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Abstract 
 

Supervisory Control and Data Acquisition (SCADA) systems were developed to assist in the 

management, control and monitor of critical infrastructure functions such as gas, water, 

waste, railway, electricity and traffic. In the past, these systems had little connectivity to the 

Internet because they ran on dedicated networks with proprietary control protocols and used 

hardware and software specific to the vendor. As a result, SCADA systems were secure, and 

did not face challenging vulnerabilities associated with the Internet. The need for remote 

connectedness, in order to collect and analyse data from remote locations, resulted in 

SCADA systems being increasingly getting connected to the Internet and corporate networks. 

Therefore, SCADA systems are no longer immune to cyber-attacks. There are reported cases 

on cyber-attacks targeted at SCADA systems. This research utilises penetration testing to 

investigate common SCADA security vulnerabilities. The investigation is conducted through 

experiments, under two different scenarios. Experiments were conducted using virtual plant 

environment. The results revealed vulnerabilities which are considered as common by the 

Idaho National Laboratory and others which are not common. Recommendations are 

provided on how to mitigate the vulnerabilities discovered in this research. 
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1 Introduction 
 

Industrial control systems can be considered as part of the backbone of a large number of 

industries that are affecting almost every basic service required by the modern society. These 

control systems are usually large networked computer systems and are used to assist in the 

management, control and monitoring of critical infrastructure functions such as gas, water, 

waste, railway, electricity production and distribution, and traffic. Due to their prominent and 

increasing importance, these systems can be considered important asset whose safety and 

security must be protected. However, it is a difficult task to secure these systems. 

With the recent growth in cyber-attacks targeted at computer networks and systems in the 

infrastructure of major nations, it is important to investigate and understand the 

vulnerabilities of these control systems in order to develop appropriate and effective 

mitigation techniques that will ensure the systems’ security and protection. 

Supervisory Control and Data Acquisition (SCADA) systems are the common computer 

systems used to monitor and control major infrastructure. Among the basic functions of a 

SCADA system is its ability to provide data related to the operating state of the system and 

allow operators to remotely control the distributed system. According to Daniels and Salter 

(1999), one of the benefits of using a SCADA system is that it allows the high-level 

management of industrial process by merging data from the many distributed portions of the 

process. This can help enhance the robustness and reliability of the system. 

Chikuni and Dondo (2009) mentioned that, in the past, SCADA systems had little 

connectivity to the Internet because they ran on dedicated networks with proprietary control 

protocols and used hardware and software specific to the vendor. As a result, SCADA 

systems were secure, and did not face challenging vulnerabilities associated with the Internet. 

Intrusion could only have been accomplished with physical access, so physical security 

measures were sufficient to repel computer-based attacks.  

Queiroz et al. (2009) mentioned that the need for remote connectedness, in order to collect 

and analyse data from remote locations, resulted in SCADA systems being increasingly 

getting connected to the Internet and corporate networks. Therefore, SCADA systems are no 

longer immune to cyber-attacks, and such increased connectivity exposes SCADA systems to 

an enlarged attack surface (Queiroz, et al., 2009).  

According to Queiroz et al. (2009), when designing the networks for SCADA systems, little 

attention was paid to security aspects in order to maximise functionality. These design 

decisions implied that the security of the system was traded for performance, reliability and 

flexibility, and as a result penetrating the control network can be accomplished without 

physical access to the SCADA system by remote attackers exploiting vulnerabilities in the 

gateway between the corporate and SCADA systems (Queiroz, et al., 2009). 
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Queiroz, et al. (2009) stipulated that the threat posed to the SCADA systems has a greater 

impact and scale of attack than common computer vulnerabilities. The impairment of 

SCADA networks could cause interruption of critical services, process redirection, or 

manipulation of operational data that could have serious consequences for the population. As 

a result, research into the security of SCADA systems is on the rise. The rapidly evolving 

landscape of SCADA systems warrants an increased understanding of and focus on their 

protection from cyber-attacks. 

According to Byres and Lowe (2004), the Industrial Security Incident reported an increase in 

cyber-attacks during the period it collected incident reports. A popular attack on SCADA 

systems that further demonstrate the need for investing in the security of SCADA systems is 

the Stuxnet worm. This attack provides a good example of why protecting critical 

infrastructure is an important part of national security. Falliere et al. (2011) mentioned that 

the Stuxnet worm was first identified in June 2010 and was likely targeted at SCADA 

systems in Iran.  

Stuxnet worm infected field devices controlling centrifuges in a Natanz nuclear facility. 

According to Farwell and Rohozinski (2011), the Stuxnet worm was able to maliciously vary 

centrifuge speeds to force them outside normal operating conditions and sabotage the system. 

The attack inflicted by the Stuxnet worm is significant because it demonstrated the 

capabilities of cyber-attacks on critical infrastructure and showcased the potential they have 

in cyber warfare.  

Stuxnet was not the only worm to target SCADA systems in Iran. During the month of 

November 2011, Iranian officials said that they have detected a computer virus called Duqu 

that experts say is based on Stuxnet. According to Kaspersky Lab (2011), Duqu acts 

differently from Stuxnet, although they use the same code. Instead of destroying the systems 

it infects, Duqu secretly penetrates them and, according to some experts, creates “back door” 

vulnerabilities that can be exploited to destroy the networks at any time its creators may 

choose (Kaspersky Lab, 2011). Kaspersky Lab (2011) experts mentioned that Duqu embeds 

itself in computer systems for 36 days and “analyses and profiles” the system's workings 

before sending its findings out to a secure server and self-destructing. 

Events such as the Stuxnet worm demonstrate the possibility to conduct espionage attacks on 

foreign states remotely. According to InfoSec Institute (2013), this has increased awareness 

of cyber threats, and the need to implement proper countermeasures to mitigate risk.  

It is often the case that SCADA system components are under government of local 

authorities. In most cases these authorities do not deal with adequately trained personnel who 

operate with limited budgets (InfoSec Institute, 2013). As a results, SCADA systems are 

installed everywhere without being qualified in the installation phase. InfoSec Institute 

(2013) reported that there are many systems deployed with factory settings, pre-set standard 

configurations, and they’re common to entire classes of devices.  
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The increase in cyber-attacks on SCADA systems has led to a rapid increase in research 

programs in the security analysis of SCADA systems. SCADA security is different from the 

traditional network security and as a result research on SCADA security cannot be 

approached from the perspective of currently available network security research. Therefore, 

it must be investigated as its own research area.  

It was after the discovery of the Stuxnet worm that governments and intelligence agencies all 

over the world requested assessment of security for critical infrastructure of their countries 

(InfoSec Institute, 2013). However, the focus here was on the evaluation of efficiency offered 

by defensive measures adopted to protect SCADA systems from cyber-attacks (InfoSec 

Institute, 2013).  

Despite greater awareness of cyber threats, critical infrastructures of countries are still too 

vulnerable. In the Internet Security Threat Report published by Symantec (2012), there were 

85 public SCADA vulnerabilities. This was a huge decrease over the 129 vulnerabilities in 

2011. Since the emergence of the Stuxnet worm in 2010, SCADA systems have attracted 

more attention from security researchers (Symantec, 2012). 

Research programs in the security analysis of SCADA systems include vulnerability analysis, 

penetration testing, security assessment, etc. (Wang Chunlei, et al., 2010).  Penetration testing 

is utilised in this research to explore common SCADA security vulnerabilities, and is 

discussed in section 2. 

The investigation of common SCADA vulnerabilities in this research was conducted through 

experiments. The experiments were simulated using 3 different computers under two 

different scenarios. The experiments yielded vulnerabilities which are classified by the Idaho 

National Laboratory (2011) as common to all SCADA systems and others which were not 

classified. From the list of the vulnerabilities discovered during the experiments, 

recommendations are presented in this research report towards how to mitigate the discovered 

vulnerabilities.  

The structure of this paper is as follows: Section 2 provides background information for 

SCADA systems and Penetration testing and Penetration testing tools used in this research. 

Section 3 discusses the hypothesis addressed by this research report. Section 4 provides 

implementation of the tools used to facilitate SCADA simulation. In section 5, experiments 

are conducted and results of the experiments are collected. Section 6 provides a discussion of 

the results collected in section 5. Section 7 discusses recommendations on how to mitigate 

the vulnerabilities discovered during this research. Section 8 provides conclusion and 

possible future work.  

Appendix A provides an overview of Nmap and how it was utilised in this research. 

Screenshots showing the commands used and the results obtained are presented here. 

Appendix B provides an overview of Nessus and how it was utilised in this research. 

Screenshots showing the commands used during the run of Nessus and the results obtained 

are presented in this Appendix. Lastly, Appendix C provides an overview of Metasploit and 
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how it was used in this research. Screenshots showing the commands used during the run of 

Metasploit are provided in Appendix C. 
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2 Background 
 

This section provides background information related to the architecture and operation of 

SCADA systems, vulnerabilities SCADA systems can be exposure to, and Penetration testing 

and tools used in this research. 

 

2.1 SCADA Systems 
 

2.1.1 Overview 
 

Computerised control systems are used to manage a large number of industrial processes. The 

diversity of purposes of industrial processes implies that the implementation of industrial 

control systems is also diverse.  A system whose assets are highly distributed geographically 

is frequently referred to as a SCADA system. These systems can be relatively simple, such as 

one that monitors environmental conditions of a small office building, or very complex, such 

as a system that monitors all the activity in a nuclear power plant. 

A SCADA system consist of a number of remote terminal units (RTUs) and/or 

Programmable Logic Controllers (PLCs), and the central host and the operator terminals. The 

RTUs collect field data and are connected back to a master station via a communication 

system (Bently Systems, Inc, 2004).  For example, a SCADA can collect information 

regarding a leak on a pipe at the plant site, transfer the data about the leak back to a central 

site, then alert the master station that a leak has occurred. The collected data is normally real-

time and it allows for the optimization of the operation of the plant and process. The master 

station displays the acquired data and also allows an operator to perform remote control tasks 

(Bently Systems, Inc, 2004). 

In their early days, SCADA systems made use of Public Switched Network (PSN) for 

monitoring purposes. Today many systems are monitored using the infrastructure of the 

corporate Local Area Network/Wide Area Network (WAN). Wireless technologies are now 

being widely deployed for purposes of monitoring (Daneels & Salter, 1999). 

 

2.1.2 Architecture  
 

Even though SCADA systems are used in a varied of scale and purpose, they usually are 

designed based on a similar architecture. It is important to recognise the fundamental 
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similarities in SCADA systems because that makes it possible for researchers to make use of 

general models of the class of all SCADA systems. The general model is composed of four 

major parts: the process to be controlled, the field devices (RTUs, PLCs) physically 

connected to it, the centralised control centre, and the network that connects the controller 

and field devices (Communication Technologies, Inc, 2004). The relationship between these 

components is shown in figure 1.  

 

 

Figure 1. Typical SCADA Architecture 

According to Communication Technologies Inc. (2004), a typical SCADA system consist of 

the following: 

 One or more field data interface devices, usually RTUs, or PLCs, which interface to 

field sensing devices and local control switchboxes and valve actuators 

 A communications system used to transfer data between field data interface devices 

and control units and the computers in the SCADA central host. 

 A central host computer server or servers 

 A collection of standard and/or custom software systems used to provide the SCADA 

central host and operator terminal application. The software is usually called Human 

Machine Interface (HMI). 
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Field devices can be considered as the “eyes and ears” of an SCADA system. For example, 

devices such as reservoir level meters, water flow meters, etc., can provide information that 

can inform an operator about the performance of a water distribution system. 

According to Communication Technologies Inc. (2004), before an automation or remote 

monitoring can be achieved, the information coming from and to the field devices must first 

be converted to a form that is compatible with the language of the SCADA system. RTUs 

provide this interface. The primary function of RTUs is to convert electronic signals received 

from field interface devices into the language used to transmit the data over a communication 

channel. This language is regarded as the communication protocol (Communication 

Technologies, Inc, 2004).  

The limited bandwidth of communication links between the SCADA central computer and 

the field devices requires the instructions for the automation or remote monitoring to be 

stored locally. Traditionally, such instructions are placed within the PLCs. In the past, the 

PLCs were physically separate from RTUs. Modern PLCs are directly connected to field 

devices and they have programmed intelligence in the form of logical procedures that will be 

executed in the event of certain field conditions (Communication Technologies, Inc, 2004). 

Daneels and Salter (1999) mentioned that the origin of PLCs is in the automation industry 

and they were often used in manufacturing and process plant applications. In these 

applications, there was no great need to connect PLCs to communication channels. This was 

because PLCs were only required to replace traditional relay logic systems or pneumatic 

controllers (Daneels & Salter, 1999). 

Communication Technologies (2004) stated that as PLCs became used more often to replace 

relay switching logic control systems, telemetry was used a lot with PLCs at the remote sites. 

According to Communication Technologies (200), it then became desirable to influence the 

program within the PLC through the use of a remote signal. Communication Technologies 

(2004) mentioned that this is in effect the “Supervisory Control” part of the SCADA 

acronym. 
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Figure 2. Typical SCADA system (Communication Technologies, Inc, 2004) 

The Operator Workstation provides the interface to the human operators of the system. This 

software component is called the Human Machine Interface (HMI) and allows the operators 

to see an aggregated view of the state of the process and provides the means to send control 

commands to the field devices (Figure 1) in order to maintain correct operation. However, 

software of some form pervades all levels of a SCADA system (Communication 

Technologies, Inc, 2004). Depending on the size and nature of the SCADA application, 

software can be a significant cost item when developing, maintaining, expanding a SCADA 

system. According to Communication Technologies Inc. (2004), when software is well 

defined, designed, written, checked, and tested, a successful SCADA system will likely be 

produced. If there are poor performances in any of these project phases, a SCADA project 

can very easily fail. 

A lot of SCADA systems make use of commercial proprietary software upon which the 

SCADA system is developed. The proprietary software is often configured for a specific 

hardware platform and may not interface with the software or hardware produced by 

competing vendors (Communication Technologies, Inc, 2004). A wide range of commercial 

off-the-shelf (COTS) software products are also available, some of which may suit the 

required application. Communication Technologies Inc. (2004) mentioned that COTS 

software is more flexible, and will interface with different types of hardware and software. 

For this research, a free version of COTS software is used. 
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The role of the communication network in figure 2 is to provide the means by which data can 

be transferred between the central host computer servers and the field devices. The 

communication network refers to the equipment needed to transfer data to and from different 

sites. The medium used can be either telephone or radio (Communication Technologies, Inc, 

2004). 

In a factory setting, the use of cable is usually implemented. However, this will not be 

practical for systems that cover large geographical areas. This is because of the cost of cables, 

conduits and the extensive labour in installing them. As a result, an economic solution for 

systems with large coverage is the use of telephone lines (i.e., leased or dial-up). According 

to Communication Technologies Inc. (2004), systems that require on-line connection with the 

remote stations can be covered by leased line. This is costly because one telephone line will 

be required per site. Dial-up can be used on systems that require updates at regular intervals. 

This can be achieved by using ordinary telephone lines. The host can dial a particular number 

of a remote site to get the readings and send commands (Communication Technologies, Inc, 

2004). 

However, remote sites are usually not accessible by telephone lines. Therefore, the use of 

radio offers an economical solution. Daneels and Salter (1999) mentioned that radio modems 

are used to connect the remote sites to the host. An on-line operation can also be 

implemented on the radio systems. A radio repeater can be used for locations where a direct 

radio link cannot be established. 

Communication Technologies Inc. (2004) stated that historically, SCADA networks have 

been dedicated networks. However, according to Communication Technologies Inc. (2004), 

the increase in deployment of office LANs and WANs as a solution for interoffice computer 

networking, introduced the possibility to integrate SCADA LANs into everyday office 

computer networks. 

One advantage of this arrangement is that there is no need to invest in a separate computer 

network for SCADA operator terminals. In addition, it also provides an easy path to integrate 

SCADA data with existing office applications such as spreadsheets, work management 

systems, etc. (Communication Technologies, Inc, 2004). 

The master station shown in figure 2 is most often a single computer or a network of 

computer servers that provide a man-machine operator to the SCADA system. The role of the 

computers is to process the information received from and sent to the RTU/PLC sites and 

present it to human operators in a form that the operators can work with. Operator terminals 

are connected to the central host computer by LAN/WAN so that the viewing screens and 

associated data can be displayed for the operators (Communication Technologies, Inc, 2004). 

Historically, SCADA vendors offered proprietary hardware, operating systems, and software 

that was largely incompatible with other vendors’ SCADA systems. Daneels and Salter 
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(1999) mentioned that expanding the system required further contract with the original 

SCADA vendor. 

However, the increased use of the personal computer imply that computer networking is 

commonplace in the office and therefore SCADA systems are now available that can network 

with office-based personal computers. Many modern SCADA systems can reside on 

computer servers that are identical to those servers and computers used for traditional office 

applications (Communication Technologies, Inc, 2004). 

 

2.1.3 Security Vulnerabilities 
 

The use of open protocols and standard devices and the connection to public network have 

made SCADA systems a major target of cyber-attacks. However, compared to common IT 

systems, attacks on the SCADA systems could have serious consequences, such as 

countrywide electricity blackout, crashing of stock markets (which will lead to significant 

financial impacts) and environmental damages (Wang Chunlei, et al., 2010). 

As discussed in the previous subsection, a SCADA system is composed of multiple 

components. According to InfoSec Institute (2013), attackers could target each of these 

components in order to compromise a controlled process.  

There are reported cases of attacks and potential threats on SCADA systems worldwide. For 

example, the “Aurora Generator Test” (Meserve, 2007) conducted in March 2007 simulated a 

remote cyber-attack on a generator control station which resulted in the partial destruction of 

a diesel-electric generator. Another example is the attempted distributed denial of service 

(DDoS) attack on an Israeli power plant (Wang Chunlei, et al., 2010).  

According to Chikuni and Dondo (2007), these attacks are not unique to SCADA systems as 

they can affect all networked computers regardless of where they are deployed. What makes 

the SCADA systems unique is that they are highly customised and most of them do not have 

the same configuration and functionality. As a result, it requires specific and detailed 

knowledge in order to attack SCADA systems (Chikuni & Dondo, 2007). 

Similarly, the vulnerabilities faced by regular computer systems hardware can also affect 

SCADA systems. These vulnerabilities include interruption, interception, and eavesdropping. 

Also, the communication links between SCADA hardware devices are susceptible to 

vulnerabilities faced by regular computers (Chikuni & Dondo, 2007). 

Wang Chunlei, et al. (2010) reported that the communication links through which SCADA 

information travels is exposed and in most cases the messages are not encrypted. This 

vulnerability may result in data interception, regardless of the use of proprietary protocols.  

According to Wang Chunlei et al (2010), this kind of hardware vulnerability can be stopped 

by putting a strong security policy in place. The use of encryption on the communication 

links can help to reduce the risk of interception and modification of SCADA data (Wang 

Chunlei, et al., 2010). 
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Besides hardware vulnerabilities, SCADA system are also susceptible to software 

vulnerabilities. Chikuni and Dondo (2007) mentioned that out of all possible attacks on 

software, the ones that would cause the most damage to the SCADA system are those related 

to software modification. These kind of attacks modify software of the attacked host to either 

make the host fail or perform unintended tasks. Bugs are also very serious form of software 

vulnerability because if not fixed in time, hackers with very little skills can take advantage of 

publicised vulnerabilities to launch attacks on the SCADA system (Chikuni & Dondo, 2007). 

According to Chikuni and Dondo (2007), these attacks can be prevented in a similar manner 

as on regular computer systems. However, in the cases of SCADA systems stricter controls 

such as configuration management systems to control software access can reduce the risk of 

software modification, deletion, and theft. 

Regardless of the risks associated with software and hardware vulnerabilities, SCADA data 

has more value to an attacker than the software and hardware (Chikuni & Dondo, 2007). As 

mentioned by Chikuni and Dondo (2007), the control data from SCADA can be used by an 

attacker to the detriment of the utility if not handled with caution. SCADA data can also be 

stolen for sabotage reasons or for use by competitors. One method of safeguarding data 

integrity is to encrypt vital data (Chikuni & Dondo, 2007). 

Although the vulnerabilities discussed above are associated with cyber-attacks via IP 

networks, there are reported cases of attacks via serial communication products. According to 

Zetter (2013), researchers have mentioned that breaching a power system through serial 

communication devices can actually be easier than attacking though the IP network since it 

does not require bypassing layers of firewalls. 

Zetter (2013) mentioned that researchers, Chris Sistrunk and Adam Crain, found 

vulnerabilities in the products of more than 20 vendors. The vulnerabilities include some that 

would allow an attacker to crash or send a master server into an infinite loop, preventing 

operators from monitoring or controlling operations (Zetter, 2013). According to Zetter 

(2013), the vulnerabilities were found in devices that are used for serial and network 

communications between servers and substations. 

According to Zetter (2013), an intruder could exploit the vulnerabilities by gaining physical 

access to a substation or by breaching the wireless radio network over which the 

communication passes to the server. Once an intruder has gained access to the network, they 

can send malformed message to the server to exploit the weakness. 

As mentioned by Zetter (2013), in light of these developments, the ICS-CERT published a 

number of advisories about the discovered vulnerabilities, and some vendors have distributed 

patches for nine of the new vulnerabilities, but the rest remain unpatched so far. Zetter (2013) 

quoted Chris Sistrunk saying that many utilities have not applied the patches because they are 

not aware of the serious nature of the vulnerabilities. 

According to Zetter (2013), the exploited systems make use of a protocol for serial 

communications that is used in almost all electrical utilities in the United States and Canada 

to transport communication between servers which are located in data centres and field 

devices such as PLCs and RTUs. This protocol is called DNP3 (Zetter, 2013). Generally, 

electric utilities comprise of a data centre with two or three servers that can each monitor and 

communicate with a lot of substations, depending on the size of the utility (Zetter, 2013). 



12 
 

As mentioned earlier about the purpose of the PLCs and RTUs, intruders can obscure 

operators to the conditions in the field by causing the server to crash or enter an infinite look. 

Operators might not initially realise this because a crashed server in the data centre does not 

always register to operators who work in other locations (Zetter, 2013). Because a lot of 

utilities make use of master servers for security purposes to control alarm systems, crashing 

the servers would potentially disable alarms as well (Zetter, 2013). 

Out of the 25 vulnerabilities discovered by Chris Sistrunk and Adam Crain, Zetter (2013) 

mentioned that the most serious one was the buffer overrun. This vulnerability can allow an 

intruder to inject arbitrary code into the system and own the server (Zetter, 2013).  

Zetter (2013) mentioned that the problem does not lie with the standard for DNP3, but that 

the vulnerabilities are introduced in the insecure ways that vendors have implemented it. 

According to Zetter (2013), separate security standards set by the North American Electric 

Reliability Corporation for how to secure power systems focus only on IP communications. 

This worsen the problem because the standards overlook the real vulnerabilities that serial 

communications also present (Zetter, 2013). 

It was after the occurrence of some of the events discussed above that many security firms 

have started designing solutions to address security problems of SCADA systems.  InfoSec 

Institute (2013) mentioned that the major challenge for governments is the inclusion of 

protection for these critical components in their cyber strategies. According to InfoSec 

Institute (2013), audits that were carried out by several governments illustrated the lack of 

security mechanisms for the many SCADA systems located all over the world. 

According to InfoSec Institute (2013), the most cost-effective approach to securing SCADA 

systems is to establish and follow a risk management framework. The North American 

Electric Reliability Corporation (NERC) published Cyber Security Standards that highlight 

cyber security lifecycle. The NERC process has three stages: identifying risks, implementing 

controls/mitigating risks; and maintaining acceptable levels through evaluation and 

monitoring (NERC, 2005). 

In addition to the vulnerabilities mentioned above, there are other sources of security 

vulnerabilities associated with the web services of SCADA systems. These can be uncovered 

by performing penetration testing on the SCADA system. Penetration testing is discussed in 

the next subsection.  

 

2.2 Penetration Testing 
 

2.2.1 Overview 
 

Modern SCADA systems provide better access to plant information by means of web 

services. Web services provide a strategic mean for data exchange because of their simple 

interface. However, Antunes and Vieira (2009) noted that since web services are widely 
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exposed, the existence of a security vulnerability in these services can be uncovered and 

exploited by hackers. 

Most web services make use of relational database for persistent storage. Thus, security 

vulnerabilities such as SQL Injection are particularly relevant to web services of SCADA 

systems. According to Antunes and Vieira (2009), SQL Injection vulnerabilities are related 

directly to structure of the code of web services. SQL Injection attacks change SQL 

commands that are sent to the database. Improperly validated input parameters make it 

possible for SQL Injection (Antunes & Vieira, 2009). 

Penetration testing is one of the well-known techniques used by web service developers to 

discover security vulnerabilities in their code. Antunes and Vieira (2009) mentioned that 

penetration testing takes a “black-box” approach in the sense that it stresses the application 

from an attacker’s point of view. In other words, penetration testing discovers vulnerabilities 

by simulating attacks from hackers on a target application (Antunes & Vieira, 2009). 

Antunes and Vieira (2009) mentioned that unlike other techniques, penetration testing tools 

provide an automatic way to search for vulnerabilities. Therefore, these tools avoid the 

repetitive and tedious task of carrying out tests manually for each vulnerability type (Antunes 

& Vieira, 2009). According to Antunes and Vieira (2009), these tools do not require access to 

the source code of the target application. Another reason that make penetration testing more 

famous for testing the security of web application is that it tests applications in context. This 

allows for the discovery of vulnerabilities that arise from specific configuration and 

environment issues (Halfond, et al., 2009). 

According to Halfond et al. (2009), penetration testing can be divided into three phases: 

information gathering, attack generation, and response analysis. During information 

gathering, testers aim to gain information about the target application. This can be achieved 

by using techniques such as automated scanning, web crawlers, and social engineering. The 

information gathered is then used, together with domain knowledge about possible 

vulnerabilities, to generate an attack during the attack generation phase. The generation of 

attacks can be automated by using commercial or open-source tools (Halfond, et al., 2009). 

Halfond et al. (2009) mentioned that under the response analysis phase, testers determine if 

an attack has succeeded, if so, testers then log information about the attack. The discovered 

vulnerabilities are then detailed in a report at the end of the penetration testing process. 

Developers can use this information to eliminate the vulnerabilities and improve the security 

of their software (Halfond, et al., 2009). 

 

2.2.2 Identifying Security Vulnerabilities 
 

Steps taken to identify vulnerability under penetration testing are similar to the steps that an 

unauthorized attacker may take. However, the attacker may choose to proceed more slowly to 

avoid detection. On the other hand, penetration testing can be slowed down so that the target 

company can learn where their detection threshold is and make improvements (Northcutt, et 

al., 2006). 
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The first step in a penetration test is scouting of the target network. During this step, the tester 

attempts to learn as much as possible about the target network. According to Northcutt et al. 

(2006), this normally starts with identifying publicly accessible services such as mail and web 

servers from their service banners. This is based on the knowledge that a lot of servers will 

report the Operating System they are running on, the version of software they are running, 

patches and modules that have been enabled, the current time, and perhaps even some 

internal information like an internal server name or IP address (Northcutt, et al., 2006). 

After scouting the target network, the penetration tester will then proceed to verify the 

gathered information. Although the tester does not have solid knowledge on what is running, 

he may have a pretty good idea. The collected information can be combined and then 

compared with known vulnerabilities, and then those vulnerabilities can be tested to see if the 

results support or contradict the prior information (Northcutt, et al., 2006). 

 

2.2.3 Why Perform Penetration Testing? 
 

There are different reasons for carrying out a penetration test. One of the main reasons is to 

find vulnerabilities and fix them before an attacker does. Another reason for performing a 

penetration test is to give the IT department at the target company a chance to respond to an 

attack (Northcutt, et al., 2006). 

Northcutt et al. (2006) mentioned that attackers are employing a variety of automated tools 

and launching network attacks looking for ways to penetrate systems. Penetration testing 

allows the IT department of a company to find holes in the system before somebody else 

does. In a sense, penetration testing provides IT management with a view of their network 

from a malicious point of view. 

 

2.2.4 Penetration Testing Tools 
 

There are a wide variety of tools that are used in penetration testing. According to Northcutt 

et al. (2006), there are two main types of penetration testing tools; reconnaissance or 

vulnerability testing tools and exploitation tools. However, Northcutt et al. (2006) noted that 

penetration testing is more directly tied to the exploitation tools and the initial scanning and 

reconnaissance is often done using less intrusive tools. The difference between these two 

types is not clear cut. For this research, 3 different tools were used. The tools were chosen in 

line with the objectives of this study as outlined in section 3. The tools used for this research 

are: Metasploit, Nessus, and Nmap. 

Metasploit is a “framework” for cyber exploitation. As a framework, it eases the effort to 

exploit known vulnerabilities in networks, operating systems and applications, and to develop 

new exploits for new or unknown vulnerabilities (RAPID7, 2013). Metasploit provides attack 

libraries attack payloads that can be put together in a modular manner. The main purpose of 

Metasploit is to get to a command prompt on the target computer (RAPID7, 2013). Once a 
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security tester has gotten to a command-line, it is quite possible that the target computer will 

be under his total in a short time. The version of Metasploit used for this research is the trial 

version of the Metasploit Pro. 

Nessus is a tool designed to automate the testing and discovery of known security problems. 

According to Tenable Network Security (2013), Nessus has a library of vulnerabilities 

together with tests to identify those vulnerabilities. In a lot of cases, Nessus depends on the 

responses from the target computer instead of actually trying to exploit the system. The 

version of Nessus used for this research is the trial version of Nessus 5.2. 

Similar to Nessus, Nmap is a port scanning tool. Port scanning is usually a part of the 

reconnaissance phase of a penetration test or an attack (Northcutt, et al., 2006). Sometimes 

attackers will limit their testing to a few ports while other times they will scan all available 

ports. According to Northcutt et al. (2006), in order for a vulnerability scanner to do a 

thorough job, it should scan all ports. An actual attacker may choose to not scan all ports if he 

finds a vulnerability that can be exploited because of the “noise” (excess traffic) a port 

scanner creates (NMAP.ORG, 2009). 

Another capability of Nmap is its ability to determine the operating system of the target 

computer. Northcutt et al. (2006) mentioned that different networking implementations will 

respond differently to different network packets. Nmap maintains a type of database and will 

match the responses to make a guess at what type of operating system the target computer is 

running (NMAP.ORG, 2009). According to Northcutt et al. (2006), this OS detection is not 

perfectly accurate but it can help the attacker tailor his attack strategy, especially when 

coupled with other pieces of information. The free version of Nmap was used for this 

research. 
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3 Research Hypothesis 
 

This section presents the research hypothesis addressed in this research report.  

 

3.1 Hypothesis 
 

The Vulnerability Analysis of Energy Delivery Control Systems report, prepared by Idaho 

National Laboratory (2011), describes the common vulnerabilities on energy sector control 

systems, and provides recommendations for vendors and owners of those systems to identify 

and reduce those risks.  

The report presents vulnerabilities at a high level to provide awareness of the common 

SCADA security vulnerability areas without divulging product-specific information. 

Vulnerabilities that could be used as part of an attack against an SCADA are consolidated 

into generic common SCADA vulnerabilities. The vulnerabilities described in the report by 

Idaho National Laboratory (2011) were routinely discovered in NSTB (National SCADA 

Test Bed) assessments using a variety of typical attack methods to manipulate or disrupt 

system operations (Idaho National Laboratory, 2011). 

The 10 most significant cyber security risks identified by Idaho National Laboratory (2011) 

during NSTB software and production SCADA assessments are: 

1. Unpatched published known vulnerabilities 

2. Web Human-Machine Interface (HMI) vulnerabilities 

3. Use of vulnerable remote display protocols 

4. Improper access control (authorization) 

5. Improper authentication 

6. Buffer overflows in SCADA services 

7. SCADA data and command message manipulation and injection 

8. SQL injection 
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9. Use of standard IT protocols with clear-text authentication 

10. Unprotected transport of application credentials 

The common vulnerabilities in the report were found on two or more unique SCADA 

configurations. Idaho National Laboratory (2011) mentioned that even though SCADA 

functions, designs, and configurations vary among vendors, versions, and installations, their 

high-level vulnerabilities and defensive recommendations are similar. Therefore, the 

following hypothesis arises. 

Hypothesis: Penetration testing on a given SCADA, system which was not part of the   

research covered by Idaho National Laboratory (2011), will reveal vulnerabilities which are 

classified as common by the Idaho National Laboratory (2011) report, as well as other 

uncommon vulnerabilities. 

4 Implementation  
 

This section describes the implementation of a virtual plant for experimental purpose. The 

design tools used in the implementation are described here.  

 

4.1 Overview 
 

Design of the virtual plant environment consist of three aspects: SCADA software, OPC 

Server, and Simulated Process Model. The SCADA software and the Simulated Process 

model are linked together using an OPC interface. The conceptual design of the plant 

environment is illustrated in figure 3. This setup and implementation were adapted from 

Eltayeb (2009). The only difference is in the choice of the HMI software. 
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Figure 3. Conceptual Design of the virtual plant environment (Eltayeb, 

2009). 

An OLE (Object Linking and Embedding) for Process Control (OPC) is a standard 

mechanism that enables the communication and data exchanging between various types of 

devices and control applications. An OPC consist of an OPC Server and an OPC Client 

(Eltayeb, 2009). 

An OPC Server is a software application that acts as an API (Application Programming 

Interface) or protocol converter. It allows Windows programs to communicate with industrial 

hardware devices such as PLC, or any data source such as database or User Interface, and 

translate the data into the OPC Client (Eltayeb, 2009). 

An OPC Client is a software application used to access (for reading and/or writing) 

information provided by the OPC Server through the OPC standard. For this research, the 

OPC interface was implemented using KEPServerEX software. The other tools used in the 

design are Simulink, OPC Toolbox and SCADA software (Eltayeb, 2009). 

 

4.2 Simulink 
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Simulink is a commercial tool for modelling, simulating and analysing multi-domain 

dynamic systems. Simulink is developed by the MathWorks, and comes as a package of 

MATLAB. Simulink offers integration with the rest of the MATLAB environment and can 

either drive MATLAB or be scripted from it. 

 

4.3 OPC Toolbox 
 

OPC Toolbox software is a collection of functions that extend the capability of the MATLAB 

environment, and blocks that extend the Simulink simulation environment. Using OPC 

Toolbox functions and blocks, it is possible to acquire live OPC data directly into MATLAB 

and Simulink, and write data directly to the OPC Server from MATLAB and Simulink. The 

OPC Toolbox block library includes the capability of running Simulink models in pseudo real 

time, by slowing the simulation to match the system clock. Using Simulink and the OPC 

Toolbox block library, it is possible to prototype control systems, provide plant simulators, 

and perform optimization and tuning tasks (Eltayeb, 2009). 

 

4.4 KepServerEx 
 

KEPServerEx is a 32-bit Windows application that provides a means of bringing data and 

information from a wide range of industrial devices and systems into client applications on 

Windows PC. In the industrial market, it has usually come to mean the sharing of 

manufacturing or production data between a variety of applications ranging from human 

machine interface software and data historians, to large MEX and ERP applications (Eltayeb, 

2009). Figure 4 illustrate the tools used in the design. 



20 
 

 

Figure 4. Tools used in the design (Eltayeb, 2009). 

This is the design used by Eltayeb (2009). For this research, the HMI used was the free 

version of ClearSCADA developed by Schneider Electric. According to Schneider Electric 

(2012), this free version has the same capabilities as the paid version, the difference being 

that the free version is only limited to 50 objects in a project. 
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5 Experimental Setup and Results 
 

This section presents the experimental setup designed to test the hypothesis, and the results 

collected from the experiments.  

 

5.1 Overview 
 

This research was carried out in terms of experiments that involve simulations. Three 

computers were: one running a SCADA system, one simulating a plant, and the other was 

used to run penetration tests targeted at the SCADA system. The SCADA system and the 

virtual plant were on the same network. In one experiment the attacker PC was on the same 

network and in the other experiment it was on a different network. This setup demonstrate the 

validity of the tools under varying attack vectors. Figures 5 and 6 illustrate the setup. 

 

5.2 Scenario One 
 

This scenario is depicted in figure 5.  Under this scenario, the attacker launches the attack on 

the SCADA system from within the company network.  

 

Figure 5. Scenario One: Attack from within the company network. 

Table 1 presents the results collected after running Nmap targeting the computer running the 

SCADA system. Appendix A describes the commands used on Nmap to obtain these results, 

and screenshots highlighting the results outlined there.  
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Table 1. Nmap Results 

PORT STATE SERVICE 

23/tcp open telnet 

513/tcp open tcpwrapped 

514/tcp open tcpwrapped 

Even though Nmap found three open ports, it was not able to identify the operating system of 

the computer running the SCADA system after three unsuccessful tries. 

Table 2 presents results collected after running Nessus targeting the computer running the 

SCADA system. The commands and screenshots associated with these results can be found in 

Appendix B.  

Table 2. Nessus Results 

Vulnerability Risk Factor 

Distributed Denial of Service High 

Information Disclosure Medium 

SQL Injection High 

SQL pg_dump Medium 

SMB Signing Disabled Medium 

SSL Certificate cannot be Trusted Medium 

SSL Self-Signed Certificate Medium 

SSL Certificate with Wrong Hostname Medium 

SSL RC4 Cipher Suites Supported Low 

 

Table 3 presents results collected after running Metasploit targeting the computer running the 

SCADA system. The commands used and screenshots associated with these results are 

presented in Appendix C. 

Table 3. Metasploit Results 

Vulnerability Risk Factor 

Man-in-The-Middle attack High 

Weak Cryptography Medium 

Insecure renegotiation of TLS/SSL Medium 

IP Forwarding Medium 

 
 

 

 

 

 



23 
 

5.3 Scenario Two 
 

This scenario is depicted in figure 5.  Under this scenario, the attacker launches the attack on 

the SCADA system from outside the company network.  

 

Figure 5. Scenario Two: Attack from outside the company network. 

To model this scenario, three computers were used. The computers were all on different 

networks. This was done in order to closely model real world environment where, for 

example, a company has a plant in a remote location and controls and monitors that plant 

using wide area network. Also, since the attacker will launch attacks from a remote location, 

this scenario depicts the real world cases in which attackers can launch attacks on SCADA 

systems in foreign countries. 

Table 3 presents the results collected after running Nmap targeting the computer running the 

SCADA system. Appendix A describes the commands used on Nmap to obtain these results, 

and screenshots highlighting the results outlined there. 

Table 4. Nmap Results for Scenario 2 

PORT STATE SERVICE 

23/tcp open telnet 

513/tcp open tcpwrapped 

514/tcp open tcpwrapped 

 

Unlike in scenario 1, here Nmap was able to identify the operating system of the computer 

running the SCADA system. 

Table 5 presents results collected after running Nessus targeting the computer running the 

SCADA system. The commands and screenshots associated with these results can be found in 

Appendix B.  
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Table 5. Nessus Results for Scenario 2 

Vulnerability Risk Factor 

DNS Server Zone Transfer Information 

Disclosure 

High 

mDNS Detection Medium  

DNS Server Cache Snooping Remote 

Information Disclosure 

High 

Open SSL Vulnerabilities Medium  

 

Table 3 presents results collected after running Metasploit targeting the computer running the 

SCADA system. The commands used and screenshots associated with these results are 

presented in Appendix C. 

Table 6. Metasploit Results 

Vulnerability Risk Factor 

Man-in-The-Middle attack High 

Microsoft Windows SMB LanMan Pipe 

Server Listing Disclosure 

Medium 

Microsoft Windows NTLMSSP 

Authentication Request Remote Network 

Name Disclosure 

Medium 

Network Time Protocol (NTP) Server 

Detection 

Low 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

6 Discussions  
 

Results collected from the previous sections are discussed here. 

 

6.1 Scenario One 
 

In the first run of experiments, Nmap was ran, targeting the computer running the SCADA 

system. Nmap is a port scanning tool and cannot exploit the vulnerabilities of the ports. 

During the run, Nmap identified open ports on the host which could be used by an attacker to 

gain improper access to the SCADA system and be able to manipulate SCADA data and 

command messages.  

One of the open port was the one associated with telnet service. Telnet is a protocol that 

allows one computer to execute a text terminal on another. According to Falliere et al. (2011), 

Telnet is not encrypted; passwords and all other data will be transmitted as clear text. 

However, Nmap failed to identify the operating system of the host running the SCADA 

system. A possible explanation can be that, the host is running Microsoft’s Windows 8 and 

the version of Nmap used did not have updated functionalities that can identify if the 

operating system is Microsoft’s Windows 8. 

The second run of experiments was conducted by using Nessus to target the computer 

running the SCADA system. The Nessus tool gives a detailed report on the vulnerabilities 

discovered and the effect of those vulnerabilities on the system. The first vulnerability 

reported by Nessus was the denial of service vulnerability. Nessus report revealed that the 

version of Apache HTTP Server running on the target computer was affected by a denial of 

service (DoS) vulnerability. By making a series of HTTP request with overlapping ranges in 

the Range or Request-Range request headers can result in memory and CPU exhaustion 

(Tenable Network Security, 2011). A remote, unauthenticated attacker could exploit this to 

make the system unresponsive. Tenable Network Security (2011) mentioned that exploit code 

is publicly available and attacks have reportedly been observed.  

The other vulnerability associated with the Apache HTTP server was the information 

disclosure vulnerability. Nessus report revealed that sending a request with HTTP headers 

long enough to exceed the server limit caused the web server to respond with an HTTP 400. 

By default, the offending HTTP header and value are displayed on the 400 error page. When 

used in conjunction with other attacks (e.g., cross-site scripting), this could result in the 

compromise of httpOnly cookies (Tenable Network Security, 2011). 

These vulnerabilities demonstrate the vulnerabilities associated with web services. Since 

modern SCADA systems make use of web services, they are susceptible to these 

vulnerabilities. The other vulnerability discovered by Nessus is associated with SQL 

injection. The scan discovered that PostgreSQL incorrectly checked permissions on functions 

called by a trigger. An attacker could attach a trigger to a table they owned and possibility 
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escalate privileges (Tenable Network Security, 2013). The scan also revealed that 

PostgreSQL incorrectly truncated SSL certificate name checks to 32 characters. According to 

Tenable Network Security (2013), if a host name was exactly 32 characters, this issue could 

be exploited by an attacker to spoof the SSL certificate.  

Another vulnerability associated with the SSL certificate is that the certificate did not have a 

signature from a known public certificate authority. According to Tenable Network Security 

(2013), this situation can occur in three different ways, each of which results in a break in the 

chain below which certificates cannot be trusted. 

First, the top of the certificate chain sent by the server might not be descended from a known 

public certificate authority. This can occur either when the top of the chain is an 

unrecognized, self-signed certificate, or when intermediate certificates are missing that would 

connect the top of the certificate chain to a known public certificate authority (Tenable 

Network Security, 2013). 

Second, the certificate chain may contain a certificate that is not valid at the time of the scan. 

This can occur either when the scan occurs before one of the certificate’s notBefore dates, or 

after one of the certificate’s notAfter dates (Tenable Network Security, 2013). 

Third, the certificate chain may contain a signature that either didn’t match the certificate’s 

information, or could not be verified. As mentioned by Tenable Network Security (2013), bad 

signatures can be fixed by getting the certificate with the bad signature to be reassigned by its 

issuer. Furthermore, Tenable Network Security (2013) stated that signatures that could not be 

verified are the result of the certificate’s issuer using a signing algorithm that Nessus either 

does not support or does not recognise. 

Tenable Network Security (2013) mentioned that if the remote host is a public host in 

production, any break in the chain nullifies the use of SSL as anyone could establish a man-

in-the-middle attack against the remote host. 

Still on SSL; the Nessus scan revealed that the host computer supports the use of RC4 in one 

or more cipher suites. According to Tenable Network Security (2013), the RC4 cipher is 

flawed in its generation of a pseudo-random stream of bytes so that a wide variety of small 

biases are introduced into the stream, decreasing its randomness. Furthermore, Tenable 

Network Security (2013) noted that if plaintext is repeatedly encrypted (e.g. HTTP cookies), 

and an attacker is able to obtain many (i.e. tens of millions) cipher texts, the attacker may be 

able to derive the plaintext. 

Another vulnerabilities associated with SSL certificate was the certificate chain was not 

signed by a recognized certificate authority. Tenable Network Security (2013) reported that 

this nullifies the use of SSL as anyone could establish a man-in-the-middle attack against the 

host. However, Tenable Network Security (2013) noted that Nessus does not check for 

certificate chains that end in a certificate that is not self-signed, but is signed by an 

unrecognised certificate authority. 

Lastly, the scan discovered that PostgreSQL pg_dump utility incorrectly filtered line breaks 

in object names. An attacker could create object names that execute arbitrary SQL commands 

when a dump script is reloaded (Tenable Network Security, 2013). 
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The third run of experiments was conducted by using Metasploit to target the computer 

running the SCADA system. The first vulnerability discovered was the Microsoft Windows 

Remote Desktop Protocol Server man-in-the-middle attack. The report from Metasploit 

penetration testing stated that the RDP client makes no effort to validate the identity of the 

server when setting up encryption. An attacker with the ability to intercept traffic from the 

RDP server can establish encryption with the client and server without being detected. A 

MiTM attack of this nature would allow the attacker to obtain any sensitive information 

transmitted, including authentication credentials.  

According to Rouse (2007), this flaw exists because the RDP server stores a hardcoded RSA 

private key in the mstlsapi.dll library. Any local user with access to this file (on any Windows 

system) can retrieve the key and use it for this attack (Rouse, 2007). This vulnerability can 

easily be solved by forcing the use of SSL as a transport layer for the RDP service, and 

allowing connections only from computers running Remote Desktop with Network Level 

Authentication. 

Metasploit also revealed that the computer running the SCADA system uses weak 

cryptography. Using weak cryptography may allow an attacker to eavesdrop on the 

communications more easily and obtain screenshots and/or keystrokes. Another vulnerability 

discovered by Metasploit was that the host computer allows insecure renegotiation of 

TLS/SSL connections. Although the host computer encrypts traffic using TLS/SSL but it 

allows a client to insecurely renegotiate the connection after the initial handshake. An 

unauthenticated, remote attacker may be able to leverage this issue to inject an arbitrary 

amount of plaintext into the beginning on the application protocol stream, which could 

facilitate man-in-the-middle attacks if the host computer assumes that the sessions before and 

after renegotiation are from the same ‘client’ and merges them at the application layer 

(Microsoft, 2010).  

Furthermore, it was discovered that the host computer does not limit the number of 

renegotiations for a single TLS/SSL connection. This vulnerability permits another computer 

to open several simultaneous connections with the host computer and repeatedly renegotiate 

them, possibly leading to a denial of service condition (IBM, 2012). 

Lastly, Metasploit discovered that the host computer had IP forwarding enabled. An attacker 

may use this vulnerability to route packets through the host and potentially bypass some 

firewalls/routers/NAC filtering. The simple solution for this vulnerability is to disable 

forwarding on the host computer. 
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6.2 Scenario Two 
 

As in scenario one, the results for Nmap were similar. This is because the same computer 

running the SCADA system was used. Although in this case Nmap successfully identified the 

Operating system of the host computer. The explanation here is that the Nmap version used 

under scenario one is different to the version used under scenario two. The latest version of 

Nmap was used for scenario two. 

The second run of simulations under scenario two involved Nessus. The vulnerabilities 

discovered differ from those in scenario one. The differences can be attributed to the 

differences in IT policies. Under scenario one, the experiments were conducted on the 

University network, while scenario two experiments involved home network and the 

University network. 

 The first vulnerability reported by Nessus was the DNS Server Zone Transfer Information 

Disclosure. The synopsis of this vulnerability is that the remote name server allows DNS 

zone transfers to be performed. According to Tenable Network Security (2011), a zone 

transfer allows a remote attacker to instantly populate a list of potential targets. This can be a 

problem because most companies usually use a naming convention that can give hints as to a 

server’s primary application. For instance, a company can name their servers 

proxy.example.com, payroll.example.com, etc. 

The next vulnerability discovered was the mDNS (Multicast Domain Name Server) 

Detection. This vulnerability allows an attacker to determine the mDNS protocol, by which 

the attacker can be able to uncover information from the remote host such as its hostname, 

and the list of services it is running (Tenable Network Security, 2011). 

Nessus also discovered that the remote DNS Server is vulnerable to cache snooping attacks. 

According to Tenable Network Security (20111), this vulnerability can allow a remote 

attacker to determine which domains have recently been resolved via this name server, and 

therefore which hosts have been recently visited. For instance, if an attacker was interested in 

whether a company uses any online services, they would be able to use this attack to build a 

statistical model regarding company usage of those online services. 

Attackers can use DNS cache snooping for other different reasons. One of those is to hijack a 

user’s session on a website that requires authentication (Grangeia, 2004). Websites that 

require authentication maintain a session between HTTP requests. Grangeia (2004) 

mentioned that a session ID is generated when the user first accesses the site, and then that ID 

is passed to the user via a HTTP cookie, which is sent on every HTTP request. According to 

Grangeia (2004), some poorly written session ID generators rely solely on the actual time of 

day to generate its “pseudo-random” part. Usually seconds to microseconds are used for part 

of the entropy (Grangeia, 2004).  

Thus, if an attacker knows exactly (by the second) when a user first accesses a given site can 

be helpful in predicting session ID’s in an attempt to hijack a user’s session. Cached DNS 

information can help in this matter (Grangeia, 2004). According to Grangeia (2004), an 

attacker can easily calculate the exact time when a user first accessed the site by subtracting 

the difference between the initial TTL set by the authoritative server and the cached TTL to 
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the local time. This can be achieved by snooping the DNS cache that the user is using for 

name resolutions (Grangeia, 2004).  

DNS cache snooping can also be used to locate users on the Internet through their IP, and 

track Email conversations, in order to know if two companies are exchanging emails 

(Grangeia, 2004).  

Lastly, the vulnerability discovered by Nessus was the OpenSSL vulnerability. It was 

discovered that the elliptic curve cryptography subsystem in OpenSSL did not properly 

implement curves over binary fields. Tenable Network Security (2011) mentioned that this 

could allow an attacker to determine private keys of a TLS server via multiple handshake 

attempts.  

The third run of experiments was conducted by using Metasploit to target the computer 

running the SCADA system. The first vulnerability discovered was the Microsoft Windows 

Remote Desktop Protocol Server man-in-the-middle attack. This vulnerability was also 

discovered in scenario one. 

The next vulnerability discovered by Metasploit was the Microsoft Windows SMB LanMan 

Pipe Server Listing Disclosure. This vulnerability makes it possible to obtain the browse list 

of the remote Windows system by sending a request to the LANMAN pipe. According to 

Microsoft (2010), the browse list is the list of the nearest Windows systems of the remote 

host. 

The next vulnerability was the Microsoft Windows NTLMSSP Authentication Request 

Remote Network Name Disclosure. This vulnerability makes it possible for the attacker to 

obtain the network name of the remote host. By sending an NTLMSSP authentication 

request, it is possible to obtain the name of the remote system and the name of its domain. 

The last vulnerability discovered by Metasploit was the Network Time Protocol (NTP) Server 

Detection. NTP server provides information about the current date and time of the remote 

system and may provide system information that could be used in an attack. 
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7 Recommendations 
 

This section brings forward recommendations for mitigating the vulnerabilities discovered by 

Nessus and Metasploit. The vulnerabilities covered here are those with high risk factor. The 

other vulnerabilities are not covered here because the strategies to mitigate are trivial, and in 

most cases can be fixed with clicking of buttons. 

 

7.1 Nessus Vulnerabilities 
 

7.1.1 Distributed denial-of-service 
 

Rouse (2013) defines a distributed denial-of-service (DDoS) attack as an attack in which a 

multitude of compromised systems attack a single target, thereby causing denial of service for 

users of the target system. Furthermore, the incoming flood of messages to the target system 

essentially forces it to shut down, thereby denying service to the system to legitimate users 

(Rouse, 2013). The aim here is to make the target system or network resource unavailable to 

its intended users by sending thousands of packets to the target system. 

During a typical DDoS attack, the attacker starts by exploiting a vulnerability in one 

computer system and making it the DDoS master. The attack master, also known as the 

botmaster, identifies and infects other vulnerable systems with malware. A computer under 

the control of an attacker is known as a zombie or bot. As mentioned by Rouse (2013), the 

attacker eventually instructs the controlled machines (botnet or a zombie army) to launch an 

attack against a specified target. 

According to Lambert (2013), DDoS can take multiple forms. There is a type of DDoS attack 

called Syn Attack. Under this attack, the attacker opens a TCP connection, the way one would 

normally connect to a website, but never finishes the initial handshake (Lambert, 2012). 

Basically, this leaves the server hanging. Similar to this attack is one Rouse (2013) calls 

network-centric attack. This attack overloads a service by using up bandwidth. 

Another form of DDoS is through the use of DNS. Lambert (2013) mentioned that a lot of 

network providers have their DNS servers configured to allow anyone to launch queries, even 

people that are not their customers. The fact that DNS uses UDP, which is a stateless 

protocol, plus the configuration of some DNS servers make a potent way to create a denial of 

service. According to Lambert (2013), the attacker need only find open DNS resolvers, craft 

a fake UDP packet that has a spoofed address, the one of the target site, and send it to the 

DNS server. 

While the request would be from the attacker, the server would think that the request came 

from the server, and as a result the server will send the reply to that location. So instead of 

having the actual botmaster conduct the attack, the only thing the target system will see is a 

bunch of DNS replies coming from many open resolvers, all around the internet (Lambert, 



31 
 

2012). This is a very scalable type of attack, according to Lambert (2013), because the 

attacker can send a single UDP packet to a DNS server asking for a full dump of certain 

domain, and receive a very large reply.  

Recently, Google Ideas (2013) announced a project called Digital Attack Map, which is a 

fascinating, interactive map that monitors DDoS attacks around the world. According to Groll 

(2013), Google hope that this effort will raise awareness about the problems associated with 

DDoS. The Digital Attack Map draws on data collected by the network security firm Arbor 

Networks. 

The result of this is a visualisation of what cyber-war looks like in real time. For example, 

Google Ideas (2013) provides a snapshot of the Digital Attack Map on the 27th of August 

2013, when a portion of Chinese .cn domains were knocked offline. 

According to Groll (2013), the event on the 27th of August was described by the Chinese 

authorities as the largest cyber-attack in the country’s history. Although the Chinese 

authorities did not point any fingers at any particular party, a snapshot of the Digital Attack 

Map shows where the attacks originated. 

On the Digital Attack Map, the attacks whose origin and destination are both known are 

depicted as an arc between the two countries, with the data travelling from source to victim 

(Groll, 2013). Attacks whose origins are unknown but whose victims are clear are depicted 

on the map as downward flow into the victim country (Groll, 2013). 

From the Digital Attack Map, the attack that took out the .cn domain came from both the 

United States and the Netherlands. However, Groll (2013) mentioned that there are several 

ways for attackers to obscure their location and make it appear as if attacks are originating in 

different countries. 

Another interesting event was depicted on the Digital Attack Map on the 25th of June 2013, 

which marked the 63rd anniversary of the start of the Korean War. On this day, South Korea 

was struck by a cyber-attack by the DarkSeoul gang (Groll, 2013). According to Groll 

(2013), the DarkSeoul gang has been linked to North Korea and is believed to work on its 

behalf. The attack by the DarkSeoul took down major media and government websites. This 

attack represented a high-profile flare-up in ongoing tensions in the Korean Peninsula (Groll, 

2013). 

The most striking thing about the attack that targeted South Korea is that it was was able to 

take down a series of prominent websites while using relatively little bandwidth (Groll, 

2013). 

The Digital Attack Map also captured part of a massive six-day attack on the United States 

(Groll, 2013). During this attack hackers targeted US banks, among other things. This attack 

is notable for the incredible bandwidth used, which was far larger than that in a typical attack 

(Groll, 2013). 

There are different forms of DDoS attacks. Therefore, it is important to consider these 

different forms when building a defence against DDoS attacks. According to Lambert (2012), 

the easiest, although costly, way of defence is to buy more bandwidth. DDoS is a game of 

capacity. For example if there are 10,000 systems sending 1 Mbps to one target system, that 

means that the target system is getting 10 Gb of data every second. Clearly this is a lot of 
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traffic. In this case, the same rules for normal redundancy apply. To achieve a good load 

balancing, multiple servers must be spread around various datacentres. This will help with the 

load and hopefully the pipes will be large enough to handle all the traffic (Lambert, 2012). 

However, modern DDoS attacks are getting large, and quite often can be much bigger than 

what finances will allow in terms of bandwidth. Therefore, the method of increasing 

bandwidth might not be an effective one (Lambert, 2012). 

One critical piece of network that administrators can look to in order to mitigate DDoS 

attacks is the DNS server. According to Lambert (2012), it is not a good idea to leave the 

DNS server as an open resolver, and it should be locked down in order to save the 

organisation from being used as part of an attack. The question that arises, then, is that what 

if the DNS server came under attack? Lambert (2012) mentioned that if no one can connect to 

the DNS server of the organisation, then that is just as bad as a DDoS attack. Even though 

most domain registrations are done with two DNS servers, quite often that may still not be 

enough (Lambert, 2012). 

According to Lambert (2012), the DNS should be protected behind the same type of load 

balancing as for web and other resources. Also, there are companies that provide redundant 

DNS that other companies can use. For example, many companies use content delivery 

networks to serve files to customers in a distributed way, which is a great way to also protect 

them against DDoS attacks. 

For companies that serve their own data and manage their own networks, Lambert (2012) 

mentioned that there are a lot of things those companies may do to protect themselves at the 

network layer. Firstly, such companies should ensure that their routers drop junk packets, and 

they should set up good firewalls. For example, in cases where the services running on 

company systems are not going to be asking random DNS servers for queries, there is no 

reason to allow UDP port 53 packets heading to the company servers. Companies should 

block everything they can at their network border, where they have the largest pipe, or they 

should get their upstream providers to block them for them (Lambert, 2012). 

Lambert (2012) mentioned that there is a lot of Internet providers that gives their customers 

the ability to have unwanted traffic blocked. In a similar way, there are many ways to protect 

company network from Syn attacks, by increasing TCP backlog, reducing the Syn-Received 

timer, or using Syn caches. 

The other case to consider when building defence against DDoS attacks is the case in which 

the attack does reach the target system. For example, most modern services use many 

dynamic resources. Even though the actual bandwidth from an attack may be manageable, 

Lambert (2012) mentioned that too often the database end up failing, or the custom scripts 

running. A company can make use of caching servers in order to provide as much static 

content as possible. There should be a plan in place to quickly replace dynamic resources 

with static ones, in the event that a company comes under attack (Lambert, 2012).  

Companies should also have detection systems in place. The worst thing for any company is 

for its network to go down. Companies should be able to be alerted as soon as an attack starts, 

and be ready to deal with it. According to Lambert (2012), the manner in which a DDoS is 

carried out, it would be incredibly difficult to halt a DDoS attack at the source. However, 
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setting up an infrastructure that is distributed, hardened, and secure is possible, and that is 

something companies should think about when setting up their networks (Lambert, 2012). 

According to Gaffan (2012), regardless of the type of solution best suited to be effective 

against DDoS attacks, there are five “must-haves” for any DDoS mitigation checklist: 

 Transparent mitigation. Gaffan (2012) mentioned that attackers count on users losing 

access to company services during an attack. Since users don not need to know and do 

not care that a company network is under attack, any mitigation technology must 

continue to let people access the service provided by the company without delay 

(Gaffan, 2012). 

 Bots cannot talk, humans can. Attackers carry out DDoS attacks to cause a nuisance 

by inconveniencing users. According to Gaffan (2012), companies should give users a 

legitimate fail-safe outlet for complaining or addressing automated lockouts as this 

will make users appreciative company’s thinking ahead of the attackers plot, and 

giving them outlet to report their experience. Furthermore, Gaffan (2012) mentioned 

that this outlet would provide companies with further insight into the performance of 

anti-DDoS system. 

 Make sure you whack all the bots. According to Gaffin (2012), most sites have very 

little headroom to such an extent that even 50 excess page views per second can slow 

down or take down a site. Companies should make sure their screening is airtight, 

blocking all application layer bot requests (Gaffan, 2012). Furthermore, Gaffin (2012) 

mentioned that this should not come at the expense of blocking the good bots such as 

Google, Bing and all other benevolent Internet bots that should be granted access all 

times. 

 Expect the biggest tidal wave. Gaffin (2012) mentioned that network attacks are 

getting bigger and amplification techniques are getting more widely used. According 

to Gaffin (2012), network DDoS is less about brute force and more about preparing a 

database of open DNS servers, or SNMP servers with open “public” communities. 

 Without accurate detection, it will be too late. According to Gaffin (2012), there are 

two parts to DDoS protection: the first is detecting a site under attack and the second 

is applying an effective defence. Gaffin (2012) mentioned that detection often gets 

overlooked due to its tricky nature. Companies should ensure that their solutions are 

capable to accurately detect attacks but remain inactive when they are not under 

attack (Gaffan, 2012). According to Gaffin (2012), defensive measures are just as bad 

as no defence measures at all. 

Understanding the tactics of attackers can help network administrators to gauge how to 

economise and optimise their forces against an attacker’s efforts (Gaffan, 2012). 
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7.1.2 SQL Injection 
 

Mackay (2005) defines SQL injection attack as a form of attack that comes from user input 

that has not been checked to see that it is valid. According to Mackay (2005), the objective of 

such an attack is to fool the database system into running malicious code that will reveal 

sensitive information or otherwise compromise the server. The specially crafted user data 

tricks the application into executing unintended commands or changing data. 

By launching an SQL injection attack, an attacker can create, read, update, alter, or delete 

data stored in the back-end database. In its most common form, an SQL injection attack gives 

access to sensitive information such as identity numbers, credit card numbers or other 

financial data. 

Mackay (2005) mentioned that there are two main types of SQL injection attacks. First-order 

attacks are when the attacker receives the desired result immediately, either by direct 

response from the application they are interacting with or some other response mechanism, 

such as email (Mackay, 2005). Second-order attacks occurs when the attacker injects some 

data that will reside in the database, but the payload will not be immediately activated. 

Regardless of the order of the attack, Glynn (2013) mentioned that the key concepts of an 

SQL injection attack are: 

 SQL injection is a software vulnerability that occurs when data entered by users is 

sent to the SQL interpreter as a part of an SQL query 

 Attackers provide specially crafted input data to the SQL interpreter and trick the 

interpreter to execute unintended commands 

 Attackers utilise this vulnerability by providing specially crafted input data to the 

SQL interpreter in such a manner that the interpreter is not able to distinguish between 

the intended commands and the attacker’s specially crafted data. The interpreter is 

tricked into executing unintended commands 

 An SQL injection attack exploits security vulnerabilities at the database layer. By 

exploiting the SQL injection flaw, attackers can create, read, modify, or delete 

sensitive data 

According to Imperva (2013), the most common way of detecting SQL injection attacks is by 

looking for SQL signatures in the incoming HTTP stream. For example, looking for SQL 

commands such as UNION, SELECT or xp_. Imperva (2013) mentioned that the problem 

with this approach is the very high rate of false positives. Because most SQL commands are 

legitimate words that could normally appear in the incoming HTTP stream, this might cause 

the user to either disable or ignore any SQL alert reported. According to Imperva (2013), in 

order to overcome this problem to some extent, the product must learn where it should and 

should not expect SQL signatures to appear. Imperva (20130 mentioned that the ability to 

discern parameter values from the entire HTTP request and the ability to handle various 

encoding scenarios are a must in this case. 
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SQL Injection can be effective mitigated through the following (Glynn, 2013):   

 Administrators should adopt an input validation technique in which user input is 

authenticated against a set of defined rules for length, type, and syntax and also 

against business rules 

 Administrators used ensure that users with the permission to access the database have 

the least privileges. According to Glynn (2013), the use of system administrator 

accounts such as sa for Web applications should be avoided. Furthermore, 

administrators should always make sure that a database user is created only for a 

specific application and this user is not able to access other applications. In addition to 

this, Glynn (2013) mentioned that all stored procedures that are not in use should be 

removed 

 Administrators should use strongly typed parameterised query APIs with placeholder 

substitution markers, even when calling stored procedures 

 Administrators should show care when using stored procedures since they are 

generally safe from injection. According to Glynn (2013), special care is needed 

because stored procedures can be injectable (such as via the use of exec() or 

concatenating arguments within the stored procedure). 

The basic principles to prevent an SQL injection are similar, even though the exact code 

differs depending on the programming language used. 

 

7.1.3 DNS Server Cache Snooping Remote 

Information Disclosure 
 

The Domain Name System (DNS) can be regarded as a distributed and fault-tolerant database 

that contains, among other things, information on domains and hostnames and how they 

relate to the IP addresses that are assigned to the various computer systems that compose the 

Internet (Grangeia, 2004).  

The DNS works like a directory-based service. According to Grangeia (2004), there are two 

main user approaches to the DNS system: the Publisher, who wants to make their information 

available to others to look up; and the Browser who queries the system for information for 

their personal use. This relationship is transposed to the DNS architecture in orderto separate 

functionality. As a result, sometimes a DNS system will act as a cache and store recently 

queried information to optimize further local queries, and on other occasions the system will 

serve information about hostnames and/or IP’s (Grangeia, 2004). 

Grangeia (2004) mentioned that the need to separate “DNS servers” and “DNS caches” has 

been the source of controversy and discussion in the literature. There is a camp that argues 

that caches and servers should be run as independent services on different IP addresses, while 

the other camp maintain the opposite can also be secure. This confusion is escalated by the 

fact that most programs that implement DNS functionality bundle both functions in one 

software package. 
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Grangeia (2004) argued that a logical separation is needed between DNS servers and DNS 

caches. This, according to Grangeia (2004), can greatly improve the security of the DNS 

infrastructure and prevent vulnerabilities such as DNS cache snooping. 

According to JH Software (2013), DNS cache snooping is when someone queries a DNS 

server in order to find out (snoop) if the DNS server has a specific DNS record cached. By so 

doing, the person can be abled to deduce if the DNS server’s owner or its users have recently 

visited a specific website. This process is possible even if the DNS server is not configured to 

resolve recursively for queries originating from other networks (JH Software, 2013). 

There are different ways to snoop a DNS cache. The most effective way is using iterative 

queries (Grangeia, 2004). Using this way, an attacker asks the cache for a given resource 

record of any type. If the response is cached the response will be valid, else the cache will 

reply with information of another server that can better answer our query, or most commonly, 

send back the root.hints file contents (Grangeia, 2004). 

The other way to snoop a DNS cache is through recursive queries. The major disadvantage of 

this method is that using recursive queries will pollute the cache (Grangeia, 2004). In other 

words, if a given record is not present in the cache, it will be after the first query is made 

(Grangeia, 2004). 

There are several guidelines that are available that can significantly reduce the exposure to 

DNS cache snooping. Microsoft (2012) mentioned that there is no code fix for this 

vulnerability because this is a configuration choice. One of the available options is to leave 

recursion enabled if the DNS Server resides on a corporate network that cannot be reached by 

untrusted clients. The other option is to restrict public access to the DNS servers that perform 

recursion. By default, Microsoft DNS Servers are configured to allow recursion (Microsoft 

TechNet, 2005).  

Alternatively, network administrators can alleviate DNS cache snooping by configuring the 

cache to only allow access by local users or child caches (Grangeia, 2004). According to 

Grangeia (2004), the principle of caching is that of locality, so it makes no sense to allow a 

user from a totally different network to access caches in other networks. To minimise the 

chances of DNS snooping, any DNS system (server/cache) should respond non-

authoritatively to known clients only. The other step that administrators can take is to 

disallow non-authoritative requests to DNS caches (Grangeia, 2004). This option will 

eliminate the possibility to do non-recursive snooping. 

Mitigating against DNS cache snooping is vital to administrators of SCADA systems that run 

on web services. As explained above, an attacker can use DNS cache snooping to find out 

which web site is visited frequently, and with this information an attacker can then launch a 

DDoS attack targeting that website, and in turn disrupt the functioning of the SCADA 

system.  

 

 



37 
 

7.2 Metasploit Vulnerabilities 
 

7.2.1 Man-in-the-Middle Attack 
 

Coates (2010) defines man-in-the-middle (MitM) attack as an attack where the 

communication exchange between two users is surreptitiously monitored and possibly 

modified by a third, unauthorised, party. In addition, this third party will be performing this 

attack in real time. This is to say, stealing logs or reviewing captured traffic at a later time 

would not qualify as a MitM (Coates, 2010). 

According to Hargrave (2012), MitM attack makes use of a technique called Address 

Resolution Protocol (ARP) spoofing to trick the computer of the first user into thinking that it 

is communicating with the computer of the second user. This technique allows the network 

traffic between the two computers to flow through the attacker’s system, which enables the 

attacker to inspect all the data that is sent between the victims (Hargrave , 2012). This kind of 

cyber-attack can be particularly effective at cafes and libraries that offer their patrons Wi-Fi 

access to the Internet. Hargrave (2012) mentioned that in such open networking 

environments, network traffic can be readily snatched due to the unencrypted networks. 

A MitM attack can be performed in two different ways, according to Coates (2010): 

 The attacker is in control of a router along the normal point of traffic communication 

between the victim and the server the victim is communicating with. 

 The attacker is located on the same broadcast domain as the victim, or the attacker is 

located on the same broadcast domain as an of the routing devices used by the victim  

to route traffic  

Coates (2010) mentioned that a MitM attack will exploit the weaknesses found in network 

communication protocols in order to convince a host that traffic should be routed through the 

attacker instead of through the normal router. What is happening here is that the attacker is 

advertising that they are the router and the client should update their routing records 

appropriately. This is, in essence, ARP spoofing. According to Coates (2010), the greatly 

simplified purpose of ARP is to enable IP address to MAC address translations for hosts. This 

is a requirement for facilitating the movement of packets from one host to another (Coates, 

2010). 

The design of ARP is such that there is no authentication. As a result, any host can reply to an 

ARP request or send an unsolicited ARP response to a specific host. Coates (2010) 

mentioned that these ARP messages are used by the attacker to instruct the victim’s machine 

that the appropriate MAC address for a given IP address is now the MAC address of the 

attacker’s machine. To be more specific, the attacker is instructing the victim to overwrite 

their ARP cache for the IP to MAC entry for the router (Coates, 2010). As a result, the IP 

address for the router will correspond to the MAC address for the attacker’s machine. 

By overwriting the IP to MAC entry for the router, all of the victim’s traffic will be routed 

through the attacker’s system. Now, in order to allow the traffic to reach the Internet, the 
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attacker then configures his system to also forward this traffic to the original router. Coates 

(2010) mentioned that in addition to this, the attacker performs a similar ARP spoofing attack 

against the router. This is how the attacker can know to reroute traffic that was destined for 

the victim, to the attacker’s system instead. The attacker then forwards on the traffic to the 

victim. This completes the whole process and it places the attacker “in the middle” of the 

communication (Coates, 2010). 

According to Coates (2010), it is at this point that the attacker has the ability to view and 

modify any TCP traffic sent to or from the victim machine. Because HTTP traffic is 

unencrypted and contains no authentication, it can be trivially monitored/modified by the 

attacker (Coates, 2010). 

Even though it is trivial to deal with HTTP, more devious means are needed to perform a 

MitM against SSL/TLS. Coates (2010) mentioned that the attacker can attempt to intercept 

HTTPS traffic by using a custom certificate. However, this would present a certificate 

warning message in the user’s browser and likely alert the user to the attack. According to 

Coates (2010), most users would ignore the warning and continue, thus exposing all of their 

data. 

According to Hildayatullah (2010), it can be very difficult to detect a MitM attack. In such 

cases, it is better to prevent MitM since there are few methods to detect these attacks. 

There are reported ways to prevent MitM attack. Hargrave (2012) mentioned that in practice, 

ARP spoofing is difficult to prevent with the conventional security tools that come with 

standard computers. However, users can make it difficult for people to view network traffic 

by using encrypted network connections provided by HTTPS or VPN technology. The use of 

VPN creates additional secure layers when users access their company’s confidential 

networks over links like Wi-Fi (Hildayatullah, 2010) 

Hildayatullah (2010) mentioned that internal MitM attack can be avoided by setting up an 

intrusion detection system (IDS). According to Hildayatullah (2010), the purpose of the IDS 

will be to monitor the company network. In cases where someone tries to hijack traffic flow, 

the IDS will give immediate alerts (Hildayatullah, 2010). However, the downside of IDS is 

that it may raise false attack alerts many a times. And as a result, users end up disabling it. 

According to Hildayatullah (2010), tools which use the advanced address resolution protocol 

and measures such as implementing dynamic host configuration protocol (DHCP) snooping 

on switches can limit or prevent ARP spoofing. This will in turn help prevent MitM attacks. 

Additionally, companies should have proper auditing and monitoring in place so that they can 

be aware of their staff’s activities (Hildayatullah, 2010). 

 

 

 

8 Conclusion and Future Work 
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8.1 Conclusion 
 

SCADA system security is an area of growing interest due to the security threats faced by 

SCADA systems. A research conducted by the Idaho National Laboratory (2011) on the 

security of SCADA systems revealed common SCADA vulnerabilities that are faced by all 

SCADA even though functions, designs, and configurations vary among vendors, versions, 

and installations. The research presented in this paper utilised penetration testing to 

investigate common SCADA vulnerabilities.  

The experiments were conducted under two different scenarios. In one scenario, the attacker 

launched the attack at the host computer from within the company network, and in the other 

scenario, the attacker was outside the company network. There were no results from the 

second scenario due to the security of the University network. The results from the 

experiments under the first scenario show that there are common vulnerabilities among 

different SCADA system.  

Even though there were no new vulnerabilities discovered during the experiments, this study 

demonstrated that the statement put forward by the Idaho National Laboratory can be 

verified. Also, the study demonstrated the ability of penetration testing tools to discover 

vulnerabilities. The tools used in the research found different vulnerabilities. This highlighted 

the differences between the tools and further supported the idea of utilising multiple tools for 

this research. This can imply that the use of more tools will reveal new vulnerabilities and 

some of those might be among the ones classified by the Idaho National Laboratory. 

 

8.2 Future Work 
 

This research sought to investigate common SCADA vulnerabilities under different network 

topologies. However, due to the security of the campus network, it was not possible to launch 

an attack from outside the university network. As part of future work, a network simulating 

tool, such as OMNeT++, can be used to simulate different network topologies. 

Also as part of future research, more penetration testing tools can be used in order to give 

more credibility to the results of this research.  
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Appendix A 
 

This appendix provides an overview of Nmap and how it was utilised in this research. 

Screenshots showing the commands used and the results obtained are presented here. 

 

Overview 
Nmap stands for “Network Mapper” and it is a command line tool for network discovery and 

security auditing. Nmap is a free, open source and multiplatform tool. It can run on Windows, 

Mac OS X and Linux. For this research, Nmap was used together with another program 

called Zenmap – a special client which provides a visual interface for Nmap. 

How Nmap works is that the user specifies the IP address of the computer or device they 

want to scan. If a user knows the Computer name, they can use that instead of the IP. Nmap 

provides a number of scans that users can select. These range from intense scan to slow 

comprehensive scan. 

The results from a scan are displayed in the Nmap output tab. Figure 7 shows the results tab. 
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Figure 7. Nmap Output 

 

The Ports/Hosts tab lists all the ports that were found open, as shown in figure 8 



45 
 

 

Figure 8. Open Ports/Hosts 

 

The topology tab shares a visual overview of how the scanned computer/device is positioned 

in the network, relative to the computer from where the scan was made. This is shown in 

figure 9. 
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Figure 9. Network Topology 

 

The above figures were obtained during the experiments of this research. The IP address of 

the computer running the SCADA system was (146.141.100.93). In figure 9, “local host” 

depicts the computer from which Nmap was ran. 
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Appendix B 
 

This appendix provides an overview of Nessus and how it was utilised in this research. 

Screenshots showing the commands used and the results obtained are presented here. 

 

Overview  
Nessus uses a Web Interface to set up, scan and view reports. It uses different policies to scan 

target computers. The user can select a policy based on the objectives set by the user. Nessus 

comes with 4 predefined policies, and it offers user the ability to define and add their own 

policies. 

 

Figure 10. Nessus Policies 

The External Network Scan policy is tuned to scan externally facing hosts, which typically 

present fewer services to the network (Tenable Network Security, 2013). The Internal 

Network Scan policy is tuned for better performance, taking into account that it may be used 

to scan large internal networks with many hosts, several exposed services, and embedded 

systems such as printers (Tenable Network Security, 2013). According to Tenable Network 
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Security (2013), the Prepare for PCI DSS audits policy enables the built-in PCI standards and 

produces a report on the user’s compliance posture.  

However, Tenable Network Security noted that a successful compliance scan does not 

guarantee compliance or a secure infrastructure. Users preparing for a PCI DSS assessment 

can use this policy to prepare their network and systems for PCI DSS compliance. The Web 

App Tests policy is used if a user want to scan their systems and have Nessus detect both 

known and unknown vulnerabilities with their web applications. According to Tenable 

Network Security (2013), the fuzzing capabilities in Nessus are enabled in this policy, which 

will cause Nessus to spider all discovered web sites and then look for vulnerabilities present 

in each of the parameters, including XSS, SQL, command injection and several more. 

For this research, two policies were utilised; the External Network Scan and the Internal 

Network Scan. Figures 11 and 12 shows the setup for the two scans under the two policies. 

 

 

Figure 11. External Network Scan Policy setting 
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Figure 12. Internal Network Scan Policy Setting 

The two scans revealed the same vulnerabilities. Figure 13 shows the summary from one of 

the scans.  

 

Figure 13. Scan Summary 



50 
 

Appendix C 
 

This appendix provides an overview of Metasploit and how it was utilised in this research. 

Screenshots showing the commands used and the results obtained are presented here. 

 

Overview 
Metasploit, like Nessus, utilises a Web Interface to set up, scan and view reports. Metasploit 

provides users with 3 default functions: Quick PenTest, Phishing Campaign and Web App 

Test. As shown in figure 14, users can create new projects from scratch and define their own 

functions. 

 

Figure 14. Metasploit Main Window 

The Quick PenTest wizard is a guided interface that helps users configure the most common 

tasks associated with penetration test, such as scanning, exploiting and reporting (RAPID7, 

2013).The goal of the Quick PenTest Wizard is to provide users with an easy way to create 

and launch a penetration test with very little configuration. According to RAPID7 (2013), 

users can launch the test immediately after they have provided a project name and the target 

addresses. With the Quick PenTest wizard, users are able to configure target settings, scan 

settings, auto-exploitation, and report generation options. Figure 15 shows the settings used 

for a Quick PenTest wizard for this research. 
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Figure 15. Quick PenTest Settings 

 

As stated above, Metasploit Pro provides a canned phishing campaign that can be used to 

create a phishing attack. The phishing campaign contains all the components needed to set up 

a phishing attack as well as many default, canned settings that can be used to quickly get up 

and running (RAPID7, 2013). However, phishing is outside the scope of this research. Also, 

Web App Test was not explored because such test would be outside the scope of this 

research. 

One other thing to note about the initial steps of a Quick PenTest Wizard is that Nmap is 

called first, to perform reconnaissance on the target computer. Metasploit has Nmap as one of 

its internal functions. Figure 16 shows the initial stages of a Quick PenTest 
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Figure 16. Nmap Output within Metasploit 

Upon completion of a scan, Metasploit provides users with a dashboard that displays the 

summary of the scan. Figure 17 shows the dashboard after a Quick PenTest scan 

 

The results show that the operating system could not be determined. This is in line with the 

earlier observations under Nmap and the same reasoning applies here. 
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