
E D U L A N : A L O C A L A R E A N E T W O R K F O R

A N

E D U C A T I O N A L E N V I R O N M E N T

Eduardo Albino De Souza

A dissertation submitted to the Faculty of Engineering, University of the

Witwatersrand, Johannesburg, in fulfilment of the requirements for the

degree of Master of Science in Engineering.

D E C L A R A T IO N

I declare that this disscrta. ion is my own, unaided work. It is being

submitted for the Degree of Master of Science in the University of the

Witwatersrand, Johannesburg. It has not been submitted before for any

degree or examinat ion in any other University.

g <>■ t''

E. A. DE SOUZA

On this the 16'th day of Mai c

Declaration ii

A B S T R A C T

Thv needs and requirements of a typical Personal Computer (P.C.) network

in an iduc.ttional envt ronment are discussed A proposed system with a

- t ir-bus topology with a f ile-server at the hub is described. Each ray

of the star lr- a 422 twisted pair us onto which a number of personal

iters ilti attached. Access to the bus is by means of the CSMA CA

(Carrier Sense Multiple Ao ess with Collision Avoidance)access method.

The bt.sses operate at bit rates of between 1 and 1.5 Mbits per second.

The interfile t the Personal Computer is by means of a floppy disk drive

• ;l:»tut The principles of ope r it ion of the floppy disk drive system in

a Personal Computer are described <is well as the design and implementation

i i test inn if the disk drive emulator. Development of a device driver

to :e»t»* i : nber of logical drives on each Personal Computer with as­

sociate] drives on the f i le-server is described.

Abstract iii

ACKNOWLEDGEMENTS

I wish to express my thanks to:

o Mr. G. T. Gray who supervised my project, for his suppor' tn-i V<-lp,

for the discussions we have had, and tor the eat av .onomy I have

had in my work.

o Professor H. E. H.mrahun for hi - ss: stun e n > ttie d'scuasions we

had.

o

cial assistance by way of a bursary durinjt my period of resear

o Mr. S. Marantos whose assistance in a numiier of aspects is greatly

appreciated.

• Mr. R . A . Schut■ f01
for novice Pascal programmers which is to be implemented on the

f i le-server.

o Mr. M. W. Hildyard For his res* irch into the high level software for

the f i lo-server.

o I am also grateful to those labo.ntory te hni ians, who by their

valuable advice, have helped me in th.s project

Acknow1edguments iv

TA B L E OF C O N T E N T S

1 .0 IN T R O D U C T IO N .. 1

2 . 0 NETWORKS IN AN E D U C A T IO N A L E N V IR O N M E N T : ARE T H E Y

NECESSARY? ... 2

3 . 0 NETWORKS FOR E D U C A T IO N A L E N V IR O N M E N T S : WHY ARE T H E Y

D IFFE R E N T? ... 4

4 . 0 NETWORK REQUIREM ENTS .. 6

5 . 0 SYSTEM O VERVIEW ... 7

5 .1 Use of one P . C . with the f loppy disk d r iv e emulator connected

to the f i l e - s e r v e r . Only one f loppy disk is emula ted . 10

5 .2 Emulation of 25 f loppy disk dr ives using the hardware c o n f ig ­

urat ion in (5 . 1) ..12

5 .3 The operation of the menu program and software protection on

the system described in (5 . 2) a b o ve ... 13

5 .4 A number of P . C . ’s operat ing as in (5 . 3) a bove 15

6 . 0 THE FLOPPY DISK D R IV E EMULATOR .. 16

6.1 The Floppy Disk D r ive Emulator (H a r d w a r e) 19

6 . 2 The Floppy Disk D r ive Emulator (Software) ..23

7 .0 REQUIREMENTS OF THE F IL E -S ER VE R ... 28

8 . 0 C O NCLU SIO N ... 30

A P P E N D IX A THE S T R U C T U R E OF FLOPPY DISKS .. 33

Table of Contents v

A P P EN D IX B THE FLOPPY DISK D R IV E INTER FA C E . . .

A P P EN D IX C THE FLOPPY DISK C O N T R O L L E R

A P P EN D IX D DA TA RECORDING T E C H N IO U E S

A P P E N D IX E THE DECODER C I R C U I T R Y

A P P E N D IX F THE ENCODER C I R C U I T R Y

A P P EN D IX G THE IN TE R FA C E BOARD ..

A PPEN D IX H THE MICROPROCESSOR C O N T R O L L E R U N I T

A P P EN D IX I THE T R A C K CACHE ...

A P P EN D IX J WHY STAR-BUS" N O T E T H E R N E T

A PFEN D IX K THE CSMA CA ACCESS PROTOCOL

A P P EN D IX L MESSAGE PASSING ON T R A C K 40

AP P E N D IX M THE MS-DOS DEVIC E D R IV E R

A PPEN D IX N THE ENVIS AGED FILE SERVER HARDWARE

A P P EN D IX O EM ULATION SOFTWARE ..

A P P EN D IX P THE TR A C K E M ULAT IO N SOFTWARE

A P P EN D IX 0 T E S T IN G THE FLOPPY D ISK D R IVE EMULATOR

Tdbli- of Contents

L IS T OF REFERENCES

B IB L IO G R A P H Y

Table of Contents

L IS T OF FIGURES

Figure

5.1 Schematic Diagram Of The 1Star-bus1 Network

Topology

5.2 Schematic Diagram Of The Configuration For The

Emulation Of a Single Floppy Disk

5.3 Schematic Diagram Of The Configuration For The

Emulation Of 25 Floppy Disks

5.4 Logical Association And Physical Mapping Of The

Disk Drives On The P.C. And The File-server ...

6.1 Components Comprising The Floppy Disk System In

The P.C..

6.2 Flow Of Data In And Out Of The Emulator

6.3 Schematic Diagram Of The Emulator Track Counter

6.4 Flow-chart Of The Emulator Software.............

A . 1 Subdivision Of The Disk Surface Into A Number Of

Tracks ...

A.2 Diagram Of The IBM SysV 34 Double Density Track

Format ...

A.3 Composition Of A Sector

D.l Diagram Illustrating FM And MFM Encoding

D.2 Encoding Of The Address And 1 I) Address Markers .

F..1 The Decoder Circuit Diagram

E.2 Timing Diagram Of The Counter Reset Circuit ...

E.3 Timing Diagram Of Write Data At The Start Of A

Write Operation

List Of Figures

.— /i

E .4 Timing Diagram Of Clock Pulies Showing Expanded

Pulses And Added Clock Pulses

F.l Bit Cell Structure - Pulses May Occur During The

First And Third Microsecond

F.2 Encoding Of The Address And I.D. Address Markers .

F.3 Counter Output Waveforms

F.4 The Encoder Circuit Diagram

G.l The Interface Circuit Diagram

H.l Block Diagram Of The Floppy Di*k Drive Emulator

H .2 The 80188 CPU Circuit Diagram

H.3 The Memory Circuit Diagram

H.A The Memory Map Of The 80188
H.5 Timing Diagram Of The RAS, CAS And WE signals

M.6 The I/O Circuit Diagram

H .7 The I/O Map

I.1 Cache Implementation With Each Data Segment

Preceded By A Header

1.2 Separate Index Ani Data Areas For The Cache

1.3 Diagrammatic Represent ion Of The Track Cache Data

Structure

K.l Timing Of A CSMA CA Network Dialogue

K.2 CSMA CA Frame Format

P.l Diagram Of The IBM System 34 Double Density Track

Format ..

P.2 Bit Functions Of Write Register i 01 The CM530 ...

List Of Figures

1.0 i n t r o d u c t i o n

l.B.M.'s launch of its Personal Computer (P.C.) in 1981 and the subse­

quent flood of P.C. clones on the market has accelerated the use of com­

puters in a number of fields and education is no exception. A number of

networks have been designed for these P.C. s for commercial use but the

design of networks for use in educational environments presents certain

design challenges that are rarely encountered n other environments.

In this dissertation the necessity of a network system in an educational

environment is discussed as well a^ the aspects that make these networks

different to others. A 'star-bus' topology is proposed with a file-server

at the hub. Access to each of the rays of the star which consist of an

RS422 twisted pair operating at speeds between 1 and 1.5 Mbits per second

is by means of the CilMA CA access method. A novel approach has been

adopted whereby the interface between the P.C. and the network is by means

of the floppy disk drive system of the machine. This hardware approach

along with a small amount of software makes the network appear to the P.C.

as a number of disk drives. A degree of software protection is included

to reduce the possibility of software on the file-server being copied.

The design, implementation and testing of the P.C. interface comprised

the major portion of the research and hence forms the major part of the

dissertation. Aspects such as network media access, requirements of the

file-server and software protection are also discussed.

Due to the extremely technical naturt of most of the descriptions, a large

number of there descriptions have been placed in the appendices to make

the main body of the report easier to read. The P.C.'s referred to in a

number of places in the report refer to the I.H.M. and compatible Personal

Computers. These machines operate primarily on the PC-DOS and MS-DOS op­

erating systems.

Introduction 1

2 . 0 NETWORKS IN AN E D U C A T IO N A L E N V IR O N M E N T : ARE T H E Y
NECESSARY?

To answor the question 'Arp notwotks necessary in an educational envi­

ronment ' consider a set of comp ter* used in an educAtional laboratory,

and the advantages which will be provided by adding a network.

A Personal Computer (P.C.) laboratory is equipped with between 25 and 40

computers. Each of these computers has two floppy-disks and no hard-disk.

This laboratory may be require i to serve more than 100 students in total.

During this computer course the students ire required to do certain lab­

oratory exercises, prepare assignments and write tests. One may initially

think that it is a s-'triple task to provide each of the computers with a

'Master Disk' which has the required Disk Operating System (DOS) along

with the necessary laboratory exercises or assignment. If we stop to

consider the lire required to prepare these master disks we soon realise

that the preparation of 40 such disks is a tedious task. We must be re­

alistic since as experience has shown, it is rare that these exercises

are fault free. As the exercis** is carried out, invariably errors are

found that have to be corrected. We are now confronted again with the

master disk preparation ta'ik.

It would be far more efficient for one master disk to be corrected and

be available immediately to the students. This would certainly be possible

if these masters were kept on a central lile server to which all the

students had ai.ciss via each P.C. The network would thus bi» required to

provide the interconnection between the file server and each individual

P.C..

Another aspect mentioned above viz. the writing of tests would benefit

by the use of a network. Considering the number of students mentioned

above wi- must examine tin* effort required by the examiners in such an

Networks In An Educational Environment: Are They Necessary? 2

n. _ _ _ > •/">

exercise. In -nost cases each student requires two floppy disks for the

test in addition to the disk which contains the test itself. If a network

was available there would only have to he one test master disk. The disks

that the students 'write' th-*tr tests on have to be collected from the

students, distributed to the markers, re-collected, then distributed to

other markers for checking and again re-collected. Would it not be easier

for all the tests to be stored on one device with possibly another copy

on a floppy-disk in case of a catastrophe on the network or mass storage

device. This would reduce the number of floppydisks required to half.

The marking of the tests would be simnlified since the markers would be

able to access the tests from this central point as well. If an artificial

Intelligence system was adopted to perform the task of marking the tests

the centralised data storage would also be of great benefit.

The questions of software piracy and software security have been extremely

contentious issues of late. In an educational environment in particular

we may have a large amount of expensive software available which should

not be copied. The software available to the user on the network can be

broadly categorised into two well defined categories viz. That which can

be copied and that which can't. In the first category we may have software

such as master disks for laboratory exercises and assignments. This

software along with each users' own work area can be copied to allow the

students to he able to work elsewhere if they wished. In the latter cat­

egory we have i1 the commercial software which is subject to strict

copy-write protection.

It would be an advantage if the network could thus provide as lurge a

degree as possible oi software protection i.e. preventing students from

copying the commercial software.

From the above disc«ss(on It is immediately evident that a network can

provide extensive advantages in this type ol environment.

Networks In An Educational Environment: Are They Necessary? 3

3 . 0 NETWORKS FOR E D U C A T IO N A L E N V IR O N M E N TS : WHY ARE T H E Y
DIFFERENT?

Networks for use in an educational environment have some peculiarities

that make them unique in some respects from those used in commercial en­

vironments .

A number of factors erne- when we examine the personal computer labora­

tory more closely. Firstly when we consider the type of work performed

in such a laboratory we find that most of it is file orientated. A student

will entei a Turbo Pascal environment and then edit, save and run this

program. When this program is executed it may read a data-file, write a

data-file or both. The essential point to note is that all the units being

processed are files. A second aspect is that although all the students

may be working on the same exercise, there is no communication required

between the computers. We should now contrast this with typical commer­

cially available network systems. Two aspects that are considered to be

of prime importance in these networks are message passing between P.C.'s

and the facility for a number of users to be running the same program and

editting a common data-base for example. These features are not required

in the system envisaged and in fact message passing between P.C.'s is

quite undesirable during the writing of a test. A number of users may

run the same program but the running of each persons program is completely

independent to that of other users e.g. tin ,e would be no sharing of data

bases.

Network loading is also rather ui usual. The network will prcbably expe­

rience very heavy loading at the start of the laboratory session for ex­

ample when the students access the files for that session. The loading

will then dwindle to a low level while the actual exercises are being

performed. The loading will reach extreme proportions during the writing

of a test initially when the test is accessed and likewise at the end of

Networks For Educational Environments: Why are they different? 4

the test when everyone is saving their attempts. During a test it would

also be undesirable for some students to receive faster service than

others. Loading such as described is rarely encountered in such pro­

portions in other environments.

Another important aspect to be considered here is that of operating sys­

tems. In this type of environment it is necessary that more than one type

of operating system can be used on the P.C.'s concurrently 01 at different

times. In this respect a number of commercial networks fail. The number

of networks that support more than one operating system are by far in the

minority!1]. I quote from Olivetti's "10-NET" product overview

1110-NET" runs under MS-DOS 2.0. DOS function calls are intercepted

by " 10-NET" and re-routed across the network when appropriate.

This is one of many that share the same problem.

The aspects mentioned above illustrate the differing requirements between

networks foi use in educational environments as opposed to those used in

business type environments.

Networks For Educational Environments: Why va they different? 5

4 .0 NETWORK REQUIREMENTS

The requirements of a network for a particular P.C. laboratory that was

investigated will be laid down in broad terms.

o The network should be able to cater for up to 40 P.C.'s.

o Each user on the network should have a response time comparable to

or better than that obtained from a floppy-disk drive.

o Each user should be able to access a pool of common software as well

as his own user area.

o As much copy protection as possible must be provided for software in

the strictly copyright' area.

o Since the response time should he comparable to a floppy-disk the cost

of each P.C.'s interface should be comparable to that of a floppy-disk

drive unit.

o The network should be able to operate under more than one operating

system.

o There should be no restriction on the type of computer that can be

connected on the network

Network Requirements 6

5 . 0 SYSTEM OVERVIEW

The system consists of a 'star-bvtv' topology as shown below in Figure 5.1.

P.C P.C P.C. P.C P.C. P.C.

P.C. P.C. P.C P.C. P.C. P.C

P.C. P.C. P.C. P.C P.C P.C

Figure 5.1 Schematic Diagram Of The 'Star-bus' Network Topology.

The reason for the term ’star-bus' is evident from the diagram. We have

a star since the file server forms the hub of a star topology while each

ray of the star is itself a bus. Hence the name star bus. Each of the

busses uses the CSMA-CA (Carrier Sense Multiple Access with Collision

Avoidance) access method. The bus itself operates at between 1 and 1.5

Mbits per second and consists of a RS422 twisted pair. The interface to

each of the P.C.'s consists of a floppy disk drive emulator. This emulator

is connected in the same manner that a normal floppy disk drive would be

connected. The reasons for choosing this type of topology is described

in detail in Appendix J . The data rate between the disk drive emulator

and the P.C. is 250 Kbits per second. To maintain this data rate on a

network of 25 P.C.' s for example requires data to be supplied at a bit

rate of about 10 Mbits per second, the use of a single bus capable of this

data rate would make the cost of each emulator much higher as well as

adding to the complexity of the emulator circuitry. This single bus has

rather been divided into a number of busses operating in parallel at a

System Overview 7

lower data rate. A substantial reduction in the cost per emulator can be

achieved but the complexity of the fiV-server hardware is increased.

This compromise was accepted however.

The network appears to the. P.C. on the hardware level as a floppy disk

drive unit and to the software as a number of logical floppy disk drives.

These additional logical disk drives are used by the file-server to pro­

vide access to the software pool as well as individual user areas. The

data is transferred from the file server to the emulator in the form of

tracks of data rather than individual files. This requirement is a direct

result of the nature of the floppy disk emulator and will be explained

later.

The P.C. is provided with a type of menu program, the selections being

Lne software available for lhat particular operating system. One of these

menu programs would be required for each of the operating systems that

may be. used on the P.C. . When the P.C. 'boots-up' initially off the

network, the user would have to provide a user 1,1 . and password which

is used in the network management. The menu program loaded would be that

for ‘IS-DOS since this is the most frequently used operating system at this

stage. One of the options in this menu would be to change operating sys­

tems. The menu program performs a fundamental role in the software pro­

tection system since it is through this program that the user obtains

access to the protected software on the xile-seiver. The menu program

'maps-in' the requested software and hands ov< control to this software

package. When the package terminates, control is returned to the menu

program to 'map-out1 the software package. Hy doing this the user, even

if he leaves the menu program to the operating system, is unable to copy

any of the protected software since it will be mapped out of the system.

Problems do arise however in software packages that allow the use** to copy

files from within the package. Although elimination of the floppy disk

drives altogether from the P.C. would ensure that no copying took place,

System Overview 8

it was considered necessary that at 1 east one diive should be retained.

The reasoning behind this argument is that the students would be unable

to take any of their work home with them if they wished to do so.

An explanation of the operation of the entire system is rather complicated

and for this reason the explanation will start off with the simplest

configuration. This will be expanded upon until the full system is

reached.

The system developments that will be described are the following:-

1. One P.C. with the floppy disk drive emulator connected to the file-

server. The emulation of a single floppy disk will be described.

2. The same hardware configuration as in (1) but 2S floppy disk drives

will be emulated.

3. The operation of the menu program and software protection using the

same configuration as in (2).

4. The combination of a number of P.C.'s operating as in (3).

9

5.1 USE OF ONE P C . WITH THE FLOPPY D ISK D R IV E E M U LA T OR
C O N N E C T E D TO T H E F IL E -S E R V E R . O N L Y ONE FLOPPY D ISK IS
E M U L A T E D .

This configuration is shown in the diagram below. See Figure 5.2.

0
P.C,

Floppy

Drive

Emulator
XDCOOOOOO<

B.

Figure 5.2 Schematic Diagram Of The Configuration For The Emulation

Of A Single Floppy Disk

In the diagram above it can be seen that drive B on the P.C. is now ac­

tually the floppy disk dti.ve emulator. This is done by simply plugging

in the emulator instead of physical disk drive B .

Since we are only emulating one floppy disk, the file server only needs

to be able to store 40 tracks of data for each side of the floppy disk.

As will be described, the floppy disk drive emulator emulates whole tracks

of data.

When a read access is made to drive B, the emulator will interpret tho

Floppy Disk Controller signals to determine which track and which side

of the disk is required. Included as part of the emulator, as will bo

described, is a cache which stores tracks of data. At .r.is point two

situations may arise viz. the track cache on the emulator may be full,

or the cache may be empty or partly filled. In the latter case which will

occur most often when the emulator has just been powered up, the track

cache index will be searched to see if the required data is in the cache.

Obviously immediately after power-up the cache will be empty. In general

if the required data is found, the emulation process will commence imme­

diately thus allowing the I loppy Disk Controller to begin reading in the

required data. When the required data is not found in the cache, a 're­

quest' is sent to the. file-server for the required data. The file-*erver

then accesses the required data from its cache or disk and sends it to

the emulator. The emulator then updates its track cache and begins the

process described again.

When the track cache is full and the required data is not in the cache,

the cache management algorithm as will be described is implemented. This

algorithm decides which data in the cache should be over-written. The

process is then the same as described above viz. a request is sent to the

file-server and the data returned is then placed in the area that has just

been freed.

A write access to drive B is very similar to that described abcve for a

read access. The entire truck of data to which the write is taking place

still has to be emulated and thus the same procedure as above is followed.

When a track has been written to, this fact is flagged and the track

cannot be replaced in the cache until the updated version of the track

is written to the file server. This write takes place as soon as the em­

ulator is able to access the file servar for this write operation.

The fact then that the data is not coming t rom a physical floppy disk

drive is totally invisible to the B.C. . The only modification that has

been made to the B.C. is the replacement of the physical disk drive by

the emulator.

System Overview 11

5 .2 E M U L A T IO N OF 25 FLOPPY D ISK D R IV E S US ING THE HARDWARE
C O N F IG U R A T IO N IN [5 . 1) .

To emulate 25 logical floppy disk drives requires the device driver that

will be described to be loaded when the P.C. is 'booted up'. The config­

uration is now as shown below. See Figures 5.3 and 5.4.

M Floppy

Drive

Emulator
X D O C X D C O O C X

B' to Zi

Figure 5.3 Schematic Diagram Of The Configuration For The Emulation Of
» _________________________ ft
{jj -- \ 25 Floppy Disks b--L ZZZa\ £•

Physical Device Bi ■ Em ulator

P.C.
logical
Drives

F lle -s e rv e r
logical
Drives

Figure 5.4 Logical Association And Physical Mapping Of The Disk Drives

On The P.C. And The File-server

System Overview

As described in detail in Appendix M , the device driver performs some

'pre-processing' of the DOS calls for the floppy disks. This pre­

processing consists of mapping all the logical disk drives from 3: to Z:

to one physical device viz. drive B. (Note MS-DOS assigns the logical

drives the letters of the alphabet from B to Z). This alone would be

rather pointless since we would still be accessing the same data no matter

which logical drive was selected. To overcome this a record is kept both

in the device driver and the floppy disk emulator as to which logical

device was accessed last. Whenever there is a change in the logical device

being accessed, a message' is sent to the emulator informing it of the

change. This message is sent to the emulator by writing a sector to track

40 which is beyond the normal range of track numbers used viz. 0 to 39.

Sending this message is vital since we may have track 1, say, of each of

the logical devices in the cache on the emulator and we must be able to

distinguish between which one is required. This write is performed using

one of the BIOS routines. The track emulator interprets this message and

all subsequent searches of the track cache index include this drive

identifier as one of the search criteria. The reason that track 40 is used

for message passing and the mechanism used in message passing is described

in Appendix L.

The user would then be able to access in effect 26 floppy disks. This

includes his physical drive A along with 25 floppy disks of data on the

file-sorver. Any of this data is accessible in the same way Lz data would

be accessed from any other disk drive.

5 .3 THE O PERA TION OF THE MENU PROGRAM AND SOFTWARE
PR O T E C T IO N ON THE SYSTEM D E S C R IB E D IN (5 . 2) ABOVE.

The operation of the menu program is vital in the attempt to prevent

unauthorised software copying. The idea itself is rather simple. When he

user 'boots-up' the computer the first menu program will automatically

he executed. This menu will be that of the programs available that use

Syttern Overview 13

/-"VS—

the MS-DOS operating system. This program then prompts the user for his

choice. When a choice is made the file server is notified of the requested

software. The file-server then associates virtual floppy disks in its mass

storage with as many disks us the package requires. The current drive is

changed to whichever drive the package is on. The program is then loaded

and executed using the normal DOS call. This commences with a directory

search for the file-name The directory was empty previously but now it

contains the require i file-name.

An example may be useful to further illustrate the system. Consider a user

that boots up the computer and is provided with the menu choice, He then

branches from the menu to the operating system level. If the user now asks

for a directory of any of the logical drives on the file server, the re­

sponse will indicate that there are no files on any of these drives. He

is unable then to copy any software.

Assuming the user returns to the menu program and requests a program

called 1Gamma-graphix' for example. This package when normally run on

floppy disks occupies three disks. The menu program then maps this package

into drives B , C and D say. At this stage if the user was able to exit

to the operating system and ask for a directory of drives B, C or D he

would find all the files on these disks that would normally be on the

individual floppy disks. (He would then bv able to copy these files). The

menu program would then commence execution of Ramma-graphix. When the user

exits from Gamma-grnnhix whether normally or abnormally, the menu program

would map Gamma-graphix out of drives B, C and 0. If the user now gets a

directory of these drives they would indicate that there are no files

present.

When a software package is requested in the menu program, a message is

passed to the disk emulator in the same way as in (2) above. The infor­

mation contained in such a message is different however. The message

content in this case would include the number of floppy disks the package

System Overview 14

requires as well as in 'application number1. These messages are forwarded

directly to the file-se vf". Each application package has an application

number that has an important role in the overall system. For example when

the file-server maps out a software package a number of tracks of that

package will probably be present in the disk drive emulator track cache.

We could remove these U auks from the cache though it would be more ef­

ficient to leave them there so that if the user left package A and then

decided soon after that he was going to use package A again, the tr .cks

of package A still in the cache would not have to be re-transferred across

the network.

The application number becomes an added search criterion when the track

cache index is being scanned to find a particular entry. The present ap­

plication number being used is stored in the floppy disk drive emulator

and is updated each time the menu program writes a message to the emula­

tor.

The menu program would then provide a degree of software protection by

not allowing the user to have direct access to the software files.

L .4 A NUMBER OF P . C . ' S O P ER A TIN G AS IN (5 . 3) ABOVE.

Extending the above system to a number of P.C.'s does not require much

effort at all. The only requirements now are that the user is prompted

for a user I.D. and password when the P.C. is booted up initially. Each

P.C. has associated with it a particular node number. The user I.D. pro­

vides a logic i1 link to each user for the fi le-server while the node

number provides a means for the network software to know where exactly

to send the data. The network software also now has to contend for the

network since the emulator fi le-server link is now shared by more than

one user.

6 . 0 THE FLOPPY DISK D R IVE EMULATOR

Up until now reference has been iruue to the floppy disk drive emulator

that provides the interface between the P.C. and the network. Natural ly

a few questions arise viz. What is this floppy disk drive emulator, how

does it work and why emulate a floppy disk drive at all. These questions

will now be answered.

Firstly, what is a floppy disk drive emulator? The disk drive emulator

is a piece of microprocessor based circuitry that is able to emulate the

characteristics of a floppy disk drive unit. Operation of the emulator

will be discussed in detail later. The most interesting aspect is why

emulate a floppy disk drive. If we look at microprocessor systems over

recent years we soon see that the floppy disk has been the fundamental

means of transferring data between these machines since they are in effect

removable mass storage media. To execute a number of software packages

on a P.C. for example we would load these packages from a number of floppy

disks. The driving force behind the floppy disk drive emulator idea as

the connection to the network is tha instead of physically loading sep­

arate floppy disks, the network could provide the same data, that would

be stored on u central file-server, to a floppy disk drive emu 1a10/. The

P.C. is then totally unaware that the data is coming from a network and

not from separate floppy disks. To appreciate why the floppy disk drive

itself should be emulated we must examine the whole disk system of a P.C..

Components Compris ing the Floppy Disk System in a P .C . The primary

components of the floppy disk system in a P.C. arc identified and their

functions and structure described. The components are shown in Figure 6.1.

The Floppy Disk Drive Emulator 16

Floppy

Disk

F loppy

Disk
3 1 /4 Inch F loppy

Disk

o

o
Mcurtmjn o f

Fovr- Disk D rive

U n its

Figure 6.1 Components Comprising The Floppy Disk System In The P.C.

Functions:

Floppy D isk: A removable magnetic data storage medium which is double

sided, divided into 40 tracks each subdivided into 1 sectors.

Floppy Disk D r ive U nit: This provides a *r ding and play back' fa­

cility for the floppy disk.

In te r fa ce C i r c u i t r y : This provides the necessary line driver receiver

circuits which are required between the disk drive units and the floppy

disk controller as well as data separation circuitry.

Floppy Disk C o n tro lle r : A dedicated processor provides and interprets

the signals associated with the disk system. 'High level' commands are

provided to the controller by the microprocessor system. The controller

processes these commands thus alleviating the microprocessor of this

task.

Microprocessor System: This consists of the hardware making up the re­

mainder of the P.C. This provides decoding. DMA and interrupt facilities.

The Floppy Disk Drive Emulator 17

The BIOS (Basic Input/Output Subroutines) provides low level software for

the floppy disk system (among other things).

From the above description we can see that only two components may be

emulated viz. the floppy disk drive nnit an^ the floppy disk controller.

When we consider the inputs and outputs and complexity of emulation of

each of these devices, emulation of the floppy disk drive unit is more

favourable.

From the diagram we can see that the floppy disk controller is interfaced

directly to the microprocessor system. This requires that the controller

be emulated on both the hardware and software levels. As described in

Appendix C the floppy disk controller is a very complex device. From a

purely practical point of view emulation of the controller would require

in a number of situations that the component be unsoldered from a circuit

and be replaced with a plug in header, say, thst is connected to the em­

ulation circuitry. From an installation point of view the user would have

a daunting task on his honns.

Emulation of the floppy disk drive unit is restricted to hardware emu­

lation. The number of inputs and outputs to the emulator is much smaller.

A disadvantage of this system, however, is that it is not possible to

identify which sector is required by the floppy disk controller. It is

only possible to isolate which track and which side of the disk is re­

quired. See Appendices B and C .

An alternative to emulating both tin* floppy disk controller as well as

the floppy disk drive is the design and construction of a plug-in board

for the P.C.. This is the form that most of the commercially available

network boards take. These boards can interfere with the DMA and interrupt

system on the I’.C. (e.g. the same interrupt used by more than one board,

the same I/O addresses may he used etc.). Extensive software is often also

The Floppy Disk Drive Emulator 18

required to drive them. This software can often cause problems when dif­

ferent operating systems are used with the same network card and may even

be problematic with everyday software packages. In this respect emulation

of the floppy disk drive unit does not interfere with DMA, interrupts or

the software since we rAn virtually say that the software is un-modificd.

The MS-DOS device driver for the extra logical drives is virtually iden­

tical to that for the normal disk drive system. The only exception is the

message passing to track 40 but even this is totally transparent to

MS-DOS.

System busses into which plug-in boards are inserted and floppy disk

controllers are very specific devices. Emulation of the disk drive unit

is less specific since a number of disk drives have the same interface.

The small discrepancies that may occur can be overcome by adapting the

emulation principles developed. With speculation that future P.C.'s will

be equipped with 34 inch drives makes emulation of the disk drive a log­

ical step. Current specifications for 3j inch devices indicate that the

emulator can be used, with possibly some small software modification on

these systems (2).

By keeping the P.C. interface as we would by emuliting the disk drive it

would be possible to include P.C.'s of various makes on the same network.

If these P.C.'s share the same operating system as other makes of machine

on the samv network, it would be possible for files to be shared by these

machines. This would be more difficult if a plug in card were used, say,

since these cards would have to be tailored to the individual systems.

C . l THE FLOPPY DISK D R IV E EMULATOR (HARDWARE)

The floppy disk drive emulator can be divided into six sub-sections.

These sections are:-

1. A decoder to process data being written to the disk drive.

The Floppy Disk Drive Emulator 19

2. An encoder to reproduce data being read from the disk drive.

3. A track counter to monitor the required head movement.

A. The CPU, RAM and EPROM to control the emulator and provide the track
cache.

5. The network interface.

6. The interface to the floppy disk drive interface.

As described in Appendix D the date recorded on the floppy disk is MFM

encoded. If the fact that the data is MFM encoded is disregarded for the

moment and the data format on the floppy disk as described in Appendix A

is considered, the following characteristics become apparent:

1. The data stream is very similar to that on a synchronous communi­

cations link.

2. The data is divided into blocks on which Cyclic Redundancy Checks

(CRC) are calculated.

Considering these two observations a synchronous communications device

was chosen to perform these tasks. Using NRZ (Non Return-to-Zero) encoding

on this communications chip the data entering and leaving the emulator

would just require MFM decoding and encoding respectively. The data flow

is shown in Figure 6.2.

VD and RD are the data input and output to the floppy disk drive units.

The lines shown here are the same as those on the 34 way interface cable

(See Appendix H) except they have a1 ready been buffered.

This is conceptual ly how the data i low is managed. Unfortunately the

implementation is not quite so simple. The full details of these sub­

sections are given in Appendices E and F .

The Floppy Disk Drive Emulator 20

_____ .. v6uA-

It is ne-essary to monitor the head position so that the correct track

can be emulated when required. The required head movement is indicated

to the floppy disk drive by two lines. These lines, DIRection and STEF,

convey this information. The state of the DIR line determines whether the

head must move inwards or outwards. Each pulse on the step line represents

the movement to move from one track to the next.

Synchronous
Communications

MFM
Encoder

MFM
Decoder

TxD

RxD

Chip
Heon Brt R ate of ESOKbrts p e r second

Figure b .2 Flow Of Data In And Out Of The Emulator

For the floppy disk controller to know where the head is immediately after

power-up, for example, a feedback signal is provided from the floppy disk

drive unit to the disk controller. This signal, TRACKO, indicates that

the head is positioned over track 0 (the outermost track of the disk).

The floppy disk controller, when issued with a Recalibrate command (3),

steps the head outwards until the TRACKO signal becomes active. The floppy

disk drive controller then sets its internal counter to zero.

The Floppy Disk Drive Emulator 21

The principle of the floppy disk controller's track control circuitry is

extended to the emulator. An up-down counter whose direction is controlled

by DIR and clocked by STEP performs this function. The outputs are gated

to provide the TRACKO signal when the counter's value is zero. The outputs

are also made available to an input port on the CPU controller so that

the counter can be monitored.

The track counter is shown below in Figure 6.3.

Up/Down
— Dato Bus

U L E Counter

OR

TRACKO

Figure 6.3 Schematic Diagram Of The Emulator Track Counter

The entire functioning of the emulator is co-ordinated using a micro­

processor based system, the central processing unit used is the INTEL

80168. This is supported by 256Kbytes of RAM, (expandable to approximately

1Mbyte), SKbytes of EPROM, 2 Z8530 Synchronous Communications Control­

lers, an 8 bit input and an 8 bit output port.

The 80188 CPU is ideal in this application since it combines a number of

peripheral devices within one physically small component. A dual channel

DMA controller, 3 16 bit timers, an interrupt controller, bus controller,

The Floppy Disk Drive Emulator 22

chip select logic, ready generation logic as well as a clock generator

are included in the package. 1 Mbyte of memory as directly addressable

which is extremely useful for cache management. The timer, clock gener­

ator and DMA unit are used to overcome the problems commonly associated

with dynamic RAM memory. See Appvr.dix II. In the pn?sent implementation

of the emulator only ZSoKbytes of RAM are used. The emulation software

and general 'house-keeping' software resides in the Ei'ROM. The two Syn­

chronous Communications Controllers (SCO are used for the emulator and

network. As mentioned above the input port is required for the track

counter. An output port is provided to drive L.E.D.'s to indicate various

states on the emulator and for general diagnostic purposes. The SCC's

provide various other control inputs and outputs that arc required.

The network interface consists of direct transmission of the data clock

along with the data on a three line system between the nodes. The only

additional circuitry required on the SCC's are the RS422 line drivers and

receivers. The line drivers outputs are controlled by the ITS line of the

network SCC.

Circuitry is required to interface the emulator to the floppy disk drive

interface circuitry. This circuitry is based on an open collector bus type

of system. All the outputs o f the emulator have to be equipped with open

collector drivers while the inputs must only accept information on the

bus when the relevant physical drive is selected. See Appendix G. The

circuitry is simple, however, ind merely coisists of latches and pull up

resistois on the inputs and open collector drivers on the outputs.

6 .2 THE FLOPPY DISK D R IVE EMULATOR (SOFTWARE)

Thy first aspect of the emulation software that will be discussed is that

of the track cache. An urea oi RAM memory <10LK) in this case has been

set aside for creating such a each* .

The Floppy Disk Drive Emulator 23

An index of the cache contents is kept separate from the data area of the

cache. This index contains entries identifying the track number, the head

number (i.e. side of the disk), the application number counters for the

implementation of the caching algoi.'hm and o pointer to the actual data

, The function of the track, liedu and application number has been

explained in the system overview. When the cache is full, a caching al­

gorithm is implemented to determine which track entry should be replaced.

The algorithm is based on a method where both the frequency of access as

well as when last an entry was accessed are used in the decision algo­

rithm. This decision algorithm is particularly well suited to small sized

caches. A detailed explanation of both the cache and the replacement al­

gorithm is given in Appendix I.

Important aspects of the flow-chart will be mentioned here. See Figure

6.4.

The hardware of the emulator needs to be initialised and the memoiy tested

before the emulation process can be started. The CPU itself needs to have

certain parameters set up before the rest of the software can be executed.

Memory and I/O mapping as well as 'wait-state" generation are of primary

importance. One of th three timers as well as one ol the DMA channels

need to be configured to commence the refreshing of the emulator's dynamic

RAM. DMA cycles are performed at fixed time intervals to carry out this

function. Faulty memory locations are located by writing known bit pat­

terns to an area of memory and than reading the contents of this area and

checking for correspondence. If all the memory functions as required the

truck cache is initialised. The current disk and application numbers are

given values that would not exist under normal circumstances and this

ensures that when the cache index is searched, the search fails and the

data is requested from the file server.

The Floppy Disk Drive Emulator 24

Initialisation

Read Track Counter Value

Read Head Value

emulate Track 40 Side 0, Sector 1Track 40 ?

INQ Get Current Drive and Appln. Nos.

Search Cache

Reqd Track Found 7

Apply Replacement Algorithm

Walt For Data

Insert Data In Cache

The Floppy Disk Drive Emulator 25

Fi
gu

re

6.4

F
lo

w
-c

h
ar

t
Of

Th

e
E

m
ul

at
or

S

o
ft

w
a

re

The track counter value is read from the Input port. One of the control

inputs on the SCC is used to check which head is required. This is pos­

sible since the head can be only one of two values viz 0 or 1. If the

track counter value is y it is immediately identified with the ex­

ceptional case of a message being passed to the emulator and an abnormal

track emulation takes place. The track size is reduced to 1 sector and

only track 40, side 0, sector 1 is emulated. This is done primarily to

save time as emulation of any further sectors is a waste of time The

message is then read in. This is done in the same way as any normal sector

write except that the is not written into the cache. Processing the

message may simply involve updating variables on the emulator such as the

current drive number and/or application number, sending an application

request to the file server or both.

If the track counter value read is between 0 and 39 then using the stored

drive and application numbers, the track index is searched to find an

entry corresponding to the required trcck and side as well as the correct

drive and application number. If the required entry is found, a pointer

to the data area is returned and the track emulation process is initiated.

The variables for cache management are also updated. In the case of an

entry not being found the cache replacement algorithm comes into effect.

The entry used least frequently is replaced. If the situation arises where

two or more entries have the same frequency of use the one that hasn't

been used for the longest period of time. This algorithm is desv^ibod

in detail in Appendix I. Once the area of the cache that is to be over­

written has beet identified a message which includes information which

identifies the requesting vmulaior (source address), the typv of message

(request lor data), the required drive, application, track and side num­

bers, is sent to the file server. The actual access method on the network

(CSMA-CA) is described in Appendix K . This method was chosen for its ease

of implementation both in ie*-ms of hardware and software. With the small

The Floppy Disk Drive Emulator 2b

number of users on each of the buss' < as explained in Appendix J (+- 5

users per bus), each user should receive sufficient use of tho network.

When the data is returned from the f i Iv-sewer it is inserted into the

track cache. The main emulation software is then called. As is explained

in Appendix P, the track emulation begins with the generation of the index

pulse followed by the gap preceding the first sector. Before each sector

is emulated the track number a-, well as the side number is re-read from

the respective input ports so that as soon as the floppy disk controller

has performed the required ^unction on the track initially chosen, the

emulator can respond to any change in the requested track or side. Con­

tinued emulation of the originally chosen track is a waste. Emulation

of a particular track continues therefore until there is a change in the

emulator track or side inputs. The formatting information between sectors

has been reduced to the minimum possible so that as much emulation time

as possible is devoted to emulating data rather than formatting informa­

tion that is useless to the user.

The Floppy Disk Drive Emulator 27

7 .0 REQUIREMENTS OF THE F IL E -S E R V E R

The requirements of the file-server both in terms of hardware and software

are discussed.

From a high level point of view the file-server has to manage the access

of a number of users both to an area of common software as well as the

individual user areas. The file-server software is closely associated

with the menu program on the P C. and the finer details of both their

implementations are beyond the scope of this report. In general though

the menu program instructs the file-scrv associate a certain number

of floppy disks with logical disks on tl . . Upon a request from the

P.C. the file-server must bt>. capable of providing any track required from

one of these logical disks. T1 perating system on the P.C. is always

in control of the logical disks themselves thus allowing the operating

system on the tile-server to be- different from that on the P.C. It would

be an advantage if the file-server used a multi-tasking operating system

so that disk accesses for example can be taking place at the same time

as other processing tasks. The file-server requires extensive mass stor­

age facilities, the access time of which is of xtreme importance. In tnis

regard the. implementation 01 a track cache on the file-server would reduce

the access times particularly for software that is access by a number of

users.

The lower levels of software are dependant on the type of hardware

interface that exists between the file-server and the network. The two

situations that can be defined her.; are the cases uhere the processor

controlling the file-server controls the network, and then the case where

the network is controlled by a separate processor. In the latter case

communication with the network is by means of messages passed between the

processors. In the first case the hardware of the file-server needs a

synchronous communications port capable of handling SDLC communications

Requirements of the File-server 28

at speeds between 1 and l.SMbits per second. Software also has to imple­

mented to control the media access. This makes the use of a multi-tasking

operating system virtually obligatory.

The second approach involves the inclusion in a multiprocessor environ­

ment of a processor to handle the network management ""d media access.

Communication between the network processor and file-server processor is

by means of two queues. Requests from the network are entered into the

input queue while data for the network is extracted from an output queue.

These queues would be maintained in a memory area that can be accessed

by both processors. Tran, the fill-server's point of vi<*u communication

with the network would consist of fetching requests from the input queue,

processing them and providing the results in the output queue. This re­

lieves the file-server of a large amount of processing.

The proposed system dees not therefore pose any major constraints on the

capacity, make of, or operating system used, on the file-server.

Requirements of the File-server 29

8.0 C O NCLUSION

A set of network requirements for an educational environment were derived

after analysing the requirements and peculiarities of such a system.

The proposed system , based on a 1star-bus' topology, provides a low

cost, flexible system. The file-server which forms the hub of the star

topology is subject to no major constraints and can be of any make and

use any operating system but should have mass storage facilities with

access times that are as short as possible. Using an RS422 twisted

pair bus provides a medium speed link at between 1 and 1.5 Mbits per

second as well as being cheaper, in terms of both material and in­

stallation costs, when compared with a coaxial cable based system. The

CSMA CA access method provides a simple yet effective means for

controlling each of the busses especially since the number of users

per bus is small. No sophisticated hardware or software is requirea to

implement it either. The use of a radio based system on one or more rays

of the star for connecting computers that are some distance from the

file-server should be investigated since the CSMA CA access method does

lend itself to this type of medium as well.

The use of a floppy disk drive emulator as the interface between the P.C.

and the network is certainly a new approach. This method eliminates most

of the hardware incompatibilities that are often associated with plug-in

network boards as well as dispensing with the need for operating

system modifications. The design, implementation and testing of such

a unit has been described. Certain constraints laid down in the network

requirements have been satisfied by this interface. The cost of the

interface is approximately the same as that of a typical floppy disk

drive unit. No components have been used that are rare or expensive.

Most of the components can be ou ained from more than one man­

ufacturer . The performance of the disk drive emulator unit when tested

Conclusion 30

as a stand alone unit proved to be excellent. Response time was

within the requirements and no data errors were encountered during the

testing.

Two disadvantages of the system must be mentioned. Due to the structure

of the network and the P.C. interface, the nett data rate between the

emulator and the P.C. is 250Kbits per second. When a single user,

therefore, is using the system he will not receive the full benefit

from the network operating at 1.SMbits per second, say, due to the

lower transfer rate between the emulator and the P.C.. The second

matter is not really a disadvantage but should be considered for

optimal performance. Since the data is transferred between the file*

server and the emulator in the form of tracks, the files should be

kept in a form that all the sectors on the tracks transferred ac­

tually carry useful data. This can be ensured by keeping the. files on

the file-server in a contiguous form.

A limiting factor of the system under heavy loading could be the data

transfer rate between the file-server hardware and the file- server mass

storage system. This would limit the amount of data availaole to the

network. A cache in the memory of the file- server could reduce this

limitation in situations were the loading is heavy but a number of

users are requesting the same software.

These last two limitations should not make the overall system less

attractive. To ensure that the requirements laid down are met further

research and testing is required on the file-server and the network it­

self. The performance of the file-server is very important since all the

data being transferred on the network passes into or out off it. Con­

nection of a single floppy disk drive emulator to the file server will

give a good idea of the best performance possible. Extending the testing

to a full complement of P.C.'s on a ray of the star will give a good in­

Conclusion 31

dication of the overall performance of the system since any additional

rays added will he operating in effect in parallel. The file-servers ca­

pabilities will be the limiting factor. Implementation of a printer and/or

a plotter server using the message passing mechanism on track 40, as de­

scribed, should be investigated. These servers will have to use other

tracks though.

The research described in this dissertation has described the network

system in general terms and the P.C. interlace in detail. It has also

provided a number of aspects that should be researched to optimise the

performance of the network as a whole.

Conclusion 32

APPENDIX A THE STRUCTURE OF FLOPPY DISKS

The surface is divided into a number of concentric tracks or cylinders

as shown in Figure A1 On the 5j inch disks there are typically 40 tracks.

The beginning of a track is located by means of a small hole which is

optically sensed on each revolution of the disk.
Track 0
Track 1
Track 2

index hole

Direction
of rotation

Read/write head

Figure A1 Subdivision Of The Disk Surface Into A Number Of Tracks.

Each track is further subdivided into sectors. See Figure A2. These

sectors may be 128, 256, 512 or 1024 bytes long. The method of indicating

the start of sectors is called soft sectoring which is the IBM standard

method. This method allows software selection of sector sizes. Each data

sector is preceded by a unique sector identifier that is read/written by

the disk controller. The sector size is specified when the disk is for­

matted. The most popular disk T mat used in the I.B.M. type P.C.'s is

Appendix A The Structure Of Floppy Disks 33

the 360K format. These disks are double sided which means there is a

read/write head on either side of the disk. The disks rotate at 300 r.p.m

which gives a rotation time of 200ms.

The 3t>0 Kbyte capacity is achieved as follows:-

The disk is subdivided into 40 tracks which arc then further subdivided

into 9 sectors each with 512 bytea. (l/2Kbyte). (Note this applies to

MS-DOS version 2 and subsequent versions). This gives a total of * X 40

X 9 = 180K. This is the capacity of each side of the disk and since the

disk is double sided the total is 360K.

Each .ector is composed of four fields. See Figure \3.

1) The Sector I D. Field. This is ten bytes long and is written only when

the disk is formatted. This provides the sector identification that in

used by the controller when data is read fr.m or written to the disk.

The ten bytes each hive the following functions:

Bytes 1 - 3 are A1H bytes with missing clock pulses. These form part of

the address marker. See Appendix D.

Byte 4 - l.D. Address marker. This specifies the beginning of the l.D.

field.

Byte 5 - Track (cylinder) address

Byte 6 - Head address

Byte 7 - Sector address

Byte 8 - Sector length code

Bytes 9 and 10 - This is a 16 bit CRC for the l.D. field calculated on

the first eight byt"«.

The controller supplies the address mark during formatting and the three

preceding A1H bytes. The rest is supplied by the processor software.

Appendix A The Structure Of Floppy Disks 34

Appendix A The Structure Of floppy Disks

2) The Post ID. Field Gap (Gap 2). This gap is written during formatting.

During write operations, the device write circuitry is enat led within the

gap and are re-written each time a sector is updated. During read oper­

ations the trailing bytes of the gap i.e. the 12 00H bytes are used to

synchronise the data separator Ionic with the upcoming data field. The

i umainder of the gap consists of 4EH bytes as shown in the Figure.

3) The Data Field

This field also commences with 3 Alh byt»s with missing clock pulses as

in the sector I D. field. In this case though they are followed by an FBH

byte. If the data area is found to be faulty during the format operation

the FBH byte is replaced by a FD1I byte indicating a bad sector. The rest

of the field is filled with the required data and has a two byte CRC for

the whole data field appended at the end (Note The CRC calculation in­

cludes everything from and including the thro.' AIM bytes).

4) Post Data Field Gap (Gap 3). This gap is written when the track is

formatted and separates the proceeding data field from the next I.D. field

on the track This gap is not written alter the last sector on the track.

The number of bytes in this gap is programmable and is 22 bytes of 4EH

and 12 byi.cs of OOH as shown in Figure A2.

The CRC'c calculated above are calculated on t le most significant bit

first of each byte. The polynomial used is x1 * + x 11 + x1 + 1. The CRC

generators and receIvors trust be preset to all l’s before the calculations

are started.

Appendix A The Structure Of Floppy Disks 36

Sector I.D. Field Gap
Post I.D. Gap

(Gap 2) Direction Of Rotation

Post Data Field Ga

Figun- A.j Composition Of A Sector

Appendix A The Structure Of Floppy Disks 37

APPENDIX B THE FLOPPY DISK DRIVE INTERFACE

The interface to the floppy ilisk drive unit consists of a 34 way connector

cable. The odd numbered pins of this cable are grounded (i.e. pins 1 -

33). The remaining lines carry input and output signals at standard TTL

levels.

Output lines: These lines are driven by standard open collector gates. The

diskett" drives provide the pull-up resistors for these 1ines

Input lines: Each input line presents one low power Schottky (LO) load to t

diskette drives connected to the interface and is terminated

with a 150 Ohm load resistor to +5 V.

The even numbered lines have the following functions:

2,4,6,34 : No connection

8 : Index

10 : Motor 0

12 : Select 1

14 : Select 0

16 : Motor 1

18 : Direction

20 : Step

22 : Write Data

24 : Write Enable

26 : TRO (Track 0)

28 : Write Protect

30 : Read Data

32 : Hdsel I Head select)

In the following table 0 denotes an output while 1 denotes an input from

the P.C.'s point of vie',.

Appendix B The Floppy Disk Drive Interface 38

Select

s e l e c t

Motor 0

motor 1

Step

UIR

Hdse 1

WE

VI)

INDEX

WP

Appendix

0,

1 0 Drive Select - used to enable the driver

outputs end Rx inputs of the

diskette drive - active low.

Select 0 for drive A,

select 1 for drive B.

0

I

Motor Enable - controls spindle motor

low - motor on

high - motor off

Select 0 for drive A,

select 1 for drive B.

Step • used to move the R/W head in or out

one cylinder on the selected drive

for each pulse present on the line.

The direction of motion is determined

by the DIR line.

Direction - Moves head in if low, out if

high, used in association with

Step.

Head select - The side 1 (upper head) is

selected when this line is /oU

Ur ill- Enable - enables write current to the

R/U head when active (low).

Write Data - data to be vritten on disk

Index - one pulse appears on this line each

' ime the index hole is detected (i.e

once per revolution)

Write protect - low when lisk write

The Floppy Disk Drive Interface 39

.MVw-,

Signal Direction Description

Select

S P 1PCt

Motor 0

motor 1

Step

DIR

Hdsel

WE

VD

INDEX

WP

Appendix B

0,

1 0 Drive Select - used to enable the driver

outputs and Rx inputs of the

diskette drive - active low.

Select 0 for drive A,

select i for drive B.

Motor Enable - controls spindle motor

low - motor on

high - motor off

Select 0 for drive A,

select 1 for drive B .

Step - used to move the R/W head in or out

one cylinder on the selected drive

for each pulse present on the line.

The direction of motion is determined

by the DIR line.

Direction - Moves head in it low, out if

high, used in association with

Step.

Head select - The side 1 (upper head") is

selected when this line is IcU

0

I

Write Enable - enables write current to the

R/W head when active (low).

Writ*' Data - data to be written on disk

Index - one pulse appears on this line each

time the index hole is detected (i.e

once per revolution)

Write protect - low when disk write

The Floppy Disk Drive Interface

* * * * * *

protected

iRO I Track 00 - low when head over track 0

Read Data I Data read froiu the disk (data with imbedded

clock information)

Appendix B The Floppy Disk Drive Interface 40

APPENDIX C THE FLOPPY DISK CONTROLLER

The Floppy Disk Controller (F.D.C.) used in the l.B.M. type P.C.'s is the

Intel 8272A and the NEC 765. These LSI devices are very complex and will

only be described very briefly here. The F.D.C. interfaces to the central

processing unit like most peripheral devices and makes full use of the

interrupt and DMA resources available. The microprocessor is able to issue

15 'high level' commands to the F.D.C. These include read data, write

data, format a track, read a track, seek, recalibrate, sense drive status

etc. Typical parameters that are included with these commands are the

cylinder number (track number), head number, sector number, number of data

bytes in a sector, the last sector number on a track, the length of gap

3 etc.

Explanation of two of these commands will illustrate the functioning of

the F.D.C.

Firstly the seek command. This command is issued before data is read from

or written to a particular track. Although the cylinder number is one of

the parameters included in the read or write command, the floppy disk

controller does not automatically position the head over the required

track. The seek command is therefore necessary to perform this function.

When the seek command is issued the requested cylinder (track) number is

compared to the value stored in the controller. Step pulses on the STEP

line and the required level on the 1)1H line are asserted to position the

head over the required track.

When a urite command is issued, the F.D.C. begins to read the data passing

the read/write head. This continues until the required sector I.D . field

i.e. the sector I.D. field containing the required .ccior number is found.

As is shown in Figure A2 in Appendix A the synchronisation 00's are re­

written followed by the data for the sector as well as the first byte of

Appendix C The Floppy Disk Controller 41

the next gap. These synchronisation bytes are rewritten each time a sector

is rewritten so that when the sector is read, the floppy disk controller

is properly synchronised with the incoming data field bv the time the data

field is encountered.

Appendix C The Floppy Disk Controller 42

APPENDIX D DATA RECORDING TECHNIQUES

The recording technique used on a floppy - disk has to be such that it

is capable of conveying data as well as clock information. The method used

in double density recording as used on the P.C.'s under consideration is

called MFM (Modified FM). FM is the technique used in single density re­

cording systems. The FM technique will be described first and then the

modifications will bo discussed.

Each data bit can be considered to have a 'bit cell1 associated with it.

In the FM technique, a pulse is always present at the beginning of each

bit cell (except for markers See later). This conveys the clock which

is used by the floppy - disk controller circuitry to synchronise itself

so that the data can be road correctly. If the data bit associated with

a bit cell is a 1, another pulse is present in the middle of the bit cell

i.e. there are two pulses in the bit cell. A 0 is therefore identified

by the absence of a pulse in the middle of the bit cell.

In the MFM technique, the pulse at the beginning of the bit cell NEED NOT

be present. The data bits are, as above, indicated by the presence or

absence at the middle of the bit cell for a 1 or 0 bit respectively. When

a 1 is followed by two or more 0 bits, the clock pulses at the start of

the bit cell ate re - inserted. This is necessary to maintain

synchronisation.

If we consider a bit call s i /.<• of ^ps as encountered on the standard 5i

inch floppy - disk interface, we can see ch<> waveform structure after

encoding in Figure 1)1. As can be seen, 3 fundamental time pacings between

pulses become ev e.nt. 4vis gaps are present between consecutive 1 bits

and between 0 bits after the second 0 hit rys gaps occur when there are

01 or 10 bit combinations except for the case of 101 where the gap is

Bps.

Appendix D Data Recording Techniques 43

Appendix D Data Recording Techniques

The difference between single and double density is clearly evident in

the figure The bit cell in the single density case is twice the size of

that in the double density name. The data per second ratio is therefore

2:1 between the two systems, .:ence the names.

M arkers NOTE: This, explanation applies to the double density technique.

As we have seen, each track and each sector of Mach track has to have some

fora of identification. These identifiers require the generation of

unique clock and data sequences to distinguish them from user d.ita. A

sequence of regularly encoded data bytes cannot be used for these iden­

tifiers since there is no guarantee that this data sequence may not occur

in the user data. The user should also have no restriction on his data.

To generate these unique markers, a clock bit is omitted. The modified

bytes used in the index and address marks are C2^ and Al^ respectively.

As can be seen from Figure D2 these bytes consist of an active data bit

followed by four zero bits. This would result normally in pulses being

present at the start of three consecutive bit cells (for the 3 zeros).

The middle bit pulse is omitted (shown dotted) to make the byte unique.

This is the only case where an 8ys gap occurs between 0 bits.

C2H
1 1 0 0 0 0 1 0

-
,

- —
1

-

1 0 1 0 0 0 0 1

A1H

Figure D.2 Encoding Of The Address And I.D. Address Markers

Appendix D Data Recording Techniques 45

W rite Precompensation Peak ahifting i.e. shifting of the position of the

data pulses recorded on the disks is a characteristic of magnetic diuks

that results from interference of adjacent bit flux reversals which cause

a flux reversal to be read slightly befcre or after its nominal time.

Critical bit patterns are Oil, 1000, 110 and 0001. If, for example, we

consider the pattern 11011 the gap between the first two l's is A&mu,s ,

the second two i.e. 101 is Bps and the last two 4ps. The data pulses

corresponding to the l's on either side of the 0 appear to migrate towards

each other thus reducing the Bus gap. By writing the first of these pulses

earlier than normal and the second later than normal, they appear to be

in their correct positions when the- are rend. These early an late writes

are performed by shifting the position of the data pulses 250ns either

way of their nominal positions.

Appendix D Data Recording Techniques 46

APPENDIX £ THE DECODER C IR C U IT R Y

The function of this circuit is to tako the data waveform WD i.e. write

data, which would conventionally be written to the floppy disk, and re­

trieve the data and prosont It in a slmiltr form to that which would be

cncounterud on a synchronous communications link, in this case NR2 coding.

It should be recalled that over and above the MFM encoding of the data,

the wave-form has write pre-compensation incorporated as well. The de­

coder must also be capable of removing this compensation.

The circuit operates essentially according to the following principles:-

The data waveform is " sampled' to detect the data pulses being writt en

to the floppy disk. These pulse-* are used to reset a counter circuit which

obtains n certain count value in effect measuring the time betwran the

pulses. The counter value is stoiud before the counter is reset. The

counter value that has been stored is than, in effect, quantised thereby

producing an active signal corresponding to one of the three possible

nominal bit spacing* i.e. 4, b or Hus. This together with the previous

data it is used to calculate the present data bit. Clock information is

also generated from the incoming data stream. The NRZ data stream is re­

versed on a byte by byte basis (See reason later) after being input to

the 28530 SCC (Synchronous Communications Controller) which performs se­

rial to parallel conversion. The remainder of the circuitry is to cater

for special case conditions' which generally cucur at the beginning of

the data stream.

Appendix E The Decoder Circuitry 47

sm:
"8 S@

I

$"3512ar
II rn

1-n

f r

Ed
L
CDd
o
-K
3
U
L
U
L
0»
TJ
OU
fc
O
cu
X

Id
<D
L3CD
iT

ifi

Implementation details St*e Figure El. The inputs lo the circuit are the

WD (Write Data) and WEn (Write Enable). These signals are obtained from

the floppy disk interface after being buffered. A 16 MHz clock is ob­

tained from a simple ring oscillator. The Write Enable (WEn) line is used

as a master dear signal to keep the whole decoder circuit in a reset

state when data Is not being input. The pulses occurring on the Write Data

(WD) decoder input are 250ns wide with nominal spacings of 6 or 8ys

between pulses. These spacings may vary by about 250ns either way of the

nominal positions (Write Pre-compensation). The data input is 'sampled'

at hMMz to ensure detection af the pulses In accordance will, the Xyyuist

sampling criterion. The sampling is performed by the D-type flip-flop Al.

Note: The LS74 is positive edge sensitive. The input to this flip-flop

ii preceded by Schmitt-trigger inverters to ensure that the waveform has

an acceptable form before the sampling process. The output of the Al

flip-flop is a 0 when WEn is inactive. The B1 flip-flop is used to provide

a narrow reset pulse on the falling edges of the WD pulses to the LS161

pulse spacing counteis. This occurs in the following manner:- The D input

to B1 is high between pulses which results in a 0 output from the Q* output

of Bl. When a negative edge occurs, the D input is now a 0. The two inputs

to the S32 OR gate an both 0 until the Bl latch is clocked. (Clocking

at 16MHz). When this occurs the latch output is set to a 1 thus termi­

nating the reset pulse. See Figure E2.

If the WD line is monitored at the beginning of a write operation, the

waveform shown in Figure E3. The beginning of the write operation occurs

when WEn goes low.

Appendix E The Decoder Circuitry 49

/O * S/SflnPlE

—

--

m s o
uq?o./(■SO

g/SO

445 3 43S0
4(00

As was described above, the LS161 counters are reset on the falling edges

of the sampled WD waveform i.e. The Q output of latch Al. This leads to

an unacceptable situation at the start of the WD pulse train. The counters

begin to count while the sampled WD remains low. The result is that the

first count value latched on the falling edge of the first pulse is too

large. The required period is from the first rising edge (pt A in Figure

E5) to the falling edge of the first pulse. For this reason flip-flop

A2 is included. This is used to disable the counters until a rising edge

is encountered in the waveform. The output then keeps the counters enabled

until the WEn line is deactivated. Flip-flop B2 keeps the third counter

(see function later) in a cleared state and inhibits the pulse expander

circuit (see later) until it is clocked. Latch B2 is clocked whenever a

pulse occurs on WD and latch A2 has enabled the circuit.

The pulse spacing counters are clocked at 6MHz. The outputs of these

counters form the input to two further sections of the circuit viz. the

counter latch LSI75 and the pulse expander (LS27's and LS21). The latter

circuit is used to provide a high output on the LS21 output when all five

counter outputs shown in the circuit diagram are all zero. This only oc­

curs when the counter has been cleared (i.e. falling edge of WD). The WD

pulses are only 250ns wide. By combining the counter's outputs whose least

significant bit changes at 1MHz, and ORing this with the 250ns pulses, a

more symmetrical clock is generated for the 28530 SCC.

The data latch is used to store the counter value while the serial data

output is being generated and the next counter value is being generated.

The counter value is latrhed in on the falling edge of WD. i.e. just

before the counters ar ,ct.

As can be seen from Table 1, count values ranging from 24 to 39 make the

4ps output active while values from 40 to 55 and 5o to 71 make the bps

and Bps outputs active respectively. These outputs are obtained by gating

Appendix E The Decoder Circuitry 52

the outputs of the LSI75 latch using the LSOO's and LSlO's. The use of

these signals will be described shortly.

Flip-flops Cl and C2 are used to store the 'Most Recent Bit' (M.R.B.)

produced by the circuit and the 'Previous Bit' (P.B.) respectively.

The 1 previous bit' and the 4, 6 and Bps pulse width signals are used to

control the serial data generator according to the following conditions:-

Note: The 'previous bit' is in brackets. Bold face characters indicate

where data pulses are present.

C O N D IT IO N S DA TA

If 'previous bit' - 1 and Bps is active (1)0l (A)

= 0 and Bps is active (0)00 (B)

(Note: This second case is an exceptional case and only occurs in markers.

See Appendix D on Data Recording Techniques)

If 'previous bit' = 1 and Bps is active (1)00 (C)

= 0 and Bps is active (0)1 (D)

If 'previous bit' = 1 and 4ps is ai.tive (1)1 (E)

= 0 and 4ps is active (0)0 (F)

As can he seen from the above, cases A to C lequire an extra clock pulse

to be generated since there are more data bits than pulses from the WD

1 ine.

Appendix F. The Decoder Circuitry 53

< 0(0icno
/oso

On the output of the MFM decoder we require a clock edge for EACH data

bit. To cater for these situations the third LS161 counter is used along

with the LS85 magnitude comparator. This counter is cleared by each pulse

in WD and the counter is kept in the cleared state when cases D to F are

present. These cases are defined by fAim being active) OR (P.B.=0 AND

bps is active). In cas. < to C this LS161 clocks at 1 MHz. During the

second count period, tin A = B output is active due to the wiring on the

A inputs of the LSS5. It is necessary that this output should become

active on such a low count value since all possible bit combinations must

be able to be prccesso i in 4ys i.e. the shortest inter pulse gap. If this

was not the case it may be possible that a new counter value would be

latched before the previous one. had been completely processed.

The 4, 6 and Bps pulse width signals, the A < B output of the LS85 and

the present bit' value are used to drive the select lines of the LS153

(a 1 of 4 multiplexor). This is connected in such a way so as to generate

the required data bit on the output. The flip-flop Cl described above is

clocked cn every clock pulse at the output and thus stores the most recent

data bit. The C2 flip-flop, meanwhile, is clocked only when there is a

data pulse on the WD line. (i.e. stores the present bit).

The derivation of the next data bit in the serial dat^ generator may have

been done using fundamental gating but the use of a multiplexor made the

design easier. The requirements of the circuit are shown below. The fol­

lowing should be noted:-

1. The 4, n and bps signals are mutually exclusive.

2. The ’ Present Bit' differs from the ’ Most Recent Bit' only when < i

additional clock pulse is added.

3. (A=B) + (A B) gives a 0 output when the clock pulse is generated and

stays in this state until the counter is reset.

Appendix E The Decoder Circuitry 55

(A=B)+(A<B) P.B.

0 0
0 1
1 0
1 1
0 0
0 11 n
1 i
0 00 1
1 0
1 1

4ps 6ys Hys

0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0
1 0 0
1 0 0
* C 0
1 0 0

required output.

0
1
0
0

Doesn't occur
0

Doesn't occur
0

Doesn't occur
Doesn't occur
M.R.B. (=P.B.)
M.R.B. (=P.B.)

The •♦vis line defines a unique requirement and can therefore be connected

directly (after inversion) to one of the multiplexor select lines. The

other select line is controlled by the following equation:-

Sj = SysoP.B.oX + SysoP.B.oX + SysoP.B.oX + biisoP. B . oX + 6ysoP.B.oX

This can be simplified to

Sq = SpsoP.B. + SysoX + 6ysoP.B.

Where X B (A=B) + (A<B) The multiplexor inputs on fhe circuit diagram

correspond to the following select inputs:-

S j S Q i Input

0 0 | D

0 1 | C

1 0 | B

1 1 | A

The data input to thi- Z8530 SCC is obtained from the output of the M.R.B.

latch (Cl). The SCC clock consists of the WD pulses that are expanded as

well as the additional clock pulses from the LS85. Examples ere shown in

Figure F.4. The SCC is synchronised onto the NR7. data stream using

synchronisation characters in the data stream (See Appendix 0 on Emulation

Software;. The SCC converts the serial data into parallel form for the

microprocessor system. In the I/O circuit ry it should be noted that the

data is reversed i.e. the most significant bit is made the least signif­

icant etc. since the data written to the disk is written most significant

Appendix E The Decoder Circuitry 56

. - A

bit first and the SCC expects the least significant hit first. This has

-jre serious ramifications for the Encoder circuitry a 111 bi> explained

more fully there.

The MFM decoder performs a vital fv.netion in the emulator by cunvez Ling

the write pre-compensated MFM encoded waveform in;o an NRZ coded waveform

suitable for a SCC. Each building block of the decoder is simple in iso­

lation but are combined to perform a complicated task.

Appendix E The Decoder Circuitry 57

TABLE i:Counter Values

Count °B2 Q A2 °D1 Q C1 Q B1 <o

0 0 0 0 0 0 01 0 0 0 0 0 12 0 0 0 0 1 0

23 0 1 0 1 1 1
24 0 1 1 0 0 0
25 0 1 1 0 0 1
26 0 1 1 0 1 0
27 0 1 1 0 1 1
28 0 1 1 1 0 0
29 0 1 1 1 0 1
30 0 1 1 1 1 0
31 0 1 1 1 1 1
32 1 0 0 0 0 0
33 1 0 0 0 0 1
34 1 0 0 0 1 0
35 1 0 0 0 1 1
36 1 0 0 1 0 0
37 1 0 0 1 0 1
38 1 0 0 1 1 0
39 1 0 0 1 1 1
40 1 0 1 0 0 0
41 1 0 1 0 0 1
42 1 0 1 0 1 0
43 1 0 1 0 1 1
44 1 0 1 1 0 0
45 1 0 1 1 0 1
46 1 0 1 1 1 0
47 1 0 1 1 1 1
46 1 1 0 0 0 0
49 1 1 0 0 0 1
50 1 1 0 0 1 0
51 1 1 0 0 1 1
52 1 1 0 1 0 0
53 1 1 0 1 0 1
54 1 1 0 1 1 0
55 1 1 0 1 1 1
56 1 1 1 0 0 0
57 1 1 1 0 0 1
58 1 1 0 1 0
59 1 1 1 0 1 1
60 1 1 1 1 0 0
61 1 1 1 1 0 1
62 1 1 1 1 1 0
63 1 1 1 1 1 1
64 0 0 0 0 0 0
65 0 0 0 0 0 1
66 0 0 0 0 1 0
07 0 0 0 0 1 1
68 0 0 0 1 0 0
69 0 0 0 1 0 1
70 0 0 0 1 1 0
71 0 0 0 1 1 1
72 0 0 1 0 0 0

- -*us

oys

Rys

The following gating is required to get these signals -

Note Thr Q's have been dropped.

Appendix E The Decoder Circuitry

4ms = Dl»A2eB2 + DUA2eB2
bus = D1.A3.B2 + "dT.A-.B2

8ms = D1.A2.B2 + 1)T.A2.B2

T h e s e a r e i m p l e m e n t e d a s :-

A u s = D 1 . A 2 . B 2 * n i . A 2 . B 2

b u s = d 1 . A 2 . B 2 • D l . A 2 . B 2

bus * ni.A2.B2 * rrr./v.B2

Appendix L The Decoder Circuitry

APPENDIX F THE ENCODER C IR C U IT R Y

The encoder circuitry is required to perform the process of providing data

in such a form to the floppy disk interface of the computer so that it

appears to be receiving this data from the disk itself. As the problem

is examined more closely we can see that this requires extensive designing

in both the hardware and software fields since they have a very close

association.

Requirem ents It must be remembered that following the initial formatting

of a disk for use, the floppy disk controller expects to find all the data

recorded during formatting on subsequent disk read operations. For this

reason ALL the data, i.e. including that between sectors needs to be em­

ulated. The waveform present on the read data line from the disk-drive

to the floppy disk controller was examined using a logic analyser to as­

certain the exact characteristics of the wave-form. If this wave form

could be reproduced as accurately as possible, the floppy disk controller

must surely be convinced that it uas in fact receiving the data from a

disk and thus function as required.

Implementation The wave form consists of an MFM encoded data stream. The

pulso width was measured at 1 ys with nominal pult._ spacing uf 4, 6 and

8 ys when measured from the beginning of one pulse to the beginning of

the next. The voltage levels encountered were typical TTL levels as ex­

pected. The data bytes are received MOST significant bit first. On the 5

1/4 inch disk drives as presently found on the IBM PC type computers, the

average bit rata is 250 kbits per second.

A Seriil Communications Controller (SCO is used to provide a number of

fundamental functions viz. parallel to serial conversion and CKC calcu­

lation. An important fact must be emphasised at this stage. In a typical

data communication system using this or similar devices, the data is

Appendix F The Encoder lircuitry 60

transmitted LEAST significant bit first. It is immediately evident that

this is in direct conflict with what was stated above. As shown in the

circuit for the I/O dc Ices (See Appendix H) it is possible to reverse

the data being sent or read from the SCO. The CKC on the data that is

written by the Floppy Disk Cuntiul lei is calculated on the data most

significant bit first. Thu SCC performs the calculation on the least

significant bit first. The data must be reversed BEFORE the CRC calcu­

lation.

At this stage we may assume that we have a serial data stream using NRZ

encoding but with the most significant bit of the byte transmitted first.

This signal then just has to be encoded in the MKM format. The principal

behind the encoder used here is the following:- Each bit can be considered

to have a 1 Bit cell'. In this case the length of this bit cell is 4 wt

since the bit rate is 250k bits/s. In each bit cell there may be a pulse

of 1 us duration that may occur either at the beginning or the middle of

the bit cell i e . either during the first or the third microsecond of the

bit cell. See Figure FI.

4 us

o o o o o o n o
o (i o r> •! n o o
o n u o o o o o

o n n n o n o *

v. 3 % n
OflOOOttOOO O o 1» » u ® S
n o n n w o n *
o o e o t i o e *

e n e n o o o o • o o v n r o e

Figure FI: Bit Cell Structure. I’ulses May Occur During The First Or Third

U ».

A counter circuit is used to provide one UR pulses at both the first and

third us points. Using the values of the present und of the previous bits,

these pulses are gated thus producing the required 4, 6 and 8 us pulse

spacing according to the MKM encoding technique. This then takes care of

Appendix F The Encoder Circuitry 61

/ I K

the encoding of most of the data. The only other encoding that is required

is that of address markers. It should be recalled that the address markers

(C2H - Index address mark and AIM I.D. address mark) consist of one active

data bit followed by four zero bits. See Figure F2. As -an be seen from

the figure, the four zero bits in the markers generate three pul:;es at

the start of three consecutive bit cells. The markers are identified by

leaving the middle of three three pulses out. The circuit used generates

the three pulses as would he the case for a normal data byte but the second

of the three is suppressed. Therefore all the encoding requirements are

met.

C2H

1 1 0 0 0 0 1 0

—1 j—1 -n — I—

1 0 1 0 0 0 0 1

A1H

Figure F.2 Encoding Of The Address And I.D Address Markers

Appendix F The Encoder Circuitry 62

D etailed Description of Encoder C irc u it O peration Sec Figure FA. A 2 MHz

symmetrical clock is derived from the 8MH.C. CPU clock and is used to drive

the LSlbl synchronous counter. The counter is permanently enabled but has

its clear input controlled by the inverted RTS line from the SCC. This

is used to keep the output of the rmmtt»r zero when required. The RTS

line is also used to keep the other flip-flops in a cleared or preset

state as required. The outputs of the counter provide clocks at 1MHz,

500kHz and 250kHz. The 250kHz is used to provide the fundamental data rate

while the other two e used in the encoding process. The output waveforms

of the counter are shown in Figure F3.

The data is clocked out of the 28530 (SCC) on the falling edge of the

250kHz clock which is latched into the LS74 data latches by the rising

edge of the 1 latch load' signal. This signal is obtained by ANDing the

250kHz , 1MHz and inverted 500kHz signals. The 'start cell' and 'mid-cell'

signals are produced by ANDing the 500kHz signal with the inverted 2%0kHz

signal and the 250kHz signal respectively. Gating of these two signals

according to the serial bit stream provides a simple method to perform

the MFM encoding.

Consider the following bit patterns:-

Note:- Qi denotes the present and Q(i-l) denotes the previous bit

a.Qi * 0 and Q(i-l) - 0 , the 'start cell' signal is allowed through since the

output of the NOR gate is a 1.

b.Qi = 1 and Q(i-l) = 0 , the 'mid-cell' signal is allowed through since the

NOR output is now a 0.

c.Qi = 0 and Q(i-l) = 1 , in this case neither the mid-cell' or the 'start

cell' signals is allowed through since the Qi output

is zero thus disabling the 'mid-cell' signal and the

NOR output is zero. thus disabling the 'start cell'

signal.

d.Qi = 1 and Q(i-l) = 1 , here the 'mid-cell' signal is passed through since

the Qi output is a 1 and the NOR output is zero.

Appendix F The Encoder Circuitry 63

Appendix F The Encoder Circuitry

If wp consider some three bit, bit sequences the operation may become more

clear. If we consider the sequence 101 for example, when Qi is a 1 the

mid-cell' signal is always allowed through as can be seen from cases b

and d above, thus a pulse in the middle of the bit cell is present for

the first 1. in the next bit period then we have Q(i-l) = 1 and Qi “ 0

i.e. case c above. No pulse is allowed at either the start of the bit

cell or in the middle. In the next bit period we have Q(i-l) = 0 and Qi

* 1 i.e. case b above. Here only the mid cell pulse is allowed. If we

consider the spacing between the pulses, we can see that the required 8

Vis spacing is present between the two mid cell pulses. Using a similar

process it can be easily shown that the 6 and 4 ys gaps are produced

correctly.

As was described above the generation of address markers requires that

certain pulses be left out of the encoded stream. As can be seen from

Figure F2 the pulses that are left out to identify the bytes as markers

always occur at the start of the bit cells. An extra piece of circuitry

has been introduced to remove 'start cell' pulses when this is required.

The heart of this circuit is the J-K flip-flop. The output of this flip-

flop is ANDed with the 'start cell' signal i.e. the signal is suppressed

if the flip-flop output is a 0. The flip-flop is held in a preset state

i.e. Q=l when the encoder is disabled (via the DTK line and AND gate) and

it is also preset whenever a midcell pulse is produced (i.e. a 1 bit is

encoded). This is done to ensure that the flip-flop always allows the

required 'start cell' bits to pass through until it is necessary to remove

these pulses. The J and K inputs to the flip-flop are both tied high and

thus the output toggles on each applied clock. (Negative edge sensitive).

What happens then (assuming th*> ’ start cell' stream to be clocking the

flip-flop i.e. the. AND gate on the clock input by-passed) is that the

output, initially 1 and thus allowing passage of the signal, changes state

to 0 and thus prevents the next pulse from reaching the output. The

falling edge of this pulse does, however, restore the flip-flop output

Appendix F The Encoder Circuitry 65

to the 1 state. It is immediately evident therefore that this flip-flop

must only be allowed to operate during address marker generation. This

is done via the remaining O-type flip-flop whose output is held at 0 by

the DTK line of the Z85'30 that controls the clear input of the flip-flop.

The output is only allowed to attain the 1 state when it is clocked by a

1 in the data stream from the Z3530. This is advantageous since the DTR

line can be set as soon as the address mark data is written to the Z8530

without having to worry about the delays encountered in the encoder cir­

cuit. A necessary condition for this to work is that there, are no 1 hits

in the data stream between the DTR line being asserted and the address

mark data arriving at the data latches. This condition is satisfied since

the address markers are always preceded by 12 00H bytes. Sv.s Appendix A.

The J-K flip-flop needs to be reset for each address mark byte since the

output would toggle to 0 on the first pulse, toggle to 1 on the second

and back to 0 on the third. It must, however be in the 1 state at the

start of the next address mark byte. Care must be taken when writing the

software that controls the DTR line since this line must remain active

until all three address markers have passed through the encoder. The

inclusion of the flip-flop chain on the ,1-K preset line ensures that only

three address markers can be generated. Th<> DTR line can be left in the

active state longer thus making the software less critical. After the

three markers have been generated the tlip-flop is forced into the preset

state.

The waveform available from the MFM encoder is buffered before being ap­

plied to the floppy disk interface. The waveform produced by the circuitry

is identical to that obtained from a floppy disk drive unit. All that

is required is the software to provide the data expected by the Floppy

Disk Controller and to control the SCC control lines. This is described

in Appendix P.

Appendix F The Encoder Circuitry 66

"

Appendix K The Encoder Circuitry

APPENDIX 0 THE INTERFACE BOARD

The interface board contains the input and output buffers required to

interface the emulator circuitry to the floppy disk interface cable. The

track counter to monitor the head movement is included in this circuitry.

Most of the lines on the interface cable are ’bus' signals except for the

select lines for the individual drives. All the lines are however driven

by open collector drivers. All the inputs therefore require pull-up re­

sistors and 150Q resistors are used since this is the value used on normal

disk drive units. All the inputs except the select input are buffered by

D-type latches. In this way the state of the bus is retained when the

emulator is no longer selected. The select line itself is inverted to

enable these latches as well as to cause the output NAND drivers to drive

th*» bus. Most of the signals sources and destinations are self explanatory

but some are worthy of mention. The Index pulse is generated by software

which controls the I'TR line of channel A of the Z8530 SCC. The VP signal

is permanently disabled by grounding the input. See Figure Gl.

The head motion is monitored by an 8 bit up/down counter that is driven

by the DIR and STr.P lines. Step pulses are generated for each track that

is to be traversed. The DIR line determines in which direction the

counting takes place i.e. towards the centre or outside of the disk. A

low on DIR causes the count value to increase (equivalent to inward head

movement). The counter outputs are OKed together to generate the TRACKO

signal which, as its name implies, is active when the counter's value is

zero. A simple port allows the counters' outputs to be read by the CPU

when the PCS3 and RI) lines are low simultaneously. Note:-PCS3 is an I/O

chip select line from the 80188 CPU.

This board provides a simple yet critical function in the emulator.

Appendix G The Interface Board 68

I
Ornw— 1

. .

A

is

Appendix G The Interface hoard 69

Fi
gu

re

G.
l

Th
e

In
te

rf
a

c
e

C

ir
cu

it
D

ia
gr

am

APPENDIX H THE MICROPROCESSOR CONTROLLER UNIT

See Figure HI.

The microprocessor unit's functions ore to control the network and floppy

disk drive emulation. The 80188 microprocessor forms the core of the unit

and is supported by 2 Z8530 SCC's, a parallel input port (tri-state

buffer), a parallel port (latch'' as well as 2S6K of RAM which is expand­

able to just under 1 Mbyte in 25bKbyte increments. 8Kbyte? of EPROM is

also allowed for.

The microprocessor controller unit consists of 3 boards viz. CPU, memory

and I/O boards and each will be discussed individually an far as possible.

It should be noted however that eventhough the tern boards has been used

this refers to logical divisions rather than physically separate circuit

boards.

The CPU board See Figure H2.

The only requirements for the internal oscillator of the 80188 micro­

processor is a IhMHz crystal and 2 20pF capacitors as specified by vhe

manufacturer. Tho IhMHz crystal provides an 8MHz processor clock and an

8 MHz 50*. duty cycle clock on the CLKOUT line. The RES input is connected

to a conventional RC reset circuit. The component values are R=1K0 and

C*22vF which keep RES low long enough after power-up to satisfy the reset

input requirements. The low to high transition on RES must occur no sooner

than 50us after power-up|4]. The RESET output indicates that the 80188

is being reset internally, is synchronised with the system clock and can

be used as a master reset. In this cast it is only used to reset the Z8530

SCC. The unused inputs viz. HOLD, SRDY, ARDY, TEST, INTI, NM1 , IT2 and

IT3 are tied to Vcc or GNU depending on their respective inactive states.

Appendix H The Microprocessor Controller Unit 70

u

■ dJk■H
s

■o

1 1
5

» <

L L
(Li 73 m 13

T5 L 73 L
o d o d
u o u o
C _Q Oj _Q

U «

m CD
s:
h-

Q_
□
£
d
L
O)
d
«

U
o

PQ

(D
L
3
O)

Appendix H The Microprocessor Controller Lnit 71

V

' #

'A

.

S p

r
d

o o

N
i|\0 I

I1
t

&

S t
U

d

IIU S3
X >

n

■oI
s
£
du.
I

uL

TE -■8

£ if
l - d l -..T Z i L j . i x l

"OE

i

!|g8ggp§o^
S

1115g “ G_l o O'
«

sSiilxiSiSil* 11555511^?
5 5

TT~ri"TTTT
o — ru n

< < <

T

d "D L

if0 c
D -^- V W W -

§L •eL
1a

T T T T T

m n 10 n nX X \00 X <JJ
< < <

5S
TeL
I

d
L(J)
d
O

•P
*5u
L
U

Z)
CLu
00
CO*""4o
00

cu
JZ

OJ
X

Oj
L3
O)
Ll_

Appendix H Tlie Microprocessor Controller Unit

JP ’• 'IV , , w

72

X L I d

20pF

From I/O b o a r d s

I/O b o a r d s

"]uND

16MHz

G h D ~ —

GND —

i-AAAAA-
L- W v \ ^

To Memory, I/O and -
In te r fa c e b o a rd *

r A M A A -
^ - A W / —

To Memory b o a rd *

T eopF

XI X2 —
RLS RESET — ► To I/O b oard
HOLD HI DA — ►To Memory board
TMHINO TMKOUTO
TMRINl TMROUT1
SRDY r.LKOUT — ►To MFM Encoder and
ARDY PCS6/A2 Memory b oards
Tl ST PCSS/A1
DKQO PCS4
DRQ1 PCS3 ► To In te r fa c e b oard
INTO PCS2 =1
INTI PCS1 “ -»To I/O b oard
NMI peso

80188 LCS
ADO u c s
A 01 MCS3 —
AD2 MCS2
AD3 MCSl — To Memory b oard

ADA MCS0 —
ADS ALE/QSO —
A 06 VR/OS1 ■=.

AD7 RD/OSMD — ►To Memory, I /O and
IT 2 /IA 0 D E N In te r fa c e b oards
1T3/IA1 LOCK
A8 DT/R
A9 S7
A10 S2
Alt SI
A12 SO
A13 A19/S6
AM A18/S5
AI5 A17/S4

► To Memory b oard

Alt, 1

a re Ik

F ig u r e H,2 The 80188 CPU C i r c u i t D iagram

XL

i m m h

i

it

m m -

B m fc
m r n i

IB! 1

99SS353S

E
d
L
O)
d
«

3
U L
U

L
Oc
Q#X
0/
X

n
x
Of5
3>
U-

Appendix H The Microprocessor Control 1er Unit

The Memory Board See Figure H3.

Note the sources of the address lines on the HN4827b4G EI’ROM.

The first requirement for both memory and I/O devices is for the lower

address lines AO - A7 and upper lines A16 - A19 to be de-mu 11iplexed. On

the 80188, the former group is multiplexed with the data lines while the

latter group is multiplexed with some status lines. This is done simply

using two LS373 latches which are enabled by the ALE (Address Latch Ena­

ble) line of the 80188. The outputs of the memory mapping unit in the

60188 are programmable thus allowing these lines to be activated at var­

ious positions in memory. The memory map of the microprocessor unit is

shown in Figure H4. Address lines A0-A2 are provided in their de­

multiplexed form for use on the I/O board. The EPROM is located at the

top of memory since the reset vector is located at FFFFOH. The position

of the DCS (Upper Chip Select) line is progiammed to become active at

FE000H. EPROMS with access times of up to 250ns can be used with a CPU

clock frequency of 8MHz.

It is possible to use four banks of 256K RAM chips to give (1Mbyte-EPROM

size)K bytes of RAM. If more than 512K is used, chip select lines have

to be generated due to a peculiarity of the 80188. The four MSC (Mid -

range Memory Chip Select) lines are used to enable the lower 512K i.e.O

to 512K. The chip select lines for the area above this would have to be

generated using UCS and A19 and A18. LCS (Lower Memory Chip Select) is

not used in this design. MCS0 and M0S1 select 0 to 256K while MCS2 and

MCS3 select 256 to 512K.

The 256K RAM chips have 9 multiplexed row/column address lines. Address

lines A0 to A 17 are multiplexed to provide the required 4 lines i.e. MAO

of the RAM is switched between AO and A‘> of tne processor. The RD and WR

lines of the processor are used to generate the RAS signal for the RAM.

The RAS line also controls the operation of one of the S112 J-K flip-

flops. When RAS is active and the flip-flop is clocked by the CLK0UT line

of the 80188, the output changes thus switching the address multiplexor.

Appendix H The Microprocessor Controller Unit 74

The multiplexor should therefore switch at the start of the T3 CPU cycle.

See Figure H5. The actual CAS signals applied to the RAM chips is a

combination of this multiplexor switching line and the Chip Select lines.

Resistors are included on the inputs to the RAM chips in an attempt to

keep the voltage overshoots and ringing that can occur to a minimum.

The WE enable inputs of the RAM chips as well as that of the Z8530 require

that the data to be written be stable on the data bus before this line

is active The WR line of the 80188 does not satisfy this condition and

a WE signal is generated by allowing the output of the SI 12 J-K flip-flop

controlled by WR only to become active on the rising edge of CLKOUT fol­

lowing the activation of the WR line. Again this should correspond to

the start of the T3 CPU cycle.

The RAM chips require each row to be refreshed every 4ms Considering that

there are 256 rows that require refreshing, and assuming refreshing is

done on a regular continuous basis, a refresh cycle is required every

15.625us. The refreshing is done by programming one of the timers in the

80188 to request a memory DMA cycle. See Appendix 0. Each of these cycles

refreshes an entire row of the memory.

Appendix H The Microprocessor Controller Unit 75

ucs

MCS3

MCS2

MCS1

MCSO

FFFFFH

FEOOOH

COOOOH

80000H

40000H

OOOOOH

8K EPROM

256K DRAM

768K

512K

256K

Figure H.4 The Memory Map OF The 80188

Appendix H The Microprocessor Controller Unit 76

The i/O Board See Figure H6.

The organisation of the I/O map is very simple. See Figure H7. The I/C

devices used aie the two Z8530's , a parallel input port and one parallel

output port. The Z8530 used for the emulator is enabled by the PCSO

(Peripheral Chip Select) line 0. Address lines AO and A] from the memory

board are used to select between the data/control registers and channels

A and B respectively. Address line A2 is used to control the circuitry

which allows for the reversal of data being written to or read from the

Z8530. When A2 is high, the lower data transceiver (LS245) in the figure

is enabled which allows unreversed data transmission. As can be joen from

the figure when A2 is low the upper transceiver allows the data on line

DO to be applied to D7 etc. Both tranceivers are only enabled when PCSO

is also low. The Z8530 used for the network is enabled using PCS1. No data

reversal is required here and the data bus is therefore connected di­

rectly. Non-vectored interrupts are also allowed for. The DMA require­

ments are satisfied by inverting the RDY RF.QA line of the Z8530 and

applying this to the free DMA request input DRQ1 of the 80188. The clock

requiremer.s of the Z8530's are satisfied by a simple buffered ring

oscillator operating at 6MHz. The RD and WE (described above) are gated

with the RESET output of the 80188 to provide a hardware reset to the

Z8530's. The Z8530*s do not have a specific RESET input but can be reset

by activating the RD and WR inputs simultaneously.

The output latch is enabled by PCS2 and WE being low simultaneously.

Appendix H The Microprocessor Controller Unit 78

IE 1SgiSigglssSBSsiBaa
y s a s s a - H g

m in

si I
i i i i igg iB tStiS iiSBBa

B - g

Appendix H The Microprocessor Controller Unit

Fi
gu

re

H.6

Th
e

I/
O

C
irc

ui
t

D
ia

gr
am

Relocation R»gttrterFETCH

Channel 1FEDOH

FECAH
DMA D escrip to rs Channel 0FECOH

FEOOH FEA8H
Ch<>-$etect ControlFEAOH

2 Control RegistersFEMH
1 Control Registers
0 Control RegisterFE30H

FE3EH

FL20H

eieoH

8083H
eoatH
eoeiH
8080HPCSl

8007H
8003H
B003H
800PH
8001H
8000HPCSO

OOOOH

CL
d

□\

(U
JC

%

0)
L3
O)
L_

Appendix H The Microprocessor Controller Unit RO

/ Iflw

'A

A P P E N D IX I THE T R A C K CACHE

The implementation of the tr«rV. cache and the cache replacement algorithm

will be described.

The smallest 'block' of data that can be uniquely defined by the emulator

is a particular track on a particular side of a disk. This block then

forms the basis of the cache. Along with this each of these blocks is

associated with a particular application program. As has already been

described, each of these blocks requires some form of identification.

Each block is defined by a track number, side number and an application

number. Various other variables are required for the caching algorithm

and will be discussed shortly. Each block of data ia 4.SKbytes. In the

present implementation just under 192Kbytes of memory are available for

the cache. This is therefore sufficient memory space for 42 blocks of

data. The layout of the cache could take one of two forms. The first of

which is similar to the layout on a disk viz. header, data, header, data

etc. See Figure II.

Header* Data Header Lata Header lota

Figure II Cache Implementation V1th Each Data Segment Preceded By A Header

The header would contain the identification mentioned above. The second

method consists of an area of memory dedicated to an 'index1 and another

area of memory dedicated to the data. The index includes a pointer to the

data area corresponding to each entry. S«e Figure 12.

Appendix I The Track Cache 81

---------- --------
HEADER I DATA 1

HEADER 2 □ATA 2

.... - - ^HEADER 3 ’)Af A 3

•

Figure 12 Separate Index And Data Areas For The Cache

Considering the way in which the 80188 manages its memory the second op­

tion was chosen. In the first situ/ ion when the cache is being searched

for a particular entry, a memory area of more than 64K may have to be

traversed to find the required header. The 8(188 manages its memory in

segments with a maximum size of o4K. The segment register would have to

he updated then during the search which is undesirable. In the second

option the segment register is assigned only once to scan the index since

all the data lies well within 64K. An unusual way of implementing a

pointer is used in the index is well. The number of bytes in each block

of data is divisible by 16. Instead of implementing the pointer using two

words i.e. one for the segment and one for the offset, the offset is al­

ways made zero and the segment register is made to point to the beginning

of the data area for each track. The segment register a 1 one is therefore

includes in the index.

Appendix I The Track Cache 82

The index can be described in high level language terms as an array of

records as shown below.

Track_list.entry = RECORD

ive_no : byte;

.%ppl ication_no : word;

Track,no : byte;

Side_no : byte;

Mask : byte; (For Caching)

XBFREQ : word; {For Caching)

XBAGE : word; {For Caching)

Data_pointer : word;

END;

Index ■ ARRAYj1 •• no_of_sides] OF Track_list_entry;

This is shown diagrammatically in Figure 13.

XBAGC

DATA

Figure 13 Diagrammatic Representation Of The Cache Data Structure

Appendix I Thi* Track Cache

I I

!

83

Managing the cache is a simple task until all the blocks in the cache are

filled. The problem then arises as to which block should be overwritten.

Decision algorithms in common use are random replacement, First In / First

Out (FIFO) and Least Recently Used (LRU). In large caches the performance

of those algorithms is much the Bam»[5 j .The key to the benei technique

proposed by McKeon [6] is to measure the frequency of access of a block

and use this in combination with when last the block was used when making

the replacement decision. The additional information in the RECORD above

is to implement tnis algorithm. The Mask is to indicate whether a block

is in use and whether a track has been updated i.e. written to, but has

not yet been updated on the file server. XBFRF.Q is used for the frequency

of access while XBASE is for when last the block was used.

When a block is found in the cache (a 'hit'), the frequency of access

parameter (X3FREQ) is increased. When a block is not in the cache (a

miss') and no nutters are free, the cache is scanned to find a block with

the lowest, frequency of use i.e. lowest XBFRF.Q and tnis block is replaced.

If multiple blocks with the same lowest frequency of use are found, then

the block that has not been used for the largest amount of time is re­

placed . This decision is made using the XBAGE parameter. It is obvious

that copies that stay in the cache have a better chance of being found

and therefore the XBFREQ parameters will continue to increase. This pa­

rameter is 'decayed* over a period of time otherwise some blocks would

remain permanently in the cache. The decay process is implemented by

halving the XBFREQ parameter every sixteenth call to the cache. The reason

for halving every sixteenth call is that these functions can be performed

conveniently and quickly using masking and rotates. The XBFREQ parameter

is increased by 128 for each 'hit . Using these values, even in the worst

case where the same blo~k is accessed repeatedly, the XBFREQ parameter

cannot overflow. The maximum that XBFREQ can attain is lt> X 128 + i X 16

X 128 + i X 16 X 28 + ... which can be recognised as a geometric

Appendix I The Track Cache 84

progression. In the limit then the maximum value that can be reached is

2 X 16 X 128.

A high level description of the replacement algorithm, based on the data

structure described above, is shown below.

CONST

no_of_sides ■ 42; (Maximum number of tracks in cache }

in.use = 100000008; (Bit mask indicating block in use }

VAR

devioage : word; (Global variable)

BEGIN

devioage := 0; (Initialisa variable in main program)

PROCEDURE get.block (reqdrive, roq eqtrack : byte,

reqAppln.no : word,

VAR data.point : word);

V A R

index.posn : byte;

BEGIN

devioage := devioage + 1; {increment global age for each routine access

IF devioage = 16 THEN

FOR index posn := 1 TO no_of.sides DO

WITH index}i) DO

IF ((Mask AND in.use) = 1) THEN

XLFREQ := XBFREQ DIV 2;

(If block in use then halve the frequency of access }

Findblock(reqdrive, reqside, reqtrack, reqAppln no, status, index posn);

IF status = successful T H E N

WITH index[index.posn] DO

BEGIN

XBFREQ := XBFREQ +128; (Record a hit)

XBAGE :* devioage; (Update access age)

data point := data pointer (Set pointer to data area)

Appendix I The Track Cache 85

status := successful;

END

ELSE BEGIN {block not in cache)

allocate_block (index_posn);

WITH indcx(Index posn] DO

BEGIN

Drive := reqdrive;

Side := reqside;

Track := reqtrack;

Application_no := reqAppln no;

Mask in.use;

XBAGE := devioage;

XBKREQ := 0;

data_point := data_pointer;

END;

get _ data (data pointer);

END;

PROCEDURE Findblock (reqdrive, reqside, reqtrack : byte;

reqAppln no : word;

VAR status index posn : byte);

BEGIN

index posn := 0;

REPEAT

index .posn := index posn + I;

UNTIL (index[index posn].Drive = reqdrive AND

indexjindex posn].Side = reqside AND

index]index posn].Track = reqtrack AND

index] index poan] .Application no - reqAppln.. no)

(index posn = no of sides);

status := NOT (index posn = no of sides);

END;

Appendix I The Track Cache

PROCEDURE allocate_block (VAR index, posn : byte);

VAR

age, freq, oldest : word;

i, marker : byte;

BEGIN

index.posn := 0;

REPEAT

index.posn := index posn 41;

UNTIL ((index}index posn].Mask AND in.use) = 0) OR

(index_posn * no of.sides);

status := NOT (index.posn = no of sides);

IF NOT status THEN

BEGIN

freq := 32767; (Find XBFREQ smaller than this)

oldest :* 0;

FOR i:= 1 TO no.of.sides DO

WITH index[i] DO

IF ((Mask AND in use) =1) AND ((Mask AND write)

THEN IF XBFREQ <= freq THEN

BEGIN

freq := XBFREQ;

age := devioagc - XBAGE;

IF (age > oldest) THEN

BEGIN

oldest := age;

marker := i;

END;

END

END

END;

Appendix I The Track Cache

Tho get_blook procedure would be called each time data is required from

the cache. The procedures are then called as required. The get data pro­

cedure is not described here but this procedure's responsibility is to

obtain the required data from the file-server and insert it at the area

starting where data pointer is pointing to.

Appendix 1 The Track Cache 88

APPENDIX J WHY 'STAR-BUS' NOT ETHERNET

The disk drive emulator board has a nett data rate of 250Kbits per second

between it and the P.C.. To provide each user with a response time com­

parable to that of a floppy disk, the network must be capable of providing

data at a sufficient rate. To illustrate the needs of the network a

loading situation that was described earlier to be possible in this type

of environment will be considered viz. a number of users simultaneously

request ing data that has to be fetched from the file-server. The emulation

of a track of data takes approximately 200ms. If we take a number of em­

ulators each successively requesting data from the file-server we can

obtain a feel for the bit rate necessary for the network. A bit rate of

250Kbits per second would therefore sustain the needs of one emulator.

If we take a system with 25 P.C.'s the required bit rate can * calcu­

lated.

D a to rate =■ S O AC bits x 2 G

~ ' S’* 11 ti p i f t f o'-) cl

An Ethernet type system with a bit rate of 10 Mbits per second would

therefore satisfy the requirements from the bit rate point of view, This

has some significant cost implications as will be discussed shortly.

Looking at a simpler twisted pair type network with transmission speeds

of the order of 1 Mbit per second we find that the operation of a maximum

of four 'simulators can be sustained. This therefore does not provide very

extensive networking capabilities. Typical maximum transmission speeds

that can be achieved with common communications controllers is 1.25Mbits

per second. This increases the maximum number of emulators to five. The

possibility of constructing a star type network with the file-server at

the hub was considered. Each ray of the star would consist of a bus

structure operating at 1.25Mbit per second. The number of these rays could

Appendix J Why 1Star-bus1 not E.hernet 89

be increased until sufficient nodes could be catered for. In this way an

equivalent effective throughput of the Ethernet system could be achieved.

As always these two systems have compromises. In the first instance the

cost and complexity per emulator would be increased considerably since

hardware capable of providing these high bit rates has to be provided.

The file-server would only require one of these Ethernet type controllers

and would therefore be less complex than that for the star system. For

the second system each emulator need only be capable of transferring data

at 1.25Mbits per second that can be handled by a communications control­

ler. The emulator's network complexity is therefore limited. The file-

server is however far more complex than in the first case. A

communications controller is required for each of the rays of the star.

The bus access is less contentious however having fewer nodes on each bus

since there are a number of busses running in parallel.

The added complexity of the file-server is worthwhile when the costs for

the Ethernet type system are considered. Although the system may be com­

plex, the individual components on the file-server board are relatively

cheap. The overall system is therefore substantially cheaper. The

Ethernet type interface would make the goal of the P.C. interface price

being comparable to that of a disk drive, impossible to attain. Typical

prices for Ethernet controllers alone are of thj order of R200 while the

communications controllers in question are of the order of K20. The wiring

and installation costs are also substantially cheaper than those associ­

ated with a coaxial cable based system.

Appendix J Why 'Star-bus' not Ethernet 90

APPENDIX K THE CSMA CA ACCESS PROTOCOL

The principle of operation of the CSMA CA (Carrier Sense Multiple Access

with Collision Avoidance) access protocol will be described.

The purpose of this access protocol is to control the access to a shared

bus system in an orderly fashion so as to reduce the probability of col­

lision.

To describe the implementation of a CSMA CA system, the implementation

used in the Apple-talk system will be described. In this implementation

the bit rate is 250Kbits per second using a KS 422 twisted pair bus.

The dialogues (i.e. transactions on the bus) must be separated by a min­

imum Inter-Dialogue Gap (IDG) of 400ysec; the different frames of a single

dialogue must follow one another with a maximum Inter-Frame Gap (IFG) of

200ysec. Consider the transmission of a data frame as shown in Figure Kl.

The transmitting node uses the physical laver's ability to sense if the

line is in use. If the line is busy the node waits until it becomes idle

(the node is said to drfer). Upon sens.ng an idle line, the transmitter

waits for a time equal to the minimum IDG (400ysec) plus a randomly gen­

erated amount. During this "wait", the transmitter continues to monitor

the line. If the line remains idle throughout the wait period, then a RTS

frame is sent to the intended receiver of the data frame. The receiver

must, within the maximum IFG (200ysec), return a CT8 frame to the trans­

mitting node. Upon receiving this frame, the transmitter must send out

the data frame within the maximum IFG.

The purpose of this collision avoidance algorithm is twofold: (1) to re­

strict the periods in which collisions are highly likely (this is during

the RTS CTS exchange), and (2) to spread out in time several transmitters

waiting for the line to become idle. The RTS CTS exchange, if successfully

completed signifies that a collision did not occur, and that all intending

APPENDIX K The CSMA CA access protocol 91

transmitters have heard of the coming data frame transmission and are

deferring/waiting.

If a collision does occur dnring the RTS CTS exchange, a CTS will not he

received, and the sending node will then backoff and retry. The sending

node is said to presume a collision.

The range of the random wait is adjusted if such a collision is detected.

In fact, this adjustment or hick off is d o m using a linear back off

algorithm that dynamically modifies this range in response to recent

traffic history. The idea is thtt if collisions have been presumed for

recently sent packets, this sign(lies heavier loading and higher con­

tention for the bus. Then the random wait should be generated over a

larger range, thus spreading out (in time) the different contenders for

the line.

Two factors are used for adjusting the range: (a) the number of times the

node had to defer, and (b) the number of times it had to backoff. Thi-

history is maintained In two 8-bit history bytes, one each for the def­

erences and for backoffs. At each attempt to send a packet these bytes

are shifted luft one bit. The lowest hit of each byte then set if the

node had to defer or back off, respectively, on that attempt, else this

hit is cleared. In effect the history bytes remember the deference and

back off history for the last eight attempts.

The history byte is used to adjust a global bjtckofi m.;sk. The mask takes

values in the range 00H to OFH When the first attempt is made to send a

particular frame, and the node must defer, the mask is OR'ed with 01H,

thus setting its lowest bit.

APPENDIX K The CSMA CA access protocol 92

APPENDIX K The CSMA CA access protocol

I

s

Icd
5
a 5

\

-u

APPENDIX K The CSMA CA access protocol

r
£

t♦*
5
l

1

I
i :

; -t
5

h 8

0
1
t

i
•o

5
TO
zt?
6
XIL
I
L

OJ
3
CD_o
d
Q

L
O
5
-P
0-
z

c
u

<r
5:
w
u

<4-□
CD
C
E_

CU
L
3
CD
Li-

93

The number of bits set in each history byte provides a count of the number

of times the node had to defer (back off) in the last eight attempts. This

is used to adjust the mask as follows:-

o If the number of times the node backed off during the last eight at­

tempts is greater than 2, the mask is extended by one bit (up to the

maximum of 4 bits) and the rack off history byte is then cleared.

o Else, if the number of times the node had to defer is less than 2,

the mask is reduced by one bit (down to the minimum of 1 bit).

o Else, if neither of these apply, the mask is left as is.

A typical dialogue takes place as follows (See Figure K1)

LI)The transmitter senses the bus until the bus is idle for the

minimum IDG time.

L2)The transmitter waits an additional time determined by a random number.

L3)The transmitter sends a RTS frame to the intended destination node.

L4)The receiver sends CTS frame to the transmitter.

L5)The transmitter, upon successful reception of the CTS, sends a Data

frame.

NOTE: All response frames must be sent within the maximum IFG time.

For nuch attempt in 1,2 a new random number must be generated. If after

32. attempts the transmitter is unable to send the data frame, an error

is reported to the higher level software The access method may seem

clumsy in that three frames are required to transfer on packet of data.

The extra transactions required must be weighed against the extra circu­

itry that would be required to detect collisions on the hardware level.

We must also consider the frame format as is shown in Figure K2. The

figure shows the general frame format. It should be noted that the frame

is of the form used <n SDLC links and thus the flags are 7EH bytes and

Al’FENDIX K The CSMA CA access protocol 94

\r>

the frame check sequence is the same as that used in SDLC. Carrier is said

to be present when the receiver has detected the start of a valid frame

i.e. a flag has been found. The RTS and CTS consist only of the desti­

nation address, source address and type field. This type field is used

to Jiffeientidle between an RTS, CTS and data frames. The data frame tlms

includes the data field. The frames used therefore to detect collisions

are substantially smaller.

The CSMA CA access protocol provides a convenient means for bus control

that does not require complex hardware or software.

Frame
Preamble

F rame —

.Qng .fivtg <18 bll9)_
i— i— i— i— i— i— r

Flag
Flag

DestinationAddress
SourceAddress
TypeField

Daxa Field

FrameCheckSequence

Figure K.2 CSMA CA Frame Format

APPENDIX K The CSMA CA access protocol 95

Hi. <4 -t. a *v x -*i .

APPENDIX L MESSAGE PASSING ON TRACK 40

The reason for using track 40 for passing messages between the P.C. and

the floppy disk drive emulator will he explained as well as the method

used.

The file server needs to know when the logical drives are changed on the

P.C. and when application programs are selected in the mei u program. The

amount of information that has to be transferred between the P.C. and the

file-server is small and in general only a few bytes are required. To keep

the data transactions between the P.C. and the emulator the same at all

times, the method of transferring information in the form of a sector was

chosen. In the case of MS-DOS this restricts the maximum message size

to 512 bytes which is more than sufficient. Another factor in favour of

this method is the availability of BIOS routines in the ROM of the P.C.

thf.t r.llow single sectors to be written to the floppy disk dri es.

Before discussing the details of the BIOS routine, let us examine the

reason for using track 40. There are three main reasons for this choice.

The first is the structure of floppy disks, the second is a hardware re­

striction and the third is time. The floppy disks being emulated have

forty tracks numbered from 0 to 39. None of these tracks can be used for

message passing sines they carry the data. The track number must therefore

be greater than 39. The second constraint is directly related to the

floppy disk controller used in the P.C. (Intel 8272A, NEC yPI)765). This

controller is designed for use in disk systems where the disks have less

than 77 tracks. When a RECALIBRATE command is given to the floppy disk

controller, the head is stepped outwards towards track 0 until the signal

from the floppy disk drive unit indicates that the head is over track 0

(TRACED). If after 77 step pulses (i.e. 77 tracks) nave been issued by

the controller and a TRACED signal has not been received, the disk con-

Appendix L Message Passing On Track 40 9b

APPENDIX L MESSAGE PASSING ON TRACK 40

The reason for using track 40 for passing messages between the P.C. and

the floppy disk drive emulator will be explained as well as the method

used.

The file server needs to know when the logical drives are changed on the

P.C. and when application programs are selected in the menu program. The

amount of information that has to be transferred between the P.C. and the

file-server is small and in general only a few bytes are required. To keep

the data transactions between the P.C. and the emulator the same at all

times, the method of transferring information in the form of a sector was

chosen. In the case of MS-DOS this restricts the maximum message size

to 512 bytes which is mere than sufficient. Another factor in favour of

this method is the availability of BIOS routines in the ROM of the P.C.

that allow single sectors to be written to the floppy disk drives.

Before discussing the details of the BIOS routine, let us examine the

reason for using track 40. There are three main reasons for this choice.

The first is the structure of floppy disks, the second is a hardware re­

striction and the third is time. The floppy disks being emulated have

forty tracks numbered from 0 to 39. None of these tracks can be used for

message, passing since they carry the data. 'Die track number must therefore

be greater than 39. The second constraint is directly related to the

floppy disk controller used in the P.C. (Intel 8272A, NEC vPI)765). This

controller is designed for use in disk systems where the disks have less

than 77 tracks. When a RECALIBRATE command is $i\en to the floppy disk

controller, the head is stepped outwards towards track 0 until th jrutl

from the floppy disk drive unit indicates that the head is over track 0

(TRACKO). If after 77 step pulses (i.e. 77 tracks) have been issued by

the controller and a TRACKO signal has not been received, the disk con-

Appendix L Message Passing On Track 40 96

x r g y

[roller indicates a fault with the equipment [3]. This is not acceptable

and therefore we cannot step further than 77 tracks from track 0. The

permissible range for the message passing track is then between tracks

39 and 77.

Stepping between tracks is a slow process (of the order of milliseconds)

and should be avoided as much as possible. It is an advantage therefore

to have the track used for messages as close to the data tracks as pos­

sible. Hence the choice of track 40.

The BIOS routine for accessing the floppy disks is an interrupt routine

viz. INT 13H. Various parameters are passed to this routine via the reg­

isters of the 8088/8086 CPU of the P.C..

The parameters are as follows [7]

Inputs: AH = 0 Reset disk system

= 1 Read status of disk system into AL

= 2 Read desired sectors into memory

■ 3 Write desired sectors from memory

= 4 Verify desired sectors

= 5 Format desired track

DL - Drive Number (0-3 allowed, value checked)

DH - Head Number (0-1 allowed, not value checked)

CH - Track Number (0-39, not value checked)

CL - Sector Number (1-9. not value checked)

AL - Number of Sectors (Max = 9, not value checked)

ES : HX - Address of Buffer

Outputs: AH * Status of Operation

No Carry - Successful operation (AH = 0 on return)

Carry Set - Operation failed (All has error reason)

The message to be written is assembled in memory and F.S is set to the

segment containing the message and BX to the offset of the message. The

Appendix L Message Passing On Track 40 97

/ • •> W

required function viz. write desired sectors from memory is chosen by

setting AH to 3. An assembler program segment will be given for the sake

of completeness.

Note: It is assumed that the message is in a byte array called BUFFER

defined as

BUFFER DB 512 0UP(?)

The program segment follows:

MOV AX.SEG BUFFER ;LOAD SEGMENT IN WHICH BUFFER LIES

ES.AX ;INTO ES

BX,OFFSET BUFFER ;LOAD BUFFER OFFSET IN BX

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

I NT

AH, 3

DL.l

DH.O

CH ,40

CL, 1

AL.l

13H

SELECT WRITE SECTORS FUNCTION

SELECT PHYSICAL DRIVE B

SELECT SIDE 0

SELECT TRACK 40

SELECT SECTOR 1

WRITE ONLY ONE SECTOR

CALL BIOS ROUTINE

The floppy disk drive emulator need only emulate this one. sector on track

40 since this is the only sector that the floppy disk controller will look

for.

This method is an effer . ive waj of transferring the required data between

the P.C. and the emulator and file server.

Appendix L Message Passing On Track 40 98

APPENDIX M THE MS-DUS DEVICE DRIVER

The device driver creates Ingir*! drives on the P.C. as required by

the network as well as being responsible for passing messages on track

40 to the emulator when logical drives are changed. This file is called

up during the booting up process of the P.C. and forms part of the

CONFIG.SYS file. Various criteria for the structure of device drivers

are specified and since these are standard they will not be discussed in

detail here. Only the important features will be explained since the code

(later in the Appendix) is well commented. Numbers in brackets refer to

offsets in the program. This is the left-hand most column of numbers in

the program listing.

In the device header, th« constant DRVMAX (OGOA) corresponding to the

Name/unit field in the standard device header (8] is set to 24 by the

INITialisat ion routine (0650) of the device driver. If fewer drives are

required the 24 can be reduced. MS-DOS assigns the letters of the alpha­

bet , starting at A, to block devices such as the disks. Hence the standard

two floppy disk system has drives A and B . Subsequent drives are assigned

the letters up to Z. If more than 24 drives ari requested in this device

driver, the drive identifiers bee Mite the ASCII characters following cap­

ital Z in the ASCII character table. This makes drive identification

aussewhat difficult. The remainder of the parameters in the device header

are ' e pointer to the next device header, attribute of the device, the

pointer to the liev'ce strategy and the pointer to the device's interrupt

routine in that order.

DRVTBL (0008) ontains a number of pointers to routine to be called de­

pending on the function required when the device driver is accessed. As

can be seen from the listing « number of those point to the exit routine

directly si net. these functions are not supper'.ed by the device driver.

Appendix M The MS-DOS device driver 99

• * * * * *

The EXIT (0077) routine by which, as the name implies, the device driver

terminates, is responsible for returning status information regarding the

operations performed, to the calling program. The most significant bit

of AH, when set, indicates that an error has occurred. The least signif­

icant bit of AH indicates that the operation is complete. If an error has

occurred, the error code is returned in AL. The number of su i sful I/O

operations that did take place is updated before the mach, tate is

restored and control is handed back to the calling program.

The MEDIASCHK (008BI routine is called by DOS before an operation is

perf:rmed by DOS on a logical device. This is necessary so that DOS knows

whether this data relates to the actual media in the logical device or

not. If we consider a floppy disk system where the medium is removable

the information in the buffer may be from a previous disk because the

media can be changed between accesses to the disk. In tha case of a hard

Jiak which is not removable we know the buffer will have valid informa­

tion. This media check can return one of thrae values to DOS viz. The

media has been changed, the media hasn't been changed or I don't know if

the media has changed. It is obviously an advantago to oe able to say that

the media has not b«*en changed. In the case of the emulator unfortunately

we cannot say that the medium has not changed because a floppy disk may

be mapped out by the file-server for example between accesses. The device

driver therefore always responds with I don't know if thr medium has been

changed.

The BUILDUP routine (00AB) generates th required BIOS parameter block

according to the given media descriptor byte. The routine usually gener­

ates the parameter block for a double sided disk with nine sectors pet

track. It is possible to have 8 sectors per track and a single sided disk

if so desired.

This routine is followed by a number of variables, the first of wnich

records trie current drive , It may be recalled that both the device driver

Appendix M The MS-DOS device driver 100

in the P.C. as well as the emulator are required to remember which was

the most recent logical device, that was accessed. This variable performs

this function and is initialised to a value that would not normally exist.

This is done so that as sc in as the first access is made to the one of

the logical drives, a message is sent to the emulator. The remaining

variables store temporary values during the actual data transfer.

When DOS calls a block device driver i.e. a device driver for a dirk or

similar system where the data is stored in blocks, the request is in terms

of a logical start sector and a number of sectors after that, that have

to be read or written. DOS also gives a Transfer Address where this data

is to be transferred to or from. This method of requesting data is useful

in the general sense that it is not device specific. It is upto the in­

dividual device driver to interpret exactly where on the physical device

being used, the data must be transferred. In this case therefore we re­

q u i t e a start track, start side and starting sector on the physical de­

vice. Before the calculations are done to find these parameters the

current logical device must be conveyed to the disk drive emulator. In

the SETUP (0135) routine after the jump is made to INRANGE (0147), the

current drive is compared to the requested drive number. If they are the

same all is well, if not a message is passed to the emulator via track

40 (See Appendix L). The message itself is inserted at this stage into

the the buffer called TEMP BUFFER (0450). The maximum length of the mes­

sage is restricted tc 512 bytes. The contents of the message itself are

not important as long as they correspond to some message format that the

emulator will understand i.e. the emulator's software and the device

driver can be modified to send and receive message formats as m-'.y be re­

quired.

The message passing along with making the physical drive B in all cases

takes care of the mapping of all the logical devices into one physical

device. This is followed by the calculation of the physical location of

Appendix M The MS-DOS device driver 101

the data required from the logical sector specified by DOS. The number

of sectors to be transferred is stored for later use. To calculate the

starting sector the logical sector is divide by the number of sectors per

track. The remainder of this calculation gives the starting sector between

0 and one less thai. the number of sectors per track. This value is in­

cremented and stored. Th quotient of this calculation is then divided

by the number of heads on the device, in this case two, to determine on

which side of the disk the data transfer begins. The remainder of this

division thus gives the head required, while the quotient gives the

starting track. We can now commence the data transfer.

The actual data transfer software has to be inside a loop, the reason for

this being that the maximum number of sectors that ran be transferred by

each BIOS call is in this case nine i.e. one whole track. The number of

sectors requested by DOS may exceed this value or wo may have the situ­

ation where only two »ec.tui s may be required but the first o c these is

the last sector on a track. Two BIOS calls have to be made in this case.

The loop counter therefore is the number of sectors that hive to be

transferred The loop performs the following:- A retry counter is reset

for each I/O operation. Four retries are performed for each operation

before an error status is returned to DOS. The i'KF.SET (03C0) routine

checks for when the end of a track has been reached. If the track end has

been reached and thi* operation has just been performed on sidv zero then

the side is changed to 1 and the physical -.octor set to 1 i.e. the start

of the track on the other side of the disk. If the end of the track on

side one is reached, the track number is incremented, the physical sector

set to oni* and th*» sid# set back to zero. The first time this routine is

called, none of these situations will arise since the starting parameters

will just have been calculated. The parameters for the BIOS routine (See

Appendix L) are loaded and the routine called. This BIOS routine returns

with the carry flag set if an error has occurred. AL returns the number

of sectors that have been transferred. Taking initially the case *..ien

Appendix M The MS-DOS device driver 102

the routine returns without an error, the transfer address has to be up­

dated by an amount equal to the number of sectors transferred times the

sector size. The segment register (ES) is constantly updated to prevent

the offset register overflowing. The transfer address is not updated by

the BIOS routine since the data transfer is performed using DMa . The

correct value of the transfer address must be obtained for subsequent data

transfers. The number of sectors still to be transferred is updated ard

then the loop repeated until all the required data has been transferred.

When an error condition is returned by the BIOS suitable error handling

has to be performed (BIOS KHROR). The exact cause of this condition is

returned in the AH register If a DMA error is returned (AH=9) it is

handled differently to the others since it is the only error that may not

disappear if a retry is attempted. Since the cause and handling of this

error are somewhat different tc that for the others it will be discussed

later. The retry counter is d.1'-rodented and the operation re attempted

until the operation is either successful or the number of retries has been

exceeded. In the latter case the BIOS error number is transfotmed to DOS

via ERROR EXIT (0292)

Th* Li\4 error results from a hardware design aspect of the P.C.. The DMA

controller used is only capable of addressing e4K of memory directly. The

P.C. 's memory size is 1 Mbyte and for this reason an extra register has

been added to accommodate the extra memory i.e. the DM\ controller son*

trols address linos AO - A15 while the register controls linos Alb - A19.

The DMA error occurs in the following situation, DOS may allocate a data

transfer area that causes the address register of the DMA controller to

overflow. What we would like to happen is that the extra register be

incromnntnd automatically. Before commencing the data transfer the BIOS

routine chocks for this situation and if it will occur the or or is re­

turned. The following procedure is then adopted: the number of whole

sectors that can be transferred before the overflow occurs is calculated.

Appendix M The MS-DOS device driver 103

a- ..V - -

A request to transfer these sectors is then given. The sector in which

the overflow occurs is then transferred to a temporary buffer

(TEMP BUFFER) i.e. a request to transfer or j sector is given vith the

transfer address being that of the temporary buffer. When this transfer

has taken place, the temporary buffer is transferred byte by byte to the

original data transfer area. The remaining sectors are then transferred

in the normal manner. A similar approach is used when the problem occurs

with a disk write. In this case however the data is transferred into the

temporary buffer before the BIOS routine is called.

IN1TAB contains a pointer to a BIOS parameter block for each of the log­

ical devices. The 1)RV$INIT routine is called to initialise the device

driver. The 24 that is loaded into AL in the first line of this routine

is what must be changed if fewer device drivers are wanted.

Appendix M The MS-DOS device driver 104

L
>uV
5
> 8 v)—
« O -1 — UJ v>T9 Z U > U UJ«• Ue ■* O

CU — O 5 § u- UJ o
t-

o d M O Z w
2

X • • w b p X I <

a (/> - 5 5 — « v> B —

= 2 "I 2 5 J 5 5 T 5 i - “ %- 2 2 *o— u. o .t. Z L) W O W — V) — U & Z U -O Z k. 3 — O W — O W — — VI UJU. 3 T O uj UJ — o o
 — O v i « > a. O < * O * « - O U 3 S > - f - - W Z - 3 Z = — *
3 n X — — w < — X O O 3 < 3 — IT < 3 U V. 5 3 < X yu — u w m e L u x < 3 a c a c — -J — o iA Ow — o u. o i Zwiea r a. x ac — — S x ia u. — — x - -iO O' Z C Z $ U < O 3 O O CO — — IAIA u. <A 0 - 0 O UJ O CD< O 0 3 — w K Z w — — — — W Z Z Z I A u .(L - .. * U - Z I A — U * < < 0 -1— O — • - P P P P - J X • < 3 < 3 <CA — —U - 3 — UJ r — — U — 3 I 3 3 * . x E C — CD ~ X X — - Z Z (A— e ia oux — — a.>- I — o — V&-ZU.& — — — — u •cm X cc x < o < 3 ce
UJ — W - i O S o O Z ujZ O Z w O O Z C Z Z 3 3 3 3 0 — ♦ 0 3 0 —ujCCO-v) a . x — z z — o — u — xcd- - z — o o o o — >> uiauiax — O —
• • —■ O • * • • • * • • • * • • • • • • • • * * * • • • • * * • • # * • • • • • • * * *% 4^ • •

— - ae oc

o w U

V)ii

a. a.

S(A M >
3 > - z z <A cu cc u j a X 0 . 0 .Q. Ou X

fy — X 30 0(0 < V> OCA — <Aw(A — — — <AV> — — — O O Mia -j o © • cc •o oc > r > o — a > > > - - — ccxac —<— 3 ow 5-5 - x » pacujujxexxxococxxx 3 O 5 3 mz op. X * 30 3 ■ O (A 3 »\j "IOXOOO ujw—jO O ujwuj O u. 3 $ 3 0 — Oj — — — — Cu
(A O X uj

S Z> w —
t S 1 5

< MUJ u. X — J -J . <

o — u o m w x x - 8 > > — g —
5 55 ?. 2 2 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 T.8 £ § 2 ^ 5 °I • •H tt N H N II N H

(A W « e «{ — — — w . 3 < M — —— UJ O i ►—
5 5 acH%

>
< u § a.
H- ►-
< < <ac a a.

K
v> </> in m m n

8oc ac ac oc oc oc ac oc ac x ̂ a: cr o: oc Os pQ oo ac

8 8 2 0 8 8 8 0 8 8 8 0 0 8 8 8 8 % £ 5

OC 06ii

ru rv Ov m m C t i i C O C C
II Ii II I II II II l«

Appendix M The MS-DOS device driver 105

JC.

V

:,

V) - ac
% j !w O w w
ac O o m O u.
o < <

i
k x w o - 5
W 3 t U V> U

O -J 1
-5 x "
5^ <SW x CDi II u

T

h il lo • • • •

IIII I
— a a a q: ac

a.

0? UJ U< O Q

usll
Cm CL

s=i
£i$355sal

co
.55 I

CO

CZ) (

m qc w Q •» i
5 3^*15h i h i# $I2S&5§53S

i a. V) $ a. c. x d e. > a. tz> as > a. 8 > i/i > a. a. a. a. a. a. a. a. a.

2 : 2 2 3̂ :f. 2 1 ^ 5 5 2 ^ 2 2 2 2 2 2 2 2 2 2 2 2 2

v>

s § !

»* »• O f\J X f\J wO O " - o s c
►» » O 0 8 0 u.X O X 1A X 5 "■ aj 5 a. fa

~ p O f (M ’̂ u>^v()"'a.<<er, C D C < U ~ e - to * V a. a. ^unAiAAir - OiAfvjeea..eiAewfaff-c m o f u o — a.
X fa « 9. 4 CD U O (Vi IA C CD W a M X ̂ 0 ^ - aj a. (\« m X pnmmmfiiammmfaf X X X X X A A . ‘'irv^AAiAO'0 \0SSSgSgggsgllslilglsigggSil i

*- fu
"V 3 O a *• M
3 C X » o

X g E K P ^ S - a eofaaOaxcaeaej *> lAÔ iAifV̂ i/M?. AO
) fa o. CB O fA a fa fa w ►-• (V «“ X A O "a C C* «t 60

imils Sill ililiiiiiil
Appendix M TVie MS DOS device driver 106

RE
I

;R
ES

TO
RE

RE

GI
ST

ER
S

AND

RE
TU

RN

EX
J I

f
EN

OP

a
</)

2
i ”(Z) QC o: ►-C-

— Q.
O O H.

zsiE

(/)
w

o:

to o
X — *
< Q (NJ

> < — —
U- O- O' — C O^ r - X O 'J>■ o ...

- - X X X -
X 3 X ££ 20 CD X^ £D CO —- w W

w toX Kto —
> c X z to to
CD ► *

u O X
B

X

< w u u H Xto w O ua to to -J X zX OS X X toX o X < X X fr­to — to — < x tO ee X —
g x U X to X < X fSl c — — z
8

O x
— to_ uC x cH «*• — <

X to u o c a
c to z to u - c = x X U H< X o - x o o o —
X Pd < > 4- to u to o - Xto — O uw — 3 x C —z < -J — .

<■" —
- uty o U K *- O' z to a k
XiN o X ” X X X X X x to X to Ot— o to tr to o to u <x 3 x -J X Z O X X < < < X X < X X< < X x X x X to Zw T x < X x O H X X X * - CC X
> X X - X X N < to u u u to a u u u< o c X X X Z Z Z X c z z zto X u o z o to X X 1- o — — —

oo

X • •
CD

X CO
c o CD

5

X I Xoo oo c a
< c o a o —

X X X X ~ -J -J O X* -J
< U X O C U O O < <

so »-U> f- wJ(\j 00 4" to* * VOzr O ifvu.
sc C Aj O
X X X - X O Q C

1O OO• to
X < _ j _ j
< X < CD

gI• C 1 PU

• • • C tfs (\j sO 00 ̂ O f'l

o o o o c o o c o
X X X X X X X X XH- ►- N- *- k- *—
x x x x x a. x csj x x

•- o - •to • •
X < X * X - J > >

WWOWWWWlTvO — C
X h- — • X • Xx . c x - i > > o > > > > x o x ocvffit5Qccx5fflffimcD<5<^

llll > U (0 > > > X
X ffi X X X X— X^tOlOtO>CX > > > > > > ION O U O to Q > U U > > > > > > > > > > >

w wQ Qo ou o
M

at to toZ Q .. Q
X w 2pX w £
< X £ X X
- 3 cr 3 CDo to fr- to
x tO x to IaJX < o < to

z u
U O U ,
Z X
— w X

2 : 8
O CO

z < 2
* Q to
to X ►- • • c r z

S LU to o
c r - x

— v/) X —a < < Q
Q
a %< to<

X X
tn

tn x c\ j
O x X D O CM 3-
o o £ O O —

< <
00 o X r- X X UX — ^ x o *- SO ^ ^ 0

rn CS CO SO CO lA £ Os U £m u co x c\j X u £ £ £ X

£ £ C #- a- VC sO Os U O ^ vC O' £
X CD £ OS Ch Os 0s Os Os < < < < <o O c o c c c c o c o oc cc c c c o c o c o c o c o o

(V so oo < X X U . roXOO 00 C\J ■'J V
»— u . C O C ^ “ X O r g O

C & O C C cU*-OsPuO — o — — 3‘̂ ^ O r ^ » - 3 ‘XOsUsO(MLfsOOirxJ,' O ^ C V ŵ XiO UUJu-OwCiTCCCUOOUUOCU^UU'^^crsO^u'SkOX c XC
C Xl m < CC~~OC 00'<wk.\0 iAk-. UfrnvÔ ror̂ uJLuflOXysoCOCOOaOCOOvaOOv L^j>Lnu^ooccoo^xxxxmx — ̂ -.-.oou.r-.offi«-̂ cotoocooocxccxxxx

~ ^ < u u.

Appendix M The MS-DOS device driver 107

X z O
X
w >
u . Q w
to w t t

to z X X X
CL < UJ X X W UJ
UJ X X X UJ UJ X X X

— n x Uu Z Uj
X 3 z co 3 LU

X w r z 3 z z z z
< 3 Z < C 3
X Z X X X z
< w O O x UJ A X to o
a . > • - o — u > UJ X — o

< U < — to O CJ < u i
w X tO W W X X u- z » - u u . 3
> C U X to — o u CJ CO 3 J
< w UJ - o U <
to — uo — — — i o < C to z z >

z z z z z O 3 3
w u . UJ UJ UJ UJ u. > u r r >
x o x x x x o t o x o — — X
X X X X X O H- X X • -

< 3 O 3 3 3 3 0 — w O < < UI
C Z U U U U Z 3 X z r i. x

l f \ • • ft • ft * ft

o
of

-J > X X X X < 23 CO Q U <

> > a. a. a. a. ►-

£ i £ £ 2 £i 2 2 S§: igl COQ M II M UJ

§
a.v) e: —

r u i c: w c: u

| l sX U» <
0 — 0>vo: u-'- o r
x n n (/)
- -J Xo < <

*- X
z - o

o uu UJ CO
Isu ac
uJ — to —CO u. U O
ll II II ••
X X to toU O O UJ

II

§o
ac wC X
X X
X w
W L.CO
E#I —CO
r H-

o
to z z
— to

O < X
— o

to II Z H O o
to oo zUI O CJ UJ </>
X < to W X w Xo -J -J 3 (O 3o u- < U. O Q O H O H-< o o oo o ox z z

> z X X — X A X X — i X u
X X uJ X • • C 3 V> X X • • C 3 V > X • • o <o *■»
u x x ui X — X to o X - X to -L -- -
u. < — X to to UI to — X to to w to — to to X X
to U X 3 O CO O O to 3 3 tO 3 3 3 3 WW W
z — 3
g U Z
X 3 II

u tO
t o u . Z
t o u —

u ■». 5
E - g
V) UJ U vs
u . _ l x
— UJ U

3 ISJ U U
v . X _ i - J O .
vs o < o < x
< - s u - s u - s

X X
3 N - I -J 3
v s x - j _ j vs u fs. a.vs u < u < vszxx
< -) U -s O < 3 3 - 5

vs
ow> vsCC — U X I

C Z O UJ X u J u .
I U X V — > oX U X X X — I

3 u. 3 3 3 K Oo vs u o u o z

(A

*— to —
Z u . XCJ U. —w'OXX_ I > — — Xu.
x x - j - oflu > U -I I
w X X . o o
x ..o co r z

•
*$

3 u
<

> w X o
X K X 3 X

to t o t o o
z X > > X X
w w X X to to

3 3 3

lA
o

Cu iAc a-■ ■ ■ ■ ■ § § OU. CO < O' 60 3 u. c C O O O 3
- - - u . C O ----------------CDOOuMnVMAU

(\l » 3 «0 o < s
0 0 0 3 3 0 3

o O C :

O O O O O O C 0 0 0 3 0 0 0

X X X X X X
lA CNJ tA 5 3 *-m 3 3 C ̂0s — u ̂- < 3 — m (M ^ 0 o- 0 0 0 3 3 0 0 0 3 3 0

o m 00 OJ 00 3 m eo cm eo t on O'o UI UJ UI UIx o u a-or ocNO o o h- ^ O' CJ w — fr OO < 3 — CMc o c o CM CM CM CM CM CM rsi r-
o II II II II o 0 3 0 0 0 O 3 0 0 3 0 3 0

Appendix M The MS-DOS device driver 106

. - A

o8
<£OQCX

1

COQ

I IU 00 <

I
If)z
<A
<
X

%2) < WW
q: a.
O X X§ = Ei

M- X (/> X W Z ̂ W >
< — —
X X U. x

QII x k. IIw— X tZ)
Q CL —

> >

X X V) to < o w O U —

2

X U. v^c uJ O — ̂
tn *- u.ir x o u. < < o x-»-
*- to X >“< X
O u. •- <— O CO ♦- (/)(/) X X
O X X

85< x co
X X Xx x o o

u.° u u to — w w
X (O V)
< X CO
X — X •— u.H X o x O •— <II H u - o -J to X x — co
X o o x

. . . 5 ~ 53to CO c o
U.' X X < X

Q
Xh-X

x O w
X X o

- Q X X O XO -J u X 5 < 00
X X ~ - - z J
X X CO CO to — <

>
X•— e». u.'
U. >
X UJ —> x zo uj — O to O< co x X—• O u w ►»- Z H o < >UJ to < X X W k-c > - Z X CO LJ O Z XO X o CO x »- o Oo x - X X w to UJ c U u_ X< z X o X o z w X OX o - X UJ to o X UJo .. £J X w II X h- — c > tuX k- X > z — Ll! o < — cX UJ co to x < to X Z hU X X —W CO CO w 3 O CO M X to
X

1
•-XUJ

LL.
u.

■ • • e m • *

X U -J U -J 1O X < < < <

I

> <H> X > •
X Q * - —*U IX >

IX c X > X - Q X X U I I UJ — w x s: or-
- - X * -X

Xz

to X U.u < o

L

X - J X U X X - J O X X X X X l O X t O X^,<lOw < < < — < < X U C U J < U J X

o *■“ C\J fO
> X X X X
X UJ UJ UJ UJ
X u. u. u- U.

IU. u. u. u.X X X X X X X X X XU I I I I owXXXXro*—»z zz z * * * • * »x-iL'UJUJUJX-J-JX-JXrncOXXXX
< h - h - > - » - < < U U C X — U J C U X <

^ oO UJ

=1 X —
COX u-l

< °
X to

X

X - ' > C X u - > 0 * -
U < C X I X O — u- XUX<UnZt^X

> X
w
X.

X X X X X X U.
> c o > > - x c o c o t o t r t c o > > > x > > > > > > > > > > > - x x x x x

i S S i S i B E E S E S S E E S S e r i i S i E E i i B B E E g g S g S
II V)

- u —Z UJ Q X o
X w H X
i-j

XX

<
CO

5 <
Xz

5U. x <NJQ O WU
r- ao X 00 uJ 00 O

§
00

G O
X "sO o 0\ m
r*"' ^ X O

X X

u
— C X

CO u CDxC <) 0< r-X O ro O UJ ^ O C O ' -
%

853
v r X ^ C o C . ^ C C o O O f * * ' — (M v O O U i X om^<ir\xxuiAinmj\i^cooxx

X X X X X

U O — f\j ro O U> J> iTMTn — oo — Of^OOCOOOOC(N.OO^
ofucvcvrvj^-o — J>f\jsoc^< o x oo
< < < < < X X X X X X U O U ^ - ^ ^ t n

inm
o

N-OOf^J>cou<uCuju-o*-c\icrvC o u u. ou oo < . — rrwjro^5rr'<
o o o o o o o o c O O w C C O O S O O O O O O O O O o o o o o o o c c c c c o c c c c

Appendix M The MS-DOS device driver 109

/Ik-' v -ir>r

v

7)

COX 3 3 3a: cc to o w O UJo w Q < « > oc 3 3Q. oc < UJ o QC UJ Z —j »- — > < <o O UJ X X o H- =3 CO < UJ 3 Q -J c ca: w V) >- X o u < L. -u UJ CO or UJ c. _w z m QC u > < < o co q: < ft: Z u. W X — UJ00 cc3 O UJ u. cc w ft:< CO u > NO U. uJ — u. cr o X — Nl CO COs O -J #— to o % K -J z w w QC O Q O -J U» — Xu. =)o < i; (O < to CO -JUJ Z o: co z u CO - 3 CO L> w> z o w — cr x a:»- u- cr QC< > UJ cs: ft: w cr x o < w z X UJ >cr O c/5 z UJ O UJ iff z > u. _J UJ Z CD < uj cr w re o uj — o X -5 X tO X za: w O 8S U- CO < 2 UJ UJcr o < 3 X - X W Ui CC X K- U. k- o c oc > O > o: I o: z a: crQCli z o O < < ouj X CD X 3 u u. ox X O — u- 3U - h- CD ft: 3 »- — o: rj.< o #- 3 o a > QC Z X 3 z uj 3 y; z co CD U C 3 CL*- a:Uj > =2 Z X - 5 3 O z — o ft: w w Z 3 Z CO X O 3 —- a (/) c. — X w U O UJ > u U Q z O o UJw w cr QC w z X — U. o Q X X 0/ c U.3 O O C X h- Q U CC — Q K- o o > U X O u. (O X Z O < Z u>W UJUJ — o UJ LU o — W Uj< UJw < < — < >30 *- O — O CO < *- X 3 X <x > > oc >< > c a: > ft: > > UJ o > > > Q to to LU - < < u x < o CO w < to x 3< < < UJ c U — QC < •*Uj — uj < < -J CO — CO < < O & UJUJ _J ft: w ft: UJ o X O U. — UJ X o < X£ 00to in u. c/) n h- CO N O a. to COU W CO Lw to toQC O 3 QC QC •» 3 X »- CO Z X w_ x X 3 X X _ % Z 3
__ QC 33 • • • • - • * * -Jz -J *— > <Q 1 X-J Z Xo O UJ x —■UJ 1 O to X > CO</) O i § h-o Q 5SO w z wX -JQC ^5 o '—CO < X to-»u o Q h- U» i* o -̂ -̂ X U 1 X #- 1< - CL Q % w 3C Z o U O QC W u. H O X u.a: Q U O o > X h- co o W X ou- »— O Q — X O O 1 o - % ft: X I CO X C 1w z CL W QC o ft: O UJ > H o C 3 3 3 O w LU X c>U X X coox = co o: uj -J CO — X o 3 U O -J U Z — X — 1 o z Xu o Q O 23 0 Q: ft: Q • • w »— CO ^ O UJ o < c O CO 3 «- <-a: uj - ft. 3 * . % 3 • UJ u -c-j o i U U X X X o u X to x QC or x — - X X X 10 X -JXXX-JXX X rr>z X X X X X X X< — o — o o u 03 O U ̂ O. u o u o < < < UJ < O O 3 3 O U U < CD < ̂ < x c O 3 3 < 3 3 3

> > > =
IE

oU > > C £ > > > U T
? i § § 5

— X X XV)>>-JV)V;>Q:V)
" 'i£S"_

5
tZ)o

3223; :BaZ
>S>0-
E S S E

a-QCC>>>>>>l
Z Z ± i i i £ 2 2 $O

(/)a:

>«:AC<o
xuw
5$ CL (/ ? > > ■ • C. O

gE .%%2 2 S E ; 2 S

Utitr

o

X(Z)

QQCX
OQC

a. h-

>tr

(/>QC
Hoc wwu o:

Q. o
crq:

X X X
3 o u.

X o C XQ u»
m o o oo o *-
w (\J iT \ Cu NO 3 ou f- NO *- U.oo O 3 N u — a- 3 u. — O 3

OCVIOn C\j t ' i h~ uj x x m r- X ro X ro
X < 00 On fO u. u. on oo m u. 00 < — 00 (J
CD 3 C J? iTN N. < U O m ir h- X uj u. »— (N.00 00ON O' ON ON O n O' < < < < < < < X CD
o o oo oo 0 0 3 0 0 c o o o c O

o NO o — ac
co:
ui o m coc a- U.OUi 0^0ou o

ft: a: o: o:
O O t- *- QCO • - f * - r -O C C O C-S

<0 vC uJ 7s Uu u .uj — m O u, o O Q
CCnOOD*-^- — ̂ CU^ujOO^-r-COUhiJû iAftlQinoCOaOkrMACO < < CD < < •— n*

OC 00 03 00 00 < ao

CM ro O f
zr cod u

u. if\ OCl

ccC QC cc s-
sC •“ C\ *•— O U- u.

oô iTN4n50<-..̂ 0
— O —
C O O O O C O O

Appendix M The MS-DOS device driver 110

<

,n [fljv .f -# , -*W » > ■ #11 n 1

$

>
2Zcc<o

t/>3
— % \C

o££o: is

O -
(/)wcc

o u >uj —Jw a.
< Iu

5 x
iiO uJ
UJ %1Z) o
— h-
- u

is
X
wCLO

a.J3
40IIu irLU W

I !

o
w
QC

IT - j k- a: #-
UJ < w 3 c o Z
u. </> a
U. Z U- UJ X u z co cr

Z u- © CL o UJ 0 — 0
uJ W CD O -J co w w. a:
Z (0 1 C/5 z -J CO co © x
O w. ft. cr cr G < II W

I O uj - O a: < <
5/5 C U Ui >- — H t- ^ - ©

K O u. O jT X z © © z
< < H u. © I/) Z (/) CD=3

II CO CD C © — O uj u- —
a 5 'S> — u- © © o x cr c: -

w < u. CO CD Z — © ©
W UJ o - O CO < o. O — —
> > - O X < O © Z CO CO x
< < © X O Lw — O LU UJ U. ©
0/ t/5 CZ) Z CD ft! CD © — — X X -5

■ •a:
u. >

CO X X
w X © ft.
N — ̂ ^ X X X w X
— co to > o If- CO X >CO k- *- X X % »- Xo o a z — O © ©
X U* UJ ft- iO W CO w z
© — CO -J CO > X < H > h- U- — *C0 < X
•- O l < 1 X *— >— X u o X o O 1 H
O UJ u. .u. O z - H- X UJ X -u H— u- UJ UJ © X w u. CL
uj CO 0 — 0 X O X z -J W CO z W CO > X CO O w
CO X IO 1 X IUJ w © — > 1 UJ CO 1- X X X 1 CO ©© O UJ o UJ > 1 1 X X ou. 1 u. u. s: © © © O UJ X
X O Z CO z 1X X > co -J- O 3 UJ IO > C O X u - O Q O O - J O Z — X - o

—» © —' X '— © f t . o < - © © X w jy o o e S i -J < 1 X U < O 1 w *-*’ w O o CVi C 3
CO • • * © * • —< -z UJ X * X * - • •• • »© - T O • X ©
X - J X X O X X O X © X X X m w X X x x x x z x x o z X w v; — X t o — Z - J X X l : - j x x X ro Z X X
© < < < O X < X —-UJ < » - X 0 < 0 < < 0 < U - U 5 X — O X UJ © < U J O W © © O U O < X < — < X o

Cl
< —̂

X z -uJ U X > IUJ
=&='
r 3 §

— t/5 5 cc ocQ Uj X *— _U
uwtz>
0
1
UJ > > O > CD Q. o IOOCC3ZO-- *-ZZ<Z(/)U-)U

u- ft X IN
U > - c - i c > > _ . C > Q O =- < > a.

m uin. o r r = o o x o c o c r r j o o-5 a -! I - o- I I 1/5 < I < -5 — ~ *2 I o.
X X 0- Ifl tt 1 3 =

- 5 a. a.

> > > > > > > > > > x

>
cr

5
_Lo

>- 5 x >
$ E

a. o-uoO C Z w Nc. c. — o -)

_J<

00

wh-o

§ACX
w

V,'o

Koo:%

5 §

CL<U
C/5
§
IW
a<a:

cc
o

cc o:
zr ^»- oc «-*— ^ oo o o o

O <0 ̂ uj f> m
O O C C O u . <

cc
NOs i

u u tu c m co
u. © © r- © *- <

CDOJ3-:o
© C C ̂ N*N-U O u.' u c Q C U. ©

C^y,MfMtorou.oOrn©jyuJS, ^ l © C D f-U — ^r-)0 '^ (X '^ -C L f <cD©<ruoor^u-uoo^u.*^cD{jujif\oocDc:©x©f^jy-.v

tt
cr
o
UJe
>0\ * co

ccc

I
cr s. o: cr <r
^ fO U. r- ©

CL — O CC
c© ©5© ĉ rtT- «-OC r^ 'O 'O O U -O ^U J — v*.uoeo - w o . u o o o

Lu^ ror>~.<uj'— r»l^ru>aD<u,©f\^rNC^-a\Cr:C^L.CVvDCC0-'2DQu . © O C © © » - » - » - » - f - » - — (\l fV(\;fM(\ir>jrvC\Jf\jr#l^'rorr'enfv‘

© 0 © © © 0 0 © © © C © C C C © © © © © © © 0 C C C 0 ©

O 2Cs0 ,s*-Uu;w.r̂ -<< X <. < — ̂
kA^©kf\0D0DCDUCOCC0OeOaD<QC

- (\ ^ > r N O < i r < © ^ ^ c c ' i -5-r^r.r..T^r^reJ>^ îrNsr>sD\C
. , V V cv X CNj f \© o o c c c o o e c o o o o o

X X
X so
©
© ©

U» w o ^
© — c © © © -
C 3 ^ X f - Ufx U OC X LT\ ©

< V W 3 ^ ■ ^ o x o
v£> C c ̂
cu rw CN. rg c\i M X CN
© © © c

Appendix M The MS-DOS device driver 111

X XX o o o o
O m © co <\j — x co «- m ©X » * * O » • uj • * O • »O * •X r-> O Q X cr x x - j w x x _ i w x w _ j w x w _ j w x . ; _ j w x u . u w _ j

< , - % (/) (/) u x o u u j < t z < © < u < r o < ^ < s < v) < © < u < m < o < f f l <

>>-c.^>v:©CLa.w © -j

g = 5 5

(

— UiTCJ>Ui/M\lSI.)ir3"Ui/N'»'~Uir'«e3Uin»'mu
O i»-30"ii-C3K»-0DfN<>*’0 3 * * i ^ C C 3 ‘— C 3 C C

^rcacc^ujr-uwwuiova. o^cxoirisc 3u>3eD3iri~{SOirc,so^'oec«c'JM>m roui-̂ ir>cDJM-.̂ .iAu>iAuj er-.c«-e’~ai~eor~x««je'~aitioo"~eitiT~-eitia — «.i/>o
ui o rw -»if. w »< < u o uj ... (\nr̂ .o<û — w'60'XQr',i>r',~<o — — »~-e>ewc. — <Mw'~»exeeTxe<ree c>.oĉ t>CM3'<<<*i< < x b s ix x x c u o u u u u £ 3 0 c
(\jPjfjPjtS/<V''JfM<\jPj(M<\j MNlPj lX(\ l , ,M<M(Vfj(\J(NirMru(V(\jrj(\irj<\u(N,fu(\J(MVU<NirjXej(NjoreocoouoooDre o o o x o c o c c o o o o o s s o a e o s a c c o c a o o

Appendix M The MS-DOS device driver

t/J X Cz —

a u u
ir x w

tnxxxx--j-xx^

5 ^ x x r — rvjfjr'-o C = Z 3 — w — u. — -<w

Xw a a wo X L-U.X _J w a > < < w 3< W a a w o o (O X C Oto w w a w w a W X X
X Z u. X x — w a XH O X *- N to 10 < z Z O w 2 a.a O Z -J x w — X \0 3 Z Z W 3z X to 3 W to - 3 to u m. w u. uj o - aX X w X X — < w Z T UJ V X u - o X< w X W x a M- o x a x to x z > O z z > u O X xx - £ CO MJ CD X — u. u o o o — x ar w 3 CP w X - c << L X X 3 U u. Z X X o — W u. O x X o X C to o *- — wX 3 3 3 z u. a to a to CC u o o X < w a o u > — w z X U Xu w Z 3 Z to X O u. — o W W — U W W ak. W3 X W Z X - e a x x to o x w to w x < W z U. If >O 3 > W X O W to CD w z o < Z u. w X ■ to — to G< > o o O — - to < - x a x < < O w a < - N. x Z 3to <o Ui — < < u x - o tO w < t0 Z a to < ►- w - a u < < <— --1 X w X w O X o x - — w X O < 3 X w to o c a z a z 5 5 #X X .% a x - to Z X u. 3 x a x x _ r z a o w x z — < —• • •••••* • eX w

> <X aX w Kw a N ^ ^ ■ Xto X >10 — to to > Q
hi X H- to w H XU e a o u o a
UJ z u X w w > X to

< X X to O ̂ to w to x X < *-U 1 5 w i »- O l< 1 X L- H H- w w W Uw a x w u. H X X U . U u j u. »u. O z - z x _ X UJ> X »- to o — X o W to 0 ^ 0 X u X w W 10- X X X to w a i to X IO 1 X IW | a x > 1or a a a a w l x o 3 O W O w > 1 > X 3 w O wX a o o w u z - X - to o z X X U Z to Z X IX X X to w — 0 3 w IO
< o m a o 3 — < w O w X w C w O' < "• O © i- w » U a 3 3 1 — < 1-x a *tO •> » *3 * » • X w X •X W 3 X z o(O X — — w x x x u x x x m z x x x x x x x x

5 § ; 5 5 i g s s
x a x x z f r x x X w x X X X Z X 3 a zw < a o a a u t> u < x < - < x 3 u a a < c a < 3 w u j < ^ 3 U < u < < O < UJ C 3 3 w

>QC

>oc

>Kz
uw10

too
a
u

o
o

> a. a. a cc > > |i° a. $ > > u a.
y o £ 2 $ i i £ 5 5X -> I

0 u > > 0 > C D C . U — CL O > - 0 . $ > > U O > Q U o- 3 : z. a.
25

toQC

5>
QCUJ
X
to
s to $

=£'
w w
ns

a.
5 I

IQL
S
?

CC CC K. QC

Cr- C »"
C O O 3 a

QL Qg #-
O 3 3 C §

X
sO

£ 5
c

X

\0 \0 w w “ u.*- m o w 3 O O •om -O *- Cw flC p- 3 \D — w O' m U O u* X 3 ffi 3 ̂ 3 ̂ 5 O ̂ ^ u.3 — O C\j — 3 uj u. 3 O C C O -- < u. c 3 ̂ 5 «~ < U O W L) 3 3 3 w. o 3 3
oc

(

I

i

W O W v» < < X < < »- ^
» ® x on eo < x 25 ® r~ ̂ i/> 00 < w-kAC < X O < (\ i X ' ^ ^ U X ' ^ ^ . ^ X U w i f \ X X 3 3 X 3 ^ ^ W w j X 3 X*rs —

5500 O UJ u. «> •>. K) U. — if\ ep w W w W W i*. ■*. w. c C m w w i j w w hc o c o o c o c o o c oc c c o o c c c o o o o o o o o e c o c c c s o e o e o o c c o c s o s c c
wOMx^reoCOU/ O ̂ iA O O O « lA vO ̂ < U C »V. « O 00 CD O — — S OC < X O »- a

s c

Appendix M The MS-DOS device driver 113

Xow Xo rX w w XW CZ) »— #» wu. zw II w Oz *- D X *- DuJ W cc — — XX to iz X X 1U U. CL D D W XUJ U CZ) (/) X c z w Xc/> O w o w O — w D wft—< < 11 II X O CD— — co II O IIO C O CZ) CZ) c X D Xo w < — F- < W <W W W c x
> > > ft— c Z F- O o

w — • • X w w XCZ) CZ) x -j tr x
X CD X

25
CO uj O O

23
32

V* oW. QC
OO)

— — — XVO (Z) o u

owcc
< Z o oCZ) w wZ ft*- X X XD Oo z w - XftZ) C _J CZ) XX X - <O ft** — U X»— ft- o O W X X X NOw OCZ) DC/) CDCZ) ® O U — u.— o o —w </) 60 w zO — ft— CZ1 < XX - o XO X O X -Z ® ft- 3 Xft* ft* * ft ft* ft* O -5

Xw

Ia:

X
!S

CL
£

52
5)5
< <

% 5 = =U. < -u u
-555u. *—
t/> > tZ> V) Uj CC ̂ UJ
CL — CLX

X

I.c -
c a. — cc < - x $
?; = l
3 < D Ct— u. — <
— —
223%
zz§2
tf! X < <A

§!*■' CZ) X * wX ̂ oW CZ) w
— F- —* *̂f/)

u u i AN
D

RE
TR

Y

LA
P1

T)
2
5 h»

X
uwCZ)

— XO ® ""ft

z
5

i gft- w w O X W ft*. F- CLX X X w w ft— O — aW CZ) > X F- CZ) o W ft- u CJCZ) > l< uj X X CZ) XCZ) X X X I > I w X " X •• o x — ■W. u. x D D D O W O > H O X 1 D O D < at oft*.OOOOWUZ — X — IX CZ) 1 o X © U CZ) w o v> U. = i- XO ' W e— o m O < *- l© < x o Z — U CZ) W u X = X X»© * * * * * * * X D *X W X »X X X X •= 3- C Z) - Z W Z X Z _ J X X X F O Z X O X - X f o p — CZ) X w — CZ) X e <" < ' § i * X UJX o uCZ)QOw O O O U O < ® <*-<®3Cw^.<«- 3 0 W U 3 O w W O (Z) c ---
> i

(Z>O

- > oa.ft.s-> > > > > > > > -
!$ d % £ E E i i £ £ i $ i ^

> •- $ O V U > — ft. ft. ft. ft. ft. ft. ft. ft.IE .%%%%|E%2225 ££* v) > ft. u. > u a- x O >< 1 5 * 1 E 5 * f E g

5X—
o

2<—XB

xwX
to

$
<

X

%
CO

1 £
*■! £
I Xt-

to

CDo

X w
c uiAflCr co8 8 8 8

sO^-UJUujUUjsCCC.u-Lv u rr,OtT*- eC<OOOCOJ>«X(\J

x x x a: x
^ m ©X •- *“ c #- X

D D C O C C £
ZT \0 \0 ̂ w O' iw *- u.C©^-f^©UJ©CO

w f * U X < Ci <C •“XUOOCOODODCO< cc

X
vO
o

r> m u. U uj U © m o O - O O C C C - U
^ O w1'u i ^ c O ®CB U 00 ̂ ̂ ̂ CO U uj

X
C\J
roO

^ C' ̂lT D UT\ ft**
I

h» O'kTN O u-

= § c
o
>cc#

c < < << FA ft*. 60 \0
U. weJ \0 w UJ Wfv. CL ̂ fV •• C\i

or. x
— ©
D O
NO NO
• CFft. © W. 00X *•

Pg .X u. X X
\OP-eOO'!»Ou.^«i»'~' u o « . c — »<ujrg\e«ou«. 'CO.O'CvOOvO'^'-'-P- •~r«.N.ececaceoeCPC'0'0'0>
o o o s o c o o o o o c c c c c c o o s c e o o

M i/'k'0'3w^wjr\£>~or BU S »« < < < < X » X l £ x 5 fflBB V< <mo c C S C C O C C C X X O CCS
C a eo < - -u u u u u cI" *> ro m= = = = = =

u"« g> w 0 = 30 ». w. me = = o

Appendix M The MS-DOS device driver 114

. / •

- 4

w: v)
X — GC- 3 o z r w
2? uj — — ft)g ee etct C. (X L,' 23^ o X o o z o(j _ ac _ o wU-OOUU W f- Z(/) w 3 w w < x
(/) l/) (/)— (/) UJ

O < O X U.►— w ►- h* o </)X W X X - z»-OX<<3U< lu«— <*- — QkUX

v-2

i 8
z u
- <
W X
V3(/)
gg
U £. -■--Z
V) V. 3

5
(/)
UwV>

h CVJ
k/> Ou

6. >- > a. -
2 2 i E S

V) 5
§

X
5T

OnCO
Ul xc ti, e N Ul < fi w < r- <\i (\J(M {\J fVi J <M XxUfvinu o c
OJf v0<OO c\i w a- o- < a ow u. W w M. u. O C C 2 C c Em m m M m m a a a a a a ao o o c o o 0 2 0 2 0 60

Appendix M The MS-DOS device driver 113

XX > ' l r % r %

X X X X X X X X X X X X C . X X X X X X X X X X XXXSffiXXXOCD2DXXCOXXXX23XXXXXX> >
g g g g l g g g i g g g i i g l g g g g g i E i

2 : 2 S 2 2 S 2

aeaiKa.acKK'xaca.'XKxacKxecxeKXxxa:
»- o c M>r\;e(tieirasecemxmKcn83cc»eexexaasx = h-5 r c . T ^ c c r c 3 r o r 3 c a r z = 2 r r r - z = ;o
2 g § S £ l i 5 B S 8 l i g g S S S E S § S S S 5 § S S S € S f

<
X

X k V '-

oH
5</>
>

OD CD

I I %

I
CL

$

<
«
c

I ?
2 E
— UJ(Z) U)

C O
IT
< 5
i o 8 ij

—' —- CM —“<\jX -j X ♦ X ♦2D < X LO 20 —
5 ̂ ? < « D
o. < o. •>. o. o4T X • •^ > C —*C•- o: x x « x - -j>5pcDcax

(A > > > 0.

v><e
O

?

1
v u; UJ I !§!!§!] ‘“IsSSI O O : .I V u o u o u

' i
3 0 i r ' e » r g ' - ' 0 p c u » i ^ 0 ' - 0 r g » w s 0 ,~ ' " & c i

> o o o o 5 5 o 5 o o o o c o o o o o o o o o o c

2

QC CL w
CD CD Q

I f Eoo o

I I

"o o

v> i> i
23 3

<C

s

U w

a i
O 6 iti O fx.»O C c ̂ ̂ ^ru r~

W#" — JT S ' & X & O

IT OODui^ U n-U ^ u cieoruufloucuj
o ^^o^ar\j^<oc

>C sc >£)NO sC O VO vC >C© c o o o c e o c o ©

S 2
M S

20
cIt
v>U
1
I

w
c
it
z

w A

8 (A

X X O C X (-XX u U X W W O W X X W X X X X X © w < < < < a > < < a j Q) < - - x - < < - < < < < < r f t)® WWWkwjQWW^^) w J>
c. Z Z Z Z £ - Z Z E E Z r ® 5 x Z Z X Z Z Z Z 5 L $ 6

— -j-ju-,zuurxuu-Juu-j-ju-ju-iu-.-.z

0)
E
it
Z

• 8• OC • • • • • • • e e e e e « e e e w O w •••OCCL &. > — — < —
• «j cd - • k oc * • • • u ». « a e. . e = w y a > x

iq x a uj >- a u. x a x :t - — x 5 x _ —• v> -j •Uuju.az z i/) — ix x >• v> </></> i/> x a — o-a£gcia3uxxKxv)v>->>>> -»>>
s Q s 5 5 u 5 S 8 S u 8 i i o o 2 2 2 2 2 2 i i

Appendix M The MS-DOS device driver lie

D
K
V
M
A
X

L

BY
TE

H

JZ
->

0)

IIh M
r rw w O'c zQ t

Appendix M The MS-DOS device driver 117

■

§ § 5 § o o § § § S S S § S S o o § i § S § o S § i
u u o o o u o o u u o u u u u o u u u u u o o o u < in ii iilii iine III

o a x K x x a c x z x x x x U w S x x i t x g : - o x - x ra u x x : < < < < < < < < < < < < 0 < < < < < < < o x < 01 < x y < < :
4 ui w ,

X < < < < < < < < < < < < O < < < < < < < y x < y < w X W W W i— « W Lw <0 O ^ Z Z Z Z Z Z Z Z X Z Z Z X Z Z Z X ^ Z Z -----
X X X X u - X O W X X X X X X - - X U W - - X X X X< < < < - < x y < < < < < < Q»c<o-y®<<<<

< . z z e 3 Z E z $ E z z E z z z z e z $ £ z z z z z z § E z x f f l 6 £ z z z z
u «j u * u -j* u u * u u u u -j u u u u — *-j u u -i u u £ * u h.-j4 z -i —

• e • • w — # M" • X X W I • u •
— X ^ ■ w u j X < iC-j O • • r 3 z x • i 1 ■ . — t-

C6 - X 3 3 U w X X X X V) 6)
*-</> 0 uj *r><s>— o o O •- «- k/.
> x x w o o x x t : x x c x -
X V l V i - . Z Z X K X X X X X X - U . .

a. a. . CLIZ> V) < < > X z < <• a a • > • • C X% u — O X X - X X X• X Uw w X z •s
V • • X $UJ y % —•v> 1 1 " #- > X c c 3X i X • • » < - X 3 3I < < < ^ ̂ — < i> > z CL L. X ,tA ir 1— Q O • i/ i iA a. < w -J H» x x r cl x < < <

a 3 0 1 wj x 5 5 V u ~ — < < X X X < - -3 Z w w O O X X — — w w U X X Z -X X X x * * <L a.X X X GZ l£ a* v) t/> v) (/> v> (/) 1Z> IZ) l/> V) cz>tr - 3 3 3 3

1 I P '> nr N„, ■ft

u u u

— fg <v <*> e » e — i" i— O ia
r - r<i M (N, t \ . wo o o o o o

Appendix M The MS-DOS device driver

APPENDIX N THE ENVISAGED FILE SERVER HARDWARE

The hardware required for the file-server of this star-bus network is

described.

The network interface of the file-server should be fully self sufficient

in so far as network management and control is concerned. The file-server

as a whole can be considered as a multiprocessor environment where the

one processor is dedicated to the network while the other(s) is dedicated

to the mass storage system and possibly management of a cache. Communi­

cation between the two processors is by means of an input queue and an

output queue which is maintained within the file-server processor's mem­

ory area. This memory area must obviously be accessed by both processors.

A semaphore type system for the management of these queues would be re­

quired. Requests from the network would be submitted to the input queue

of the file-server along with the appropriate data, if applicable. The

file-server output would likewise be extracted from the output queue by

the network processor

Each ray of the star shaped network requires a single SCC to provide the

1.5 Mbit per second data rate. These SCC's also require the use of DMA

to sustain this data rate. A DMA controller such as the Intel 8237-5 would

be .apable of supporting four SCC's. The memory requirements of the net­

work controller are not extensive since the only space really necessary

is a buffer area capable of storing a track of data for each of the SCC's

on the network. This would satisfy the situation where date movement is

taking place simultaneously on all the SCC's at the same time.

The processor power required is not extensive but the Intel 8018b would

be an ideal candidate for this application. A full lo bit date bus is

supported along with all the. features pertaining to the 80188 described

previously. This processor itself could provide a wide bandwidth DMA link

Appendix N The Envisaged File Server Hardware 119

between the network processor memory and the file-server processor memory

area.

Units built along these lines could be included in Multibus type file-

servers or even in P.C.'s with a bus structure similar to the Olivetti

M24 P.O. where it is possible to have a co-processor on the bus.

Appendix N Tne Envisaged File Servei Hardware 120

APPENDIX O EMULATION SOFTWARE

The software used during the testing of the emulator is described. The

listing at the end of the appendix is divided into logical blocks for

description purposes. Most of these blocks do however correspond to pro­

cedures in the software, A s t e p by step description is not given since

the principle aspects of the software have already been described and the

listing is itself well commented.

Initialisation of the 80188 The initialisation of the parameters relevant

to the emulation software in this appendix and Appendix P will be dis­

cussed in the order in which they appear.: UMCS - UPPER MEMORY CHIP SE­

LECT The upper memory chip select line (UCS) of the 80188 is active from

the location specified in the upper memory chip select up to location

FFFFFH. After reset this line defaults to be active over IK below FFFFFH.

Since in this application we have a 8K EPROM which must be selected by

the UCS line this register must be re-programmed. From the table in [4]

if no wait states are required, as in this case, the value for UMCS is

FE36H. I. this case the ready inputs on the CPU are also ignored. This

modifies the 3 least significant bits of the above value. The 3rd least

significant bit is set if the ready inputs are ignored. Hence the value

FE3CH.

Registers such as UMCS form part of a control block that may be relocated

within the 1/0 or memory map of the 80188. In this case the control block

is not relocated from its reset position. The control block starts at

FFOUh in the I/C space. The UMCS register is at offset AOH from the. con­

trol block base. Hence UMCSlGC (location ot UMCS) is FFAOH.

In a similar manner to that described above., MPCS is programmed from a

table in [4j. This register is for the mid-memory select lines MCS0-MCS3.

Appendix 0 Emulation Software 121

A 512K block, with an individual select size of 128K, is required. The

ready bits (bits 0 to 3) in this register refer to the peripheral select

lines PCS 4 to PCS6. These bits are programmed as before, no wait states

and ignore external ready inputs. Two additional bits are present MS and

EX which are bits 6 and 7 respectively. MS is used to map the peripheral

in the I/O or memory space. This is given the value 0 which places the

peripherals in the I/O area. EX determines whether there are 7 peripheral

select lines or if address lines Al and A2 are latched on lines PCS5 and

PCSo. EX is made 1 which selects 7 peripheral select lines. MFCS is

therefore 01FCH and is located at offset ARM in the control block, hence

MPCSLOG is FFA8H.

MMCS defines where the mid-memory block defined by MFCS starts as well

as the ready bits for the mid-memory. The peculiarity of the 80188 chip

select logic now rears its head. A 512K block can only start at one of

two locations vis. 00CQ0H or P0000H. This results in the mid-memory block

either overlapping with the memory area that would be catered for by UCS

if it is set at 60000H or with LCS (Lower Chip Select) if it starts at

00000H. In this application it is made to start ,it 0000011 and therefore

LCS is not and cannot in fact be used. For this reason if more than 512K

of memory is used, the chip select lines; have to be generated from UCS

and the upper memory lines. Again no wait states are required and the

ready inputs are ignored. MMCS is therefore 01FCH. This is located at

offset AnH in the control block hence MMCSLOC is FFA6H.

PACS is used to control the peripheral chip select lines (PCSO to PCS6)

Each of these chip selects is active for one of the seven contiguous

blocks of 128 bytes above a programmable base address. The only re­

strictions on the choice of base iddxess is that it must be a multiple

of IK i.e. the lowest 10 bits are all 0. If the control block is in the

I/O area then the addressee activated by the PCS lines must not. coincide

with the location of the control block. A start location of 0800H was

Appendix 0 Emulation Software 122

chosen. Two wait states are required for the Z8530 SCC's [9] hut again

the ready inputs are ignored. 1’ACS has a value of 083EH. for the above

mentioned conditions. This register is located rt offset A4H in the con­

trol block hence PACSI.OC is FFA4H.

The dynamic HAM devices require that each row of the chips be. refreshed

every 4 mS. There are 256 rows. If we use a method where the time between

refresh cycles is constant. we require that a refresh cycle be performed

every 15.625vs. (<tmS/256). Timer 2 of the 80188 is programmed to request

a DMA cycle from DMA channel 0 to satisfy this requirement.

Firstly programming the timer:-

Timer 2 was chosen to perform this task since event hough its capabilities

are less than the other two, it does have what is required. It is also

the only timer with an internal DMA request. Two registers need to be

programmed viz. the maximum count value and the mode/control word.

The maximum count value required to give the necessary DMA request spacing

is calculated as follows. The system clock frequency is 6MHz therefore

the maximum clock input frequency is 2 MHz. (Hardware cha"..cteristic)(4)

Therefore T = 500ns. The count value is thus 15.625us/500nS = 31.25. A

count value of 31 will give a 15. 5vs gap between refresh cycles which i s

acceptable. Hence T2MAXCNT is 31. This is loaded into location T2CNTAL0C.

The control word is set up so that the counter counts continuously, and

interrupts from this counter are disabled. A number of other parameters

are fixed as shown in |4). This gives T2C0NTV a value of C001H.

Programming DMA channel 0 will be discussed here eventhough the variables

are only listed later. The DMA channel is programmed to perform memory

to memory transfers. The source of these transfers is set initially at

the base of the memory 00000H and is continuously incremented over the

full 1Mbyte range. Phis lias the required effect since the row addresses

of the RAM chips are multiplexed from iddress lines AO to A9 and thus

Appendix 0 Emulation Software 123

these chanye with each DMA cycle. All 256 rows are thus cycled through.

The corresponding column addresses that may be generated are of no rele­

vance. The destination address is fixed at a location in the EPROM range

and hence the writes to this location have no effect. The terminal count

is set to 65535. This gives the following values for the variables DMAOTC

= 65535, DMAODPU (upper four bits of the destination address) = FFFFH,

DMAODP = OFFFFH, DMAOSP = OOOOH, DMAOSPU = 0000H. The suffixes SP and DP

refer to source pointer and destination pointer respectively. The control

wor-1 for the DMA channel is set up according to these criteria: The des­

tination address is in the memory area and must not be incremented or

decremented, the source address is in the memory area and must be incre­

mented, DMA activity must continue after the terminal count value has been

reached, no interrupt must be generated when the terminal count value is

reached, the transfers are source synchronised (SYN), select highest

priority (P), DMA requests from timer 2 are enabled (TDRQ), and DMA ac­

tivity must start immediately (ST/STOP).

|" |T QIC j MC "'DO' MC : WC TV err m P |td*o » i
*11
ITS# l,w

oemNAnoN
CKO/
RBCWJ

The first action taken after reset is to set the UCS line to FE000H and

then a jump is made to this location whore the remainder of the

initialisation cakes place.

The Memory Test The memory test does the following: The offset of each

word is written into each word throughout the entire segment. The contents

of each word, starting at the beginning of the segment, is compared with

the offset of that word in the segment. These values should correspond.

If they do not then the memory location at which the first mismatch occurs

is faulty. A similar test is then performed except in this case the com­

pliment of the address is written in each case. Again after the whole

Appendix 0 Emulation Software 124

these change with each DMA cycle. All 256 rows are thus cycled through.

The corresponding column addresses that may be generated are of no rele­

vance. The destination address is fixed at e location in the EPROM range

and hence the writes to this location have no effect. The terminal count

is set to 65535. This gives the following values for the variables DMAOTC

= 65535, DMAODPV (upper four bits of the destination address) = FFFFH,

DMAODP = OFFFFH, DMAOSP = 0000H, DMAOSPU = 0000H. The suffixes SP and DP

rofet to source pointer and destination pointer respectively. The control

word for the DMA channel is set up according to these criteria: The des­

tination address is in the memory area and must not be incremented or

decremented, the source address is in the memory area and must be incre­

mented, DMA activity must continue after the terminal count value has been

reached, no interrupt must be generated when the terminal count value is

reached, the transfers are source synchronised (SYN), select highest

priority (P), DMA requests from timer 2 are enabled (TDRQ), and DMA ac­

tivity must start immediately (ST/STOP).

11
"'raj owe i wc "'DO; | "C TC NT m p rowo * f

m
r*! •w

ocmNAT.nN woeno

The first action taken after reset is to set the UCS line to FE000H and

then a jump is made to this location where the remainder of the

initialisation takes place.

The Memory Test The memory test does the following: The offset of each

word is written into each word throughout the entire segment. The contents

of each word, starting at the beginning of the segment, is compared with

the offset of that word in the segment. These values should correspond.

If they do not then the memory location at which the first mismatch occurs

is faulty. A similar test is then performed except in this case the com­

pliment of the address is written in each case. Again after rhe whole

Appendix 0 Emulation Software 124

segment has been written to, the contents are read and compared with the

complimented offset. Again if a mismatch is found this memory location

is faulty. In this way each bit in the whole segment is checked to see

if it can be set and reset.

The code to, do this test is shown in PROCedure TESTRAM in the assembler

listing at the end of this appendix. The unusual exit from the procedure

is necessary because the first time the routine is used, a jump has to

be made to the routine instead of a call. There is nowhere to put the

return address for a call instruction because the stack cmi only be set

up after the memory is checked. The routine is therefore 'jumped' to check

the top most 64K segment. If this memory is functioning the stack is set

up at the upper end of this segment. All subsequent memory checks are

made using a call to the routine. Each phase of the memory check is in­

dicated on the diagnostic L.E.D.'s.

ini tial isat ion and programming of the Z8530 5CC (Emulator SCC) The

method of programming of this device and the initialisation required tor

the emulation software is described. This is done in the Z8530B_INIT

procedure.

If we consider only one channel of the SCC on the hardware level we find

that only two I/O locations are used. The SCC however has nine read reg­

isters and sixteen write registers. Some oi these registers are shared

by both channels [10]. Read register 0 and write register 0 can be ac­

cessed directly by the hardware by addressing the control register of that

channel. Write register 0 has its four least significant bits that can

be programmed as a 'vector' to a required register. If one wants to write

to register 10 for example a write is first made to write register 0 to

set up the 'vector' to register 10. A write is again made to the same

1/0 location with the data required for register 10. The 'vector' is then

reset back to 0 after this write. Similarly a read from a register other

than read register 0 requires a write to register 0 to set up the vector

Appendix 0 Emulation Software 125

followed by a read from register 0. The transmitter buffer (Write register

8) and receiver buffer (Read register 8) are exceptions to this rule and

can be accessed directly by addressing the data register of the appro­

priate channel on the hardware level.

The SCC is programmed to function as a Bi - sync receiver / transmitter

using NRZ coding. It obtains both its transmitter and receiver clocks from

external sources. The Bi - sync mode was chosen so that two

synchronisation characters could be specified and also since the bit-

stuffing used in SDLe/HDLC communications is not desired.

The programming of the individual registers will be discussed along with

the programming method.

The procedure called WR was written to perform the dual writes required

for most of the registers as described above. This routine requires that

the DX register of the CPU contain the address of the port to be written

to, the AH register contain the required SCC register to be written to

and AL contain the value to be written to the SCC.

The equates used in the assembler are the following:

Z8530BC - Control register of channel £ of the emulator SCC.

Z853UBD - Data register of channel B of the emulator SCC.

Z8530BDREV - Data register of channel B of the emulator SCC but with the

data bits reversed.

Because, of the dual write programming described above it is possible that

when one starts programming the SCC the 'vector1 in register 0 is set

pointing to some other register. Before the device can be programmed

therefore it should be brought into a known state. (In this application

this could he regarded as a redundant step since he SCC is reset on power

up). By performing a write to register 0 requesting register 0 and then

a read from register 0 we can be sure the pointer is set back to zero.

If the case where the vectoi is zero initially is considered, by ro-

Appendix 0 Emulation Software 126

questing register zero ue liave left the vector unchanged and the read will

be from register 0. If the vector has some other value in it then the

writing of a zero will put a zero in which ever register the vector was

pointing to and reset the vector to 0,

The channel is reset and then configured.

The configuration selected is: x 1 clock mode, 16 bit synchronisation

character, synchronous communications mode enabled, no parity.

The clock sources are: No XTAI. i e. the internal oscillator of the SCC

is not used, the receiver clock is input on the KTxC pin (from the MFM

decoder), the transmitter clock is input on the TRxC pin (from the MFM

encoder).

Register 10 has various control bits that are programmed as follows: The

CRC generator and checker are preset to all ones, NRZ coding is to be

used, a full le bit synchronisation character is required.

The control bits in register 14 are programmed to disable the Digital

Phase Locked Loop in the SCC. All the interrupt enable bits in registers

1 and IS are all disabled.

The initial synchronisation characters programmed are 4EH bytes corre­

sponding to the contents of the gap 1. See Figure PI. Note that the bits

of these characters are reversed since when they axe written to the SCC

they are not reversed by the hardware.

Finally the receiver error hits are reset. The transmitter and receiver

th vnselvos are nut enabled until the track emulation routine is called.

The actual CRC polynomial required is chosen by one of the bits that is

in the s a m e register as the transmitter enable bit. The required CRC is

that used in SDLC communication* viz. x 1* + x 11 4 x' + 1 and is selected

by resetting bit 2 of register S.

A brief description of each of the remaining routines.

VEC.TBL.INIT Event hough interrupts ire not used in the software the

interrupt vector table is initialised to a known state. Each of the vec­

Appendix 0 Emulation Software 127

tors, which consists of the segment and offset at which the interrupt

routine resides, is directed to a dummy interrupt routine DUMMY RET that

merely returns to the point in the program at which the interrupt oc­

curred .

NET_INIT Initialisation of the SCC channel consists of setting up the

transmitter and receiver for SDLC communication. The DMA channel associ­

ated with the network is also initialised. Each of the parameters for both

the SCC and the DMA controller are described in the order that they are

used.

NET_CONFIG - x 1 clock, SDLC mode, synch modes enabled, no parity

NET.CLK SOURCE - No xta1, Receive clock = KTxC PIN, Transmit clock *

Output of the baud rate generator. TRxC is an output and carries the

transmit clock. (Note in the testing described the transmit clock was from

an external source)

NET_CRC_MODE - Preset CRC to all 11s , NRZ coding, send flags on an idle

line, send flags after a transmitter underrun, disable loop mode.

BBRGENLO and BBRGENHI - Divisors used for the baud rate generators. (Note

the values used here give a lower transmission speed than that used in

testing)

FLAG - Contains the SDLC flag character (7EH)

NET_ADDRESS - Address that the receiver will respond to if programmed to

operate in address search mode.

DIS_INT - Set all the interrupt enable hits to disabled
NET_D1SDPLL - Local loop-hack disabled, iv auto echo, set baud rate gen­

erator source to the SCC clock input and enable t h e baud rate generator.

NET_RX CONFIG - ft character bits, all other functions disabled

DMA1TC - DMA terminal count set to 1 less than the network packet length.

DMA1DPU - Upper four bits of the destination pointer set to zero.

DMA 1 DP - Destination of DMA transfers set as the data register of the

network SCC.

DMA1SPU - Upper four bits of the source pointer set to zero.

DMA1SP - Source of DMA transfers set to the NETWORK PACKET address.

Appendix 0 Emulation Software 128

NETDMA1CW - The control word is set up as follows - Destination in I/O

map and address to remain unchanged, source in memory area and must be

incremented after each transfer, DMA activity to cease after terminal

count reached, no interrupt on terminal count, destination

synchronisation (SYN), low priority channel (P), disable timer 2 DMA re­

quest (TDRQ), start immediately (ST/STOP).

is
"'raj D«c i me M (Oj oec I inc TC INT T 1 ’ two! x I t

oetnNATKw •ounce Moewa J

NET_TX_C0NFI3 - 8 bits per character, all other functions disabled.

NET_SEND This routine generates data for the test network packet and

initiates its transmission from the SCO. The information included in the

packet includes the address of the node tc which the packet is being sent

as well as the current variables from the emulator. The first data byte

is loaded into the transmitter before resetting the EUM latch for the CRC

transmission at the end of the packet. The DMA request function for the

transmitter is also enabled.

"TRACK _LIST_INIT The track cache index h o be initialised before use.

In this case the 42 available data block ^re assigned to the two sides

of the first 21 tracks of the disk. The drive number and application

number are. initialised to values that would not normally exist during the

emulation process. The various records making up the index are initialised

as well as. the pointers to the respective data areas.

TRACKO.IN IT This routine initialises track 0 on the emulator to the

state that the corresponding track on a physical disk would be. in imme­

diately after formatting. Procedures FIRST, SECOND and SIXTH are used to

initialise individual secton; to their required states. FIRST is used to

fill the bootstrap sector (sector 1) and the second sectors of each of

the File Allocation Tables with zeros i.e. sectors 3 and 5. SECOND gen-

Appendix 0 Emulation Software 129

crates the first sectors of each of the File Allocation Tables. SIXTH

generates the contents of each of the sectors occupied by the directory.

S C A N _ TR A C K _L IS T This routine returns a status whether a particular

track that is required has been found or not. If the search is successful

a pointer to the data area required in the variable TRACK_SEG. Parameters

passed to the routine include the required drive, application number,

track number and side number.

Note that in the assembler listing that follows a number of brackets that

would normally be square have been replaced by round brackets for

typographical reasons.

Appendix 0 Emulation Software 130

Xk

Q O
w w X
— (/) Z
< 3 3
U)

ZUJ — <Ul zo x w zZ u. < o— Z u.
W o 3 K
CD ~ X X z o— O 3> < < UJ z z
-J O Z O UJ

t/)z - to X z
uj a. z to X•— Z Cl uj l*.

<0 Z < CL x O- 3 O \-J o — to X H-
z z z

x UJ u, C p o SOo > z — 5 z 00
< — Z QJ r-Z Z =3 UJ UJ oh- Cl U tO Z oo

a:

so
oo

$

i °

a

§ocu c — 5ou>ooooo«roooou

(\J

— Ou

* o «y S

>
<w
QC
O

<r
Q.

oo

<

5

c.
Q.

t/)wX

_J

2wX
CL

cc
UJa
r~.

%

x
OJ

<

tnacu,)Q:<<^2:-
< < k — —
o o tn o

V)
0
1
2

1
o

in
in

o — o —
w tC w (/) c: — cr —

o c
— — Uuc o: o c:
o: K
— < — <

K Z - Z -
u . o < O < — u o u o
< < CO CO
-J__1 -i
W W W W

i l l i
= = = =u u u o

O 3 O O K— u-' s: —t/) V) — 22 —
<r s: z a.
lu c X D> > U (T K
-J U. < Z
z x c r -
co < *- — z 0. £. —— - r =>
w W z Z
z z z z o
3 Z — —
< < — — Q

(J O — — uJ

%

X S X X X X x x x x x = x xcoecti\cx^xvot\.o>- x x x x x r r r r . = = = ocec.-\-j
u. ui u. o u. u. u. « u. w o o e o e o o o e o o c e c c o c o i - — — i- u-u-^-uu. — u-ecu-u-u-U — - c o c o — c r c r c c — — - —
O O O O O O O O C O O O ' ^ O O O O O O O C X O O O O O O O C O C C ' O O O O O o o o

-

8 5w — u i/) </) v>

! g 2 § 3 § s § 2 3 § § 2 2 §
X
O H .

UJ < UJ H- > Z X
UJ — ►- u</) «- Z Z I <

UJ O ^ O in O -J z a .
-j z o u. — i a. w i
CC i Z OOl / } — *- CLO.Xt < a ix i i i* < iocCO -Ox IX x x IV) o<6 ih-ULuuuuaca:--!o uo<o<<<xa:Uf-

oo luwo: — a s x x o u j u jt >i/) — v) — — — oui/iz

Appendix 0 Emulation Software

c 2
1 U ='= = = 2= o?:$ s 2 3 s : 2 5 x 5 £ x 000'c!,0::,0,0,{7oc?® o a c y o o a o a 5 5 5r'5'555o

X $X CO h-
z z o
-5 o

8 8mm' rnj
to a) c/3

5^
° 88 8 2

(/) CO

1 1

10 V)

is
<J) c

CL ►-
y orvj ru

> >
<- u o uo^Z-NNNNI\C = L: = = =.=-UQ:<<x:~2-<<srx< _ z x o o o o = % = : = z = =

C I >- ITV 1X> iA S. J' ^ —cvevooooDcoeosocrefsiiCKX
► -► -O NNN rsi — Si'sN N jN iiS i —

131

o
at

y - O
§ 2 =

<

.

> >

II
zi

V)
(X

55
> >■

8U E 5

25
5 5
§ 5
g :(/) O u. <

2 §

1C1 1> > (/) (/)
:o xX »- (X g< i— % — #— V)

S3 <
53 CO
O sO %X X

5 5
< U. X <X Z < II X
: S 3 n - - x

oX X X

d d "c
XXX l i

ruuxui^v^h*. I/) X — Z X U. »
X Z X X J) X x X

O u tnu. UJ UJX X X Q
u:(/3wi-X
X X < %
® oo 2 <

— u u > c
ISxi^SEuJ X «— w — w U w - Ui - X > XX-Je-w X»*U —< X ww — Lw *W— < (Z, u1; x n u-XXU.U.ZLJXUI CU.WJXX — xzx

= 35 5■*. < u. ̂25 (/)X 1C X X

i l i i

l i ? =»- LU CZ> (/)

x x x x x r X X
C O O O O O C O

i o S S o S o B g B B S S s g s S o S o g B S S B o g B S g s s s B B g B B s B B B s s S B B B s i B B B g i g g

u u
S34 - = B^ =Ui

3- X X u c u«<= £
- U' Z u. > | v. - v r = -• v s z z z a: — z o ac tr a. — r z o s. - c zU. 3 -J X C <-3<U. = - . U < - « —r w. 3 V) i u u. * y. 3- = - 3 3 z ie e < — z z r - w. 3 v; $ u. u. a. y 3 v — zz c 3 z z y y w z < - i w w u <- u - — iz ̂ vi r — - c x x x y 5 x x ------- .- z - - a- is; - z z - - -x u 3 x r 5 u 3 « - — - 3 3S— rvmsry'S’̂ aua — --- — — — 3 X X w o ̂ u 3 — 3 3 3 3 u 3 Z 30 0 e u c u 3 0 0 0 U 3 0 y u v) z * 3 3 ---- 3 < y y c T 3 - i3tn«- iy y z 3 u < 3 z z - - - < ---- 3 -----

w w w ^ « u u w w ^ . w J » u . w * . — C C X X U U X X wJ — X — *— X X u . » > X X X - > wn — —. — w w w X * — *»X U U X X X X < X C X X O X X - O X u J X X X U Qx x x x x x x x x x x x x x x x
1 I

•*. ** ^ h*« — » 1* — — * • •— •* ■>•u-XO*-̂ C/3Z. X X Z » r 2 Z < X X Z

Appendix 0 Emulation Software 13:

v .*i <• .

1/

> >
X X< < ^ z
U. Zt — —a. clC Oz z ou

x X‘ * X Xz z — —
— idJ

x .X55 %%

IT
c:

s

-cO

o < cc < - a:
a: < w :<C3 : = z : u e: d o) O u. <t
«J V10 (0 CD < c.z z z X X Xz Z uJ c uJ X WX c- a. X 00 < X to <X 3 < r z

05 Z Z fv. U U 3 X t - X to to<> • X X mJ X < 3 < - X X Xa. (/) (/) {A X z < # X8 X x z s CD < X X o X
X II n < < < 1 z 3 X w X X</) X X X o — s r u c o oX Ui 50 CD W -Jw O K Z C U < L)to to < u.U U w u to X Z X UJ - 3 to
Z ■0 r X f f i z z a. x X X u u > 0 X 3 X to X XC/5 x cr z < < o wJ X X Z X $ to X X x UJ < << X X c u X X 25 Ly t/5 U UUJ X u 5«JX X < < 3 u -j to10 X > X u.

ac £ m X OU X X X u — toc X< U o X X W wJ < X Urf < u, S L. u- zV5 C O X w L3 (/)(/></) CDCO < to </> < to to to NJ < zu u.1 O p w w w z to z u . Z UJ X UJ X > >O X x a: x z z c or x x x o ooC O w < O u j ^ u X X X z X — UJ toto

i

z - j i t c ^ z -C - V c X U w s
v: a. - r s c ^ - c rz =" Z coo:L3 u x c — o < u. - — 2 v; r uj u.

Appendix 0 Emulation Software 13:

l/> I/) —

ZZ %
u- u. Ou- C OO-O u. u. u.(Nj Cg C O O w

a.

5

UJcn Z
5 0000

E
g

El is
® »
g:

XJ
) u> t/> CA

i E i l s s

I?
5<aia — —</></) V)

OCX' 5 O ^kA'aoO— '——"O u. X X X < O O < o: 5 5 5 5 5 5 5 5 5 3 5 $

xu^uCaiau
■ l i s i i l ?

5 5 § 5 & g 5 5 § 5 S 5 g 5 5 i § § 5 5 § 5 5 S 5 5 5 i 5 5 5 5 5 § g £ & §§5 = 0
W WWWW W W W W w L J W W W W W L w W wJWWWW uJ u-Xin

o >* > — :
glio!

■0 «T < — ■■ D w« 3 *i (.' 6. a o. a % u a a a a % ± u <) — ccvotA/U— comiruo — ocmmu. ix iu uj ;o: w w ̂x ac c < o z ►-
i a a a a

iz i
U u Of t - I
u. u- u, u.' O *-
ra — o u. u. —x x x
IO IO — W X ui v: 3O lO lU- O u. — _ <

X O X O U. _IO O |ix ixoo _
' O O C C O — — — — — — ^ '— — — — —

■:3S. O II

Appendix 0 Emulation Software 133

,JP '• > » » %

l/l
CM-)

Appendix 0 Emulation Software 134

u V

O X

CZ)
6

8
QC

1

m xU) u a: a: u
UJ X w 2
S s S S -^ % W M. to</) »» 06 c/5 -

i

8u.
0
5
1u.06
V)

i 8

I ;

- a. z <

</>

«« X -*<- -J (— o < — < <

g j

_» e l— - U — V5 I<«— «.»< w * o
H i s i z i

1 1

<
8
in
8Hoa. wuJ t/)

h 306 O
8S2
u s _w Z O </> w

5 f lCj ^ W Z Z WK3 < </>

</i x —

, ni f
8 J
UO w w
C/> </5
z xX
x x _ at W O O

CZ)$

<N. > <

o

II

e a ;

% 3 «Z O w
U Z

i 35 *
o o 8
X Uz w w

w ffi (Z)

| h

< - < to z►- *- co O< — y> lu u.O w xlf> W X #- X X o
^ ̂ w.►-X —»(/) w wxx Z XW U < w < O w oz - z 2 •X .u Xx» i—»co w

CZ) X |
ZV,'S
< uuZ w w- to IZ)
Z Z Z O XX ^ x wX X X w |

CZ) XO w X IQ: x <) > > w z ru

ow
CZ)wX
g WMX COflO XX —*oozX XXX X z3 x XX Xto o xX zo oX X zo < -zw O ao

CO x ̂ w Zo co <z
p O x x —5 x cz) x o

tz>w

5
o

$

IZ)

:S£ 5 Si
CZ)
o

CZ)xxo
wXx
O

Z X x

CZ) w C X

{\i — O Z UJ •- (\j (/)
m z 3t V> h- m«-

O uj u.- «e o
5 2 ;

z
$w
CZ)

5 S < 3
W Q Q W
— — OW W W X
CZ) CZ) CZ) CZ)

•- M V)

5
wCZ)Xfl

8 C
X CZ)

rz _
< x O w |W H #"
2 - 8O w UW X cZ Z w
x S 5CD U Wx x >wx Ocz> cz) f

- I

58CZV M
X X X
5 g S
CZ) X Xx Z O z <
X wx > X Z x x O X

X - XX Xill

5 :CZ) O —o cz) w z
0 Z Z 36% O w w5 x 0
Z X - O
1X o x X <Z X o < x
X Z O ° Ou X X X Z at X xx

o O < XX u O Z X
U — w »-

X XCZ)CZ) — 5

CZ)
XxO
$$ HCZ) CZ)Ox <

p CZ) X
§ : S 3Z O X CZ) fv Z
r-> — x

o 5 5
- 2 5 < - - <- — — — < - - - X o

l i r -
S 8 ° S Ea. O x x
8 X ̂ Z CZ) x CZ) Z — —

)Z(ML ___Ex-jiOZZx-j

8 J ox J
- 8 8 5 3 2 8 8 8 5 8 2% » • % X * • • * • X

£ 58
COO-j oo

X c Xco o m— o 5
i8253 $28553=^885553 $5535

• > <« > > > >- >•->>:
! i 5 2 S g 8 g E i 8 5 5 $ 8 $ $ i

i
h '— Xto z

; m 5 i
• -J u z
• 3 3 8

8 > > V) a 31-

*5 xz to 3
COX zX XX x z

to5XZ
to
X
$

Mz
to
X
X

Appendix 0 Emulation Software 135

/ f / #- > ' Tl H ■ /!)

5 5 1 h i i Iv> vi b ■* >< x 5 ir-j-j o oc x = _ s-j x j s j x-j z-j v) _j r _j - -j x-j
» ~ 0 3 V) < 0 0 0 < < m i - *- ® 5 < < < ffl < < < U < < < uj < < < O < < < ►-* Z • %0 * * * * * * * " t/) * * x
W X X w X X " - X X X - ; X X X X u j x x x x x - i x x x u x x x - i x x x - x x x - j x u :
l B « X 4 U e z > < X O « O O C D u J — < 0 0 < 3 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < o x

« eew wI I
V> V)<“ • *-- X X

1 X X

r w f l p

o

Appendix 0 Emulation Software 13b

Al
.B

CL
H,

SO
UR

CE

SE
T

UF
CL
OC
K

SO
UR

CE

a.
•a c

V)
Q.3%lT> rc

<LD
5

</)
q:
>UJx

IO

Xw>w
or

xw

I

£ 5
03wOC

Uuj
w V>
-J w
K £

uu — W (/)

ww o os u co u e ooc u <(/> w < UJ < Uf < UJ O W V
uj —J </> — u5 -j V) u O —j (w — cn o I - UJ X(/) O (/> x

OC a- a Lf> —
o u o S o v)u. —

bc aUJ I UJ —
x to x a

! $ £ $ $ < 5 5 £

— Ic tn
X

3 *
£ vi

5

i
$

W W >0 U ^ U >
o >• o >w V)

X

w X

o
UJ
X

V)

I
a x
UJ iux h

l o ix w
X wo — m

^ Bo
C/> 'uJ H.
u- X
X UJ tz> >
- X 3 X2u. w — O►- < - a1/5 > uj UJ
X - X X
1 O UJ <Q

IZ) XLJ £ < °

V) x X

UJ(/>(A w
X X
g 1

o r X
w v X -J
X (/) UJ <

<x -j e6 U X
< < !l « 3 X

x O X </> t/5 uj 3 — — w Xu> >

c/>
U X< w
X X— w

g -w o

X U > UJ UJ
UJ o X ►-

§ £ £ £ §
• * •» •• • •

5 5 £ £ S l 5 §

5 u . ° =
w X uj U X

VIU j O ffi UU —
t/5 Ui X &J

o
r ̂ o w wW — U- o X z

^ X 31 H -< u. X u.
= 5 3 = 2 8 8
2 x = E 2 e

X

i f) e « o u uj w
O 1/1 O U L- > O Q -J > < 3w < — V) </5

5
^ O f- UJ lAU- -1 UJ </> lA V) X (M

5 $

5 1
£ 5 5 5 5

I* ™ O O u. i/\ —
UJ X UJ » lA V)cc (a o /iooai —

U V):e o x v) x x - x v ' - - < a -<aeD«vioov)v)ov)

!58i5! M !5! i s i i s ! ;H l 8 £ £
■j' U. U tt. u- ►. _ V5 > o x U.

85£8£ £2822£ 8 5 :
£ 8 1 H i

Appendix 0 Emulation Software 137

. /•.. * » '"" . > .

w

M X

X% O —
O OO 06*- CL - ODO o *-

W H» UJ W06 u j a: cA
CA w••o u ?UJ w U# #*-JO - J

u i 06 U I w
CA g CA O

(V m

QCH>
wouJ06

to O P"

a
>u,Uu.(L

w — Lw — W Oec > k > a <
o

oc >
o

w Otilv) m
I o

o«L. ■K >

5=
V) 03

oca
U . V) 06 W

o
UJ
a:

u tUj «ow o
 - •*
u j O wCZ) (A CA V)• CA

5 8 <
< X X -J* * x‘ Q < < O O XXU,

A Se w -j M K 4 >
z 3 « c :

•“ u op _3 1 ̂ I I O •- O ̂ O ̂ I ̂ I I ̂#- O — o 006 006 O < O ’- OCA O — C —w w UJ uj uj uj uj 60 u* (£ u. u w w u- — u. W UJ wwIo *W CC
06 ec5V

T ll

Cu.06
#—
-
<z a
K
8

^ oGJ

o-w u.

:: w- O
V) Z

Xx

K u X * K Q
§ 5 ^ $ $ ^ $ 5 < 5 5 3 $

L

a

5 < $ § 5*

Appendix 0 Emulation Software 138

> 4 ' V

8 y 8■■J 5 uO 3 u 3 3X X X X a a.o o o o V) w A.m

06
§■►» z- r ...

x $ 3
o

* (0 u
< o 1 1W% 06 c o% - u Xass 0 06 XO uj uj W H------- - ouj u. CD 00 u; X >-c; z < < Z Z UJ

O X X V)
*— U uj w

U UJ z
w UJ (/) ••
u o — w
w — - X U1Z) Ur
“ I "5D Z Z ►“ 1U O UJ UJ

I I I 552< x x o UJ Io — o: X —
mwr\ 1 u 3x55J> O *- ►- 1X cc Up UJ UJ X

< N Z Z Z •-
w Z WZ uj Z

5

i
I/) 61
§

O (N. ifN nO 06

(OU)

l $,IW

< < < <

i i j i
I : !

W — u. X U X X — X — X X X < W w
l/l — l/l •«X C 2 X g % O p p (0 -J </) ••

3 • - * •• O 3 3 0 3 - 1 —$ $ IA _ ly u o * k •- i — - x - o — — u x uO'- U U w w w X w W k - w X w X W p w O X O O
- 5 fy (A - Z Z Z Z < Z I X S Z N O (N wl— — i— X — i— < Q *X

X X K K X X U X U X O < O - — — Xf - X — < — O — W I O W X X 3 X O X X X — Xifxe- lTv 5 V)X U U <- (A ao U. -100 — w w 1
X 0 < U - l K — C — U.— U I N , Z < I M X X — X !

555£§55£35£5555555<<5$5«<$ ^ 5 5 8 l 5 ^ 5 l ^ ^ t i S 6 5 ^ $ $ 3 j$51S

i$i&;$ 5 5 S i i i i S i $ i i $ £ 8 § 5 i $ S 5 z r z E r £ E $ £ $ £ £ $ £ £ i $ $ l $ £ £ 5 5 E E 2 2 E

zUJV)

Appendix 0 Emulation Software 139

U v

§
-J

Q%
<

Z u.

®S

°£
£; tZ) w w C

— o >•-

I I j 8!
w w or a.co irj o <
< < coco

d
!/) - — coazzcoco

— — — —

tf 5 * 12s
ac oS
< •• •

z o o

ct cc >o — w-
O S u.1 o
35 < i !

O •“ o
— — o OC1
u. w o -*• . UJ

O O —*1*. u. xI tu u. o — —8°.
I i '- W w w

O o u.

CO CO I
♦ •

CO to ̂ 1 CO to to COI*
co 5
— ♦
.'S

U. lO O o c 'S.
IUJ w |

S 2 3 Z
2 5 5 2
+ + + ;

to CO CO to

u d

^ 5 = %% % % : :a x - x x x x u .»- co #-#-»-#- ik-
UJ X X - X X X X X *

XX X x X X ec u i
C W X

UJ O C O CNi X O_ _ ►- x x r - »<w — > x > K X > c g x - x v to x - x w(j x 5 5 ̂ < to i-

* = . u
^ UJ Ud lUd <

• o *- Jt *- X

o
as
to

to<
u>

:II
K* W —n _i — o

h'X— X
J",IIu o i— x x -K — — O O Z — < < O

< • » » »dr » » * *UjXX-ZOXV)^ -r « to a o (7) « w a o

o of- X ► ■ Xv) o v) o z u z u
u. V) u. IZ)

>- s s s x a w ax x x x * •
u. V) (Z) V) V) <

- Is
W — CO >$! .
— X

2 < i11 i
5 ® B a . =
H i - i l

to

I mJ mtJ tmJ mtJ wJ mm
‘ ® > > > > > $ u u « > g. > > 6 . > >-» » o o g « - 8 > > > > u > > > o a c i L - j - - , - - . - - j - > > > > > > ^

:5 E i 8 k i 2 S u ^ ^ i ^ £ 8 E i ? £ $ i § 5 ! s £ £ $ £ E 5 i i £ d h 5 5 S 5 5 5 5 5 $ l $ z i £ 5

CO

= 8

35£
2

Appendix 0 Emulation Software 140

/>

o
oh-
XuJQ

%
*LUQ
<
Qw
X

g
o

u»o
acwQ
Z

XwQC

Ow(/)

<H - x x-xxz»< X O »- *- K-. . . X X Xx c/) cz> — — —-
< UJ O o V) l/> tz>

cruu-U
UJI/)
XUJa
(/)uJ

O
uwX
s
u .o
6

XC\J o — X
X OlACZ)< * »o
UJ _J X »-
Z < u </)

X X Xc X G\ oL C X SO o oX c o o in co X l*J x c o ̂ co< . • -o < . X < * - -oUJ _u u -J X N- UJ X X — X f- UJ _J -J X h-z < < < 0 (0 z u U Q O (0 z < < O CO

X
O CO

cu x
w
o

> K
to

g § w
w o

o
UJ || Z X -J
X

x < x c-J 5
II o X w —- w
X . W W W
< o o X c W o

z z h 1 o o— o « n 1
c o w i z c z cx Q I Z z
110.— X w I X 1

< 10 w > w O w
<0 — — X < o
c o o Z X x X

o o C O < h- to10 W w C *f «♦* 1- 4
w X X
X co to CO to
X II IIto
CO x X O f - f-
< X c _J ro CO to to

W W W w
x ! X 1 X 1 X 1I 1 1 I
f- > w > *- > *-
w QC •— X X —
X — X *- X - X
— o z — o z — Z ‘-

C\J I I 1 Z 1
X o - y w - i — O X — w 1— Wl
< - X x X < X *- O X f-
w — X > X W C X U . > — — >
z t O (J X < Z 3 — z x c o z x

x a m x
- i - j - j y u u x -J x y in yO > > tt. i~ 0 > 0 > 0 0 > > a - * - O > V) _i Q. O >- O > C > > a- h- O > > a a. o- £. c. a. a.

H"V)
u
X 1
<a. 6" OO »- .. * * O*- 5 z u I uj i *</> O *- W X > -I X Ix u x k < — e. < o

— UJ — f — (J x x x —
u. cn co c/5 o c/) o < ~ CO

Appendix 0 Emulation Software 141

Nz, m d § l

>QC

I 5*

Appendix 0 Emulation Software 142

„V'.. , , " W V t , „ ■ k

APPENDIX P THE TRACK EMULATION SOFTWARE

This routine forms the core of the entire disk emulation process. As its

name implies the routine controls the emulation of a track of data that

would normally be read off a floppy disk. This routine also accepts data

that would be written to the floppy disk. The track that has to be emu­

lated is shown in Figure PI and is described in detail in Appendix A.

The track emulation procedure is described below in terms of a high level

language. Procedure names that are in capital letters relate to procedures

that can be directly associated with characteristic features of the track

of the disk as shown in Figure PI. Procedure names that are in small

letters are procedures that are required due to implementation details.

Bracketed procedures indicate procedures that have been split but con­

ceptually should be one procedure. The assembler listing is at the end

of this appendix.

It is assumed that the communications controller has been programmed

previously See Appendix 0.

Appendix P The Track Emulation Software 143

' 5#

X l V"

w w

:: 3.1

X

dI>.

rxj

u- d
a

o

mn

ce*'

m

•H
d
E
L
0
L

J
d
<.

inc
CL'
C
_Cj
5
3
0
Q

V
n

E
(Li
-P
in
>>
(/)

m

Hi
_c
h-

U-
□
£
d
L
O)
d
o

ai
L
3
CD
U.

Appendix P The Track Emulation Software 144

i

V - >■ -i / ■ > A

PROCEDURE Track emulate;

VAR

n,i : Integer;

track number, prev_track.no : byte;

BEGIN

set data source pointer,

INDEX_PU1,SE_ ACTIVE;

start_tx elk;

GAP (4EH.77); {Remainder of gap 4 }

set synch characters;

GAP (OOH,12); {Synchronisation zeros of gap 4)

enable address marker generator;

INDEX.HEADER MARKER; {Three C2H bytes with missing clocks}

INDEX.PULSE INACTIVE:

n :* no.of sectors per.track;

FOR i:= 1 TO n DO

BEGIN

'GAP (OOH,6);

enable address marker generator;

GAP (OOH,6); {Synchronisation zeros of gap 1}

reset com latch;

reset tx ore generator;

START CRC (A1H);

HEADER MARKER; {Three A 111 bytes with missing clocks)

enable receiver;

1 1) ADDRESS MARKER; {FEH byte }

SEND TRACK NO;

disable address, marker generator;

INDEX. ADDRESS.MASK; {FCH byte)

-GAP f4EH,1);

!disable_address_marker_generatcr;

LGAP (4EH.49); {Gap 1)

Appendix P The Track Emulation Software

SEND.SIDF._NO;

SEND_SECT0R NO; (=i)

SEND SECTOR.SIZE;

SEND_CRC;

GAP (4EH.22); {Gap 2)

rGAP (00H.6);

I enable, address.marker_go.norfltor;

LGAP (OOH,6); {Synchronisation zeros for gap 2}

reset_eom latch;

reset_tx_crc_generator;

START„CRC (AIM);

HEADER MARKER; {Three A 1H bytes with missing clocks)

DATA_ADDRESS.MARKER;{FBH byte)

set_data_dest ination_pointer;

get_data_segment. pointer;

-CAP (d<?ta[l),1);

disable_address. marker_gcnerator;

LSEND..SECTOR (511); (Emulate actual sector data)

SEND.CRC;

all_characters_rece ived;

rGAP (4EH,10);

!empty_receiver_buffer;

|disable receiver;

LGAP (4EH.40); (Gap 3)

disable crc generator;

read (track number);

if track_no <> prev,track no then goto ABORT

read (head number);

if head number <> prev head no then goto ABORT

END;

GAP (4EH, 100); {Gap 4)

:ABORT BEGIN

Appendix P The Track Emulation Software

stop_tx_clk;

return;

END;

END;

Most of the above procedure names are self explanatory but three that

should be explained here to complete the above description are GAP and

START. CRC and SEND SECTOR.

PROCEDURE GAP (byt : byte,

no_of_bytes : integer);

VAR

i : integer;

BEGIN

For i :» 1 TO no.of.bytcs DO

BEGIN

REPEAT

UNTIL transmit. buffer_cmpty;

transmit (byt)

END;

END;

The transmitter is polled until the transmitter buffer is empty. In the

assembler implementation the byte to be transmitted is passed to this

routine in the AL register and the no of bytes in the CX register.

PROCEDURE START CRC (byt : byte);

BEGIN

REPEAT

UNTIL transmit buffer empty;

enable CRC generator;

transmit (byt)

END;

The CRC generator, having been reset previously, is enabled just before

the transmission of a specific character. As above the required character

Appendix P The Track Emulation Software 147

return;

END;

END;

Most of the above procedure names are self explanatory but three that

should be explained here to complete the above description are GAP and

START CRC and SEND SECTOR.

PROCEDURE GAP (byt ; byte,

no_of bytes : integer);

VAR

i : integer;

BEGIN

For i :* 1 TO no_of.bytes DO

BEGIN

REPEAT

UNTIL transmit_buffer_empty;

transmit (byt)

END;

END;

The transmitter is pci led until tie transmitter buffer is empty. In the

assembler implementation the byte to be transmitted is passed to this

routine in the AI. register and the no of bytes in the CX register.

PROCEDURE START CRC (byt : byte);

BEGIN

REPEAT

UNTIL transmit buffer empty;

enable CRC generator;

transmit (byt)

END;

The CRC generator, having been reset previously, is enabled just before

the transmission of a specific character. As above the required character

Appendix P The Track Emulation Software 147

is passed to the procedure in the AL register. The transmit CRC enable

bit should be in the desited state when the data character is loaded from

the transmit data buffer into the transmit shift register. To ensure the

proper state of this bit, the buffer state is monitored until it i$ empty

i.e. the data would have been transferred to the shift register and only

then is the CRC enabled and the data character loaded.

PROCEDURE; SEND.SECTOR (no of bytes : word);

VAR

i.RxD.CHARS : integers;

byt : byte;

BEGIN

RxD.CHARS := 0;

For i ;= 1 TO no_of_bytes DO

BEGIN

IF char.ready AND (RxD_CHARS <512)

THEN BEGIN

receive (byt);

RxD.CHARS :* RxD.CHARS + 1;

END;

IF tru smit buffer empty THEN send (byt)

END;

This procedure is responsible for transmitting the sector information

during the emulation process wHle at the same time accepting data that

is being written to the sector.

Most of the above mentioned procedures can be followed easily in the as­

sembler listing at the end of this appendix. Only aspects of particular

interest and importance will be discussed. The constants used will be self

explanatory in most cases but all constants used are defined in Appendix

0. The peculiarities of programming the SCC will also be described there.

Ap endix P The Track Emulation Software 148

An important aspect to remember throughout this routine is that all D A T A

written to or read from the SCC has its bit order reversed i.e. the reads

and writes are made to the Z8530BDREV register. It must also be remem­

bered that channel B of the SCC is used for the emulator but the DTK line

of channel A is also used. The bit functions of the legisters most fre­

quently manipulated in this routine are shown in Figure P2.

|p.io.]o,fp.|t),!o,(o,[5̂

Lt - T« CMC I N A iU
— AT*

L.'. nrc&c*c<i
---------- ft «NA*ll

------------------------ IC N O M tA A

T« I i l t l 10* K U k C H A A A C T t*
T i I SITWCHAAACTl*

T l * AITt/CHAf.ACTIA
T i i •ITKCH AA4C TIA

------------------------ - OTA

Figure P2 Bit Functions Of Write Register 5 Of The Z8530

set_data_source_pointer - As is explained in Appendix I on the track cache

implementation the offset within the segment at which each data block of

the cache starts is zero. The SI register which is the source index reg­

ister must therefore be set to zero.

INDEX_PULSE_ACTIVE and INACTIVE - Setting and resetting of the DTR

bit in register 5 of channel A sets the index pulse active and inactive

respectively.

start_tx_clk - Setting RTS bit in register 5 of channel B enables the

transmitter clock source.

set_ synch .characters - Th" synchronization characters of the SCC are

initially set to 4EH so that when emulation begins these characters will

be transmitted. These characters are also used by the receiver of the SCC.

The synchronisation characters are chosen to be the last A1H byte and the

data marker of the sector i.e. FBH. In this way the first data character

that will be assembled in the receiver is The first data byte of the

sector being written to the disk emulator. These bytes have to be reversed

before they are written to the SCC since they are not reversed by the

hardware like the other data bits hence the DFI1 instead of FBH etc.

0 0
0 1
1 0
1 1

Appendix P The Track Emulation Software 149

enable_address_marker_generator and disable ... - Setting and resetting

the DTR bit in register 5 of channel B enables and disables the address

marker generator.

reset_eom_latch - For the CRC to be appended to t block of data this latch

has to be reset after the first data byte of the block has been loaded.

When this latch is set again when no more data is supplied at the end of

the message the CRC is automatically appended. This is done by issuing

the reset EOM command to register 0 of channel B.

reset_tx_crc_generator * The CRC generator has to be preset before the

calculation of the CRC on the forthcoming data stream can be performed.

This is done by issuing the reset Tx CRC command to register 0 of channel

B.

SEND_CRC - The SCC is forced to send the CRC calculated on the data

by causing the transmitter to under-run i.e. stop providing the trans­

mitter above. The EOM (End Of Message) latch must have been reset at some

stage between the first and last character being loaded into the trans­

mitter. The way that this is done here is by forcing the program into a

loop after the last character of a block is sent. This loop is terminated

by the EOM bit being set which indicates that the transmission of the CRC

is in progress.

set_destination..pomter - The source pointer is cons m i ly updated

throughout the emulation of a track of data. The destination pointer is

only updated during a disk write operation and since not all the sectors

need be written to. The destination pointer is therefore updated at the

start of each sector of data in anticipation of a disk write.

get_data segment.pointer - As explained the track cache index stores the

segment at which the data starts. The data segment register is loaded with

this value.

all_characters_received - Characters are loaded from the SCC until the

full sector being written to the emulator has been read in.

Appendix P The Track Emulation Software 150

When the assembler listing is examined the gap sizes implemented in the

program are actually smaller than those specified in the high level de­

scription. As was mentioned previously the gap sizes were reduced as much

as possible to increase the efficiency of the emulation process. The only

gap size that could not be teduced is that of gap 2 between the sector

I.D. and the actual sector. When this gap was reduced ('ata being written

to the disk was lost at the beginning of the sector. This gap therefore

is best left the correct length. The Floppv Disk Controller did not appear

to be affected by the reductions in the other gap sizes.

n

Appendix P The Track Emulation Software 151

V S

v

iiiiiiiiiiiiiilliiilllilililiiiliiliiiliiiiiiliiiiliilili

Appendix F The Track emulation Software

' H

w
5I

x

<
?

V)
§wN
zO
<N

5

>V)C/)
2 h o a.

5

t/) u.

ru
o

acw
V)
cUiK

5

O -

I
V)V)

I
1/5 W

XH 3X

V) X 1 X X X 8< X X o 3o Z W •J -J uX u x X w u < XLU X UJ z z X
N

- 2
o z z< < < > z c

z e 1 z
o z Z X z G u N- Ou G UJ

5? o V) < X X X N.
< < £ < </> o X o X w oN -J o O UJ u. UI

g g g
X X — V5

z z X m ^ X X J> u. UI G
i

< <
i

X UI — ►- 3 X X X u Ui *—X t/> X X < X X X •x ic z u x X (A n m •—X Z UJ — Z V) < Ui I X X UI X VO X 3 3 — 3 Z cz
g w z > D 3 X Z Z X i/5 — U z

G X V) t/3 Z z V) Z X o 3 wz w X G 3 o w tn Wh. 3 — G 3 1/5 x g> w S G o ui z *• G O I/; u. Gc/> U i < u
1

w < W N- *- 1/5 N- Z uu X u X X X G U 3 G G w G G X - a-u x W u u o a: X X w Z — UJ UI *- u U O ui V5 G w- Xo 5i2 u Q O w < f- H u G - i- V) tn V5 >u u — G X X <NiX X - u X ■ o O w X < Q 0 3 o C 3 - G(/)
g z

00 < C/5 «J < °.§ z —1 ui (A < z < zeu Z < 1/5 X X
w u ^ !Z w u z H UI u C «— •* m. u G <
X u U X uu O X V, Lw — _i c/> V) x C — V5 -i in jy 1/5 X — w G

) X <><: 0\c

5S u u< u

r xO X
UI U IN- u QC<XO<

< Jx J JxO < C < < Q

T)
g

ia in —
U U U -J <Ovc a < a: < c

-J x < - x u x* —< u o < o < o <

; u :

i =

w 3
u,g

£ 2 ° ,- U U IX —— X < ffi »- <

s
o
ou(/)

X O ^ X < X < o — X < X »—•— Ow *—<X • »X • • » » » * Q. » • X • • • • » » »X % * X » *
• - - J X < - J X U X - / X < ^ X < U X U - Z X U X < U X < - J Xi n < u o < o < Q < u o < u o < c x < o < o o < u o < u

X «-rw ̂ c r — ̂ t\j
CL » * X » »X » e X

< — 5 u x ,O < < w < o o- < u S

> > > i«> > _j>>-> - > > - > - > - > r > > _j> - > - > > _i> > r >-> - > > _ > > - > > ! v > > " > > z
l i i s i i S i S E g g i i S i S i i i S S i s i S i B i i S i i s i s i B g i i S i h i S S E r ^ I i s i i S

Vw
1/1

Appendix P The Track Emulation Software 153

rVx. I H P I wHb- 'I

V

*

A

CD QC ro XK < o-J O O X X h-W H CC u UI UI <z < UI oc QC k- < z Xz QC QC N o z K z Ui< ui O H)C - X < 1 zz z < o X O u .Q wu u < O CC z < CV CD o oO CC - UI w CC X X Xu. w u- z to W Z 3 u w JCo X z < X UJ ac X X o z < o Xa: uj n u o o CC W UJ - X < Difx < o - z < a x t- X u. X lA X w
X Z < u < X < X < o >X u o 02 UJ < Z •— O < X V) l/>

Ui IS) CZ X x “- u z a: X X - U K UI UJ to 3 Wk- to u X C I UI Ui *— w < t— UI Otn u, u o 5 X o o < t/> 10 CO u. o to < UICC UJ z - LW < — v> u. Z CD X H- XO S u > O UJ < UJ O w ui u o o tow O tfl V) CM #- k- a x Q X - X < (0 w < toar. < < UJ — O < 4 0 X X o o X
</> U 0l 05 to < — O UJ < UJ UJ O <u. — c < UJ u. w *- O < < CL t0 a u H u to t7; X

u -JO O K QC - j < C 3 o X Ow CD k- CD O < < Q UI < O Q
< QU) < CO N- Z -J to z < _J

w z z ^ 5 x Z u. UJ < ui O < Ui w u(/) w < Z u- c w O x a </5 Z O «j to to o to X <

> >
5 S £

Z I w o uuj u — cc n cdIK O I Oin X u Ui k mo »— i »-1/) < N nuj u ix-i— ix i - ®a:<coi-<iAaoornirM^N& * ̂ * - JC • »X ‘X ̂ *
COCrt X < - I X ' - , - . X X U ---------1 O X O X X XO W U 0 < 0 < < 0 0 t /) < < u j a 3 u j 0 CD o

v) w *3.5 5 —

• - > > - i > i - > f - :
!§ 3 £ i 5 £ § i g i

$ i->d' > O > _l > •- >
! £ 2 £ 5 i 8 i § § i 5

a. ^, > v> t ; > V) > > _ . V) > >n. x c c z z o s u i N O O c z - x s r ;

Appendix P Ths T~ack Emulation Software

c o<

^ 4

■C)

V)
o

5

s >
Xw

o

</)

owQC 8

V)wac
s 5
-i v)

v> ow — a:
- j tr w 20 u, OC •-<»- — z

lil!O M- o ¥- ac — *
o h c

II• x

v>
8
> < IU
<L UJ

Z % tZ)
j u. N ►-<:I

m

w Q► -V •< WQ'WW I/) V) VS K

S - < 2

fo
O

rr

) *-f u
go
8

S 5 -:00
V)
owX

in z
- o 2
%=,S in

m w
M

O Sa. uj — — w c-JOC < o< 3 s
S 5
a: < m <

X ^ 2 ^ 5 ^ S 5 ^ 2 < 5 5 5 8 8 5 ^ < <
5.8
< in

>• £w •.< I*— -J
• «o o

5 5 < S < § < < 5

r z in x in z — 3 w

x in z

o in xo in x

§
aV)

>X w
1 1 - 8c o Oo ^O X u> f\x

u x c ^ -J 00 Ux < o n IN ® < N 1
< • * X * » • »X
l w _ _ l _ , < x _ i x x <z o < < o o < o r ' 0

- i x 5 c — ie<CJOa:s:<e
u. j — — x ̂
* C D < < V > < 0 <

8 > Zr CL>><- > o >-
2 i E ^ ^ $ $ 8 E 8 i

8 > £
2 E 5 Z

> - >
^£ = $

8

in
xs

X
•JI 8

V! V)

Appendix F The Track Emulation Software

_ . ̂ > -•"■>.

cr
a

Q.

g< oc O O yjM- ^
22 < 5uj od o
z x cc cl
w w o: w O > w »- t-w # - u %

m u
^i-5u B
7 O UJ u UJw a. o ̂ a:

o
o

§U (C :si;' - !
::« £• OC k-o: tn o x z

P “ “s
— U.
U> X
ilu ->

r* O < <— O
3 >urf — Q> w W— o co
wu.cc U % w W >
a: - j u.

i'f
i i i

8 5

- Q flD
- > -j

— — ^ cr% w z 3 w
uj U Z — ^— uj < < »*.
3 = o % g
l f ° H rU X CA X

> 2

-I
- C O

VO

5w
cr

§

<7. x - it »-

V)
q: oc
w wU. >
W. Ui
E ' w

— CO

§ 5 f § l
« 5 £ £ =

6- Z O
§ 5 5 s

1i' I I
et i j \ jn
o ̂ < N r < 5
< < Q Q < C Q

>UJ

j l ...•- o M u ir
5S

1(0OiAONX _x z a z < • • «— - — .
U X - J U U J X w X
Z S 3 < < V) 0 0 V) O

§ =

OR w $!
ir d < j-
® o S 5 n

%o

2 2

$
g g U g § § :

Appendix P The Track Emulation Software

APPENDIX Q TESTING THE FLOPPY DISK DRIVE EMULATOR

Teslinji u unit such as the floppy d'sk drive emulator requires a modular

testing approach so that the number of variables in each test is

minimised.

The unit can be divided into three modules tor testing the MFM decoder,

the microprocessor control unit and the MFM encoder. A brief explanation

of the testing of each of these units will be given.

Olivetti M24 Personal Computers provide the facility for the user to in­

sert a 2ilog 28530 Synchronous Communications Controller (SCC) on the

motherboard. Only one channel of this dual channel device is hardwired

to the RS 232 serial port with the other free for use. Using two P.C.'s,

one of which should be an Olivetti to provide the above mentioned feature,

the MFM decoder can be tested.

The MFM decoder has two inputs viz. the Write Enable and Write Data inputs

that require connection to the floppy disk drive interface and two outputs

providing a synchrtnous clock and data output. The decoder inputs are

connected directly to the write enable and write data lines on the floppy

disk drive interface. The outputs are connected to the RxD (Receive data)

and one of the clock inputs on the SCC. A short assembler program was

written for the Olivetti P.C. which initialises the SCC and then enters

a polling routine to read in characters and display them on the screen.

To ensure that no characters are missed, the characters are written di­

rectly to the screen memory. The synchronisation characters used ar 4F.H

characters. Note the synchronisation characteis must be written with

tleir bit order reversed. The cnip initialisation is the same as described

in Appendix 0. Using these synchronisation characters the SCC should begin

assembling characters, two characters alter the write enable signal be­

comes active. A disk is then formatted in the normal way on the P.C. to

which the inputs of the decoder have been connected The program on the

Appendix Q Testing the Floppy Disk Drive Emulator 157

Olivetti P.C. should be started first so that the SCC is initialised and

'hunts’ for synchronisation characters. When the format program is

started the SCC will synchronise on the characters in gap 4 preceding the

index address marker. See Figure PI. The characters being written to the

disk being formatted are written to the screen of the Olivetti BUT their

biw order is reversed i.e. instead of N's appearing (ASCII character

corresponding to 4EH) wo find r's (ASCII character corresponding to 72H)

Beside testing the operation of the decoder, the format information

written to the disk during formatting could be verified. The CKC charac­

ters were also of great use as will be described later.

The synchronisativ.ii characters wore then changed to A Hi and FBH respec­

tively. These two characters are the characters immediately preceding the

data written in a sector. (Again these two characters must be written with

their bit older reversed). Using the same program as above on the Olivetti

P.C. with the minor change in the synchronisation characters. PCTOOLS was

run on the other P.C.. Again the Olivetti's program is started first and

then individual sectors were written to the floppy disk drives. (Note in

this test and the one described above a i >rma 1 floppy disk is being

written to. Which disk drive is used is of no importance since the Write

Enable and Write Uata signals connected to the decoder are common to all

the floppy disk drives). This test was done to see if the choice of

synchronisation characters would be suitable for the SCC receiver on the

emulator. This choice of synchronisation characters require* no inter­

vention from the CPU to separate the data. The data appearing on the

Olivetti screen was compared with that being written using PCTOOLS. Using

synchronisation characters of AIM and FEU the I D. records of each sector

could be checked during the formatting process. This proved to be very

useful in the CRC checks as is explained later.

These tests verified the operation of the MFM decoder hardware as well

as verifying some aspects of the software (or the emulator. By using this

Appendix Q Testing the Floppy Disk Drive Emulator 158

Olivetti P.O. should be started first so that the SCC is initialised and

'hunts' for synchronisation characters. When the format program is

started the SCC will synchronise on the characters in gap 4 preceding the

index address marker. See Figure PI. The characters being written to the

disk being formatted are written to the screen of the Olivetti BUT their

bit order is reversed i.e. instead of N's appearing (ASCII character

corresponding to 4F.H) we find r's ' ASCI I character corresponding to 72H).

Beside testing the operation of the decoder, the format information

written to the disk during formatting could be verified. The CRC charac­

ters were also of great use as will be described later.

The synchronisation characters were then changed to A1H and FBH respec­

tively. These two characters fre the characters immediately preceding the

data writtun in a sector. (Again these two characters must be written with

their bit order reversed). Using the same program as above on the Olivetti

PC. with the minor change in the synchronisation characters, PCTOOLS was

run on the other P.C.. Again the Olivetti's program is started first and

then individual sectors were written to the floppy disk drives. (Note in

this test and the one described above a normal floppy disk is being

written to. Which disk drive is used is of no importance since the Write

enable and Write Data s.'gnals connected to the decoder are common to all

the floppy disk drives >. This test was done to see if the choice of

synchronisation characters would be suitable for the SCC receiver on the

emulator. This choice of synchronisation characters requires no inter­

vention from the CPU to separate the da' i. The data appearing on the

Olivetti scieon was compared with that being written using PCTOOLS. Using

synchronisation characters of A1H and FEU the l.D. records of each sector

could be checked during the formatting process. This proved to be very

useful in the CRC checks as is explained later.

These tests verified the operation of the MFM decoder hardware as well

as verifying some aspects of the software for the emulator. By using this

Appendix Q Testing the Floppy Disk Drive Emulator 158

Vi v

test configuration tlie area where hardware problems were most likely was

restricted to the decoder.

Testing of the microprocessor control unit was done by testing sub-units

within the control unit. The first sub-unit tested were the diagnostic

L.E.D.'a since they couldn't fulfil their purpose until their functioning

had been verified. The memory test described in Appendix 0 could then be

performed. The input port that is used foi the track counter was tested

by applying various inputs to this port which was then output on the

L.E.D.'s. The Olivetti P.C. was used in the testing of the control unit

as well. Each of the SCO's on the control unit were tested by sending

messages from the control unit to the P.O.. The P.C. was using the same

program as described above.

At this stage the MFM decoder could be combined with the control unit.

The one ECC's receiver was thus connected to the MFM decoder in the same

way as it had been connected to tha SCC in the Olivetti previously. The

second SCC was connected up as a transmitter to the Olivetti P.C.. The

software required for this tost was a combination of the software lined

up to this stage. The program written for the Olivetti for the first

formatting test was implement# on the cont;o1 unit along with the program

to transmit data to tho Olivetti P.C. . This sotiwaro was combined in such

a way that a block of data was read into the control unit which was then

transmitted to the Olivetti. The connections to the inputs of the MFM

decoder were th" same as in the original tests. The tests tnct had been

previously performed on the MFM decoder were repeated. In this case though

the data appearing on the Olivetti screen is not hit reversed since the

bit order is restored by the control unit hardware. The original results

obtained with the MFM decoder and Olivetti alone were now verified with

the control unit included.

This cc’.firmed the operation of the MFM decoder with the control unit.

Appendix Q Testing the Floppy Disk Drive Emulator 159

Testing of the MFM encoder required the use of a logic analyser as well

as the Olivetti P.C.. The SCC on the Olivetti provided the inputs to the

MFM encoder. The data inputs to the MFM encoder as well as its output we,^

monitored on the logic analyser. The encoding of all the bit sequences

that when encoded produce all the possible MFM coding combinations ware

tested. These combinations are described in Appendix F. Sequences of zeros

followeo by the characters in the Index and I.D. address markers were used

tc verify the operation of the address maik generator. This required some

control to be included from the software level. Recall that the address

mark generator is controlled by the DTK line of the SCC. The waveforms

recorded with the logic analyser corresponded with those of data being

read off a typical floppy disk as required.

Having verified the encoding of the data only the CRC generation had to

be verified. This proved to be rather difficult and time consuming. The

main reason for this being that the manufacturers data either doesn't

specify which CRC polynomial is used or what starting conditions arc used

or exactly what data it is calculated on. Some of the data that is

available is in fact incorrect. In an Intel application note entitled 'An

Intelligent Uata Base System using the 8272' |9) the following statement

is made in their discussion on the sector I.D. field. "The first byte of

the field is the I.D. address mark. The second, third and fourth bytes

are the cylinder, head and sector addresses, respectively, and the fifth

byte is the sector length code. The CRC character is derived by the

controller from the data in the first five bytes". As it turns out this

is not the case. The Western Digital corporation have the FD1731/2 Floppy

Disk Formatter / Controller that can be programmed to operate as a con­

troller for the IBM System 3a Double Density format tiiigj 10) , This format

it thoulu he recalled is the format used on the PC.. The data sheet for

the. FD1791/2 states that the polynomial used is x “ + x*1 + x* + 1. It

also states that the CRC register is preset to ones before the data is

shifted through it. This information was found to be correct. It also

Appendix Q Testing the Floppy Disk Drive Emulator 160

states that the CRC includes all information starting with the address

mark up to the CRC characters. In a figure in the datsheet the I.D.

address mark is shown to he the FEH byte In the data listed to format

disks for the IBM format the data byte written to produce each of the AIM

bytes required (which have missing clock pulses) states that the AIM byte

is written in MFM and the CRC is preset. Comparing this information then

with that from Intel it would appear that the CRC calculation commenced

with the T.D, address mark in the case, of sector I.D. 1 a and the data

address mark in the case of sectors of data.

Armed with this information the SCC in the Olivetti was initialised to

use the above mentioned CRC polynomial and initial conditions. The uata

in some of the sector I.D. 's that wet e read during the testing of the MFM

decoder were sent through the SCC and the CRC generated. (Note the SCC

was in loop-back mode so that the resulting message and CRC could be ex­

amined on the screen). The CRC charactotw generated did not agree with

those read using the MFM decoder. A number of these sector I.D.'s were

tested and none produced the required results. Finding patterns in the

results obtained to try and determine the reason for the discrepancy is

virtually impossible.

Some of the CRC1s generated were verified by hand calculation. The results

of the hand calculations corresponded with those of the SCC.

The first attempt to rectify the problem was to reverse the bits of each

of the data bytes before calculating the CRC. Ttiis unfortunately just

generated a third sot of values. Working on the assumption that the

polynomial and the initial conditions were correct. the only reason for

an incorrect CRC is that the data on which it was calculated was incor­

rect. Tliis assumption was made since the CRC polynomial used in the 8271

Single Density floppy disk conti iior |11) was the same and likewise the

82062 Winchester Disk controller!12] used this polynomial. An application

note entitled 'Hard Disk Controller Design using the Intel 8089'|13]

Appendix Q Testing the Floppy Disk Drive Emulator 161

states that this polynomial is ussd thore as well. The polynomial there­

fore seemed a popular choice for this type of application.

The data passed through the gnnerntor was varied by adding and leaving

out bytes, reversing the data etc. The solution was eventually found to

be that the 3 A1H bytes preceding the sector l.D. address marker had to

be included in the CRC calculation. The data must also be presented to

the generator most significant bit. first. The 3 A1H bytes preceding the

data address marker were included in the CRC calculation foi the data

sector. Fortunately ihe resulting CRC corresponded with that of the floppy

disk controller.

The final sub-unit that required testing was the track counter. This was

done by connecting the STEP and DIR linos to the floppy disk interface.

The control unit was programmed to read the track com.ter input port and

put the value raad out on the diagnostic L E D.'#. When a disk is for­

matted using MS-DOS 2.111s format program the track numbers arc displayed

on tne screen as formatting takes place. The values on the L.E.D.'s were

then compared with those on the screen.

Software based or. the f< mat information available was written tc -mulate

a track of dcta i.e. the TRACK KM routine with full size gaps. Sen Ap­

pendix P. The MFM decoder, encoder and controller unit wore then inter­

faced to tl > y disk driv» cable via the interface unit. The floppy

disk drive mul.-.or was then connected in place of one of the floppy disk

drive units At cess to the emulator 11 m DOS returned a 'NON DOS DISK

F.RROR' This error indicated favourable performance by the emulator. Tiie

floDpy disk control 1« was thus ible to find the sector that it was

look inn for. Wh*»n the sector was read and DOS realised that it did not

correspond with the required DOS format the error was given.

Appendix Q Testing the Floppy Disk Drive Emulator 162

Track 0 of a floppy disk contains various pieces of information for the

operating system. This includes the bootstrap, file allocation table and

the disk directory. The sectors assigned to these pieces of information

are the following:-

Sector 1 - Boot record

Sectors 2 and 3 - First copy of the file allocation table

Sectors 4 and 5 - Second copy of the file allocation table

Sectors 6 to 12 - Directory entries

The sectors tnat the operating system reads when a directory of a disk

is requested were ascertained by intercepting a BIOS interrupt call. The

T\T 13H routine in tie BIOS is used for accessing the floppy disk con­

troller from the high' r levels of software. A short piece of assembler

patch ci de was written that redirected this BIOS interrupt routine to a

short routine that prints the parameters passed to this routine on the

scree; before proceeding with the rest of the interrupt routine. In this

way the sectors required by the floppy disk controller can be seen. From

this information the sectors required to -•r wide a directory of a disk

for example were determined. All these sectors lie on the same track viz.

track 0. The information in these sectors was read from & physical floppy

disk that had just been formatted. This information is inserted in track

0 in procedure TRACK0__INIT shown in the. assembler listing at the end of

this appendix.

The TKACKO INIT procedure calls procedures FIRST, SECOND and SIXTH to

generate the data required. FIRST fills the first and third sectors and

fifth sectors with zeros. SECOND fills the second and fourth sectors which

contain the File Allocation Table. SIXTH generates the data for each of

the directory sectors.

When a directory was now requested the ’Files not found1 message was re­

turned by DOS which had immense significance. This indicates that the

floppy disk controlle* has been able to extract data from the information

Appendix Q Testing the Floppy Disk Drive Emulator 163

being generated by the floppy disk drive emulator. To test the ability

of the emulator to store data written to it various write operations that

require the use if track 0 alone were performed. This includes making

directories (MKDIR) and removing directories (RMDT.R). These operations

require that the file allocation tables as well as the directory sectors

are updated. Tests using PCTOOLS were also performed where a sector is

read in from the emulator and the first and/or last characters say of the

sector were changed. The sector is then written to the emulator and then

re-read to ensure that the entire sector was being written correctly.

These test alone proved that the majority of the hardware was functioning

as required and the software used to control it also appeared satisfac­

tory.

The final test that was performed was the following : - The track cache

was implemented in such a way that its contents were fixed i.e. it con­

tained the first 21 tracks (i.e. 42 sides) of a floppy disk. Track 0

was again initialised in a similar way to that described above. It was

now possible to emulate a floppy disk with approximately 180K of storage

capacity. Now it is possible to copy large files onto the emulator and

read them off again.

At this stage various experiments were performed in which the gap sizes

were reduced. Again PCTOOLS was used to modify the beginning and end

characters of the individual sectors. When the size of gap 2 is changed

characters are lost in the sector being written. This gap was therefore

left unchanged. The other gap sizes were reduced with no adverse effect.

A test was performed to observe the effects of simulated network operation

on the disk drive emulation process. It snould be noted that in the ori­

ginal emulator design had only one SCC. These devices have two channels

Appendix Q Testing the Floppy Disk Drive Emulator 164

and it was originally designed for one channel to be used by the emulator

while the other was for the network.

the network channel was initialised to accep an external transmit clock

source and to transmit data in synchronous data format. The data that was

to be transmitted was accessed from a single memory location using DMA.

The external clock source was provided from a variable frequency

oscillator. Files were read and written to the emulator as described above

while at the same time the transmit clock frequency was increased. The

results of this test were hardly encouraging. The required transmit clock

frequency is between 1 and 1.5MHz but the emulation process was failing

at frequencies as low as 20kHz!. Occasionally the emulation process was

failing at lower frequencies. Closer examination of the problem with c
logic analyser led to these conclusions :- The emulator software was based

on polling while the network data was being supplied using DMA. DMA cycles

can occur at anytime when the bus has not been locked by the central

processing unit. It was possible therefore for a read or write to be made

by the polling software on the SCC which would be followed or preceded

immediately by a DMA access on the same device. The SCC has a certain

access recovery time i.e. a minimum period is required between the ac­

cesses to the SCC. In the situation described where two accesses were made

on the SCC one after another this access recovery time was not met. In a

number of cases this corresponded with the failure of the emulation

process. For this reason a second SCC was added for exclusive use by the

network. When the tests were performed now the network transmit clock

frequency could be increased to within the required range without any

adverse effects on the emulation process.

The floppy disk drive emulator thus performed as required with file access

times slightly shorter or the same as that from a physical floppy disk.

Appendix Q Testing the Floppy Disk Drive Emulator 165

\ 4

LIST OF REFERENCES

1. Haugdithl, J. Scott 1 Local-area networks for the IBM PC' BYTE Vol. 9

No. 13 Dec. 1984 pp. 147 - 174

2. Abraham, R and Munro.R 'Microfloppies battle for pre-eminence1 COM­

PUTER DESIGN Vol. 22 No. 1 Jan. 1983 pp.119 - 126

3. INTEL 18272A Single/double density floppy disk controller' MICROSYS­

TEMS COMPONENTS HANDBOOK Volume 2 1984 Order No.230843 pp. 6-553 -

6-571

4. INTEL 'iAPX 86/88, 186/188 User's u mal Hardware Reference' 1985

Order No. 210912-001 pp. 2-1 - 2-32

5. Chaney,R and Johnson,b 'Maximising hard-disk performance' BYTE Vol.

9 No. 5 May 1984 pp. 307

6. McKeon, Brian 'An algorithm for disk caching with limited memory'

BYTE Vol. 10 No. 9 Sept. 1985 pp. 129 - 138

7. 'IBM PC Technical Reference Manual' First Edition (Revised March 1983

) Part No. 6936844

8. 'l.B.M. Disk Operating System ' First Edition (Revised May 1983)

Version 2.00 Part No. 6183485

9. INTEL '82530 SCC Technical Manual' July 1984 Order No. 230925-001

10. 21 LOG '28530 Data Sheet' 1983/84 Data Book Order No.00-2034-03 pp.

409 - 429

List Of References 166

11. INTEL AP-116 'An intelligent data base system using the 8272' MICRO­

SYSTEM COMPONENTS HANDrOOK Volume 2 1984 Order No.230843 pp.6-421 -

6-454

12. WESTERN DIGITAL CORPORATION 'F01791/2 Floppy Disk

Formatter/Controller1 Document No. #A0103

13. INTEL '8271/8271-6 Programmable floppy disk controller' MICROSYSTEMS
CONTROLLER H.ANDBO1 V V 'urn#- 2 19R6 O r r W Nr. :nnR63 pp. 6-541

14. INTEL '82062 Winchester dJsk controller' MICROSYSTEMS CONTROLLER
HANDBOOK Volume 2 1984 Order No.230843 pp. 6-574

15. INTEL AP-122 'Hard disk controller design using the 8089' MICROSYS­

TEMS COMPONENTS HANDBOOK Volume 2 1984 Order No.230843 pp. 3-89

List Of References 167

1 .<F '*'■ . "'IK * ,

BIBLIOGRAPHY

o Sirihn, G.S. And Andrews, R.K. 'Applebus PROTOCOL ARCHITECTURE' Apple
Computer Inc. May 1 1984

o Worden, J 'Design Considerations For Dual-Density Diskette Control­

lers' Computer Design Vol. 17 No. 6 June 1978

o Bass, C. 'Local Area Networks - A Merger Of Computer And Communi­

cations Technologies' Microprocessors and Microsystems Vol.5 No.5

June 1981

o Hurwicz, M. 'MS-DOS 3.1 Makes It Easy To Use IBM PCs On A Network'

Data Communications Vol. 14 No. 12 Nov. 1985

o Mier, E. 'The Evolution Of A Standard Ethernet' BYTE Vol. 9 No. 13

Dec. 1984

o Sahr, R Two Low-Speed Nets Race To I,ink Computers' ElectronicsVeek

Vol. 57 No. 36 Dec. 17 1984

o Loyer, B.A. 'LAN’s: The Corning Revolution In Factory Control' Machine

Design Vol. 56 No. 27 Nov. 22 1984

o Honpuner, J.F. and Wall, L.H. 'Encoding / Decoding Techniques Double

Floppy Disk Capacity’ Computer Design Vol. 19 No. 2 Feb. 980

o March, D. 1 Floppy Disks' Electronics £> Wireless World Vol. 91 No.

1587 Jan 1985

Bibliography 168

X l

Roskos, J.E. 'Writ ing Device Drivers For MS-DOS 2.0' BYTE Vol. 9 No.

2 Feb. 1984

Linge, N. 'Emerging Local Area Network Technologies' Microprocessors

and Microsystems Vol. 10 No. 1 Jau/Feb 1986

G1 inert-Cole, S. 'A Network For All Reasons' PC TECH JOURNAL Vol. 2

No. 12 Dec. 1984

Schwadcrer, W.D. 'CRC Calculations' PC TECH JOURNAL Vol. 3 No. 4 April

f . i> i *

*

v

U SB-: ■

<

'

*
*

Author De Souza E A
Name of thesis Edulan: a Local area network for an educational environment 1987

PUBLISHER:
University of the Witwatersrand, Johannesburg

©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y o f the Wi twa te r s rand , Johannesbu rg L ib ra ry website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

