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ABESETRACT

FURTHER DEVELOPMENTS OF THE BOUNDARY ELEMENT METHOD WITH APPLICATIONS IN
MINING

- DIERING, Julian Anthony. Cameron, University of "i.watersrand, 1981,

Three computer programmes designed for the determination -of stresses and
‘displacements in and around mine excavations are described. The first is
‘a’ three-dimensional, boundary element formulation which -allows  for

modelling 'o:tf large scale non-homogeneities in the rodk mass surrounding

the mine excavations. In addition, shear or tensile failure of the geolo-

“gical interfaces may be modelled in a realistic manner. The second is a

"mixed boundary element" formulation comprising ﬂqree—din*enéional boundary
and displacement discontinuity elements into a single programme. The pro-

gramme enables the interaction of planar or tabular features with open or

massive excavations to be modelled efficiently. The third, an extension
to an existing programme enables mining in non-homogeneous ground to te
modelled in two dimensions using the displacement discontinuity methed.

VEx‘aIrples are given demonstrating the applicability of these programmes to

mining problems. The programmes will run on most mini computers meking
them practical design aids readily available to the rock mechanics

engineer.
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CHAPTER 1  INTRODUCTION

R4

The determination of stresses and -displacements in and around mine
excavations plays an important role in mine- plarming and mining rock
mechanics. Usually, however, the geology surrounding and the geo-
metry cf the mine excavation are so complex that (a) analytic solu-
~tions ‘are not available and (b) numerous sirrpiifying ‘assumptions have
to be mde about the geology and geometry before numerical or, some-
times, analytical soluticns may be obtained. The geology of the
problem is usually simplified Yy assumptions such as homogeneity,
isotropy and linear elastic material while geometric sinplificatibns
include two-dimensional or axisymvetric representation of a fully
three~dimensional problem, an assumption of an infinite, finite or

semi-infinite region of space and smoothing of excavation surfaces.

The limited appr.licability' of analyt:ic solutions to pract'icél‘ mining
problems together with the ready availebility of dig;i__tal conmputers
‘has resulted in an e{zer increasing use of conputer hbased stress:
analysis- techniques mrm_ru.ng rock mechanics. 'Tnfee ma‘jdr classes Qf
numerical stress analysis have emerged, namely the finite difference,
finite element and surface element methods. '

The finite difference method finds some applicai:i@n in simple time
dependent problems but has been largely superceded by the Finite

- element method. "’I‘nis\ method requires that a sufficiently large

volums of material surrounding the mine workings being analysed be

~divided into wolume elements. Simplifying assumptions about the

stresses and displacements within an element are made and each
element only influences its neighbours. As such, each element may be
assigned unique properties so that the finite element method is well
suited to the analysis of non-homogeneous or ’non—-lineari.y elastic
problems.
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Surface element methods describe a problem in tepus of the excavation
surfaces, geclogical interfaces and very often the surrounding ground
surface also. These surfaces are divided into surface or boundary
slanents and their matual intevaction caloulated so as to satisfy

poundary conditions imposed on the surfaces.

Tt is Drcediately apoavent that surface area to volume ratio of a
problen will determine the relative applicability of a Ffinite or
surface element technicue.  Bgually important are the degrees of
non=honogeneity and non~linear behaviour involved. Both methods (and
in fack wmost stress analysis fornmulations) usually assume that the
hogt rock 1s isotropic. The validity of this assumption in most
vrobleans ls generally accepted even though numerous rock types ave
grogsly anilsotropic. The assunption of isotropy is therefore main-
tained throughout the rest of this dissertation.

Surface or bourndary elenent methods are basad upon the numerical
solution of the boundary integral equation (BIE). Different fornmla-
tions of the BIE include specification of surface tractions and dis~
placements, "fictitious forces" and displacements or surface trac-
tions and displacement discontinuities. The displacement dJdiscon—
tinulty formulation forms a special class of boundary element method
commonly referred to as the displacement discontinuity method.
Distinction is hereafter nade between the displacement. discontinuity
method (DIM) and other boundary element methods (BEM) and the finite
elenent method (FEM).

Just as the FEM and HEM fornulations have thelr relative merits and
disadvantages so do the BEM and DIM formulations. To a first degree
of approximation it may be said that the DIM is best suited to the
modelling of narrow or tabular excavations and their interaction with
faults or Jjoints while the BIM is well suited to nodelling open exca—
vations with the presence of limited non-hanogenities.

Existing formilations

Truse  (1969) described a boundary element formulation in three
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dimensions for homogeneous bodies. Boundary conditions at the

~surface elements are specified in terms of constant tractions and

; bnd . . ’ i N
displacements over triangular elements. Examples are given to demon—

strate the applicability of +the formlation +o - fairly ks'imp’le
provlems. mvaluation of influence coefficients (the influence of one
conponént of displacenent or traction of one elenent upon another) is
done analytically. 'The main draw back of this formalation is that a
large number of elements are requirsd for practical problems.

Cruse (1974) descrived an-improved version in which displacements and

tractions are allowed to vary linearly over each surface eleuent.

This formulation gives improved acouracy for the same rumber of

surface elenents. -

A boundary element formulation in which curved elements with linear,

b quadratic or ctbic variation of tractions and displacements is -
allowed over each element was described by Lachat and Watson (1976). -
A camputer programme was described which is capable of handling a

wide /:ange of problems including thin plate probleus. The computer
programme is very long (about 10 000 lines of Fortran IV) and might
not be well suited to riun on small mini~computers. A problem which

arises when higher order elements are used is that the integz;‘atio‘n,

procedures described to date will only work for finite geometries..
Tt is possible that minor modifications to these programmes would
enable them to model typical rock mechanics problems,  although no

literature describing any such modifications was found.

Exémplés given in the above ‘fomulations; are related primarily to
mechanical engineering and fracture machanics and solution of +the

equations is carried out usiny Gaussian Elimination, a tachnique not
well suited to the solution of large systems of linear equations ona =

small mini~camputer.

Deist and Georgiades (1976) described a slightly different approach
in which displacements and "fict:iﬁioué forces” are taken as constant
over flat triangular elements.  Evaluation of influence coefficients
is done numerically and the equations are solved using a stationary
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second degree iterative solution technique not unlike successive over

relaxation . (SOR). This iterative technique offers considerable

savings of computation ‘time. Machine fime is further réduced by the

implementation of a sophisticated "lumping mechanism" wheresy grfoups‘
of elements are treated as single elements when. calculating their
influences upon other remote elements. - Examples ‘are given showing
the ,appiicability of this programre -to mining rock mechanics
problems. - The programré assures a bhomogenecus rockmass and is also

- too large to be easily implemented on- a mini-computer.

Bannerjie and Butterfield (1977) describe a formulation similar +o
that -of Cruse (1969) and give exaiples of applications in soil
mechanics. Nene of the above formulations allow for slip or failure
to occur at an interface (fault or joint) unless such failure is
implemented mannally step by step. Hocking (1976) has attempted to

implement - slip on two-dimensional toundary element interfaces. ~ His
apgroadh, however, met with llttle. success. "results should be

viewed with suspicion until vallaata.on is ob‘r.alned"

The displacerment. discontinuity method has - found wide application for
m.lnlng problems involving tabular excav.atlons Three~dimensional:
formuilations have been described by Salamon { 1963, 1964 (a), {b), (e))

“and Starfield and Crouch (1973) in which, typically, a planar tabular
excavation remote from the earth's surface is divided into a large

nunber of square elenents. The relatwe movement. between 'hang:_ngwall
and footwall defines the "displacement d;scontlntulty which is
assumed constant over each element. These formilations cannot fodel
the interaction between tabular excavations and the ground surface or
other non—tabular excavations.

Morris (1976) of the Chamber of Mines of South Africa has extended
the method for tabular excavations close to but not outcropping at
the earth's surface or for a series of parallel tabular excavations.
These formula’.ions cannot model outcropping excavations or any inter—
action with non-tabular excavations or geological discontinuities as

is the case with the programmes described in this dissertation.

i
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Crouch (1976)  extended the DDM in two-dimensions to handle excava-

tions of aJ.bJ_trary shape in-a ‘honbcreneous rock rrass. Failure of

o faults - and - jolnts ’."L. ~realistically modelled by means of a -

Mohr-Coulonb fallure criterion. - This very useful extension to the

DDM cannot, however, model non~homogeneities.

Scope of the dissertation

The major portion of this dissertation is concerned with stress

analysis formilations in three~dimensions. Numerical and computa—
tional problems associated with three-dimensional analyses are in
'general mich greater than for equivalent two~dimensional analyses.
Execution times, storage requirements, data preparation times and
degrees of freedom are usually an crder of magnitude greater than for
twodimensional formuilations. As a result)» the cost of a three-
dimensional stress analysis is usually high and often prcohibitive.

One approach used o alleviate the problem centres around the intro-
duction of sophisticated elements. Zienkiewicz ;(1'9;7].) has used
‘Sophisticated finite elements to great 'adVantagé while Lachat and
Watson (1976) and Cruse (1973) have introduced improved boundary
elements with egqual success. With this approach - it is still
necessary to solve nost problems on large main frame systems.

The approach adopted in this dissertation relies on efficient hand-.
ling of a large nwwber of simple elements. = Reduction of main and
disk stoxage Lequn.rements, programme - size and execution times were
main goals of this dissertation. In particular it was necessary that
any formulation be able to run on a small 16- bit mini-computer.

'Satis,facticn of this requivement results in a great cost reduction to

those users who have mini-computers hut have to rely on commercial
computing: beureux for three-dimensional problems. A similar approach
has been used by Deist and Geordiodes (1976). Much of the experience
gained in efficient handling of a large number of simple elements is
directly applicable to the more sophisticated oundary elements.
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" The first formilation described here is based on. that -of Crizse

(1969). He introduced a simple triangular boundary element. Calcu-—

~lation of influence coefficients = {c’h@ effect of ohe element on -

another ~ is done analytically and the resulting equations are solved.

using Gaussian elimination with iteration on the residues. — His

examples are concerned with problems in fracture mechanics. The

following changes are made to his formalation:

(i) Equatiopns are solved iteratively —using the method of
. successive over relaxation.
(ii) Elements are grouped into "Il_um‘p'i elements.
(iii) Non-homogeneous problems may be analysed. ‘
(iv) Slip or failure of interfaces may be nodelled by a
Mohr~Coularb failure criterion. R
(v) A variety of symmetry conditions may be imposed.
(vi) The programme will run on a small wini-corputer.

The second fo::nulation‘ corbines the above boundary element programme

with a displacenent discontyinuity formulation Tased -upon that of
’ Starfield and Crouch (1976). Displacerent discontinuity elements are

used to mdel a fault or a tabular ex\,avatlon while the boundary

elements may ke used to model the earth's surface, an ooen pJ.t or a.

massive excavaticn. This formilation has significant advantagesf over .

the first for many problems.

Finally an improvement to the two-dimensional displacement discon-
tinuity formalation of Crouch (1976) is described here. He described
modelling of mining in faulted ground which is homogeneous. The pro—

gramme MINAP of Crouch is modified here enabling nodelllng of a large '

nurber of non*hormgeneouys problerrs.

Examples are given to test the accuracy of the ﬂ'lree;dimnsional
formailations against analytic or other formulations and which demon-—
strate the applicability of these programmes to practical rock
mechanics problems. These include:
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= (1) A long rectangular tunnel - A
(ii) Two massive excavations close to the earth's surface ,
R SN VR (iii) Interaction between an underground tabular and cpen pit exca~
: ' ) vations -
T (iv) Tabular excavation mining up to a fault
(v} Interaction between rmassive underground and open pit excava-
- _ tions . .
(vi) A pile socketed in rock with slip on the pilefrock inter-
= face. ' ' : |
B The three formulations are henceforth referred to by the programe. ﬂg
names: B
BEM -  Boundary element method (formalation 1)
MBEM = Mixed bo&mdaxy element methed (formulation 2)
MINAPH - DM for mnhoncgeneous problens (formilation 3)
L e ‘ Briefly the contents of the dissertation are as follows: »
o Chapter 2 gives the basic equations for the B and MBEM pro-
5 R 3 , Chapter 3 describes the rumerical integration procedures  used for
g ‘ ‘ evaluating influence coefficients. .
& : o Chapter 4 describes the inplementatidn of lunping into the BEM and
: = MBEM programmes. - The primary cbjectives of the J.Lﬁping'
*»% S ‘ ' mechanism are: T o Tl T : Ei
'? . LT (i) to convert a full system of equations into one
4 which Js about 20% to 50% populated thus reducing
%‘ R ' disk storage and execution time,
% ' ‘ (i) to produce additional checks on input data"and
%; S ER : (iii) +o “z:aduc:‘e main memory recquired 7
‘ Chapter 5 describes the inplementation of interface elements and
3 . symmetry conditions. When two or nore subregions with
* different elastic properties are being modelled, it is
‘ R o possible to allow the material interface to feil in shear
’ = or in tension. | |
§ Chapter 6 descrives a similar inplementation of interface elements
; : g into the two-dimensional programme MINAP of Crouch (1976).
;I
i‘é‘

§ O e o oA S R
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A : B This allows for modelling of a  wide range of
i nop-homcgeneous  problems while allowing for possible
- 4 fd 03 - ‘ .l $ : oy . : - ‘
; tensile or shear fallure'rof the material-dinterfaces. The .0 oo
contents of this chapter form the basis of a recent publi-
: Y cation Diering (1980a). ‘
: Chapter 7 describes prograame validation, with a few examples to
= assess programne accuracy and nunerical integration sensi-
tivity. e !
i ~Chapter 8 gives a brief discussion of sone of the programming con- ‘
siderations. - Particular attention is given to  disk ‘
‘ storage and disk access considerations. !
- i ¥ 4 ) i P y o 3 . i {
Chapter 9 - contains various examples demonstrating a wide variety of - 1
applications in rock mechanics. . -
,,,,, : . |
Chapter 10 gives conclusions and a general discussion of the disser- {
o tation.
!
| APPENDICES
& puimeiniussndény ot
5
% ‘ ‘1 Bguivalence of displacement discontinuity and boundary element |
!}( , stress and displacement functions. ' : TR
L T 24 Complete or partial listings of the various programmes. S |
]ﬁ:‘ |
3 ;
,é
i
i
{,
? .
i
H
!




s itin,

ey e s e
e S R R AT

]

E 2ok s S e

a0,
2

e o s

e ek

.

T Y A g B0 D S e

S B

e e

e £
EUER e e T e

Q)

- erentiation.
Cruse (1969), Starfield and Crouch (1973) or Lachat and Watson (1976).

CHAPTER 2 DEFINITION OF TERMS AND GOVERNING EQUATIONS

T™e basic equations presented in 2.1 and 2

2.1 Bounc“tary eleament fomulétion

The nobatmn used here is the normal- Cari:ealan tensor nobatmn wn.th surmme-

ation over repeatad indices and the comma representation of bartlal Aiff-
.2 are derived by

A surface denotes the interface area between two subregions or any
The :

The region of interest or rock mass may be divided into a nuber of

sdbregions‘f r(k) ; each of which may have different elastic
constants u(%)  ana \)(k).. Iet x = (Xll X9,  X3) 'be

the global co-ordinates of a point in or:txwgonal Cartesian

co~ordinates.,

surface upon which tractions and/or displacements are specified,

surfaces of each subregion are divided into a number N aof triangular

701: quadrilateral planar elements AS, over which tractions €ty (m)
and displacements uj (m) are constant (i=1,2,3) (m=l,2...N).
gysten of integral eqﬁationsr which governs "t’né 'interaction between
tractions and displacements 15 g:wen (Cruse, 1969) b_{ ' ‘

(R) *’
e & wien ] T e m A6

é %) ju () LS () W

for the Kt subregion.

The tractions and displacements appear outside the integral signs in

(1) because of the assumption Of constant tracticns and displacauents .

In (1) element m is temmed a receiving element

over each element.
ie an emitting

while elements n are temed emitbting elenents,
element n influences the displecements and tractions of a receiwing

elenent m via the influence coefficients

I +®
af () &5)

. i
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(2)

The subscripts 1 and j relate the relevant components of traction or
displacement in - the global co-oxdinate system. Cruse  (1969)
evaluates the integrals in (2) analytically. Tt is possible to

- evaluate these integrals numerically (except with m = n) with

congiderable time saving in most cases.  The integrals in which m=n
are temwed "element self effects" and are evaluated as described by
Cruse (1969). Numerical evaluation of the integrals in ( 25 is
discussed in more detail in Chapter 3. ‘

Once the surface tractions and digplacements are known the stresses

a7, (*2) and displacements u. (?) at other pomts y in the xth
subregion are given (1) b v .

dh g (4,’ ‘
PR SR ) 4T
'1‘“‘% A u.;)<3} (\3)
M :
LJ(% js -5 u @\) A S5 ()
L@ | R
R Xt b Abﬂq(?h ) 2 : (4)
where AT ( S0, “> and A u.;';@,«\) are the integrals in (2)

W )
and A S 4y ng S &y (3 456

M]f? f (y,«MSw o o®
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The * (k) superscript for the k™ subregion  is droppedc henceforth
for oon{zenience,yﬂmere not necessary. The functions T,U,S and D are
given (Cruse, 1969) by

[3':*( 3 o
J( 4"7““1" ., géj+}~2.v JC -y -%-j‘r;t:'*"ﬂ( 'GJ‘}

34 REEE '
uJ\"\.x) 4#/‘**[4&’)—-1)) 5 "“#(Jwvi o0 T ]
Y ‘ ’ ‘

(’m m) 2.7rq~ { Sw { T A +1—~&v1(5«’l£ T +84; "-)
3 v ‘ . (&)
f--2l)~ 'z 4} I ]*‘z-ﬂu (%zr‘j {'—4, ","q"j"";,ﬁ‘ Tji) ;

‘ ‘ e v L Amav
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where ‘ij is the Kronecker Delta Function
- (e = xiog) (e ~xem)] @

v

3

Rx !
i}

= ..':(x;(w) - X (m)) o S S @

S T i (9)
c = -—w)/:a(:w)
Mmoo Q“\) = outward unit normal vector to the emitting element
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B = shear modulus

The eqi:&ti‘:ams—r (1), (3) and (4) form the bésis of the first pro‘gramﬁe

BEM of this dissertation. uy (n) or tj (n) is specified for each
element for 1 = 1,2,3 except where the element represents an
interface to another subregion. The boundary conditions at interface

elanents (between subregions (k) and (k+l) say) are

a4 (%) (n) = "Lli (k+1) (m)
‘ (10)
tg ) (m) = -y () ()

unless falluve of the interface occurs. A mechanism for allowing
failure to occar is discussed in Chapter 5. The equations (1), (3),
and (4) are further modified to include the "lumping mechanism",

various symmetry conditions and the above interface elements..

Displacement discontinuity formuiation

Consider now a plane, relatively ‘thin excavation which is treated
here as a single plane surface of negligible thickness. This plane

may be divided up into a mesh or grid of square displacement discon- |

tinuity elements. A particular elemnent is denoted by its row and

column wnumber in the grid (Fig 2.1); ie element 1j lies in the -
ith row and 4th colum of the grid.  Define a local co- -

ordinatek systen for this grid (Fig 2. 1) so that t‘hek X~ and y-axes

point in the directions of increasing row and column numbers respect-
ively. Let the x~y plane he separated into two surfaces within the
wesh the top surface (outward nommal points down) being denoted by
the + superscript and the botton surface by a-. A displacement dis-
continuity arises when these two surfaces move relative to one
another. If, as before, it is assumed that displacements and surface
tractiohs are constant over each element then constant displécement
Aiscontinuity components may be defined for each element ij by

o PR + ‘
°L°< (‘)J> = ‘ux(f)ﬂ - u_°< (“)j) (Q"* =147, 3) (11)

o _
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','Ihefsurfaée tractions acting on the + and - surfaces of any displace-~
'mﬂnl“ r‘l:.scontlnul\,y elanent have equal mdgnltude but omposn. te 51gn. ‘
,Tt is more covem. nt thetmfom ko congider ereqs s acting "w:t‘m.n"

an eleuent. The sign conventions adopted are positive normal
stresses denoting comoression and the normal displacement discontin-
uity is positive if the + and - surfaces wove towards one another (as

ig nds nompally the case under the action of a cowpressive stress

Flerabield) .

- The nowmal. and shear stresses dt:t:mg on.a dlsplacerm_nt discontinuity

Lanent Sy are glven Ty
913 (4,3)
a 23 (1,7)
0733 (4,3)
in the local co-ordinate system chosen.  Starfield and Crouch (1973)
give mqucn‘:mns relating these normal and shear stresses to t.he nommal.
and shear displacement discontiruity components

% (4,3) ;E; % " % (531@1&’) FL‘B(A)}") 12

where there are M rows and columns in the grid-and K denotes an -

influence coefficient sbnilar o the T coefficients deScribed
sarlier. These coefficients K may - be evaluated in closed form
(Btarfield and Crouch, 1973) for square displacement discontinuity
elements lying in the sane plane and may be expresaed in temms of row
and column differences 1-K and j-1. '

The stresses and dlsplacements at pomts y cutside the grid are c'.wen
(see\ Ap@eﬂdr-: 1) by

(13a)

Moom | , R o
L& L, a8, (444 o
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The form of (13a) and (13b) is Ve'ry‘s:imila"c; to that of (3) and (4)..

The coefficients T (y,k,1) and U(y,k,1) are evaluated numerically

~using- the - functlons glven in (6).  The additional mdex in these

temms is used purely to indicate the row and column of a dlanlacement

discontinuity elsment as opposef‘l to -an ‘element mmﬂ::er for "cx:undary

elements, 'The surface tractions acting upon a displacement discon-

tinuity element do not affect the stresses and displacements else-
where in the body so that the U and D terms in (3) and (4) are not
present in (13a) and (13b). When evaluating the T and 8 functions
for a displacement discontihuity elenent, the outward normal. of the

“bottom (=) surface is chosen in keeping with +he definition of

ali,3) in (11).

FEquations for mixed boundary element method

In -order. to derive the equations for the mixed boundary element
method, it is necessary first to convert the co-ordinates, trac—

tions, i‘**‘nlacements and nonmal vectors of the bourdary ele‘ments ioe)

~the  local co~ordinate - system of the displacement discontinuity

elements.  The necessary tranbfonnatlonq are
u, = 'Qa.i vy 7

ty =dai ti

X —'2“1 (Xl ""Xl)

Mg = Qt,,‘lnl ' ‘ ' ete (14)

where £ i are the direction cosines of the local with respect to

the glooal co-ordinate system.

; and x'y is the orlgm of the local with respect to the global

‘co~oxdinate system.

Once these quantities have been evaluated, there is no Ffurther need

“to consider the global co-ordinate system and the 1,7 and k sub-

scripts of equations (1) to (9) are merely replaced Yy Greek
subscripts . 8, ¥ ete.  (This avoids confusion with the i,3,k and 1

values for rows and columns).

=

e
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The equations (1), (3) and (4) are written for a tension positive'
__stress convention while the co;‘respbndihgﬂ equa'tiohs for the displace-— . .
ment discontinuity elements are written for a compress ion nosa.twe

convention. Ihe equatlons which follow ta;{e this into account and

e written for the latter convention.

Let an entire displacement dis cont:lnul by grld be placed within the

first subregion of bouridary elements. Stresses and dloplacements at

pOlnt'S v inside this subregion ares glven by a summation of equations ;

(3) and (4) with (13a) and (13b) -

, (15)‘
& 34 &4 Ay Cght)

DL , (16)
+& & S A S, (040 |

vSimilarL'Ly, the  displacements induced at centroids of boundary
elements by displacenent discontinuity elements must be included in 7
equation ~ (1) and stresses (0733,  O'p3 and ¢ 33  only) -

induced at dlsplacenent dmnontmulty elements by boundary elauents
must be included in equation (11) giving

; N MM . : - )
A U ) 4»%% ‘*,;K’\)A Tl “"flg g’ Ay (*&14)'&7;3 ("‘"z ’QIJl)

an

M .
=% j?‘_,‘ ALL.UQ (M,*w)

wE

et T s L i by s e e ot e

e e et i
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“relaxation (SOR) for the mﬂmown dlsolacements, tractlons and d:.s—-
, placenent discontinuities.

for boundary ‘elenents and

i) o

ke

Az De

[

K(&B‘(;Jjj ﬂ;,,{?_)' L, <,Q”£)

(18)

2y

N ' N :
FE U@ AL (9 —~é £ 0 A Dy g ()

for displacement discontinuity elements

The equations (15) to (18) form the basis of the mixed boundary
element programme M3EM. For each element, | the stresses or displace-
ments or tractions are specified in (17) and (18) in the x, v and =z
dlreccmns and a linear system of equatlons results. These equations '
are then solved iteratively using the method of successive over

The following points are ‘worth noting ‘abouﬁ these equations:

(1) They do not include the effects of lumping : 3
(2) Tractions and displacements are both not known a priori at
~ interfaces between subregions but may be found iteratively as

described in the Fifth chapter. | 8 ;

(3) ~The nunbers of coefficients T, U etc calculated m or used by :
equatlons (17) and (18) are ‘

S x2xN2+9MN for (17)

and 9 x 2 x N M2 + 5 M4 for (18)

i
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. since the coefficients K(i,jXk,1) in (18) depend only upon the diff-

l erences i - k and j - 1, and since some of the coefficients may be
f collected into the vector of known boundary conditions, the mumber of
: TEowa coefficients which must be stored by the computer in the absence of
i lumping ie at best
E (2 + 9 M) + 9 W2 o+ 3 M2 (19)
4 while the number of degrees of freedom in the system is
3 3(N + M2) ]
f§ , TR For 'practical problems, N 2150 while M > 20 so that excessive
g CE o 7 “amounts of storage are Yequirad. The need for a means of reducing i R i
- . storage requirements is evident. : o ' , PR

. L ‘ 2.4 Discussion of mixed boundary element method equations

Much attention is currently beihg given to "hybrid" or mixed stress.
analysis tecllﬁiques. Zienkiewicz (1979) gives a comrehensive sumn-
ary of techniques currently in use for coubining finite element and

- boundary element formulations. Each element type is used to mwodel

CTTTL T 77 that part of the problem to which it is best suited. Crouch (1976). -

" has demonstrated how; in two-dimensional probleus, the displacement

SO : discontinuity method may model both crack or fault type prcblems as
well as open cavity problems. This formulation uses equations siu-
ilar to (12). [t is seen from equation '(12) that caloulation of

Mstress" influence coefficients is required as cowpared with "dis-
placement " influence coefficients (3) required for a boundary element
formulation. - Use of the. latter type of influence coefficient for
open cavity type problems is to Ye preferred for the follcwing'

reasons:
(1) If influence coefficients are being evaluated using numerical
{ . . , . integration {(no closed form solution to  the integral
i : ' , ; ~.
i Kap (i/3,1,3) in (12) for an arbitrary quadrilateral or tri-
angle was found in the literature) then the time required to
evaluate '"displacement" coefficients is significantly less
v
i
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than that reqhirm‘i for the Pquivalént stress coefficients. In
addltlon, all mtegrat,lons may he done with resoect to a s:mgle L
co-ordinate sy'stem whereas the Ustress" c‘oefflr*mnts have to be

transformed to the local co-ordinate system of each elament if

this does not coincide with the global co-ordinate system.

Crouch (1976) shows how, when dealing with an open cavity, the
displacement discontinuity fonmlation produces an interior and
an exterior region.  Some problems. arise with the interior
region if no restraints are made to prevent rigid body motion.
No such problems arise with the boundary elaments since there

is not more than one region under consideration.

Conversely, numerous problens arise when attempts are made to

use boundary elements to model a tabular excavation or a crack

“type provlem.

It is logical therefore, to mateh element typés to the problem.
Moreover, since most tabular excavations are nearly, planar it

is economic to model such an excavation with a regular grid of

square displécement diécontinuity elements. An bpen pit or
open excavation is likely to have an irregular shape necessi-
tating the use of triangular or quadrilateral elaments.

Fgquations (15) to (18) are derived for the class of problem in

which tabular and open excavations are present. This is a

class of problems ’whig:h arises fairly frecquently in mining rock

mecnanics,
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CHAPTER 3 NUMERICAL INTEGRATION OF INFLUENCE COEFFICTENTS

v

‘The following integrals or influence coefficients have to be evaluated

nurferically in the boundary element or ‘mixed boundary element formila~

tions:

A Typ lyn)

B Uy (yim)

A Sc)'&ﬁ (Y:n)

, A qua(an)

The method of integrating these functions over a flat triangle is the same
for each function even if the resulting accuracies differ slightly. It is
therefore only necessary to describe the evaluation of T{y,n). Three
separate cases exist: o

(i) ‘Triangular bqundary elements
(ii) Ouadrilaterial toundary elements

{iii) Square displacement discontinuity elements

3.1 Boundary elements

The quadrilateral elements are sinply divided into two triangular
_elements vhich are then treated separately.  The function T{y,n)
varies over the surface of the nth Vtrianglré, : (an enu.tter

tfiangle) - The rate of variation depends primarily on thé distance

separating the emitting triangle n from the receiving point y and the

‘size of the element and to a lesser extent upon the cjrientation, and

shape of the emitting element. ‘ o

The method of evaluating the integral is equivalent to first estima-
ting an average value of the function over the element and then
multiplying this value by the area of the triangle.
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If a is the area of the emitting triangle and r the distance to the

point vy then a measure of- the variation of “the function T over the =

ﬁrianglef is given by the ratio R.

R = r2/a : S o q20)
(See Fig 3.1) ‘

In each case R is evaluated and the nunber of points at which T is to
be evaluated over the triangle in order to give sufficient accuracy
is determined. The cptions are 1, 3, 7, 21 and 42 points. The
points at which the function is to be evaluated are given in -
Table 3.1 for the 1, 3 and 7 point cases Zienkiewicz (1971)

TABLE 3.1 : CO-ORDINATES AND WEIGHTS FOR 1, 3 AND 7 POINT

INTEGRATION

No of points - Weignt Triangular co—or,dinatesg i

1 1,000 1/3 1/3 1/3

3 . 0.33333 - - 1/2 /2 -0
0.33333 0 1/2 1/2
0.33333 120 '1/2

7 7 Wi 1/3 1/3 1/3
Wo al ‘b1 b1

W2 by, oAy b1
Wo by - b1 al

W3 ap b2 b2

W3 b - ap by

W3 ) b2 az

0.05961587

with ' aj =
by = 0.47014206
ag = -0.79742699
b2 = 0.10128651
w1, = 0.225
w2 = 0,13239415
= 0.12593918

w3

A point x say, within triangle n, at which the function T is to be
evaluated is given v

i ()= S 0% + 5.y i + 5, %] ()

Aﬁ .
:jp() x%Qg ) &= 12,3 (21)

e Ee P
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N Sl A 1 POINT INTEGRATION

3. POINT . INTEGRATION

7 POINT INTEGRATION

FIG. 3.1

42 POINT INTEGRATION

®  RECENING POINT,
A EMITTING TRIANGLE.
. EMITTING POINT,

NUMERICAL INTEGRATION SCHEMES FOR TRIANGULAR
BOUNDARY ELEMENTS, ' '

21 POINT INTEGRATION ~ 7
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Lo where X are the co-ordinates of the node p of triangle n _ani
- 54 (0) are the «1). L
| point, (Table 3.1). -
; M ¥ Thus
i ‘ AT S g
e ﬂ y/ > A:’—I "e MB R ?) HL M’) (22)
where T = 1,3 or 7 8 | : :
When 7 point integration is inadequate (ie value of R too small), the
] i triangle is subdivided further into three or ‘six smaller triangles,
“each of equal area and the 7 point formula is applied in turn to each f?
~ of these. The riodes of the smaller triangles are merely the nodes or
‘ centroids of the original triangle or the midpoints of its sides,
R The quaaratme algorithm may be summarized as followss~
(1} If element n is quadril,atérial*, divide into two - triangular
; _ ’ elements, n and n" say :
; , s (2) Calculate centroid of triangle n x°(n) (or x°(n'))
A (3) Calemlate r? = (y; - %;°(n))(yi ~ x5°(n))
- (4) Calculate R = r2/a and decide on the required accuracy 1,3 or t
g ) ] 7 point ete (a = triangle area)
o (5) Evaluate the outwaml normal to triangle n = n(n) :
: 7 ; (6) Subdivide triangle n into 1,3 or 6 subtriangles and calculate
P additional nodal co~ordinates for the subtriangles (m) if
4 < necessary ' '
(7) There are 1,3 or 7 sample points within each subtriangle (m)
; For each sample point k inside subtriangle m: : zji
: | | |
Il )
i
1 i




:: T e 4
, ,\;“ —
L % (a) ~evaluate its co-ordinate xg (kg) from (21}
N (b)) evaluate r, ryand & from (7), (8) and (9)

1 EREANERER s (¢) evaluate the ﬁmc:t:igrrxmé T‘,\é (y,x(km)), Usp (y,x(km)) etc as

| & required '

{d) continue evaluation of & Tua (Y n) ete from (22)

i i

1 Although the different functions T, U, S and D are inversely pfopor-—

1 & = ticnal to r, r? or r3, it is convenient from a programming poimt

i of view to evaluate them together as described arove. '

’ié - There are several secondary benefits arising from this point integra-~

tion scheme. A continuous check on the ratio R at each integrand ‘
* e D T . point enables errors in the data input to te easily detected. B
£ Fig 3.2 shows a comon example in which <o : node of an element 1is

. incorrectly specified. Buch errors are easily overlooked when check-

= ing the data manually since the area, outward normel and position of

i the element may all be correct. If the ratio R drops below some

} thiéeShold value  Ryin - say, during the integration proéedu;:eﬁ,

, the error is easily detected. If elements are so close that a 42

s e point integration formila is unreliable, then it is ‘highly provable

g X - that a bad choice of element sizes has been made and that the )

}!i b iterative solution would converge very slowly or not at all. i

§§ , ) When lunping is implemented, it is possible, by using only 1 pointi

K ' - integration, to quickly assess the amount of storage which will te 3
g' SR required. ITf the maximum available storage is exceed‘ed,' then a
. ' coarger lumping mechanism may e adopted without wasting teoo mch
i tine.

bt

‘ “

.
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1 b). ELEMENTS {n)} AND (m) ARE. CORRECTLY SPECIFIED AND DISTANCE 'R' IS NOT TOO
- SMALL.
® RECEIVING POINT,
EMITTING TRIANGLE,
« EMITTING . POINT.
B ,F’IG;‘3.2 DETECTION OF INPUT DATA ERRORS DURING NUMERICAL
; INTEGRATICN, :
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Displacement discontinuity elements

The dlsplacemant dlscomtmulty elements are all square S0 that mple-' ,

mentation of a Gauss Quadrature formila is sinple, accurate -and
efficient: For each element the ratio R is evaluated as hefore and
1, 4, 9 or 64 point formilae are selected accordingly. (22) 1is
rewritten for displacement discontinuity element ij as - S

H i

*B(?: \J) {\«u& 7:(,9 (7,x(£¢,,‘)>) | ‘ (23)

The use of square elements enables the :mtegrand points x(k,1i,3) to

be evaluated efficiently ;\.n terms of the element centoid and element

half width.  The Gauss Quadrature coefficients were taken from

Zienkiewicz (1971). Also since it is known that the cutward normal
to all displacement discontinuity elements is (0,0,1), considerable

simplifications may be rade to the functions T and S.
Discussion

Briefly, the advantanges of the numerical intégration, may e
summarized as follows:

(1) A conprehensive check wn the input data is made avaiable
(ii) For nost problems, the numerical ! tegration is quicker-than

analytic integration. For some geometries, this might not be

true, however
{4id) Tt is not necessary to evaluate or invert the Jacobian matrix

- at every integration pomt

(iv) A trade off Detween accuracy ¢nd execution time is available.
This was found to be very useful in the development stage of

t:he FPEOYrames -

Tt should also be noted that the element self effects (for which r=6)

are evaluated analytically due to the presence of the 1l/r singular-

ities. The displacenent discontinuity coefficients K (18) are also
evaliated analytically facilitating the use ol & recurrence formula
described Yy Starfield and Crouch (1973).
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2 CHAPTER 4 DESCRIPTION OF LUMPING MECHANISM
& 'lheltmpmg mecllénisn described here is essentially an ,extengior; of the .
. , numefical quadratufé précedure deseribed in Chapter 3.  When emitting,
{ ERN. ~alements are verote from receiving elements, then the functions
- : T p (yim)
r' 7 Uy 8 (y:n)
4 ' ~ Dy yim)
- ' ‘ : ~ , - S :
3 V | vary slosy over the emitting g}ement; +-  When this occurs, the cosffi~
«j ' R ‘clents for a nuuber of elements way be ¢ wpne? into a single lump coeffi- - il
& R cient. The jumping mechanisw has al—=ed peen put to great use in
' existing boundary and displacement discoctinuity formulations (Starfield :
! Nl - and Crouch {1973) and Deist & s/ Georgiadis (1976} ) but thess schemes‘ e S
]f\ SO ' differ somewhat from the scheme  tlined below. ' ‘ -
b 4.1 Boundary element lumping
When a mesh of poundary elements is béfing drawn up, the user is :
. required to group elements with similar orientation, size and o ; o - l
; location into "luup elements" containing from one to twelve boundary ‘ b
- " elements. (The extra effort required to do this is more than off-set T
= Dy the additional error checks vihich become available). Consider two R i‘
ik © luwp elements with 4 7bounda'ry elements in each (Fig 4.1). Iet the g
. "receiver" lump contain 4 potential receiving elements and the
"emitter" lump 4 potential euitter elements. = In the absence of any
lunping mechanism, 4x4 = 16 sets of coefficients have to be calcu- -
E lated (there are 18 coefficlents in eadh set). If the 4 anltting
” elements are grouped together then each i*eceiving element Vr:eq;:xiresr a
[ ‘ | different set of coefficients, ie. 4 sots are required. ~ If the
| N receiving elements are grouped together then only 1 coefficient set
; ' | is required.
The three types of coefficient set are referred to as
«gé - eiement—element, lun-elenent and- Lip-1lunp coe-fg‘fa“.cients respect"t.vely‘
|
-

o g i e s e ey o Bornsn € P o
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FIG. 4;7!

LUMP ELEMENT SEPARATION. R.

L

FORMATION OF LUMP ELEMENTS FOR NUMERICAL INTEGRATION | -

a0

e




e i

(R

29

('See‘l':‘ig 4.2). If Lamps are chosen to be nearly planar or planar

then the centroids, areas and-outward normals of the lLump elements
- may be calculated just as for normal elements. ‘ :

In deciding which coefficient type to use, the ratio

. ‘_[‘_‘2 :
R = — is used
a

"as before where r = distance separating the lunp centroids

|

a = area of emitting lump

The potential time and storage savings of this Lumping scheme improve

as the m:mber af elements :anrease. If boundary elements alone are

considered, then the number of coefficients required for an N element"_

problen in the absence of lumping is
18 N2

If the average nuder of elements per lum;g is 6, say, then the number
of lumps is - ' '

MM N/6

and if aooroxmatoly 40 elment—«elemmnt coefflcxen{:s are required per - :

element,then the approxmate nuber of coefflclents required with
lumping is

18N +40+——«
16 36

The storage and time-saving factor for N = 300 is therefore about 3.
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16 ELEMENT-#LEMENT | CO~EFFICIENTS
( ONLY. 4 SHOWN: FOR. “CLARITY )

4 RECEIVING  ELEMENTS 1 EMITTING LUMP

4 LUMP=ELEMENT CO-EFFICIENTS
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1 RECENVING LUMF 1 EMITTING LUMP

1 LUMP=LUMP CO-EFRICIENT

FIG. 4.2

DIFFERENT TYPES OF INFLUENCE CO-.-EFF!C!E’NTS,

i}

ST




-
CENee e

S -

P e

__displacements, tractions, normals. and areas are calculated as
: - W . - N T 7 B T e - o = T T - - - -

4.2

4.3

3L

The lump elements are treated just as ordinary elements, and lump

averages weighted with element areas. The lumping mechanism is

directly applicable to the evaluation of interior stresses and dis—

placements. At present all (unp coefficients are evaluated by one
point integral fonmwlae, but it is expected that greater savings
would be obtained by using higher order formulae for these coeffi-—

cients, since emitting lump elements could effectively be brought
closer to receiving elements, thus further reducing the total number
of coefficients.

Displacement discontinuity lLumping

Two separate schemes are adopted for evaluation of element-element ‘
interactions and for evaluation of stresses and displacements at -

interior points. The former scheme is based on that of Starfield and
Crouch (1973) while the latter is essentially that described above.

For eValuatibn of element-element coefficients, groups of 1,4, 9 or

25 displacement discontinuity elements are grouped into square lump
elanenﬁs and  lum-lump or element-element coefficients‘ only.  are
calctulated. The need for the lump-element coefficién"ts ~described
above 1is obviated apparently because the relevant integrals are
evaluated in closed' form, not numerically. : R

Reduction of storage requirements

While the lumping scheme described above was initially implemented to

reduce disk storage requirements and execttion time, a nurber of '
other benefits also result, the most important being a reduction in
core storage requirements. '

In the absence of lumping, it is axpédient to hold in main mewory the
following arrays.

nodal co-ordinates
element areas
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element displacements

element tractions

—elenent: dirsction-cosines - -

alewent centroids
alement-ncde numbering

- elemnent codes

Once lumping is introduced it becomes necessary to keep track of the
integration scheme (lump~lump, lump-element or element-elament) used

for each lump elevent. If there are M lumps, then this array is of
dimension MxM.

Once interface elements are introduced, it is necesary also to store
for each lump elemnent information such as cohesion and angle of

friction (Chapter 5) as well as the direction cosines of a local-

co-ordinate system for each eleuent.

Before implementation of the _storagé reduction scheme, it was found
that core storage limited the maximum number of elements to about

500, -~ With 500 elements however; execution time was increased ,s;’mcé{

it was easier to calculate element centroids and direction cosines as
required rather than store them permahently.

~ Since elements are always accessed through their parent lump element;

it is Ecjséible to retain in main memnory element properties only for
those lumps under consideration. For example, a receiver lump and an-
emitting lump element are retained in main memory during calculation
of influence coefficients. To reduce the nber of disk trausfers
required to ix@lanent this scheme, all of the lunp elenent arrays
(lawp areas, displacements ete) are stored in main memory.  Main
memory requirements are then restricted by the number of Lump
elements, rather thah ordinary elemsnts.

The element properties for any lump elewent are stored on disk using
labelled common arrays (standard for Ascii Fortran IV). This enables
the use of a direct disk access routine reducing Ffurther the disk

access times.

v e
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4.4

Gaussian elimination may be compared with successive over relaxation

Larping - a brief discussion

The lumping s§$i:em described here is ‘designed specifically for the
boundary integral type of equation. It is ideal for systems
requiring disk or tape storage because of the sequential access of
data. Tt is also ideal for systans of equations which are diagonally
dominant and hence well suited to iterative solutiori techniques. The '
lump  variables (displacements and tractions) are calculated as ' ‘ A
walghted  averages of thelr constituent elements. — Bs such it is Lok
?ossible to implement this luwping mechanism into systems of equa-
tions which axe r.being solved using an elimination rather than an
iterative technique. The total nuwber of degrees of freedom of the
system would be increagsed by about 10 percent. This new system of
equations would also be about 15 to 50 percent populated but unfort-
unately would not. be a banded system.  Special elimination techniques
which minimize the amount of “fill in" (zero coefficients which
become non-zero in the elimination process) would be re'quired. In
addition, the =imple sequential access of coefficients used in the
iterative solution is not applicable to elimination schemes. Disk or
coefficient access tends to be more random.  Finally, elimination
schemes are not well suited to the moxdelling of non-linear behaviour
which occurs when failure of material interfaces is initiated.

i L o

(SOR) for a problem of 1 000 elewents or 3 000 degrees of freedam as
follows: ' o

 Gaussian Elimination — (SOR) -

Number of coefficients 9x106 2%x106
Mumber of arithmetic 1/3 w3 2x108x2 per iteration
adds and nultiplies ie  9x10° ie ¥ 6x107

For such a problem, the iterative solution is wp to 150 times more
efficient than elimination without the lumping mechanisms.
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5 © - The lumping scheme, as implesented in this dissertation is applied to ;
. S the simplest boundary element type, namely the constant displace- o
o ment/traction element. Although not an express aim of this ‘ disser— 7 ;
L, : \ 1 i
, § ‘tation, it is felt that lump elements provides a reasonable alterna- ~ 1
o ~ tive to the more sophisticated element types (quadratic and cubic :

_ variation of unknowns over each element) of Lachat and Watson
- = (1976) . - ‘ b

" Alternatively, a marked improvement in the performance -of these

higher order elements could be expacted if they could he lumped.
‘b
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CHAPTER § = DESCRIPTION OF BOUNDARY INTERFACE ELEMENTS AND SYMMETRY
COWDITIONS -

s o e st

Consider the simple problem shown in Figure 5.1 of two subregions. each
‘containing 2 elewents (after Lachat and Watson (1976)). Fach element is a

schematic representation of a nuniber of simple planar elements which would

-~ constitute each subregion. ‘The boundary conditions are such that trac-

tions are specified at elements 1 and 4 while stresses and di’splacéments
are continuous across the interface between the two subregions. Assume
further, for the moment, that the proplem only has displacements and trac-
tions in one dimension. Fyuation (1) may be written in matrix form for
the problem ag ~

,“‘rr(l‘;,l,) T(:L,z) o o 7 a@n=fue,n U(i,z) 0 ’ o E(l?.’k
T(2,1) T(2,2). 0 0 u(2)] (ul2,1) u(2,2) 0o 0 t(ka),
0 0 T(3.3ﬂ) T(3,4) | (w3 | © 0 u(3,3) VU(3;4) t(aj
) 0 | o T(4,3) T(4,4) | ul4)| | ‘o o U‘(4,’3) U(4,k4k)_;__‘::(4li
or by using smbscriphs for the ma!:mx c&;efficients:
[t T 0 | 0] Tulf““‘r‘ull Uya o o 1Ml
Ty T2 O oo |w U1 U2 0 0 | ty
0 O Ta3 Tad | |2 | 0 0 U33 Usaf| t3
0 0 T4z T4 ug L 0 0 Uaa U4¢i thz;‘

The zenro ccefficients arise because there is no direct interaction betwesn
the two subreglons other than the displacement and traction boundary
conditions at the interface. For this problem these may be written as:-

s = ugy

L2

£2

3

(25)
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FIG. 5,1 HYPOTHETICAL "PROBLEM SHOWING INTERFACE BETWEEN —
TWO SUBREGIONS. ' o
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By sorting known and unknown quantities to the left and righthand sides
respectively and applying (25) to (24), (24) may be rewritten as ~
o (1) () (1) w ] [ @ @l
T Ti2 U12 0 o Uir  t  [=iby
(@ (1) (1) (1) ()|
Tpp  Top Uoz 0 U Uy &2 by
(2 (2) (2)| (2) - (2) (2)
O T33 - - Uz Tz4 [ft3 Usg  t4 b3
(2) (2 (24 (@ (2) (2]
0 Tga Ugz  Taq {24 Ugg ta | [Py

where superscripts ‘denot;-: the subregion

It has been stated above that the equations (1) or (26) are solved using
A sufficient, but not
necessary, condition for convergence of this scheme is that the system

an diterative scheme (Successive over relaxation).
‘matrix is diagonal‘ly' dominant - (Froberg 1970). EXperiénce has shown that
it is ~only necessary to maintain an approximate degree of diagonal B
‘  (The rate of convergence gradually E |
Now the magnitudes of the \ ‘
elemsnt self effects Tis and Uy are approximately |

Qomindnce in the system matrix.
- denreases as diagonal dominance decreases).,.

(k)

vk |

(27)
2.7

&), 1

U Py

11
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where G(k) is the shear modulus for the kT subregion. |

any subregion for a well posed probles

S R
Tii o2 Tij i#j
(k) , (kY
Uii S>>0 Uiy 1#

Let the coefficients Tij(k) and Uz 3K ) i#5 be denoted
Ty S and substitute (27) into (26). Then ‘
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Also, within

~(28)

In (28) approximate diagonal dmxin‘ancé may be obtained by scaling the

‘ghear mo:iuliﬂc‘;( 1) or G(z) if they are approximately
equal. :

- Assume flrstly that

- 6(2) = 100 a(1)

a(l)

H

it
N
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- The system matrix in (28) becomes
e st - : - i

&) 5 5 § 0

| St ol

§ 53 3 0

‘ | 7 (29)
- 1 -1 S :

| 0 3 200

| - . 1

! o -5 55

It is seen that the third row is 'definitely not diagonally dominant while
the second row is almost diagnoally dominant. Tmproved diagonal dominance
may be obtained in (29) however by swapping the second and third rows oc

e by a choice of shear moduli so that
G(Z) <—< G(l) )

Since the programming of row swapping is inconvenient and since it is not
generally possible to choose suitable shear meduli the following iterative
procedurea has been adopted for subregions with wvery different elastic

properties.

(1) For the softer subregion, estmate tractions at the ;Lnterface. .

| (2) 'Use these tractions as specified boundary condlttons for the stlffer

- subregion. : 7
' (3) For the stiffer subregion, estimate c‘lisnlacemehts at the interface.

i o(4) Use these displacements as specified bound‘uy ccndltlons for the

softer subregion. )

This iterative aycle is easily included in the overall iterative solu-
tion. '

Intuitively, large displacements in a soft material produce small stresses
’"“ while large stresses in a stiff material produce small displacements. The
diagonal dominance is therefore interpreted as a large cause producing a

- small effect rather than vice versa.
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~« - A somewhat unfortunate oonsequence of this limitation of allcwable
) 'boundary conditions is that .‘l.t is not poss:l.‘ble g o) mdel a stmff subraglon'
conpletely enclosed by softer su’breglcns because there is then nho restric- 1

tion of rigid body displacement in the stiff subregion.

5.1 -Failure at an interface

e e e 7

It is possible at any stage during tite iterative solution (for the :
R tractions and displacements) to calculate. the normal and shear dis- ' S {
placements and tractions at any element, Lachat and Watson (1976) '
show how the equations (1) can Be rewritten to glve tractions and
displacements in a local co-ordinate system for each element. This

el b Sk, o Swb el e bt gy |l el

‘represents a large amount of -additional calculation and an alterna-

tive approach 1s to transform tractions and displacements to some
' : , ~ local co-ordinate system only when required. Consider the problem of
: - ' Fig 5.1 again. Let a local co-ordinate system for any element be
defined so that the z—axis is the ,mtward normal and y-?axis is hori-

zontal. let the direction cosines of this “elemental" local

co-ordinate system with respect to the co-ordinate system of the 'dis'-
placement dlsconta.nulty mn.d o Qolp and the local dlsplacerrents and

tractions be t..k and u., respectively. (t3 and U3 are then
nowmal tractions and displacenments).

= lug £y R | | " |
| uy =L up | |
(30)
and o | . A
ty = ev(g t ' ' o ‘ V o o
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: The boundary conditions for interface elements are:
tractions specified for stiffer elements
displacements specified for softer elements
R L : ‘
A Mohr Coulomb failure criterion is implemented in the ‘iterati\}ef
E solution as follows. Let the cchesion and angle of friction of the
interface be ¢ and ¢ respectively. Then the shear strength ¢y of
vvvvv ~ the interface is given ty BRI ‘
0s = c+ G;l tan @ ,
(31)
vhere “n = ~tz' +p3 = Total normal stress
p3 = primitive normal stress
The maximm total shear stress component is ¢iven by
L) 7 : ) ‘ ‘ 2 ‘ t ‘ 2—‘
Crax =/ (1" +p1)° + (-t2' +pg)
, (32)
If Tmax> G"g then failure occurs. I£67, is tensile when
failure does occur then the mode of fa:Llure is also tens:.le‘ If not,; .
- then the failure mode is in shear.
5.1.1 Shear failure
) Shear failure is implemented simply as a change of hboundary
conditions for the interface elements. Continuity of normal
displacements and stresses must be maintained, but the shear -
displacements are unknown for both interface elements.
The shear tractions are given by
L PRV D N X + Py (33)
" L new 1 old 'tmax 1
! Oy
N 7 2new 2 old T ek 2




5.1.2 Tensile 'fa'ilure

N If tensile failure occurs at an interface, then the newly

created void becouwes indistinguishable from an open excava-=

' ' ' -~ tion. Tractions (equal but opposite in sign) must then be

specified at each interface element so tmab the total resul-

wa tant tractions (primitive and induced) at these elements are
zero, ie set bj' = -py.

- These upiated tractions and displacements are then transformed

back - to the global  co-orxdinate systan -and the process

continued. Other boundary conditions may also be implenented
at  interfaces. These have been described in detail by
Crouch (1976) and Starfield and Crouch (1973). Hssentially an ‘ o i
interface may or may not have a filling or the interface may S
- : be treated as part of a tabular excavation. If the interface '

has no £illing it may still fail in shear or tension. If the.

interface has a filling then the relative displacement of the

- interface surfaces is controiled by the stiffness of the fill
KIS ‘ unless failure occurs. If the interface is mined or open then
: convergence or separation of the surfaces occurs but a limit -
L - - to the meawdimum amount of convergence may be specified. Inter— F
face elanents are therefore assigned different codes to

distinguish their different properties. : : - e d

Code 7 Interface element with no infill

Code 9 Mined or open with a limit on maximum convergence
Code 10 Tensile failed element |
Code 11  Shear failed elament =

Code 12 Interface element with infill

Code . 1 Open element with no limit on mavimum convergence

D g | preas ¥ g R - = e ety
T
¥

7

L Pt e g S

=r

These elements are distinguished from other elaments which do

TS

not belong to interfaces hy their codes. Codes for the other
i elements ave:
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kCc‘xie 1 Open or mined element (tractions specified)

Code - 2, Zero displacement or fixed element - . ‘

Code 3 Element fixed in x direction - o
Code 4 Element fixed in y direction

Code 5 Element fixed in a z direction

Code 6 Any other specified mixture of boundary conditions

Code 8B

Represents the earth's surface (z-co-ordinate = 0)

5 .2 Symmetry conditions

Synmmetry ccnditions are easily inc:or‘pdrat’ed into the boundary element
prograrma tut have not as yet been incorporated into the displacement
discontinuity elements of the mixed boundary element programme.

Fig 5.2 shows a two-dimensional example containing 4 subregions in-

- which there are two planes of symmetry, XSYM and YSYM. Subregion 3
is entirely contained within subregion 1. It is therefore not
directly affected by its symretry imeges in the other three quadranﬁs
and therefore does not khave‘ any symmetry in itself. It is necessary,

therefore, to assign separate symmetry conditions to each subregion.

The following codes and symretry types are catered for:

L i No symmetry
2+ x  symetry
4 @z symmetry
5 i xy symmetry
6 : ¥z 'sytrmetry
7 yz symmetry
In the example in Fig 5.2 the following symmetry codes would apply:
Subregion 1 ¢ Symmetry Code 5
Subregion 2 3 Symmetry Code 2
Subregion 3 : Symmetry Code 1
Subregion 4 : Symmetry Code 5
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FI6. 5.2

XSYM

SUBREGION

SUBREGION | - 3

SUBREGION
2

SUBREGION
4

X

YSYM

DIFFERENT SYMMETRY CODES FOR A SINGLE PROBLEM

e

e
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Camponents affected by Inage
Symuetry  Inage X ¥y Z
Obhject 0 0 0
X L 0 0
1y 0 1 0
1z 0 0 1
Xy 1 1 0
Xz L 0 1
vz 0 1 X
yz 1 1 1

45

Fig 5.3 shows an example with x and y symmetry. Each of the three

images has to e treated separately since for the x - image, only

x-components of traction, -displacement, position ete change while

only y-components are affected in the y-image and so on. This is -
done in the programme by means of two arrays. The Ffirst 8x8 array
relates different symmetry images to the symmetry code while the
second array relates a particular image (x,v or xy etc) to the. compo—
‘nents of traction, displacement ete that d,épend upon that image
(Table 5.2).  Tn Tables 5.1 and 5.2, 1 denotes "yes" and 0O denotas
“ro". '

TARLE 5.1: SYMMETRY IMAGE - SYMMETRY CODE TARLE (l=Yes, O=No)

: Symmetry Code :
|Symyetry Image 1 2 3 4 - 5 6 7 8
Object 1 1 1 1 1 1 1 1
X 0 1 0 0 1 1 0 1
¥ 0 0 1 0 1 0 1 1
2 0] 0 G 1 0 L 1 L
xy 0 0 0 9] 1 0 0 1]
X7 Q 0] 0 0 0 1 0 1
A 0 0 0 0 0 0 1 1
Xy 0 0 0 0 0 0 0 1

TABLE 5.2: SYMMEIRY IMAGE - X,Y,% COMPONENT TABLE (l=¥es, O=No)

No detailed description of symmetry wasg found in the literature but
it is expected that this algorithm for the implementation of symmetry
is possibly novel (ie different codes for different subregions).
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X5YM

X IMAGE/ \<t,u,n.

Xy JMAGQ\ / Y IMAGE.
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¥YSYM = PLANE OF Y-SYMMETRY = 0
X SYM = PLANE OF X-SYMMETRY >0
t = TRACTION
u = DISPLACEMENT
n = ELEMENT NORMAL

)}

IMPLEMENTATION OF SYMMETRY GONDITIONS.
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CHAPTER 6 - - MODIFICATION OF PROGRAMME, MINAP FOR NON-HCMOGENEQUS PROBLEMS- . :
The application of the displacement discontinuity method to mining proo- !
lems in two dimensions has been well demonstrated by Crouch (1976) with
his programme MINAP. A restriction of this programme is that it cannot
model mining problems in non-homogeneous ground. The programme allows for
specification of mixed btoundary conditions which mekes the incorporation
of non-homogeneous subregions- inte the programme relatively easy.
The basic equations for the two-dimensional displacement discontinuity
method have been given, Crouch (1976), for a problem containing N elements
(no tensor rotation for sumation here).
08 433 i3
o =% (A 31+ A 4a)
s J=4 88 8 sn-n (35)
i N ij 3 iy 3
o =% (A 4+ a 4
n J=i ns s A on
where stresses are specified as boundary conditions
~and = j represents an emitting element
i represents a receiving element
s represents a shear effect
n represents a normal effect
are induc':ed stresses '
d are displacement discontinuities
A are stress influence coefficients derived ly Crouch (1976) !
!‘
where displacements are specified as koundary conditions,
' ) t
i 8 433 433
u =% (B a+ B
s =i ss 8 s n | : (36)
i N id g ii 3 ' ,
u =2 (B 4+ B a '
n J=i ns . s n n
where B are displacement influence coefficients ‘ o !
u are displacements on one or cther of the two displacement discon-
tinuity surfaces.
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- = -~ For example; B gilves-the shear digplacement- induced at elanent- i by the -
s - sn - : :
normal ‘displacément dlscontinuity componert of element 7.
Foe = ) ' : .
. Consider now the hypothetical problem of Fig 5.1 discussed also in Chapter
5. Stresses are specified at elements 1 and 4, but neither stresses hor
displacements are known at elements 2 and 3. Eguations (35) and (36) may
be written for this problem as ' -
‘ 11 12 g M 1]
: A a 0 © 4 = o
- 21 22 2 2
A A 0 0O a o (37)
, 21 22 3 2 \
e B B O © a u i
| 33 34| 4 3
i | 0O o A A 4 o
oo | | , 33 34 3

: : 43 44
i S o o A a
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i where A, B are sutwmatrics given by
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[ 1 i
: and d and - ¢ are'given by TR SR _
i e [ g e e :” .-gT s - e Sl e i - e
» i i i ; V
a s n | ‘ :
; - |
) \ a7 £
,‘ i i i !
: B s n |
Applying the boundary conditions for an interface (10) to (37) gives
O ™ , - . - : ;‘
e : - 1A A O 0 ‘ d = o t‘
21 22 33 34 2 ~ , |
v 1A A -A -A a 10 (38) o
T : 21 22 33 34 3l | |
s‘ ‘ 8 -8 B B 4 0 B
' 43 44 {4 4|
0 0 A A ; 4] Lol [
(38) has the same form as (26) with T  replaced by B and U replaced by
, Ai o ’ - . E
i
- “The equations (38) are not diagonally dominant in general and so the solu- : =
tion of (38) using an interative scheme is also not always possible. \
These equations may also not be solved by any ‘elimination schemes because |
of the non-linearities introduced by the fault elements or total closurs
restrictions essential for most mining applications. As the magnitudes : l
o2 3 , ‘ B
of the B and B tems are always equal (they only depend upon the element ‘
size and orientation, approximate diagonal douinance may be achieved 1f ; ‘
: _ 22 33 , S R
Boosi e the A terms are greater than the A tems. As with the boundary elements, P
this is achieved in practice by incorporation of the following algorithm :
into the interative solution for the displacement discontinuity copo-
! nents. '
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i (1) For the softer subregion, estimate nommal and shear stresses at the
5 interface. ' , ‘
P {2) Use these stresses as speclfied boundary conditions for the stiffer TSI
“ suloraglon. , : :
o S 13Y Hor the sbiffer subregion, estivate nommal and shear displacenents at
Hhe intarface. ‘
fals ilge these displacements as specifisd boundary conditions . for +he
g subregion.
Srouch (19761 describes how the displacement discontinuity element may be
vsed b owodel solid or mined seam elements, mined seam elements which have :
dbsagquently seen back-filled or fault elements which bave failed in shear |
S hangion. These features may- be  incorporated into the interfaces B
- sedibed asove ha the same munner as described by Croach. - This is not , i
] A acneged Forfey e o
i
‘g} T mmey Coeon Bomnd Hhat the rate of convergende of the equations in (38) is '
% wonth Pall dhat for honogenesus problens and that an over-relaxation factor
jﬁ grentar than dvonk 1,15 bends to divergs. It is alsy not possible to use
9 ,
B: this ogorithn for non~homxgensous provlems in which a stlffer subregion
h : iz sompletely enclosed within a softer subregion.
I ;
r The - altaraiions regquired fo the programme MINAR are minimal and a wide ‘ A
- range af  aon-homogenons  problems may e solved without  violating the s
: ragerdarion mpoged above. : : : : ‘ k
&
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CHAPTER 7  PROGRAMME VALIDATION AND NUMERTCAL ACCURACY

By

The REM programe was tested using a hornogeneoﬁs‘ unit cuke under

uniaxial tension. The following tests were run:

12 Triangular' Elements
24 Triangular Elements
24 Sguare Elements

96 Triangular Elements

The case with 12 triangular elements was the same as that used by
Cruse (1969) (See Fig 7.1). Results from these tests are summarized
in Table 7.1. For the 12 triangular element test, a conbination of

21 and 42 point integration formulae were used and the results of

Cruse (1969) are given for comparison of the numerical and analytical

integration of the influence coefficients.

TABLE 7.1: UNIT CUBE UNDER UNIAXIAL TENSION

12 Elements | Exact | BEM |Cruse (1969)

{ Reactions of fixed surfaces - 1.0000 1.0000 |  1.000
; ' 1,0000 0.999 - 1..000

- 0.0000 . |- 0.0007 0,000
Maximum axial displacement 1.0000 1.022 - 1.025
Maximum transverse displacement 1.0000 1.095 1.097
Internal points: . -
o1 (44,.4,.4) 1.000 1.019 1.030
o33 (+4,.4,.4) 0.000 =0.068" ~0.074
¢13 (.4,.4,.4) 0.000 0.000 -0.010
Cio  (.4,.4,.4) - 0.000 0.033 - 0.021
Cf‘ll (.4, .4,.8) 1.000 1.020 -
o171 (.6,.6,.6) 1.000 1.023 1.028
93 (.6,.6,.6) 0.000 | =0.077 -0.077
o33 (.6,.6,.6) 0.000 0.010 0. 012

%93 (.6,.6,.6) 0.000 -0.034 -0.034 °
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. § : ‘ - From these results  and similar results from the 724 and 96 element
1 AT ‘ cubes  (Table 7.2) it was concluded that the boundary element method
i programme BEM was working for homogeneous bodies at least.  Lumping
| was used in the 96 element run without seriously affecting the
| S e accuracy. As no analytic solution with which to test the programme
I 7 for non-homogeneous problens was available, the test case of two unit.
[ & ey T “cibes under uniaxial tension, in which one of the loaded ends was. -
H o - : .
;L , rigid, was ‘used (Fig 7.2). Each cube consisted of 12 elements.
' . = .~ PAnswers appearad reasonable when compared with expected answers
§ o . (rable 7.3).
oo TABLE 7.2:¢ UNIT CUBE UNDFR UNTAXTAL TENSION MODELLED WITH 24 OR 96
§\ Exact | 24 square 96 86
i; elements | elements with lumping
| Reactions t3 1.0000 | - 1.0016 1.010 1.014
. ) B v 0.0000 0.0042 0.043 0.054
S Maximm Axial Displacement 1.0000 1.017 ~1.014 - 1.013
' | Maxinum Transverse Displacement | - 0.300 0.326 0.327 0.332
Internal stresses and dis—
| placements '
671 (0.4,0.4,0.4) 1,000 | 0.985 | 0.996 | 0.993
o33 0.0000 | -0.015 0.011 -0.013
_ 013 0.0000 | -0.010 -0.0002 0.0019
C a3 00000 =~0,0091 =0.0013 =0.0054
w 0.4000 0.411 - 0.4064 0.4042"
I
4
- j
o
i
|
j‘. .
i
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TARLE 7.3: RESULTS FOR TWO JOINED CUBES UNDER UNIAXTIAL COMPPESSION

Expected BEM (4247 point
integration)
Reaction at fixed end ) 1.000 ' 0.989
: 1.000 , 0,990
gy S S | ~0.702
Reaction at interface 1.000 0.997
‘ : 1.000. , 0.997
Maximum axial displacement 3.000 3.041
Bxial displacement at interface 1,000 : 1.005
Maximun transverse -displacemsit oo ' o
in first. cube : ‘ 0.1 0.15 ’ 0.135 .
Maximam transverse- displacement , ,
Jin second -cube V 0.3 0.333
Internal stresses and ) : ‘
displacements .
&11(0.4,0.4,0.4) 1000 1.038
&7 (~0.4,0.4,0.4) 1.000 0.993
w3y (0.4,0.4,0.4) 1 1.s00 1.785
Uy (-0.4,0.4,0.4) ‘ 0,600 © . 0.602
¢41(0.6,0.6,0.6) ! 1.000 - 1.01
977 (~0.6,-0.6,-0.6) . 1.000 1,011

The effect of lumping and integration accuracy on accuracy and runn-

ing t:lm was also checked against two—dirmensional solutions obtained
with the displacement discontinuity programme MINAP. 116 elements

were used to represent one eighth of a rectangular tunnel measuring

34 x 3,2mx 6m (the height being 3,6m). The vertical stress was
60 MPa and the horizontal streses 30 MPa each (Fig 7.3). = Element
sizes were graded further from the tunnel centre where 8 elements
“were used to span half the hangingwall and 8 for half the sidewall.
Table 7.4 shows a oorrparison,rof displacemants for two MIMAP and 4
boundary element runs (the displacements represent vertical displace-
ments along the hangingwall section of the tunnel). Details of the
integration constants and running times are given in Table 7.5.
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TABLE 7.4: COMPARISON OF BOUNDARY DISPLACEMENTS FOR RECTANGULAR

TUNNEL
'V,
Point | 48 element | 16 element | Run 1| Run 2| Run 3| Run 4
MINAP MINAP i

1 ,00344 | ,00348 | ,00342 | 00341 | ,00340 | ,00337

2 ,00340 ,00344 | ,00338 | ,00337 | ,00336 | ,00332

3 ;00332 ,00336 | ,00330 | ,00329 | ,00327 | ,00324

4 ;00319 ,00324 | ,00317 | ,00316 | ,00315 | ,00311

5 ,0030L | ,00306 | ,00299 | ,00299 | ,06.297 | ,00294

6 ,00276 ,00282 | ,00274 | ,00274 | ,00274 | 00267

7 /00242 ,00249 | ,00240 | ,00240 | ,00238 | ,00236

8 ,00190 - | ,00202 | ,00189 | ,00189 | ,00187 | ,00185

Table 7.6 shows comparisons of stresses at interior points. The x~y
co-ordinates are such that the hangingwall lies at y = 1,8 and the
sidewall at x = 1,6. The tables clearly show the high order of inte-
gration required to obtain reasonable results for stresses at

interior points. Such accurate integration if unnecessary when

solving for surface displacements and tractions and the time savings
obtaired by lumping and variable integration accuracy are clearly
demonstrated by Table 7.5. LT

TABLE 7.5¢ RUNN ING TIMES AND INTEGRATION SCHEME COMPARISON

Item Run 1 Run 2 Run-3 Run 4
E
42 Point Transition Ratio 1,2 1,2 1,0 0,3
21 Point Trangsition Ratio 2,5 2,5 2,5 0,7
7 Point Transition Ratio 5 5 2 2 -
| 3 Point Transition Ratic | 10 10 5 5

Lumping Transition Ratio | 9999 12 12 4,5
Time for influence
Cosfficients 197 mins | 131 mins | 122 mins 82 mins
Time for Solution (12 : ‘
Iterations) 24,6 mins | 17,4 mins | 7,1 nmins | 15,4 mins
Time for Interior Point '
(Average) 3;6mins | 1,8 mins|t 1,7 mins'| 0,95 mins
Total time (with 41 Int. R
Points) 369 mins | 222 mins | 208 mins | 160 mins
Disk Storage (Blocks) 995 604 604 468
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8 e
H e TARLE 7.6: COMPARISON OF STRESSES AT INTFRIOR POINTS s
(S v | x| v | oox | v | % | x| y| Tx| %] T
1 MINARP2 0,41 20 13,9 0,54 -1,83 2,2 1,2112,51{88,9 ~16,8 1
| n BEM 1 0,41 2,0 12,9 ~1,59 0,45 2,21 .1,2]12,3187;2 ~16,6
%;' BEM 2 0,41 :2,0 12,9 ~1,47 =0;40 2,21 1;2112,3187,0 =165
i BEM 3 0,41 2,0 4,0 56,10 -2,76. 1 2,271 1,2113,3187,0 -16,2
;; . BEM 4 .- 0441 2,0 4,5 55,80 =2, 60 2,211;2113,7186;9 -~15,8
y 4 BEM 4% 0,4 2,0 12,9 0,70 =390 2,2 1,2113,0186,9 =16,:5"
i
il - *  Using same integration constants for interior points as in BEM 1 rmm.
R’g - 7.2 Mixed boundary element programme MBEM
31 : Before coabining the boundary elements with displacement discontin-
N uity elements, a test was done to compare the two methods. The dis-
37 : . . .
placemant discontinuity programme RIDE used is described elsewhere
z‘ (Starfield and Crouch 1973, Diering 1977). A square flat planar
i ' tabular excavation of dimensions 80 m x 80 m subjected to a nommal
- load of 60 MPa was used as the test case and 98 boundary elements
¥;: ) : ) N : N - ) ‘
5 with dimensions ranging from 40 m square to 10 m square were used.
ié - Two displacement discontinuity runs were done with 64 10 m square
elements and ‘16 20 m ‘square elenents. The region discretized -for the
boundary element rn was 160 m x 1£72 m sguars. Tables 9 and 10 show
a comparison  of - {(hangingwall/footwall convergence) and - interior i
stresses and displacements {in the hangingwall).
: TABLE 10: COMPARISQN OF (I]‘.QSURES - PROGRAMMES BEM AND RIDE f
Point BEM | RIDE (10m) | RIDE (20m)
1 1 7.9 8,5 14,5
,; 2 14‘," 4 15‘ O 14’ 5
3 18,4 19;0 22,0 (
i 5 19,3 20,0 21,7 ‘
i |
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TABLE 7.8: COMPARISON OF INTERIOR STRESSES AND DISPLACEMENTS
PROGRAMMES BEM AND RIDE '

R

Distance to Vertical displacement Minimum principle stress

excavation {(m) BEM RIDE BEM RIDE (20m)

|

- | 50 4,7 6,2 13,
s | 30 8,2 |  -9,4 7
0

- 10 -14,2 | -15,20

Dwo
! o0
00~ 0

(4
I
r

-2

4

The discrepancy in displac‘emant's 50 m above the excavation probably
arises from the limited size of the boundary element mesh while the

large tensile stress given by the displacement discontinuity method
10 m in the hangingwall is as a result of the 1 point integration

formila used in evaluating the stress. The otherwise cood agreement
g , ®

between the displacements pronpted the corbination of the two element
types. Running tines were:- : '

BEM 100 minute (294 degrees of freedom)
T -~ RIDE 7 minute ( 64 degrees of freedom)

In modelling the e‘xc:avatidn with boundary elements, it was possible
to ciisci:etize ohly the hangingwall and surrounding solid areas of the
excavation. If hangingwall and footwall novements were unequal, then R |
twice as nmany roundary elements would have been required. The great '
advantages of the displacement discontinuity elements over the Toun-
dary elements for this type of problem are evident. -

' ' ‘ A direct verification of the MBEM programue a?peared very difficult

: but was not necessary since all of the @rcgrmhiug logic appearea in
-~ = wne or other of the programmes RIDE or BEM. A nunber of direct test
?f ; examples have been run and answers from these tests have appeared to
_ ' e reasonable. One example is gwen here - a 4 x 4 array of displace-

lj . ' ment discontinuity elements. As the depth % inureases the dis-

placements of the boundary element tend to zero while the closures:-in
the displacement discontinuity elements tend rowards those of an
independent RIDE run. When the depth % is small, then the hanging-

wall movements become significantly greater than the footwall move-

B et o e e e v ol et &
e e




e e Dt

o A S et

o —

FEy

o WIS O
60 :

ments (as has been demonstrated by Crouch (1976) in two dimensions) .

When the depth % becomes less than about 0,75 of the maximm ele-~
ment. ‘width, then. numerlc:al convergence is lost. As the cdﬁstarr&‘ dis-
placenent 'md conbtant traction assumptions for each element are no
longer valid in this case it is Ffortunate that the programme sutonat-
ically rejects such ill-conditioned or badly specified problens.
Indeed, the accuracy achieved in any problem, appears to. be strongly
related to the rate of convergence of the numerical solution. There
are of course many exceptions to this general rule.

A second méﬂnod of testing the programme was to vary all of the inte-
gration parameters to check the dependence of the solutions upon the
accuracy DL mmerical mtegmtlon.
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' CHAPTER 8 PROGRAMMING CONSIDERATIONS -

= SR :

The size of a programme is governed by the number of programming steps
making up the programne and by the amount of data required or used vy the
Programme . ' ' :

8.1 Programme structure

iy V | The core requirements of a programme are easily reduced by using proe ‘
L gramme ovérlays or "swéps", Only that portion of the programe which
“is in use is held in main mewory. Provided the programme 15 well
structured, ‘the amount of swapping of programmes in and cut of main
menory is minimal and results in negligable increase in total running
time. Fortunately, bounda:y and finite element formulations are well
structured and the BEM and MBEM programmes were easily divided into
the following swaps. ‘ ‘

o Lo - (i) Control programme
(1i) Input and data checking
(iii) Caleulation of influence coefficients
(i)  Tterative solution for unknown displacements and tractions
{v) Output of displacements' and tractions k
© (vi) Calculation of stresscs and displacements at specified points

It is possible to stop or s‘kliax:tf the progra:mm. at any s‘ta;gef. 'Ihus..
for example, it is possilile to store the displacement and traction
solutions for a nunber of runs (iv) while overwriting the very large
-~ influence coefficient file (iii), if necessary for successive runs.
Stresses and displacements laay subsequently be calculated at any
point for any of the displacement/traction solutions. A typical
application of the above procedure arises when a number of different
geanetries for a problexn are studied. After the initial analysis, it
beconas necessary to determine stresses and displacements at a few
additional points without repeating the entire analysis. This is
easily achieved with the above programme structuring.

AR
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8.2 Data storage

g '8.2.17; The ~infi’uence cdefficienbf:i.le (/ICE‘,‘);

The file containing the influence cosfficients (the ICF) can

gasily become very large. For example, a problem containing
1 000 elements (in which the lumping mechanism was not used to

reduce the number of influence coefficients; would require -

about 36 ¥ bytes.

In designing the programme, it was decided to use sequential
access for the ICF. That is to say, the influence coeffi~
cients are caleulated in bre«::isely the same order as nesded
during  the iterative solution stage. The use of sequential
access for the ICF makes it possible to store the ICF on tape.
This will be done shortly, and it is expected that the
increase in rutning time will be more than offset by the
reduced cost of cheaper perigheral storage.

'Aczcers,s bime to the ICP is reduced by retaining in core a
fairly lavrge buffer array (8 k byte in the present versions).

This puffer array is also accessed sequentially and a
disk/tape transfer is only required every 2 000 coefficients
(1 coafficient = 4 bytes). '

All access to the ICK is controlled by one small subroutine so

that the programmes are not too machine specific.

Storage of :Lmnp elemernts

All the information for the elements of any one lump is stored
on two disk blocks of 512 bytes each. This information

includes displacements, tractions, direction cosines, areas

and codes.  The nodal co-ordinates which are used by more than
one lump in many cases are retained in main memory.

T T e e
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 Since it 1is never necessary to retain in main memory - the

detailed information of more than two lump elements at any one .

time, the two lump elements are referred to as a receiving and
an emitting lump element. Each has assigned to it a labelled

camon block of 512 words. It is thus a simple matter to read

or write the information for all the elements within a lump to

or froan disk.

8.3 Programme listings

A complete listing of programme BEM is given in,Appendix 2 while
partial listings of programnes MBEM and MINAPH are given in

Appendix 3 and 4. A partial listing of MBEM is given to avoid”

repetition since nimercus subroutines are either common to BB

and MBEM or at least similar to one anotheﬁ;,

A partial listing of MINAPH is given because the original pro—

gramme was developed by Crouch (1976). Only those sections which
were changed to facilitate modelling of non-homogenous problems

are given.
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CHAPTER 97 EXAMPLES OF PRACTICAL APPLICATIONS

Before describing some of the practical applicétidns of BEM and MBEM, it

- is useful to briefly summarise some of the uncertainties which acecompany a

typical stress analysis problem in rock mechanics. In addition, a number

of useful rules of thumb have evolved from the use of these programmes.

The loading for a problen arises primarily from the primitive or in situ

stresses which are present in ‘the rock mAss befpre mining commences. It
is possivle +to measure these stresses with reasonable accuracy,
(Gay, 1975) but the presence of dykes, faults etc can resﬁlt’in a fairly
irreqular stress distribution in the rock mass even before any mining
commences. A more usual approach 1s to assume that the overburden

stresses increase linearly with depth below surface and that horizontal

stresses are a constant fraction of the vertical stress. Gay (1975) shows

how the horizontal to vertical stress ratio varies with depth on average

in Southern Africa. .

The excavation geonetry for a typlcal problem is usually very complex so
that a number of simplifying assumptions have to be made.  Usually,
service excavations are much smaller than the production excavations, so
that only the latter are modelled. Sometimes the extent-of mm.ng is-such
that it is not possible to model all the Vproductionk excavations. = Typical

examples of this occur in the Witwatersrand gold fields where mining is .

more or less continuous for distances exceeding twenty five kilometers.

The geology of most problems is usually complex and is also usuall}? based
on a nmber of boreholes. It is practical therefore only to consider

major geological horizons with significantly different. material proper—

ties.

The material properties are seldom known with any great degree of

cartainty. Apart from material anisotropies which are difficult to
measure, a numoer of other problems arise in assessing suitable material
oroperties. TRlastic moduli and material strength are usually determined
from small specimen tests. It is known that actual large scale properties
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