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CHAPTER 1 :

INTRODUCTION

In order to gain a better understanding of prac-
tical systems and processes it is necessary to describe
them with the aid of mathematics. Quite often this
modelling ‘heory is very complex but even when it is
relatively simple, it may contain parameters which change
with time, or vary in a random manner., It is often neces-
sary to predict the optimum operating cunditions of a
gsystem such that some performance criterion i1s extremised
and therefore optimization methods are used to explore the
local region of operation in order to determine appropriate
system~paramater adjustments. The performance critericn
could be, in an industrial process, the cost of running the
process, or, in mathematics, the squared difference between
a specified functicn and an approximation to it. It is
also frequently the case that restrictions are imposed on
the permicsible values that the parameters or independent

variables may take. These restrictions, or constraints,

vary according to the process and can be simple ones on the
range of the variables or complicated functions of the

var i-:hles.,

The optimization problem, therefore, is to maximize
or minimi»n a scalar quontity or function, called the

objective function, subject to certain constraints. Linear

functions subject to lincar constraints give rise to vhat

are termed lincar programming problems, whilc non=-linear
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functions subject to linear or non-linear constraints are

termed non-linecar programeing problems. Although linear

programming has no meaning without constraints, nc .-linear
problems can be constrained or unconstrained, and it is

this latter case with which this thesis deals.

Unconstrained non-linear programming methods are
usually divided into direct sea ~h methods, which use
function evaluations only, ard gradient methods, whicih uve
additional information in the form of the first derivative
vector and sometimes the cecond derivative, or llessian,
matrix. However, theore are different ways of <lagsifying
these methods, and ono of them is the following:

Nearly all optimization methods approximate the given func~
tion by a well known function which is easily analysed, but
they differ in the way iu which thc approximation is done.

Some methods, which we have called Interpolaticn Mothods,

fit the approximeting well known function, or model, to
caleculated values of the objective function at certain points,
while others assume a model, but do not use it directly;
instead, they urce a derivation of the model to get a
difference equation which whoen soived leads to an estimate

of the minimum of the objective function.

For many ycars the most popular medel was the
quadratic functior, althongh in recent years Jacobson and
Oksman [ 1] have suggested the homogeneous model and Davison
and Wong [ 2] have suugested a model using L-functions. 1In

Interpolation methods, whatever the model may be, there are
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a certain number of independent coefficients which have to
be determined in order to fit the model to the given
function. In this thesis we investigate the effect of the
amount of data used to f£ind the above wmentioned coefficients.
A number of existing interpolation metheds are modified to
facilitate the checking of the effect of different data
gtructures on them; and a new model, based on a variation
of the usual qua’zatic used, is developed. This model,
called the Quadratic Gradient Model (Q.G.M.), is compared
to cther interpolation methods and to a few standard opti-
mization techniques; anrd is also tested using a number of

the data structures.

The investigation outlined above is presented in the
following way: 1n Chapter 2 we tormulate the unconstrained op-
timization problem and discuss the most widely used existing
Interpolation and Non-interpolation methods. Chapter 3
presents the newly devcloped Q.G.M., while Chapter 4 pre-
sents the methods used when investigating the effect of the
size of data structures, and explains thc necessary modifi-
cations to certain existing Interpolation methods. Chapter
5 gives a proof of convergence for the Q.G.M. and in Chapter
6 we have the numerical results concerning the comparison
of different methods and the influence of the different

data structures on these.

In Chapter 7 a cenclusion is reached as to tlLe

optimal amount cf data which should be used in Interpolation
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methods and some ideas for further research are suggested.
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CHAPTER 2 :

FUNCTION MINTIMIZATION

The first section of this Chapter formulates
the unconstrained optimization problem, the conditions
for its solution and the classical method of solving it.
The second section describes a selected number of well
known optimization techniques in general and then rele-
vant Interpolation methods are discussed in some detail

in the last section.




2.1 The Problem

Let ue first of all intrcduce some notation:

R - The Euclidean space of ordered n-tuples of
real numbers.

f£f:A - B - A mapping of the function £ from its domain
A to its range B.

g(x) - @Given a function £:RT > Rl, this is the so-
called gradient of f at x, or the column
vector of first partial decrivatives of f.

H(x) - Given a function £:R" » Rl, this is the n x n
Hessian matr.x of second partial derivatives
of f.

B(x,e(x)) - The ball or neighbourhnod of x defined as
the set:
'l x-x'l < e (x)}

- vVector whose i th component is one and whose

other components are alli zero.

Using the above notation we can now formulate

the unconstra..aed optimization problem as follows:
minimize f(xX), % ¢ rR" (2.1.1)

where the objective function f:r" > Rl is a continuously

differentiabie function of a.

although we hive formulated the problem here as

LR YT T30S
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a minimization problem we note that a maximum problem can

be solved by a minimization technique since
maximum f£(x) = minimum [ -£(x)] (2.1.2)

Therefore the ~ords optimize and minimize may be regarded

as synonomous for our purposes.
Before we state the necessary and sufficient con-
ditions for solving the above problem, it is necessary to

define different kinds of minima:

*
(1) The point x is called a local minimum of £ if there

*
is a region R containing x so that
*
f(x) 2 f(x), x€ R {2.1.3)
(i1) 1If the point x* in the region R is such that

F(x) > F(x*), x# %, x€ R (2.1.4)

*
then x is a local proper minimum.

(i1d) If x* is a point such that

£(x) > £(x"), for all x ¢ R" (2.1.5)

then it is o global minimizor or mibimun.,

We note that a particular function may have




gseveral local minima with one of them the global minimum.
The distinction between lecal and global minima is not
essential for our purposes because a gloril minimum of £
on a set R may be a local minimum on a set S where R is

a subset of S. However, the distinction is important when
the results of optimization methods have to be interpreted
because it is usually inmpossibl: to determine if a local
minimum is also the global minimum unless all minima are
found and evaluated. It is very important to stress that
existing optimization techniques can only fin. local proper
minima. Indeed,it has been shown numerically that most of
the standard convergent numerical procesgds implemented on
a computer converge to the same point from a given initial
value X Because of this we will always refer to the
local proper minimum as the minimum without loss of gene-

rality.

The classical methods of calculus use the concept

*
of critical point to solve problem (2.1.1). A point x is
1

a sritical point of £:R® » B! if g(x) = 0 and if H(x ) is
defined. Clearly, if x* is a local minimum and g(x*) exists,
we have g(x*) = 0 (2.1.6)
and (2.1.6) is a necessary condition for ¥ to be the minimum.
However, a critical point nced not be a minimum. 1In ordar

to ensure a minimum we nced a theovem from calculus which
states that if x* is a critical point of f and H(x*) is

. . * .
positive definite, then x 1s a proper local minimum of f.

This implies that satisfnction of the conditions

g(x") = 0, I(x) > n (2.1.7)
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*
is sufficient for x to be a proper local minimum.

e

A straightforward method of solving (2.1.1) would

be to solve the set of non-linear equatiors (2.1.6), which
is a problem of considerable difficulty. Note that a solu- !
tion of (2.1.6) only gives us a critical point which could )
be a minimum, maximum or saddle point; the number of ;
critical points cannot be determined “y inspection; and

the method is not readily applicable Lo functions with

discontinuous derivatives, although such functions frequent-

ly have well defined minima.

Modern optimization mcthods use iterative techni-
ques (except for tabulation and rcndom search methods)
which require an initial point x  to he specified and then
proczed to generate a scquence of points Xy 1= 1,2,3,04.
which converges to the minimum. These iterative techniques

can be conveniently represented by the equation

= X, ~t, py (2.1.8)

where by is an n dimensional dircction vector, and ti is the

positive steplength or distance moved along it, Another

feature which all current minimization techniques have in

commcn is that of descent, i.o.

£(x, ) 7 I(x), 1f gzl = 0 (2.1.9)

i+l

This feature does nol ensure convergence, bul at lecast gilves
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improved approximations to the solution. Most minimiza-
tion methods have the properties (2.1.8) and (2.1.9), but

differ as to the way in which ti and p, are chosen.

Sl e £ i i v
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11.

2,2 Existing Non-interpolation Methods

In order to simplify the picture as much as
possible we divide these methods into groups and subgroups
under rough headings and then describe cach subgroup brief-

ly.
The classification may be done as follows:

(1) Direct Seaxrch Methods :
(a) Tabulation Methods
(b) Sequential Methods
{¢) Linear Met..ods
(d) Derivative Estimation

Methods

(1i) Gradient Methods s
(a) First Order Mecthods
(b) Secoud Order Methods
(¢) Quasi~Newton Methods
(d) Conjugate Gradient

Methods

The methods of group (i) use values of the objec~
tive function only, although in some methods they are used
to obtair a numerical approximation to the derivatives of

the objective function.

*
In group (i)a it is assumed that the minimum x

lies within the region R defincd by

- . M e enbas A a -
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SXiS}& +di,v i==l,2,...,n (2.201)

where Xy and di arc known. The function is then evaluated
at a certain number of points in R and the smallest func-
tion value is taken as the minimum. The points in R can
be chosen as nodes of a grid, randomly, ox using a multi-
variate Fibonacci Secarch - Sece Sugile {3]. It can be
shown that the number of function evaluations for the
Fibonacci Scarch is preporiional to the product of the
logarithms of the required interval reduction factors,
whereas, in the other two techniques it is proportional
to the product of the facters themselves. This makes the
Fibonacci Scarch much more effective, but even s9O it is

much worse than the methods in groups ii)b and (i)c.

Group (i)b methods probe the objective function
by performing function evaluations at the vertices of some
geometric configuration in the space ~f the iundependent
variables. When a better point is found a new aqeometric
configuration is formed around the new point, and so on.
These methods include Evoluticnary Operation, proposed by
Box [ 4], and the well known Simplex method, proposed by

Spendley, Hext and Himsworth [ 5] .

The difference between the mcethods in group (1)c
and the oncs alrecady mentioned is that this group is the
only one which uses a set of dircction vectors throughout

the search. In general the methods which belong to this

group and which adaptively change the set of dirvection vectors
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with each iteration are better than those which use the
iricial set throughout. The most populir methods in

this group are: Hooke and Jeeves Mcthod { 6], which
attempts to use the principal axis of the objective func-
tion as a search direction; Rosenbrock's method [ 7],
which uses n mutually orthonormal darection vectors, one
of which is in the direction of recent best progress; the
method of Davies, Swann and Campey, descriked by Swann [ 8],
which is based on Rosenbrock's method but differs from it
in that a one dimensional linear search is made along each

direction in turn; and Powell's method [ 9], which uses the

concept of conjugate dircctions.

The methods of group (i)d are essentially gradient
methods, and therefore could have been included in group

(1i). However, since the gradient is not calculated |
analytically but estimated using function values only, we
have included these methods in group (i). A typical such
method is that of Stewart [ 10] who modifies Davidon's [ 11]
algorithm by using differencoe approximations to estimate
the gradient, The differcnce approximations can be of the
form:

5 f(x + hj Cil - f(x)
h

Af (%)

Axi (2.2.2)

i

where hi is a sultable steply: 1thi

or of the central difference form: :
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A (%) _ f{x + hi ei) -~ flx = hi ei) (2.2.3
Ax. 5, +2.3)

i i :

From the performance point of view the methods
of group (i)d and Powell's method of group (i)c are the
best, while the tabulation methods of group (i)a are

usually the least effective.

gince the absove methods do not use derivatives,
the check for descent is done by calculating the objective
function value at the new point and seeing whether it is
less than the function value at the current point. The
gradient methods of group (ii), however, differ from those
of group (i), nct only because they use the gradient, but

also in the way in which descent is ensured.

The condition uscd for descent is based on the

Taylor expansion of a function:
(2.2.4)

) = £0) + gTlx) ax b EAX HEX F (mE) )8

f(x
s X = - < <
where: AX X101 Xy s 0 £ 1
Using the equation (2.1.8) for an iterative process we have:

Ax = "tkpk (2.2.5)

and substituting this into (2.2.4) wc get:
Af = =t gT(x ) p, + %t 2 pT H(x, ~t,p, (1-£)) P (2.2.6)
k- kK* ¥k 'k k k "k¥k k s
where: Af = f(xk+l) - f(xk) f
We can casily choore Lk to make the first term in the expan-

sion the dominant one and since for descent we want AL < 0




15.

this gives us:

T .
g (%) Py < 0 (2.2.7)

Since gradient information is available in the methods

of group (ii), criterion (2.2.7) is the one usually used

in this group to ensure descent.

If we neglect the final term in equation (2.2.2)

J
assuming that the second derivative is small enough to be
neglected, the equation becomes
T "
Af = g~ Ax (2.2.8)
and nethods based vpon (2.2.8) érg called first order methods =

group (iila.

The fundamental first order method is the nethod

of steepest descent, which is credited to Cauchy (1847).

Tt is based on the fact that the direction o the gradient
is the one which gives the greatest local chanar in the
function. If, therefore, we choose a specificd steplength

and make Py equal to the qgradient vectior we can obtain

This

ty

a frnction decreasc by applying equation (2.1.8).
procedure is then repeated until some stop criterion is
satisfied. Other methods in this group do not use a fixed
gsteplength, but minimize the function along the direction
of the gradient. In both cascs, however, these methods
behave poorly because Lhe gradient direction gives the
greatest local decrease, but might not be at all in the
direction of the minimum, and therefore a very large number

of iterations can boecome necessary.

S scen =
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Methods which do use a search direction which
coincides with the direction to the minimum are considered
in group (i.)b. An approximate direction to the minimum can
pe found as follows:

If, in equation (2.2.4), we substitute:

* . _
x (the minimum) = Xy 41

H(Xk) ~ H (% X (l—E)Xk+l) (2.2.9)
and use the cond that ot the minimum g(x*) = 0 it can
easily be shown -

g(xk) + H(xk)Ax = 0 (2.2.10)

Solving for x we get:

ax = =H (%) (%) (2.2.11)
or
* -
= ox -F T (x ) g (%) (2.2.12)

The use of equation (2.2.,9) actually approximates the general
function by a quadratic and, therefore, if f is a guadratic
the m:nimum can be reached from X in a single step. As a

result of the above we sre that if we choose
p, = H M(x)q(x) (2.2.13)

it will be in the direction of a stationary or critical point
(aseuming that the objective function is roughly quadratic).
1f we wish this dircction to point toward a mininum we must
ensure that H(Xk) is positive definite. Nquation (2.2.13)

is the basis of all sccond order methods, or those using

quadratic approximations.

. p— - et trs———
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If equation (2.2,13) is used directly with a
fixed steplength ti we have the fundamental Newton's
method. This method is of little use practically for two

main reasons:

1. H is not always positive definite,

2. At each step H must be calculated and inverted.

One way, which is used in this group, to overcome diffi-

culty 1) is suggested by Greenstadt [12] ., This is to find
the eigenvalues (M) and ncrmalized eigenvectors (U) of Hk

and then set

lu,u, T (2.2.14)
Another way, used by Goldfield [13], is to replace Hk by

Ak = Hk + RkI (2.2,15)

e )
and us~ Kk to ensure Ak > 0.

The group of methods (group (ii)c) which try t»
overcome problem 2) are called Quasi-Newton metheds because
they approximate Hnl(xk) by another matrix, but still use
the basic Newton direction, If H-l(xk) is approximated by,
say E(xk), we arrive at the basic equation of mest Quasi-

Newton or variable motric moethods as @

-t E(xk)g(xk) (2.2.186)

X1 T Xk k

E(x ) is usually calculated iteratively from I(x, ) and it
k

k+1
can be shown (sce Himmelblau [ 14]) that the goeneral form of

this is
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T
E(xy,,) = E(x) + é;,ii.r - E(:k”g : (2.2.17)
Yy~ Ag z” Ag

where: Ax = X, .. = ¥ and AgT = gT(xk+l) - gT(xk) E
If we choose

y =2 = 4X -~ E(xk)Ag (2.2.18)
we get Broyden's method [ 15], whereas if we choose

v = Ax, 2z = E(xk)Ag (2.2.19)

navidon's methed [ 11], as mcdified by Fletcher and Powell [16],
results. The latter method is one of the most popular opti-
mization methods and is often used as a standard against which
other algorithms are compared. This method also uses conju~-
gate directicns and can therefore also be included in group

(ii)d.

The methods of group (ii)d and Powell's direct
search method [ 9] use the concept of conjugate directions.
This concept .- Jined as follows: A set of n vectors dl’

d cooy dn iy, R? iy, said to be conjugate with respect to

2!
a positive definite matrix Q if

T

dy

Q dj = 0, 1 # 3 (2.2.20)

Thi» results of using this concept are:

1) The di vectors are lincarly independent and can therefore
be used as a basis for n dimensional space.

2) 1f f is a quadratic and is minimized along n Q-conjugate
directions, then the minimum will be reached in at most
n steps.

The best known methods in this group are Fletcher-Recves
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method [ 17] , Zoutendijk's method [ 18] and the Partan methods
[ 14] . Zoutendijk's method has *he disadvantage of requiring
a matrix inversion, but the other two nentioncd also have
the disadvantage of requiring a univariate minimization

along the search direction at each step.

It is difficult to compare different optimization
techniques using different strategies, but on the whole the
gradient methods are usually better than the direct search
methods, and c¢f the former the best are the Quasi-Newton

and conjugate gradient methods.
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2.3 Interpolation Mcthods

Since this thesis deals with these methods, and
because, in Chapter 4, we medify some of these, we will
give a full description of the well known methods of this

type (for the equations of some Interpolation methods see

Appendix B).

The common characteristic of all Interpolation
methods is that they fit a model to the given objective
function at certain points, but they differ in the mcdel
used and even if the same model is used the method of
minimization might be entirely aifferent, Fiacco and
Mc Cormick [ 19] and winfield [ 20] both use a gquadratic
model, for example, but their methods are not at all alike.

The guadratic model they use 1is
F(x) = §xT A x + b x + d (2.3.1)

where A is an n X n symmetric matrix, b is an n vector and
d is a scalar. A has 4%n(n+l) independent element., b has
n components and d has one, which gives us a total of
k(n+1) (n+2) independent coefficients which have to be

determined.

Fiacco and Mc Cormick [ 19] minimize the given ob-
jective function along cach of the coordinate vectors in
turn and usc tnesc points to obtain the diagonal elements
of A. The remaining %n(n-1) scarches are made along vectors
which have two components egual to one and the remaining
components equal to zero. The least valucs of the objective

function aleong these directions are usced to find the



21.

off~-diagonal elements of A. Once A has Leen found, the

search direction
oAl
p; = A "g(x) (2.3.2)

is used to locate the minimum of f(x), which is an estimate
of the minimum of the ygiven objective function. This proce-
dure is possible because g(x) can be calculated using the
values of A. However, this methoud is useful only when A

is positive definite because if it is not, the located point
will not be a minimum. In the event, the authors do noc

have any suggestions for this situation.

Winfield [ 20], on.the other hand, chooses an ini-
tial grid of N = %(nt+l1) (n+2) points and calculates the
components of A, b and d by solving N simultaneous equations
with N unknowns. The point, in the grid, which has the
lowest function value is defined as the basepoint %, and
the coordinates of the other points are defined relative

to this point. The quadratic wodel then becomes
aly) =4y Ay +bly+ad (2.3.3)

where y = X = ¥%.
once A, b and @ have been found, ithe following constrained
problem is solved:
\ . T 2
min q(y), subject toy y - r" = 0 (2.3.4)
where r is the radius of a sphere defining a region of
validity R and is taken as 0.99 Hynn , where Yn is the

. ) *
Furthost distance from the basepoint. Tf the solution, y

to cquation (2.3.4) given a bettes function value th n

R
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*
that of Xy 1 then y is taken as the new basepoint and the
whole proceldure is repeated. If not, X, is retained as
basepoint, the volume of R is reduced by a constant factor

and equaticn (2.3.4) is solved again. 1In the first case,

* . .
when y is chosen as the new basepoint, the N nearest points

to it are included in the grid, while in the second case,
the choice of r = 0.99HynH ensures that Y, will not be in-
cludad in the new grid and that y* will., This means that,
at each iteration, a point leaves the grid and a new one
enters it. The points leaving the grid are =stored in a
data table and are sometimes re-used by the algorithm if
the search moves past them agaiir. Winfield reports that

the best size for the data tahle is a little legss than 2N.

From the above, we can see that this method uses
the function evaluations efficiently, because, as success-
full trial points are located, the radius of R increases
and the search takes lorger steps, while when unsuccesefull
points are located, the radius of R decreases until a new
direction is found. The volume reduction factor controls
the tendency of the method to explore, versus ithe tendency
to make small sure gains based on experience and Winfield
has chosen the factor (%).2n by experimenting with a set
of test problems. Other advantages of this method arc
that nn derivatives arce required and that A need not be

positive definite. However, the main disadventage of the

algorithm is the large amount of computational work requirad

to locate a new trial point. Siuce it is of the order of n®

the method is best used for low dimensional functions which
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are expensive to evaluate.

e e
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Although the gquadratic is the most popular model,

recently other models have been suggested. The homogeneous

model, developed by Jacobson and Oksman [ 1], 1s based on a
derivation of a different form of the quadratic used in

equation (2.3.1). The different form of the guadratic is
£(x) = %(x=8)7 Q(x~f) + @ (2.3.5)

where Q is an n ¥ n positive derinite symmetvic matrix, f the
locaticn of the minimum of f£(x), and w the minimum value.

The derivative of this form is

g(x) = Q(x-§) (2.3.6)
and if we substitute (2.3.6) into (2.3.b5) we get

£(x) = h(x-0)T g(x) + @ (2.3.7)

If equation (2.3.7)is given a more gencralised form by
changing the corfficient % to l/,y, we arrive at the homo-~

gencous model
_ 1 T -
£(x) = Z(x-B)" g(x) + « (2.3.8)

where 7 is called the degree of homogencity.

When a hemogencous model is fitted to the given
objective function, there are nt+2 coefficients which have
to be determined: Multiplying (2.3.8) by v, defining

w = yw and rcarranging terme we have

ﬂT g(x) + v f(x) r 0= X g(x) (2.3.9)

Furthermorce, defining v T g(x) (2.3.10)
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£(x) = Y(x~B)7 g(x) + @ (2.3.7)
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A g(x) .
y = |£(x) (2.3.11)
-]
L o
” - ¢
]
« 21 4 (2.3.12)
(23]
L 7

y' oo = v (2.3.13)

The components of u are #, which is an n vector, and 7 and
w, which are scalars; thus moa%ing « an n+2 vector. 1In
order *o find the n+2 coefficients the appropriate numbes
of points X i = 1, +ee.., n+2 and the associated values
f(xi), g(xi),i = 1, +..0., N2 are needed. Then, the

following relation holds:
Y(l * V (2«3:14)

where

*et
=
2
L)
<
3

np
<.-.n-s-a |

(2.3.15)

e
as9 esness |

3
=
4=
N

N>
=
-
N

1
]
H

and

.

= Y &
Yi = f(xl) I.‘Vi = Xi

g(x;)

k}(xi), i = 1, an sy n+2 (2.3.16)

-1

If the objecctive fuuction is homogencous, the solution

of equation (2,3.14) is

\Y {(2.3.17)
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on the other hand, for general functions, «
only provides an approximation to the minimam. Therefore,
if a suoplies a better function value than the current
trial point, it is included in the grid of n+2 points and
the procedure is repeated, If not, cubic interpolation
(presented by Fletcher and Powell | 16]) is used to achieve
descent. In order to present a proof of convergence,
Jacobson ard Pels [ 21] modified the original algorithm to
use Armijo's Rule [ 22] instcad of cubic intcrpolation,
with results nearly as good 2s those of the original algc -

rithm.

Even though Jacobson and Oksman's algorithm
uses a grid of n+2 points, it does not solve the n+2
simultaneous egquations at each iteration, but inverts ¥
recursively using Houscholder's formula. This is possible
for the i1cason that only one row of Y is changed at each
iteration, and it avoids the largc amount of computational
work that would have been necessary to invert ¥ at each
iteration. Winfield [ 20] also ~thanges oue row only of a
matrix at each iteration, but solves a construined probicm

instesd of simply inverting the matrix, and thercfore

cannot do thls recursively. Houscholder's recursive formula

save , much computational work, but is somet imes unstable,
and in order to overcome this problem, another modifica-
tion to the original algorithm was suggested by Kowalik
and Ramakrishnan [ 23] . 1In this modification Houscholder's
formula is replaced by a semi-triangnlar factorization
which i+ numerically stable provided that a pivoting

strategy is used in the process of updating these factors.
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Their results are an improvement on the original algo-
rithm, in that their method requires less function
evaluations, is numerically more stable and also has the
advau.age of inplementing special storage schemes for

large~scale problemns.

In order to differentiate between the two ways
in which the systems of cquations are solved, we have

divided Interpolation Methods into two forms:

(i) Grid-to-grid methods, e.g. Winfield [20], which

solve the full set of W x N eguations at each itera-
tion.

(11) Point-to-point methods, e.qg. Jacohson and Oksman [ 11,

which solve the equations by inverting a matrix

secursively.

Alirhough Winfield's method can only be used in grid-to-grid
form. o8 mentioned above; most other Interpolation Methods

can be used in either form,

A diiferent way of using Interpolated models has
beea suggested by Botsaris [24]. Instcad of using an
Interpolation model tn spproximate the Hessian matrix and
minimizing dircctly using cquation (2.3.2), as Flacco and
McCormick [19] do, Botsavis uses an Intcerpolation model
to approximate the Hessian matrix but then uses this
approximation in his Diifercential Descent moethods. 1. is
interceting to note that numerical results show that for

this puarposc the Interpolated Model is more stable than a

P
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difference model which was also tested.

In general, Interpolation methods compare favour-
akly to Non-interpolation methods. They use & lesser, or
in some cases the same, number c¢f function evaluations for
most test functions *than the best Non-interpolation methods,
such as that of Fletcher and Powell [ 16], and tend to re-

quire less stringent restrictions.




CHAPTER 3

QUADRATIC GRADIENT MODIEL

(Q.G.M.)
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CHAFTER 3 :

QUADRATIC GRADRIENT MODEL (0.G.M.)

Tn this chapter we present the Q.G.M. method
for solving unconstrained optimization problems. The
method is based on a quadratic function and uses an
Interpolation model to approximate the inverse of the
Hessian matrix. The algorithm is presented in a point-
to-point conceptual form, using a method for ensuring
descent, which facilitates the proof for convergence,
but might not necessarily give the best practical re-

sults.

S
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3.1 Basis for Model

If we take equation (2.3.7), which is
£(x) = 5(x=0)" g(x) + @ (3.1.1)
and find an expression for (x—ﬁ)T from equation (2.3.6),
which is 4
g(x) = Q(x-8) (3.1.2)

we arrive at the Q.G.M.
From (3.1.2)

x-8 = Q ° glx) (3.1.3)
and its transpose will be
x-6)T = g (x) (@ H" (3.1.4)

gince Q is the Hessian matrix of f(x) it is symmetric.

This means that
(x-61T = g7 (x) @ (3.1.5)
gubstituting this into eguation (3.1.1) we get
— 1,7 -1 ‘
£(x) = %5 (x) Q7 g(r) + o (3.1.6)

The actual Q0.G.M. is defined using equation (3.1.6) as a

pasis and is of the form
f(x) = %gT(x) S a(x) + w (3.1.7)

where § is an n x n positive definite symmetric matrix.

1f the objective function is a aguadratic or can be written
in the form of cquation (3.1.7), then the minimum # can be
found directly from edquation (3.1.3) simply by rearranging

terms and substituting & for Q_l

B = x -5 (_I(X) (3-1-8)

where x can be any initial trial point.

o,y —— g g~

P —
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However, in the case of more general functions,

the location of the minimum is not given by eqguation

(3.1.8) since our model is only an approximation to the

actual function., Therefore, at each trial point, using

the function valuc and first derivaltive at that point,

the ¢.G.M. is formed and minimized directly in n spacce by

equation (3.1.8) to yield a scarch direction. This cqua~

tion may be used if S is singular, but we prefer l
.
|

restarting the

the point-to-point form prescented here gives better results,

id fo:m is better for testing the influence

algorithm witlh a gradient step. Although |
+he grid-to-g» |
1

of data structures cn the method.

Egquation (3.1.7) is solved for 8 and w in the

followig way ¢

Let
A
s € .
(%J) ~
ETER yg, 2 (x)
11 g9, ¥
A . A ;
e & g, |y 2 |aete
542 91(X)g2(x)
“1in g, (x)g (%
593 qz(x)QB(X)
S?n gz(x)gn(x)
Sn—] e gn““l (X) qn (x)
¢ 1

Then equation (3.1.7) ¢ be written in the following

way:
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£(x) = Y (x) « (3.1.10)

Note that both y(x) and ¢ are N x 1 vectors, whore
N = %(n+1)+1. If f(x) and y(x) arc evaluated at N distinct

points x i =1, «e..r, N so that the y(xi)'s are linearly

il
independent then the system of equations can be written

in matrix form as

F=Ya {(3.1.11)
whezre

- ] o,

f(xl) y (xl)
po=| ! LY = : (3.1.12)

rIl
£(x_) vo(x)
B n~ B n_

Since the y(xi)'s are lincarly independent the

sclution of (3.1.11) is

e =Y L F (3.1.13)

where S can be constructed casily from the first N-1 com-
ponents of e and the Nth component of a is the minimul.
function valuc w. In order to save computational work,
the inversion of Y is carried out recursively by defining

‘ T
Y(Izll ac‘ = [\]‘:' L N N 1'(), LI N 0]
W.——J

n tines

and then repdocing, for cach new trial point, corresponding
rows and elements of Yk and Fk with the valucs of y(xk)

and f(xk) in the following way:
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, 7 _ P
wr1 = Yk F k41 Y (X 41) = k41 Yi!

=<
It

T

(E(xy4q) = €y

¥ ¥

it

k+1 = Tt k41 k)

(3.1.14)

(3.1.15)

In order to obtain the inverse of ¥ recursively, we use

Sherman-Morrison's formula, which states that if A ¢ g ¥ B
is invertible and u,v ¢ Rn, then
. _ =1 T . ~1
a+uvh et oA B (3.1.16)
1+vT A T ou
T . ~1
provided that 1 +v~ A u# 0
Substituting Yk = A
U= Craa
T _ T _ P
vo=Y (kal) €x+1 Yk
into equation (3.1.16) we arrive at the necossary updating
formula
-1 T -1 _ T
-1 _ =1 Yk+1 t:'k-l»]“’ (Xk+1) Yk Cx+1
YOO en) Yo Sk
and yT(x ) Y-l e # 0 (3.1.18)
k+1 k k+1 te

From equations (2.1.15) and (3.1.17) and from the fact that

- -1 .
Aery = Y1 Tran

we obtain the recursive solution

-1 , T
. _ .7 i (f(xk+1) Y (xk+1) ak) (3.1.19)
= a, - Rt e -
k+1 k T( ) S
Y Xy d Yo Yk
previded, again, that (3.1.18) holds.
1

-

I P P i T

e m ot - w4 % . g Aw. memes g B Ty
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3.2 The Algorithm

Step 1. Assune KO, Myr Moo L given

2. Seti=0,3 =1, N=3ntl) + 1, ¥ =TI '
|
al =11, SELTIIESL URTITRI "
n times p
3. If llg(xy)ll = O stop; clse go to 4. :
4. If largest element of Ay is greater than I,

set p; = mg(xi) and use Armijc's Subprocedure |

to calculate Rip1r set Xy T Xy and go to 1;

else go to L.

5. " ‘Construct 8, from the elements of @,

6. Set p; = 0 B g(x,),where lol =1 and its sign !
1
is chosen so that |

T
7. If IpiT g(xi)l 21y, use Armijo's Subprocedure
to calculate X5 and go to 8; elsc set X, T Xy

and go to 1.

8. Calculata y(xi+1) and f(xi+]) as defined in

equation (3.1.9). ‘
-] . .
i+1) Y, ejl <n, set x

X . ale . . -1 , .
and go to 1; else calculate Yj+1 and @y from:

9. If IyT(x o = *i41

-1 S
R R R s S EO L S I
i

'11 . -
y (ry) Y6
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and go tc 12.

10, Set i =41 + 1
11. If i =N, reset j = 1 and go to 3;: clse cet

3 =34 1 and go to 3.

Armijo Subprocedure

1. Assume a, o € (0,1) are given.
2. Set k=0
k

3. Set x4,y = ¥y + 07 py

k_ T
4, If f(xi+l) - f(xi) + a0 py g(xi) < 0 return;

else set Xk = k + 1 and go to 1.

Certain operations in the algorithm are now

more fully described.

In order to choose a search direction which is
one of descent, step 6 calculates a direction with the
help of equation (2.2,7), which is

p,T gx;) <0
In other words, if 8 is negative definito, the model will
have a maximum, not a minimm, and, as a result, a direc-
tion opposite to that of the maximum is chosen., Howeverl,
if lpiT g(xi)lis very umall, the direction p, will most
likely not yield a respectable reduction in £(x) becausc

it is very nearly orthogonal to the gradient. In this

A ———— . A o~y o

.~ i e e e tns £ h



case, then,the algorithm is restaried by step 7.
r
To guard against the possibility thau equation
(3.1.18) does nnot hold, the expression

T -
s = |y (xi+1) Yil

eﬂ

is checked at each iteration and if it is less than a
prescribted small number the algoritnm is restarted by
step 9. 1lso, as explained Lefore, the algorithm will
not generally corverge Iin N steps for general ‘unctions
and, thcrefure, at the Nth step, when the last row of

Yo has been replaces by yT(rN), the indey j must be reset

to unity, as in step 11, s t the replacement of rows

starte over again from t!- irst row.

Armijo's Subprocedure, sascd on Armijo's Rule
[ 22} , guarantees, not only a fur :tion decrease, but also
convergence., Although the original proof presented by
Armijo is based on a Steepest Descent algorithm, it can
easily be mnodified for more geaeral algovithms. Other
methods for ensuring descent or convergence are those of
Currxy [ 25}, who requires the minimization of a function
of one variable at each step; Goldstein [ 20], who requires
the assumptions that f£(x) ¢ C2 on L(xo) = {x : f(x) < f(xo)},
that S(xo) be bounded and that a bound for the norm of
the Hessian matrix is known; and Fletcher and Powell [ 161,
who use cubic interpolation. The hyprotheses of Armijo's
convergence theorom are more restrictive than those imposed
by Curry, but less resirictive than thosce imposed Ly Gold-

stein, and, thercoforr, provide a Rule which is both practical

AT SR AN LY Jlre - TN L~ HPRITE e S
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case, then,the algorithm is restarted by step 7.

To gua~i against the possibility that equation

(3.1.18) does no  old, thc expression

e o é‘r(xi+1) Y;l ejl
is checked at each iteration and if it is less than a
prescribed small number the algorithm is restarted by
step 9. Also, as explained before, the algorithm will
not generally converge in N steps for general functions
and, therefore, at the Nth step, when the last row of
Yo has been replaced by yT(xN), the index 3j wust be reset

to unity, as in step 11, so 1'at the replacement ¢ rows

starts over again from the first row.

Armijo's Subprocedure, based on Armijo's Rule
[ 22] , guarantees, not only a functiop decrease, put also
convergence., Although the original proof presented by
Armijo is based on a Steepcst Descent algorithm, it can
easily be modified for more general algorithms. Other
methods for ensuring descent or convergence are those of
Curry [ 25], whn requires the minimization of a function
of one variable at each step; Goldstein [ 26], who requires
the assumptions that f(x) ¢ C2 on S(xo) = gx : I(x) < f(xﬂ)},
that S()O) be bounded and ithat a bound for the norm of
the Hessian matrix is Known; and Fletcher and Powell [16],
who usoe cubic interpolation.  The hypotboses of Armijo's
convergence theorem ars more restrictive than those imposed
by Curry, but less rastrictive than those imposed by Geld-

stein, and, thercfore, provide a Rale which is Luth practical

ey ey g,
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and ensures convergence.

As mentioned before, a property of the Q.G.M.
algorithm is that, under certain assumptions, for a
quadratic, the recursive procedure used to invert Yi

will produce Y~1 after N steps. We will now prove this:

THEOREM 3.1

y Yot e;,, # 0 then

If £(x) is a quadratic and yT(xi+l i .

. -1 -3
a,, = a ana =
N a YN Y

PROOF :

T =y (%)
Gagy Y0 0) =y (%) eh,

Tyl P
yux IV ey  (F(xy ) — Y

:: )
Yo(xg,9) Y7 eg

) Y~l e, # 0, it follows that
T = £
i1 Y(Xgyq) = Elxg )

Also,
T

i) T
aia Y(%) =y (%) ey,

T
T

p -1 , _
y () Y7 ey, (E0xy) = ¥ (%,

yo(xglagy = y(x e, + =1

rll
Yo(xy,9) Y7 65

Now,

D
2]
Y

yi(xi) implies that

N -1 o iy
y (%) Y37 =6

[P

—n g

By e
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1

;

so that ﬁ

T r—l - T . 5«5

Y xY; T ey Toeyt ey, 2 0 )
Thercelfore

ail y(x) = £x;)

H

G ey YO8

Proceeding in a similar manner

t T .

LY Y(xk) = ay Y(R) T oeeeess may y(%J = £0x)
Since

apf'y(xk) = £(x ) k=1, oo N

it follows that a, = a,

N
Also, since
vy (%) £0x,)
Iy = : r Fy = :
y T (%) £ (%)
Y V] TN
and YN o = FN
it follews that Y“1 = Y—l .
N Q.E.D. 1

It will be shown in Chapter 6 that the above
conceptual algorithm can be modified slightly to prodace
an implementable algorithm which reduces the use of the

costly Armijo Subprocodure.
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CHAPTER 4 :

EFFECT OF DATA STRUCTURIES

Interpolation methods are based on fitting u
moCel to the given objective function. Each model has a
certain number, say ¥, of independent coefficients which
have to be determined in order to fit the model to the
objective function. This is done by evaluating the
objective function at, say M, points of a grid and then
golving a set of M simultancous eguations with N unknowns.
The effect of the data structures on these methods is
tested by enlarging or decreasing the size of the grid (M)

to include more or less than N points.

This is possible when the optimization methods
are in grid-to~-grid form and, therefore, in the first
section we present a gercralised grid-to-grid algorithm.
Thereafter, it i+ applied to certain Interpolation methods,
some cf which are wodified from point-~to-point form to
grid~to~grid form. The next two sections discuss the
methods used to solve the abovementioned sct of simultaneous
equations when, firstly, M, the number of points in the
grid, is less than the number of unknowns, N, and, secondly,

when M is greater than N,
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4.1 General Grid~to~Grid Algorithm

The general grid-to-grid algorithm for solving
optimization problems with the aid of Interpolation methods
is presented in a conceptual form which facilitates the
proof of convergence. Before this is done some notation

and terminology is in order:

M - The number of points in the grid
N ~ The number of unknowns
M = N - The data structure is said to be exact

. M > N - The data structure is called overdetermined

M <N -~ The data structure is called underdeternined

Whatever the model, the equations used to solve

for the necessary coefficients may be expressed as follows:
T
Yy (x)a = v(x) (4.1.1)

where ¢ is the vector of unknown independent cocfficients

of the chosen model, y(x) is the vector of coefficients of

¢ and v(x) is a known scalar. Both v(x) and the elements

of y(x) depend on the model usced and are functions of x, [(x)
and g(x) of the glwven objective function. If a has N
components, then y(xi) and v(xi) are evaluated at the

points Xy i =1,2,.+.., M and the resultant set of equations

is written in matrix form as

Ya =v (4.1.2)

S pe

ey T




T o 1
where Y (xl) V(xl)
T o
y©(x,) v(x,) (4.1.3)
y & t |, vE :
T ' ki
t? (xM) v(xM) ‘

Using the above notation the general algorithm

may be stated as follows:

Step 1., Assume X, 1y N, L, M given
2. Evaluva'we f(xi) at an initial grid of points
Xy i=1,2,...; M.
>. Choose as the basepodint N the point of the grid
at which If(xi)l has the smallest value.

4. Order the points by incrzasing magnitude of the

absolute value of f(xi), i.e.
!f(xi)l << If(xi*l)l, i = 2,3, caeer (M-1). |

5. If Ilg(xb)!l = 0, stop; else go to 6.

6. Calculate a = B(flllv,wherc B,Q,R and V axe
matrices defined by the model and data structure
used. If Q is singular, set p = ~g(xb) and use
Armijo's Subprocedurc to generate a better point
N sot X, = Xy and go to 4; else go to 7.

7. 1f the largest e¢lement of a is groates than L,
set p = ~q(xb) and usc Armijo's Subprocedure
to produce a better point x;, sct X, = X g and
go to 4; ~lsc go to 8.

8. Calculate v, which is the scarch direction defined
by the model hLeing used.

e

9. If Ip’ g(xb)l > g, use Lruijo's Subprocedure to
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calculate x

ot set X, = Xy and go to 4; else

set p = —g(xb), use Armijo's Subprocedure to

calculace x,, set x, = Xy and go to 4.

Armijo's Subrirocedure

Step 1.

3.

k = 0, a,cc(0,1)

+ akp

*1 %
If f(xl) - i(xb) -clok plg(xb) < 0, return;

else set k = k + 1 and go to 1.

Certain operations in the algorithm will now

be more fully described before applying the algoritlm to

specific Interpolation Methods.

In Step 2 of the algorithm the points of the

iritial grid may be choser in mapy different ways. They

may be any set of po«nts for which x, f(x) data 1is avail-

able, provided that their location uniguely defines the

model, or they may be chosen in a methodical manner so

as to represent the recion around the starting point as

well as possible. One possibility would be to have the

grid include the initic! point, x_, and M-1 other points

o

chosen from the set X, + cj + e 1 Jik, = 1,2,..0.0, J #F K,

where the Cj' g, can either be cero or vectors along the

co~ordinate axes. Winficeld [ 20] suggests that the initial

grid lLe spread over the largest region in which the

modelling is effeceive, but since an estimate of this

region is not readily available, the initial arid way only
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include points w.ich are very cluse to the initial point.

In Step 4 the points of the grid are kept in
a table in the order of increasing absolute function
value. By ordering the points in this way at each itera-
tion the new trial point is included as the basepoint in
the first place and the point in the last place (having
the largest absclute function value) is excluded. This
results in a data table having a constant number of M
entries only. Winfield [20] suygests a different way
.of using the data table. The co-ordinates of the points
of the grid are defined relative to the basepcint, thev
points are ordered hv increasing Euclidean distance from
the basepnint and the data table has nearly M entries.
This method uses more memory tuan the me hod we have
presented, but has the advartage of being able to re-use
points which are not among t : M-1 closest points, but
have not been di~carded. This might occur, when, afte»
a series of cousecutive trial points have falled to reducc
f(x), new successfull trial points are located again, the
basepoint moves and the growing sphcre‘of validity will
enclose sore of the former failure points, which now are
active again, i.e. amongst the M-1 closest points, and
serve to ward the scarch away from the previous unsuccess-

full arca.

Since it is very costly to restort a grid-to-grid
algorithm (an entire new grid of poir%s bas to be chosen),

in Step 9, if IpT g(xb)l < 1, which means that che search
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direction p will not give a reasonavle redu ‘tion in func-
tior value, we uc. Armijo's Subprocedure with p = —g(xb) i
instead of the p previousl chosen. As mentioned in :
Chapter 3, Armijo's Rule is very useful to ensure descent
and convergerce, and i1s therefore used in this concentual

algorithm.

The two major differences between point-to-point

algorithms and grid-to-grid algorithme are as follows:

(1) In the grid-to-grid form, the matrix Q is not
inverted recursively. This means that, at each
iteration, a new set of equations is solved,
leading to much computational work.

(1) In the grid-to~grid form, the algorithm is started
by an initial full crid, not one point only, and
therefore, if the model is the same funciion as the
objective function, the method will converge in 1
step instead of N steps for the point-to-point form.
If M = N, the total number of function evaluations

will, however, be the same for both forms.

It is important to note that the above general
algorithm cannot be adapted to Winfield's method [ 20] for
the reason that it has no scarch direction, but solves a
constrained minimization problem instead. Most other
Interpolation mcethods, however, do fit into the general
algorithm and the forms of p, B, Q, R and V depend on the

actual mcthod and data structure used.
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Following is a list of some Interpolation methods

for the exact data structure casc where M = N and

B

Q
R

= 1

= Y

=1 .

Note that in this case Q is an N x N square matrix.

(1)

(11)

Jacobson and Pels {21] - 1In this algorithm modified

to grid-to-grid form, we have

- o - -
Yy Vi
a1, vE : (4.1.4)
T
N YN
e L "
where : N=n + 2
g(x).].
4 f(x)t , v 4 xT g (x) (4.1.5)
-1
nd
at £ [ﬁT, v, W (4.1.6)
p -é a(xb = f3) (4.107)

where 8 is an n vector of the location of the
mininmum, v the degree of homogencity, © the scaled
valun (y w) of the minimum, ® the actual value of the
minimum, and o is o« coefficient such that el =1

T g(x,) <0,

and its sign is chosen so that o (xb - f)
Q.G.M. (Sce Chapter 3) - Since the 9.G.M. in Chapter
3 was presented in point-to-point form it also must

be modificd slightly to fit the general alyorithm,
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The definitions of ¥, V and p in this casc are

poe

Y

g

y (x)

and

e

T

1>

(%;) rf(?l)
: A .
: ¢ VE :
(xN) _f(x

gl(X)gn(x)

g, (%) a0y (%)

Iy (XY, (X)

(4.1.8)

(401.9)

(4.1.10)

B e T e e e W L e A
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The definitions of ¥, V and p in this case are

= T
Y

wheire

= Ren+
N 2(ml) + 1

Hing

y (x)

and

i} >4

X
[

® PO BB RDIC RS S -

ERC

poer

3

%912\X)

Dl eeszss

kg “(x)

n

asas

.

L]
.
.
*

e

gl(x)gz(x)

gl(x)gn(x)
gz(x)93(x)

Iy (2D g, (%)

~'f(x

3

s evsraesse

s
el

)“'1

N

(4.1.8)

(4.1.9)

(4.1.10)

Ll
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2005 alx) (4.1.11)

o
i

where

4

S (s..)

1]
is the minimum of the function and ¢ is a coefficieat
such that lol = 1 and its sign is chosen so that piT
g(x) < 0.

A special case of Jacobson and Pels [21] - This model
is a special case of Jacobscn and Pels' method, where
v, the degree of homogeneity, is taken as 2. This
turns their model intc equation (2.3.7), which is

derived from a quadratic mode.. For this special cases

T
Y v

>
e

(4.1.12)

sr a0 s e 1
IR NERERLE )

where

y £ —2~l , v 2T g - 2t (4.1.13)

8 5T, 5 (4.1.14)

A
p‘,.—.

O(Xb - 1) (4.1.15)
where f is an . cetor of the location of the

minimam, w the minimam value of the function and o

as i1 secbtion (i),

e e e e e e e Y et P00 e, ™ gt e sttt toemenpemeceeree

T

2

R N N R I o X

e e e e e e = e o B R e e
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A, g g(x,) Vietall)

o]
I

where i

(s,.) 7
1
|

e

S ij

is the minimum of the functiou and ¢ is a coeffijcient
such that le] = 1 and its sign is chosen so that piT
g(xb) < 0.

(11i) A special case of Jacobson and Pels [21] - This model .
is a special case of Jacobson and Pels' meothod, where
v, the deurce of homogeneity, is taken as 2. This
turns their model into equation (2.3.7), which is

derived from a qguadratic model. For this special case:

- o
Yy Vi
v& | | ,ve . (4.1.12)
y.T v.
N N
where
N=n+1
g(x)
vy 2 121, v&xfgm - 26(x) (4.1.13)
and
oA T, O (4.1.14)
pga(xb_g) (4.1.15)

where B is an n vector of the location of the
minimum, « the minimum value of the function and ¢

as in secction (i).
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Underdetermined Data . tructure

-

In this case M < N and the equailor

Ya =V (4.2.1)

has an infinite number of solutions. Two different approaches

have been used to okbtain a unique solution lLor a:

(i)

To use the minimum norm sclution (See Appendix A).
If Rank (YY) = M, then
¢ =¥ (¥ yH Tt (4.2.2)

and in Step 6 of the algorithm of Chapter 4.1 we will

have
B = YT (4.2.3)
Q=Y ¥’ (4.2.4)
R =1 (4.2.5)

If Rank (Y) < M, in the general algorithm, we use
Armijo's Subprocedure although another pessibility is
+o use the pscudoinverse as follows:

a« =yP v (4.2.6)
For methods to calculate the pseudoinverse see Penrose

[28] and Golub and Kahan [ 29].

One of Penrose's methods is based on the

fact that any matiix con be partitioned in the form:

Vo= (4.2.7)

where A is @ non sisgular sub=-malrix whose rank is
equal to that of the whole matrix. Using this rartitioning

it is casily verificd that
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alpal aAlp
vP = (4.2.8)
gl pal plpct
where -

P = UXAT%'BIJ)m

Laata+F o (4.2.9)

Golub and Kahan's idea is to e the singu-
lar value decomposition of a matrix, which is

y=uzx vl (4.2.10)
and U and V ave unitary matrices and & is a rectan~
gulaxr diagon .1 matrix of the same size as Y with
non-necative real diagonal ent»ri~s which are called
the singulav values of Y. Using this decomposition
it can be shown that

P o=y 2t oT (4.2.11)
where T is chtained from £ by rcplacing each posi-
tive diagenal cntry by its reciprocal.
The second approach is to use the fact that if M <N
then there arc (N~M) unknowns which may be chosen
arbitrarily. Once these have been chosen, we are
left with a set of M eguations with M unknowns, which
is solved ecasily. In other words (N-M) components
out of the N components of a are chosen arbitrarily.
For example if M = N - 1, w¢ neod to choose one
component. and give it an arbitrary value. The most
Jrcasnna‘ le cheice for this in the three Interpolation
Methods mentioned in Chapeer 4.1 is w or «. The

minimm value or scalced minimum valve is of no large
minipm value oOr SCALOW IMTHLIHUEL VUL, L3 874 dius s gy

e AT AT oy N e g W
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eignificance in choosing the search direction p and can
therefore be taken arbitrarily as zero, for example.

If M <N~ 1, this approach is not of much practical use
for Jacobson and Pels' method because it essentially boils
down to a random choice method. However, for the G.G.M.
method, the components of ¢ are the elements of the matrix
S and w, so it is possible to choosc the compenents of a
so that S becomes a diagonal matrix. This method is possi=-
ble, of course, only when M = n or M = n+l depending on
whether w is left as an unknown or not, If M <N -] and
M# nor M # ntl then, again,it is wvery difficult to find

criteria for the choice ol elements of a.

The above approaches may also be applied to
Winfield's method (Sece Appendix B.2). This method is al-
ready in grid-to-grid form and the only modifications

necessary are to Steps 1 and 4 waich wrcome ¢

Step 1 : Evaluate f(xi) at an initial grid of M points

L (n+1) (n+2) unknowns)

i

Step 4 : Compute A,b,d (altogether N

it

SO that%y;rzxyi + bT yj + d £(&5)r 3 = 14 ooer M.




significance in choosing the cearxch direction p and can
therefore be taken arbitrarily as zero, for oxample.

If M <N -~ 1, this approach is n-t of much practical use
for Jacobson and Pels' mothod buocause it esscntially boils
down to a random cheice methoea. owever, for the Q.G.M.
method, the components of ¢ are the elements of the matrix
S and w, so it is possible to choose the components of a
so that S becomes a diagonal matrix. This method is possi-
ble, of course, only when M = n or M = n+l depending on
whether w is left as an unknown or not., If M <N -1 and
M # nor M # ntl then, again,it is very difficult to find

criteria for the choice of elenents of a.

The above approaches may also be applied to
Winfield's method (Sce Appendix B.2). This method is al-
ready in grid-to-grid form and the only modifications

necessary are to Steps 1 and 4 hich beconme @

Step 1 : Evaluate f(xi) at an initial grid of M poin’

L (n+1) (n+2) unknowns)

i

Step 4 : Compuic A,b,d (altogether N

it

T T .
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4,3 Overdetermined Data Structure

The overdetermined data structure case is defined
by having M > N, which gives the equation

Ya =V (4.3.1)
a solution only if V is in the range of Y. If V i3 not in
the range of ¥, which is usually the case, we shall seek a

least squares solution (See Appendix A).

The least squares solution is unique and can be
foand in one of two ways

(i) If Rank (Y) = N, then

T ~1

a = (Y ¥) y1 oy (4.3.2)

and we substitute in Step 6 ¢f the general algorithm

of Chapter 4.1

B =1 (4.3.3)
Q=Y ¥ (4.3.4)
R = YT (4.3.5)

If Rank (Y) < N, we use Armijo's Subprocedure to
gencrate a better point ir e general algorithm,
(11) The second method is to use *the psecudoinverse to find

a, as is described in Chapter 4.2.

A totally diffoerent approach is also suggested for
the overdetermined daia structure case. In order to fit a
model exactly to the objoctive function, if « has N comporents,
we neced N points. Therefere, if M > N, we can choose a
certain nunber, say K, of grids each having N peints. We

then obtain K models and solve E sets of N equations with N

i

P (L Y

e s
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unknownz. This gives us K different rolations for ¢« and
we can either choose the solution which gives the best new
trial point or we can try a linear combination (possibly

weighted) of the different minima supplied by each model.

If we choose the best minimum supplied by the K
solutions of a, the oeneral algorithm of Chapter 4.1 has to

be modified from Step 6 onwards as follows:

L ~1 .
Sth 6 3 CalCUJ.E‘tt. ai - Bi Qi Rl ‘Ji’ l - l' LI RN 4 I(

where K is the number of grids and Bi, Q.. Ri and

i
Vi are matrices defined by the model and data
structure used. If any of the Qi's are singular,
disregard that grid. If all Qi's, i =1, ¢eees K
are singular, set p = -g(xb) and use Armijo's
Subprocedure to generate a better point o
set X, = X, and go o 4; e¢lse go to 7.
7 ¢ If the largest element of all ai's is greater than
L, set p = ~g(xb) ond use Araijo's Subprocedure
to produce a better point X, set X, = X and go
to 4; else go to 8.
8 : Calculate Py i =1, veee; K where Py is the search
direction for each grid.
9 ¢« If any lp? g(xb)l <~ nr, disrcgard that grid. If all
Ipr_{ g(xb)l < iy, 1 = 1, veeey K sot p = —g(xb),

use Armijo's Subprocedure to calculate x,, set

X, = Xy ahd go Lo 4; else use Armijo's Subprocedure

K times to generale Xp o 1 =1, «vovy Kand go
i
to 10,

S T U ——

1"
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10 : Calculate f(xk.), i=1, «..; K, find the x,, say
i

9. for which If(xQ.)l < lf(xg‘)l, i=1, ...; K,
j i

ana go to 4.

X

J
j # i, set X, = xhj

An even better point than the x, of Step 10 can

: J
usually be obtained by choosing X, as
K ]
X = X 2. % (4.3.6;
5 k=1 %

K

where the Zk’s are weights such that ¥ 4 = 1. The weights
k=1

may be chosen so as to give points closer to ¥, more influence
or larger weights may be given to points hoving smaller func-

tion wvalues.

Whichever way this n-thod is used, it becomes very
unwieldy, (especially if(M - N) > 1) if we choose

= N
K= CM (4.3.7)

where CS is the total nunber of combinations of cheosing

groups of N numbers out of a tctal of M numbers. Therefore,
we suggest chioosing not more than four or five different grids.
They may be chosen arbitrarily or an ttempt can be made to
have each model represent a different region in the n dimen-

sional space surrounding the initial point.
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CHAPTER 5 :

CONVPRGENCE OF THI ALGORITHMS

It was proved in Chapter 3 that the Q.G.M. algo-
rithm posscsses the property of quadralic converdgence, i.e.
on a quadratic function it convergences in a finite number
of steps, N, where N = %(n+1) + 1. Also, in Chapter 4, it
was sihown that the three algorithms presented in grid-to-
grid form will converge in one ster if the model is the

same as the objective function,

In this Chapter we discuse the conditions and
models used for the convergence of these algorithms for
general fu.ctions and, in the second scction, supply a proof

of convergence of the Q.G.M. algorithm,

et Tms an g ot gen o o e e e

J—




54,

5.1 Algorithm Models and Convergence Conditions

Except for Winfield's method [ 20], all other

algorithms in Chapters 3 and 4 usc the iterative formula

P R N (5.1.1)

where ki iz the step size or steplength, Py is the search
@irection and its sign is chosen so &s to encure descent.
Different optimizat'on methods using (8.1.1) will nced
different conditione stipulated on the objective function

£, on A wnd on p in order to prove convergenca. The reguire-
ments on f may be that it is corntinuously differentiable

or cven twice contiauously differentianle. The conditions

on p, and Ri may bhe tnose which choose )i to ninimizc

f(Xi + Rpi) nr may use Armijo's Rule [22], which chocses

k.
i . . .
A, =15 where ki is the smallest irnteger k 2 0 that satis-

£(x; + o¥ p;) - f(x)) - ok p_-LT slxg) =0 (5.1.2)
for some fixmed a,0 ¢ (0,1). Thesze are just a few examples of
conditions which may be imposed on [, ki and p; . However,

a number of these conditions are common to most algorithms
and it would be wisc to provide a systematie approach to the

study of converyence propertics of algorithms.

This is done by Polak |27} and others, who make
use of models for algoritbms. A whole class of algorithms
is cepresented by a generalised model which is ps oved to
be convergent under cortain assumptions,  The advantaage of
this iden is that if an algorithm is found to fit a certain

model, it need only fulfill the conditions of that model to

Ve i Sy Vs - A 4

e

o —
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be proved convergent and, therefore, a separate proof of

convergence is not necassary for each algorithm,

The algorithms we are concerned with fit into one
of Polak's models and it is this one which we will present
to so’ve the abstract problem:

Given a closed subset T of a Banach space B, construct

points in T having property P.

Algorsthm Modoel

Let A ke a mapping from T to ZT, the set of non-enpty sub-

sets of T and ¢ be the stop rule, a mapping from T to Rl.

Step 9 : Compute xoeT

l : Set 1 =0
2 : Compute a point y ¢ A(x,)
s O =
3 : Cet %41 y
4 ¢+ I c(xi+]) > c(xi), stop; else set i =1 + 1

and go to 2.

This model is presented in a very generalised

form. The stop rule ¢, for cxample, might be the obicctive

function or the norm of the gradient. Points having property

P arc usually called cesirvable points, which is nore gereral

than stationary point and could include a saddle point, a

rcot of a sysiom of equations or a stability point of a

4

differcntial equation.,

The convergence theovem for this model 1s as follows:

Theoren 5.1

N

Supponse that

v eimr e e sprmeas

v T e e —
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(i) c(x) is either continuous at all non~desirable peoints
% ¢ T,or else c{x}) is kounded from below for xe T.
(ii) for every x ¢ T which is not desirable, there exists an
€ (x) > 0 and a ¢ (x) < 0 such that
c(x") - c(x') So(x) <O

for all x' ¢ T such that Ix'-x1< ¢ (x) and for all x"e A(X').

Then either the sequence {xi1 constructed by the
algorithm model is finite and its next to last eclement is
desirable, or else it is infinite and every accumulation point

oL {xi }is desirable.

Proof Sece Polak [27]

In order to prove convergence of a particular algo-
rithm, the mappings ¢ and A nwust be determined, the property
P must Le decided upon and the existence of accumulation points
n st be uaranteced. A proof of converyence for their method
was supplicd by Jacobson and Pols [21], and since tne proof
applies to both the grid-to-grid and point-to-point forms,
we will restrict ourselves to a proot of convergence for the

Q.G.M.
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5.2 Proof of Convergence for the 0.G.M.

In order to apply Theorem 5.1 and the modcel men-
tioned in the previous section to the Q.G.M. method, we make

the following definitions and assumptions:

(i) x4 is desirable (has property P) if Hg(xi)ﬂ = (
(ii) Let f£(x) correspond to c(x) in the model
(1ii) Let £(x) bc cont. diff. in R"
{iv) X € R® ie chosen so that V= {xlf(x) < f(xo)}is compact

(v) W > sup hg(x)tt,x ¢V
x

Theorem 5.2

Let {xi} be the secquence in R gencerated by the
0.G.M. algorithm presented in Chapter 3. Then either the
sequence is finite a.ud terminates ac a desirable point or
else it iz infinite and every accumulation point x* of {x

is desirable,

Proof

I1f the sequence is finito, the test for tag{x)il = 0
ensures that the last point is cdesirable. In the case of an
infinite sequence we neel to prove that conditions (i) and

(ii) of Theorcem 5.1 are satisfied.

Clearly, (i) is satisfied by the assumption that

f(x) is continuous,

To prove condition (ii) satisficed, we note that
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either p; = “g(xi) or p; =0, 8 g@i) where Iail = 1 and |

its sign is chosen so that piT g(xi) < 0.

Clearly, in either case

_p."'

i g(xi) >0

and since the algorithm ensures that
T , ‘
(3 >
ij_ g("i)' i \
we have

T
B pi

g(x;) 24
and because of assumption (v) we can choose an ¢ > 0 such
that
2
y “~
eIIg(xi)H < 7

\e2refore -piT g(xi) o Ilg(xi)ll2

Note also that
Hpin = IS g(xi)H
ard from assumption (v) and the check in the algorithm that

the largest element of « or § is not greater than L, we see

that there eoxists an L1 > 0 so that

Hpiﬂ < L1
Define
A(x) 4 fy = x + 6[]:.(x,p)]plpc D(x) )
where 6[£(x,p)] is the largest 8, 0 <& < 1 generated by

the Armijo Suliprocedure, to sotinfy
F(x 4 81 K(x,p)1p) - £(x) = dLE(x,p)le pT g(x) < 0 ~

and where



D(x) 2 {pl Ipl 2 L1 ang -p* g(x) >¢ hg(x)l 2}
For X non-desirable we define

B[ (x,p)] & £(xm (x,0)p) = £(x) —e Ax,p)pT g(x)
Using the mean value theorer

AlA(x,p)] = -] pT gi{x) - pTg(s) - (j.—~a)pT g(x)IN(x,p)
< -1pT g(x) - pY g(d) + (1~a)c I g(x)1 %I (x,p)
for & e [%x,x + ANx,p)p]

and for all p eD(x).

Consider

] = A (x, D) BT g(x) - BT g() + (1=ujcig(x)l?

B2

[

A
where p € D =

fpl Ipl < 11}
and § € [x,x+k(x,£)§], x eR"
Since llp!l is bocunded and j(x) is continuous, there exists a
A7x) > 0 such thot
AN (x)] S8(x) <0 for all p ¢ D
Since D(x) is a subsct of D
AfA (x3] = 86(x) <0 for all p ¢ D(x)

By continuity of g(x)

on
~
*
—

Xl BT gx') - BT g )+ (1-a)elg(x?] <

N

Therefore

AET gx') =BT g ') + (1) bg(x%] <

—

l o

for all 5 € B cend for all x' ¢ B(x,e(x))
This implics {hat

£(x N p) - £(x') - A (x)apT grxt) o S
for all x' ¢ B(x,c (%)) and for 11 % ¢ D{x'")

From our definition of A(x) we have that
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sTk(x',p)] = X(x) where

i

fix ] R(x',p)lp) - £(x') - d[k(x',p)la p' g(x') £ 0
Therefore

f(x'+6[11(x‘,p)]9) - f(x') & 6[£(x',p)]a p':r g(x') <0

X(x) ¢ ptglx")

In

< - T(x) alig(x)?

< ¢ K00 u tgn?
= P

for all x' ¢ B(x,e(x)) and for all p ¢ D(x')

thus satisfying the second condition of Theorem H.l.
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CHAPTER 6 :

COMPUTATITONAL RESULTS

The easiest, and perhaps most fruitful, way to
rest the effectivencss of an alygorithm is to use it to solve
test problems and then comparce it with other algorithms.
For this comparison to have any meaning, some criteria for
evaluation must bLe established. “his is done in the first
section of this Chapter and following this is a list, in the
second section, of "classical" test functions, which, because

of their propertics, arc usad to test the alyorithms,

in the third section we present the results of
using our algorithms to solve the test probicems and compare
these algorithms amonust themselves, for a number of diffe-
rent data structurces, and to othier standard minimization
techniques. We end the Chapter by presenting some conclu=-

sions bascd on the numerical resultu,

s

g e
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b. 1l Test Criteria

The points of interest when trying to measure the

perfnrmance of an algorithm arce the following:

(i) Robustness = success in obtaining an optimal solution,
to within a certain precision, for a wide rangce of
problemns.

(ii) Number of function cvaluations - including evalua-
tions of the gradient vector and Hessian matrix,

(1ii) Computer time to termination to within the desired
degree of precision.

(iv) Simplicity of use - Time required to introduce data

and functions in*o the computer program.

Not only are these properties difficul+t "o measure,
but the problem is complicated further by the fact that some
of these propertics depend to quite a large extent on how
the algorithms are programmed for the computer. Different
techniques of solving simultancous equations, tests of
matrices for siagularity, reset conditions and the like can
influence the performance cof an algorithm greatly. Since
the details of programming affect mainly properties (i1ii) and
(iv), it is difficult to use them as practical criteria for
evaluating algorithmes,

Computer time to termination, property (iii), could
be an ecxcellent criteria for cvaluation if one could ensure
that the type of computer, the inpul/outnut routines, the
method of time-sharing, and the method of coding the algorithms

are always the same for different algorithms.  Then, if an

odet
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algorithm has fewer function cvaluations bubt nmore computa-
tional work solving cquations the total time taken would be
a good measure of its effectiveness compared to another
algorithm which has many more function cvaluations but no

inversion of matrices.

Since it is virtually impossible to use all algo-
rithms in the same way and under exactly the same conditinne
and because this kind of information is usuaily missing Jrom
reports in the literature, the commonest crateria used are
properties (i) and (ii). Criterion (i) is easily tested
by solving ns many difiicult test problems as possible,

If the test problems are chosen to have espeaially flat
plateaus or steep valleys one can hope to predict the
general effectiveness of an alyorithm in solving other
problems by its performence in solving these test problems.
Criterion (ii), which is used in this Chapter, ie also
easily tested but has a number of disadvantages which should

be noted.

First of all, when evaluating the nunber of function

evaluations, the evalunticns of the gradient vector and cven
the Hessisan matrix nusi be included, and a decisicn as to
how these are to be weighted relative to the evaluation of
the objective function itself must be made.  Sccondly, the
number ot function evalvations may be reduced by different
methods such a8 matrix operations, heo "stic operations and

so forth, so that in general a comparison based solely on
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function evaluations can easily be misleading.

In our easc, however, all algorithms except that
of Winfield [ 20] use similiar metbods of solution and,
therefcre, a comparison bascd on function evaluations is a
reasonably good indication of their perforiance. Since our
algorithms do not evaluatc the Hessian matrix we need only
congider the weighting oi the yradient vector evaluation., If
f(x) is a function of n variables, then the gradient is an
n vector, and, therefore, each gradient. vector evaluation
ia taken as n function evaluations. For the remainder of
this Chapter the term "function evaluations” will rcfer
to the sum total of cbjective function and gradient vector

evaluations.

An addiiional factor which must be common to all
algcrithms in order to make the comparison neaningfull is
the termination criteria used to stop execution. Although
this is not a mecasure of performance, it depends on the
required degree of precision, which is associated with the
concept of robustness. Algorithms may be designed to termi-

nate on achicving a given small value for one of the following:

a) A fracticonal change in (x)
D) A fractional change in X

c) The norm of the gradient

Bach of the above, if used alonce, has its disadvantages.
a) could terminate on a flat plateau, bh) on a steep slope and

c) at a saddle point.
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b) A fractional change in X

2 The norm »f the gradient

Each of the above, it used alone, has its disadvantages,

a) could terminate on a flat plaicau, b} on a stecp slope and

¢) at & saddln pointi.



Therefore, the uniform toermiration criteria we
use, includes both a) and ¢) and the algorithm terminates

when both eriteria are fulfilled.

5.2 Test Funchtions

The following test functions have been chosen
for the reason that they ax+ ~mong the most common problens
used in the literature to ae performance of algorithms.
Although numerical cowparis:. ave of limited value when
appliecd to problems using a single initial point, most
problems mentioned in the licerature have "classical" starting
roints and it :r these we will use mostly. In the following
list the starting point will bec¢ denoted by T *ha minimum

by X and the minimum function value by i(xm)

1) Rosenbrock's Function (Fletcher-Powell, 1963)
2,2

f(x) = lOO(x2 - Xy )< o+ (1 - xl)
T

O - ( 102' 1no)

x T = (1.0, 1.0), £(x.) =0

n oS It

This function has a stecp curved vallcev along the curve

2

XZ:Xl

2) Beale (1958)

£(x) = [1.5=% ) (1=3x,)17 + [ 2,253 (1-x,%)1 % + [ 2.625-x, (i-x
T
X, ~ (0.1, 0.1)
x ¥ = (3.0, 0.5), f(x.) = 0
m LIAEAY 4 4 ¢ - ! . xll

This function hac a narrow curving valley approaching

the line %, = 1

2

3




3)

4)

5)

66,

Helical Valley (Fletchor-Powesll, 1963)

£(x) = 1ool(x3-~100)2 (=12 + w2

3
where .
tan'l(~£) , X, <0
X 1
1
2n0 =
-1 %
r + tan (;_) ¢ Xy <0
\ 1
_ 2 2,%
r = (x1 + X, )
T
XO = ""’]."0’0"
x. = (1,0,0), £(x) =0
m r 1 ! b1}

Quartic¢ with Singular Hessian (Fletcher-Powell, 1963)

\2 4

= . 2 -~ o N . -
f(x) = (xlfloxz) + 5(x3 ys ook (x2 4x3) 10(x1
T ,
x(’ = (3' "]p On 1
x 1 = (0,0,0,0), f(x.) = 0
m - [ ’ 1 4 4 - It

This function has a fiat mipnimum.

Four Dimensional Banana (Coleville, 1968)

2

£(x) = 100(x12-x )

2
2 L1y 2 2 ~ -
10.1[(x2-1) + (xd 1)°1° + 19.9(x2 1)(x4 1)

T .
XO = ("’5, ".], "3’ "1)

T

xm (],1,101)'

i

L (XIII) =0

This function has a banana shaped ridge and is a four

dimensional version of Rocenbrock's function,

2 2 2
+ (J—xl) + 90(x3 ~X,) * (1—x3) +

2
4)
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nlts and Comparisons

In

results 1t is

and notation:

METHOD

METIOD

METHOD

METIHOD

METIION

METIIOD

27

2B

2C

2D

M

N

Ax

]l

order to simplify the presoentation of our

necessary first to introduce some parameters

- Number of points in grid

-~ Number of unknowns nccessary for
fitting cer.ain model.

- The i th unknown in list of N
nnknowns.

- Paramcter indicating grid size.
It is the approximate distance in n
space of points ¢f grid from the
starting point X,

52 Stop criteria.

The Q.G.M. in point-to-point form (Sece algo-
rithm in Chapter 3.2).

General grid-to-grid algorithm (Sce Chapter
4.1).

Method 2 applied to the Q.G.M. (Sece Chapter
4 - Pages 44-46).

Mcthod 2 appliced to Jacobion and Pels' algo-
rithm (ce Chapter 4 ~ Page 44).

Mothod 2 applied to the special case of
Jacobson and Pels' algoritbm where v, the
dogroee of homogencity,is set equal to 2 (Sce
Chapter 4 = Page 406).

wWinfield's oM method (Sce Appendix R.2).

oy e o e

——— —
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FUNCTION i = The i th function in the list of Chapter
6.2,
L = Upper bound of e¢lements of ¢ in Mcthods
1 and 2.

Tyr M- Paramcters used in Methods 1 and 2 respec-
tively to ensure that the chosen search
direction leads to a rcasonable decrease
in function value.

My Parameter usced in Method 1 to ensure that
Y and ¢ can be updated using the Sherman-

Morrison formula.

The results presented in this section have been
obtained frem implementable algorithms, as oppcsed to the
conceptual algerithms described in Chapters 3 and 4. The
two major differences bietween the conceptual and implement~

able algorithms arc:

(1) 1In the implementable algerithm the stop criterion is
Aot Hg(xj)u = 0 and it is, as mentioned in section

6.1, a combination of

f(xi+l) - f(xi) < 61 (6.3.1)
and
hg(xi+1)u o 62 (6.3.2)

The algorithm torminates only if both (6.3.1) and

(6.3.2) are satisficed.

(1) In order to facilitate the proof of eonvergence the

conceptual alaorithne always use Armijo's Subproccdure

o T P A T L S
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to ensure descent. The implementable algorithns,
sowaver, calculate the minimum of the fitted model
and if this point produces & lower function value,
it is chosen as the new trial point X4y Cnly if
this is nolt the case, is Armijo's Subprocedure usecd
to find X441 such that descent is ensured.
All computations were performed in double pre-
cision, using FORTRALN IV, on the IBM 3¢0/50 computer of
the University of the Witwatecrsrand and the same techniques
of solving linecar equations, matrix operations and so on,
were usad so as to make the comparison of resultis using
function evaluatiors as meaningful as possible. The values

of the parameters ware chosen as follows: 61 = 10—8,

5, =104 L =100 0 =n, = 1071% 4, = 107%. an

tables give the fotal number of function evaluations (i.e.
function plus gradient evaluations) necessary to reach the
minima of the test functions from the respective starting

points mentioned in Chapter 6.2.
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“ab1 6 3,1 presents the results of Mcthod 1,
and, for comparison, includces the resulis of Jacobson
and Oksman's algorithm and the 1BM systoem/360 Scientific
subroutine Package version of Fletcher and Powell's
algorithm. The comparison is included in order to give a
rough idea of the performance of Method 1 but, as mentioned
previously, is of little practical value because of the

nonuniformity of the different algorithms.

The IBM Fletcher Powell routince performs poorly
for Test Function 1 because it uses a lincar search which
brackets the minimum befure using cubic interpolation and
ano! or figurce quoted in the literature is 240, Sinze
Method 1 is uvscentiully a derivation of Newton's method
using a guadratic modcl its results are generally of the
same magnitudce as that of Fletchoer and Powell but decidedly

worse than these of Jacobson and Oksman, wiio use a homo-

geneous model.
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o, JACORSON FLETCHER
ooy, METHOD 1 AND AND
AN OKSMAN POWELL
Yo
1 258 207 501
3 259 136 304
4 487 230 400
5 968 675 805

TABLLE 6.3.1




72,

Tables 6.3.2 toc 6.3.5 show the influence of
initial grid size (represented by Ax) on Methods 2A to
2D for the casc where M = N, The different mcthods were
run for more grid sizes than those prescenied in the Tables
and it was found that it is very difficult to establic<h
criteria for choosing the optimal grid size. Although
Winfield sugyests choosing a large initial grid w found
that usually the smallcr grids werce better conditioned
and more robust. Large grids tend to become unwieldy and
complicated from the computational point of view and when
using Method 2 on a new unkiaown Test Function it is hard
to tell, without previous knowledge of the function, just
how large the initial grid should be so as to include the

minimunm,

Another factor which affects the results of
Method 2 is the choice of the points of the grid. Even
though Ax represents the size of the grid,the points them-
selves may be chosen in mary different ways within the
frame of a given Ax. Tables 6.3.2 - 6.3.5 all use the same
initial grid for ecach Test Function and although Methods
2A-2D were tried with different initial points for the same
Ax, the resulis did not differ greatly from those given in

the Tablos.

TS - e

e e g e

—




2
d |
KON 0.001 {0.01 [C.1 |10 |100 | 1000
<0
s == =
1 276 | 363 | 272 | 350 | 299 | 278
2 197 | 185 | 143 | 176 | 191 | 179
3 408 | 315 | 425 | 145 | 320] 147
4 594 | 823 | 672 | G472 | 709| 877
5 1705 | 1587 | 1403 | 1693 | 1310 | 1651

TABILE 6.3.,2 = METHOD 22, M = N
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0.001 0.01] 0.1 10 100 | 1000
1 - 248 “ 265 Q;Qe‘ 234 27; 259
2 156 123 149 167 174 153
3 242 289 290 228 220 220
4 440 353 369 494 491 595
5 1364 | 1486 (1198 | 1077 | 1098 | 1230

TARLE 6,3.3 = METHOD 2B, M = N
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I
R 0.001f 0.01f 0.1 | 10 | 100 | 1000
s

1 214 | 228 | 197 243 279 | 253

2 1.4 | 125 | 133 159 | 149 | 141

2 332 | 274 | 29y | 293 348 203

4 532 | 983 | 511 | 745| 790 960

5 1453|1279 11498 | 1321 | 1029 | 1385

TABLE 6.3.4 = METHOD 2C, M = N

——— W

Y Wy - - —— = —
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0.01] 0.1 10 100 | 1000

1 80 65 87 84 71 59

2 43 50 56 36 53 31

3 110 91 97 02 104 87
P

4 115 123 110 103 121 129

5 203 256 246 2371 206 225

TABLE 6.3.5 = METIOU 2D, M = N
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The effoct of data structure size is presented
in the following Tables, In Tables 6.3.6 - 6.3.9, if
M < N we use ecuations (4.2.2) to (4.2.5) for "he minimpum
norm solution, and if M > N we use cquations (4.3.2) to
(4.3.5) for the least squarces solution, In both cases,
when Q is singular Armijo's Subprcecedure is usced.  Since
small grids were found to be the best to work with, Tables
6.3.6 -~ 6,3.9 present the results when Ax = 0,001, and
the results for different size grids can be found in

Appendix C.

For all Methods, when the data structure size
varies (i.c. M is greater than, egual to, or legs than,
N), the best results are usually achicved when M = N,
This is also the case fo. different initial grid sizes
(See Appendix C, Tables C.1 - C.4) and for egual grid
sizes having different . ..tial points. Better results
thar. those achieved when M = N occur more freguently for
the .ases of M > N than for those of M < N, although there
arc no consistent guidelines to the optimum valuce of M
which proeduces the best results. In addition it must be
noted trat even when the resuits are better than those
of the case M = N, the difference in resulis is not an

appreciable one,

The general trend is that the nunber of function
evalaations inorcases as M incrcases from the value of N
and as it deercases from the value of N. In the latter

case the increasce is much more rapid and the systems of
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equations less stable although Q was never singular ia

any of the examples.

A factor which does not appear in the Tables
is the amount of computational work involved in z~lwving
the sets of simultaneous cguations. When M > N the setg
of equations are always N x N and thercfore as M increascs
there is no increase in the amount of computational work.
However, when M < N, the sets of equations are M x M and
as a result, if M decreases, so does the size of the sct
of equations and the ce  tatienal woink. 1n fact this
compensates only slighe | for the large increase in the
number of functiorn evaluaticuas. This can be illuvstrated
by taking the ext 2 case where M = 1 and there are no
sets of equations to be solved. In this cese the numbur
of function evaluations may be from twice to ten times
the number when M = N, and the tolal t me aken to reach

the minimum is also greater.

—W A o R W Ny .y =




KON ) ' '
22 M= 1|M= N-2|M = N-1[M = N|M = N+1|M = n+2|M = 2N
e
1 o8 | 943 | 750 | 276 | 283 | 314 | 529
2 653 | 834 581 | 197 | 192 204 | 199
3 1613 | 820 910 | 408 | 361 458 | 508
4 1108 | 698 415 | 594 | 581 671 | 85F
5 2049 | 1856 | 1714 {1705 | 1683 | 1765 |1626
TABLE 6.3.6 = METHOD 22, Ax = 0,001

Pp—
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Q%y? Y IyM = 1|M=N-204 = N-1|M = N|M = N+1|M = W+2|M = 2N

O

1 - 1187 143;*- 264 | 248 236 281 | 417 B
2 1824 | 553 282 | 156 | 148 131 | 221

3 921 | 785 543 | 242 | 198 324 | 397

4 1483 | 497 640 | 440 | 475 543 | 637

5 2971 | 1946 | 1328 |1364 | 16va | 1981 |2425

TABLE 6.3.7 = METHOD 2B, Ax = 0.001

P S U IO p—




&1.
R 4
4’0\7, f M= 1|M = N-2|M = N~1|M = N|M = N+1{M = N+2|M = 2N
<0
o
=2 TTERT - —— S ——— Ty

1 941 941 449 214 230 247 302
2 865 865 374 114 158 139 188
3 2824 2951 414 332 326 426 508
4 25 153 541 532 593 660 g1z
5 2712 2643 1361 1403 1973 1994 2114

TABLE 6.3.8 = METHOD 2C, Ax = 0.001
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$Q%Q? % M= 1M = N-2|M = N-1{M = N|M = N+1|M = N+2|{M = 2N
Q'Lb
1 ~r“;;5 *HI:zHR'M“Iéé 36 90 1;?w 127
2 140 171 125 43 48 41 61
3 | 206 B 195w—_ 221 110 98 136 | 168
4 235 107 131 115 103 148 193
5 334 | 281 230 | 203 | 216 198 245
TABLE 6.3.9 - METHOD 2D, Ax = 0,001
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Pable 6.3.10 presents the results obtained when
the last ceoefficicent, CN' in Method 2 was taken as zero for
the cace of M = N - 1 (This coeificioent is d four Winfield's
Qua” ratic Model and w for the Q.G.M. and Homogeneous Model).
Wk 1 comparing *hese results with the results of Tables
6.3.6 - 6.3.% wa uce that for th? sane case of M = N - 1
this method is invariably better than the method presented
in the abovementionced Tables but the performance is not
enhanced when compared to the case of M = N even though the
sets of cguations in this case are (N - 1) x (N ~ 1) iastead

of N » N.

This method was also tried with different initial
grid sizes with similiar results. Por some of Lhese diffe~

rent initial grid sizes seo Apneadix C ~ Table C,5,

e AT LLE® oL =
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Table 6.3.10 presents the results obtained wlhien
the last coefficient, CN' in Method 2 was taken as zero for
the case of M = N - 1 (This coefficient is d for Winfield's
Quadratic Madel and w for the Q.G.M. and Homogenrous Model).
When comparing these results with the results of Tables
6.3.6 - 6.3.9 we sce that for the same case of M = N - 1
this method is invariably better than the method presented
in the abovemcntionced Tables but the performance is not
enhanced when comparcd to the case of M = N even though the
sets of eguations in this case are (N - 1) x (N - 1) instead

of N x N.

This method was also tried with different initial
grid sizes with similiar results. For some of these diffe-

rent initial grid sizes sce Appendix C - Table C.5.
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&, &
Ve &,
RN 2 28 2C 2D
20
Vo
- NS
1 314 198 207 188
2 189 175 120 75
3 476 285 356 104
4 689 413 568 235
5 14 1524 1492 447
TABLE 6.3.10 = M = N - 1, Co = 0,4% = 0,001

s v viame Ctilol it o




The method suggested in Chapter 4.3, Pages 50-51
of fitting seveoral, say K, models at 2ach iteration ard
choosing the onc which produces thoe best minisum, was tried
for values of K from 2 to 5. As K increascs, the number of
function evaluations increases because at cach iteration K
minima arc tested for a decrease in function value. The
computational work involved in solving the scts of cquations
also increases groatly for the rcason that K sets of
equations are bheing solvoed alchough the number of iterations
in most cases decrcases as the result oi a better point being
found at each iteration., Lven when K = 2 the number of
function evaluations and the amount of computational work

are so great as to render the method gquite impractical.
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CHAVILR 7 3

CONCLUSTION

The results of :he wrevious Chapter show that
the Grid-to~"rid Methods ue. i1, attain their optimal data
structure sirc¢ when the jvias contain the gxact number of
points necassary to fit a certain model to a given ohjec-

tive function,

For the overdetermined data structure, it was
thought that an increase in data structure size would bring
about a betver approximation to the given objective function
and eveatuaally lead to a decrcase in the 1 mbexr of function
evaluations. In fact, ag M increascs, the least—-squares
model docs give a better approximation to the given function
and a better scarch direction., The problem, however, is
that at ecach iteration we scek a least-squares solution
using a data structure of the same size. Even when a
better point is found and included in the grid, M - 1
points of the previous grid still remain in the new grid
and a4 a result the now least-sguarces model will not differ
much from the previeus one. The stepsize thercfore biecomes
smaller bringing about an increasce in the total number of

function cvaluations,

In the vnderdetermined case, on the other hand,
the scarch direction is rarely a good onc and therefore the
inercase in funeiion evaluations for this case is much more

rapid than in the overdetermined caseo. When M < N there
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are an infinite number of solutions and the criterion that

was used to find a unigue solution was that of minimum norm.

This solution will, more eoften than not, provide a model

which is not at all a good approximation to the given objec~-
tive function and lcad to a scarch dircction whichi might
be entirely erroncous. In fact, the very large number of
function evaluations comes about mainly because of the many
times Armijo's Rule is used as a result of a failure of the

model to produce a good search direction.

In ordrr to understand this phenomenon more fully,
we shall discuss the cifferent methods separately while
roting that a mirimum norm solution of Ax = b will produce
1he "smallesc possible" x under the given constraints of
ine eguations:

(i) In Mecthod 2A the x's are the elements of the inverse
of the Hessian matrix and if these are always small,
the stepsize will be small and the secarch Airection
will not necessarily be a good one.

(1i) In Methods 2B and 2C the x's arce the actual independent
variables of the ohjective function. This means that
these methods are actually drawing the search towards
the origin of +he axes instead of in the direction
of the minimum. Indeed, the reason for the excep-
tionally good resultls of Mothod 2C on Test Function 4
(5cc Table 6.3.8) is that this function has its
mininme at the oriqgin, f

(i11) In Mcihod 2D the x's arve the clements of tho Hessian

matriz. Sincce the search direction and stepsize
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depend on the increase of the Hessian malrix, a
small Hessian matrix usually roenlts in a large

inverse, bringing about a bad scarch direction.

Even theough it seems that the optimal data
structure size occurs when M = N we do not think that
recearch in this dircction should stop at this point,

While it must be admitted thot the underdetermined data
structure does not scow to be very promising unless a
suitable critoerion for a unique selution can be found,

the overdeterrniined structure's results could pechaps be
improved if a way could be found to make the data structure
size more flexible. For example, if a gcod search direction
and hence a better point is found, the data structure sizc
should be decreased to allow the updated model to determine
another good direction. It is in this v a that we suggest

that further resecarch be directed.

S
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APPENDIX A — Generalised Inverses

Let A be a rectangular m x n matrix in the following:

1. Definition - A generaliscd inverse of A is a matrix

29 of order n ¥ m such that
ArYA=nA (A.1)
The generalised (nverse is not unique.

2. Definition - A minimum norm inverse of A is a matrix

A™ of order n x m such that

AA" A =2 (A.2)
and (A" n)T = A" A (A.3)
The minimum norm inverse 1s not uniqgue.

3. Definition - A pscudoinverse of A is a matrix aP of

order nxm such that

AaP A=n (A.4)
(AP A)T = aP a (A.5)
(a AP)T = A AP (A.5)
aP a AP = AP (A.7)

The pseudoinverse is unique.

The above definitions can be used to find solutions

to the set of lincar equaticns giver by

Ax=b, Ae R**P, xc i 1e g (A.8)
where Rank (A) - k.
The different possibilities are an follows:

(1) If m > n an? the system of equation is inconsistont,
there 19 no solution. Urually, hewever, in this casc,
a bost approximate or least squares solution is used.

. . . *
This is defined by the point x such fhat



* .
IA x = bl <A x - bl for all x ¢r”
Then the solution is
*
x = aPyp (r.9)

In the special case where k = n this means that
AT A is non singular and equation (A.9) reduces Lo
* -
=l at ATy (A.10)
(ii) If m < n or the system of equations is consistent,

then the general solution to (A.8) is

x =29p+ (1 - a9 )y (A.11)
where y is an arbitrary vector in r.

This solution is not unique and unique solutions are
obtained in the following ways: ;ﬁv

a) If k = n (this is only possible if m = n)

the solution boecomoy

» -

x* = a1 p (A.12)
b) IfT m < nand k = m, the »Hlulion is

* -

x =aT (a ah)"1y (A.13)

. . T | .
because in this case A A7 is non singular,

c) Ifm<nand k < m there are on infinite nurber of
solutions and usually the minimum norm solution is
chosen, ™This is unique and is defined by a point

*
x such that

* *
IA X - bl = 1A X= bl and Ix i < lixll for all

*

% ¢ R" (A.14)
The solution to (A.14) is

x =AM p (A.15)

Note that AP is a special case o1 A™ and, therefore

equation (A.9) is alsce a solution of (A.14). Alco, if



94,

k = n as in section a), we have
AP = A" = a71
which makes equation (A.12) a , rticular case of

(A.9) or (A.15).

For further details of this material see Rao

and Mitra [ 30] and Penrosce { 28] and | 31] .
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APPENDIX B = Bxisting Interpelation Methods

B.1 Jacokson and Pels [ 211

Step 1.

Assume Xo’ nl, nz, N given

Set Yo = 2, Wy T 0, 1 =20
A
Compute Py = —g(xo) and uze Armijo's Sub-

procedurc to calculate 50.

) = L by
Set Xy X, 4 opo
T T .
SC‘t '10 LS [Xl, ’YO’ "“)()] ’ po = Iy :J = 1-
If Hg(xi¢l)ﬂ = 0, stop; elsc go to 6.
i
Calculato: g(hi+l,
Yigp = E(X5 )
- =1
- T ¢
Vier T Xy 9(Xgyg)
m )
< 3 =
1f lYi+1 P e, 7., set x_ = x, ., and

go to 1; else calculate:

P e, (y.. TP, = gF
Y Pi 5 T
P e, ,v - Y. 'ai)
a. = a, 4 k. ( i+l i+l
i+l i T P e
Y1 Y1
and go to 7.
Set i = i+1; if j = n+2 reset j = 1; elsc

set j = j+1
T . . -

1f l(xi - ﬁi) g(xi)l NPV set X = X, and go

to 1; else go to 9.

Qet = . YO

Set py "i(“i + ﬂi\ whore

T

oy = -5ien [(xi 1 p.)

i g(xi)l



96.

10, 1If HpiH + Hviﬂ < N, use Armijc's Subprocedure

to calculate Si; else set X, = X; and go to
1.
- — L M 5
11. Set X541 X5 + Sipi' go to 5.

In the uabove steps:

« 208, v, w

-1 _ -1 T -1
Pam T Byt ey gy megpy)
- ] P -
Viep = Vg Feglviy =8y V) Vg = e

Aruwijo Subprocedure

Step 1. Set k(x;) =0, 8, (x(x;)) = 1
AC
2, Calculate Af = L(xi + 6i(k(xi))pi) - f(xi)

6i(k(x.))

A I p
|
.7i|+ 2

T

3. If af + X
i

g(xi)l <0
sot Si = éi(k(xi)) and return:

lao set k(xi) = k(xi) + 1 and go to 4.

4, Set 6i(k(xi)) = 6i(k(xi))/2k(xi) and go to 2.

e zm
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B.2

winficld [ 20]

step 1.

Evaluate f(xi) at an initial grid of points

X i =1, vesves, N where N = Lin+1) (n+2)

il
Let the basepoint xp be the ypoint of the
initial grid at which f(xi) i¢ lowest,
Define co~-ordinates relative to the base-
point yj = xy = Xy

and order the points by increcasing

Buclidean distance {rom the basepoint.

Let the subscript denote tbis ordering, with
the origin Yy, = 0 being the basepoint and YN
being the point farthest from the basepoint.
Compute A, b, d so that

lr,ijij—kayj #d=E0), 3= 1, ey N

Define a region of validity R of the gquadra-
tic model

T T
gly) = %y~ Ay+b y+d
For the first model, and after every success
in locating a new bascpoint, let R be a sphere
of radius 0.99HyNH centred at the basepoint.
Choose the nexi trial point to be the y in R
which minimizes gq(y).
At the minimizina y, compute

X =% 1y

and cvaluate £(x).
1f f(x) = f(xb), thea % becenics a new basepoint.,
i f(x) » f(xb), then retoin ¥, as basepoint

and reduce the volume of R by the factor 3) .27,




10.

98.

The original data X f(h¢ ; Lo=1,2,.,., N
plus the new point x and f(x) are kept in

a data table having a capacity greater than
the N data requirced to form a quadratic model.
If X beecones a bascpoint, all data in the
table are re~ordered by Buclidean distance
from this new basepoint. If x does not become
a new basepoint, all data ircludine Lhe new
%, £(x) arc re-ordered by distance from the
214 bascpoint. In the ner ordering, x
neces:tarily becomes one of b N1 points
closest to e This is because ¥ is in the
R used in Step 6, and all poaints in that

R are clozsor to Xy, than ihe point, defined

in Step 3, which play»nd the role of Xy

before the new ord.ving.

Let the bosepoint and the N-1 points nearest
it be dosignated "active pointe". L+ the
newly ordered data Xj’ f(x_j), 3 = 1,2,...N,
with X4 th  bascpoint and Xy the most distant
astive point, o designated "active data”.
genoas o result of cach evaluation of '(x),
at lcast once memboer X f(xi) of the set of
active diva is changed, and the most recent
X, £(r) is in.  dod in the active data.

With a new sct of active data, go to Step 3
and ropeat.  The computat jons of “tep 3
through 11 venrtdode  one HSQM (Beqquent ial

Quadralic Modelr) coycloe.

5

o e =




12.

99.

wWhen £(x) or the radius of R is reducecd
below specified values, e ¢ .20 gpecificed
nunber of f(x) evaluatio. i wxceceded, stop

the program.
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APPIIMIX C - ]\dditj,nnq1___T_-’_»,l"afl.(!st Ot IJllﬁtL‘%}‘itj(tl Rosulis

,‘)."
7
(NN M= 1M = N-2{M = N~1{M = N|M = N+1|M = N+2{M = 2N
JQ,L,
S
1 655 853 773 299 312 324 352
2 650 791 558 191 184 215 195
3 1503 784 832 329 341 318 396
4 1312 613 755 709 684 714 755
; —
5 2243 1 1891 1835 | 1810 | 1751 156 | 1777
TABLE C.1 = METHOD 2h, Ax = 100
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M= M= N-2{M = N~1|M = N{M = N+1{M = N+2|M = 2N
951 834 294 <73 265 30¢€ 397
1623 604 304 174 153 189 263
985 818 516 220 241 208 457
1625 934 687 441 521 556 643
2563 1037 1226 1098 1325 1724 2047
TABLE C.2 - MursHOD 2B, Ax = 100
" -




102.

M= 1M = N-2I{M == N~1IM = NIM = N+1{M = N+2; M = 2N
1 —11?4 | 805 ;35 279 291 304 346
2 883 7904 461 149 197 208 243
3 2184 1121 024 348 324 398 446
4 43 2010 885 790 859 756 905
5 2564 1987 976 1029 1423 1506 1704

TART L3 = METIHCH 20, Ax = 100

o e m——




103.
N\
4)% M= 1|M = N-2|M = N-1/M = N|M = N+1|M = N+2[M = 2N
<0
o
1 231 173 127 71 82 97 123
2 1¢8 126 173 58 6o 73 89
3 325 233 264 143 162 125 188
4 267 151 128 106 94 144 189
5 397 324 256G 193 212 184 237
TABLE C.4 - METHOD 2D, Ax = 100




104.

aQ%»J%Qk~ 2n 2B 2c 2D

J’Jof 4
ka -
1 237 245 193 187
2 134 212 108 79
3 415 338 407 185
4 586 437 603 267
5 2324 1846 1641 483
TABLE €.5 = M = N-1, C. = 0, dx = 100
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