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ABSTRACT

AN INTERPRETATION OF THE AEROMAGNETIC DATA COVERING PORTION OF THE 

DAMARA OROGENIC BELT, WITH SPECIAL REFERENCE TO THE OCCURRENCE OF 

URANIFEROU3 GRANITE

CORNER, Branko, Ph.D. University of the Witwitersrand, 1982.

This thesis comprises p r i m a r i l y  palaeomagnetic studies within the Da­

mara erogenic belt of South West Africa (.Namibi^.) , a& well as an inter­

pretation of the regional structure, utilising published aeromagnetic 

data. Cursory interpretation of the airborne radiometric data is also 

undertaken. Gravity traverses, conducted across three dome structures 

with which uranium mineralisation is intimately associated, are inter­

preted in order to determine the origin of these structures.

A number of features, having an important bearing on both the urani- 

ferous granite occurrences and the regional structure of the area, are 

recognised for the first time in this study, viz..

- all currently known uraniferous alaskitic granite occurrences 

of economic interest are hallmarked, on a semi-regional basis, 

by prominent negative magnetic anomalies. The relationship

is a stratigraphic one since the palaeomagnetic. studies have 

shown that these negative anomalies arise from a pervasive re­

magnetisation of the Damara rocks during the 500 Ma tectonotherma1 

event. This rer.agnetisation is retained in certain rocks of the 

Nosib Group at strutigraphic levels with which the uraniferous 

granites are closely associated The resulting unique negative 

magnetic signature of the Nosib Group rocks thus constitutes an 

important prospecting criterion in the search for uranium.

Virtual geomagnetic poles were derived for the 500 Ma tectonotherma1 

event and for the basement rocks in the area, the pole for the latter 

indicating an age of 2 150 Ma for these rocks.

- A close correlation exists between positive magnetic anomalies
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and high radiometric responses over the red granites, reactivated 

basement and, to a lesser extent, over the Salem Granite Suite 

and ether late- to post-tectonic granites. This could be a useful 

relationship, with the application of gamma spectrometry, as an 

aid to mapping.

A number of structural lineaments and broader lineament zones are, 

apart from the Okahandja lineament, identified and named for the 

first time, i.e.

- the Uis lineament zone

- the Omaruru lineament

- the Welwitschia lineament -one, and the less prominent

- Wlotzka and Abbabis I-, .ament zones.

Interactive computer modelling indicates that these geomagnetic 

lineament zones are in tact fault-controlled geanticlinal ridges 

bounded by relatively rapid monoclinal downfolding of the strati­

graphy.

A post-F3 (northeast) structural phase, F4, oriented north-north­

east is recognised as being a major structural event of particular 

significance to the emplacement of uraniferous granite.

The gravity stflies indicate that the investigated dome structures

result from an interplay between both vertical and lateral stress

components. The former component arising trora gravitational insta­

bility between rocks of tha uamara Sequence ana basement, and the 

latter comoonent arising from the lateral stress fields prevailing 

at the time.
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PREFACE

This study was conducted by the author during his term of office with 

the Geology Division of the South African Atomic Energy Board (January 

1975 - April 1981). The prime objectives of the study were firstly, 

to aid uranium exploration progranmes in the Damara orogenic belt of South 

West Africa (Namibia) by establishing any possible magnetic relation­

ships associated with the uraniferous granit.es in the area and, secondly, 

to interpret; regional structure from the aeromagnetic data. Palaeomag­

netic studies were conducted for these purposes and not only greatly 

assisted in the attainment of these objectives but also provided valuable 

knowledge regarding the magnetic history of the area.

The author would like to express his sincere gratitude to the s e v e n l  

persons and organisations who provided assistance during the course of 

this study, i.e.

to the President of the Atomic Energy Board for his permission 

to publish this thesis,

to Dr. P D Toens, a special word of thanks for his initial mo­

tivation of the project and his continued support throughout 

the duration thereof,

to Dr H W Bergh, under whose supervision the study was partially 

conducted, for his valuable suggestions, guidance and editing of 

the text,

to Dr D I Henthorn, a particular word of thanks for his invaluabxe 

assistance and guidance wirh the palaeomagnetic work, and for cri­

tically reviewing the text,

to the Director of the Geological Survey Tor his permission to 

utilise the palaeomagnetic laboratory facilities and to publish 

the data thus obtained,

to RUssing Uranium Ltd., Gold Fields of S A Ltd., Anglo American 

Corp. of S A Ltd. and Aquitaine S A Ltd., fv>r their assistance 

given at all times during the course of the field work and for 

their permission to publish the palaeomr.^.neric results, 

to Dr R McG Miller for critically reviewing the text and for his 

valuable suggestions a-id guidance with structu-al and stratigraphic



problems,

to Che numerous Damara geologists for their comments, suggestions 

and criticisms during the course of the s:udy, 

to Rainer Jakob for conducting the chemical analyses, 

to Johan Retief and Gert Harman for the accurate levelling re­

quired for the gravity traverses,

to my sister Olga for the onerous task of assisting with the 

colouring-in of the colour composite maps,

to Elsa le Grange and Sharon RoSbert for the typing of the text 

and, finally,

to 3enita Els, Beatrix van Niekerk and Irene Pietersen for the 

draughting of the figures and maps.

Certain of the results of this study, particularly relating to the 

palaeoaagnetic work and structural interpretations, have already been 

published by the author or are in press (Coiner, 1975; Corner and 

Henthorn, 1978; Jacob, Corner and Brynard, in press; and Corner, in
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1 INTRODUCTION

1.1 General

The western portion of the Damara orogenic belt in South ivest: Africa - 

covered in five stages by airborne radiometric and magnetic jurveys, .‘Icjti 

during the period 1968 to 1976 (under contract to the Geological Survey 

of South Africa, Windhoek Branch"* . Although gamma spectrometry remains 

the most useful a,ethod in the search for new uranium deposits, and the 

above surveys successfully revealed a number of uranium occurrences 

economic interest in the area, there are certain limitations. These in­

clude secular disequilibrium of the uranium decay series and, in particular 

the absorption of gamma radiation by matter. In view of the effect I the 

latter, use must be made of other techniques to locate any primary occur­

rences which may be hidden under the cover of aeolian sand and duiicrust 

deposits which are so widespread in the area. In particular, the magnet.L.. 

and gravity methods remain relatively unaffected by surface cover. Al­

though the uranium minerals themselves are, from an exploration point oi 

view, non-magnetic, it is through their association with magnetic mineral : 

or with rocks of contrasting density that invaluable information may jt 

obtained regarding structural trends and lithologies encountered in depth.

The Geology Division of the Atomic Energy Board thus initiated a study of 

th» aeromagneti: data covering the western portion of the Damara orogenic 

belt, in order to determine whether any additional information relating 

to the occurrence of uraniferous granite in the area could be deriveu from 

this data. The study included extensive palaeomagnetic surveys and an 

interpretation of the regional structure using the aeromagnetic data. A 

geomagnetic section traversing the orogenic belt was interpreted using fv'- 

dimensional computer modelling techniques.

A number of accurate gravity traverses were conducted across three aci 

structures, with which uranium mineralisation is associated.

The main object was to decide whether they were due to interference 

folding or to diapiric uprise at about the time of emplacement .if the urnnv 

ferous granites (Jacob et al., in press; Barnes and Hambleton-Jones, 19'-; 

Sawyer, 1978; Jacob, 1974a).



The above studies were undertaken by the author during the period 1975-1980. 

Two preliminary reports have been written cn the early stages of the work 

(Corner and Henthorn, 1978; Corner, 1975). The results presented in this 

thesis indicate a hitherto unrecognised association of the economically 

interesting uraniferous il^skitic granites with a north-northeasterly 

structural episode and also with certain unique negative geomagnetic ano­

malies. These conclusions represent a major step forward both in under­

standing the controls of granitic uranium mineralisation in the area and 

in the identification of possible exploration targets.

1.2 Physiography and Location of the Area

The area studied lies In the central coastal region of S^r.th West Africa 

between the Atlantic coastline and 16°30'E longitude, and between latitudes 

2l°5 and 23°30'S (Fig 1). Towns and settlements include Omaruru, Karibib, 

Usakos, Uis, and on the coast, Henties Bay, Swakopmund and the Walvis Bay 

enclave of the Republic of South Africa.

Climatically, the area includes part of the Namib Desert whi~h stretches up 

to 100 km inland at its widest point. The prevailing winds are westerly 

in the summer months and easterly during the winter, resulting in dry and 

at times extremely dusty conditions, with rather large variations in tem­

perature and humidity. Precipitation is infrequent, averaging about 28 mm 

per annum, 3nd decreases towards the coast to roughly 20 mm per annum. 

Rainfall of short duration and light intensity may, however, occur. The 

deserr is, for a large part of the year, fog bound which provides about 

130 mm of equivalent rainfall per annum and results in a wide variation in 

humidity of between 5 and 80 percent. Temperatures range between 4,5°C 

and 40°C on average.

Communications are good and all the towns are served by good tar, gravel 

or salt roads. Walvis Bay is the main industrial centre and harbour and 

is also served by a railway line from tht interior.

Major rivers draining tne area and hinterland include the Omaruru, Khan, 

Swakop and Kuiseb Rivers which are dry although subsurface flow does occur.
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The above studies were undertaken by the author during the period 1975-1930. 

Two preliminary reports have been written on the early stages of the work 

(Corner and H^nthorn, 1978; Corner, 1975). The results presented in this 

thesis indicate a hitherto unrecognised association of the economically 

interesting uraniferous alr.skitic granites with a north-northeasterly 

structural episode and also with certain unique negative geomagnetic ano­

malies. These conclusions represent a major step forward both in under­

standing the controls of granitic uranium mineralisation in the area and 

in t:he identification of possible exploration targets.

1.2 Physiography and Location of the Area

The area studied lies in the central coastal region of South West Africa 

between the Atlantic coastline and 16°30'E longitude, and between latitudes 

21°S and 23°30,S (Fig 1). Towns and settlements include Omaruru, Karibib, 

Usakos, Uis, and on the coast, Henties Bay, Swakopmund and the Walvis Bay 

enclave of the Republic of South Africa.

Climatically, the area includes part of the Namib Desert which stretches up 

to 100 km inland at its widest point. The prevailing winds are westerly 

in the summer months and easterly during the winter, resulting in dry and 

at times extremely dusty conditions, with rather large variations in tem­

perature and humidity. Precipitation is infrequent, averaging about 28 mm 

per annua, and decreases towards the coast to roughly 20 mm per annum. 

Rainfall of short duration and light intensity may, however, occur. The 

det-ert is, for a large part of the year, fog bound which provides about 

130 mm of equivalent rainfall per annum and results in a wide variation in 

humidity of between 5 and 80 percent. Temperatures range between 4,5°C 

and 40°C on average.

Communications are good and all the towns are served by good tar, gravel 

or salt roads. Walvis Bay is the main industrial centre and harbour and 

is also served by a railway line from the interior.

Major rivers draining the area and hinterland include the Omaruru, Khan, 

Swakop and Kuiseb Rivers which are dry although subsurface flow does occur.
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F ig 1 Locality map of the study area
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Flash floods are not uncommon during periods of heavy rainfall inland.

The southern portion of the area falls within the Namib Desert Park which 

contains some game, such as oryx, springbuck, zebra and ostrich, towards 

the Tringe of the desert. A desert plant, the Weiwit.schia Mirabilis, is 

unique to the area.

Bedrock is well exposed in the river valleys but is largely covered by 

aeolian sand, scree and duricrust deposits in the intervening plains.

South of the Kuiseb River,and between Walvis Bay and Swakopmund along the 

coast,the region is almost entirely blanketed by aeolian sand, giving 

rise to spectacular north-trending longitudinal dunes which attain heights 

of up Co 400 m.
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2 GEOLOGICAL SETTING

It is necessary Co review the geological setting of the area with regard 

to those aspects pertinent to the present study, viz.: tectonism, strati­

graphy, structure, metamcrphism and nature of the uranium mineralisation. 

Since a full discussion is beyond the scope of this text, this review, 

after Jacob, Corner and Brynard (in press), is intentionally brief.

2.1 Regional Tectonic Setting

The Damara metamorphic belt of South West Africa belongs to a late-Pre- 

cambrian, early-Palaeozoic Pan-African mobile belt system that surrounds 

and transects the African continent (Kroner, 1977; Martin and Porada,

1977). It consists of two branches, viz.: a coastal branch extending 

in a northerly direction along the Atlantic coast, and an intracontinental 

branch, roughly 400 km in width, trending northeast between the Congo and 

Kalahari cratons (Fig 1). The coastal branch extends as far north as the 

Congo and has not been extensively studied.

Martin (1965) subdivided the intracontinental branch into a northern miogeo- 

syncline and a southern eugeosyncline, partly separated by a geanticlinal 

basement inlier, termed the Kamanjab Inlier. In view, however, of the 

pauci.y of volcanic rocks and the existence over large areas of shallow- 

water sediments, Blaine (1977) regards only the Khomas trough in the ex­

treme south as an eugeosyncline, the remaining area to the north being 

the miogeosyncline.

Martin and Porada (1977) recognised four main structural domains in the 

intracontinental branch, viz.:

- a northern platform consisting of weakly folded mainly carbon­

ate rocks;

a transition zone to th* pouth of the northern platform, where 

the intensity of folding and metamorphism increase southwards; 

a central zong, characterised by medium to high grades of meta­

morphism and voluminous granitic intrusions;

- a southern zone containing the Khomas trough which consists of 

a flysch-like sequence of mica schists, quartzites and minor 

mafic metavolcanic rocks (e.g. the Matchless belt).

-  5 -

The southern zone is separated from the central zone by a pronounced
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change in structural style, first described as major shear zone by Gevers

(1963). The term 'Okahandja 1 inep.ir.ent' is now being widely used for this 

feature (Miller, 1979; Blaine, 1977; Martin and Porada, 1977; Sawyer,

1978). According to Miller, the Okahandja Lineament, which also has a 

marked aeromagnetic expression (see Fig 3 with overlay, and Fig 17), represents 

the locus of considerable uplift of the central zone relative to the Khomas 

trough, possibly by 24 km.

The Damara belt is asymmetric with respect to the distribution of sediment 

types, metamorphism and structure. Although a flysch-like sequence of 

sediments similar to that of the Khomas trough does occur north of the 

central zone it is not as thickly developed. In addition, the Okahandja 

lineament separates the essentially linear structural features of tine 

southern zone from the dome-and-basin structural pattern to the north. 

Explanations of the asymmetry differ according to the gecdynamic model 

proposed for the formation of the belt. Martin and Porada (1977) suggest 

an ensialic, multiple aulacogen model, whereas 31aine (1977) and Sawyer 

(1978) propose a plate-tectonic, continental-collision origin. The results 

of the computer-model study (described in detail in Section 5.2), are consistent 

with the former proposal.

The area included in the present study lies in the southwestern portion of 

the intracontinental branch and covers the southern portion of the trans­

ition zone, the central zone, and portion of the southern zone (Fig 1).

2.2 Stratigraphy

Stratigraphic classification and nomenclature have undergone a number of 

changes in recent years. The latest proposals of the South African Com­

mittee frr Stratigraphy (1980), are used throughout this text and are 

given in Table 1. A generalised geological map of the area showing the 

main formational units is given in Fig 2.

The. oldest rocks in the central zone belong to the Proterozoic Abbabis 

Metamorphic Complex, and crop out in numerous anticlinal structures as 

mantled gneiss domes along a broad northeast-trending zone, termed the
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TABLE I : LITHOSTRATIGRAPHY OF THE DAMARA SEQUENCE AW) ABBABIS

METAMORPHIC COMPLEX IN THE KARIBIB AND SWAKOPMUND DISTRICTS

Group Subgroup Formation Lithology

Maximum

•thick­

ness

(a)

Age

(Ma)

-  J

Khomas

Kuiseb

Biotite-rich quartzo- 

felaspathic schist, 

bioti. te-garnet-cordierite 

schist, minor amphibole- 

schist, quartzite, calc- 

silicate rock and marble; 

basal graphitic schist 

with cal-silicate lenses 

(Tinkas Member).

3 000

429-517 ■

(K-Ar,

biotice)

SWAKOP

Karibib

Marble, biotite schist, 

quartz schist, calc- 

silicate rock.

700

Chuos

Mixtite, pebble- and 

boulder-bearing schist, 

minor quartzite.

700

i

DISCORDANCE

Ugab Rossir.g

Very variable: marble, 

quartzite, conglomerate, 

biotite schist, biotite- 

cordierite schist and 

gneiss, aluminous gneiss 

biotite-hornblende schist, 

c p Ic-silicate rock.

200

UNCONFORMITY OR CONFORMABLE TRANSITION

Khan

Pyroxene-amphibole feld- 

spathic quartzite, amphi- 

bole-pyroxene gneiss, 

amphibole and biotite 

schist.

1 100

665*34

(Rb-Sr

whole

rock)

NOS IB

Etusis

Pinkish well-belded feld- 

spathic quartzite, arkose, 

conglomerate, quartzo- 

feldspathic. gneiss; minor 

biotite schist, marble, 

amphibolite, metarhyolite 

and calc-silicate rock.

3 500

MAJOR UNCONFORMITY

ABBABIS METAMORPHIC 

COMPLEX

Gneissic granite, augen 

gneiss, quartzofeldspathic 

gneiss, pelitic schist and 

gneiss, migmatite, 

quartzite, marble, calc- 

silicate rock, amphibolite

1 925 t

300

(U-Pb,

zircon

from

granite)



Abbabis swell by Gevers (1963) and corresponding to southern portion of 

the central zone of Martin and Porada (1977). It has been dated at 

1 925 ± 300 Ma (Jacob ec a l ., 1978). The complex comprises mainly 

gneissic granites, granitic gneisses, paragr.eisses, and includes miner 

amounts of metasediment.

The Abbabis Metamorphic Complex is overlain unconformably by rocks of 

the Damara Sequence whose sedimentation began abouf 900 to 1000 Ma ago 

(Martin and Porada, 1977). The sequence consists o. a lower, psammitic 

Nosib Group overlain by a calcareous-pelitic Swakop Group.

The F.tusis Formation of the Nosib Group has a wide-spread distribution 

north of the Okahandja lineament. It was deposited in local basins on 

a topographically uneven Abbabis surface and its thickness varies con­

siderably over short distances. The Etusis rocks are mainly metamor­

phosed fluviatile quartzites, conglomerates and other psammitic sediments 

Fels’.c metavolcanic rocks are present in places near the Okahandja line­

ament .

The Etusis rocks grade uowards and laterally into the Khan Formation, 

whose outcrop occupies a much smaller area. It consists of banded and lo 

cally migraatitic quartzofeldspathic amphibole-clinopyroxene gneisses 

and represents a change in sedimentation to more calcareous sediments 

and reduced clastic input. Towards the top, amphibole-biotite schists 

are developed locally. In many places this formation appears to be a 

preferred locus of emplacement of the uraniferous alaskitic granites.

The Rossing Formation forms the lowest unit of the Swakop Group and this 

overlies older rocks paraconformably and disconformably. Its distribu­

tion is more restricted than that of the Khan Formation. It is charac­

terised by great lithological hereogeneity both vertically and laterally, 

and consists of marbles, calc-silicate gneisses, pelitic schists and 

gneisses, quartzites and conglomerates. Sulphides are commonly present 

and weathered outcrops frequently exhibit a deep red-brown colour.

The Rossing Formation is discordantly overlain by the Chuos Formation,
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the lowest member of the Khomas Subgroup. It is regarded as being of 

either glacial-uarine or mass-flow origin. The formation consists of 

boulders in a semi-pelitic to pelitic matrix, schists and ferruginous 

quartzites, and it constitutes a most important marker horizon. Where 

present, it allows the separation and recognition of the Rossing and 

Karibib Formations.

The overlying and partially conformable Karibib Formation consists of 

local basal schists followed by variable thicknesses of marble and calc- 

silicate rock. The formation is widespread in the central zone and it 

constitutes a good marker horizon since thickness variations are not 

as abrupt as in underlying formations. The formation represents a period 

of carbonate sedimentation on a more or less planar surface of wide ex­

tent. Over most of the central zone the marbles of the Karibib Formation 

are conformably overlain by pelites of the Kuiseb Formation. The top of 

the formation is nowhere exposed but it is at least several thousand metres 

thick. Its thickest development is possibly in the Khomas trough of the 

southern zone. In the central zone it comprises pelitic schists (locally 

migmatitic) and gneisses. Its position is taken up in many places by 

members of the Salem Granite Suite.

Sedim^ts and basalts of the Karoo Sequence crop out north of 22°S latitude 

and ire intruded by intra- and post-Karoo acid, alkaline and basic rocks 

which form the Spitzkoppe, Cape Cross, Messum, Brandberg and Erongo Com­

plexes. Karoo dolerites are common throughout the belt.

Large portions of the area are covered by Tertiary to Recent superficial 

sand, scree and duricrust deposits such as calcrete and gypcrete.

2.3 Granitic Rocks

Extensive granite intrusion has taken place and numerous phases of syntec- 

tonic, late-tectonic and post-tectonic gneissic granite and granite have 

been recognised.

Foliate'*, or homogeneous red granites, leucogranites and pegmatitic granites 

varying in age from syn- to post-tectonic are found either below or at the 

level of the Etusis Formation but some intrude to higher levels. Prelimi­
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nary dating of the suite yields ages between 950 and 550 Ma (unpublished 

data, Dr A J Burger), th.? oldest of which may represent partial resetting 

of basement ages as a result of Damaran metamorphism. These granites con­

stitute, in part, the Red Granite Gneiss Suite of Jacob (1974a). However, 

most of the members of this Suite are currently considered to be products 

of basement reactivation through anatectic processes (Jacob, 1978), and 

geochemical evidence supports this (Bunting, 1977). Assimilation of 

Nosib Group rocks has in places contributed to the heterogeneity of the 

Suite. The distinction between these rocks and the basement granite- 

gneiss is not always clear and many outcrops previously mapped as red 

granite-gneiss in fact belong to the basement. For this reason the term 

Red Granite Gneiss Suite has been disbanded (Miller, personal communica­

tion). Fractionation during crystallisation of the red granites and leu- 

cogranites of the Damaran episode yielded K-rich • jits, enriched in vola- 

tiles and uranium-ore constituents, which final! crystallised as alaskitic 

pegmatitic granite and pegmatite.

Rocks of the Salem Granite Suite crop out over a wide area in the trans­

ition and central zones and comprise a number of granitic rocks that have 

intruded over an extended period. The suite in most places is concordancly 

emplaced into synclinal structures and normally occupies volume previously 

ta*en up by the Kuiseb Formation. The majority of the suite comprises 

porphyritic biotite granodiorite/adamellite. Early members are strongly 

foliated and are pre-tectonic and syntectonic (Jacob, 1974a; Sawyer, 1978) 

whereas later members appear undeformed and are post-tectonic. The origin 

of the Salem Suite has been ascribed to granitisacion in situ (Smith, 1965), 

anatectic melting of the Kuiseb Formation (Miller, 1973) and intrusion from 

considerable depth (Miller, et a 1., in prep.).

Other late- to post-tectonic intrusive granites, which occur as irregular 

stocks or anastomosing veins, include the Bloedkoppie, Achas, Gawib and 

Donkerhuk Granites, the latter being emplaced along and immediately south 

of the Okahandja lineament.

2.4 Structure

Several phases of deformation can be recognised in the central zone and are 

indicated by fold interference patterns juch as that of the Rossing mountain



sir: * ‘ north-aaat and is

i strong F3) deformation. This was preceded by one or possibly 

ting. The early phases of folding produced overturned

rmpanied by thrusting and shearing, 

escigators agree that the trend of early fold axial planes

;terly (Smith, 1965; koering, 1961; Bunting, 1977; 

Blain<s, 1977 ; Sawyer, 1978). T1 tar northeasts: F3 folds are up­

right hut become overturn* the Okahandja lineament 

is approached.

The basement (Abbabis Metamorphic 'ora;:. i^een deformed by ductile

is been folded in higher

i n d y  ^cnt!S.

occurred after F3 and produced

•ntad bets. rthea. "hwest. The significance of a

P“■>t—F '.'i:as«, F4, oriented north-northeast, with respect to the emplace­

ment M  granites is recognised for the first time in this 

s in.: discussed no re fully in Section 5. (This F4 direction supercedes

, 1c-* 7 (Jacob et a 1 ., in press)X

i n- »::.»• <eparatei> the essentially linear structures of 

;one from the dome-and-basin structures which are a feature 

tone. The origin of the domes is controversial with some 

v:- - i I;: . 1965, nnd Bunting, 1977) ascribirg them to interference 

: v  . " , 1.374a; Sawyer, 1978, and Barnes and Hambleton-

, ‘ • : i •• it they have formed as a result of diapiric uprise

a of, and following, F3 deformation. Gravity traverses 

vert* ... f. : a irt cf this study across three of the dome structures 

■ ii i r<;::! r . l.ler tanding of their origin, particularly 

s::: •••.•■ r dense- uraniferous alaskitic granites are mostly

i ; • *?r-. • :r. FK- results are discussed fully in

S e c t i o n  .

Int«>r : r it: . • ier ignetic data has revealed a number of hitherto

•ir.r- • ?•••; turil lineaments which have an important bearing both on

th.. .i .ac.o-.fut of th.‘ uraniferous alaskitic granites and on the geodynamic 

pr' ; nv*: • ! in formation of the belt. (See Section 5 for dis­

cussion) .
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2.5 Metamorphism

University of GMttingen workers have deli

area of the incraconti nentu L branch (Hotter, . >7 , ... ; ;-.u i 

the metamorphic grade is highest in the central .:on* i - t.

the axis of the belt in the direction of the Atlantic c. ..-t. . Hi; r* -

sures and lower temperatures distinguish the mecamorphism o; the 

zone from that oi the centra^ zone, where high temperatures (75v;"C; ir..; 

lower pressures (about 4 x lO^kPa) prevailed (Sawyer, IS 7 8) . Mei; 

high-grade mecamorphism characterise the central zone and tnigmit;- 

nomena are presenc (Jacob, 1974a; 3unting, 1977; Sawy. r , .978 .

Recent results indicate thac more chan one pulse of metamorpL. ■

(KrBner et a l ., 1978; Sawyer, 1978). An early mecamorphism, with 1 

age of 665 - 34 Ma (Kroner eL a l . t 1978) predaced widespread granite ir.tr .- 

sion, produced migmacites, and accompanied the early periods of d e f o r m t i  ~ . 

According to Sawyer (1978), this was followed by anothei peri. : of -u 

phism accompanying the F3 deformation, and was in turn followed by ' w :  . 

of various granitic rocks whose ages are in the order jf 550

A late- to post-tectoaic thermal event, around 470 Ma, ii indicactc 

dating of gneisses of the Khan Formation and che Rtissing Mine all. ikit- 

(Krtiner et al., 1978), and it is possible that K/Ar biotite age- _ --

Ma >sHuack and Hotfer, 19 76) also reflect this event. Since the 470 Ma urani- 

ferous. alaskites are intimately related to F4 structural deformation i: 

be concluded that the F4 episode is of this age (520-470 Ma)i.e. it was ; t* 

last claarly recognisable episode of regional structural deformat’.v. r iss - 

ciated with the Damara Orogeny.

2.6 Uranium Mineralisation

The radioaccive mineralisacion in che area has been discussed by iiurnet 

workers including JacoD ei a 1. (in press), Jacob (1974b), von Backscrdm 

and Smich (1965). The uranium occurs chiefly wichin cwo lithological regime , 

viz., in granitic rocks and in calcareous and gypsiferous duricrustal dero.~ : .

The Salem Granite Suite and (especially) the red granites concain anomalous, 

but essentially non-economic, quantities of uranium, mostly in associatiot 

with thorium. Economically incerescing uranium mineralisacion occurs, ht'uw 

in che late-phase alaskitic granite differentiates of the red granite
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Numerous uraniferous occurrences have been found in this environment, the 

localities of which are indicated in Fig 2 . In particular, the Rossing 

deposit is of this type (von Backstrom, 1970; Berning et al ., 1976). The 

uraniferous alaskitic granite occurs preferentially in and around anti­

clinal and dome structures and intrudes into the basement and into the 

Nosib ard lower Swakop Groups, mainly below the prominent marbles of the 

Karibib Formation. Certain of these stratigraphic units, such as the Khan 

and Rossing Formations appear to be favoured hosts. The concentration of 

the mineralised bodies below the Karibib Formation is due partly to the 

structural trapping effect of the marble bands, partly to water saturation 

at this level and partly to chemical effects such as assimilation, the pre­

cipitating effect of iron-sulphide-bearing schists and reductants such as 

graphite (Jacob, 1974b). Jacob et a l ., (in press), believe that the alas­

kitic melts were derived through partial melting of the Abbabis basement 

and, to a certain extent, also of the Etusis Formation, during high-grade 

Damaran metamorphism. During anatexis the incompatible elements, particu­

larly uranium, were incorporated into the melts which then rose, in an 

attempt to attain gravitational equilibrium. The various levels to which 

these melts rose were determined by the depth of origin of the melts, on 

their water content and on the availability of tensional environments. 

Fractional crystallisation during ascent and increased water content con­

centrated the uranium into residual melts which finally crystallised as 

alaskitic pegmatitic granite.

Numerous sporadic occurrences of secondary uranium mineralisation (chiefly 

carnotite) occur in Tertiary to Recent calcareous and gypsiferous palaeo- 

drainage sediments as a result of supergene groundwater activity. The 

Langer Heinrich deposit is the best example of such mineralisation.

The Damara belt is thus a uranium province providing a good example of 

multi-cyclic processes of ore formation. Initial concentrations in base­

ment and Nosib rocks have led, through ultrametamorphism and fractionation 

to uraniferous granites, followed by partial secondary enrichment. These 

uraniferous granites in turn have acted as sources of carnctite mineralisation 

in overlying superficial calcareous and gypsiferous sediments of Cainozoic 

age (von Backstrom & Jacob, 1979; Hambleton-Jones et a l ., in press).
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