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CHAPTER 1 :

INTRODUCTION

In order to gain a better understanding of prac
tical systems and processes it is necessary to describe 
them with the aid of mathematics. Quite often this 
modelling theory is very complex but even when it is 
relatively simple, it may contain parameters which change 
with time, or vary in a random manner. It is often neces
sary to predict the optimum operating conditions of a 
system such that some performance criterion is extremised 
and therefore optimization methods are used to explore the 
local region of operation in order to determine appropriate 
system-paramater adjustments. The performance criterion 
could be, in an industrial process, the cost of running the 
process, or, in mathematics, the squared difference between 
a specified function and an approximation to it. It is 
also frequently the case that restrictions are imposed on 
the permissible values that the parameters or independent 
variables may take. These restrictions, or constraints, 
vary according to the process and can be simple ones on the 
range of the variables or complicated functions of the 
var:ables.

The optimization problem, therefore, is to maximize 
or minimize a scalar quantity or function, called the 
objective function, subject to certain constraints. Linear 
functions subject to lin< ar constraints give rise to vhat 
are termed linear programming problems, while non-linear
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functions subject to linear or non-linear constraints are 
termed non-linear programming problems. Although linear 
programming has no meaning without constraints, no -linear 
problems can be constrained or unconstrained, and it is 
this latter case with which this thesis deals.

Unconstrained non-linear programming methods are 
usually divided into direct sea :h methods, which use 
function evaluations only, and gradient methods, whicn use 
additional information in the form of the first derivative 
vector and sometimes the second derivative, or Hessian, 
matrix. However, there are different ways of classifying 
these methods, and one of them is the following:
Nearly all optimization methods approximate the given func
tion by a well Known function which is easily analysed, but 
they differ in the way i,. which the approximation is done.
Some methods, which we have called 1nterpo3ation Methods, 
fit the approximating well known function, or model, to 
calculated values of the objective function at certain points, 
while others assume a model, but do not use it directly; 
Instead, they use a derivation of the model to get a 
difference equation which when solved leads to an estimate 
of the minimum of the objective function.

For many years the most popular model was the 
quadratic function, although in recent years Jacobson and 
Oksman [ 1] have suggested the homogeneous model and Davison 
and Wong [2] have suggested a mode! using L-functions, In 
Interpolation methods, whatever the mode3 may h e , there arc
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a certain number of independent coefficients which have to 
be determined in order to fit the model to the given 
function. In this thesis we investigate the effect of the 
amount of data used to find the above mentioned coefficients.
A number of existing interpolation methods are modified to 
facilitate the checking of the effect of different data 
structures on them; and a new model, based on a variation 
of the usual quadratic used, is developed. This model, 
called the Quadratic Gradient Model (Q.G.M.), is compared 
to other interpolation methods and to a few standard opti
mization techniques; and is also tested using a number of 

the data structures.

The investigation outlined above is presented in the 
following way: In Chapter 2 we formulate the unconstrained op
timization problem and discuss the most widely used existing 
Interpolation and Non-interpolation methods. Chapter 3 
presents the newly developed Q.G.M., while Chapter 4 pre 
sents the methods used when investigating the effect of the 
size of data structures, and explains the necessary modifi
cations to certain existing Interpolation methods. Chapter
5 gives a proof of convergence for the Q.G.M. and in Chapter
6 we have the numerical results concerning the comparison 
of different methods and the influence of the different 

data structures on these.

In Chapter 7 a conclusion is reached as to the 
optimal amount of data which should be used in Interpolation

JL



methods and some ideas for further research are suggested.
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CHAPTER 2

FUNCTION MINIMIZATION

The first section of this Chapter formulates 
the unconstrained optimization problem, the conditions 
for its solution and the classical method of solving it. 
The second section describes a selected number of well 
known optimization techniques in general and then rele
vant Interpolation methods are discussed in some detail 

in the last section.
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The Problem

Let uc first of all introduce some notation:

- The Euclidean space of ordered n-tuples of

real numbers.
- a  mapping of the function f from its domain

A to its range B.
- Given a function f:Rn + R1, this is the so- 

called gradient of f at x, or the column 
vector of first partial derivatives of f.

- Given a function f:Rn R 1, this is the n x n 
Hessian matrix of second partial derivatives 

of f .
B(x,eix)) • The ball or neighbourhood of x defined as 

the set:
ix'll x-x'll < e (x) \

- vector whose i th component is one and whose 
other components are all zero.

Using the above notation we can now formulate 
the uncunstra, .icd optimization problem as follows:

minimize f(x), x c Rn (2.1

where the objective function £:Rn » is a continuously 
differentiable function of a .

Although we hivc formulated the problem here as

f:A -> B

g(%)

H (x)



a minimization problem we note that a maximum problem can 
be solved by a minimization technique since

maximum f(x) = minimum [ -f(x)] (2.1.2)

Therefore thv ..ords optimize and minimize may be regarded 
as synonomous for our purposes.

Before we state the necessary and sufficient con
ditions for solving the above problem, it is necessary to
define different kinds of minima:

(i) The point x* is called a local minimum of f if there
is a region R containing x so that

f(x) > f(x*), X e R (2.1.3)

(id) If the point x* in the region R is such that

f (x) > f (x*) , x ^ x*, x e R (2.1.4)

then x is a local proper minimum.
'At(iii) If x is a point such that

f(x) > f (x*), for all x c Rn (2.1.5)

then it is a global minimizor or minimum.

We note that a particular function may have
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several local minima with one of them the global minimum.
The distinction between local and global minima is not
essential for our purposes because a global minimum of f
on a set R may be a local minimum on a set S where R is
a subset of S. However, the distinction is important when
the results of optimization methods have to be interpreted
because it is usually impossible to determine if a local
minimum is also the global minimum unless all minima are
found and evaluated. It is very important to stress that
existing optimization techniques can only fint local proper
minima. Indeed,it has been shown numerically that most of
the standard convergent numerical processes implemented on
a computer converge to the same point from a given initial
value x . Because of this we will always refer to the o
local proper minimum as the minimum without loss of gene

rality.

The classical methods of calculus use the concept
'ifof critical point, to solve problem (2.1.1). A point x is

a critical point of f:Rn R* if g (x) = 0 and if H(x ) is
defined. Clearly, if x* is a local minimum and g(x*) exists,
we have g ( x * ) ~ 0  (2.1.6)

"it •and (2.1.6) is a necessary condition for x to be the minimum. 
However, a critical point need not be a minimum. In order 
to ensure a minimum we need a theorem from calculus which 
states that if x* is a critical point of f and H(x ) is 
positive definite, then x is a proper local minimum of f.
This implies that satisfaction of the conditions

g (x* ) ~ 0 , II (x* ) > 0 (2.1.7)



is sufficient for x* to be a proper local minimum.

A straightforward method of solving (2,3.1) would 
be to solve the set of non-linear equations (2.1.6), which 
is a problem of considerable difficulty. Note that a solu
tion of (2.1.6) only gives us a critical point which could 
be a minimum, maximum or saddle point? the number of 
critical points cannot be determined vy inspection; and 
the method is not readily applicable to functions with 
discontinuous derivatives, although such functions frequent

ly have well defined minima.

Modern optdmizatio, methods use iterative techni
ques (except for tabulation and random search methods) 
which require an initial point x q to be specified and then 
proceed to generate a sequence of points x^, i = 1,2,3,... 
which converges to the minimum. These iterative techniques 
can be conveniently represented by the equation

xi+1 x , -t^ p. (2.1.8)

where p^ is an n dimensional direction vector, and t^ is the 
positive steplength or distance moved along it. Another 
feature which all current minimization techniques have in 
common is that of descent, i.e..

ftx^+i) K x ^ ) ,  if llg(Xi)ll > 0 (2.1.9)

This feature does not ensure convergence, but at 3 cast gives
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Improved approximations to the solution. Most minimiza
tion methods have the properties (2.1.8) and (2.1.9), but 
differ as to the way in which t. and p. are chosen.
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2.2 Existing Non-interpolation Methods

In order to simplify the picture as much as 
possible we divide these methods into groups and subgroups 
under rough headings and then describe each subgroup brief

ly.

The classification may be done as follows:

(i) Direct Search Methods :

(ii) Gradient Methods

(a) Tabulation Methods
(b) Sequential Methods
(c) Linear Methods
(d) Derivative Estimation 

Methods

(a) First Order Methods
(b) Second Order Methods
(c) Quasi-Newton Methods
(d) Conjugate Gradient

Mn-hbnrlFi

The methods of group (i) use values of the objec 
tive function only, although in some methods they are used 
to obtain a numerical approximation to the derivatives of 
the objective function.

In group (i) a it. is assumed that the minimum x 
lies within the region R defined by
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X, < x. < X. + d ,, i = 1,2,...,n (2.2.1)1 -  x  — i i

where and arc known. The function is then evaluated 
at a certain number of points in R and the smallest func
tion value is taken as the minimum. The points in R can 
be chosen as nodes of a grid, randomly, or using a multi
variate Fibonacci Search - Sec Sugie I 3J . It can be 
shown that the number of function evaluations for the 
Fibonacci Search is proportional to the product of the 
logarithms of the required interval reduction factors, 
whereas, in the other two techniques it is proportional 
to the product of the factors themselves. This makes the 
Fibonacci Search much more effective, but even so it is 
much worse than the methods in groups ;i)b and (i)c.

Group (i)b methods probe the objective function 
by performing function evaluations at the vertices of some 
geometric configuration in the space ■‘f the independent 
variables. When a better point is found a new aeomefcric 
configuration is formed around the new point, and so on.
These methods include Evolutionary Operation, proposed by 
Box [ 4] , and the well known Simplex method, proposed by 

Spcndley, IR-xt and Himsworth [ 5] .

The difference between the methods in group (i)c 
and the ones already mentioned is that this group is the 
only one which uses a set of direction vectors throughout 
the search. In general the mot hods whi ch belong to this 
group and which adaptively change the set of direction vectors
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with each iteration are better than those which use the 
iricial set throughout. The most popular methods in 
this group are: Hooke and Jeeves Method I 6] , which
attempts to use the principal axis of the objective func
tion as a search direction; Rosenbrock's method [7] , 
which uses n mutually orthonormal direction vectors, one 
of which is in the direction of recent best progress; the 
method of Davies, Swann and Campey, described by Swann [8], 
which is based on Rosenbrock's method but differs from it 
in that a one dimensional linear search is made along each 
direction in turn; and Powell's method [9], which uses the 
concept of conjugate directions.

The methods of group (i)d are essentially gradient 
methods, and therefore could have been included in group 
(il). However, since the gradient is not calculated 
analytically but estimated using function values only, we 
have included these methods in group (i). A topical such 
method is that of Stewart [ 10] who modifies Davidon's [11] 
algorithm by using difference approximations to estimate 
the gradient. The difference approximations can be of the 
form:

Misi. * f i i - l i i i i  (2.2.2)
Axi h i

where h^ is a suitable steplt; ;th; 
or of the central difference form:

Jl
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Af(x) . + h, ei) - f (, - c p
A—  2hi

From the performance point of view the methods 
of group (i)d and Powell's method of group (i)c are the 
best, while the tabulation methods of group (i)a are 

usually the least effective.

Since the above methods do not use derivatives, 
the check for descent is done by calculating the objective 
function value at the new point and seeing whether it is 
less than the function value at the current point. ■‘■he 
gradient methods of group (ii), however, differ from those 
of group (i), net only because they use the gradient, but 
also in the way in which descent is ensured.

The condition used for descent is based on the 

Taylor expansion of a function:
(2.2.4)

f (xk+1) = f(xk ) + gT U k ) Ax + H U xk + (1-5 )xk+1)Ax

where: ax - xk+1 ~ xk , 0 < S < 1

Using the equation (2.1.8) for an iterative process we have: 

Ax = -tkpk (2.2.5)

and substituting this into (2.2.4) we get:

Af = -tk . g^\xk ) Pt + t t /  Pk "(Xk"tkpk (l-S)) Pk (2.2.G)

where: Af - f(xk+1) - f(xk )

We can easily choose Lk to make the first term in the expan
sion the dominant one and since for descent we want Af < 0



15.

this gives us:

-yT lxk ) pk < 0 (2-2 -7)

Since yrndienL information is available in the metnods 
of group (iil, criterion (2.2.7) is the one usually used 

in this group to ensure descent.

If we neglect the final term in equation (2.2.2), 
assuming that the second derivative is snail enough to be

neglected, the equation becomes
T , (2.2.8)Af = g Ax

and methods based upon (2.2.8) &re called first order methods 

group (ii^a.

The fundamental first order method is the method 

of steepest descent, which is credited to Cauchy (1847).
It is based on the fact that the direction o' the gradient
is the one which gives the greatest local change in the 
function. If, therefore, we choose a specified steplength 
t, and make p, equal to the gradient vector we can obtain 
a function decrease by applying equation (2.1.8). This 
procedure is then repeated until some stop criterion is 
satisfied. Other methods in this group do not use a fixed 
steplength, but minimize the function along the direction 
of the gradient. In both cases, however, these methods 
behave poorly because the gradient direction gives the 
greatest local decrease, but might not be at all in the 
direction of the. minimum, and therefore a very large number 

nf 11 nrnti nns can become necessary.

I



Methods which do use a search direction which 
coincides with the direction to the minimum are considered 
in group (iOb. An approximate direction to the minimum can 

be found as follows:
If, in equation (2.2,4), we substitute: 

x* (the minimum) = xk+i
H(xk ) xk + U-i )xk+1) (2.2.9)

and use the cond that et the minimum g(x ) = 0 it can

easily be shown

g(xk ) + H(xk )Ax - 0 (2.2.10)

Solving for x we get:

Ax -H*"1 (xk )g (xk ) (2.2.11)

or
x* = xk -f ’"1 (xk )g (xk ) (2.2.12)

The use of equation (2.2.9) actually approximates the general
function by a quadratic and, therefore, if f is a quadratic 
the minimum can be reached from xk in a single step. As a
result of the above we see that if we choose

p i = H™1 (xk )g(xk ) (2,2.13)

it will be in the, direction of a stationary or critical point 
(assuming that the objective function is roughly quadratic). 
If wv wish this direction to point toward a minimum we must 
ensure that H(x, ) is positive definite. Equation (2.2.13) 
is the basis of all second order methods, or those using 
quadratic approximations.



If equation (2.2.13) is used directly with a 
fixed steplength t^ we have the fundamental Newton's 
method. This method is of little use practically for two 
main reasons:

1. H is not always positive definite.
2. At each step H must be calculated and inverted.
One way, which is used in this group, to overcome diffi
culty 3) is suggested by Greenstadt [ 12] . This is to find 
the eigenvalues (X) and normalized eigenvectors (U) of 
and then set

ft rnH, = 2 IX.IU.U. (2.2.14)
K i=l 1 1 1

Another way, used by Coldfield [ 13] , is to replace by

Ak = Hk + XkI (2.2.15)

and ur.̂  >k to ensure Ak > 0.

The group of methods (group (ii)c) which try ta
overcome problem 2) are called Quasi-Newton methods because

** 1they approximate II (xk ) by another matrix, but still use 
the basic Newton direction. If H 1 (xk ) is approximated by, 
say E (xk ) , we arrive at the basic equation of. most Quasi- 
Newton or variable metric methods as :

Xk+1 ~ xk ~ tk (2.2.16)

E(xk+i) is usually calculated iteratively from E(xk ) and it 
can be shown (see Himmelblau [ 14] ) that the general form of 
this is :
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T
(2.2.17)

where: Ax = xk+1 ~ xk and AgT = gT (xk+1) - gT (xk )T

If we choose

y = z = Ax - E(xk )Ag (2.2.18)

we get Broyden's method I 15] , whereas if we choose

y = Ax, Z = E (xk )Ag (2.2.19)

Davidones method [ 11] , as modified by Fletcher and Powell [ 16] , 
results. The latter method is one of the most popular opti
mization methods and is often used as a standard against which 
other algorithms are compared. This method also uses conju
gate directions and can therefore also be included in group

(ii)d.

search method [ 9] use the concept of conjugate directions. 
This concept 1 fined as follows: A set of n vectors d^,
d2, ..., dn in Rn is said to be conjugate with respect to 
a positive definite matrix Q if

The results of using this concept are:
1) The d^ vectors arc linearly independent and can therefore

be used as a basis for n dimensional space,
2) If f is a quadratic and is minimized along n Q-conjugate

directions, then the minimum will be reached in at most

n steps.
The best known methods in this group are Flctcher-Rceves1

The methods of group (ii)d and Powell's direct

d±T Q dj = 0, i 7* j (2.2.20)

*

1



method [ 17] , Zoutcndijk's method [ 18] and the Partan methods 
[ 14] . Zoutendijk's method has the disadvantage of requiring 
a matrix inversion, but the other two mentioned also have 
the disadvantage of requiring a univariate minimization 
along the search direction at each step.

It is difficult to compare different optimization 
techniques using different strategies, but on the whole the 
gradient methods are usually better than the direct search 
methods, and cf the former the best are the Quasi-Newton 
and conjugate gradient methods.
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2 „ 3 Interpolation Methods

Since this thesis deals with these methods, and 
because, in Chapter 4, we modify some of these, we will 
give a full description of the well known methods of this 
type (for the equations of some Interpolation methods see

Appendix B).

The common characteristic of all Interpolation 
methods is that they fit a model to the given objective 
function at certain points, but they differ in the model 
used and even if the same model is used the metnod of 
minimization might be entirely different, Fiacco and 
Me Cormick [ 19] and Winfield f20] both use a quadratic 
model, for example, but their methods are not at all alike. 

The quadratic model they use is

f(x) = ^  A x + bT x + d (2.3.1)

where A  is a n  n x n symmetric matrix, b is an n veccor and 

d is a scalar. A has fcn(n+l) independent element.1, b has 
n components and d has one, which gives us a total of 
%(n+l)(n+2) independent coefficients which have to be 

determined.

Fiacco and Me Cormick [ 19] minimize the given ob
jective function along each of the coordinate vectors in 
turn and use these points to obtain the diagonal elements 
of A, The remaining ^n(n-l) searches are made along vectors 
which have two components equal to one and the. remaining 
components equal to zero. The least values of the objective 

function along these directions are used to find the



off-diagonal elements of A. Once A has been found, the 

search direction

= A ^g(x) (2.3.2)

is used to locate the minimum of f(x), which is an estimate 
of the minimum of the given objective function. This proce
dure is possible because g(x) can be calculated using the 
values of A. However, this methud is useful only when A 
is positive definite because if it is not, the located point 
will not be a minimum. In the event, the authors do noa 
have any suggestions for this situation.

Winfield [20], on-the other hand, chooses an ini
tial grid of N —  ̂(n+1) (n-' 2 ) points and calculates txie 
components of A, b and d by solving N simultaneous equations 
with N unknowns. The point, in the grid, which has the 
lowest function value is defined as the basepolnt x^ and 
the coordinates of the other points are defined relative 
to this point. The quadratic model then becomes

q (y) - ^y1*1 A y + b ^ y  + d (2.a.3)

where y - x - x^.
Once A, b and d have boon found, the following constrained 

problem is solved:

min q(y), subject to y7 y ~ r2 - 0 (2.3.4)

where r is the radius of a sphere defining a region of 
val idity R and is taken as 0.99 II ŷ ll , where yn is the 
furthest distance from the basepoint. Tf the solution, y , 
to equation (2 .3 .4) gives a bet te; function value th n



itthat of x^, then y is taken as the new basepoint and the 
whole procedure is repeated. If not, x^ is retained as 
basepoint, the volume of R is reduced by a constant factor 
and equation (2.3.4) is solved again. In the first case, 
when y* is chosen as the new basepoint, the N nearest points 
to it are included in the grid, while in the second case, 
the choice of r = 0.9911 ynll ensures that y will not be in-

'fteluded in the new grid and that y will. This means that, 
at each iteration, a point leaves the grid and a new one 
enters it. The points leaving the grid are stored in a 
data table and are sometimes re-used by the algorithm if 
the search moves past them agaiv. Winfield reports that 
the best size for the data table is a little less than 2N.

From the above, we can see that this method uses 
the function evaluations efficiently, because, as success
ful! trial points are located, the radius of R increases 
and the search takes larger steps, while when unsuccessful! 
points are located, the radius of R decreases until a new 
direction is found. The volume reduction factor controls 
the tendency of the method to explore, versus the tendency 
to make small sure gains based on experience and Winfield 
has chosen the factor (-|-).2n by experimenting with a set 
of test problems. Other advantages of this method are 
that no derivatives arc required and that A need not be 
positive definite. However, the main disadvantage of the 
algorithm is the large amount of computational work required 
to locate a new trial point. Since it is of the order of n^ 
the method is best used for low dimensional functions which
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are expensive to evaluate.

Although the quadratic is the most popular model, 
recently other models have been suggested. The homogeneous 
model, developed by Jacobson and Oksmun [ 1] , is based on a 
derivation of a different form of the quadratic used in 
equation (2.3.1). The different form of the quadratic is

£ (x) - h (x-P ) ̂  Q (x-P ) + w (2.3.5)

where Q is an n x n positive definite symmetric matrix, P the 
location of the minimum of f(x), and « the minimum value.
The derivative of this form is

g(x) = Q (x~0 ) (2.3.6)

and if we substitute (2.3.6) into (2.3.5) we get

f (x) -- h (x~/3 )T g(x) + w (2.3.7)

If equation (2.3,7)is given a more generalised form by 
changing the coefficient h to 1/̂ ,, we arrive at the homo
geneous model

f (x) - "(x-/3)11 g(x) + w (2.3,8)

where y is called the degree of homogeneity.

When a homogeneous model is fitted to the given 
objective function, there are n+2 coefficients which have 
to be determined: Multiplying (2.3.8) by y , defining
co = y co and rearranging terms wo have

0T g(x)

Furthermore,

m+ y f (x) r CO -- x g (x) 

defining v ^ x^ g(x)

(2.3.9)

(2.3.10)
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equation (2.3.1). The different form of the quadratic is

f (x) = h (x~P ) ̂ Q (x-P ) + w (2.3.5)

where Q is an n x n positive definite symmetric matrix, ft the 
location of the minimum of f(x), and w the minimum value.
The derivative of this form is

g(x) = 0 (x-0) (2.3.6)

and if we substitute (2.3.6) into (23.5) we get

f (x) - h (x-P )T g (x) + w (2.3.71

If equation (2.3.7)is given a more generalised form by 
changing the coefficient % to ■*■/ , we arrive at the homo
geneous model

f (x' - ~(x-0 )T g(x) + w (2.3.8)

where y is called the degree of homogeneity.

When a homogeneous model is fitted to the given 
objective function, there are n+2 coefficients which have 
to be determined: Multiplying (2.3.8) by y , defining
co -- 7w and rearranging terms we have

gtx) + 7  f ( x ) + w  = x ] g(x) (2.3.9)

Furthermore, defining v ^ x^ g(x) (2.3.10)
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y =
g(%)
f (x) 
-]

(2.3.11)

P
7w

(2.3,12)

equation (2 .3 .9 ) can be written in matrix form as

y a - v (2.3.13)

The components of u are (i , which is an n vector, and 7 and 
w. which are scalars; thus making u an n+2 vector. In 
otder to find the n+2 coefficients the appropriate number 
of points xi , i -- 1, .....   n+2 and the associated values

f(x^), g(x±)fi = If ....
following relation holds:

, ni-2 are needed. Then, the

Ya - V (2,3.14)

where

V 1

Y =

yM 2T_

fV =

Vn+2

and

(2.3.15)

g u p
tup
-1

X, T ( x . ) (2.3.16 )

If the objective function is homogeneous, the solution 
of equation (2,3.14) is

n •= Y-1 V (2.3.17)
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On the other hand, for general, functions, a 
only provides an approximation to the minimam. Therefore, 
if a supplies a better function value than the current 
trial point, it is included in the grid of n+2 points and 
the procedure is repeated. If not, cubic interpolation 
(presented by Fletcher and Powell I 16] ) is used to achieve 
descent. In order to present a proof of convergence, 
Jacobson and Pels [21] modified the original algorithm to 
usf: Armijo's Rule [ 22] .instead of cubic interpolation, 
with results nearly as good as those of the original algc 

rithm.

Even though Jacobson and Oksman's algorithm 
uses a grid of n+2 points, it does not solve the n+2 
simultaneous equations at each iteration, but inverts Y 
recursively using Householder's formula. This is possible 
for the ieason that only one row of Y is changed at each 
iteration, and it avoids the large amount of computational 
work that would have been necessary to invert Y at each 
iteration. Winfield [ 20] also changes one row only of a 
matrix at each iteration, but solves a constrained problem 
instead of simply inverting the matrix, and therefore 
cannot do this recursively. Householder's recursive formula 
save, much computational work, but rs sometimes unstable, 
and in order to overcome this problem, another modifica
tion to the original algorithm was suggested by Kowalik 
and Ramnkrishnan [ 23] . In this modification Householder s 
formula is replaced by a semi *t.rinngular factorisation 
which if numerically stable provided that a pivoting 

strategy is used in the process of updating those factors.

L
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Their results are an improvement on the original algo
rithm, in that their method requires less function 
evaluations, is numerically more stable and also has the 
advantage of implementing special storage schemes for 

large-scale problems.

In order to differentiate between the two ways 
in which the systems of equations are solved, we have 
divided Interpolation Methods into two forms:

(i) Grid-to-grid methods, e.g. Winfield 120], which
solve the ful1 set of N x N equations at each itera

tion .
(ii) Point-to-point methods, e.g. Jacobson and Oksman [ 1] , 

which solve the equations by inverting a matrix 

recursively.

Although Winfield's method can only be used in grid-to-grid 
form, as mentioned above; most ocher Interpolation Methods 

can be used in either form.

A different way of using Interpolated models has 
been suggested by Botsaris [24]. Instead of using an 
Interpolation modal to approximate the Hessian matrix and 
minimizing directly using equation (2.3.2), as Fiacco and 
McCormick [ 19] do, Rotsaris uses an Interpolation model 
to approximate the Hessian matrix but then uses this 
approximation in his Differential Descent methods. I^ is 
interesting to note that numerical results show that for 
this purpose the Interpolated Model is more stable than a



difference model which was also tested.

In general, Interpolation methods compare favour
ably to Non-interpolation methods. They use a lesser, or 
in some cases the same, number of function evaluations for 
most test functions than the best Non-interpolation methods, 
such as that of Fletcher and Powell [ 16] , and tend to re
quire less stringent restrictions.



C H A P T E R  3

QUADRATIC GRADIENT MODEL (Q.G.M.)



28.

CHAPTER 3 :

QUADRATIC GRADIENT MODEL (Q.G.MJ,

In this chapter we present the Q.G.M. method 
for solving unconstrained optimization problems. The 
method is based on a quadratic function and uses an 
Interpolation model to approximate the inverse of the 
Hessian matrix. The algorithm is presented in a point- 
to-point conceptual form, using a method for ensuring 
descent, which facilitates the proof for convergence, 
but might not necessarily give the best practical re

sults .



3.1 Basis for Model

If we take equation (2.3.7), which is 

£(k ) = 3$(x -P)T g(x) + « (3.1.1)

and find an expression for (%-f)* from equation (2.3.6),

which is *

g(x) = Q(x-P) (3.1.2)

we arrive at the Q.G.M.
From (3.1.2)
x-f = Q' 1 g(x) (3.1.3)

and its transpose will be

(x-/nT = gT (x) (q’'1)t (3’i* *)
Since Q is the Hessian matrix of f(x) it is symmetric.

This means that

(x-M* = g^(x) Q-l (3.1.5)

Substituting this into equation (3.1.1) we get

f(x) = VlT (x) Q"1 g(x) + w (3.1.6)

The actual Q.G.M. is defined using equation (3.1.6) as a 

basis and is of the form

f(x) = HgT (x) S g(x) + w (3.1.7)

where S is an n x n positive definite synuuetric matrix.
If the objective function is a quadratic or can be written
in the form of equation (3.1.7), then the minimum P can be
found directly from equation (3.1.3) simply by rearranging

— 2,terms and substituting S for Q 1

p = x - S g(x) (3.1.8)

where x can be any initial trial point.



However, in the case of more general functions, 
the location of the minimum is not given by equation 
(3.1.8) since our model is only an approximation to the 
actual function. Therefore, at each trial point, using 
the function value and first derivative at that point, 
the Q.G.M. is formed and minimized directly in n space by 
equation (3.1.8) to yield a search direction. This oqua-

tion may be used if S is singular, but we prefer 
restarting the algorithm with a gradient step. Although 
the point-to-point form presented here gives better results 
the grid-to-g’-id form is better for testing the influence

of data structures on the method.

Equation 13.1.7) is solved for S and w in the 

following way :

Let

vnij'
sn

-
^ g }2 (x)

snn , y(x) A H i 2 '*1

^12 g 1 ( x ) y 2 (x )

• •
£iin 9] (x)gn (x)

s2 3 g 2 ( x ) g 3 (x)

•
s2n g2 (x)gn (x)

sn-1, n gtl_iU)<in 'x)

w 1

Then equation (3.1.7) can bo written in the following 

way:

1
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£ (x) = y (x) a
(3.1.10)

Note that both y(x) and a arc N x 1 vectors, where 
N = §(n+l)+l. If £ (x) and y(x) arc evaluated at N distinct

points x^, i 1 , ____   N so that the y(x^)'s are linearly

independent then the system of equations can be written 

in matrix form as :
(3.1.11)F Y a

where

£(xc)

, Y -

yT (x1)

(3.1.12)

Since the y U ^ ' s  are linearly independent the

solution of (3.1.11) is

a = Y™1 F (3.1.13)

where S can be constructed easily from the first N-l com-
poncnts of a and the Nth component of o is the minimum 
function value w. In order to save computational work,
the inversion of Y is carried out recursively by defining

Yo = I#
, 1,0 , 0] 
____ i

n times

and then r< p! '^inq, Cor each new irial peint, corresponding 
rows and elements of Y^ and F^ with the values of Y ( )  

anti f(x.) in the following way:

1
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Xk+1 = Xk + °k+l lyT(Xk+ l> - °k+ lT V  (3.1.14)

Fk+1 = Fk + ek+l (f(xk+l) " ek+lT Pk ) (3.1.15)

In order to obtain the inverse of Y recursively, we use 
Sherman-Morrison1s formula, which states that if A e R 

is invertible and u,v c Rn , then

(A H- u v b - 1 - A-1 - (3.1.16)
r+v a ' u 

provided that l + v̂ " A 1 u 0 
Substituting : - A

" = Ck+1
rn n- I1

v ^ y (xk H ) " ekt 1 Yk 
into equation (3.1.16) we arrive at the necessary updating

formula
v -1 = „-l _ Yk.llok+ l(Y'r (Xkll> Yk ~ (3.x.17)
K+1 k y"(*k+l' Yk ! ek+ l

and yT (xk.H ) Y " 1 =k+1 ^ u (3.1.18)

From equations (3.1.15) and (3.1.17) and from the fact that

"k+1 “ Yk*}1 Fk+1 
we obtain the recursive solution

'k1 =k,i (f(JW  - YT,W i k i  (3-1-19) 
“k+i - -k 7 , Xk+Jr ; ^  0k+1

provided, again, that (3.1.18) hoids.
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3.2 The Algorithm

Step 1. Assume X0 , i? i?2 » L given

2. Set a, = 0, j 3 , N = ^(n+3) + 1, Yq = I,

a ̂  = [ 1,    1/0,   0]O ĵN».... I..........
n times

3. If llg(xi )ll « 0 stop? else go to 4.

4. If largest element of is greater than L,
set p i = --g(xi) and use Armijo's Subprocedure 
to calculate x^+1, set xQ = x^+  ̂ and go to 1? 

else go to 5.

5. •' 'Construct S, from the elements of

6. Set p^ - o Bx g(x4),where I ol = 1  and its sign 

is chosen so that

p j  9(Xj.) < O

7. If I p/1* g(xi)l > rjit use Armijo's Subprocedure 
to calculate xi+1 and go to 8; else set x^ - x^ 
and go to 1.

8. Calculate y(a, H ) and f(xi+J) as defined in 
equation (3.1.9).

9. If lyT (x1 + 1) Y,"’ Cjl < -I2 set x0 = x1+1
anil go to 1; else calculate Yj + i nnd “ i+l Irom:

y -i _ Y-i .
lTl 1 n 1 aj

1
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y; 1 Cl (£(xj+ 1 ) -  y (xl T l )

• i «  - -i — y ^ n v r - ---------

and go to 12.

10. Set i = i + 1
11. If j = N, reset j = 1 and go to 3? else set

j = j 4 1 and go to 3.

Armino Subprocedure

1. Assume a, a e (0,1) are given.

2. Set k = 0
3. set x1+1 = Xi + »k Pl

4. If f(xi+1) - £(xi) + « t P p *  g(xjL) < o return;
else set k = k + 1 and go to 1.

Certain operations in the algorithm are now

more fully described.

In order to choose a search direction which is 
one of descent/ step 6 calculates a direction with the 

help of equation (2.2.7), which is

pj7 g(xi) < 0

In other words, if S is negative definite, the model will 
have a maximum, not a minimum, and, as a result, a direc
tion opposite to that of the maximum is chosen. Howevei, 
if | g(xi)lis very small, the direction will most- 
likely not yield a respectable reduction in f(x) because 
it is very nearly orthogonal to the gradient. In this
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case, then,the algorithm is restarted by stop 7.
f

To guard against the possibility than equation
(3.1.18) does not hold, the expression

3 = h 1 ejl
is checked at each iteration and if it is less than a
prescribed small number the algorithm is restarted by
step 9. /.Iso, as explained before, the algorithm will
not generally converge in N steps for general functions
and, therefore, at the Nth step, when the last row of

Thas been replaced by y <>N) , the index j must be reset 
to unity, as in step 11, s t the replacement of rows 
starts over again from t'- irst row.

Armijo's Subprocedure, jased on Armijo's Rule 
[ 22] , guarantees, not only a furation decrease, but also 
convergence. Although the original proof presented by 
Armijo is based on a Steepest Descent algorithm, it can 
easily be modified for more general algorithms. Other 
methods for ensuring descent or convergence are those of 
Curry [ 2 5] , who requires the minimization of a function 
of one variable at each step; Goldstein [ 26] , who requires 
the assumptions that f (x) c C 2 on £. {x q ) - I x : f (x) < f(x )^, 
that S(xo ) be bounded and that a bound for the norm of 
the Hessian matrix is known; and Fletcher and Powell [ 16] , 
who use cubic interpolation. The hypotheses of Armijo's 
convergence theorem are more restrictive than those imposed 
by Curry, but less restrictive than those imposed by Gold
stein, and, therefore, provide a Rule which is both practical
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case, tlion,the algorithm is restarted by step 7.

To gua xi against the possibility that equation
(3.1.18) does no old, the expression

" ’ i,(xi+i) YI1 ej'
is checked at each iteration and if it is less than a
prescribed small number the algorithm is restarted by
step 9. Also, as explained before, the algorithm will
not generally converge in N steps for general functions
and, therefore, at the Nth step, when the last row of

TY0 has been replaced by y (x^), the index j must be reset 
to unity, as in step 11, so t: at the replacement o rows 
starts over again from the first row.

Armijo's Subprocedure, based on Armijo's Rule 
[22], guarantees, not only a function decrease, but also 
convergence. Although the original proof presented by 
Armijo is based on a Steepest Descent algorithm, it can 
easily be modified for more general algorithms. Other 
methods for ensuring descent or convergence are those of 
Curry [25] , who requires the minimization of a function 
of one variable at each step; Goldstein [ 26] , who requires 
the assumptions that f(x) c on S(x^) = i x : f(x) < f (x^)t, 
that S (>()) be bounded and that a bound for the norm of 
the Hessian matrix is known; and Fletcher and Powell [ 16] , 
who use cubic interpolation. The hypotheses of Armijo's 
convergence theorem are more restrictive than those imposed 
by Curry, but less restrictive than those imposed by Gold
stein , and, therefore. provide a Rule which is both practical
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and ensures convergence.

As mentioned before, a property of the Q.G.M. 
algorithm is that, under certain assumptions, for a 
quadratic, the recursive procedure used to invert 
will produce Y~1 after N steps. We will now prove this:

THEOREM 3.1

If f (x) is a quadratic and yT (*i+1) ^ 0 then
°N = a anz., YN = Y

PROOF:

“i+iT y (xH i ) “ “i+i

yT(xm ) °i*i = yTtxn i )  “i + ..T,.. , ,,-1
y X̂H  I1 Yi ei+l

Since yT (xi ,1) Y p  ei+1 ^ 0, it follows that

"i+Jy'Xi+l' = f(xi+l>

Also,

“i+l1 Y<xi) = YT(xi> =141

T, i i i y <Xi*Yi °i vl “ y (xi 4l,“ i)
y i i4i = y(xi>” i + ------------ -----------------------------

Y lXl+l' 1 141

Now,

e ^  Y^ -  y*1 (x ^ ) imp 11 <■ th a  1

n’ ~ i t
y'(xi)
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so that

yT(xi ,Yi 1 °i+i - °iT ei+1 ’■ 0

Therefore

“ .i+iT y ( x i.) “ “ ;T y (xi> ' 1,xi)
P r o c e e d i n g  in a s i m i l a r  m a n n e r

a . . -T y(xv) = a 1 y(xv ) =i+1
Since

it follows that aN " a •

Also, s i n c e

Y,

-* m
y W

N = ' f n  =

/ (XN )_

and Yn a = f n

it follows that = Y 1 Q.E.D,

It will be shown in Chapter 6 that the above 
conceptual algorithm can b e  modified slightly to produce 
an implementable algorithm which reduces the use of the 
costly Armijo Subprocedure.

1
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CHAPTER 4

EFFECT OF DATA STRUCTURES

Interpolation methods are based on fitting u 
model to the given objective function. Each model has a 
certain number, say 'I, of independent coefficients which 
have to be determined in order to fit the model to the 
objective function. This is done by evaluating the 
objective function at, say M, points of a grid and then 
Solving a set of M simultaneous equations with N unknowns. 
T'.he effect of the data structures on these methods is 
tested by enlarging or decreasing the size of the grid (M) 
to include more or less than N points.

This is possible when the optimization methods 
are in grid-to-grid form and, therefore, in the first 
section we present a generalised grid-to-grid algorithm. 
Thereafter, it i applied to certain Interpolation methods, 
some of which are modified from point-to-point form to 
grid-to-grid form. The next two sections discuss the 
methods used to solve the abovementioned set of simultaneous 
equations when, firstly, M, the number of points in the 
grid, is less than the number of unknowns, N, and, secondly, 
when M is greater than N .
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4.1 General Grid-to-Grid Algorithm

The general grld-to-grid algorithm for solving 
optimization problems with the aid of Interpolation methods 
is presented in a conceptual form which facilitates the 
proof of convergence. Before this is done some notation 
and terminology is in order:

M - The number of points in the grid
N - The number of unknowns
M = N - The data structure is said to be exact
M > N - The data structure is called overdetermined
M < N ~ The data structure is called underdetermined

Whatever the model, the equations used to solve 
for the necessary coefficients may be expressed as follows:

yT (x)a = v(x) (4.1.1)

where a is the vector of unknown independent coefficients 
of the chosen model, y(x) is the vector of coefficients of 
a and v(x) is a known scalar. Both v(x) and the elements 
of y(x) depend on the model uced and are functions of x, f(x) 
and g(x) of the given objective function. If a has N 
components, then y(x^) and v(x^) are evaluated at the 
points x^, 1 - 1,2,..., M and the resultant set of equations
is written in matrix form as

Y a = V (4.1.2)

i
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where

A

YT <*1> v u p

yT U 2)

< 111>

v(x2)

y T(xm > v(xM )

(4.1.3)

Using the above notation the general algorithm 

may be stated as follows:

Step 1. Assume xo , v > N, L, M given
2 . Evaluate f(x^) at an initial grid of points

Xjy i = 1,2, , M.
. Choose as the bascpoint x^ the point of the grid 

at which |f(x_)l has the smallest value.
4. Order the points by increasing magnitude of the

; f(xi), i.e.
I f (x .,,)I , i “ 2,3, ..../ (M"1)•

absolute value of f(x^), i.e.

! f(x1) i-H
0 , stop; else go to 6 
~1

5 . If I I g(xb )! I
6 . Calculate a = B Q  ̂R V, where B ,Q ;R and V a:e 

matrices defined by the model and data structure 
used. If Q is singular, set p = -g(xb ) and use 
Armijo's Subprocudure to generate a better point 
xb , set xb = xb and go to 4; else go to 7.

7. If the largest element of is greater than L,
set p = -g(xb ) and use Armijo's Subprocedure 
to produce a hotter point x%, set xb = x% and

go to 4 ; ^Iso go to 8 .
8. C a l c u l a t e  p, w h i c h  is t h e  s e a r c h  d i r e c t i o n  d e f i n e d

by t h e  m o d e l  b e i n g  u s e d .

9. If Ip" g (x, ) I > v , u s e  J.rmijo's S u b p r o c e d u r e  to
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calculate xK , set xb =• and go to 4; else 
set p = -g(xb ), use Armijo's Subprocedure to 
calculate xK , set xb = Xg and go to 4.

Armijo's Subpiocedure 
Step 1. k =- 0 , a ,cc (0,1)

• x i = xb + “kp V ip3. If f(xb) - £ (xb ) - 0. a p g(xb ) < 0, return?
else set k - k + 1 and go to 1 .

Certain operations in the algorithm will now 
be more fully described before applying the algorithm to 

specific Interpolation Methods.

In Step 2 of the algorithm the points of the
Initial grid may be chosen in many different ways. They
may be any set of points for which x, f(x) data is avail
able, provided that their location uniquely defines the 
model, or they may be chosen in a methodical manner so 
as to represent the region around the starting point as 
well as possible. One possibility would be to have the 
grid include the initiv1 point, x q , and M-l other points
chosen from the set x + c. + ©i,, j/k, = 1,2 ,....n, j j^k,o j k.
where the e ^ c a n  either be zero or vectors along the
co-ordinate axes. Winfield [20] suggests that the initial
grid 1,e spread over the largest region in which the 
modelling is uffee live, but since an estimate of this 
region is not readily available, the initial nrid may only

1



include points wL ich are very close to the initial point.

In Step 4 the points of the grid arc kept in 
a table in the order of increasing absolute function 
value. Ey ordering the points in this way at each itera
tion the new trial point is included as the basepoint in 
the first place and the point in the last place (having 
the largest absolute function value) is excluded. This 
results in a data table having a constant number of M 
entries only. Winfield [ 20] suggests a different way 
of using the data table. The co-ordinates of the points 
of the grid are defined relative to the basepoint, the 
points are ordered by increasing Euclidean distance from 
the basepoint and the data table has nearly 1M entries.
This method uses more memory than the m, hod we have 
presented, but has the advantage of being able to re-use 
points which are not among i M-l closest points, but 
have not been discarded. This might occur, when, after 
a series of consecutive trial points have failed to reduce 
£(x), new successful! trial points are located again, the 
basepoint moves and the growing sphere of validity will 
enclose some of the former failure points, which now are 
active again, i.e. amongst the M-l closest points, and 
serve to ward the search away from the previous unsuccess
ful] area.

Since it is very costly to restart a grid-to-grld 
algorithm (an entire new grid of pointy has to be chosen), 
in Step 9, if I p g(x^)| < r?, which means that che search



direction p will not give a reasonable reduction in func
tion value, we u l j Armijo's Subprocedure with p = -g(x^) 
instead of the p previous 1 chosen. As mentioned in 
Chapter 3, Armijo's Rule is very useful to ensure descent 
and convergence, and is therefore used in this conceptual 

algorithm.

The two major differences between point-to-point 
algorithms and grid-to-grid algorithms are as follows:

(1) In the grid-to-grid form, the matrix Q is not
inverted recursively. This means that, at each 
iteration, a new set of equations is solve-j, 
leading to much computational work.

(ii) In the grid-to-grid form, the algorithm is started 
by an initial full grid, not one point only, and 
therefore, if the model is the same function as the
objective function, the method will converge in 1
step instead of N steps for the point-to-point form. 
If M = N, the total number of function evaluations 
will, however, be the same for both forms.

It is important to note that the above general 
algorithm cannot be adapted to Winfield's method [20] for 
the reason that it has no search direction, but solves a 
constrained minimization problem instead, Most other 
Interpolation methods, however, do fit into the general 
algorithm and the forms of p, B, Q, R and V depend on the
actual method and data structure used.
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Following is a list of some Interpolation methods 
for the exact data structure case where M = N and 

B I 
Q = Y 
R = I .

Note that in this case Q is an N x N square matrix.

(i) Jacobson and Pels [ 21] - In this algorithm modified 

to grid-to-grid form, we have
t"

V 6

V,

where : N - n + 2

g(x) 
f(x)

'N

(4.1.4)

A T , . , v = x g(x) (4.1.5)

and
aT - [PT , 7, w]

a .p =-• a (X

(4.1.6)
(4.1.7)

where P is an n vector of the location of the
minimum, 7 the degree of homogeneity, w the scaled
value (7 w) of the minimum, <0 the actual value of the
minimum, and a is a coefficient such that I ol — 1

T ^and its sign is choson so that o (xb - P) g(xb ) < 0 . 
(it) Q.G.M. (See Chapter 3) - Since the Q.G.M. in Chapter 

3 was presented in point-to-point form it also must 
be modified slightly to fit the general algorithm.

L
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and

The definitions of Y, V and p in this case are :
r rn —|
y jxi) -fu,)-

A _ T AY » z V =

f < V

where
N = |(n+l) + 1

Z X Ay (x) =

a A

%gn (x)
g 1 (x)g2 (x )

9l (x)gn (x) 
g2 (x)g3 (x)

1

S11

S 12

fa23

Sn~ l ,n 
cv

(4.1.8)

(4.1.9)

(4.1.10)
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and

The definitions of Y, V and p in this case are

ryT (x1)

yT(Xw)

, V

f ‘x !>

ftx^)

where
N |(n+l) + 1

^g1 ix)

y(%) =

A « -

Wn"(x)
g l(x)g2 (x)

gl (x)gn lx) 
g2 (x)g3 (x)

gn-l<x >9n(x> 

. 1

S11

S12

^23

B2n

sn-1, n 
to

(4.1.8)

(4.1.9)

(4.1.10)
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(ill)

p = or S g(x.)
where

S = (sij)

Is the minimum of the function and a is a coefficient
Tsuch that I o I = 1  and its sign is chosen so that 

g(xb ) < 0 .

A special case of Jacobson and Pels [21] - This model 
is a special case of Jacobson and fels' method, where 
7 , the degree of homogeneity, is taken as 2. This 
turns their model into equation f2 .3.7), which is 
derived from a quadratic mode„. For this special case 

Tl

where

Vv'

N = n + 1 

g(x)

'N

, v = xT g(x) - 2f (x)

(4.1.12)

(4.1.13)

aT - [/?T , w] 
A

(4.1.14)
(4.1.15)p  “ a (xb - |1 )

w h e r e  fi is a n  . e c t o r  o f  t h e  l o c a t i o n  o f  t h e  

m i n i m u m ,  w  th e  m i n i m u m  v a l u e  o f  the f u n c t i o n  a n d  o 

as ii s e c t i o n  (i).
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p = o S g(x ) .i.i.11)

where
S = (s.j)

is the minimum of the function and a is a coefficient
Tsuch that I o| ~ l and its sign is chosen so that pi 

g(xb ) < o.
(ill) a special case of Jacobson and Pels [ 21] - This model 

is a special case of Jacobson and Pels' method, where 
7 , the degree of homogeneity, is taken as 2. This 
turns their model into equation (2.3.7), which is 
derived from a quadratic model. For this special case

Y =

T
V1

A, V =

T
yN VN

(4.1.12)

where
N = n + 1 

g(x)

y =
and

, v = xT g(x) 2f (x) (4.1.13)

(4.1.14) 
(4.1-15'p - o (xb - in

where P is an n vector of the location of the 
minimum, w the minimum value of the function and a 
as in section (i).
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4.2 Undordetormincd Data structure

In thin case M < N and the nquaj lor 
y a =■ V (4.2.1)

has an infinite number of solutions. Two different approaches
have been used to obtain a unique solution lor a :

(i) To use the minimum norm solution (See Appendix A ) .

If Rank (Y) = M, then
a = YT (Y Y1')"1 V (4.2.2)

and in Stop 6 of the algorithm of Chapter 4.1 we will

have
B

„T
(4.2.3)

Q Y Y* (4.2.4)
R = i (4.2.5)

If Rank (Y) < M, in the general algorithm, we use
Armijo's Subprocedure although another possibility is 
to use the pseudoinverse as follows:

a = Y^ V (4.2.6)
For methods to calculate the pseudoinverse see Penrose 

[ 28) and Golub and Kahan [29].

One of Penrose's methods is based on the 
fact that any mati i x can be part itioned in the form: 

A B
Y

C A~ 1 B
(4.2.7)

where A is a non siigular sub-matrix whose rank is
equal to t h a t  of the  whole  matrix. Using this partitioning

it is easily verified that

I
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,P (4.2.8)

where
(4.2.9)

Golub and Kalian's idea is to m e  the singu
lar value decomposition of a matrix, which is

and U and V are unitary matrices and % is a rectan
gular diagon .1 matrix of the same size as Y with 
non—negative real diagonal entri s which are called 
the singular values of Y . Using this decomposition 

it can be shown that

where 21 is obtained from 2 by replacing each posi
tive diagonal entry by its reciprocal.

(ii) The second approach is to use the fact that if M < N 
then there are (N—M) unknowns which may be chosen 
arbitrarily. Once these have been chosen, we are 
left with a set of M equations with M unknowns, which 
is solved easily. In other words (N—M ) components 
out of the N components of ct are chosen arbitrarily. 
For example if M — N - 1, we need to choose one 
component and give it an arbitrary value. The most

Y = U 2 V,T (4.2.10)

(4.2.11)

reasona1 Jo choice for this in the three Interpolation 
Methods mentioned in Chapi,or 4.1 is w or to. The 
minimum value or scaled minimum value is of no large
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significance in choosing the search direction p and can 
therefore he taken arbitrarily as zero, for example.
If M < N - 1, this approach is not of much practical use 
for Jacobson and Pels' method because it essentially boils 
down to a random choice method. However, for the Q.G.M. 
methodf the components of « are the elements of the matrix 
S and co, so it is possible to choose the components of a 
so that S becomes a diagonal matrix. This method is possi
ble, of course, only when M - n or M " n+1 depending on 
whether w is left as an unknown or not. If M < N - 3 and
M ^ n or M ^ n+3 then, again,it is very difficult to find
criteria for the choice ov elements of a..

The above approaches may also be applied to 
Winfield's method (See Appendix B.2). This method is al
ready in grid—to—grid form and the only modifications 
necessary are to Steps 1 and 4 which become :

Step 1 : Evaluate f(x^) at an initial grid of M points 
Step 4 : Compute A,b,d (altogether N = ^(n+1)(n+2) unknowns)

so that hy-'1 A y. + b^ y . + d = f (x^) , j - I r . . . r M.j a J •*
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significance in choosing the c e m c h  direction p and can 
therefore be taken arbitrarily as zero# for example.
If M <■ N - 1/ this approach is ir t of much practical use 
for Jacobson and Pels' method because it essentially boils 
down to a random choice method. However, for the Q.G.M. 
method, the components of a arc the elements of the matrix 
S and w, so it is possible to choose the components of a 
so that S becomes a diagonal matrix. This method is possi
ble, of course, only when M = n or M — n+1 depending on 
whether w is left as an unknown or not. If M < N - 1 and 
M ^ n or M ^ n-U then, again,it is very difficult to find 
criteria for the choice of elements of a.

The above approaches may also be applied to 
Winfield's method (See Appendix B.2). This method is al
ready in grid—to—grid form kind the only modifications 
necessary are to Steps 1 and 4 hich become :

Step 1 : Evaluate f(xn) at an initial grid of M poin*
Step 4 : Compute A,L,d (altogether N = h (n+1)fn+2) unknowns) 

so that Yj[ + y^ + d = f (xy) , j = 1 » . . . , M.
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4.3 O v c r d e t e r m i n i ’d D a t a  S t r u c t u r e

The overdetermineci data structure case is defined
by having M > N, which gives the equation 

Y a - V (4.3.1)
a solution only if V is in the range of Y. If V is not in 
the range of Y, which is usually the case, we shall seek a 
least squares solution (See Appendix A ) .

The least squares solution is unique and can be
found in one of two ways :

(i) If Rank (Y) = N, then

If Rank (Y) < N, we use Armijo's Subprocedure to 
generate a better point in he general algorithm.

(ii) The second method is to use the pseudoinverse to find 
a, as is described in Chapter 4.2.

the overdetermined data structure case. In order to fit a 
mode 1 exact.]y in the objective function, if a has N components, 
we need N points. Therefore, if M > N, we can choose a 
certain number, say K, of grids each having N points. We 
then obtain K models and solve K sots of N equations with N

(4.3.2)

and we substitute in Step 6 of the general algorithm 
of Chapter 4.1

B = I (4.3.3)
TQ = Y Y (4.3.4)

(4.3.5)

A totally different approach is also suggested for

L
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unknowns. This gives us K different relations for a and 
we can either choose the solution which gives the best new 
trial point or we can try a linear combination (possinly 
weighted) of the different minima supplied by each model.

If we choose the best minimum supplied by the K 
solutions of a, the neneral algorithm of Chapter 4.1 has to 
be modified from Step 6 onwards as folio vs:

Step 6 : Calculate = It V^, 1 = 1, ..., K
where K is the number of grids and It , Q^r It and 
V. are matrices defined by the model and datai
structure used. If any of the 1s are singular, 
disregard that grid. If all Q^'s, i ~ 1, ...., K 
are singular, set p = -g(x^) and use Armijo's 
Subproccdure to generate a better point x$ , 
set -• Xj, and go to 4; else go to 7.

7 : If the largest element of all a^'s is greater than
L, set p = -g(x^) and use Armijo's Subprocedure
to produce a better point x^, set x^ - x̂  and go 
to 4; else go to 8 .

8 : Calculate p^, i = 1, ...., K where p^ is the search
direction for each grid.

T9 : If any I p^ g (x^) I < j» , disregard that grid. If all
I pT g(xb )l < n t i ^ 1, .. .., K set p = -g(x^) ,
use A m i  jo' a Subpincedure to calculate x set
x^ - x% and go to 4; else use Armijo's Subprocedure
K times to generale x,, , i - 1, ...., K and go

i
to 10.



10 : Calculate f(x ), i ~ 1, „..f K, find the xv , say
i

x„ , for which I f (x. ) I < I f (x» ) I , i = 1, . . , K,
j j ij ^ 1 , set x^ = x^ and go to 4.

j

An even bettor point than the x^ of Step 10 can
jusually be obtained by choosing x,, as

K i
Z- x „ (4.3.6)

Kj k=l K Kk

K
where the Z, 1 s are weights such that. % Zv = 1. The weights

k=l k
may be chosen so as to give points closer to x^ more influence 
or larger weights may be given to points having smaller func
tion values.

Whichever way this n thod is used, it becomes very 
unwieldy, (especially if (M - N) > 1) if wc choose

K = (4.3.7)

where is the total number of combinations of choosing 
groups of N numbers out of a fetal of M numbers. Therefore, 
we suggest choosing not more than four or five different grids. 
They may be chosen arbitrarily or an ittempt can be made to 
have each model represent a different region in the n dimen
sional space surrounding the initial point.
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CHAPTER 5 :

CONV'IRllENCE OF THE ALGORITHMS

It was proved in Chapter 3 that the Q.G.M. algo
rithm possesses the property of quadratic convergence, i.e. 
on a quadratic function it convergences in a finite number 
of steps, N, where N = ^(n+1) + 1 . Also, in Chapter 4, it 
was shown that the three algorithms presented in grid-to- 
grid form will converge in one step if the model is the 
same as the objective function.

In this Chapter we discuss the conditions and 
models used for the convergence of these algorithms for 
general functions and, in the second section, supply a proof 
of convergence of the Q.G.M. algorithm.
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5.1 Algorithm MnrtolH and Convergence Conditions

Except for Winfield's method [ 20] , all other 
algorithms in Chapters 3 and 4 use the iterative formula

*1+1 “ xi " V i  (5.1.1)

where is the step size or steplongth, in the search 
direction and its sign is chosen so as to ensure descent. 
Different optimization methods using (5.1.1) will need 
different conditions stipulated on the objective function 
f, on X and on p in order to prove convergence. The require
ments on f may be that it is continuously differentiable 
or even twice continuously differentiable. The conditions 
on and X ̂  may bo Luose which choose X ̂  to minimize
f(x. + X p .) or may use A r m i j o ' s  Rude [ 22] , w h i c h  c h o o s e s  

1 k. x
X, = y 1 where k. is the smallest integer k > 0 that satis- 1 i
fies

f (xi 4 0k Pj.) - f(xi) - ok a p .1 g(xi ) < 0  (5.1.2)

for some fixed v 0 -• (0,1) . These are just a few examples of 
conditions which may be imposed on f, X^ and . However, 
a number of these conditions are common to most, algorithms 
and it would be wise to provide a systematic approach to the 
study of convergence properties of algorithms.

This is done by Polak 127] and others, who make 
use of models for algorithms. A whole class of algorithms 
is eprosentod by a generalised model which is pioved to 
be convergent under certain assumptions. The advantage of 
this idea is that if an algorithm is found to fit a certain 
model, it need onl^ fulfill the conditions oi that model to

I
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be proved convergent and, therefore, a separate proof of 
convergence is not necessary for each algorithm.

The algorithms we are concerned with fit into one 
of Polak's models and it is this one which we will present 
to solve the abstract problem:
Given a closed subset T of a Banach space B, construct 
points in T having property P.

Algorithm Model
TLet A be a mapping from T to 2 , the set of non-empty sub

sets of T and c be the stop rule, a mapping from T to R*.

Step 0 : Compute x rT
1 : Set i = 0
2 : Compute a point y c A hr )
3 : Set x . , , -- yXH 1 J
4 : If c (x4 +1) > c(x^) , .itop; else set i = i + 1

and go to 2 .

This model is presented in a very generalised 
form. The stop rule c, for example, might be the objective
function or the norm of the gradient. Points having property
P are usually called desirahlo pninls, which is more general 
than stationary point and could include a saddle point, a 
root of a system of equations or a stability point of a 
differential equation.

The convergence theorem for this model is as follows: 
Theorem I.1 
Suppose that



»
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(i) c(x) is either continuous at all non-desirable points
x t T,or else c (x) is bounded front be low for x e T.

(ii) for every xc T which is not desirable, there exists an
e (x) > 0  and a a (x) < 0  such that

c(x") - c(x') <o(x) < 0
for all x' e T such that II x' - x II < c (x) and for all x"e A(x').

Then either the sequence |x, \ constructed by the
algorithm model is finite and its next to last element is 
desirable, or else it is infinite and every accumulation point 

of { x^ 1 is desirable.

Proof See Polak [ 27]

In order to prove convergence of a particular algo
rithm, the mappings c and A must be determined, the property 
P must be decided upon and the existence of accumulation points 
it st be uuranteed, A proof of convergence for their method 
was supplied by Jacobson and Pels [21], and since trie proof 
applies to both the grid-to-grrd and point-to-point forms, 
we will restrict ourselves to a proof of convergence for the 

Q.G.M.
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5.2 Proof of Convergence for the Q.O.M.

In order to apply Theorem 5.1 and the model men
tioned in the previous section to the Q.G.M. method, we make 
the following definitions and assumptions:

(i) x, is desirable (has property P) if llg(xi)!l = 0
(ii) Let f(x) correspond to c(x) in the model

(iii) Let f(x) be cont. diff. in Rn
(iv) xQ e Rn is chosen so that V = (xl f (x) < f(x0 )}is compact

(v) W > sup II g(x)ll ,x f V
x

Theorem 5.2
Let (x^ } be the sequence in Rn generated by the 

Q.G.M. algorithm presented in Chapter 3. Then either the 
sequence is finite a .d terminates a • a desirable point or 
else it is infinite and every accumulation point x of \x± ] 

is desirable.

Proof
If the sequence is finite, the test for llg(x)ll = 0 

ensures that the last point is desirable. In the case of an 
infinite sequence .<•' net1 1 to prove that conditions (i) and
(ii) of Theorem 5.1 arc satisfied.

Clearly, ii) is satisfied by the assumption that 

f(x) is continuous.

To prove condition (ii) satisfied, we note that



either Pi = -■gfxi) or p.. = S g(% ) where I a J  = 1  and
Tits sign is chosen so that p^ g(x^) < 0 .

Clearly, in either case

-Pi'1 g(xi) > 0 

and since the algorithm ensures that

I pjT g(xi)i >

we have
-piT g(xi) > 'i

and because of assumption (v) we can choose an e > 0 such 

that
e llg(x.)ll2 < t}

T 2herefore -pi g(x^) > c II g(x^)ll

Note also that
II p̂ ll “ us g(xi)li

and from assumption (v) and the check in the algorithm that 
the largest element of a or S is not greater than L, we see 
that there exists an LI > 0 so that 

II Pill < LI

Define
A(x) = | y = x + 6 [ k (x,p) ] pi p r D(x) | 

where 6 [ k (x,p) 1 is the largest fi, 0 6 < 1 generated by

the Armijo PuLprocedure, to satisfy

f (x + S[ k(x,p)] p) - f (x) - f>[ k(x,p)]u pT g(x) < 0

and where



D (x) = {pi II pH > LI and -p1 g(x) >u llg(x)ll^}
For x non-dcsirablo wo define

A[ (x,p)| = f(x+X(x,v)p) - f(x) -a X(x,p)pT g(x) 
Using the moan value theorem

A[X(x,p)] -- -[ pT g(x) - pTg ( H  - (j~u)pJ g(x)]X(x,p)

< -[ pT g(x) - p1 g ( U  + (l-“ )c II g(x)ll 2] X (x,p) 

for $ e [ x,x + X (x,p)p]

and for all p eD(x).
Consider

A[ X] - -X(x,p)[p1 g(x) - g(%) + (I- } g'I g(x)!l 2l
where p e d = { pi I pH < 1-1 { 
and 5 e [ x,x+X(x,p)p] , x eRn
Since HpH is bounded and j(x) is continuous, there exists a 
X fx) > 0 such that

A[ X (x) I < 5 (x) < 0 for nil p e l )
Since D(x) is a subset of D

A[ X (xj ] < 6 (x) < 0 for all p e D(x)
By continuity of g(x)

-X(x)|pT g(x‘) - pT g (i 1) t (l-« )c II g(x' )ll 2] <

Thercfore
-X (x)[pT g(x') - pT g(|') + (l-tt) lig(x')!l2] < -

for all p e D end for all x 1 e Is(x,c(x))
This imp1ic■ s that

f (x 1 + X (x ) p ) - f(x') - X (x)"p^ gfx')

for all x 1 c B(x,c (x)) and for all p r l)(x')
From our definition of A(x) we have that



S f k U '  ,p)] > X (x) where

f (x'-hSl k(x' ,p)] p) - f(x') - 6[k(x',p)]n pT g(x')

Therefore

f(x'+6[k(x',p)]p) - f(x') < M  k(x' fp)]« pT g(x')

< X (X) ti pr g(x')

< - X (x) a I! g(x' )ll 2

< a X(x) “ !1 g (x) li2
2

for all x 1 e B(x,e(x)) and for all p e D(x')

thus satisfying the second condition of Theorem ’>.1.
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CHAPTER 6 :

COMPUTATIONAL RESULTS

The; easiest, and perhaps most fruitful, way to 
test the effectiveness of an algorithm is to use it to solve 
test problems and then compare it with other algorithms.
For this comparison to have any meaning, some criteria for 
evaluation must be established. This is done in the first 
section of this Chapter and following this is a list, in the 
second section, of "classical" test functions, which, because 
of their properties, arc used to test the algorithms.

In the third section we present the results of 
using our algorithms to solve the test probiems and compare 
these algorithms amongst themselves, for a number of diffe
rent data structures, and to other standard minimization 
techniques. We end the Chapter by presenting some conclu
sions based on the numerical results.
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b . 1 Test Criteria

The points of interest when trying to measure the 
performance of an algorithm are the following:

(i) Robustness - success in obtaining an optimal solution, 
to within a certain precision, for a wide range of 
problems.

(ii) Number of function evaluations - including evalua
tions of the gradient vector and Hessian matrix.

(iii) Computer time to termination to within the desired 
degree of precision.

(iv) Simplicity of use - Time required to introduce data 
and functions into the computer program.

Not only are these properties difficult* to measure, 
but the problem is complicated further by the fact that some 
of these properties depend to quite a large extent on how 
the algorithms arc programmed for the computer. Different 
techniques of solving simultaneous equations, tests of 
matrices for singularity, reset conditions and the like can 
Influence the performance of an algorithm greatly. Since 
the details of programming affect mainly properties (iii) and
(iv), it is difficult to use them as practical criteria for 
evaluati ng algor ithms.

C o m p u t e r  time to t e r m i n a t i o n ,  p r o p e r t y  (iii), c o u l d  

b e  an e x c e l l e n t  c r i t e r i a  for e v a l u a t i o n  if o n e  c o u l d  e n s u r e  

t h a t  t h e  t y p e  o f  c o m p u t e r , th e  i n p u t / out i m t  r o u t i n e s ,  the 

m e t h o d  o f  t i m e - s h a r i n g ,  a n d  t h e  mot h o d  of c o d i n g  t h e  a l g o r i t h m s  

a r e  a l w a y s  t h e  s a m e  f o r  d i f f e r e n t  algorithm!;. T h e n ,  if an
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algorithm ha;; fewer function uvaluaV.ionn but more computa
tional work fio.lva.ng equation;.; the total time taken would bo 
a good measure of its effectiveness compared to another 
algorithm which has many more function evaluations but no 
inversion of matrices.

Since it is virtually impossible to use all algo
rithms in the same way and under exactly the same conditions 
and because this kind of information is usually missing from 
reports in the literature, the commonest criteria used are 
properties (i) and (ii). Criterion (i) is easily tested 
by solving as many difficult test problems as possible.
If the test problems are chosen to have especially flat 
plateaus or steep valleys one can hope to predict the 
general effectiveness of an algorithm in solving other 
problems by its performance in solving these test problems. 
Criterion (ii), which is used in this Chapter, is also 
easily tested but has a number of disadvantages which should 
be noted.

First of all, when evaluating the number of function 
evaluations, the evaluations of the gradient: vector and even 
the Hessian matrix must be included, and a decision as to 
how these are to lie weighted relative Lo the evaluation of 
the objective function itself must be made. Secondly, the 
number of function evaluations may be reduced by different 
methods such as mat rix operations, lies. " st i c operations and 
so forth, so that in geneial a comparison based solely on
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function evaluations can easily be misleading.

In our case, however, all algorithms except that 
of Winfield [ 20] use similiar methods of solution and, 
therefore, a comparison based on function evaluations is a 
reasonably good indication of their performance. Since our 
algorithms do not evaluate the Hessian matrix we need only 
consider the weighting of the gradient vector evaluation. If 
f(x) is a function of n variables, then the gradient is an 
n vector, and, therefore, each gradient vector evaluation 
is taken as n function evaluations. For the remainder of 
this Chapter the term "function evaluations" will refer 
to the sum total of objective function and gradient, vector 

evaluations.

An additional factor which must be common to all 
algorithms in order to make the comparison meaningfull is 
the termination criteria used to stop execution. Although 
this is not a measure of performance, it depends on the 
required degree of precision, which is associated with the 
concept of robustness. Algorithms may be designed to termi
nate on achieving a given small value for one of the following.

a) A fractional change in f(x)
b) A fractional change in x
c) The norm of the gradient

Each of the above, if used alone, has its disadvantages,
a) could terminate on a flat plnteuu, b) on a steep slope and 

c) at a saddle point.

.4
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In our case, however, all algorithms except that 
of Winfield [ 20] use eimiliar methods of solution and, 
therefore, a comparison based on function evaluations is a 
reasonably good indication of their performance. Since our 
algorithms do not evaluate the Hessian matrix wo need onl% 
consider the weighting of the gradient vector evaluation. If 
f(x) is a function of n variables, then tie gradient is an 
n vector, and, therefore, each gradient vector evaluation 
is taken as n function evaluations. For the remainder of 
this Chapter the tern "function evaluations will refer 
to the sum total of objective function and gradient vector 

evaluations.

An additional factor which must be common to all 
algorithms in order to make the comparison meaningful! is 
the termination criteria used to stop execution. Although 
this is not a measure of performance, it depends on the 
required degree of precision, which is associated with the 
concept of robustness. Algorithms may be designed to termi
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a) A i ractional change in f(x)
b) A fractional change in x 

The norm of the gradient

Each of the above, if used alone, has its disadvantages. 
a) could terminate on a flat plateau, b) on a steep slope and

c) at a saddle point.

1
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Therefore, the uniform termination criteria we 
use, includes Doth a) and c) and the algorithm terminates 
when both criteria are fulfilled.

6.2 Test Functions

The following test functions have been chosen 
for the reason that they an among the most common problems 
used in rhe literature to ne performance of algorithms.
Although numerical comparison are of limited value when 
applied to problems using a single initial point, most 
problems mentioned in the literature have "classical" starting 
points and it ;r these we will use mostly. In the following
list the starting point will be denoted bv , 'he minimum
by xm and the minimum function value by f(x ;

1) Rosenbrock's Function (Fletcher-Pawol1, 1963)
f(x) = 100 (Xg - Xl2)2 e (1 - x ^ 2

x0T = (-1.2, 1.0)

xmT » (1.0, 1.0), f(xn ' -- 0

This function has a steep curved vallev along the curve

x2 = x l2
2) Dual e (191.0)

f(x) = [ l.b-Xj (l-x2)] 2 + [ 2.25~> ,, (l-x22)] 2 + [ 2.625-x, (l-x23)]
xoT - (0.1, 0.1)

xmT = (3.0, 0.5), f(xln) - o

This function has a narrow curving valley approaching 
the line = 1
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3) Helical Valley (Fletchcr-Powell, 1963)
f (x) = 1001 (x3-100) 2 + (r-1) 2J + x3*

where

2rr0

-1 ^2 tan \-=-)
X1

, < 0

ir + tan 1 (“ •) , x 3 < 0 
1

xo

r
T
>
T

4 x22>i

xm ‘L = (1,0,0), f (xm ) = 0

4) Quartjc with Singular Hessian (Fletcher-Powell, 1963)

f(x) = (x1+10x2)2 + 5 (x 3~x 4)2 + (x 2~2x 3)4 10(x 1-x 4)2
T

o = (3, -1, 0, 1

xm (0,0,0,0), f(xm ) = 0

This function has a fiat minimum.

5) Four Dimensional Banana (Colev!lie, 1968)

f(x) = 100(x12-x2)2 + (1-Xj.) 2 + 90 (x32-x4) + (l-x3)2 + 

10. If (x2-l)2 + (x4-l )2] 2 + 19.9(x2-l) (x4-l) 

xo'1 = (-3, -1, -3, -1)

x_m (1,1,1, J) , f (xju) - 0

This function has a banana shaped ridge and is a four 
dimensional vers ion of Kosenbrock's function.

I
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6.3 Results and Comparisons
In order to simplify the presentation of our 

results it is necessary first to introduce some parameter: 
and notation:

M - Number of points in grid
N - Number of unknowns necessary for

fitting certain model.
- The i th unknown in list of N 

unknowns.
Ax - Parameter indicating grid size.

It is the approximate distance in n
space of points cf grid from the 
starting point xo

6 3, fi 2 Stop criteria.

METHOD 1 - The Q.G.M. in point-to-point form (See algo
rithm in Chapter 3.2).

METHOD 2 - General grid-to-grid algorithm (See Chapter
4.1) .

METHOD 2A - Method 2 applied to t.he Q.G.M. (See Chapter 
4 - Pages 44-40).

METHOD 213 Method 2 applied to Jacobson and Pels' algo
rithm (Cet! Chapter 4 - Pago 44) .

METHOD 2C - Method 2 applied to the special case of
Jacobson and Pels' algorithm where 7, the 
degree of homogeneity,is set equal to 2 (See 
Chapter 4 - Page 46).

METHOD 2D - Winfield's SQM method (See Appendix P.2).
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FUNCTION i - The i th function in the list of Chapter
6 . 2 .

L - Upper bound of elements of a in Methods
1 and 2.

i? j,/ n - Parameters used in Methods 1 and 2 respec
tively to ensure that the chosen search 
direction loads to a reasonable decrease 
in function value.

V 2 " Parameter used in Method 1 to ensure that
Y and a can be updated using the Sherman-
Morrison formula.

The results presented in this section have been 
obtained from implvmontable algorithms, as opposed to the 
conceptual algorithms described in Chapters 3 and 4. The 
two major differences between the conceptual and implement- 
able algorithms are:

(i) In the implemontablc algorithm the stop criterion is 
iot II g(Xj)II =■ 0 and it is, as mentioned in section 
6.1, a combination of

f ( x i4 1 ) “ f(xi> ~ 6 i (6.3.3)

and
Ii9(xi+1)l! v A g (6.3.2)

T h e  a l g o r i t h m  t e r m i n a t e s  o n l y  if b o t h  (6.3.1) a n d  

(6.3.2) arc s a t i s f i e d .

(if) In order to facilitate the proof of convergence the
conceptual algorithms always use Armijo's Subprocedure



to ensure descent. The intplcmicntable algorithms,
however, calculate the minimum of the fitted model
and if this point produces a lower function value,
it is chosen as the new trial point Only if
this is not the case, is Armijo's Subprocedure used
to find x.,, such that descent is ensured, i+l

All computations were performed in double pre
cision, using FORTRAN IV, on the IBM 360/50 computer of 
the University of the Witwatorsrand and the same techniques 
of solving linear equations, matrix operations and so on, 
were used so as to make the comparison of resu.1 La using
function evaluations as meaningful as possible. The values

-8of the parameters ware chosen as follows: 6 = 10 ,
5 2 = 10~4 , L = 1040, t) = 7Z] = 10"*16, qg = 10™24. All 
tables give the total number of function evaluations (i.e. 
function plus gradient evaluations) necessary to reach the 
minima of tnc test functions from the respective starting 
points mentioned in Chapter 6.2.



' ii)i 6 3.1 prcscntij the result:.- of Method X, 
and/ for comparison/ includes the results of Jacobson 
and Oksman's algorithm and the IBM System/360 Scientific 
Subroutine Package version of Fletcher and Powell's 
algorithm. The comparison is included in order to give a 
rough idea of the performance of Method 1 but, as mentioned 
previously, is of little practical value because of the 
nonuniformity of the different algorithms.

The IBM Fletcher Powell routine performs poorly 
for Test Function i because it uses a linear search which 
brackets the minimum before using cubic interpolation and 
anot ior figure quoted in the literature is 240. Since 
Method 1 is essentially a derivation of Newton's method 
using a quadratic model its results are generally of the 
same magnitude as that of Fletcher and Powell but decidedly 
worse than these of Jacobson and Oksman, who use a homo

geneous model.



METHOD 1
JACOBSON

AND
OKSMAN

FLETCHER
AND

POWELL

1 258 207 501

3 259 136 304

4 487 230 400

5 968 675 805

TABLE 6.3.1
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Tables 6.3.2 to 6.3.5 show the Influence of 
initial grid size (represented by Ax) on Methods 2A to 
2D for the case where M - N. The different methods were 
run for more grid sizes than those presented in the Tables 
and it was found that it is very difficult to establish 
criteria for choosing the optim.i 1 grid size. Although 
Winfield suggests choosing a large initial grid w  found 
that usually the smaller grids were better conditioned 
and more robust. Large grids tend to become unwieldy and 
complicated from the computational point of view and when 
using Method 2 on a new unknown Test Function it is hard 
to tell, without previous knowledge of the function, just 
how large the initial grid should bo so as to include the 
minimum.

Another factor which affects the results of 
Method 2 is the choice of the points of the grid. Even 
though Ax represents the size of the grid ,the points them
selves may be chosen in many different ways within the 
frame of a given Ax. Tables 6.3.2 - 6.3.5 all use the same 
initial grid for each Test Function and although Methods 
2A-2D wore tried with dif foront initial points for the same 
Ax, the results did not differ greatly from those given in 
the Tables.



100 10000.01 100.001

272 350 299 278276 36 3

179191185 143 176197

147145 329408 425315

87770904?594 823 672

1693 1310 16511705 1587 1403

TABLE 6.3.2 - METHOD 2A , M ~ N



0.00 3 0.01 0.1 10 300 1000

1 248 265 239 234 273 259

2 156 123 149 167 174 153

3 242 259 290 228 220 220

4 440 353 369 494 491 595

5 1364 1486 
- _

1198 1077 1098 1230

TABLE 6.3.3 - METHOD ?R, M = N
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0.001 0.01

T ~

0.1 10 100 1000

i 214 228 197 243 279 253

2 1x4 125 133 159 149 141

J 332 274 299 293 348 203

4 532 983 511 745 790 960

5 1403 1239 1498 1321 1029 1386

TABLE 6.3.4 - METilOL 2C, N = N
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‘V \
0.001 0.01 0.1 10 100 1000

1 86 65 87 84 71 59

2 43 50 56 36 53 3 i

3 110 91 97 9 3 104 87

4 115 123 110 103 121 129

5 203 256 249 237 206
_

225

TABLE 6.3.5 - MRTITon 7D, M = N

I
II

1
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The effect of data structure size is presented 
in the following Tables. In Tables 6,3.6 - 6.3.9, if 
M < N we use equations (4.2.2) to (4.2.5) for Hie minimun 

norm solution, and if M > N we use equations (4.3.2) to 
(4.3.5) for the least squares solution. In both cases, 
when Q is singular Armijo's Subprocedure is used. Since 
small grids wore found to be the best to work with, Tables
6.3.6 - 6,3.9 present the results when Ax - 0.001, and 
the results for different size grids can be found in 
Appendix C.

For all Methods, when the data structure size 
varies (i.e. M is greater than, equal to, or loss than,
N ) , the best results are usually achieved when M = N.
This is also the case fo. different initial grid sizes 
(See Appendix C, Tables C.l - C ,4) and for equal grid 
sizes having different ..utial points. Better results 
than those achieved when M ~ N occur more frequently for 
the asos of M > N than for those of M < N, although there 
arc no consistent guidelines to the optimum value of M 
which produces the bust results. In addition it must be 
noted tvat even when the results arc better than those 
of the case M = N, the difference in results is not an 
appreciable one.

The general trend is that the number of function 
evaluations increases as M increases from the value of N 
and as it decreases from the value of N . In the latter 
case the increase is much more rapid and the systerns of

L



equations less stable although Q was never singular in 
any of the examples.

A factor which does not appear in the Tables 
is the amount of computational work involved in t^i^ing 
the sets of simultaneous equations. When M > N the sets 
of equations are always N x N and therefore as M increases 
there is no increase in the amount, of computational work. 
However, when M < N, the sets of equations are M x M and 
as a result, if M decreases, so does the size of the set 
of equations and the cc itational wo,.k. In fact this 
compensates only ilighL , for the large increase in the 
number of function evaluations. This can be illustrated 
by taking the ext e case where M = 1 and there are no 
sets of equations to be solved. In this case the number 
of function evaluations may be from twice to ten times 
the number when M " N, and the total t me aken to reach 
the minimum is also greater.



S n * M = 1 M = N-2 M - N-l M = N M = N+l M = N+2 M = 2N

1 608 943 750 276 283 314 329

2 653 834 581 197 192 204 199

3 1613 820 910 408 361 458 508

4 1108 698 415 59 4 581 671 856

5 2049 ]856
17,4

1705 1683 1765 1626

TABLE 6.3.6 - METHOD 2A, Ax = 0.001
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M = 1 M = N-2 M = N-l M “ N M - N+l M ~ N+2 M = 2N

rsn..;ssrT,'r.

i 1187 1434 264 248 236 281 417

2 1824 553 282 156 148 131 221

3 921 785 543 242 198 324 397

4 1483 497 640 440 475 543 637

5 2971 1946 1328 1364 1664 1981 2425

TABLE 6.3.7 - METHOD 2B, Ax = 0.001



1 7 
 ̂

i

M =• 1 M = N-2 M = N~ 1 

449

M = N M - Ni l M " N+2 M = 2N

941 941 214 230 247 302

2 865 865 3V9 114 158 139 188

3 2824 2951 414 332 326 426 508

4 25 133 541 532 593 660 812

5 2712 2643 1361 1403 1973 1994 2114

TABLE G. 3.8 - METHOD 2C, Ax =- 0.001



8 2 .

2NN+2N +1

127110153198235

614843171140

1681369 01102211913

19314803115131235 . 1^7

24519 8216203239334

TABLE 6.3.9 - METHOD 21), Ax « 0.00.1

I1
I-

>
I
II
I

1
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Table 6.3.10 presents the results obtained when 
the last coefficient, CN , in Method 2 was taken as zero for 
the case of M = N - 1 (This coefficient is d for tvinficld1 s 
Qua-" “atic Mode,! and w for the Q.G.M. and Homogeneous Model). 
Wh i comparing '"hose results with the results of Tables
6.3.6 - 6.3.9 we see that for the same case of M = N - 1 
this method is invariably better than the method presented 
in the abovementioned Tables but the performance is not 
enhanced when compared to the case of M = N even though the 
sets of equations in this case are (N - 1) x (N - 1) instead 
of N x N.

This method was also tried with different initial 
grid sizes with similiar results. For some of these diffe
rent initial grid sizes see Apra.ndix C - Table C.5.



Table 6.3.10 presents the results obtained when 
the last coefficient, , in Method 2 was taken as zero for
the case of M = N - 1 (This coefficient is d for Winfield's 
Quadratic Model and w for the Q.G.M. and Homogeneous Model). 
When comparing those results with the results of Tables
6.3.6 - 6.3.9 we see that for the same case of M = N - 1 
this method is invariably better than the method presented 
in the abovomcntioncd Tables but the performance is not 
enhanced when compared to the case of M = N even though the 
sets of equations in this case are (N - 1) x (N - 1) instead 
of N x N.

This method was also tried with different initial 
grid sizes with similiar results. For some of these diffe
rent initial grid sizes see Appendix C - Table C.5.
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V s ^
2A 2B 2C 2D

1 314 198 207 188

2 189 175 120 75

3 476 285 356 196

4 689 413 568 235

5 l 4 1524 1492 447

TABLE 6.3.10 - M = N - 1, C„ = 0,Ax = 0.001
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The method suggested .in Chapter 4.3, Pages 50-51 
of fitting several, say K, models at each iteration and 
choosing the one which produces the best minimum, was tried 
for values of K from 2 to 5. As K increases, the number of 
function evaluations increases because at each iteration K 
minima are tested for a decrease in function value. The 
computational work involved in solving the sets of equations 
also increases greatly for the reason that K sets of 
equations are being solved a1chough the number of iterations 
in most cases decreases as the result of a better point being 
found at each iteration. Even when K = 2 the number of 
function evaluations and the amount of computational work 
are so great as to render the method quite impractical.

I
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CHAPTER 7 :

CONCLUSION
Thu results of :ho previous Chapter show that 

the Grid-to- "r.i d Methods i.i:’ ■  ̂ attain the it opt d.ttial data
structure s"1 ■/ (- when t hu .t i di. contain the oxact numbor of 
points necessary to fit a certain model to a given objec

tive function.

For the overdo tormi noJ data structure, it was 
thought that an increase in data structure size would bring 
about a betcer approximation to the given objective function 
and eventually lead to a decrease in the i uuber of function 
evaluations. In fact, as M increases, the least-squares 
model does give a better approximation to the given function 
and a better search direction. The problem, however, is 
that at each iteration we seek a least—squares solution 
using a data structure of the same size. Even when a 
better point is found and included in the grid, M - 1 
points of the previous grid still remain in the new grid 
and as a result, the new 1 east—squares model will not diifer 
much from the previous one. The stopsizc therefore becomes 
smaller bringing about an increase in the total number of 
function evaluations,

In the underdid * a m i nod case, on the other hand, 
the search direction is rat ely a good one and therefore the 
increase in function evaluations for this case is much more 
rapid than in the overdct ermi nod case. When M N there
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are an infinite number of solutions and the criterion that 
was used to find a unique solution was that of minimum norm. 
This solution will, more often than not, provide a model 
which is not at all a good approximation to the given objec
tive function and load to a search direction which might 
be entirely erroneous. In fact, the very large number of 
function evaluations comes about mainly because of the many 
times Armijo's Rule is used as a result of a failure of the 
model to produce a good search direction.

In order to understand this phenomenon more fully, 
we shall discuss the different methods separately while 
noting that a minimum norm solution of. Ax ~ b will produce
i.hc "smallest- possible" x under the given constraints of 

t;.e equations:

(i) In Method 2A the x's are the elements of the inverse 
of the Hessian matrix and if these are always small, 
the stopsi.ic will be small and the search direction 
will not necessarily be a good one.

(ii) In Methods 2P. and 2C the x's are the actual independent 
variables of the objective function. This means that 
these methods are actually drawing the search towards 
the origin of the axes instead of in the direction 
of the minimum. Indeed, the reason for the excep
tionally good results of Method 2C on Test Function 4 
(Sec Table 6.3.8) is that this function has its 

minimum at the origin.
(iii) In Method 21) (hr x's arc the elements of the Hessian 

matrix. Since' the search direction and stepsir.e
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depend on the increase of the Hessian matrix, a 
small Hessian matrix usually r e s u l t s  in a large 
inverse, bringing about: a bad search direction.

Even though in seems that the optimal data 
structure size occurs when M = N we do not think that 
research in this direction should stop at this point.
While it must be admitted that the underdetermined dara 
structure does not scorn to be very promising unless a 
suitable criterion for a unique solution can be found, 
the overtie t err lined structure's results could perhaps be 
improved if a way could be found to make the data structure 
size more flexible. For example, if a good search direction 
and hence a better point is found, the data structure size 
should be decreased to allow the updated model to determine 
another good direction. It is in this cr a that we suggest 
that further research be directed.
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APPENDIX A - Genera.l ised Inversus

Lot A be a rectangular m x n matrix in the following:
1 . Definition - A generalised inverse of A is a matrix 

A9 of order n x m such that
A A9 A = A (A.1)

The generalised inverse is not unique.
2. Defini tion - A minimum norm inverse of A is a matrix 

Am of order n x m such that

3.

A Am A = A (A.2)

and (Am A)T - Am A (A.3)

The minimum norm inverse, is not unique.

Definition - A pseudoinverse of A is a matrix AP Of

order nxm such that
A A^ A = A (A.4)

(AP A)T = AP A (A.5)

(A AP )T = A AP (A,6)

AP A AP = AP (A.7)

The pseudoinverse is unique.

The above definitions can be used to find solutions 

to the set of linear equations give by
A x = b, A f Rn‘ X n , x c Hn , j.> f R1" (A. 8)

where Rank (A) - k .
The different possibilities are as follows:
(i) If m > n arv1 the sys.icm of equ.it ion is inconsistent,

there is no solution. Usually, however, in this case, 
a best approximate or least squares solution is used. 
This is defined by the point x* such that
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(ii)

IIA x* - bll < HA x - bll for all x c Rn 
Then the solution is

X* = b (A.9)
In the special rase where k - n this means that 
AT A is non singular and equation (A. 9) reduces to

X* = (AT A)™1 AT b (A.10}

If m ^ n or the system of equations is consistent, 
then the general solution to (A,8) is 

x* = A^ b + (I - A^ A)y (A.11)
ftwhere y is an arbitrary vector in P. ~.

This solution is not unique and unique solutions are 
obtained in the following ways:
a) If k = n (this is only possible if m - n) 

the solution becomes
x* = A * b (A.12)

b) If m < n and k = m, the dulion is
x* - AT (A AT )"1 b (A.13)

IJl
because in this case A A is non singular.

c) If m < n and k < m there are on infinite number of 
solutions and usually the minimum norm solution is 
chosen, rT’b 1 s is unique and is defined by a point

•fax such that
IIA x* - bll -- ||A x- tjll and II x*il < II xH for all

x* c Rn (A. 14)

The solut ion to (A.14) is
X* - Am b (A. 15)

Note that hP is a special case oi Am and, therefore 
equation (A.9) is also a solution of (A,14). Also, if

k
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k = n as in section a), we have
AP = am = a" 1

which makes equation (A.12) a ; ^ticular case of 
(A.9) or (A.15).

For further details of this material see Rao 
and Mitra [ 30] and Penrose [ 28] and [ 31] .
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APPENDIX B - Exist.ing Interpolation Mothodn

B. 1 Jacobson and Pc-.Ii: [ 2].]
Stop l. Assume x , i ? V 2 / N given

8.

sot ro -- 2, u q 0, i = 0
2. Compute po = -g(xo ) and use Armijo's Sub- 

procedure to calculate 5 .
3. Set x,

4. Set a
1
T

xo + 5 . A

X1T' ro' '"o1 ' Po If j = I-

5. If llg(xi^ 1jll “ 0, stop? else go to 6 

f . Calculate:

i+1

Vi+1 xitl g(xi+]1
1£ 5  g i  < flj, SGt Xo - X1 + 1 and

go to 1; else calculate:
T

>1+1 = >1 - Pi ei ( yi+/ Pi Jj.

"i+1 = "i +

*i+ir 5  °j
fi ej ( vi + 1 yL+iT 0

t+, pi ai
and go to 7.

Set i - i+1; if j “ n+2 reset j = 1; else
set j ~ j+1
If I (Xj, - /i i)T g(xi)| < t?2 , set xQ = x 1 and go
to 1; else go to 9.

9. Set p^ ~ + w h e r e
T

a. - -sign [ (x, t P .) g(x.)]

1



10, If II PjJI + II7 jjl < N, use Armijo's Subproccdure 
to calculate 5^; else set x q = and go to
1.

11. Set x^+1 = x^ + go to 5.
In the above steps:

a  =  [ p  , 7 , wj

vl1 = t'l1 + °j (yy-iT - cj pi1’
v1 + 1 - V i + o.(vi+1 - e/vp, VD = «0
Ar.uijo S u b p r o c e d u r e

Step 1. Set k(x^) = 0, 6 ^(k (x ^)) - 1

2. Calculate Af A f(x^ f 6 i (k(x^))p^) - f(x^)
5,(k(x ))

3. If Af + -i lp^ g(x.)l < 0
! 7 i | + 2

set G j = And return;

else set k(x^) - k(x^) + 1 and go to 4.

4. Set 8 i (k(xi)) = S i (k (x^))/2k (xi ) and go to 2.
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B.2 Winfif 1c

Step 1.

2 .

3.

4.

5.

6 . 

7.

C.

1 2 0 ]

Evaluate f(x.) at an initial grid of points
X

xi , i = 1, ......   N where N = h (n+1)(n+2)
Let the basupoint be the point of the 
initial grid at which f(x.) if lowest.
Define co-ordinates relative to the base- 

point Yj ~ xy “ xb 
and order the points by increasing 
Euclidean distance from the basepoint.
Let the subscript denote this ordering, with 
the origin = 0 being the basepoint and yN 
being the point farthest from the basepoint. 
Compute A, b, d so that

A + b yj + d “ f(Xj), j ~ 1, N

Define a region of validity R of the quadra
tic model
q (y) - ^y^ A y + b'1 y + d
For the first model, and after every success 
in locating a new basepoint, let R be a sphere 
of radius 0.9DllyJI centred at the basepoint. 
Choose the next trial point to be the y in R 
which minimizes q(y).
At the minimizing y, compute 

x *= xb t y 
and evaluate f(x).
If f(x) < C(Xj), then x becomes a new basepoint. 
If i(x) > f(xb ), then retain x^ as basepoint 
and reduce the volume of U by the factor ' i).2



The original data x^, £ (x^ , i - I r2 , , N 
plus tlio new point x and f (x) are kept in 
a data table having a capacity greater than 
the. N data required to form a quadratic model. 
If x becomes a bnsepoint, all data in the 
table are re-ordered by Euclidean distance 
from this new bascpoint. If x does not become 
a new bascpoint, all data including the new 
x, £(x) arc re-ordered by distance from the 
ol<4 bascpoint. In the nev ordering, x 
necessarily becomes one of ‘V H-l points 
closest to x, . This is because x is in the 
R used in Stop G, and all points in that 
R are closer to x. than the point, defined 
in Step 3, which played the role of x^ 
before the new ord ring.
Let the bosopoint and the N-l points nearest 
it be designated "active points". L the 
newly ordered data x^, f(x^), j = 1,2,...N, 
with x.j th bascpoint and X'N the most distant 
a e M  ve point, >>«-« designated "active data".

as a result of each evaluation of f{x), 
at i i: ar.l one member x ̂ , f(xr) of the set of 
active d, va is changed, and the most recent 
x , f (x) is lm led in the active data.
With a new set of active data, go to Step 3 
and repent. The computations of rM cp 3 
thiou<}h 11 ceir'it ile one SQ1 (Sequential 

Quadratic Models) cycle.
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12. When f(x) or the radius of R is reduced
below specified values, r- t. >•;.« specified 
number of f(x) evaluation > exceeded, stop 
the program.
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APPl'.inilX C - Additional Tables ot: Nnmorlcal V- :;ul :

2NM - N+2N-2

324312299773

195215134191791

390318341329784150 3

7557147096131312

1777175118101835

TABLK C.l - METHOD 2h, Ax = 100

L



1 0 1 .

/ 1/

M  = 1 M = N-2 M = N-1 M = N M - NH-1 M = N+2 M =- 2N

1 951 834 294 273 265 306 397

2 1623 604 304 174 153 189 263

3 985 818 516 220 241 208 457

4 1625 934 687 491 521 556 643

5 2563 1037 1226 1098 1329 1724 2049

TABLE C.2 - M L fHOD 2B, Ax = 100

1
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N+2N+l 2N

2791124 291 304

883 794 4G1 149 197 208 243

2184 348 324 398 4461121

43 200 885 790 859 756 905

2564 1987 976 1423 17041029 3 506

TAJV V r.3 - HKTHO;;, 2C, Ax » 100

A *
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N+2 2NN+l

97 1238212717323]

897306173126198

188125143 162233325

144 18994106151267

237184193 212256324397

TABLE C.4 - METHOD 2D, Ax - 100

i
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° ¥ \

2A 2B 2C 2D

l 237
U-14e- —— Jt- ' 1-

245 193 187

2 134 212 108 79

3 415 338 407 185

4 58G 437 603 267

5 2324 1846 1641 483

TABLE C .5 - M - N-l, C» - 0, Ax ^ 100
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