 =  𝑁𝑇  
𝑓𝑧
0
0
 

𝐴𝑒
𝑑𝐴𝑒  ( B.46 ) 

 

Gaussian Quadrature 

Gaussian quadrature may be used to numerically integrate a function through a weighted 

summation of the value of the function at specific integration points. For a detailed discussion 

on Gaussian quadrature, the reader is referred to texts on numerical methods; for the 

application of Gaussian quadrature to problems in FEA, the reader is referred to Hughes [74] 

and Kwon and Bang [72]. The use of higher-order Gaussian quadrature may yield exact 

results for polynomial functions. 

For Mindlin-Reissner bilinear quadrilateral elements, selective integration involves 2x2 

Gaussian quadrature on the bending-stiffness and one-point Gaussian quadrature on the 

shear-stiffness term[74; 76; 79]. Hughes [74] elaborates on the equivalence of certain mixed-

formulation (assumed displacements and assumed pressure fields are solved for) elements 

and of selectively reduced integration elements. In particular, the displacements between the 

different element formulations are identical [74]; the strain at the centroid [74] of the element 

as obtained from selectively reduced integration agrees with that given by the strain field of 

the mixed-formulation element [74]. 
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Shear Locking and Rank Deficiency 

Correct rank in an element stiffness matrix is achieved [74] when the rank of the matrix is 

equal the number of degrees of freedom in the element minus the number of rigid-body 

modes. Rank deficiency refers to the case in which an element stiffness matrix as a lower 

rank than which correctly represents the element mechanics. This may arise from using an 

integration rule which is of too low an order [74]. As a result, the element is modelled as 

having additional (spurious) zero-energy modes, referred to as hourglass modes or 

mechanisms [74; 80]. These modes incorrectly represent the mechanics of the system, and 

can lead to a singular global stiffness matrix, rendering a solution of the system impossible. 

In using Mindlin-Reissner plate-bending elements, a phenomenon known as "shear locking" 

may occur, in which an element is over-constrained in shear. A detailed look into the 

existence of a meaningful solution to a system and the effect of the number of constraints 

imposed is given by Hughes [74]. In summary, shear locking may be avoided through the use 

of selectively reduced integration of the shear stiffness matrix. However, Hughes [74] notes: 

that selectively reduced integration may result in rank deficiency, which may lead to a 

singular global stiffness matrix. The application of boundary conditions, however, generally 

renders the global stiffness matrix positive-definite [74]. Hughes [74] remarks that if the 

zero-energy modes are prevented in one element, they will be prevented in the remainder of 

the mesh; this may be achieved through the specification of 𝑤 (transverse displacement) at 

two adjacent nodes [74]. Considering the boundary conditions applied to a cantilevered plate, 

the global stiffness matrix will  be free of zero-energy modes. 

 

Global Matrices 

The discretization of a system into elements in FEA essentially allows the global system 

equations to be discretized into a set of simpler simultaneous equations per element. These 

equations may then be formulated on a per-element basis, and the formulated equations may 

then be re-assembled into a global set of equations for the entire system. 

In the description of the geometry or displacements of the elements, a local coordinate system 

may be used. When element matrices are formulated based on a local coordinate system, as 

opposed to from the global coordinate system, they must be reformulated in terms of the 
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global coordinate system (through means of coordinate transformation) before they can be 

assembled into the global matrices. However, if the element matrices are formulated based on 

the global coordinate system, no subsequent coordinate transformation is necessary, and the 

element matrices may be directly assembled into the global matrices. 

 

Boundary Conditions 

The assembled global system equations (matrices) describe the physics of each degree of 

freedom in the system. The unconstrained system is free to undergo rigid body motions, and a 

solution of the equations is not possible, as the matrix equations are singular [72]. 

Two classes of boundary conditions exist for problems in plate mechanics, namely essential 

boundary conditions and natural boundary conditions. Hughes [74] provides a mathematical 

treatment of the boundary conditions with reference to the variational equation (equation of 

virtual work), and remarks that trial solutions to the variational equation are explicitly 

required to satisfy the essential boundary conditions; satisfaction of the variational equation 

in turn implies satisfaction of the natural boundary conditions. Ferreira [79] offers the 

alternative description of the boundary conditions as displacement (essential) and force 

(natural) boundary conditions. Essential boundary conditions are Dirichlet boundary 

conditions, in which the displacement is specified; natural boundary conditions are Neumann 

boundary conditions, in which the derivative of the displacement is specified. 

In applying the essential (displacement) boundary conditions, the rows and columns of the 

mass- and stiffness-matrices corresponding to the prescribed (constrained) degrees of 

freedom are removed; similarly, the rows of the displacement, acceleration, and force vectors 

corresponding to prescribed degrees of freedom are removed. The reduced system of 

equations may then be solved to find the displacements of the unconstrained degrees of 

freedom. These may then be substituted into the full system equations to calculate the 

constraint forces. 
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Strain Smoothing 

The shape function formulation of displacement-type bilinear quadrilateral elements results in 

𝐶0-continuity of displacements across element boundaries; however, derivatives of 

displacements have a finite discontinuity across element boundaries. A node that is shared 

between elements will consequentially show the same displacements immediately adjacent to 

the node on either element interior; however, strains (dependent on first-derivatives of 

displacements) evaluated at the node on each element interior will not have the same value 

contributed from neighbouring elements at the node. This results in a discontinuous strain 

(and hence, stress) field for pure displacement-type elements. This is shown in the Figure B.2 

below, in which the strains at the central node (휀𝑎 , 휀𝑏 , 휀𝑐 , and 휀𝑑) are discontinuous: 

 

Figure B.2: Discontinuity in Strain at Nodes 

 

Hughes [74] notes that generally, all displacement derivatives for 𝐶0 isoparametric elements 

are discontinuous across element boundaries. If the strains are smoothed across elements by 

describing the strain in each element with shape functions, the strains/stresses will then also 

exhibit 𝐶0 continuity across element boundaries, and the discrepancy in stresses at nodes will 

be eliminated. 

Hughes [74] outlines the following smoothing procedure for constant-strain elements: 

The smoothed strain is written as 휀𝑠𝑚𝑜𝑜𝑡  , where 

 𝑺휀𝑠𝑚𝑜𝑜𝑡  = 𝑃 ( B.47 ) 

in which 
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 𝑠𝑖𝑧𝑒 𝑺 = 𝑛𝑛𝑜𝑑𝑒𝑠  × 𝑛𝑛𝑜𝑑𝑒𝑠  

 𝑠𝑖𝑧𝑒 휀𝑠𝑚𝑜𝑜𝑡  = 𝑛𝑛𝑜𝑑𝑒𝑠  ×  1 

 𝑠𝑖𝑧𝑒 𝑃 = 𝑛𝑛𝑜𝑑𝑒𝑠  ×  1 

𝑺 and 𝑃 are constructed in the element-by-element fashion through the global assembly 

operators, similar to the assembly of the global stiffness- and mass-matrices (however, 

there is only one DOF (pressure) per node, and no boundary conditions are imposed): 

 𝑺 =  𝒔𝑒

𝑛𝑒𝑙

𝑒=1

 ( B.48 ) 

 𝑃 =  𝜖𝑒

𝑛𝑒𝑙

𝑒=1

 ( B.49 ) 

where  
𝑛𝑒𝑙
𝑒=1 denotes the FEM assembly operations, and in which 

 𝒔𝑒 =

 
 
 
 
𝑠11
𝑒 𝑠12

𝑒

𝑠21
𝑒 𝑠22

𝑒

𝑠13
𝑒 𝑠14

𝑒

𝑠23
𝑒 𝑠24

𝑒

𝑠31
𝑒 𝑠32

𝑒

𝑠41
𝑒 𝑠42

𝑒

𝑠33
𝑒 𝑠34

𝑒

𝑠43
𝑒 𝑠44

𝑒  
 
 
 

 ( B.50 ) 

 𝜖𝑒 =

 
 

 
𝜖1
𝑒

𝜖2
𝑒

𝜖3
𝑒

𝜖4
𝑒 
 

 
 ( B.51 ) 

where 𝒔𝑒  and 휀𝑒  denote the element-matrices, with the nodal terms given by 

 𝑠𝑖𝑗
𝑒 =  𝑁𝑖

𝑒𝑁𝑗
𝑒𝑑𝐴𝑒

𝛺𝑒
 ( B.52 ) 

 𝜖𝑖
𝑒 = 휀𝑐𝑒𝑛𝑡

𝑒  𝑁𝑖
𝑒𝑑𝐴𝑒

𝛺𝑒
 ( B.53 ) 

for  1 ≤ 𝑖, 𝑗 ≤ 4,  and with 𝑒 denoting the element number. 

 

The matrix 𝒔𝑒  may be replaced by an associated diagonal matrix, by approximating: 

 𝑠𝑖𝑗
𝑒 = 𝛿𝑖𝑗 𝑗

𝑒 𝜉𝑖 , 휂𝑖  ( B.54 ) 
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where 𝛿𝑖𝑗  is the Kronecker delta, and 

 𝑗𝑒 = 𝑑𝑒𝑡  
𝑥,𝜉
𝑒 𝑥,휂

𝑒

𝑦,𝜉
𝑒 𝑦,휂

𝑒   ( B.55 ) 

leading to 

 𝜖𝑖
𝑒 = 휀𝑐𝑒𝑛𝑡

𝑒 𝑗𝑒 𝜉𝑖 , 휂𝑖  ( B.56 ) 

 

Nonlinear Structures 

Structural nonlinearity may arise from geometric nonlinearities (such as play in joints and 

connections), from nonlinearities associated with large deflections, and from nonlinear 

material properties [3]. Nonlinearity may also arise from a nonlinear dependence of the 

forcing function on the system state. The solution of nonlinear systems is not trivial, and is 

computationally expensive as the system equations are solved iteratively [3]. The reader is 

referred to Komzsik [80] for a review of common solution methods used in nonlinear 

analysis. The Komzsik remarks that in the methods presented for nonlinear dynamics, the 

external load is considered to be explicit and time-variant, without dependence on the 

resulting structural displacements. This is typical of solution methods treated in literature, 

where the forcing function is assumed to be know a-priori; this, however, is not the case in 

aeroelastic analysis. 

 

Solution Methods 

Modal analysis 

In modal analysis, the total response of the structure is modelled through the superposition of 

the mode-shapes of the undamped structure. Modal analysis is only applicable to linear 

structures with constant structural matrices. The reader is referred to Komzsik's [80] text on 

computational techniques in FEA for a comprehensive review of the solution methods 

associated with modal analysis and frequency response. 

In normal modes analysis, the free vibration of the system is considered (eigenanalysis is 

performed) and the natural frequencies and mode shapes of the structure are found. The 
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response of the system to a particular forcing frequency may then be obtained through the 

summation of the individual modal responses [3]. Modal analysis may also be used in the 

analysis of damped systems, in which complex eigenanalysis is used to compute the damped 

modes of structures and to assess the structural stability [3]. 

One important advantage realized by modal analysis is the reduction of the order of the 

system to be solved, as is covered in detail by Komzsik [80]. The order of the system is 

reduced from being equal to the number of unconstrained degrees of freedom to being equal 

to the number of eigenmodes considered. The system response is described in terms of modal 

displacements, which may be related to the system displacements through the associated 

eigenvectors. Computation is performed on the system in terms of modal displacements, 

rendering the reduction in order of the system. 

For a modal system with time-invariant coefficients, the solution of the system in time is 

straight forward. Various time-integration schemes may be employed that take full advantage 

of the time-invariance of the coefficient matrices. 

Direct analysis 

In direct analysis, which is applicable to both linear and nonlinear systems, the structural 

response is solved for directly, as formulated in terms of the full-order degrees of freedom. 

No reduction in the number of degrees of freedom analysed is made. The solution of the 

system response in time requires the use of appropriate time-integration schemes that account 

for the time-variance of the system coefficient matrices; these matrices must be recomputed 

after each iteration. A number of suitable time-integration schemes are mentioned below. 

The central, backward, and forward finite differencing schemes are all explicit methods, 

making their solution relatively straight-forward. A distinct disadvantage of the central-

difference scheme is that it is conditionally stable [74; 80], and the time-step must be suitably 

small for stability of the scheme. In particular, the time-step should be approximately 

∆𝑡 ≤ 0.1𝑇𝑛  where 𝑇𝑛  is the smallest period in the system [40; 81]. 

Many other time-marching schemes may be used, many of which are implicit and 

unconditionally stable, including the Newmark-𝛽 scheme [74; 80], Houbolt's Method [74], 

Park's Method [74], Wilson-휃 Method [74], and others. The reader is referred to Hughes [74] 

for a comprehensive discussion on the merits and details of the various methods. 
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The afore-mentioned methods generally require the forcing function to be know at the time 

under consideration. However, in the aeroelastic problem, the forcing function at that time is 

a function of the displacements and rates that are being solved for; it is an inherently implicit 

system. Thus, the solution must be arrived at iteratively 
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C. SET-UP PROCEDURE FOR AEROELASTIC 

COMPUTATIONS IN EDGE 

The procedure followed here is largely based on instructions for running an aeroelastic 

computation as provided by Dr. Louw van Zyl. The author expresses his thanks to Dr. van 

Zyl for his assistance in the author's familiarization with the aeroelastic options Edge. 

The selection of the time-marching methodology in the Edge input file requires consideration 

of the formulation of the aeroelastic equations in time if a coupled modal solution 

(ISOOPT=102 under the AEROELASTICS section) is to be run. The modal equations of motion 

in Edge are discretized in time with using a central differences scheme being used for time-

derivatives [71], and with the modal displacements and modal forces being computed from 

three-point time-averaging [71] (see Section 6). 

The resulting modal equations are implicit in the modal displacement at the next physical-

time (the outer loop of the dual time-stepping iteration) step (unless the time-averaging 

weights, ETA, for the modal forces are chosen such that ETA=0). The solution for the modal 

displacement and modal force at the next physical-time step is progressively reached through 

successive iterations in pseudo-time (the inner loop of the dual time-stepping iteration). 

Thus, the solution of the aeroelastic equations of motion requires implicit time-accurate 

integration, as the converged pair of modal displacements and modal forces at the next 

physical time step is required to be solved iteratively (due to the implicit formulation in 

modal displacements). Thus, the parameter ITIMAQ must be set to ITIMAQ=1. The specified 

DELTAT is then equal to the global step in physical-time. The number of inner-iterations 

performed is driven by the convergence criterion RESTAQ for the pseudo-time (inner-loop) 

iterations, with limits enforced by the parameters ITMNAQ and ITMXAQ. The Edge manual [71] 

recommends that ITMXAQ should be between 30 - 100 for full viscous computations; it is 

expected that for inviscid computations with slightly-unsteady effects (e.g. low reduced 

frequencies for small aeroelastic motions), a number of ITMXAQ below 30 should be 

sufficient. 
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Steady computation – static mesh 

The general set-up procedure in Edge for a steady computation is as follows: 

1. Copy the mesh file your_mesh.bmsh into the working directory, 

2. Copy the solution input file default.ainp and edit it to reflect the desired solver 

specifications (flow conditions, solver options, filenames, etc.). Rename the file to 

your_job.ainp, 

3. Run bound and generate the boundary conditions, 

bound your_job.ainp 

4. Run preprocessor 

preprocessor your_job.ainp 

5. Run the solver using the number of processors required (in this instance, NPART=3) 

edge_mpi_run your_job.ainp 3 

6. Monitor convergence by running plotres: 

plotres your_job.bres -n 

Steady computation – deformable mesh 

When running an aeroelastic simulation in Edge, the aerodynamics may be calculated for the 

―jig shape‖ of the structure or for the ―design shape‖ [71]. The methodology for the ―jig 

shape‖ approach involves the transient computation to steady-state (with heavy artificial 

structural damping) of the geometry, starting from an initially undeformed shape in steady 

flow. Once convergence to the steady deformed (aeroelastically static) shape is reached, the 

solution is restarted with new modal parameters – the artificial structural damping is 

removed, and initial modal velocities are assigned to perturb the structure. 

The set-up procedure in Edge for the initial steady computation with a mesh that will deform 

in subsequent computations is as follows: 

1. Copy the mesh file your_mesh.bmsh into the working directory, 

2. Copy the solution input file default.ainp and edit it to reflect the desired solver 

specifications (flow conditions, solver options, filenames, etc.). Rename the file to 

your_job_und.ainp, 
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It is recommended to set the filenames to reflect the type of computation run. 

3. Run bound and generate the boundary conditions: 

bound your_job_und.ainp (follow Edge instructions) 

The boundary-condition file your_mesh.aboc is generated. 

4. Run preprocessor with NPART=1 in your_job_und.ainp: 

preprocessor your_job_und.ainp 

The following file is generated: your_job_und.bedg 

5. Extract the moving boundaries from the mesh: 

aexbset (follow Edge instructions) 

The file with the moving boundaries your_mesh.bset is generated 

6. Generate the boundary displacement files for each mode: 

Note: Edge aeroelastic utilities and helper programs are available to import a 

MSC Nastran modal structural model (SOL=103 in MSC Nastran) into Edge, and 

to extract surface nodes from the model. 

The approach outlined here does not utilize these programs, but utilizes a 

MATLAB script to extract the surface nodes on the moving boundaries from the 

fluid mesh. The node displacements for each structural mode are written into the 

required FFA-format for the .bdis files. The aforementioned script, getbdis.m, 

was provided by Dr. van Zyl, and was modified by the author to extract the 

structural mode shapes from the author's MATLAB FEM code and to interpolate 

the modal displacements onto the surface nodes of the fluid mesh. 

NB: the mode shapes written into the .bdis files were scaled by a factor of 10
-3

 

to in order that the deformed meshes that would be generated would not undergo 

large deformations. 

The following files are written: mode_1.bdis, mode_2.bdis, etc. 

7. Generate the deformed mesh for each mode: 
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meshdeform -mth 2 your_job_und.bedg your_job.bmsh mode_1.bdis 

mode_1.bmsh 

The deformed mesh files are mode_1.bmsh, mode_2.bmsh, etc. 

Note: the deformed mesh is calculated based on the boundary displacements in 

the files mode_1.bdis, mode_2.bdis, etc. The boundary displacements have been 

scaled by 10
-3

 and thus the deformed mesh reflects the scaled mode shapes. 

8. Generate the perturbation field for each mode: 

aeputpert your_mesh.bmsh mode_1.bmsh your_mesh.bmos -scale 

1.0e+03 

This writes the perturbation field for each mode into the your_mesh.bmos file. 

Here, the physical displacements of the fluid nodes on the moving boundary into 

the volume mesh have been rescaled by 10
3
. This is done so that the perturbation 

field reflects the mass-normalized mode shapes. Modal responses computed in 

Edge are then computed based on the mass-normalized mode shapes. 

9. Change NPART in your_job_und.ainp to the number of processors required (in this 

instance, NPART=3) and run the preprocessor again: 

preprocessor your_job_und.ainp 

The following files are generated for the parallel-processing job: 

your_job_und.bedg_p1, your_job_und.bedg_p2, etc. 

10. Run the solver using the number of processors required (in this instance, NPART=3) 

edge_mpi_run your_job_und.ainp 3 

11. Monitor convergence by running plotres: 

plotres your_job_und.bres -n 

The results files generated include your_job_und.bres and your_job_und.bout. For the 

―jig shape‖ procedure of aeroelastic computation, the following step is to use the results of 

the undeformed steady solution (now obtained) as an initial solution for a transient 

computation. 
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Transient computation – coupled modal solution – undeformed to steady-state 

The set-up procedure in Edge for the transient coupled modal computation from an initially 

undeformed structure to the steady-state (static aeroelastic) deformed structure is as follows: 

1. Copy the following files from the undeformed steady computation folder into the 

folder for the undeformed-to-steady-state folder: 

your_mesh.bmsh 

your_mesh.aboc 

your_mesh.bmos 

mode_1.bdis, mode_2.bdis, etc. 

mode_1.bmsh, mode_2.bmsh, etc. 

your_job_und.bout 

your_job_und.ainp 

2. Copy the example modal parameters (.amop) file from the Edge directory and edit the 

parameters to reflect the modal parameters of the system being analysed. Rename the 

modal parameters file to your_job_ae_ss.amop, and rename the input file to 

your_job_ss.ainp. 

3. Rename the output file from the undeformed steady computation 

(your_job_und.bout) to your_job_ss.bini. 

4. Edit the solution input file your_job_ss.ainp to reflect the desired solver 

specifications. In particular: 

Under Initialization: 

 change INPRES from 0 to 1 (available), 

Under Multigrid options: 

 change IFULMG from 1 to 0, 

Under Time accurate options: 

 change ITIMAQ from 0 to 1 (implicit time accurate), 
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 change DELTAT to the time-step required 

 change RESTAQ from 1.0 to 0.0 (convergence criterion) 

 change ITMXAQ from 100 to 15 (maximum number of implicit iterations per 

physical-time step) 

Under the Aeroelastics and related options: 

 change ISOOPT from 0 to 102 (coupled modal solution), 

 change MODOPT from 0 to 1 (volume grid perturbation), 

 change POFFSET from 0 to the value used for PFREE (equal to the static 

pressure at the conditions for the computation), 

 change CFIMOP to 'your_job_ae_ss.amop', 

 change CFIMOS to 'your_mesh.bmos', 

Under Number of iterations, CFL, etc.: 

 change ITMAX to the desired number of time steps, 

Under Miscellaneous options: 

 change IWRSOL to 25 (write solution every 25 time steps), 

Under File names: 

 change CFIRES to 'your_job_ss.bres', 

 change CFIOUT to 'your_job_ss.bout', 

 change CFIINI to 'your_job_ss.bini', 

5. Run the preprocessor again: 

preprocessor your_job_ss.ainp 

The following files are generated for the parallel-processing job: 

your_job_ss.bedg_p1, your_job_ss.bedg_p2, etc. 

6. Run the solver using the number of processors required (in this instance, NPART=3) 

edge_mpi_run your_job_ss.ainp 3 

7. Monitor convergence by running plotres: 
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plotres your_job_ss.bres -n 

The results files generated include your_job_ss.bres and your_job_ss.bout. For an 

elastic wing with heavy artificial structural damping operating below divergence speed, the 

modal displacements (and aerodynamic coefficients) of the transient computation should 

converge in time to a steady value. For the ―jig shape‖ procedure of aeroelastic computation, 

the following step is to use the results for the elastic steady-state obtained from the transient 

solution (now obtained) as an initial solution for a transient restart to model free response to a 

disturbance. 

 

Transient computation – coupled modal solution – steady-state to free response 

The set-up procedure in Edge for the transient coupled modal computation for the free 

aeroelastic response of the structure to a disturbance from an initially steady-state (static 

aeroelastic) deformed structure is as follows: 

1. In the undeformed-to-steady-state folder, create a copy of the modal parameters file 

and rename it to your_job_ae_free.amop. Edit the parameters to reflect the desired 

system state. In particular:  

 Remove artificial structural damping from the modes (set the value of 

damping_ratio to 0 for each mode), 

 Set the initial modal velocity of mode 2 to the desired value (for mode identifier 2, 

set init_velocity to 1.0E-02). 

2. Update the solution input file your_job_ss.ainp to reflect the desired solver 

specifications. In particular: 

Under Initialization: 

 change INPRES from 1 to 2 (restart of previous run), 

Under the Aeroelastics and related options: 

 change CFIMOP to 'your_job_ae_free.amop', 

Under Number of iterations, CFL, etc.: 

 change ITMAX to the desired number of time steps, 
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3. Run the solver using the number of processors required (in this instance, NPART=3) 

edge_mpi_run your_job_ss.ainp 3 

4. Monitor convergence by running plotres: 

plotres your_job_ss.bres -n 

The transient computation run for the "undeforned to steady-state" case is continued with the 

new modal parameters and with an initial modal velocity for mode 2. The results files are 

updated and include the free response as a continuation of the previous results. 
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D. FURTHER RESULTS OF THE VALIDATION OF SHOCK-

EXPANSION THEORY 

The following figures are further results of the parameter sweep for determining grid 

independence and the accuracy of the MATLAB shock-expansion computations for the 

undeformed ATM-wing, as outlined in Section 5.4.3. 

 

 

Figure D.1: Normal Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.4 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

c N

α [°]

M1.4

MATLAB

MESH 1

MESH 2



260 

 

 

Figure D.2: Axial Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.4 

 

 

Figure D.3: Pitching Moment Coefficient (LE root) vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.4  
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Figure D.4: Comparison of Normal Force Coefficients, Undeformed A TM-Wing, Mach 1.4 

 

 

Figure D.5: Comparison of Pitching Moment Coefficients, Undeformed ATM-Wing, Mach 1.4  
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Figure D.6: Normal Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.8 

 

 

Figure D.7: Axial Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.8  
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Figure D.8: Pitching Moment Coefficient (LE root) vs Angle-of-Attack, Undeformed ATM-Wing, Mach 1.8 

 

 

Figure D.9: Comparison of Normal Force Coefficients, Undeformed A TM-Wing, Mach 1.8  
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Figure D.10: Comparison of Pitching Moment Coefficients, Undeformed ATM-Wing, Mach 1.8 

 

 

Figure D.11: Normal Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 5  
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Figure D.12: Axial Force Coefficient vs Angle-of-Attack, Undeformed ATM-Wing, Mach 5 

 

 

Figure D.13: Pitching Moment Coefficient (LE root) vs Angle-of-Attack, Undeformed ATM-Wing, Mach 5  
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Figure D.14: Comparison of Normal Force Coefficients, Undeformed A TM-Wing, Mach 5 

 

 

Figure D.15: Comparison of Pitching Moment Coefficients, Undeformed ATM-Wing, Mach 5  
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E. DEFORMED GEOMETRIES USED FOR MESH 

DEFORMATION COMPUTATIONS IN EDGE 

The following figures show the deformed geometries of the ATM-wing which were used to 

generate the deformed meshes for the perturbation fields in Edge, as outlined in Section 5.4.4. 

 

 

Figure E.1: ATM-Wing Deformed Mesh, Mode 1, Wing Tip 
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Figure E.2: ATM-Wing Deformed Mesh, Mode 2, Wing Tip 

 

 

Figure E.3: ATM-Wing Deformed Mesh, Mode 3, Wing Tip 
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Figure E.4: ATM-Wing Deformed Mesh, Mode 4, Wing Tip  
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F. FURTHER RESULTS OF THE PRESCRIBED MODAL 

DISPLACEMENTS 

The results given below are a for the prescribed step modal displacements for the ATM-wing 

at 𝑀 = 2.51,𝛼 = 0.5°, 𝑞 = 108 kPa as described in Section 5.8. 

Table F.1: Prescribed Motion Results for Mode 1, Step Size 𝟏 𝐱 𝟏𝟎−𝟓 

 ∆𝑥1 = 0 ∆𝑥1 = 5 x  10−5 ∆𝑥1 = −5 x  10−5 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.556 x 10
-2

 1.627 x 10
-2

 1.387 x 10
-2

 1.433 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.294 x 10
-3

 2.145 x 10
-3

 2.278 x 10
-3

 2.128 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.722 x 10
-2

 -1.823 x 10
-2

 -1.496 x 10
-2

 -1.573 x 10
-2

 

𝑄1 -79.46 -85.56 -86.07 -92.98 -72.85 -78.27 

𝑄2 53.49 46.12 56.83 48.83 50.15 43.40 

𝑄3 -22.59 -20.82 -23.27 -21.76 -21.91 -20.00 

𝑄4 24.86 30.78 25.15 31.73 24.57 29.86 

 

Table F.2: Prescribed Motion Results for Mode 1, Step Size 𝟏 𝐱 𝟏𝟎−𝟔 

 ∆𝑥1 = 0 ∆𝑥1 = 5 x  10−6 ∆𝑥1 = −5 x  10−6 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.485 x 10
-2

 1.540 x 10
-2

 1.467 x 10
-2

 1.520 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.286 x 10
-3

 2.137 x 10
-3

 2.285 x 10
-3

 2.136 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.621 x 10
-2

 -1.710 x 10
-2

 -1.598 x 10
-2

 -1.686 x 10
-2

 

𝑄1 -79.46 -85.56 -80.12 -86.27 -78.80 -84.98 

𝑄2 53.49 46.12 53.83 46.36 53.16 45.87 

𝑄3 -22.59 -20.82 -22.66 -21.02 -22.52 -20.74 

𝑄4 24.86 30.78 24.89 30.94 24.83 30.65 
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Table F.3: Prescribed Motion Results for Mode 2, Step Size 𝟏 𝐱 𝟏𝟎−𝟓 

 ∆𝑥2 = 0 ∆𝑥2 = 1 x  10−5 ∆𝑥2 = −1 x  10−5 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.579 x 10
-2

 1.650 x 10
-2

 1.373 x 10
-2

 1.410 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.296 x 10
-3

 2.146 x 10
-3

 2.277 x 10
-3

 2.126 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.754 x 10
-2

 -1.872 x 10
-2

 -1.465 x 10
-2

 -1.525 x 10
-2

 

𝑄1 -79.46 -85.56 -88.71 -96.79 -70.22 -74.45 

𝑄2 53.49 46.12 55.93 47.33 51.05 44.91 

𝑄3 -22.59 -20.82 -22.66 -21.27 -22.52 -20.48 

𝑄4 24.86 30.78 23.15 30.04 26.57 31.54 

 

Table F.4: Prescribed Motion Results for Mode 2, Step Size 𝟏 𝐱 𝟏𝟎−𝟔 

 ∆𝑥2 = 0 ∆𝑥2 = 1 x  10−6 ∆𝑥2 = −1 x  10−6 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.487 x 10
-2

 1.547 x 10
-2

 1.466 x 10
-2

 1.513 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.286 x 10
-3

 2.137 x 10
-3

 2.285 x 10
-3

 2.135 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.624 x 10
-2

 -1.722 x 10
-2

 -1.595 x 10
-2

 -1.675 x 10
-2

 

𝑄1 -79.46 -85.56 -80.38 -87.04 -78.53 -84.20 

𝑄2 53.49 46.12 53.74 46.24 53.25 45.99 

𝑄3 -22.59 -20.82 -22.60 -21.16 -22.58 -20.60 

𝑄4 24.86 30.78 24.69 30.78 25.03 30.81 
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Table F.5: Prescribed Motion Results for Mode 3, Step Size 𝟏 𝐱 𝟏𝟎−𝟓 

 ∆𝑥3 = 0 ∆𝑥3 = 1 x  10−5 ∆𝑥3 = −1 x  10−5 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.611 x 10
-2

 1.679 x 10
-2

 1.342 x 10
-2

 1.381 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.299 x 10
-3

 2.149 x 10
-3

 2.275 x 10
-3

 2.125 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.783 x 10
-2

 -1.896 x 10
-2

 -1.436 x 10
-2

 -1.500 x 10
-2

 

𝑄1 -79.46 -85.56 -89.09 -96.73 -69.83 -74.51 

𝑄2 53.49 46.12 57.62 49.36 49.36 42.88 

𝑄3 -22.59 -20.82 -25.61 -24.32 -19.57 -17.43 

𝑄4 24.86 30.78 24.87 31.72 24.85 29.87 

 

Table F.6: Prescribed Motion Results for Mode 3, Step Size 𝟏 𝐱 𝟏𝟎−𝟔 

 ∆𝑥3 = 0 ∆𝑥3 = 1 x  10−6 ∆𝑥3 = −1 x  10−6 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.490 x 10
-2

 1.550 x 10
-2

 1.463 x 10
-2

 1.510 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.287 x 10
-3

 2.137 x 10
-3

 2.284 x 10
-3

 2.135 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.627 x 10
-2

 -1.724 x 10
-2

 -1.592 x 10
-2

 -1.672 x 10
-2

 

𝑄1 -79.46 -85.56 -80.42 -87.04 -78.50 -84.21 

𝑄2 53.49 46.12 53.91 46.45 53.08 45.78 

𝑄3 -22.59 -20.82 -22.89 -21.47 -22.29 -20.29 

𝑄4 24.86 30.78 24.86 30.95 24.86 30.64 
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Table F.7: Prescribed Motion Results for Mode 4, Step Size 𝟏 𝐱 𝟏𝟎−𝟓 

 ∆𝑥4 = 0 ∆𝑥4 = 1 x  10−5 ∆𝑥4 = −1 x  10−5 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.519 x 10
-2

 1.562 x 10
-2

 1.434 x 10
-2

 1.498 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.290 x 10
-3

 2.140 x 10
-3

 2.283 x 10
-3

 2.134 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.637 x 10
-2

 -1.702 x 10
-2

 -1.582 x 10
-2

 -1.694 x 10
-2

 

𝑄1 -79.46 -85.56 -79.05 -83.14 -79.87 -88.09 

𝑄2 53.49 46.12 60.53 55.33 46.45 36.90 

𝑄3 -22.59 -20.82 -26.39 -25.62 -18.79 -16.12 

𝑄4 24.86 30.78 27.51 32.10 22.20 29.49 

 

Table F.8: Prescribed Motion Results for Mode 4, Step Size 𝟏 𝐱 𝟏𝟎−𝟔 

 ∆𝑥4 = 0 ∆𝑥4 = 1 x  10−6 ∆𝑥4 = −1 x  10−6 

 Edge MATLAB Edge MATLAB Edge MATLAB 

𝑐𝑁  1.476 x 10
-2

 1.529 x 10
-2

 1.480 x 10
-2

 1.532 x 10
-2

 1.472 x 10
-2

 1.528 x 10
-2

 

𝑐𝐴 2.285 x 10
-3

 2.137 x 10
-3

 2.286 x 10
-3

 2.137 x 10
-3

 2.285 x 10
-3

 2.136 x 10
-3

 

𝑐𝑀  -1.609 x 10
-2

 -1.697 x 10
-2

 -1.612 x 10
-2

 -1.696 x 10
-2

 -1.607 x 10
-2

 -1.701 x 10
-2

 

𝑄1 -79.46 -85.56 -79.42 -85.13 -79.50 -86.12 

𝑄2 53.49 46.12 54.20 47.15 52.79 45.09 

𝑄3 -22.59 -20.82 -22.97 -21.31 -22.21 -20.46 

𝑄4 24.86 30.78 25.12 31.03 24.59 30.56 

 

 


