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Abstract 

 

Human immunodeficiency virus (HIV), the causative agent of the acquired 

immunodeficiency syndrome (AIDS), remains a topic of global concern even though great 

strides have been made to combat the virus. The high replicative rate of the virus and 

recombination of the variety of viral strains complicate the treatment of AIDS. There has 

been an increasing prevalence of African HIV strains in the Americas and Europe. The viral 

protease (PR) is vital for the propagation of the virus; and thus, is a major target in antiviral 

therapy. The HIV-1 PR enzyme from the subtype C strain; which predominates in sub-

Saharan Africa, has been greatly under-investigated in comparison to the protease from the 

subtype B strain which predominates in North America and Europe. Enzyme activity data 

which were part of this work suggested that the South African HIV-1 subtype C protease (C-

SA PR) displays improved substrate turnover in comparison to the subtype B PR. 

Thermodynamics and inhibition kinetics of drug binding showed that the C-SA PR is less 

susceptible to certain clinically-used protease inhibitors when compared to the subtype B PR. 

A crystal structure of the C-SA PR was solved and showed no difference to the global 

structure of the subtype B PR. Molecular dynamics simulations showed that the C-SA PR 

exhibits a wider range of open conformations. Hydrogen/deuterium exchange-mass 

spectrometry (HDX-MS) was performed to elucidate the mechanism of reduced drug 

susceptibility displayed by the C-SA PR. HDX-MS data provided insights into the basis of 

the increased preference for open conformers displayed by the C-SA PR and the stability of 

the terminal dimer interface which is a target in protease inhibition. 
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CHAPTER 1 

 

Non-B HIV-1 Subtypes in sub-Saharan Africa: Impact of 

Subtype on Protease Inhibitor Efficacy 

 

Previn Naicker and Yasien Sayed.  

 

Biol. Chem., In Press. (2014). 

 

 

In this publication, a detailed introduction into HIV is given. Information on the genetic 

diversity of HIV type 1 and characteristics of the HIV-1 subtype C is presented. Comparisons 

between the subtype B and C proteases are made and the secondary resistance mutations 

inherent to the C-SA PR are discussed. An account of some novel anti-HIV drugs is also 

provided.  

 

 

Author contributions: Previn Naicker performed the literature review and wrote the 

manuscript. Yasien Sayed performed literature review and assisted in revision of manuscript. 
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       Review   

    Previn   Naicker      and     Yasien   Sayed      *   

  Non-B HIV-1 subtypes in sub-Saharan Africa: 
impact of subtype on protease inhibitor efficacy    
  Abstract:   In 2012, 25 million people [71% of global human 

immunodeficiency virus (HIV) infection] were estimated 

to be living with HIV in sub-Saharan Africa. Of these, 

approximately 1.6 million were new infections and 1.2 

million deaths occurred. South Africa alone accounted for 

31% of HIV/acquired immunodeficiency syndrome (AIDS) 

deaths in sub-Saharan Africa. This disturbing statistic 

indicates that South Africa remains the epicenter of the 

HIV/AIDS pandemic, compounded by the fact that only 

36% of HIV-positive patients in South Africa have access to 

antiretroviral (ARV) treatment. Drug resistance mutations 

have emerged, and current ARVs show reduced efficacy 

against non-B subtypes. In addition, several recent stud-

ies have shown an increased prevalence of non-B African 

HIV strains in the Americas and Europe. Therefore, the 

use of ARVs in a non-B HIV-1 subtype context requires fur-

ther investigation. HIV-1 subtype C protease, found largely 

in sub-Saharan Africa, has been under-investigated when 

compared with the subtype B protease, which predomi-

nates in North America and Europe. This review, there-

fore, focuses on HIV-1 proteases from B and C subtypes.  

   Keywords:    African subtypes;   AIDS;   drug resistance;   novel 

protease inhibitors.  

  DOI 10.1515/hsz-2014-0162 

 Received  March   5 ,  2014 ; accepted  May   12 ,  2014   

   Introduction 
 Acquired immunodeficiency syndrome (AIDS) has caused 

major global health and socioeconomic challenges over 

the past three decades. Human immunodeficiency virus 

(HIV), the causative agent of AIDS, has been extensively 

investigated in research laboratories throughout the 

world. Genotypic characterization of the virus and antiret-

roviral (ARV) drug development efforts have been exhaus-

tive and are ongoing. Understanding the virus at the 

molecular level is a basic requirement, and the knowledge 

gained from these studies would help drive drug develop-

ment. Globally, there are roughly 35 million people living 

with HIV and 71% reside in sub-Saharan Africa ( The Joint 

Nations Program on HIV/AIDS, 2013 ). Statistics on ARV 

efficacy during long-term treatment are generally poor. 

Statistics from sub-Saharan countries are especially poor 

due to the cost of HIV monitoring and various socioeco-

nomic challenges. This is an unfortunate reality because 

reports of drug resistance as well as the genetic variation 

of HIV are on the rise ( Rousseau et al., 2007 ;  Shafer and 

Schapiro, 2008 ;  Hemelaar et al., 2011 ). 

 HIV is a retrovirus. The survival of the virus in a 

human host requires the viral genetic material (RNA) 

to be reverse transcribed to DNA by the viral reverse 

transcriptase (RT). Owing to the RT enzyme lacking 

proofreading ability and the high replication rate of 

HIV, mutations occur frequently in the viral proteins 

that are targeted by antiviral drugs, thereby providing a 

challenge for the production of effective antiviral com-

pounds. Currently, there are six classes of anti-HIV drugs 

( Table 1  ): nucleoside RT inhibitors (NRTIs), non-nucleo-

side RT inhibitors (NNRTIs), protease inhibitors (PIs), 

integrase inhibitors, fusion inhibitors, and entry inhibi-

tors. RT and PIs are recommended in treatment regimens 

globally, and extensive data are available on the drug-

resistance profiles of these therapeutics ( World Health 

Organization, 2013 ). Fewer information is available on 

the newer classes of inhibitors and reduced efficacies 

due to drug-resistance mutations (DRMs) are inevitable. 

Efforts to produce an effective HIV vaccine are ongoing 

( Moore et al., 2012 ), and the control of HIV epidemiology 

in the interim is reliant on RT and PIs. Importantly, more 

mutations are selected in response to PIs than any other 

class of ARV ( Shafer and Schapiro, 2008 ). In this review, 
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we focus on the subtype C protease (PR) prevalent in 

sub-Saharan Africa with special attention to the South 

African HIV-1 subtype C PR. Approximately 12% of the 

South African population are HIV positive (6.1 million 

out of a total population of 52 million people) ( The Joint 

Nations Program on HIV/AIDS, 2013 ). This alarming sta-

tistic reflects that South Africa is the epicenter of the HIV/

AIDS pandemic. Although there are excellent reviews 

on HIV-1 subtype B and non-B subtypes ( Kantor and 

Katzenstein, 2003 ;  Martinez-Cajas et al., 2009 ;  Wainberg 

and Brenner, 2010 ), there are very few reviews on PRs 

from sub-Saharan Africa ( Bessong, 2008 ). Therefore, a 

clear understanding of the role of genetic diversity and 

subtype variation and their impact on viral fitness and 

drug efficacy must be addressed.  

  Genetic diversity of HIV 

 Two types of HIV have been identified: HIV-1 and HIV-2. 

HIV-1 is the predominant type and is separated into 

groups M, N, O, and P ( Taylor et al., 2008 ;  Plantier et al., 

2009 ). Group M (comprising 95% of the complete genome 

sequences of HIV-1) is further separated into nine subtypes 

(A, B, C, D, F, G, H, J, and K) and a growing number of cir-

culating recombinant forms (CRFs) as shown in  Figure 1   

( Taylor et  al., 2008 ). A recombinant strain is defined as 

a CRF if it has been fully sequenced and isolated in three 

or more epidemiologically distinct individuals ( Robertson 

et al., 2000 ). Currently, recombinants are estimated to con-

tribute to a minimum of 20% of the global HIV-1 infections 

( Hemelaar et al., 2011 ). Unique recombinant forms (URFs) 

 Table 1      FDA-approved ARV drugs for treatment of HIV infection.  

Generic name    Manufacturer    Approval date  

NRTIs

   Zidovudine, AZT   GlaxoSmithKline   March 19, 1987

   Didanosine, dideoxyinosine (ddl)   Bristol Myers-Squibb   October 9, 1991

   Zalcitabine, dideoxycytidine (ddC) (no longer marketed)   Hoffmann-La Roche   June 19, 1992

   Stavudine (d4T)   Bristol Myers-Squibb   June 24, 1994

   Lamivudine (3TC)   GlaxoSmithKline   November 17, 1995

   Abacavir sulfate   GlaxoSmithKline   December 17, 1998

   Tenofovir disoproxil fumarate (TDF)   Gilead Sciences   October 26, 2001

   Emtricitabine (FTC)   Gilead Sciences   July 02, 2003

NNRTIs

   Nevirapine (NVP)   Boehringer Ingelheim   June 21, 1996

   Delavirdine (DLV)   Pfizer   April 4, 1997

   Efavirenz (EFV)   Bristol Myers-Squibb   September 17, 1998

   Etravirine   Tibotec Therapeutics   January 18, 2008

   Rilpivirine   Tibotec Therapeutics   May 20, 2011

Pis

   Saquinavir mesylate (SQV)   Hoffmann-La Roche   December 6, 1995

   Ritonavir (RTV)   Abbott Laboratories   March 1, 1996

   Indinavir (IDV)   Merck   March 13, 1996

   Nelfinavir mesylate (NFV)   Agouron Pharmaceuticals   March 14, 1997

   Amprenavir (APV) (no longer marketed)   GlaxoSmithKline   April 15, 1999

   Lopinavir (LPV)   Abbott Laboratories   September 15, 2000

   Atazanavir sulfate (ATV)   Bristol-Myers Squibb   June 20, 2003

   Fosamprenavir calcium (FOS-APV)   GlaxoSmithKline   October 20, 2003

   Tipranavir (TPV)   Boehringer Ingelheim   June 22, 2005

   Darunavir (DRV)   Tibotec   June 23, 2006

Fusion inhibitors

   Enfuvirtide (T-20)   Hoffmann-La Roche and Trimeris  March 13, 2003

Entry inhibitors (CCR5 co-receptor antagonist)

   Maraviroc   Pfizer   August 06, 2007

HIV integrase strand transfer inhibitors

   Raltegravir   Merck   October 12, 2007

   Dolutegravir    GlaxoSmithKline    Auguste 13, 2013  

   List excludes approved inhibitors that are combined or modified. 

 Adapted from the U.S. Food and Drug Administration,  http://www.fda.gov/ForConsumers/byAudience/For  Patient Advocates/HIVandAIDS-

Activities/ucm118915.htm.   
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 Figure 1      Groups of HIV-1. 

 The nine subtypes of the major group are displayed. There have 

been reports of 61 CRFs in HIV-1 group M to date (Los Alamos HIV 

sequence database,  http://www.hiv.lanl.gov/content/sequences/

HIV/CRFs/CRFs.html ).    
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in Figure 1

refer to strains that do not satisfy the aforementioned cri-

teria ( Robertson et al., 2000 ). The extension designated to 

a CRF indicates the subtype from which the CRF is derived 

( Hemelaar, 2012 ). If the CRF consists of contributions from 

more than two subtypes, it bears a  ‘ cpx ’  (complex) exten-

sion ( Hemelaar, 2012 ). Recombination events have been 

reported between different strains from different HIV-1 

groups (M and O) as well as within and between group 

M subtypes ( Rousseau et  al., 2007 ). Importantly, intra-

subtype recombination has been established as being 

widespread within group M, subtype C HIV-1 ( Rousseau 

et al., 2007 ). Recombination events are ongoing in many 

countries worldwide, where different CRFs and subtypes 

co-circulate ( Hemelaar, 2012 ). A high prevalence of URFs 

is observed in West Africa, and the CRFs involved include 

CRF02, CRF06_cpx, and CRF09_cpx ( Delgado et al., 2008 ). 

Some CRFs have recombined even further with other CRFs 

or subtypes, resulting in second-generation recombinants 

(SGRs) ( Hemelaar, 2012 ). 

 HIV-1 subtype C is the most common subtype world-

wide and occurs mainly in sub-Saharan Africa, India, 

Brazil, and China, and these regions are most heavily 

afflicted by HIV and AIDS ( Hemelaar et al., 2011 ). Studies 

have been performed on the interaction of PIs with PRs of 

subtype B HIV origin, which occurs mainly in regions of 

North America and Europe ( Hemelaar et al., 2011 ). More 

recently, studies have emerged on the efficacy of ARVs 

against viral proteins of non-B HIV-1 subtypes ( Velazquez-

Campoy et  al., 2003 ;  Mosebi et  al., 2008 ;  Ahmed et  al., 

2013 ). Interestingly, the proportion of non-B subtypes in 

the Americas and Europe is on the rise, especially those 

subtypes that predominate in Africa ( Descamps et  al., 

2005 ;  Holguin et  al., 2008 ;  Kanizsai et  al., 2010 ;  Foster 

et al., 2014 ;  Mendoza et al., 2014 ). Therefore, the sustain-

ability and future efficacy of ARVs in clinical use today are 

a concern.  

  HIV-1 subtype C 
 Subtype C viruses account for approximately 50% of 

HIV-1 infections worldwide ( Hemelaar et  al., 2011 ). The 

increased prevalence of this subtype in the Western world 

and its dominance in sub-Saharan Africa and India pose 

vital questions on the approach of current drug develop-

ment strategies and the efficacy of long-term use of ARVs. 

Irrespective of the subtype, efficient processing of Gag 

and Gag-Pol polyproteins is required for viral propaga-

tion ( Kaplan et al., 1993 ). In total, there are 12 HIV-1 cleav-

age sites in the Gag, Gag-Pol, and nef precursor proteins 

( Figure 2  ) ( de Oliveira et al., 2003 ). The majority of these 

sites are significantly more diverse in subtype C viruses 

when compared with subtype B viruses ( de Oliveira et al., 

2003 ). Natural variation at cleavage sites in subtype C 

viruses may be involved in disease progression, response 

to therapy, and regulation of the viral cycle ( de Oliveira 

et al., 2003 ). The disproportionate increase in the preva-

lence of the subtype C strain in comparison to other HIV-1 

viruses implies that subtype C HIV-1 may have a greater 

level of viral fitness at the population level or may be 

more easily transmitted ( Bessong, 2008 ). These intriguing 

details warrant further investigation into the structural 

and functional features of the subtype C PR and a com-

parison to the well-investigated subtype B PR.  

  Comparison of viral fitness between 
subtype B and C proteases 
 Mature dimeric PR is released from the Gag-Pol polypro-

tein during precursor processing ( Kaplan et  al., 1993 ). 

Production of mature PR appears to be catalyzed by 

the Gag-Pol precursor itself ( Pettit et al., 2005 ). It is still 

unclear whether the initial cleavage is accomplished 

intra- or inter-molecularly ( Wiegers et  al., 1998 ;  Pettit 

et al., 2005 ). The active site of the PR is formed at the dimer 

4
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interface by the enzymatic residues (D25/D25 ′ ) shown in 

 Figure 3  . Aberrant virions that are significantly less infec-

tive may appear due to defects in the PR activity ( Kaplan 

et al., 1993 ;  Wiegers et al., 1998 ;  Huang and Chen, 2010 ). 

Such defects include mutations that modify the order of 

cleavage or the rate of processing or that result in incor-

rect cleavage at any site ( Kaplan et al., 1993 ;  Wiegers et al., 

1998 ;  Huang and Chen, 2010 ). Therefore, the PR remains a 

major target of anti-HIV drug development and one of the 

most well-studied enzymes by researchers in academia 

and industry. This is evidenced by the development of 10 

U.S. Food and Drug Administration (FDA)-approved PIs 

from December 1995 to June 2006 ( Table 1 ). 

 The PDB is replete with HIV PR structures, many of 

which, however, are redundant. Thus far, the majority 

of PR crystal structures in the PDB are representative of 

HIV-1 subtype B, and only four crystal structures of HIV-1 

subtype C PR have been solved. We recently published the 

first crystal structure of the South African HIV-1 subtype C 

PR ( Naicker et al., 2013a,b ). Interestingly, even within HIV 

subtypes, genetic diversity occurs due to the error-prone 

nature of the virus as well as mutations resulting from 
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 Figure 2      HIV-1 PR cleavage sites within Gag, Gag-Pol, and nef proteins. 

 Proteins released following cleavage of Gag and Gag-Pol are matrix (MA), capsid (CA), nucleocapsid (NC), p2, p1, transframe protein (TFP), 

p6 gag , p6 pol , PR, RT, RNase H, and integrase (IN) (de Oliveira et al., 2003).    

 Figure 3      Cartoon representation of the HIV-1 PR. 

 Spheres represent positions of the polymorphic sites that exist between subtype B and C-SA PRs. Active site residues (D25) shown as 

sticks. Sequence alignment below shows differences between the PRs at the level of primary structure. PDB ID: 3U71 ( Naicker et al., 

2013a,b ).    

5

Previn
Cross-Out

Previn
Cross-Out



P. Naicker and Y. Sayed: Non-B HIV-1 subtypes in sub-Saharan Africa      5

environmental factors and drug pressure ( Taylor et  al., 

2008 ;  Hemelaar et al., 2011 ). The consensus sequence of 

the HIV-1 subtype C PR occurring in South Africa (C-SA 

PR) shares the same sequence identity as the consen-

sus subtype C PR in group M (Los Alamos HIV sequence 

database,  http://www.hiv.lanl.gov/ ). It is anticipated that 

approximately 15% – 20% of adults in South Africa will 

experience virologic failure within the first 2 years of treat-

ment with the first-line ARV regimen ( Coetzee et al., 2004 ). 

Therefore, there is still a dependency on the second-

line regimen comprising RT inhibitors and PIs in South 

Africa. The C-SA PR differs from the consensus subtype B 

PR at eight positions in each monomer (Los Alamos HIV 

sequence database,  http://www.hiv.lanl.gov/ ) shown in 

 Figure 3 . The polymorphisms occur distal to the active site 

and mutations at these sites do not affect drug binding/

substrate cleavage directly. 

 From among the plethora of biochemical techniques 

available, isothermal titration calorimetry represents 

the most powerful and versatile method to evaluate the 

thermodynamics and binding affinity of a drug toward 

its target in a single experiment. Thermodynamic analy-

ses of interactions between the PR and FDA-approved PIs 

indicate that the C-SA PR, generally, displays reduced sus-

ceptibility to PIs ( Velazquez-Campoy et al., 2003 ;  Mosebi 

et al., 2008 ) and that binding affinities of PIs were 3- to 

24-fold weaker for the C-SA PR than for the subtype B PR 

( Velazquez-Campoy et  al., 2003 ). Amprenavir, indinavir, 

nelfinavir, and saquinavir displayed 3- to 6-fold weaker 

binding, whereas lopinavir and ritonavir displayed sig-

nificant reductions in affinity with 8- to 24-fold weaker 

binding ( Velazquez-Campoy et al., 2003 ). The calculated 

binding affinity of PIs measured during a 2-ns molecular 

dynamics (MD) simulation showed a general reduction of 

0.5 – 2 kcal/mol in binding energy for the C-SA PR relative 

to the subtype B PR ( Ahmed et al., 2013 ). Apart from the 

genetic variability observed between B and C-PRs, pheno-

typic assays revealed that IC 
90

  values for subtype C HIV-1 

strains were 0.16- to 3-fold greater than the control subtype 

B strain in the presence of indinavir, nelfinavir, ritonavir, 

and saquinavir ( Shafer et al., 1999 ). These results suggest 

that subtype C HIV-1 may have improved viral fitness 

and marginally reduced drug susceptibility to most FDA-

approved PIs in comparison to the subtype B HIV-1. 

 Clinical data from ARV treatment programs in sub-

Saharan Africa reveal that drug-resistance patterns are 

similar between B and non-B HIV-1 subtypes ( Barth et al., 

2010 ). Interestingly, naturally occurring polymorphisms 

in strains such as subtype C HIV-1 have an additive effect 

on resistance mutations ( Velazquez-Campoy et al., 2002 ). 

Only few studies have directly compared the clinical 

outcome of ARV treatments among patients harboring dif-

ferent subtypes ( Del Amo et al., 1998 ;  Alaeus et al., 1999 ; 

 Alexander et  al., 2002 ;  Pillay et  al., 2002 ). Owing to the 

large diversity of HIV strains globally, clinical studies 

compare disease progression in individuals infected with 

varying HIV subtypes; however, these studies have not 

directly compared individuals infected with either subtype 

B or subtype C HIV-1 alone. However, in drug-experienced 

HIV-infected individuals, there is a strong correlation 

between unfavorable virologic response to ritonavir/

saquinavir treatments and mutations at protease posi-

tions 10, 36, and 93 ( Harrigan et al., 1999 ;  Zolopa et al., 

1999 ). Positions 36 and 93 are natural polymorphic sites in 

the C-SA PR. In contrast, studies of patients infected with 

B or non-B HIV-1 strains in Canada ( Alexander et al., 2002 ) 

and Europe ( Del Amo et  al., 1998 ;  Alaeus et  al., 1999 ; 

 Pillay et al., 2002 ) revealed no association between HIV-1 

subtype and disease progression. These findings may 

indeed be complicated by patients infected with multiple 

HIV-1 strains and disparity in treatment regimens. 

 A recent structural and computational study indi-

cated that the differences drug efficacy may be explained 

by key differences at the hinge region of the PR comprising 

amino acids at residue positions 35 – 42 and 57 – 61 ( Naicker 

et al., 2013a,b ). The stability of the hinge region of the PR 

influences the movement of the closely associated flaps 

comprising amino acids at residue positions 46 – 54. The 

flaps shield the PR-active site (seen above the active site 

in  Figure 3 ), and therefore, flap opening is required for 

substrate/inhibitor entry into the active site. Increased 

flap flexibility is associated with weaker interactions with 

inhibitors. MD simulation results showed that although 

the extent of flap opening of both the C-SA and subtype B 

PRs are similar, the inter-flap distance measured showed 

greater fluctuation for the C-SA PR for the majority of the 

10-ns simulation ( Naicker et  al., 2013a,b ). Thus, C-SA 

PR flaps sample a larger range of conformations, which 

implies greater flexibility around the flap tips. Because 

the flap regions of both PRs are identical, the mecha-

nism of increased flexibility may not be straightforward. 

Detailed structural analysis of the apo-forms of the C-SA 

and subtype B PRs showed that increased flexibility of the 

flap region may be due to subtle differences in the hinge 

region ( Naicker et al., 2013a,b ). The difference is due to the 

absence of the E35-R57 salt bridge in the C-SA PR. In the 

subtype B PR, M36 most likely facilitates formation of the 

salt bridge, whereas, I36 in the C-SA PR does not facilitate 

the formation of the salt bridge. The E35-R57 ionic inter-

action is the only salt bridge in the flap-hinge region of 

the PR and may be a key requirement for maintaining the 

rigidity of the hinge region. Therefore, polymorphisms at 
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position 36 are likely to increase flexibility of the flap tips, 

which is clearly evident in the C-SA PR crystal structure 

and MD simulations ( Naicker et al., 2013a,b ).  

  Secondary resistance mutations 
in HIV-1 subtype C PR 
 Secondary resistance mutations occur distal to the active 

site and are not implicated by themselves in high-level 

drug resistance ( Rose et  al., 1996 ;  Nijhuis et  al., 1999 ). 

They either contribute to drug resistance in the presence 

of selected primary resistance mutations or upregulate 

PR activity to compensate for the reduction in catalytic 

efficiency caused by the selected primary PR resistance 

mutations ( Rose et al., 1996 ;  Nijhuis et al., 1999 ). Certain 

secondary resistance mutations (e.g., M36I) may also 

increase the genetic barrier, thereby enhancing the 

emergence of primary resistance mutations ( Perno et al., 

2004 ). Both D30N and L90M primary DRMs occur in 

non-B viruses during nelfinavir therapy. However, D30N 

occurs more commonly in subtype B viruses, whereas 

L90M occurs more frequently in subtype C, F, G, and CRF 

01_AE viruses ( Cane et  al., 2001 ;  Abecasis et  al., 2005 ). 

Importantly, the increased preference for certain subtypes 

to develop L90M may be associated with the occurrence 

of residues other than leucine (subtype B consensus) at 

position 89 (e.g., methionine in subtype C) ( Cane et  al., 

2001 ;  Abecasis et  al., 2005 ;  Shafer and Schapiro, 2008 ). 

The residue at position 90 is situated on the  α -helix of 

the terminal domain, which interacts with the surface 

of the hydrophobic core domain and L90M may disrupt 

the packing of the two domains ( Rose et  al., 1998 ). The 

same mutation often occurs in response to inhibitors of 

entirely different chemical scaffolds. Therefore, these 

drug-resistant mutations are conserved and suggest a 

mechanism of drug resistance independent of the inhibi-

tor used ( Rose et al., 1998 ). T47S is another polymorphism 

that is linked to reduced susceptibility toward nelfinavir 

and occurs in approximately 8% of subtype C viruses, but 

rarely in other subtypes ( Rhee et al., 2006 ). These findings 

suggest that subtype C viruses are more prone to develop 

drug resistance to PIs than subtype B viruses. 

 Specific mutations (e.g., V82I) within the PR have 

been found to play a greater role in drug resistance. The 

occurrence of such mutations appears to differ between 

subtypes ( Kantor and Katzenstein, 2003 ). The V82I 

mutation occurs in approximately 1% of untreated HIV-1 

subtype B-infected individuals. Interestingly, this muta-

tion has been observed in 6% and 9% of subtype C- and 

subtype F-infected individuals, respectively, and is the 

consensus (  >  50%) in untreated subtype G-infected indi-

viduals ( Kantor and Katzenstein, 2003 ). In South Africa, 

as in other European countries ( Pereira-Vaz et al., 2009 ), 

amino acid insertions are now being detected more fre-

quently in the PR hinge region in treatment-na ï ve HIV-1 

subtype C patients ( Bessong et  al., 2006 ;  Pereira-Vaz 

et  al., 2009 ). With improving HIV surveillance in Africa 

and India, it is expected that more of these HIV-1 variants 

will be detected. The exact role of insertions have not been 

elucidated, however, they may be implicated in improving 

viral fitness by increasing the catalytic efficiency of the PR 

( Kozisek et al., 2008 ). Inhibition data suggest that inser-

tions in the hinge region contribute to PI resistance only 

in combination with other mutations in the PR or Gag and 

Gag-Pol ( Kozisek et al., 2008 ).  

  Novel strategies for overcoming 
drug resistance and future 
directions 
 All currently available PIs are active site inhibitors. 

Efforts are currently underway to design more adaptable 

PIs that will adjust to slight structural changes due to 

resistance mutations. New alternative classes of PIs may 

provide a higher barrier to resistance and improve HIV 

PR selectivity. Improved drug selectivity may help reduce 

side effects associated with antiviral therapy (e.g., lypo-

dystrophy syndrome, hyperlipidemia, diarrhea). One such 

alternative is dimerization inhibitors. HIV PR is an obli-

gate homodimer, and disruption of dimer formation leads 

to inactivation of the PR ( Hansen et al., 1988 ). The termi-

nal dimer interface (residue positions 1 – 5 and 95 – 99) is 

conserved across all HIV subtypes, and resistance muta-

tions at these sites are not likely to develop. Disruption 

of a few key interactions at the terminal dimer interface 

has been shown to eliminate the formation of a PR dimer 

( Choudhury et al., 2003 ;  Pettit et al., 2003 ;  Naicker et al., 

2013a,b ). Mutation of the ultimate amino acid, F99, to an 

alanine resulted in the formation of two monomers with 

the concomitant loss in enzyme activity ( Naicker et  al., 

2013a,b ). Experimental dimerization inhibitors showed 

reduced potency relative to their clinically available 

active site inhibitor counterparts ( Babe et al., 1992 ). Slight 

improvements of dimerization inhibitors are required to 

make them clinically effective, especially when consider-

ing they have a high barrier to resistance and may display 

reduced side effects. 
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 Improved pharmacological features such as drug 

absorption and half-life are always important consid-

erations during drug development. Recent investigations 

with our collaborators has led to the discovery and syn-

thesis of novel transition-state analogues, pentacycloun-

decane (PCU) cage-incorporated peptides, with anti-HIV 

PR activity ( Makatini et  al., 2011 ;  Karpoormath et  al., 

2013 ;  Makatini et  al., 2013 ). The lipophilic nature of the 

cage compounds confers excellent chemical properties 

required for drug delivery. Cage compounds covalently 

linked to pharmaceutically active molecules have been 

shown to reduce drug biodegradation, thereby increas-

ing the half-life of the drug ( Ito et  al., 2007 ). The bulky 

hydrocarbon scaffold aids in the transport of the drugs 

across cellular membranes ( Ito et  al., 2007 ). The PCU-

incorporated compound (PCU-lactam-EAIS) with the 

greatest potency (IC 
50

   =  0.078  μ  m ) serves as a template for 

compounds with higher efficacy ( Makatini et  al., 2011 ). 

The coupling of the PCU-lactam ( Figure 4  A) to a variety of 

peptide side chains showed minimal effect on the inhibi-

tory potential ( Makatini et al., 2011 ). Removal of the cage 

resulted in a complete loss of inhibitory activity ( Makatini 

et al., 2011 ). Therefore, the cage lactam is the key compo-

nent for inhibition. PCU-peptides showed between 6000 

and 8000 times less toxicity to human MT-4 cells than 

lopinavir ( Makatini et  al., 2011 ), further enhancing the 

potential of these novel PIs. 

 Other novel PIs currently under development and 

that are being tested against the C-SA PR include linear 

and cyclic glycopeptides incorporating a hydroxy propyl 

amine as a transition-state analogue ( Pawar et al., 2013 ). 

Nuclear magnetic resonance studies have shown that the 

sugar moiety induces a turn in the linear peptides and 

shows a good correlation with the corresponding cyclic 

peptides ( Pawar et  al., 2013 ). The hydroxy propyl amine 

forms hydrogen bonds with the enzymatic residues (D25/

D25 ′ ) of the PR, showing great potential as a transition-

state analogue. Another exciting development is the for-

mulation of dual-action HIV-1 PR/RT inhibitors ( Figure 

4 B). Coumarin moieties conjugated to the RT inhibitor 

azidothymidine (AZT) have shown promise as dual-action 

inhibitors ( Olomola et al., 2013 ). The AZT moiety showed 

complete inhibitory potency, whereas the coumarin 

derivative exhibited moderate inhibition of the PR (two 

to four times weaker inhibition than ritonavir) ( Olomola 

et  al., 2013 ). The  N -benzylated coumarin-AZT analogues 

displayed great promise, with the  N -benzyl group enhanc-

ing the RT inhibition activity. These compounds were iso-

lated in high yields, which ranged between 70% and 80% 

( Olomola et al., 2013 ), further validating the potential of 

these compounds as novel dual-action inhibitors. 

 ARV interventions that are effective against a variety 

of HIV subtypes and drug-resistant strains are focus 

areas in HIV/AIDS research at present. Overcoming drug 

resistance is not limited to the development of novel PIs. 

Additionally, the production of an effective HIV vaccine 

is the aspiration of many researchers, particularly a 

vaccine that confers immunity to HIV-1 strains from sub-

Saharan Africa. Efforts to stimulate production of broadly 

cross-neutralizing (BCN) antibodies through vaccination 

have been largely unsuccessful ( Haynes and Montefiori, 

2006 ;  Hu and Stamatatos, 2007 ). A minority of individu-

als develop antibodies naturally after several years post 

infection ( Stamatatos et al., 2009 ). Little is known about 
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how these specific neutralizing antibodies arise. However, 

recent encouraging strides have been made that enhance 

our understanding of BCN antibodies ( Moore et al., 2012 ). 

Glycans are known to play an important role in shielding 

neutralizing epitopes on the HIV envelope and thus viral 

escape. BCN responses have been shown to directly target 

these glycans including one at position 332 in the immu-

nogenic C3 region of the gp120 subunit of the HIV-1 enve-

lope protein ( Walker et al., 2011 ;  Moore et al., 2012 ). 

 Importantly, in HIV-1 subtype C viruses, the absence 

of the 332 glycan is favored at transmission ( Moore et al., 

2012 ). Absence of the 332 glycan confers resistance to 

Asn332-dependent BCN monoclonal antibodies ( Walker 

et  al., 2011 ). Shortly after transmission, immune pres-

sure by strain-specific neutralizing antibodies triggers the 

evolution of the 332 glycan ( Moore et al., 2012 ). The evo-

lution of such epitopes provide vital targets for neutrali-

zation of subtype C viruses. Two patients from a cohort 

of 79 subtype C HIV-1-infected women developed Asn332-

dependent BCN antibodies ( Moore et al., 2012 ). The glycan 

that formed the core of the BCN epitope was absent on the 

infecting virus for both patients but evolved shortly there-

after ( Moore et al., 2012 ). Using clones of the acute virus 

and a 6-month representative virus of both patients, novel 

BCN epitopes were identified. The transfer of a glycan from 

position 334 to 332 allowed the virus to escape autologous 

neutralizing antibodies; however, this created a new BCN 

epitope that provided the antigenic stimulus to produce 

BCN antibodies targeting the 332 glycan ( Moore et  al., 

2012 ). A glycan at position 160, which was initially absent 

was also shown to emerge in patients after 3 – 6 months of 

transmission with HIV-1 ( Moore et al., 2012 ). Interestingly, 

BCN antibodies develop more frequently in infected indi-

viduals for those targeting epitopes directed toward the 

160 or 332 glycans rather than the membrane-proximal 

region or CD4 binding site ( Walker et al., 2010 ;  Tomaras 

et  al., 2011 ). These useful insights are of great value for 

the production of effective HIV vaccines, especially those 

conferring immunity to subtype C HIV-1. 

 Great advances are being made to elucidate the 

mechanisms behind the reduced drug efficacy associ-

ated with subtype variation. A number of drug develop-

ment strategies to improve PIs are being explored. The 

C-SA PR remains an epidemiologically relevant protein 

to investigate, and further structural and dynamic analy-

ses of this enzyme may reveal key insights for future drug 

development.  
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CHAPTER 2 

General introduction 

2.1 Overview 

 

Human immunodeficiency virus (HIV) continues to be one of the most problematic 

pathogens. HIV infection progresses to Acquired Immunodeficiency Syndrome (AIDS) 

resulting in severe suppression of the immune system in infected individuals. The latest 

statistics on world-wide HIV infection shows approximately 35 million people were living 

with HIV in 2012
1
. Therefore, HIV remains a serious pandemic that occurs predominantly in 

sub-Saharan Africa (approximately 25 million living with HIV); with 1.6 million new 

infections occurring in 2012
1
. Producing effective drugs against HIV has been an uphill battle 

since it was first isolated in 1983 by Barre-Sinoussi and co-workers
2
. This difficulty is due 

mainly to the viral reverse transcriptase (RT), which is prone to introducing mutations into 

the genes of the virus
3
. RT is responsible for transcribing the viral RNA to DNA that 

integrates into the host cell’s genome
3
. Owing to the mutation-prone nature of RT and the 

high replication rate of HIV, alterations and mutations are incorporated rapidly in viral 

proteins which antiviral drugs target; thereby, providing a challenge for the production of 

effective antivirals
3
. One such protein is the HIV protease (PR) which cleaves immature viral 

polyproteins into mature and functional proteins for the production of infective virions
4
. HIV 

PR targets a total of 12 cleavage sites in the Gag and Gag-pol polyproteins and the HIV nef 

protein
5
. Thus, PR has been identified as a major target in HIV therapy

4; 6
. The life cycle of 

HIV is depicted in Figure 1. 
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Figure 1: HIV life cycle. Stages of the life cycle are numbered. 1: Binding of HIV to 

receptors on the surface of the CD4
+
 T-lymphocyte and fusion with the host cell. 2: Reverse 

transcription of single-stranded viral RNA to double-stranded viral DNA. 3: Entry of viral 

DNA into the nucleus of the host cell. 4: Integration of the viral DNA into the host cell’s 

DNA. 5: Transcription of viral mRNA from the HIV genomic material. 6: Assembly of newly 

translated viral enzymes, structural proteins, and RNA. 7: Budding of the assembled virion 

from the host cell. 8: Release of the HIV virion into the surrounding environment. 9: 

Maturation of HIV into its infective form. The HIV protease cleaves viral proteins into their 

functional forms. Orange boxes depict stages of the life cycle that are major targets for drug 

therapy. Nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) target the RT enzyme. Protease inhibitors (HIV-PIs) target 

the protease enzyme. Fusion and entry inhibitors and integrase inhibitors are newer targets for 

drug therapy. Image adapted from
7
. 
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2.2 HIV genetic diversity 

 

There are the two types of HIV that have been identified; namely, HIV-1 and HIV-2
8; 9

. The 

predominant type (HIV-1) is separated into groups M, N, O and P
9; 10

. Group M (comprising 

95% of the complete genome sequences of HIV-1) is further separated into nine subtypes 

being A, B, C, D, F, G, H, J and K
8
 and a growing number of circulating recombinant forms 

(CRFs)
9
 as seen in Figure 2. Subtype C which is the most common subtype world-wide 

accounts for roughly 50% of HIV-1 infections and occurs mainly in sub-Saharan Africa, 

India, Brazil and China, which are the regions of the world that are most heavily affected by 

HIV and AIDS
8; 11

.  

 

A vast number of studies have been done on the interaction of protease inhibitors (PIs) with 

PRs of subtype B HIV origin
12-15

, which occurs mainly in regions of North America and 

Europe. However, fewer studies have been done on the inhibition of non-B subtypes, in 

particular, the subtype C PR
16

. Variation in PI sensitivity between HIV-1 subtypes may be 

significant and contribute to the high prevalence of HIV in sub-Saharan Africa. Genetic 

variation between subtypes usually ranges between 25-35% at the nucleotide level and 

variation within subtypes can range from 15-20%
9; 17

. Thus, both the high mutation rate of 

HIV and the genetic diversity of HIV make it seemingly improbable to create a single PI that 

will maintain potency against all the subtypes of HIV proteases found within different 

individuals
18

.  
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Figure 2: Global HIV-1 subtype distribution. Nine subtypes of the major group are 

displayed. As of 16 June 2014, there have been reports of 61 CRFs in HIV-1 group M (Los 

Alamos HIV sequence database, http://www.hiv.lanl.gov/content/sequences/HIV/CRFs/ 

CRFs.html). URFs refer to unique recombinant forms. Image adapted from
11

. 

. 
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2.3 HIV protease and mutations 

 

HIV PR is a 22 kDa homodimer, with each monomer containing 99 amino acid residues
19; 20

. 

Figure 3A, is an illustration of the HIV PR. It belongs to the class of aspartic proteases which 

contain the signature active site amino acid triplet (aspartic acid-threonine-glycine)
21

. Amino 

acid residues comprising the active site of the PR are conserved because mutations in this 

region will be detrimental to its ability to cleave natural substrates
21

. However, mutations 

near/at the active site (primary resistance mutations) and distal (secondary resistance 

mutations) from the active site can impact negatively on the PIs ability to bind the PR
22; 23

. 

Secondary resistance mutations either contribute to drug resistance in the presence of selected 

primary resistance mutations or they may compensate for the reduction in catalytic efficiency 

caused by the selected primary PR resistance mutations
24; 25

. A combination of secondary 

resistance mutations are required to affect the susceptibility of the PR to PIs
12

.  

 

2.4 Protease inhibitors 

 

PIs are designed to target the active site of the PR; thereby, inhibiting its ability to bind and 

cleave natural substrates. The first-line antiretroviral therapy (ART) guidelines for adults and 

adolescents include the use of two nucleoside reverse transcriptase inhibitors in combination 

with one non-nucleoside reverse transcriptase inhibitor
26

. Second-line ART may proceed 

upon failure of the first-line ART regimen in an individual. Currently, there are 10 FDA 

approved PIs; namely, saquinavir, indinavir, amprenavir, ritonavir, nelfinavir, lopinavir, 

atazanavir, fosamprenavir, tipranavir and darunavir. Protease inhibitors (PIs) preferred in 

second-line ART for adults and adolescents are either atazanavir, darunavir or lopinavir in 

combination with the PI booster, ritonavir
26

.  
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Figure 3: Polymorphic sites in subtype B and C-SA PRs. (A) The flexible flaps of PR 

(residues at positions 46–54) are coloured cyan. The fulcrum coloured purple (residues at 

positions 10–23), hinge coloured pink (residues at positions 35–42 and 57–61) and cantilever 

coloured blue (residues at positions 62–78) are regions implicated in flap opening.  Locations 

of the eight polymorphic amino acids in each monomer are shown as spheres. PDB ID: 

3U71
27

. Spheres indicate the position of polymorphisms in the structure in comparison to the 

consensus subtype B PR and numbers correspond to the amino acid position in the primary 

sequence. (B) Representation of darunavir (grey sticks surrounded by spheres) bound to the 

HIV-1 subtype B PR. PDB ID: 4LL3
28

.  The spheres, showing the area filled by darunavir 

upon binding, encompass the active site region of the PR. The catalytic aspartic acid (position 

25) of each monomer of the PR is represented by sticks. Figures generated using PyMOL 

(Schrödinger LLC., Portland, USA; http://www.schrodinger.com).  
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All of the clinically used PIs are competitive active site inhibitors and, except for tipranavir, 

all are peptidomimetics
29

. Peptidomimetics are non-cleavable chemical structures designed to 

convey characteristic information contained in peptides into small non-peptide structures, 

thereby mimicking peptides
30

. Figure 3B is an illustration of the HIV-1 subtype B PR bound 

to the peptidomimetic PI, darunavir
28

. 

 

The first generation PI, ritonavir, is no longer used as an inhibitor alone, rather as a boosting 

agent in highly active antiretroviral therapy (HAART) with other PIs, due to its ability to 

inhibit the CYP-450 3A4 isoform
31

. Atazanavir is a second generation PI which is the 

bulkiest of the currently available FDA-approved PIs
29

. The second generation inhibitor, 

darunavir, is the latest FDA-approved PI and has been described as the most potent PI 

currently available. Darunavir is also described as being highly active against multi-drug 

resistant PRs which is attributed to its ability to fit within the “substrate envelope”
32; 33

 of the 

active site during binding
34

. Darunavir differs only by the addition of a bis-tetrahydrofuranyl 

(bis-THF) moiety to the structure of amprenavir, which form vital hydrogen bonding 

interactions with the main chain of Asp29 and Asp30 in the PR
29; 34

, allowing darunavir to 

mimic conserved hydrogen bonds made by Gag and Gag-Pol substrates
35

.  
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2.5 Catalytic mechanism of HIV protease 

 

The mature HIV PR is released from the Gag-Pol polyprotein precursor via a two-step 

mechanism
36-40

. The first step appears to occur via intramolecular cleavage of the p6
Pol

–PR 

junction (Chapter 1, Figure 2)
39

. This is the faster step of PR maturation. The flanking C-

terminal sequence does not appear to hinder catalytic activity. The activity of PR attached to 

flanking RT residues is comparable to mature PR
39; 40

.  The slower cleavage of the PR-RT 

junction is achieved by an intermolecular catalytic mechanism
39; 40

. Therefore, processing of 

other cleavage sites in Gag, Gag-Pol and Nef may be performed by either PR attached to 

flanking RT residues or mature PR. Previous 
18

O-exchange mass spectrometry studies 

involving HIV PR and its substrate analogues show that peptide hydrolysis proceeds through 

the formation of a reversible and metastable gem-diol intermediate
41

. Near-atomic resolution 

crystal structures of HIV PR have captured important components of the reaction 

mechanism
42

. A substrate is initially recognised and binds to the PR enzyme (ES). Thereafter, 

it is converted to a gem-diol intermediate (ES
*
) through nucleophilic attack by an activated 

water molecule (Figure 4). Covalent linkages in the substrate are broken resulting in the 

formation of two products (P1 and P2). The products are then released sequentially and the PR 

may hydrolyse another substrate. The two catalytic residues (D25 and D25ʹ) perform a vital 

general acid-base role to activate the nearby water molecule which acts as a nucleophile and 

attacks the carbonyl carbon of the scissile bound. Previous studies on the pH dependence of 

the hydrolysis reaction catalysed by HIV PR reveal that substrates and inhibitors only bind to 

the PR when one of the two catalytic aspartic acid side-chains are protonated
43-45

. The pKa 

values of the catalytic aspartic acid side-chains are highly dependent on their surrounding 

environment. These side-chains have different pKa values of 3.1 and 5.2
43

 and in the presence 

of a pepstatin inhibitor, one aspartic acid is protonated in the pH range of 2.5–6.5
44

.    
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Figure 4: HIV protease reaction mechanism. Generalised reaction mechanism for all HIV 

PR substrates is displayed. A water molecule is located at the catalytic dyad (D25 and D25ʹ) 

in the unbound PR and is activated by the unprotonated aspartate group.  Image adapted 

from
42

. 
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2.6 South African HIV-1 subtype C protease (C-SA PR) 

 

Currently, over 100 000 macromolecular structures have been deposited in the Protein Data 

Bank (PDB). Roughly 600 of these are of HIV PRs. Thus far, the majority of PR crystal 

structures in the PDB are representative of HIV-1 subtype B and only three crystal structures 

of HIV-1 subtype C PRs had been solved prior to the current study
46; 47

. The previous 

structures of subtype C PRs represent those with a sequence matching a patient from India 

(comprising the N37A and K41R polymorphisms in comparison to the C-SA PR), including 

the 1.2 Å high-resolution structure of the unbound subtype C PR which provided important 

basic information about the subtype C PR and a basis for expansion in the current study
47

.  

Interestingly, genetic diversity occurs within subtypes of HIV owing to the ever-mutating 

nature of the virus as well as mutations resulting from selective pressure from antiviral 

drugs
9; 17

. The consensus sequence of the HIV subtype C PR occurring in South Africa (C-SA 

PR) shares the same sequence identity as the consensus subtype C PR in group M (Los 

Alamos HIV sequence database, http://www.hiv.lanl.gov/). The C-SA PR differs at eight 

amino acid residues in each monomer (Figure 3A) to the consensus subtype B PR (Los 

Alamos HIV sequence database, http://www.hiv.lanl.gov/). The consensus C-SA PR (wild-

type) sequence data were obtained from Prof Lynn Morris (AIDS Virus Research Unit, 

National Institute of Communicable Diseases, South Africa). The M36I, L89M and I93L 

polymorphisms inherent to the C-SA PR are associated with drug resistance to multiple PIs in 

subtype B HIV-1. Therefore, these polymorphisms are referred to as secondary resistance 

mutations. Amprenavir, indinavir, nelfinavir and saquinavir displayed 3–6 fold weaker 

binding, whereas, lopinavir and ritonavir displayed 8–24 fold weaker binding to the C-SA PR 

in comparison to the subtype B PR
16

. Importantly, naturally occurring polymorphisms in 
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strains such as subtype C HIV-1 have an additive effect to primary resistance mutations and 

amplification of drug resistance mutations
48; 49

. 

 

2.7 Protease dynamics and flap conformers 

 

Crystal structures of HIV-1 PRs when combined with activity data provide a good idea of 

structure-function relations. However, proteins are naturally highly dynamic and crystal 

structures only provide a static representation of proteins. The vast majority of studies 

measuring PR dynamics are investigated using molecular dynamics (MD) simulations. MD 

simulation results require careful attention for correct interpretation and are useful when 

complemented with experimental data. Other analyses of PR dynamics have been 

investigated using nuclear magnetic resonance (NMR)
50-52

, which is limited by the modest 

sensitivity of the technique, and spin-labelled pulsed electron paramagnetic resonance (EPR) 

spectroscopy
53; 54

, which was used to exclusively measure distances between flap residues. 

 

HIV PR may exhibit a number of flap conformations in solution. The majority of PR 

molecules prefer a semi-open conformation in solution (Figure 5B)
54

. At baseline, an 

ensemble of semi-open conformers may exist. The semi-open conformers may directly 

interchange with a closed conformer (Figure 5A). Structural and dynamics studies of HIV-1 

PR indicate that a curled flap conformation (top view of Figure 5C) is an intermediate state 

which allows for the formation of the fully-open conformer (Figure 5C)
50; 55; 56

. No x-ray 

diffracted structural data is available for both the curled and fully-open conformer. The curled 

conformer is described by a pronounced curling of the flap tips
56

. The fully-open conformer 

also displays inward curling of the flap tips (residue positions 48–52) accompanied by 

upward and outward motion of the flap-hinge region from the active site
57

. Entry of a 
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substrate or inhibitor to the active site of the PR requires substantial movement of the flaps (~ 

15 Å from their position in the closed conformer)
58

. Therefore, it is accepted that only the 

fully-open conformation allows for substrate/inhibitor binding.  

 

Complete flap opening occurs through concerted downward movement of the hinge (residue 

positions 35–42 and 57–61 of each monomer), cantilever (residue positions 62–78) and 

fulcrum (residue positions 10–23) regions (Figure 3)) which results in the upward and 

outward motion of the flaps (Figure 5C)
57

. Distance measurements using spin-labelled pulsed 

EPR spectroscopy, displayed an increased proportion of the curled and fully-open conformers 

(Figure 5C) in the subtype C PR population relative to other HIV-1 PRs
54

. The majority of C-

SA PR molecules display semi-open flaps; though, there is a definite shift in the equilibrium 

between semi-open, curled and fully-open conformers. Combined EPR spectroscopy and 

NMR experiments have identified and verified the population of flap conformers in the apo-

state and during inhibitor binding for the subtype B and C HIV-1 PRs
59

. These experiments 

did not fully elucidate the mechanism for the reduced drug susceptibility displayed by the 

subtype C HIV-1 PR; however, differences in the population of flap conformers may be vital 

for the interpretation of other dynamic comparisons of the subtype B and C-SA PRs. 
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Figure 5: Overview of flap conformers displayed by HIV-1 PR. The closed (A), semi-

open (B) fully-open (C) conformers are in dynamic equilibrium. Above the respective three-

dimensional structures are the top views of the flaps. The semi-open flap conformation is the 

most prevalent conformer in the absence of inhibitor. The presence of protease inhibitors 

promote the closed form of the PR. Crystal structure data is unavailable for a fully-open 

conformer which is characterised by upward and outward displacement of the flap-hinge 

region. Representation of the flap positioning of the fully-open conformer is based on MD 

simulation models
57

. The fully-open conformer may also be referred to as a wide-open 

conformer; however, fully-open is preferred in the current study due to previous misuse of 

the term “wide-open”
60

. PDB ID: 1HXW (A)
61

, 1HHP (B and C)
62

 and 3UHL (C)
63

.  
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Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) experiments may provide a 

straight forward comparison of protein dynamics between the C-SA PR and subtype B PR. 

Measuring amide hydrogen/deuterium exchange (HDX) via mass spectrometry over several 

time points allows for the determination of HDX rates in detected peptides. HDX-MS has 

been employed to elucidate the solvent protection patterns and protein dynamics of reverse 

transcriptase monomers
64

 and the mature and immature HIV-1 capsid proteins
65-67

. There has 

been no report on the investigation of HIV PR dynamics using HDX-MS. Thus, the current 

study provides novel results and insights into the dynamics at different regions of the HIV-1 

PR and the mechanism of reduced drug susceptibility displayed by the C-SA PR.  
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2.8 Aim and objectives 

 

The HIV-1 subtype C PR may be described as having increased virulence in comparison to 

other HIV-1 subtypes. This implies that HIV-1 subtype C strains may display improved viral 

fitness. The recent increased prevalence of this subtype in the Americas and Europe, where it 

had previously been detected at low levels in these populations, supports this statement
68-72

. 

The aim of the current research was to identify functional differences between the subtype B 

and C-SA PRs and explain any differences through structural and dynamic characterisation. 

The specific objectives of this research were to: 

1. Express and purify the subtype B and C-SA PRs at high yields to allow for energetic, 

structural and dynamic evaluation. 

2. Investigate the steady-state kinetics for substrate processing for both PRs using 

fluorescence-based activity assays. 

3. Determine inhibition constants of atazanavir, darunavir and ritonavir for both PRs by 

performing fluorescence-based inhibition assays.  

4. Evaluate the energetics and mode of binding of the aforementioned inhibitors to both PRs 

using isothermal titration calorimetry. Binding energetics of atazanavir and darunavir for the 

subtype B PR have been determined previously under the conditions used in the current 

research
13; 14

. 

5. Resolve the three-dimensional crystal structure of the apo-C-SA PR using x-ray 

crystallography. The atomic structure of the consensus subtype B PR has been solved 

previously
55

. 
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6. Identify differences in flap dynamics between the subtype B and C-SA PRs by performing 

molecular dynamics simulations.  

7. Investigate the dynamics of HIV-1 PR at all regions and determine differences in protein 

dynamics between the subtype B and C-SA PRs via hydrogen/deuterium exchange-mass 

spectrometry experiments.  
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CHAPTER 3 

 

Structural Insights into the South African HIV-1 Subtype C 

Protease: Impact of hinge region dynamics and flap flexibility 

in drug resistance 

 

Previn Naicker, Ikechukwu Achilonu, Sylvia Fanucchi, Manuel Fernandes, Mahmoud A.A. 

Ibrahim, Heini W. Dirr, Mahmoud E.S. Soliman and Yasien Sayed.  

 

J. Biomol. Struct. Dyn. 31, 1370-1380. (2013). 

 

 

In this publication, the crystal structure of the apo-C-SA PR was determined and compared to 

that of the apo-subtype B PR. Altered dynamics at the flap tips of the C-SA PR was 

identified. 
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Structural insights into the South African HIV-1 subtype C protease: impact of hinge region
dynamics and flap flexibility in drug resistance
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Heini W. Dirra, Mahmoud E.S. Solimane,f and Yasien Sayeda*
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of Manchester, Manchester M13 9PL, UK; dFaculty of Science, Department of Chemistry, Minia University, Minia 61519, Egypt;
eSchool of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; fFaculty of Pharmacy, Department of Pharma-
ceutical Organic Chemistry, Zagazig University, Zagazig 44519, Egypt

Communicated by Ramaswamy H. Sarma

(Received 24 June 2012; final version received 22 September 2012)

The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy.
Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The
South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus
HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the
C-SA PR was resolved at 2.7Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in
Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at
position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and
hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR
displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge
region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility
of the flaps which may be associated with reduced susceptibility to PIs.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36

Keywords: HIV-1 protease; South African subtype C; hinge region; salt bridge; flap region; flexibility; crystal structure;
molecular dynamics

Introduction

Human immunodeficiency virus (HIV) continues to be
one of the most problematic pathogens known to man.
HIV infection progresses to acquired immunodeficiency
syndrome (AIDS) resulting in extreme suppression of the
immune system in infected individuals. The production of
effective drugs against HIV has been an uphill battle
which is attributed to its reverse transcriptase (RT), which
is prone to introducing mutations into the viral genome
(Bebenek, Abbotts, Roberts, Wilson, & Kunkel, 1989).
Due to the mutation-prone nature of RT and the high rep-
lication rate of HIV, alterations and mutations occur often
in viral proteins for which antiviral drugs have been
designed to target; thereby, providing a challenge for the
production of effective antivirals (Bebenek et al., 1989).
One such protein is the HIV protease (PR), which cleaves

immature viral polyproteins into mature and functional
proteins, for the production of infective virions (Tomass-
elli & Heinrikson, 2000). HIV PR targets 12 cleavage
sites in Gag and Gag-Pol polyproteins (De Oliveira et al.,
2003). Thus, the PR has been identified as a major target
in HIV therapy (Tomasselli & Heinrikson, 2000).

Two types of HIV have been identified: HIV-1 and
HIV-2 (McCutchan, 2006; Taylor, Sobieszczyk,
McCutchan, & Hammer, 2008). The predominant type
(HIV-1) is separated into groups M, N, O, and P (Plan-
tier et al., 2009; Taylor et al., 2008). Group M (Major
group) is further separated into nine subtypes (A, B, C,
D, F, G, H, J, and K) and a growing number of circulat-
ing recombinant forms (McCutchan, 2006). HIV-1
subtype C is the most common subtype worldwide,
occurring mainly in sub-Saharan Africa, India, Brazil,
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and China (McCutchan, 2006), and is responsible for
50% of global HIV-1 group M infections (Buonaguro,
Tornesello, & Buonaguro, 2007). Genetic variation
between subtypes usually ranges between 25 and 35% at
the nucleotide level and variation within subtypes can
range from 15 to 20% (Hemelaar, Gouws, Ghys, &
Osmanov, 2006; McCutchan, 2006). Thus, both the high
mutation rate within the HIV PR and the genetic diver-
sity of HIV increase the challenge of producing a prote-
ase inhibitor (PI) that is capable of inhibiting the PRs of
various HIV subtypes found within different individuals
(Kantor & Katzenstein, 2003).

The homodimeric HIV-1 PR, consisting of 99 amino
acids per monomer (Figure 1(A)), belongs to a class of
aspartyl PRs which contain the signature active site
amino acid triplet (aspartic acid-threonine-glycine)
(Wlodawer & Vondrasek, 1998). The hinge region of the
PR is closely associated with the stability and movement
of the flap region (position 46–54); Figure 1(B). We
define the hinge region as comprising residues from
positions 35–42 and 57–61. The PR flaps undergo sub-
stantial movement allowing for substrate/inhibitor entry
(open conformation) and form key interactions during
the binding of substrate/inhibitor (closed conformation)
(Gustchina & Weber, 1990). Therefore, the flaps are
required to display flexibility; however, increased flexi-
bility may result in reduced substrate processing and PI
resistance (Meiselbach, Horn, Harrer, & Sticht, 2007).
Increased flexibility of the flap-hinge region is likely to
result in increased flexibility of the flaps, as seen in PRs

that are resistant to the PI, amprenavir (Meiselbach
et al., 2007).

The HIV-1 subtype C PR that predominates in South
Africa (C-SA PR) is defined as the consensus subtype C
PR (Los Alamos HIV sequence database, http://www.hiv.
lanl.gov/). In this study, the C-SA PR was recombinantly
expressed in E. coli, purified from inclusion bodies, crys-
tallized, and its detailed three-dimensional structure
solved. Structural analyses of the C-SA PR, as well as
the consensus subtype B PR (Los Alamos HIV sequence
database, http://www.hiv.lanl.gov/), and a multidrug
resistant subtype B PR (subtype B-MDR PR) were per-
formed. Molecular dynamics (MD) simulations were per-
formed to determine the differences in flap movement
and residue-specific fluctuation amongst the PRs. This
study highlights the variability found in the flap-hinge
region amongst subtype B PRs and the C-SA PR, as
well as its impact on flap movement and resistance to
clinically available PIs.

Materials and methods

Expression and purification

The C-SA PR sequence data were obtained from Prof
Lynn Morris (AIDS Virus Research Unit, NICD of
Johannesburg, South Africa). The recombinant pET-11b
plasmid encoding a subtype B PR gene was a kind gift
from Dr. J. Tang (University of Oklahoma Health Sci-
ences Center, Oklahoma City). The mutations (T12S,
I15V, L19I, M36I, R41K, H69K, L89M, and I93L) con-
stituting the baseline sequence of the C-SA PR were
generated previously in our lab (Mosebi, Morris, Dirr, &
Sayed, 2008), by site-directed mutagenesis using the
QuikChange method (Stratagene, La Jolla, CA, USA). A
Q7K point mutation was introduced to reduce PR auto-
catalysis (Mildner et al., 1994). DNA sequencing con-
firmed the coding region of the C-SA PR.

Escherichia coli BL21 (DE3) pLysS cells trans-
formed with the plasmid encoding the C-SA PR gene
were induced to express the C-SA PR as inclusion
bodies by the addition of isopropyl-β-D-thiogalactopyra-
noside (Ido, Han, Kezdy, & Tang, 1991). Cells were dis-
rupted by sonication and centrifuged after overexpression
of the PR. PR was recovered from the inclusion bodies
using 8M urea, 10mM Tris-HCl, and 2mM dithiothrei-
tol (DTT) (pH 8.0) buffer. The positively charged PR
was allowed to flow through a diethylaminoethyl ion-
exchange matrix at pH 8.0. The PR was dialyzed against
formic acid and was refolded by dialysis against 10mM
sodium acetate, 2mM NaCl, 1mM DTT, and 5% glyc-
erol (pH 5.0) buffer. The PR was further purified using
CM-Sepharose ion-exchange column chromatography,
with a 0–1M NaCl gradient elution. The PR was finally
dialyzed against 10mM sodium acetate, 2mM NaCl, and

Figure 1. (A) Structure of unbound HIV-1 PR with the active
site triplet shown as sticks, hinge region in magenta, and flaps
in blue (PDB ID: 2PC0). (B) Multiple sequence alignment of
the C-SA PR, consensus subtype B PR, subtype B-MDR PR,
and subtype C-2R8N PR. Active site triad shown in bold,
hinge region in magenta, and flaps in blue. Both the C-SA PR
and the consensus subtype B PR under investigation exhibit the
Q7K mutation which reduces protease autocatalysis (Mildner
et al., 1994).
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1mM DTT (pH 5.0) buffer. Purity of the PR was evalu-
ated by tricine-SDS-PAGE (Laemmli, 1970; Schägger,
2006). The concentration of the PR was determined
using a molar extinction coefficient of 25,480M�1 cm�1

from absorbance spectra obtained on a Jasco V-630 spec-
trophotometer.

Enzyme activity determination

The specific activity of the C-SA PR was determined fol-
lowing hydrolysis of the HIV-1 PR fluorogenic substrate
(Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) which
mimics the capsid/P2 cleavage site in the HIV-1 Gag
polyprotein. An increase in fluorescence emission from
the 2-aminobenzoyl group was detected at an excitation
wavelength of 337 nm and emission wavelength of
425 nm, resulting from cleavage of the Nle-Phe(NO2)
peptide bond (Carmel & Yaron, 1978; Szeltner & Polgar,
1996). A substrate concentration of 50 μM and an
enzyme concentration of 10–50 nM, with an excitation
bandwidth of 2.5 nm and emission bandwidth of 5 nm
were used for the 1min measurements during steady
state. The intensity signal associated with complete
cleavage of 1 nmol of substrate was measured and used
to convert intensity to activity.

Active site titration

The percentage of active enzyme in the protein prepara-
tion was determined using isothermal titration calorime-
try (ITC). Briefly, 192.5 μM of acetyl-pepstatin (an
aspartyl PR inhibitor) was titrated against 12.75 μM of
C-SA PR in 10 μl injections at 293.8K using a VP-ITC
microcalorimeter. The heat due to dilution of acetyl-
pepstatin was subtracted from the data-set and any
baseline errors were corrected. The changes in heats
were integrated and fitted using one set of binding sites
(Origin 5.0 software package). The percentage of active
sites was determined from the calculated stoichiometry
value; a value of 1 indicates a 100% active enzyme
preparation.

Crystallization and data collection

C-SA PR crystals were grown at 293K using the hang-
ing-drop vapor diffusion method in a 24-well microplate.
Conditions allowing for optimal crystal growth were
screened using the Hampton Research Index HR2-144
(Hampton Research). Using a reservoir buffer comprising
0.2M sodium citrate tribasic dihydrate in 20% polyethe-
lene glycol 3 350 resulted in the formation of diffraction
quality PR crystals. The stock protein concentration used
for crystallization was 0.5mg/ml in 10mM sodium ace-
tate, 2mM NaCl, and 1mM DTT (pH 5.0). Each hang-
ing drop (4 μl or 8 μl) comprised equal volumes of
reservoir buffer and stock protein. A paraffin–silicone oil
mixture (1:1 ratio) covered the reservoir buffer in each
well (Chayen & Stewart, 1992). Single crystals were

mounted on a cryoloop, briefly soaked in reservoir solu-
tion containing a higher concentration of cryoprotectant
(polyethelene glycol), and frozen in liquid nitrogen. X-
ray diffraction data were collected in-house on a Bruker
X8 Proteum system with a Microstar copper rotating-
anode generator with Montel 200 optics, a PLATINUM
135 CCD detector, and an Oxford Cryostream Plus sys-
tem. During data collection, the crystal was maintained
at 113K in a stream of nitrogen gas. Images were col-
lected covering an oscillation angle of 0.5° per image.
The data-set was processed using APEX and SAINT
software (Bruker AXS Inc., Madison, WI, USA).

Model building and structure refinement

The phases of the structure were solved by the molecular
replacement method using MOLREP (Vagin & Teplyakov,
2000); a component of the CCP4i suite of programs
(Potterton, Briggs, Turkenburg, & Dodson, 2003). A sub-
type C isoform with the following variations as compared
to the C-SA PR: L33I, N37A, K41R, and L63I was used
as a search probe for molecular replacement (PDB ID:
2R8N; Coman, Robbins, Goodenow, McKenna, & Dunn,
2007). Model building was performed using Coot (Emsley
& Cowtan, 2004); thereafter, cycles of global reciprocal
space refinement using REFMAC5 (Murshudov, Vagin, &
Dodson, 1997) and local real space refinement using Coot
(Emsley & Cowtan, 2004) were performed. Stereochemi-
cal validation of the target model was performed using
MolProbity (Chen et al., 2010) and PROCHECK (Las-
kowski, 1993). The PyMOL Molecular Graphics System
(Schrödinger LLC., Portland, USA; http://www.schroding-
er.com) was used to generate images of the structure.
Sequence alignment was performed using Clustal X 2.0
(Higgins & Sharp, 1988; Larkin et al., 2007).

MD simulations

The simulations of the three enzyme systems: C-SA PR
(PDB ID: 3U71), consensus subtype B PR (PDB ID:
2PC0), and subtype B-MDR PR (PDB ID: 1RPI) were
performed under physiological pH conditions. The aspar-
tic acid residue (D25) of the catalytic site exhibits an
increased pKa value of 5.2 in the inhibitor bound PR
(Shen, Wang, Kovalevsky, Harrison, & Weber, 2010)
while no increased pKa was reported for the free form of
the PR (pKa = 4.5) (Smith, Brereton, Chai, & Kent,
1996). Therefore, an unprotonated active site was used
throughout the MD studies, as this is the prevalent form
at physiological pH. Hydrogen atoms of the proteins
were added using the Leap module in Amber10 (Case
et al., 2005). The standard AMBER force field for bioor-
ganic systems (ff03) (Duan et al., 2003) was used to
define the HIV-1 PR enzyme parameters. Counter ions
were added to neutralize the enzyme. The system was
enveloped in a box of equilibrated TIP3P (Jorgensen,

1372 P. Naicker et al.
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Chandrasekhar, Madura, Impey, & Klein, 1983) water
molecules with 8Å distance around the enzyme.

The MD package Amber10 (Case et al., 2005) was
used for the minimization and equilibration protocols.
Cubic periodic boundary conditions were imposed and
the long-range electrostatic interactions were treated with
the particle-mesh Ewald method (Essmann et al., 1995)
implemented in Amber10 with a nonbonding cut-off dis-
tance of 10Å. The energy minimization was performed
using the steepest descent method in Amber10 for 1000
iterations and switched to conjugate gradient for 2000
steps, with a restraint potential of 500 kcal/mol Å2

applied to the solute. The entire system was then freely
minimized for 1000 iterations. For the equilibration and
subsequent production run, the SHAKE algorithm
(Ryckaert, Ciccotti, & Berendsen, 1977) was employed
to constrain all bonds involving hydrogen atoms, allow-
ing for an integration time step of 2 fs. Harmonic
restraints with force constants 2 kcal/mol Å2 were applied
to all solute atoms. A canonical ensemble (NVT) MD
was carried out for 50 ps, during which the system was
gradually annealed from 0 to 300K using a Langevin
thermostat with a coupling coefficient of 1/ps. Harmonic
restraints with force constraints 10 kcal/mol Å2 were
applied to all solute atoms during the heating stage. Sub-
sequently, the system was equilibrated at 300K with a
2 fs time step for 500 ps while maintaining the force con-
stants on the restrained solute. With no restraints
imposed, a production run was performed for 10 ns in an
isothermal isobaric (NPT) ensemble using a Berendsen
barostat (Berendsen, Postma, van Gunsteren, DiNola, &
Haak, 1984) with a target pressure of 1 bar and a pres-
sure coupling constant of 2 ps. The coordinate file was
saved every 1 ps and the trajectory was analyzed every
10 ps using the Ptraj module implemented in Amber10.

Results and discussion

C-SA PR preparation

The recombinant expression of the C-SA PR yielded
0.2mg/l of culture. The purity of the C-SA PR was esti-
mated to be > 99%, which is required for the ITC and
crystallography studies. The C-SA PR was shown to be
enzymatically active following hydrolysis of the HIV-1
PR fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-
Glu-Ala-Nle-NH2) (Figure 2). The specific activity of the
C-SA PR derived from the slope of the plot in Figure 2
is 79 μmolesmin�1mg�1. Figure 3 shows a binding ther-
mogram of the C-SA PR titrated with the aspartyl PR
inhibitor, acetyl-pepstatin. Acetyl-pepstatin binds weakly
to the C-SA PR showing a calculated Kd of 192 nM
which is employed in displacement titration reactions for
high affinity inhibitors (Velázquez-Campoy, Kiso, & Fre-
ire, 2001). This titration allows for the calculation of the

percentage of active PR in solution (active site concen-
tration), which was calculated to be 82%, derived from a
stoichiometry value of 0.82. These findings indicate that
the solved C-SA PR is enzymatically active.

Crystal structure of the C-SA PR

The current study is the first to report on the detailed
structure of the C-SA PR. The only other subtype C PR
structures to be solved to date are of a PR which pre-
dominates in India (subtype C-2R8N PR) (Coman et al.,
2007, 2008). The C-SA PR being the consensus HIV-1
subtype C PR and subtype C being the most common
subtype worldwide (McCutchan, 2006), emphasize the
importance of this study. Structural homology analysis of
the C-SA PR and the subtype C-2R8N PR revealed no
significant RMSD in respect to the hinge and flap
regions. The coordinates for the 2.7 Å resolution C-SA
PR structure were deposited in the Protein Data Bank
(PDB ID: 3U71). Stereochemical validation of the C-SA
PR structure revealed no disallowed bond angles or rota-
mers for all of the constituent residues (Table 1). All
water molecules were removed from the structure prior
to being deposited in the PDB. The removal of water
molecules was implemented because all solvent mole-
cules could not be resolved accurately at 2.7Å. How-
ever, this had no impact on the overall structure of the
PR. The space group and unit cell parameters match pre-
viously described unbound HIV-1 PR crystals (Heaslet
et al., 2007; Yedidi et al., 2011). A Matthews coefficient
(VM) of 2.45Å3Da�1 and a solvent content of 49.75%
indicate a PR monomer as the asymmetric unit of each
unit cell of the C-SA PR crystal, which is a common
finding for crystals of unbound HIV PR (Heaslet et al.,
2007; Yedidi et al., 2011).

Figure 2. Specific activity of the C-SA PR. Determined
following hydrolysis of the HIV-1 protease substrate (Abz-Arg-
Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) in 50mM sodium acetate
and 1M NaCl (pH 5.0) at 293K.
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Structural analyses of the C-SA PR

Figure 1(B) shows a sequence alignment of the C-SA
PR with the consensus subtype B PR (Heaslet et al.,
2007), subtype B-MDR PR (Logsdon et al., 2004), and
subtype C-2R8N PR (Coman et al., 2008). The subtype
C-2R8N PR contains the following mutations relative to
the C-SA PR: L33I, N37A, K41R, and L63I. The C-SA
PR displays high structural homology with the subtype
C-2R8N PR; however, notable differences occur at posi-
tions 37 and 41 which are located in the hinge region of
the PR. In subtype B PRs, M36 was shown to form con-
tacts with residues in the 10s loop (Clemente et al.,
2004; Martin et al., 2005). These contacts are absent in
the subtype C-2R8N due to the M36I and I15V
polymorphisms (Coman et al., 2008). These contacts as

expected are also absent in the C-SA PR, and probed
further investigation of the contacts occurring in the
hinge region of the C-SA PR which are closely related
to flap dynamics (Coman et al., 2008). The subtype
B-MDR PR exhibits the following 11 mutations relative
to the consensus subtype B PR: L10I, D25N, M36V,
M46L, I54V, I62V, L63P, A71V, V82A, I84V, and
L90M. The subtype B-MDR PR displays high-level drug
resistance and cross-resistance to PIs (Palmer, Shafer, &
Merigan, 1999; Logsdon et al., 2004). The V82A and
I84V active site mutations allow for expansion of the
active site which is a mechanism implicated in drug
resistance (Logsdon et al., 2004). The implication of the
M36V mutation in drug resistance is an important
consideration, as the M36I mutation in HIV-1 PRs is
thought to be a secondary drug resistance mutation
(Patick et al., 1998). The C-SA PR exhibits the follow-
ing eight mutations relative to the consensus subtype B:
T12S, I15V, L19I, M36I, R41K, H69K, L89M, and
I93L, which occur distal to the active site. The M36I
mutation being considered to be a secondary drug
resistance mutation (Patick et al., 1998), which occurs in

Figure 3. Active site titration of the C-SA PR with acetyl-
pepstatin. The raw calorimetric data is indicated in the upper
panel and the integrated heats for the above peaks plotted
against the molar ratio of acetyl-pepstatin to protease dimer in
the lower panel. The peak contributing to the heat signal below
baseline was corrected for in the fitting procedure. Acetyl-
pepstatin was titrated until binding sites on the PR were
saturated in a buffer comprising 10mM sodium acetate (pH
5.0) at 293K.

Table 1. Data collection and refinement statistics for the
C-SA PR structure.

Wavelength (Å) 1.5418
Space group P 41 21 2

Unit-cell parameters
a, b, c (Å) 45.928, 45.928, 99.960
α, β, γ (°) 90.00, 90.00, 90.00
Resolution range (Å) 2.72–41.73 (2.72–2.79)
No. of observed reflections 43,511
No. of unique reflections 3193
Completeness (%) 98.8
I/σ(I) 5.18 (3.00)
Rmerge

a 0.200 (0.413)
Final overall R factor 0.220
Rwork

b 0.217
Rfree

b 0.283
No. of protein atoms 755
No. of ligand atoms 0
Average B value (Å2) 25.79
RMSD in bond length (Å) 0.017
RMSD in bond angles (°) 1.776

Ramachandran statistics
Outliers (%) 0
Favored (%) 96.91
VM (Å3Da�1) 2.45
Solvent content (%) 49.75
Asymmetric unit content monomer
PDB ID 3U71

aRmerge =
P

hkl

P
i |Ii(hkl) – (I(hkl))| /

P
hkl

P
i |Ii(hkl)|, where I(hkl)

is the intensity of reflection hkl,
P

hkl is the sum over all reflections
and is the sum over i measurements of reflection hkl.
bRfree is calculated for a randomly chosen 5% of reflections which
were not used for refinement of the structure and Rwork is calcu-
lated for the remaining reflections. Data in brackets refer to the
highest resolution shell.
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the hinge region of the PR, probed further investigation
into the interactions occurring in this region. The overall
tertiary folds of the PRs under investigation do not differ
significantly (Figure 4). The subtype B-MDR PR
(magenta) is shown to crystallize with its flaps in a wider
open conformation. More detailed analyses of the struc-
tures are required in order to determine the effects of
polymorphisms between the subtypes on the dynamics of
these enzymes.

E35 in HIV PR maintains long-range interactions
within the PR polypeptide chain (Swairjo, Towler,
Debouck, & Abdel-Meguid, 1998). The absence of the
E35-R57 salt bridge (ion pair) in both monomers of the
C-SA PR is indicated in Figure 5(A). R57 in the C-SA
PR adopts a different rotamer to that of the R57 in the
subtype B PRs, resulting in an inability to form a salt
bridge with E35. The backbone of R57 only forms back-
bone hydrogen bonds with V77 that form part of a
β-sheet located in a region interior to the flaps which are
maintained in all the structures under investigation. I36
(green) displays no contacts with other residues in the
hinge region. The absence of the E35-R57 (side chain-
side chain) salt bridge in PRs results in an apparent
outward movement of the flaps (Swairjo et al., 1998).
Figure 5(B) shows that the consensus subtype B PR
exhibits the E35-R57 salt bridge in one of its monomers,
as well as a hydrogen bond between the side chain of
R57 and backbone of M36 (cyan). The other monomer
shows the side chain of R57 also interacts with the back-
bone of M36 which may assist in maintaining the
compact conformation of the hinge region, as seen by
the close proximity of E35 and R57. Figure 5(C) shows
the subtype B-MDR PR exhibits the E35-R57 salt bridge
in both monomers. The backbone of V36 (magenta)
exhibits hydrogen bonds with the side chain of E35 and
not R57.

The E35-R57 salt bridge is the only possible ion pair
present in the hinge region of HIV-1 PR. Thermody-
namic studies using ITC revealed that the CRF01_AE
strain of PR containing D35 and I36, which also lacks a
salt bridge between the residues at position 35 and 57,
displays reduced binding affinity to inhibitors nelfinavir
and darunavir when compared to the E35 and M36 sub-
type B PR (Bandaranayake et al., 2010). Calculated
binding free energies reveal reduced binding affinity to
amprenavir for a E35D HIV-1 PR mutant (Meiselbach
et al., 2007). The mutant showed a stable salt bridge
over short periods (0–1 and 8.3–9.3 ns), whereas a stable
salt bridge is established over the entire 10 ns simulation
in the E35 HIV-1 PR (Meiselbach et al., 2007). These
findings suggest that an absence of the E35-R57 salt
bridge highlighted in this study may be implicated in
drug resistance mechanisms.

The displacement of the flap tips, residues 49–52
forming a hairpin loop, in the absence of a hinge region
salt bridge occurs in the plane perpendicular to the plane
of the hairpin loop (Swairjo et al., 1998). In some cases,
minor displacement (< 1.2Å) results in the backbone
atoms of the flap tips being out of hydrogen bonding
range (Swairjo et al., 1998). A resultant loss in a hydro-
gen bond due to flap displacement may also be seen
between peptide backbone G51 and carbonyl oxygen of
I50′, which plays a role in stabilizing inhibitor binding
(Swain et al., 1990). Polymorphic variations at position
36, which are seemingly closely related to E35-R57 salt
bridge formation as seen in the C-SA PR, consensus
subtype B PR, and subtype B-MDR PR, may be impli-
cated in drug resistance via effects on flap dynamics.

MD simulations

MD simulations were performed to explore the dynamics
of the flap region as well as the overall flexibility of the
PRs. The root-mean-square fluctuation (RMSF) for each
of the 198 residues of the homodimeric HIV PRs was cal-
culated over the 10 ns MD trajectory (Figure 6(A)). No
significant differences in main chain B-factors between
the C-SA PR and the subtype B PR structures were
observed. Seibold and Cukier (2007) reported that the
D25N mutant exhibited the same dynamic behavior as
the wild-type PR and has no effect on the overall confor-
mational behavior of the flap regions (Seibold & Cukier,
2007). Moreover, as evident from the RMSF calculations
(Figure 6(A)), no noticeable difference in the fluctuation
is observed at positions 25/25′. Therefore, the D25N
mutation does not affect the overall flap flexibility.

The RMSF for the 99 residues of each monomer of
all three PRs shows close similarity over the 10 ns simu-
lation, as is expected for a homodimeric protein. The
residues of the hinge region show high RMSF (residues
35–42 and 57–61) when compared to the rest of the
protein, as can be seen by the peaks in Figure 6(A).

Figure 4. Structural alignment of ribbon representations of the
C-SA PR (green, PDB ID: 3U71), consensus subtype B PR
(cyan, PDB ID: 2PC0), and subtype B-MDR PR (magenta,
PDB ID: 1RP1). The hinge region of each monomer is
indicated in the frames.
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These residues are solvent exposed and are expected to
display high RMSF compared to buried residues such as
the catalytic aspartic acids at position 25 of each mono-
mer. Regions of the C-SA PR (red) and consensus sub-
type B PR (black) that differ significantly in RMSF per
residue are the flap tip (residues 46–54) of the first
monomer and residues 55–75 of the second monomer.
These regions are identical in primary sequence between
the two PRs with the exception of the polymorphism at
position 69, suggesting that the polymorphisms occurring
in the C-SA PR impart local stability changes as well as
changes distal to the sites of polymorphisms.

The open conformation of the HIV-1 PR has been
inferred from NMR (Ishima, Freedberg, Wang, Louis, &

Torchia, 1999) and MD simulation experiments (Scott &
Schiffer, 2000). Both the C-SA PR and consensus sub-
type B PR displayed open flap conformations (12–14Å),
and relaxed to semi-open conformations (� 7Å) for
most of the duration of the simulation, Figure 6(B)
showing the inter-flap distance (Cα I50–Cα I50´) of the
three PRs. Crystal structures of inhibitor bound subtype
B and C PRs display inter-flap distances of 5.86–6.02Å
(Coman et al., 2007; Kempf et al., 1995), representative
of a closed conformation. The semi-open conformations
of the C-SA PR and consensus subtype B PR overlap
with closed inter-flap distances. The subtype B-MDR PR
opens wider than the other PRs for most of the simula-
tion, fluctuating with an inter-flap distance of � 9Å in

Figure 5. (A), (B), and (C) show images of the hinge regions of both monomers (left – subunit 1, right – subunit 2) for the C-SA
PR, consensus subtype B PR, and subtype B-MDR PR, respectively. The differing hinge-located residue of each PR is highlighted
(green: isoleucine, cyan: methionine, and magenta: valine); hydrogen bonds are depicted by dashed lines and interatomic distances in
Å are shown.
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its semi-open conformation. Although the inter-flap
distances between the C-SA PR and the consensus sub-
type B PR do not differ greatly for the duration of the
simulation, it is important to note that the C-SA PR
shows greater fluctuation in inter-flap distance in its
semi-open conformation as compared to both subtype B
PRs. At, approximately, all conformations of the C-SA
PR, its flap tips fluctuate within 3Å whereas the flap tips
of the consensus subtype B PR generally fluctuate within
1Å of each other. This difference is highlighted in the
final ns of the simulation where the inter-flap distances
of all three structures coincide and it can be clearly seen
that the inter-flap distance of the C-SA PR fluctuates
between a wider range than both subtype B PRs. This
large fluctuation implies increased flexibility of the flaps

of the C-SA PR in comparison to the subtype B PRs.
Although the subtype B-MDR PR exhibits the E35-R57
salt bridge in both its monomers, it still displays a fair
degree of fluctuation in inter-flap distance and a wider
semi-open conformation for most of the simulation. This
discrepancy is likely due to the M46L and I54V muta-
tions which reduces the bulk around the flap tips and has
been shown to destabilize the flaps and decrease PI bind-
ing (Clemente et al., 2004). As PIs are rigid, they prefer-
entially bind to more closed flap conformations
(Clemente et al., 2004). Once again, this emphasizes the
importance of the E35-R57 salt bridge which we postu-
late stabilizes the hinge region of the PR resulting in
restrained movement of the flap-hinge region of the PR
allowing for more closed flap conformations. In the
C-SA PR, the absence of the salt bridge may allow for
less restricted movement of the flap-hinge region result-
ing in the large fluctuations in the inter-flap distances
seen in the simulation.

The flexible flaps which are found in all aspartyl PRs
are highly conserved in different isolates of HIV-1 and
HIV-2 PRs (Gustchina & Weber, 1991). All isolates of
HIV-1 and HIV-2 PR have a conserved flap tip (Gustchi-
na & Weber, 1991), 47-IGGIGGFI-54, highlighting its
importance in substrate entry and binding. The central
isoleucine surrounded by two glycine residues on either
side confers flexibility to the flaps, in order for them to
adapt to the asymmetry in the substrate sequence (Gust-
china & Weber, 1991; Prabu-Jeyabalan, Nalivaika, &
Schiffer, 2000). Importantly, I50 and I50′ have been
shown to be involved in water-mediated hydrogen bonds
with peptide substrate (Prabu-Jeyabalan et al., 2000).
Although increased flexibility of the flaps could result in
increased substrate entry, interaction of substrate/inhibitor
with PR is likely to be of lower affinity. This reduced
affinity may be seen as the flaps which are involved in
vital hydrogen bonds with substrate/inhibitor, may be
displaced to a level that weakens or causes loss of these
hydrogen bonds. Previously reported inhibition data
shows that the C-SA PR displays reduced affinity for
FDA-approved PR inhibitors compared to the subtype B
PR, with the C-SA PR displaying the greatest reduction
for the inhibitor ritonavir (Mosebi et al., 2008;
Velázquez-Campoy et al., 2003). The reduced affinity for
PR inhibitors may be a result of increased flexibility of
the flaps due to the absence of the E35-R57 salt bridge
in the hinge region, as suggested in this study.

Conclusion

The absence of the E35-R57 salt bridge in the C-SA PR
results in increased flexibility of the flaps of the enzyme,
suggested by the large fluctuations in inter-flap distances
during simulation studies. We propose that this increased
flexibility is a result of less restrained movement of the

Figure 6. (A) RMSF of each residue and (B) distance
between the flap tips (Cα I50 and Cα I50′) over the 10 ns
simulation for the structures under investigation; red (C-SA PR,
PDB ID: 3U71), black (consensus subtype B PR, PDB ID:
2PC0), and blue (subtype B-MDR PR, PDB ID: 1RPI).
Magenta and blue bars in (A) correspond to the hinge and flap
region, respectively.
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flap-hinge region. The increased flap flexibility likely
contributes to the increased drug resistance seen in the
C-SA PR (Mosebi et al., 2008; Velázquez-Campoy et al.,
2003) as suitable conformations of the flaps are vital for
effective drug binding.

The polymorphisms between HIV-1 subtype B PR
and the C-SA PR do not impact on the overall structure.
However, we have identified dynamic differences between
the C-SA PR and subtype B PRs. This is the first study to
report on the crystal structure of the C-SA PR which is an
epidemiologically relevant PR. The crystal structure of
the C-SA PR will serve as a foundation to improve the
rational design of PIs which will have a greater impact on
antiretroviral chemotherapy in sub-Saharan Africa.

Abbreviations
PR Protease
PI PR inhibitor
C-SA PR South African subtype C PR
PDB Protein data bank
MD Molecular dynamics
RMSF Root-mean-square fluctuation

Acknowledgments

This work was supported by the NRF Thuthuka/REDIBA grant
(NRF SA) and the Centre for High Performance Computing
(CHPC Cape Town (http://www.chpc.ac.za)).

References
Bandaranayake, R. M., Kolli, M., King, N. M., Nalivaika,

E. A., Heroux, A., Kakizawa, J., … Schiffer, C. A. (2010).
The effect of clade-specific sequence polymorphisms on
HIV-1 protease activity and inhibitor resistance pathways.
Journal of Virology, 84, 9995–10003.

Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H.,
& Kunkel, T. A. (1989). Specificity and mechanism of
error-prone replication by human immunodeficiency virus-1
reverse transcriptase. Journal of Biological Chemistry, 264,
16948–16956.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F.,
DiNola, A., & Haak, J. R. (1984). Molecular dynamics
with coupling to an external bath. Journal of Chemical
Physics, 81, 3684–3690.

Buonaguro, L., Tornesello, M. L., & Buonaguro, F. M. (2007).
Human immunodeficiency virus type 1 subtype distribution
in the worldwide epidemic: Pathogenetic and therapeutic
implications. Journal of Virology, 81, 10209–10219.

Carmel, A., & Yaron, Y. (1978). An intramolecularly quenched
fluorescent tripeptide as a fluorogenic substrate of angioten-
sin-i-converting enzyme and of bacterial dipeptidyl car-
boxypeptidase. European Journal of Biochemistry, 87,
265–273.

Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R.,
Merz, K. M., … Woods, R. J. (2005). The amber biomolec-
ular simulation programs. Journal of Computational Chem-
istry, 26, 1668–1688.

Chayen, N. E., & Stewart, P. D. S. (1992). Microbatch crystalliza-
tion under oil – a new technique allowing many small-volume
crystallization trials. Journal of Crystal Growth, 122, 176–180.

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A.,
Immormino, R. M., Kapral, G. J., … Richardson, D. C.
(2010). MolProbity: All-atom structure validation for
macromolecular crystallography. Acta Crystallographica,
Section D Biological Crystallography, 66, 12–21.

Clemente, J. C., Moose, R. E., Hemrajani, R., Whitford, L. R. S.,
Govindasamy, L., Reutzel, R., … Dunn, B. M. (2004). Com-
paring the accumulation of active- and nonactive-site muta-
tions in the HIV-1 protease. Biochemistry, 43, 12141–12151.

Coman, R. M., Robbins, A. H., Goodenow, M. M., Dunn,
B. M., & McKenna, R. (2008). High-resolution structure of
unbound human immunodeficiency virus 1 subtype C
protease: Implications of flap dynamics and drug resistance.
Acta Crystallographica, Section D Biological
Crystallography, 64, 754–763.

Coman, R. M., Robbins, A., Goodenow, M. M., McKenna, R.,
& Dunn, B. M. (2007). Expression, purification and preli-
minary X-ray crystallographic studies of the human immu-
nodeficiency virus 1 subtype C protease. Acta
Crystallographica, Section F Structural Biology and
Crystallization Communications, 63, 320–323.

De Oliveira, T., Engelbrecht, S., Rensburg, E. J. V., Gordon,
M., Bishop, K., Zur Megede, J., … Cassol, S. (2003). Vari-
ability at human immunodeficiency virus type 1 subtype C
protease cleavage sites: An indication of viral fitness? Jour-
nal of Virology, 77, 9422–9430.

Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G. M.,
Zhang, W., … Kollman, P. A. (2003). Point-charge force
field for molecular mechanics simulations of proteins based
on condensed-phase quantum mechanical calculations.
Journal of Computational Chemistry, 24, 1999–2012.

Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools
for molecular graphics. Acta Crystallographica, Section D
Biological Crystallography, 60, 2126–2132.

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H.,
& Pedersen, L. G. (1995). A smooth particle mesh Ewald
method. Journal of Chemical Physics, 103, 8577–8593.

Gustchina, A., & Weber, I. T. (1990). Comparison of inhibitor
binding in HIV-1 protease and in non-viral aspartic prote-
ases: The role of the flap. FEBS Letters, 269, 269–272.

Gustchina, A., & Weber, I. T. (1991). Comparative analysis of
the sequences and structures of HIV-1 and HIV-2 proteases.
Proteins, 10, 325–339.

Heaslet, H., Rosenfeld, R., Giffin, M., Lin, Y. C., Tam, K., Torbett,
B. E., … Stout, C. D. (2007). Conformational flexibility in the
flap domains of ligand-free HIV protease. Acta Crystallo-
graphica, Section D Biological Crystallography, 63, 866–875.

Hemelaar, J., Gouws, E., Ghys, P. D., & Osmanov, S. (2006).
Global and regional distribution of HIV-1 genetic subtypes
and recombinants in 2004. AIDS, 20, 13–23.

Higgins, D. G., & Sharp, P. M. (1988). CLUSTAL: A package
for performing multiple sequence alignment on a micro-
computer. Gene, 73, 237–244.

Ido, E., Han, H., Kezdy, F. J., & Tang, J. (1991). Kinetic stud-
ies of human immunodeficiency virus type 1 protease and
its active-site hydrogen bond mutant A28S. Biochemistry,
266, 24359–24366.

Ishima, R., Freedberg, D. I., Wang, Y., Louis, J. M., & Torchia,
D. A. (1999). Flap opening and dimer-interface flexibilty in
the free and inhibitor-bound HIV protease, and their impli-
cations for function. Structure, 7, 1047–1055.

1378 P. Naicker et al.

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f 
W

itw
at

er
sr

an
d]

 a
t 2

3:
54

 3
0 

O
ct

ob
er

 2
01

3 

39

http://www.chpc.ac.za


Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey,
R. W., & Klein, M. L. (1983). Comparison of simple
potential functions for simulating liquid water. Journal of
Chemical Physics, 79, 926–935.

Kantor, R., & Katzenstein, D. (2003). Polymorphism in HIV-1
non-subtype B protease and reverse transcriptase and its
potential impact on drug susceptibility and drug resistance
evolution. AIDS Reviews, 19, 25–35.

Kempf, D. J., Marsh, K. C., Denissen, J. F., McDonald, E.,
Vasavanonda, S., Flentge, C. A., … Norbeck, D. W.
(1995). ABT-538 is a potent inhibitor of human immunode-
ficiency virus protease and has high oral bioavailability in
humans. Proceedings of the National Academy of Sciences
USA, 92, 2484–2488.

Laemmli, U. K. (1970). Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature, 227,
680–685.

Larkin, M. A., Blackshields, G., Brown, N .P., Chenna, R.,
McGettigan, P. A., McWilliam, H., … Higgins, D. G.
(2007). Clustal W and Clustal X version 2.0. Bioinformat-
ics, 23, 2947–2948.

Laskowski, R. A. (1993). PROCHECK: A program to check
the stereochemical quality of protein structures. Journal of
Applied Crystallography, 26, 283–291.

Logsdon, B. C., Vickrey, J. F., Martin, P., Proteasa, G.,
Koepke, J. I., Terlecky, S. R., … Kovari, L. C. (2004).
Crystal structures of a multidrug-resistant human immuno-
deficiency virus type 1 protease reveal an expanded active-
site cavity. Journal of Virology, 78, 3123–3132.

Martin, P., Vickrey, J. F., Proteasa, G., Jimenez, Y. L.,
Wawrzak, Z., Winters, M. A., … Kovari, L. C. (2005).
‘Wide-open’ 1.3 A structure of a multidrug-resistant HIV-1
protease as a drug target. Structure, 13, 1887–1895.

McCutchan, F. E. (2006). Global epidemiology of HIV. Journal
of Medical Virology, 78, 7–12.

Meiselbach, H., Horn, A. H. C., Harrer, T., & Sticht, H.
(2007). Insights into amprenavir resistance in E35D HIV-1
protease mutation from molecular dynamics and binding
free-energy calculations. Journal of Molecular Modeling,
13, 297–304.

Mildner, A. M., Rothrock, D. J., Leone, J. W., Bannow, C. A.,
Lull, J. M., Reardon, I. M., … Tomasselli, A. G. (1994).
The HIV-1 protease as enzyme and substrate: Mutagenesis
of autolysis sites and generation of a stable mutant with
retained kinetic properties. Biochemistry, 33, 9405–9413.

Mosebi, S., Morris, L., Dirr, H. W., & Sayed, Y. (2008). Active-site
mutations in the South African human immunodeficiency virus
type 1 subtype C protease have a significant impact on clinical
inhibitor binding: Kinetic and thermodynamic study. Journal
of Virology, 82, 11476–11479.

Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997).
Refinement of macromolecular structures by the maximum-
likelihood method. Acta Crystallographica, Section D Bio-
logical Crystallography, 53, 240–255.

Palmer, S., Shafer, R. W., & Merigan, T. C. (1999). Highly
drug-resistant HIV-1 clinical isolates are cross-resistant to
many antiretroviral compounds in current clinical develop-
ment. AIDS, 13, 661–667.

Patick, K. A., Duran, M., Cao, Y., Shugarts, D., Keller, M. R.,
Mazabel, E., … Markowitz, M. (1998). Genotypic and
phenotypic characterization of human immunodeficiency
virus type 1 variants isolated from patients treated with the
protease inhibitor nelfinavir. Antimicrobial Agents and Che-
motherapy, 42, 2637–2644.

Plantier, J. C., Leoz, M., Dickerson, J. E., De Oliveira, F.,
Cordonnier, F., Lemee, V., … Simon, F. (2009). A new
human immunodeficiency virus derived from gorillas.
Nature Medicine, 15, 871–872.

Potterton, E., Briggs, P., Turkenburg, M., & Dodson, E. J.
(2003). A graphical user interface to the CCP4 program
suite. Acta Crystallographica, Section D Biological Crys-
tallography, 59, 1131–1137.

Prabu-Jeyabalan, M., Nalivaika, E., & Schiffer, C. A. (2000).
How does a symmetric dimer recognize an asymmetric sub-
strate? A substrate complex of HIV-1 protease. Journal of
Molecular Biology, 301, 1207–1220.

Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977).
Numerical integration of the cartesian equations of
motion of a system with constraints: Molecular dynamics
ofn-alkanes. Journal of Computational Physics, 23,
327–341.

Schägger, H. (2006). Tricine-SDS-PAGE. Nature Protocols, 1,
16–23.

Scott, W. R. P., & Schiffer, C. A. (2000). Curling of flap
tips in HIV-1 protease as a mechanism for substrate
entry and tolerance of drug resistance. Structure, 8,
1259–1265.

Seibold, S. A., & Cukier, R. I. (2007). A molecular dynamics
study comparing a wild-type with a multiple drug resistant
HIV protease: Differences in flap and aspartate 25 cavity
dimensions. Proteins, 69, 551–565.

Shen, C. H., Wang, Y. F., Kovalevsky, A. Y., Harrison, R. W.,
& Weber, I. T. (2010). Amprenavir complexes with HIV-1
protease and its drug-resistant mutants altering hydrophobic
clusters. FEBS Journals, 277, 3699–3714.

Smith, R., Brereton, I. M., Chai, R. Y., & Kent, S. B. H.
(1996). Ionization states of the catalytic residues in HIV-1
protease. Nature Structural Biology, 3, 946–950.

Swain, A. L., Miller, M. M., Green, J., Rich, D. H.,
Schneider, J., Kent, S. B. H., & Wlodawer, A. (1990).
X-ray crystallographic structure of a complex between a
synthetic protease of human immunodeficiency virus 1
and a substrate-based hydroxyethylamine inhibitor.
Proceedings of the National Acedemy of Sciences of the
USA, 87, 8805–8809.

Swairjo, M. A., Towler, E. M., Debouck, C., &
Abdel-Meguid, S. S. (1998). Structural role of the 30’s
loop in determining the ligand specificity of the human
immunodeficiency virus protease. Biochemistry, 37,
10928–10936.

Szeltner, Z., & Polgar, L. (1996). Rate-determining steps in HIV-
1 protease catalysis. Journal of Biological Chemistry, 271,
32180–32184.

Taylor, B., Sobieszczyk, M. E., McCutchan, F. E., & Hammer,
S. M. (2008). The challenge of HIV1 subtype diversity.
New England Journal of Medicine, 358, 1590–1602.

Structural insights into the South African HIV-1 subtype C protease 1379

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f 
W

itw
at

er
sr

an
d]

 a
t 2

3:
54

 3
0 

O
ct

ob
er

 2
01

3 

40



Tomasselli, A. G., & Heinrikson, R. L. (2000). Targeting the
HIV-protease in AIDS therapy: A current clinical. Science,
1477, 189–214.

Vagin, A., & Teplyakov, A. (2000). An approach to multi-copy
search in molecular replacement. Acta Crystallographica,
Section D Biological Crystallography, 56, 1622–1624.

Velázquez-Campoy, A., Vega, S., Fleming, E., Bacha, U.,
Sayed, Y., & Dirr, H. W. (2003). Protease inhibition in
African subtypes of HIV-1. AIDS Reviews, 410, 165–171.

Velázquez-Campoy, A., Kiso, Y., & Freire, E. (2001). The
binding energetics of first- and second-generation HIV-1
protease inhibitors: Implications for drug design. Archives
of Biochemistry and Biophysics, 390, 169–175.

Wlodawer, A., & Vondrasek, J. (1998). Inhibitors of HIV-1
Protease: A major success of structure-assisted drug design.
Annual Review of Biophysics & Biomolecular Structure,
27, 249–284

Yedidi, R. S., Proteasa, G., Martinez, J. L., Vickrey, J. F.,
Martin, P. D., Wawrzak, Z., … Kovari, L. C. (2011).
Contribution of the 80s loop of HIV-1 protease to the
multidrug-resistance mechanism: Crystallographic study of
MDR769 HIV-1 protease variants. Acta Crystallograph-
ica, Section D Biological Crystallography, 67, 524–532.

1380 P. Naicker et al.

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f 
W

itw
at

er
sr

an
d]

 a
t 2

3:
54

 3
0 

O
ct

ob
er

 2
01

3 

41



CHAPTER 4 
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In this article, differences in substrate processing and inhibitor susceptibility between the 
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Abstract 

 

Since its identification, HIV continues to have a detrimental impact on the lives of millions of 

people throughout the world. The protease (PR) of HIV is a major target in antiviral treatment. 

The South African HIV-1 subtype C protease (C-SA PR) displays weaker binding affinity for 

some clinically-approved protease inhibitors in comparison to the HIV-1 subtype B protease. 

The heavy HIV burden in sub-Saharan Africa, where subtype C HIV-1 predominates, makes this 

disparity a topic of great interest. In light of this, the enzyme activity and affinity of protease 

inhibitors for the subtype B and C-SA PRs were determined. The relative vitality, indicating the 

selective advantage of polymorphisms, of the C-SA PR relative to the subtype B PR in the 

presence of ritonavir and darunavir was 4-fold and 10-fold greater, respectively. Dynamic 

differences that contribute to the reduced drug susceptibility of the C-SA PR were investigated 

by performing hydrogen/deuterium exchange-mass spectrometry (HDX-MS) on the unbound 

subtype B and C-SA PRs. The reduced propensity to form the E35-R57 salt bridge and 

alterations in the hydrophobic core of the C-SA PR is proposed to affect the anchoring of the 

flexible flaps resulting in an increased proportion of the fully-open flap conformation. HDX-MS 

data showed that the N-terminus of both PRs appears to be less stable than the C-terminus of the 

PRs, thus rationalising the increased efficacy of dimerisation inhibitors targeted toward the C-

terminus of HIV PRs. This is the first known report on HIV protease dynamics using HDX-MS.  
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Introduction  

 

Human immunodeficiency virus (HIV) infections are a global health and socio-economic 

challenge with approximately 35 million people living with the virus in 2012 [1]. Disturbingly, ~ 

70% of these people reside in sub-Saharan Africa and HIV-1 subtype C is the most prevalent 

subtype in this region and globally [1, 2]. In South Africa, an estimated 6.1 million people (~ 

12% of the total population) are living with HIV [1]. The homodimeric HIV protease (PR) is a 

major drug candidate because it has a central role in the life cycle of the virus. The first-line 

antiretroviral therapy (ART) guidelines for adults and adolescents include the use of two 

nucleoside reverse transcriptase inhibitors in combination with one non-nucleoside reverse 

transcriptase inhibitor [3]. Second-line ART may proceed upon failure of the first-line ART 

regimen in an individual. The preferred protease inhibitors (PIs) in second-line ART for adults 

and adolescents are atazanavir, darunavir or lopinavir in combination with the PI booster, 

ritonavir [3].  

 

The present study investigates the differences in binding affinity to clinically-used PIs and the 

dynamic differences of the consensus HIV-1 subtype B protease (subtype B PR) and South 

African HIV-1 subtype C protease (C-SA PR) which is effectively the consensus HIV-1 subtype 

C protease (Los Alamos HIV sequence database, http://www.hiv.lanl.gov/). Importantly, the C-

SA PR differs by eight amino acids per PR monomer to the subtype B PR (Fig. 1). FDA-

approved PIs have been designed against the HIV-1 subtype B PR which predominates in North 

America and Europe and is less prevalent globally [2]. When comparing the C-SA PR to the 

subtype B PR, the following polymorphisms are observed: 3 situated in the fulcrum region 
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(T12S, I15V and L19I), 2 in the hinge region (M36I and R41K), 1 in the 60’s loop (H69K), 1 in 

the 80’s loop (L89M) and 1 at the end of the single α-helix of each monomer (I93L) [4]. These 

polymorphisms represent non-active site mutations and therefore, do not directly affect inhibitor 

binding [4]. 

 

Previous comparison of PI binding to the C-SA PR showed a ~ 8-fold weaker affinity for 

lopinavir than the subtype B PR [5]. Only recently has the crystal structure of the C-SA PR been 

elucidated [6], whereas, the structure of the subtype B PR has been well studied. A structural 

comparison of the PRs does not definitively provide a clear basis for the differences in drug 

binding. Molecular dynamics (MD) simulations showed that the inter-flap distance (distance 

between Cα of I50 on adjacent monomers) of the subtype B PR appeared to fluctuate within a 1 

Å distance, whereas, that of the C-SA PR fluctuated within 3 Å, implying altered flexibility of 

the flap tips (residues at positions 46–54) of the C-SA PR [6]. Increased flap flexibility may 

result in reduced binding affinity to PIs as the flap tips are involved in water-mediated 

interactions with substrates/inhibitors [7]. Distance measurements using spin-labelled pulsed 

electron paramagnetic resonance (EPR) spectroscopy, displayed an increased proportion of the 

curled and fully-open conformations (Fig. 2C) of the flaps in the subtype C PR population 

relative to other HIV-1 PRs [8]. No x-ray diffracted structural data is available for the curled and 

fully-open conformers. The curled conformer is described by pronounced curling of the flap tips 

(residue positions 48–52) [9]. The fully-open conformer also displays flap tip curling, 

accompanied by upward and outward displacement of the flap-hinge region from the active site 

[10]. The majority of C-SA PR molecules exist in the semi-open conformation in solution (Fig. 

2B) [8, 10-12]; however, there is a definite shift in the equilibrium between semi-open and other 
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flap conformers. At baseline, an ensemble of semi-open conformers may exist. These semi-open 

conformers may directly interchange with closed conformers (Fig. 2A). Structural and PR 

dynamics studies indicate that the curled conformer may be an intermediate state which allows 

for the formation of the fully-open conformer [9, 11, 13]. Entry of a substrate or inhibitor to the 

active site of the PR requires substantial movement of the flaps (~ 15 Å from their position in the 

closed conformer) [14]. Structure-based calculations reveal that semi-open conformers do not 

permit the entry of substrate/inhibitor to the active site [15]. Therefore, it is accepted that only 

the fully-open conformation allows for substrate/inhibitor binding. Complete flap opening occurs 

through concerted downward movement of the hinge (residue positions 35–42 and 57–61), 

cantilever (residue positions 62–78) and fulcrum (residue positions 10–23) regions (Fig. 1) 

which results in the upward and outward motion of the flaps (Fig. 2C) [10]. The vast majority of 

studies measuring PR dynamics are investigated using MD simulations. MD simulation results 

require careful attention for correct interpretation; however, are useful when complemented with 

experimental data. Other analyses of PR dynamics were investigated using nuclear magnetic 

resonance (NMR) [11, 12, 16], which is limited by the modest sensitivity of the technique, and 

spin-labelled pulsed EPR spectroscopy [8, 17], which was used to exclusively measure distances 

between flap residues. Combined EPR spectroscopy and NMR experiments have identified and 

verified the population of flap conformers in the apo-state and during inhibitor binding for the 

subtype B and C HIV-1 PRs [18]. However, these experiments did not fully elucidate the 

mechanism for the reduced drug susceptibility displayed by the subtype C HIV-1 PR. Here we 

probed the mechanism for the altered flap flexibility and reduced susceptibility of the C-SA PR 

to PIs by performing hydrogen/deuterium exchange-mass spectrometry (HDX-MS) on apo-

47



 

subtype B and apo-C-SA PRs. To our knowledge, this is the first HDX-MS study performed on 

HIV-1 proteases.  

 

Results 

 

C-SA PR viral fitness 

 

Following expression and purification, the subtype B and C-SA PRs were > 99% pure. The HIV-

1 PR fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2), which mimics the 

capsid/p2 cleavage site in the HIV-1 Gag polyprotein, was used to determine the kinetic 

parameters of the PR-substrate reaction (Table 1). Both PRs display comparable kinetic 

parameters; however, the C-SA PR shows a two-fold increase in the turnover of substrate, as 

seen by a higher kcat value (Table 1).  

 

Inhibition constants (Ki) of PIs for the subtype B and C-SA PRs were determined from their 

respective IC50 determinations (Table 2). The thermodynamic parameters (ΔG, ΔH, –TΔS, Kd 

and n), determined by ITC, describe the overall energetic contribution to the interaction. For all 

ITC experiments, a stoichiometry value (n) of > 0.95 was achieved. Binding thermodynamics of 

acetyl-pepstatin, a substrate analogue, is similar for both PRs. Displacement titration ITC was 

employed to improve the accuracy of the determined Kd values, the affinity of the FDA-approved 

PIs for both the subtype B [19, 20] and C-SA PRs were in the nM–pM range (Table 2). The 

binding affinities of the PIs for both PRs were also compared using the Ki and relative vitality 

values. Atazanavir displays a similar affinity for the subtype B and C-SA PRs. Darunavir shows 
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a 7-fold reduced affinity for the C-SA PR compared to the subtype B PR. The binding of 

darunavir to both PRs is enthalpically driven; however, binding to the C-SA PR displayed an 

unfavourable entropy change (-TΔS > 0) which contributes to the reduced affinity. The C-SA PR 

displays a relative vitality of ~ 4 and ~ 10 in the presence of ritonavir and darunavir, 

respectively. This suggests that subtype C HIV-1 may have a greater capacity to replicate in the 

presence of ritonavir and darunavir when compared to subtype B HIV-1. Therefore, the C-SA PR 

displays reduced drug susceptibility to ritonavir and darunavir in comparison to the subtype B 

PR. 

 

Amide hydrogen-deuterium exchange 

 

Two aspartyl proteases, porcine pepsin and protease XIII from Aspergillus saitoi, were tested for 

optimum cleavage of the HIV-1 PRs following deuterium labelling. Due to the pH range of their 

optimal activity, aspartyl proteases are the only enzymes used for fragmentation during a HDX-

MS experiment. The competitive inhibition of pepsin by FDA-approved HIV-1 PIs has been 

described previously [21]. Ki values of 0.6 μM and 2.1 μM were obtained previously for binding 

of porcine pepsin to ritonavir and darunavir, respectively [21]. In the present study, attempts to 

determine HDX in the presence of PIs were unsuccessful. After optimisation, cleavage of the 

HIV-1 PRs in the presence of HIV-1 PIs by both pepsin and protease XIII was poor, producing 

large amounts of undigested PR and only 5 and 2 detected peptide fragments, respectively. 

Therefore, HDX-MS analysis was limited to the unbound form of the PRs. 
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The conformational dynamics of the apo-PRs were measured by detecting the exchange of 

backbone amide hydrogen atoms with deuterium atoms in solution. In this study, amide 

hydrogen/deuterium exchange (HDX) was detected via mass spectrometry. HDX was measured 

at pH 5.0 in accordance with the activity and inhibition assays. The catalytic dyad (D25 and 

D25ʹ) of HIV-1 PR is monoprotonated at pH 5–6 and the PR displays maximal activity and 

stability in this pH range [22]. At pH 7.0, the catalytic dyad loses its proton and becomes more 

unstable [23]. Measuring HDX at pH 5.0 also enables the detection of amide protons that may 

exchange too fast at pH 7.0. At pH > 4.0, HDX is catalysed by direct attack and H-bonding of 

OD
-
 to the exchangeable proton, thus, HDX at pH 5.0 reports on PR dynamics [24-26]. The 

HDX reaction was quenched at several time points (10 s–1 hr) to map fast as well as 

intermediate exchanging regions of the PRs. During analysis, 35 peptides derived from the 

subtype B PR and 41 peptides from the C-SA PR were used to provide complete coverage of 

both PRs. Thirty-four of these peptides were in common to both PRs. The first and second amide 

protons of each peptide are unable to retain deuterium due to cleavage of the PRs by pepsin and 

binding of the resultant peptides to the C18 reversed-phase column [27]. Proline residues do not 

possess an amide hydrogen and HDX at these residues along with the first and second residues of 

each peptide are not measured. The heat maps in Figure 3 display the percentage of deuteration 

across all regions of the PRs barring the residues at positions 1–2. Proteins exhibit highly mobile 

behaviour in solution. Exchange in a folded protein is believed to occur through low amplitude 

atomic motions, of ~ 1 Å, which are sufficient to allow for diffusion of D2O and OD
-
 to 

backbone amide linkages [28, 29]. Thus, there is a steady increase in the percentage of 

deuteration at various regions of the PRs with increasing incubation time (Fig. 3).  
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The amplitude and rates of HDX in peptides covering the regions near polymorphic sites were 

measured (Table 3). During analysis, fast and intermediate exchange rates were determined and 

are similar in the respective peptides of both PRs. Engen et al. have proposed that amide protons 

exchanging at very fast rates (i.e. unprotected and solvent exposed) must exchange from the 

folded form of the protein [30]. Amide protons exchanging at fast to slow rates require local 

structural fluctuations prior to exchange. In peptides 13–23, 34–53 and 64–90 the number of 

amide protons with very fast and/or fast exchange rates is less in the C-SA PR than in the 

subtype B PR. The number of amide protons in these peptides exhibiting intermediate exchange 

rates is greater in the C-SA PR. The total number of amide protons exchanged is similar in both 

PRs after 1 hour. Therefore, the number of slow exchanging amide protons in these peptides is 

similar and differences are restricted to the number of fast and intermediate exchanging amide 

protons. The regions of HIV-1 PR covered by these peptides are displayed in Figure 4. 

Deuterium incorporation plots show the number of deuterons incorporated into the relevant 

peptides with respect to the incubation time. Differences in deuterium incorporation at the N- 

and C- termini are highlighted in Table 4. Exchange at the N-terminus of both PRs is similar. 

The C-SA PR shows increased dynamics at C95 and T96 in comparison to the subtype B PR.  

 

Discussion 

 

Dynamics of the HIV-1 PR 

 

Heat maps (Fig. 3) show results as percentage deuteration, thereby, normalising the deuterium 

incorporation in the measured peptides and allowing for a direct comparison of different regions 
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of the HIV-1 PR. Increased spatial resolution in the heat maps is allowed for by peptide overlap.  

Improved spatial resolution for the C-SA PR is evident in parts of the heat maps due to increased 

peptide detection and overlap. Both PRs display similar exchange profiles across different 

regions. Residues around the active site triplet (D25, T26 and G27) display slow deuterium 

incorporation in comparison to the other regions of the PRs. These residues are positioned deep 

within the active site cavity. Slow exchange is expected here due to low solvent accessibility and 

a complex network of interactions around the active site core. The flap tips (residues at positions 

49–53) are the regions of the PRs that display the fastest deuterium incorporation. The flaps are 

completely solvent exposed and highly mobile regions of the PRs. The reported HDX-MS profile 

of HIV-1 PR is in agreement with previous NMR data [11, 12, 16]. 

 

HDX in macromolecules resulting from local unfolding events may either occur via a correlated 

(EX1) or uncorrelated (EX2) mechanism [26, 31, 32]. HDX in the subtype B and C-SA PRs 

displays EX2 kinetics indicated by the single binomial isotopic distribution of the mass spectra in 

the current study [33]. This uncorrelated exchange mechanism may be well-illustrated by HDX 

at α-helices [34]. As seen in Figure 3, exchange at residues in the single α-helix of the HIV-1 PR 

(residues at positions 87–93) occurs independently of each other. HDX via the EX2 mechanism 

suggests that segments of the PRs must unfold and refold many times before exchange within it 

is complete [26, 31, 32].      
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Comparison of conformational stability between the subtype B and C-SA proteases 

 

Previous differential scanning calorimetry studies showed that the overall conformational 

stability of the C-SA PR was slightly reduced in comparison to the subtype B PR [5]. In the 

current study, subtle differences in stability at different regions of the PRs were observed. In 

most peptides, the number of amide protons exchanging at fast rates increased by ~ 1 amide 

proton in the subtype B PR relative to the C-SA PR. This may imply that the C-SA PR is more 

stable than the subtype B PR. However, residues at the C-terminus of the C-SA PR appear to be 

more dynamic (Table 4). Thermodynamic analyses showed that the N- and C-terminal 

antiparallel β-sheet contributes 75% to the total Gibbs energy [35]. A more dynamic C-terminus 

will affect the stability of the terminal β-sheet and greatly impact the overall conformational 

stability. Salt bridges also affect the conformational stability of a macromolecule [36, 37]. 

Crystal structure analysis shows that the C-SA PR lacks the K20-E34 and E35-R57 salt bridges 

relative to the subtype B PR in their crystalline forms. Therefore, the reduced number of ionic 

interactions and a less stable terminal β-sheet evident in the C-SA PR are major determinants for 

the apparent overall reduced conformational stability of the C-SA PR.   

 

Dynamics around the polymorphic sites 

 

Figure 1 shows the position of the eight polymorphisms in the subtype B and C-SA PRs. As 

mentioned previously, 3 polymorphic sites are situated in the fulcrum region (T12S, I15V and 

L19I), 2 in the hinge region (M36I and R41K), 1 in the 60’s loop (H69K), 1 in the 80’s loop 

(L89M) and 1 at the end of the single α-helix of each monomer (I93L). For peptides 13–23, 34–
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53 and 64–90 (Fig. 4) subtle differences in deuterium incorporation between the subtypes are 

evident. In all of the aforementioned peptides covering the 60’s and 80’s loops, the fulcrum 

region and the flap-hinge region, there is a reduction in the number of very fast and/or fast 

exchanging amide protons (12 > k > 0.1 min
-1

) and a concomitant increase in the number of 

intermediate exchanging amide protons (0.1 > k > 0.01 min
-1

) in the C-SA PR (Table 3). These 

results indicate that these regions of the C-SA PR are more stable than that of the subtype B PR. 

 

The differences observed in peptides 13–23 (covering the fulcrum region), 34–53 (covering the 

hinge region) and 64–90 are explained in part by the varying preference of flap conformations 

between the PRs. Distance measurements during pulsed EPR experiments showed that the total 

population of the fully-open conformer increased by 23% with a concomitant decrease by 15% in 

the total population of semi-open conformers in the subtype C PR relative to the subtype B PR. 

Complete flap opening occurs through concerted downward movement of the hinge (residue 

positions 35–42 and 57–61), cantilever (residue positions 62–78) and fulcrum (residue positions 

10–23) regions which results in the upward and outward motion of the flaps (Fig. 2C) [10]. The 

cantilever region is covered by peptide 64–76 in the current study (Table 3). Slightly increased 

dynamics is also displayed in the cantilever region of the subtype B PR. In the fully-open 

conformer, the parts of the hinge and cantilever regions are anchored in the hydrophobic core of 

the PR [38]. Therefore, parts of the hinge, cantilever and fulcrum regions are likely stabilised in 

the fully-open conformer. This detail may explain in part the reduced dynamics at peptides 13–

23, 34–53 and 64–90 in the C-SA PR.  
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Dynamics at the flap tips  

 

A recent simulation study indicated altered flap tip flexibility between the apo-form of the C-SA 

PR and subtype B PR on a picosecond to nanosecond time scale [6]. The C-SA PR displayed a 

wider range of open conformers than the subtype B PR. These findings hint at an altered stability 

around the flap tips of the C-SA PR which allow for the variation in open conformers. Similar to 

the thermodynamic data reported here (Table 2), HIV-1 PRs with flap tip mutations displayed 

reduced binding entropy in comparison to wild-type PR, which is compensated for by enhanced 

binding enthalpy during atazanavir and darunavir binding [39]. Only subtle packing 

rearrangements around the flap region and inhibitors were identified in the inhibitor-bound 

structures of these mutants [39]. Observed entropic effects during inhibitor binding to PRs with 

flap tip mutations as well as the C-SA PR indicate changes in flap flexibility and/or solvation in 

comparison to the wild-type subtype B PR. Because the C-SA PR does not possess any flap tip 

mutations, increased flexibility of the flap tips is unexpected. As mentioned, the C-SA PR has a 

greater preference for the fully-open conformation than other HIV-1 subtypes including multi-

drug resistant variants [8]. An increased proportion of fully-open conformers are also evident in 

C-SA PR in comparison to the subtype B PR when saturated with atazanavir and darunavir [18]. 

Fully-open conformers allow access of more ordered solvent to the active site than semi-open 

conformers. These findings may explain the less favourable binding entropy displayed by the C-

SA PR during binding to atazanavir and darunavir (Table 2).  

 

Data for peptide 47–53 measures deuterium incorporation at backbone amides for residues at 

positions 49–53 (flap tips). Importantly, the flap tips are solvent exposed in all flap conformers. 
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Therefore, HDX at the flap tips are mostly dependent on local atomic fluctuations which reduce 

the number of protected amide protons (amide protons involved in interactions) rather than an 

increase in solvent accessibility to unprotected amide protons. The C-SA PR displays a reduction 

in the number of very fast exchanging amide protons (Table 3) which reflect the amides that are 

available for exchange at baseline. The C-SA PR also displays a slight reduction in the number 

of fast exchanging amide protons. This difference is explained in part by the increase in the 

proportion of curled conformers in the C-SA PR population in comparison to that of the subtype 

B PR. Distance measurements during pulsed EPR experiments showed that the total population 

of the curled conformer increased by 8% in the subtype C PR relative to the subtype B PR [8]. 

Importantly, during flap tip curling I50 of each monomer is buried and stabilised by hydrophobic 

contacts with I47, I54, P79 and P81 [9]. This affects HDX-MS data, as more interactions need to 

be broken in a curled conformation before amide proton exchange proceeds relative to the semi-

open conformation. Moderate fluctuations of > 3 Å between interacting groups are required for 

OD
-
 catalyst attack when exchangeable amide protons are involved in interactions [40]. In a 

similar manner, MD simulation data suggest that the fully-open conformer displays curling of the 

flap tips [10]. As mentioned, the C-SA displays a greater population of fully-open conformers in 

comparison to the subtype B PR. Therefore, the increased proportion of fully-open conformers in 

the C-SA PR population may also account for the reduction in fast exchanging amide protons 

(Table 3) in the flap tips of the C-SA PR. When dealing with multiple conformers, it is important 

that data has been standardised. Importantly, all HDX-MS data was derived from subtype B and 

C-SA PR solutions with an active site concentration of greater than 95% (see methods; active 

site determination). This active concentration illustrates the population of PRs in solution that 
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display an active conformation. Therefore, a fair comparison of PR dynamics may be made 

based on differences in flap conformers between the subtype B and C-SA PRs.  

 

Effect of secondary resistance mutations on flap movement 

 

Globally, the structure of the subtype B and C-SA PRs do not differ. Detailed comparison of the 

structures revealed no significant differences at any of the polymorphic sites with the exception 

of the residue at position 36. Subtle differences are evident in the hinge region (residue positions 

35–42 and 57–61) of the PRs (Fig. 5) [6]. The hinge region is implicated in the control of the 

flexible flaps of the PR and the flap tips are involved in water-mediated contacts with 

substrates/inhibitors. Importantly, M36 in the subtype B PR shows no exchange over all time 

points, whereas, I36 in the C-SA PR has exchanged its amide hydrogen at 10 seconds (Fig. 3). 

This supports the crystallographic evidence which shows the amide group of M36 in the subtype 

B PR interacting with the E35 side chain, thereby, facilitating the E35-R57 salt bridge (Fig. 5A) 

which is the only salt bridge in the flap-hinge region. I36 of the C-SA PR is not involved in a 

similar interaction (allowing for exchange of its amide hydrogen). Therefore, the C-SA PR has a 

reduced propensity to form the E35-R57 salt bridge likely contributing to altered flap dynamics. 

 

The M36I mutation is considered to be a secondary drug resistance mutation. The M36I mutation 

is the only polymorphic mutation in the C-SA PR which is associated with drug resistance to 

most of the FDA-approved PIs in combination with ritonavir (Stanford University HIV drug 

resistance database [41]). This mutation is associated with virologic failure or reduced virologic 

response to atazanavir, darunavir, fosamprenavir, indinavir, lopinavir, saquinavir and tipranavir 
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in combination with ritonavir [42-49]. Mutations at residue position 89 are associated with 

virologic failure to darunavir and tipranavir in combination with ritonavir [44, 50] and mutations 

at residue position 93 are associated with virologic failure to saquinavir in combination of 

ritonavir [42, 49]. Although the other polymorphisms inherent in the C-SA PR have not been 

associated with virologic failure in clinical studies, they may still contribute to the observed 

reduced drug susceptibility of the C-SA PR.  

 

The importance of other polymorphisms inherent to the C-SA PR in relation to reduced drug 

susceptibility may be explained through the process of hydrophobic sliding [38]. A molecular 

dynamics simulation study identified hydrophobic residues whose side chains were buried for the 

majority of the simulation [38]. These 19 residues per monomer are referred to as the 

hydrophobic core of the PR (Fig. 6) [38]. Although the residue at position 19 was not identified 

as part of the hydrophobic core, the L19I mutation may contribute to rearrangement of 

interactions in the hydrophobic core. Therefore, L/I19 was included in the hydrophobic core in 

the current study. In the unliganded PR, rearrangement of interactions in the hydrophobic core 

facilitate flap movement upward and outward from the active site [38]. Seven isoleucines per 

monomer are present in the core and may provide increased flexibility because they can exist in 

more possible conformations than other hydrophobic residues [38]. In the crystal structure of the 

subtype B PR, I15 makes van der Waal contacts with L33, M36 and L38 which form part of a 

loop in the hinge region. I15 also makes van der Waals contacts with I62, I64 and V75 in the 

cantilever region comprising residues at positions 62–78 which is closely associated with the 

hinge region. During flap movement, the loops (hinge and cantilever regions) slide over I15 and 

the contacts that are lost by I15 are gained by I13 (both I13 and I15 forming part of the fulcrum 
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region) [38]. Interaction of these loops with the hydrophobic core allow for anchoring of the 

flaps. When the loops slide over residues of the hydrophobic core, wider opening of the flaps 

occur. Cross-linking studies have confirmed that altered flexibility in the hydrophobic core 

modulates PR activity and movement of the core is required for function [51]. Rearrangement of 

the hydrophobic core residues and exchange of one set of hydrophobic contacts for another likely 

result in modest energetic penalties [38].  

 

In the C-SA PR, I15V, L19I, M36I, L89M and I93L polymorphisms occur in the hydrophobic 

core. These polymorphisms may alter the network of hydrophobic contacts in the core. In the 

crystal structure of the C-SA PR, V15 does not interact with V75. However, this interaction may 

occur during flap movement. It is evident from the crystal structures that these polymorphisms 

bring about slight changes in the complex network of hydrophobic interactions. Due to its high 

incidence in drug-resistant isolates, the M36I mutation likely contributes the greatest to 

differences in flap dynamics between the PRs. Rotation of this I36 through different rotamers 

may assist in sliding over other hydrophobic residues.  Only subtle differences in the 

hydrophobic core are evident between the crystal structures of the subtype B and C-SA PRs. 

Similarly, the HIV-1 A_E variant which has polymorphisms in the hydrophobic core does not 

display major structural differences in this region relative to the subtype B PR [52]. Analysis of 

the dynamics of the hydrophobic core is limited because residues in the core are disconnected in 

the primary structure of the HIV-1 PR. Residue-level resolution of hydrophobic core residues 

was not obtained in this study. However, the dynamic nature of the peptides covering the hinge 

loop and cantilever loop which anchor the flaps were measured. As mentioned previously, the 

hinge region of the C-SA PR undergoes reduced rates of amide hydrogen exchange in 
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comparison to the subtype B PR. For peptide 64–76 (covering part of the cantilever region), a 

slight reduction in fast exchanging amide protons (meaning more protected amide protons) is 

observed in the C-SA PR (Table 3). These results indicate that the network of interactions in the 

hydrophobic core of the C-SA PR may be altered. The hinge, cantilever and fulcrum regions 

which are important for flap opening display increased stability in the C-SA PR and may 

stabilise the wide range of fully-open conformers exhibited by the C-SA PR. 

 

Preferential targeting of the C-terminus to prevent dimerisation 

 

The N-terminus (positions 1–5) and C-terminus (positions 95–99) of HIV-1 PRs are pivotal in 

dimer stability; structure-based thermodynamic analyses showed that the N- and C-termini 

antiparallel β-sheet contributes ~ 75% to the total Gibbs energy [35]. Thermodynamic and 

structural analyses of recombinant HIV-1 PRs with a short segment of the transframe region 

tethered to the N-terminus of the PR, displayed significantly reduced thermal stability compared 

to wild-type HIV-1 PR and crystallographic data showed evidence of random coils at the N-

terminus [53]. Recombinant HIV-1 PR with a short segment of reverse transcriptase tethered to 

the C-terminus showed no significant reduction in thermal stability, implying increased stability 

of the C-terminus relative to the N-terminus [53]. A similar result is seen in the HDX-MS 

experiment for both the subtype B and C-SA PRs (Table 4).  

 

Due to cleavage of the PRs by pepsin and binding of the resultant peptides to the C18 reversed-

phase column [27], the HDX data for peptide 1–5 reports on the peptide-amide linkages at 

residue positions 3–5 and data for peptide 95–99 reports on the peptide-amide linkages at residue 
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positions 97–99. The amide groups of L97 and F99 participate in hydrogen bonds with the N-

terminus of the adjacent subunit; meaning, interactions need to be broken for HDX to proceed. 

After 1 minute of incubation in deuterium oxide, both PRs display low levels of deuterium 

incorporation at the N- and C-termini (< 0.5 deuterons). After 1 hour of incubation, the 

differences are more pronounced; more than 1.6 amide protons are exchanged in peptide 1–5 

(reporting on I3, T4 and L5) and less than 1 proton is exchanged in peptide 95–99 (reporting on 

L97, N98 and F99) in both PRs. Therefore, only a fraction of the PRs in solution exchange an 

amide proton after 1 hour of incubation at their final 3 residues (Table 4). Rates of HDX in this 

region reflect the internal motions of the β-sheet formed by the N- and the C-termini. Therefore, 

the N-terminus of both PRs is seemingly more dynamic than the C-terminus. Targeting the 

residues at positions 1–5 and 95–99 in HIV-1 and HIV-2 PRs with complementary synthetic 

peptides has shown inhibitory potential [54]. Inhibitors targeted to the C-terminus alone 

displayed greater potency than inhibitors targeted to the N-terminus or both ends of the PR [54]. 

Drug resistance to currently available PIs are attributed to active site and flap-hinge region 

mutations. Dimerisation inhibitors attempt to solve this complication by targeting an alternative 

site. 

 

Using overlapping peptides, deuterium incorporation of other C-terminal amide protons (C95 

and T96) may be determined. Calculating the difference in deuterium incorporation between 

peptides 77–99 and 77–94 allows for HDX measurement at residue positions 95–99. Subtracting 

the known incorporation at residue positions 97–99 from the calculated 95–99 allows for 

resolution of C95 and T96 (Table 4). Differences in deuterium incorporation at peptide 77–94 

between the PRs is evident from 5 minutes of incubation and is most pronounced after 1 hour of 

61



 

incubation. Therefore, detailed analysis of deuterium incorporation was performed using data 

resulting from 1 hour of incubation. Analysis of exchange at C95 and T96 shows that ~ 0.6 

amide protons have exchanged in the subtype B PR, whereas, these amide protons are fully 

exchanged (2 amide protons) in the C-SA PR. This suggests that the C-terminal residues, C95 

and T96, are more dynamic in the C-SA PR. Therefore, these residues may contribute less to the 

stability of the N- and C-termini β-sheet than other C-terminal residues. Mutation of the ultimate 

amino acid in the HIV-1 PR sequence, phenylalanine, to an alanine was shown to reduce the β-

sheet content of the PR and disrupt dimerisation which results in complete loss of activity [55]. 

Contacts made by F99 with neighbouring residues are shown in Figure 7. F99 is central to the 

large network of interactions present in the ‘lock-and-key’ motif (Fig. 7). Therefore, the 

importance of the C-terminus for correct folding of the PR and its increased stability in 

comparison to the N-terminus, make the C-terminus, particularly F99, a preferred target for 

antiviral therapy. 

 

This study represents the first known report of amide hydrogen/deuterium exchange-mass 

spectrometry performed on HIV PR. The C-SA PR displays weaker binding to clinically used 

PIs than the subtype B PR. The C-SA PR has an increased propensity to exist in a fully-open 

conformation (Fig. 2C) [8] and displays a wider range of open conformers than the subtype B PR 

[56]. Altered interactions in the hydrophobic core of the C-SA PR likely contribute to the 

difference in flap ensembles. Polymorphisms in the C-SA PR alter the complex network of 

interactions in the hydrophobic core thus favouring the formation and increasing the stability of 

the fully-open conformer in comparison to the subtype B PR. Importantly, polymorphisms in the 

C-SA PR conserve hydrophobic residues but may alter the anchorage of flaps through altered 
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hydrophobic sliding. The reduced propensity to form the E35-R57 salt bridge in the C-SA PR in 

combination with altered dynamics at the hinge, cantilever and fulcrum regions contribute to the 

altered anchorage of the flaps and a shift in the equilibrium between semi-open (Fig. 2B) and 

fully-open conformers (Fig. 2C). Because the C-SA PR displays reduced drug susceptibility and 

similar catalytic efficiency in comparison to the subtype B PR, the increased stability of the 

fulcrum, hinge and cantilever regions leading to the shift in flap conformers preferentially affects 

inhibitor binding over substrate binding. The increase in substrate turnover (Table 1) for the C-

SA PR may be explained by its increased proportion of the fully-open conformer when compared 

to the subtype B PR. Substrate processing is only allowed following full opening of the PR flaps. 

This highlights the need to further characterise the fully-open conformer which is a viable target 

for drug design because this conformer is a prerequisite for PR function. Furthermore, the N-

terminus of both PRs appears to be more dynamic than the C-terminus of the PRs, thereby, 

substantiating the targeting of the C-terminus, particularly F99, for the development of 

dimerisation inhibitors.  

 

Materials and Methods 

 

Expression and purification 

 

Escherichia coli BL21 (DE3) pLysS cells were transformed with the pET-11b plasmid encoding 

either the subtype B or C-SA PR insert. The consensus C-SA PR (wild-type) sequence data were 

obtained from Prof Lynn Morris (AIDS Virus Research Unit, National Institute of 

Communicable Diseases, South Africa). A Q7K point mutation was introduced in the PR 
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sequences by site-directed mutagenesis using the QuikChange® method (Stratagene, La Jolla, 

CA, USA) to reduce PR autocatalysis [57]. 

 

Expression and purification of the PRs were performed as previously described [6]. Briefly, 

transformed cells were induced to over-express the PRs as inclusion bodies using isopropyl-β-D-

thiogalactopyranoside [58]. Inclusion bodies were solubilised using 8 M urea and refolded by 

dialysis into a buffer containing 10 mM sodium acetate, 2 mM dithiothreitol and 0.02% sodium 

azide (pH 5.0). The PRs were purified using CM-Sepharose cation exchange resin, with a 0–1 M 

NaCl gradient elution. The PRs were dialysed into 10 mM sodium acetate, 2 mM dithiothreitol 

and 0.02% sodium azide (pH 5.0) for storage and were resolved on a 10% tricine-SDS 

polyacrylamide gel to evaluate the purity of the proteins [59, 60]. 

 

Active site determination 

 

The percentage of active enzyme in the PR preparations was investigated using isothermal 

titration calorimetry (ITC). Active site determinations were performed at 20 °C using a VP-ITC 

microcalorimeter (MicroCal Inc.). Acetyl-pepstatin (Bachem), a well-known aspartyl protease 

inhibitor, was titrated into the sample cell containing the PR. Saturation of the PRs was achieved 

during titrations using 200 µM acetyl-pepstatin, 10.59 µM subtype B PR and 15.50 µM C-SA 

PR. Calorimetric data were fit using the Origin 7.0 software package. The percentage of active 

sites was determined from the stoichiometry value. 
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Steady-state and inhibition kinetics 

 

Kinetic parameters, KM, kcat and kcat/KM, were determined in separate experiments following 

hydrolysis of the HIV-1 PR fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-

NH2). An active enzyme concentration of 30–50 nM and a substrate concentration ranging 5–200 

µM and 3–10 µM were used to determine KM and kcat/KM, respectively. Varying amounts of 

enzyme (1–10 pmole) were used with a constant substrate concentration (50 µM) for kcat 

determination.  

 

The FDA-approved drugs competitively inhibit HIV PR with dissociation constants within the 

nM–pM range. Inhibition constants (Ki) of atazanavir, darunavir and ritonavir (NIH AIDS 

Reagent Program) were determined using the following equation for tight-binding inhibitors 

[61]:  

 

   
(     

   

 
)

(
   

  
  )

⁄   (1) 

 

E is the active enzyme concentration (50 nM), [S] is the substrate concentration (50 µM) and 

IC50 is the concentration of inhibitor which results in half-maximal activity of the PR. IC50 values 

were determined using inhibitor concentrations ranging 0–200 µM. For all kinetic measurements, 

an excitation wavelength of 337 nm and emission wavelength of 425 nm were used for the 30 

second measurements during steady-state. Activity assays were performed in 50 mM sodium 
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acetate and 1 M sodium chloride (pH 5.0) at 20 °C. For kcat/KM determinations, 0.1 M sodium 

chloride was used to obtain measurable rates of substrate cleavage. A final dimethyl sulfoxide 

concentration of 2% was used during IC50 determinations to ensure inhibitor solubility. All 

kinetic experiments were performed in triplicate using a Jasco FP-6300 spectrofluorometer and 

the data were fit using SigmaPlot (version 11.0). Kinetic parameters were used to calculate the 

relative vitality of the C-SA PR in the presence of PIs and compared to the subtype B PR 

according to the following equation [62]: 
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)     
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)          
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Displacement titration ITC 

 

Binding thermodynamics of atazanavir, darunavir and ritonavir binding to the C-SA PR were 

determined using a displacement titration method [63]. PIs were titrated into the sample cell 

containing the C-SA PR pre-bound to acetyl-pepstatin (200 µM final concentration). 

Thermodynamic parameters of C-SA PR binding were measured following titration of 150 µM 

atazanavir into 13.89 µM PR, 100 µM darunavir into 13.78 µM PR and 100 µM ritonavir into 

12.66 µM PR. For subtype B PR binding, 100 µM of ritonavir was titrated into 11.86 µM PR. 

Displacement titrations were performed in 10 mM sodium acetate and 2% dimethyl sulfoxide 

(pH 5.0) at 20 °C using a VP-ITC microcalorimeter (MicroCal Inc.). 
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Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) 

 

The dynamics of the subtype B and C-SA PRs were investigated by HDX-MS as previously 

described [64-66]. For exchange experiments, 10 µl of PR stock solutions (1.3 mg/ml) were 

diluted 4-fold in 100% D2O at 20 °C. At appropriate time intervals, hydrogen-deuterium 

exchange (HDX) was minimised with a 1:1 dilution in 4 M guanidine hydrochloride and 1% 

formic acid (pH 2.3) and incubated on ice for 30 seconds. The PRs were fragmented with the 

addition of 13 µl of pepsin (1 µg/µl) and kept on ice for 5 minutes, resulting in a 1:1 (pepsin:PR) 

ratio. Following fragmentation, 50 µl of the PR solution was injected onto an Aeris PEPTIDE 

3.6 µm XB-C18 reversed-phase column (Phenomenex); submerged in ice; coupled to an AB 

SCIEX QSTAR
®
 Elite mass spectrometer via a 6-port switching valve. Peptides were eluted at 

300 μl/min from the reversed-phase column with a 5–95% B gradient in 10 minutes (A: 0.1 % 

formic acid; B: acetonitrile/0.1 % formic acid). Initial peptide identification was carried out 

using Collision Induced Dissociation (CID) in Information Dependent Acquisition (IDA) mode. 

All subsequent samples, including the non-deuterated and fully-deuterated, were analysed in MS 

mode. PR stock solutions were maintained in the standard storage buffer comprising 10 mM 

sodium acetate, 2 mM dithiothreitol and 0.02% sodium azide (pH 5.0). All experiments were 

performed in duplicate and data collection for each PR subtype was completed within 2 days.  

 

Undeuterated controls were analysed using PEAKS 6 (Bioinformatics Solutions Inc., Ontario, 

Canada; http://www.bioinfor.com) to determine the peptide coverage and peptide pool for HDX 

analysis. The percentage back-exchange that occurs once the HDX reaction is quenched (during 

fragmentation, peptide separation and mass spectrometry analysis) was determined using a fully-
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deuterated control. On average, the percentage back-exchange for subtype B PR experiments was 

20.75% and 22.30% for C-SA PR experiments. HDX analysis was performed using 

HDExaminer 1.2 (Sierra Analytics Inc., California, USA; http://www.masspec.com). Manual 

quality control was performed on analysed peptides (high and medium confidence peptides only) 

to ensure that theoretical and experimental isotopic profiles matched. Deuterium incorporation 

versus exchange time was fit using SigmaPlot (version 11.0) according to the following equation 

[65]: 

 

     ∑           
 
   (3) 

 

were D is the deuterium content of a peptide, N is the number of peptide amide protons, ki is the 

exchange rate constant for each peptide amide proton and t is the time allowed for isotopic 

exchange. The total number of exponential terms (either one or two in this study) was selected 

based on the goodness of each fit. Structural images were constructed using the PyMOL 

Molecular Graphics System (Schrödinger LLC., Portland, USA; http://www.schrodinger.com).  
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Table 1: Enzymatic parameters of the subtype B and C-SA PRs. 

HIV-1 Subtype KM (µM) kcat (s
-1

) kcat/KM (M
-1

s
-1

) 

B 38.7±6.0 9.0±0.2 3.2 × 10
-7

±0.1 × 10
-7

 

C-SA 29.4±4.4 20.6±0.8 4.6 × 10
-7

±0.5 × 10
-7
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Table 2: Comparison of inhibitor binding between the subtype B and C-SA PRs. 

HIV-1 

Subtype 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

ΔG 

(kcal/mol) 

Kd (nM) Ki (nM) Ki/Ki(B) Relative 

vitality 

Acetyl-pepstatin 

B 11.5 -20.2 -8.7 300    

C-SA 9.1 -17.9 -8.8 252    

Ritonavir 

B 3.0 -16.8 -13.8 0.049 6.47±2.17 1 1 

C-SA 2.0 -15.5 -13.5 0.083 18.25±1.72 2.82 4.05 

Atazanavir 

B -4.2 
a
 -10.1 

a
 -14.3 

a
 0.035 

a
 10.96±4.29 1 1 

C-SA -4.8 -9.2 -14.0 0.036 5.53±1.88 0.50 0.72 

Darunavir 

B -12.1 
b
 -3.1 

b
 -15.0 

b
 0.005 

b
 0.49±0.20 1 1 

C-SA -19.1 4.5 -14.6 0.012 3.30±1.42 6.73 9.67 
 

a
 Values cited from reference [20].

 

b
 Values cited from reference [19]. 
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Table 3: Number of very fast, fast, intermediate and slow exchanging amide protons in 

peptides derived from the subtype B and C-SA PRs. 

HIV-1 

Subtype 

Peptide Very fast 
a
 

(ND) 

Fast  

(12>k >0.1 min
-1

) 

Intermediate  

(0.1>k>0.01 min
-1

) 

Slow 
b
        

(ND) 

B 
13–23 

1.7 0.9 2.5 3.9 

C-SA 1.4 - 3.4 4.2 

B 
34–53 

3.5 3.8 3.7 5.0 

C-SA 1.8 4.0 5.4 4.8 

B 
47–53 

1.3 1.5 0.7 1.5 

C-SA 0.8 1.2 1.2 1.8 

B 
64–76 

1.2 0.4 1.7 7.7 

C-SA 1.1 - 2.3 7.6 

B 
64–90 

1.2 1.8 3.3 16.7 

C-SA 1.2 - 5.2 16.6 
 

a 
Determined by subtracting the number of fast and intermediate exchanging amide protons from 

the total exchanged at 1 hour of incubation. 

b
 Determined by subtracting the total protons exchanged at 1 hour of incubation from the total 

amide protons available in the peptide. 

Rates are displayed in parenthesis. ND =
 
Not determined. 
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Table 4: Number of amide protons exchanged at the N- and C-termini of the subtype B and 

C-SA PRs at 1 hour of deuterium oxide incubation. 

HIV-1 Subtype Peptide  Residues analysed 
a
 Number of protons exchanged 

B 
1–5  3–5 

1.74±0.04 

C-SA 1.60±0.04 

B 
77–94  79–94 

5.84±0.31 

C-SA 3.83±0.05 

B 
77–99  79–99 

7.17±0.22 

C-SA 7.79±0.05 

B Difference of 77–

99 and 77–94  

95–99 1.33±0.09 

C-SA 2.97±0.08 

B 
95–99  97–99 

0.77±0.05 

C-SA 0.91±0.03 

 
a
 Residues analysed exclude the first two amino acids of the peptide. 
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Figure 1: Polymorphic sites of the subtype B and C-SA PRs. The flexible flaps of PR (residues at 

positions 46–54) are coloured cyan. The fulcrum (residues at positions 10–23), hinge (residues at 

positions 35–42 and 57–61) and cantilever (residues at positions 62–78) regions are implicated in 

flap opening. Locations of the eight polymorphic amino acids in each monomer are shown as 

spheres. The complete sequence alignment is displayed below the structure. The corresponding 

secondary structure is shown below the sequence. Arrows represent β-strands and waves 

represent α-helices. The sequence alignment was performed using Clustal X 2.0 [67, 68]. PDB 

ID: 3U71 [6].  

 

Figure 2: Overview of flap conformers displayed by the HIV-1 PR. The closed (A), semi-open 

(B) and fully-open (C) conformers are in dynamic equilibrium. Above the respective three-

dimensional structures are the top views of the conformers. The semi-open flap conformation is 

the most prevalent conformer in the absence of inhibitor. Crystal structure data is unavailable for 

a fully-open conformer which is characterised by upward and outward displacement of the flaps. 

Representation of the flap positioning of the fully-open conformer is based on MD simulation 

models [10]. 

 

Figure 3: Heat maps for amide hydrogen/deuterium exchange of the subtype B and C-SA PRs. 

The heat maps depict the percentage deuteration for all time points measured (10 s, 20 s, 30 s, 1 

min, 5 min, 20 min and 1 hr) at different regions of the PRs corresponding to the sequence 

above. Peptides which were detected and used for data processing are shown above the 

sequences. Positions of the polymorphisms are shown in red. The heat map shows the averaged 

deuteration for both monomers in the homodimeric PRs.  
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Figure 4: Amide hydrogen/deuterium exchange kinetics of different regions of the PRs. (A) The 

corresponding positions of measured peptides are coloured blue on the structure. Graphs show 

the deuterium incorporation plots for: peptide 13–23, peptide 34–53 and peptide 64–90. (B) 

Deuterium incorporation plot of peptide 47–53 covering the flap tips of the PRs. 

 

Figure 5: Interactions localised around residue position 36 of the hinge region. In the subtype B 

PR (A), M36 seemingly provides anchorage for E35 and stabilises the salt bridge between E35 

and R57. I36 in the C-SA PR (B) is implicated in less hinge region interactions and disruption of 

the E35-R57 salt bridge. PDB ID: 2PC0 (A) [13], 3U71 (B) [6].  

 

Figure 6: Hydrophobic core of HIV-1 PR in stereo view. Residues comprising the hydrophobic 

core are shown as sticks. Flap tips (residue positions 46–54) are coloured cyan. The hinge 

regions (residue positions 35–42 and 57–61) coloured pink and the cantilever region (residue 

positions 62–78) coloured blue anchor the flap tips.  

 

Figure 7: Interactions made by F99. F99 is central to the illustrated ‘lock-and-key’ motif and is 

essential for dimerization. 
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Chapter 5 

General discussion and conclusions 

 

5.1 C-SA PR displays increased substrate turnover and reduced drug 

susceptibility in comparison to the subtype B PR 

 

Steady-state kinetic parameters were determined following hydrolysis of the HIV-1 PR 

fluorogenic substrate (Abz-Arg-Val-Nle-Phe(NO2)-Glu-Ala-Nle-NH2) which mimics the 

capsid/p2 cleavage site in the Gag and Gag-Pol polyprotein precursors. The KM and kcat/KM 

values displayed by the subtype B and C-SA PRs are comparable. However, the C-SA PR 

displays a 2-fold increase in substrate turnover per second (higher kcat). This improved rate of 

substrate processing may stem from a 23% increase in the proportion of fully-open 

conformers evident in the C-SA PR population relative to that of the subtype B PR
54

. 

Importantly, structure-based calculations reveal that semi-open conformers do not permit the 

entry of substrate/inhibitor to the active site
73

. Entry of a substrate or inhibitor to the active 

site of the PR requires substantial movement of the flaps (~ 15 Å from their position in the 

closed conformer)
58

 and flap flexibility is a requirement for substrate binding and product 

release
74

. Therefore, only the fully-open conformer may allow a substrate/inhibitor access to 

the active site. An increased preference for the fully-open conformer may improve the rate 

substrate entry and/or product release, evidenced by the increase in kcat for the C-SA PR. 

Binding kinetics of FDA-approved PIs to the HIV PR measured by surface plasmon 

resonance (SPR) showed that the rate of inhibitor dissociation is far slower than the rate of 

inhibitor association
75

. The rate of inhibitor dissociation is greater in multi-drug resistant 

91



(MDR) PRs than for the wild-type; however, display similar rates of inhibitor binding
75

. 

Therefore, polymorphisms which improve the rate of inhibitor dissociation through increased 

propensity for more open conformers may also improve the rate of substrate release. The 

increased preference for the fully-open conformer must be a result of some altered dynamics 

in the C-SA PR. Alterations in the regions which facilitate flap movement are likely to 

explain the greater presence of fully-open conformers because no polymorphisms occur in the 

flap region which may directly affect flap flexibility
27; 76

.  

 

The C-SA PR displayed reduced drug susceptibility toward ritonavir and darunavir in 

comparison to the subtype B PR. The relative vitality, indicating the selective advantage of 

polymorphisms, of the C-SA PR relative to the subtype B PR in the presence of ritonavir and 

darunavir was 4-fold and 10-fold greater, respectively. The vitality of the C-SA PR in the 

presence of atazanavir is comparable to that of the subtype B PR. All the aforementioned 

inhibitors, which are recommended in current antiretroviral therapy guidelines, bound with a 

reduced entropic contribution to the C-SA PR in comparison to the subtype B PR and an 

unfavourable entropy change (-TΔS > 0) was observed during darunavir binding. The 

reduced entropic contributions are compensated by improved enthalpic contributions with no 

significant difference in the change in Gibbs free energy during inhibitor binding to either 

PR. Enthalpy-entropy compensation is thought to be mainly based on the weak interactions of 

the bulk solvent. The reduced entropic contribution during inhibitor binding to the C-SA PR 

may be due to increased order of the inhibitor and/or solvent molecules in the binding cavity. 

Retention of ordered solvent in the binding cavity results in increased hydrogen bonding with 

the PR and other structural water molecules. These bonds are stronger than the intermolecular 

forces in the bulk solvent. Therefore, such bonds result in an enhanced enthalpy change.  
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Altogether, the reduced susceptibility of the C-SA PR toward ritonavir and darunavir also 

substantiates the classification of the M36I, L89M and I93L mutations, which are inherent to 

the C-SA PR, as secondary drug resistance mutations.   

 

5.2 Global structures of PRs are similar in their static states 

 

The alignment of the crystal structures of the consensus subtype B and C-SA PRs revealed no 

major structural differences between the PRs. Protein dynamics data suggest a difference in 

the equilibrium between flap conformers for the apo-C-SA PR relative to the apo-subtype B 

PR
54

. Although no structural differences in the flap region of the apo-PRs were identified, the 

overall dynamics of the PRs need to be investigated to elucidate the mechanism of reduced 

drug susceptibility displayed by the C-SA PR. The polymorphic sites were investigated in 

detail and only structural differences at the polymorphic residue at position 36 were 

identified. The M36I polymorphism may hinder formation of the nearby E35-R57 salt bridge 

which is the only salt bridge in the flap-hinge region. The reduced propensity of the C-SA PR 

to form the E35-R57 salt bridge may facilitate altered anchoring of the flap-hinge region.  

 

The C-SA PR crystallised in the semi-open conformation with flaps displaying normal 

handedness (similar to the closed conformation Figure 5A). The flap tips (residue positions 

48–52) are displaced further away and do not overlap in contrast to the closed conformation. 

Two distinct types of semi-open conformers have been identified experimentally in crystal 

structures of the apo-HIV-1 PR
55

. The conventional semi-open conformer trapped during 

protein crystallography exhibits a reversal of flap handedness (Figure 5B). This conventional 

conformer appears to display slight flap tip curling similar to the curled and fully-open 
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conformers (Figure 5C). However, both ensembles of the semi-open conformer may exist in 

solution. 

 

Previous drug-complexed structures of a subtype C PR with a sequence matching a patient 

from India displayed the same overall fold and no major structural differences to drug-

complexed subtype B PR structures
49

. A detailed analysis was possible using the indinavir 

bound structure of the subtype C PR which showed no significant difference in the number of 

hydrophobic interactions and hydrogen bonds between the drug and active site in comparison 

to the indinavir bound structure of the subtype B PR
49

. This subtype C PR did exhibit an 

increased proportion of the fully-open conformer in the apo-form in comparison to the 

subtype B PR
54

; however, any structural difference that may allow for the shift in the 

equilibrium of PR conformers was not identified in the crystal structures of the subtype C 

PR
49

. The aforementioned subtype C PR exhibits the N37A and K41R polymorphisms in 

comparison to the C-SA PR. Unfortunately, several attempts to obtain high-resolution drug-

complexed structures of the C-SA PR in the current study proved unsuccessful. Obtaining 

such structures is an objective of upcoming projects in our lab.   
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5.3 Isotope exchange mechanism of HIV-1 PR 

 

Hydrogen/deuterium exchange (HDX) under conditions where proteins are generally folded 

may be illustrated using a two-process model (Figure 6)
77-79

. Exchange in a folded protein 

(Figure 6A) is believed to occur through low amplitude atomic motions, of ~ 1 Å, which are 

sufficient to allow diffusion of D2O and OD
-
 to backbone amide linkages

80; 81
. The motion of 

a single atom is not large enough to allow penetration of solvent molecules; however, the 

collective effect of many independent motions occasionally allows for transient penetration 

of solvent
82

. Simultaneously, short segments as well as the entire protein backbone may 

exchange through unfolding processes
83

.  

 

HDX in macromolecules resulting from local unfolding events (Figure 6B) may either occur 

via a correlated (EX1) or uncorrelated (EX2) mechanism
82; 84-86

. Correlated HDX (EX1) 

occurs when the rate of isotopic exchange (kint) far exceeds the rate of refolding (k-1); and 

thus, all amide hydrogens within a segment exchange for deuterons in solution when the 

segment is unfolded
82; 84; 85

. HDX in the subtype B and C-SA PRs displays EX2 kinetics 

indicated by the single binomial isotopic distribution of the mass spectra in the current 

study
87

. This uncorrelated exchange mechanism may be well-illustrated by HDX at α-

helices
88

. Exchange at residues in the single α-helix of the HIV-1 PR (residues at positions 

87–93) occurs independently of each other. HDX via the EX2 mechanism occurs when the 

rate of refolding (k-1) far exceeds the rate of isotopic exchange (kint), suggesting that segments 

of the PRs must unfold and refold many times before exchange within it is complete
82; 84; 85

. 
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Figure 6: Description of isotope exchange in the folded (A) and unfolded (B) states of a 

protein. NH* denotes a backbone amide which has exchanged its proton with a deuterium 

atom in solution. H and D refer to hydrogen and deuterium, respectively, and f and u refer to 

the folded and unfolded forms. The isotopic exchange rate constant from the folded state is 

designated as kex,f. The unfolding rate (k1), refolding rate (k-1) and isotopic exchange rate (kint) 

constants are also displayed. 
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5.4 Conformational stability of HIV-1 PR 

 

Previous differential scanning calorimetry studies showed that the overall conformational 

stability of the C-SA PR was slightly reduced in comparison to the subtype B PR
16

. 

Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) data reported in the current 

study identified subtle differences in stability at different regions of the PRs. In most 

peptides, the number of amide protons exchanging at fast rates increased by ~ 1 amide proton 

in the subtype B PR relative to the C-SA PR. This may initially imply that the C-SA PR is 

more stable than the subtype B PR. However, residues at the C-terminus (C95 and T96) of 

the C-SA PR appear to be more dynamic. Thermodynamic analyses showed that the N- and 

C-terminal antiparallel β-sheet contributes 75% to the total Gibbs energy
89

. A more dynamic 

C-terminus will affect the stability of the terminal β-sheet and greatly impact the overall 

conformational stability. Salt bridges also affect the conformational stability of 

macromolecules
90; 91

. Crystal structure analysis shows that the C-SA PR lacks the K20-E34 

and E35-R57 salt bridges relative to the subtype B PR. Therefore, the reduced number of 

ionic interactions and a less stable terminal β-sheet evident in the C-SA PR are major 

determinants for the apparent overall reduced conformational stability of the C-SA PR.  

 

 

5.5 Effect of polymorphisms on C-SA PR stability 

 

HDX-MS results indicate that the regions at the polymorphic sites of the C-SA PR are more 

stable than that of the subtype B PR. In all peptides covering the polymorphic sites (10’s, 

60’s and 80’s loops and the hinge region) there is a reduction in the number of very fast 
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and/or fast exchanging amide protons (12 > k > 0.1 min
-1

) and a concomitant increase in the 

number of intermediate exchanging amide protons (0.1 > k > 0.01 min
-1

) in the C-SA PR. The 

differences observed in peptide 13–23 (covering the fulcrum region), 34–53 (covering the 

hinge region) and 64–76 (covering the cantilever region) may contribute to the varying 

preference of flap conformations between the PRs. Distance measurements during pulsed 

EPR experiments showed that the total population of the fully-open conformer increased by 

23% with a concomitant decrease by 15% in the total population of semi-open conformers in 

the subtype C PR relative to the subtype B PR. Complete flap opening occurs through 

concerted downward movement of the hinge (residue positions 35–42 and 57–61), cantilever 

(residue positions 62–78) and fulcrum (residue positions 10–23) regions and the exchange of 

hydrophobic contacts between these regions
92

. In the C-SA PR, I15V, L19I, M36I, L89M and 

I93L polymorphisms occur in the hydrophobic core. These polymorphisms may alter the 

network of hydrophobic contacts in the core. It is evident from the crystal structures of the 

apo-subtype B and C-SA PRs that these polymorphisms bring about slight changes in the 

complex network of hydrophobic interactions. Due to its high incidence in drug-resistant 

isolates, the M36I polymorphism likely contributes the greatest to differences in flap 

dynamics between the PRs. The rotation of I36 through different rotamers may assist in 

sliding over other hydrophobic residues. In addition, the reduced propensity of the C-SA PR 

to form the E35-R57 salt bridge may aid in the sliding of hydrophobic residues in the core 

and not reduce stability in the hinge region as initially predicted
27

. HDX-MS data indicate 

that the network of interactions in the hydrophobic core of the C-SA PR may be altered. 

Segments of the hinge, cantilever and fulcrum regions display increased stability in the C-SA 

PR which may ultimately stabilise the fully-open conformer. 
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5.6 C-SA PR displays a wider range of fully-open conformers 

 

MD simulations were performed to identify differences in flap tip dynamics between the 

subtype B and C-SA PRs. The inter-flap distances (distance between Cα of I50 on adjacent 

monomers) of the PRs were measured to probe flap tip dynamics over 10 nanoseconds. NMR 

studies have indicated that motion of the flap tips do occur on a time-scale of less than 10 

nanoseconds
51

. Simulations were also performed on a PR from a multi-drug resistant clinical 

isolate (MDR 769)
93

. All PR structures used for simulations displayed normal flap 

handedness and this simulation study probed movements of the flap tip of this type of semi-

open conformer in the PRs. The MDR PR displayed drug resistance to most FDA-approved 

PIs and reduced susceptibility to the second generation PIs; namely, darunavir, lopinavir and 

tipranavir
94

. The MDR PR was expected to show a difference in flap dynamics due the 

presence of flap region mutations (M46L and I54V). A wider displaced semi-open 

conformation was displayed by the MDR PR for ~ 4 nanoseconds of the 10 nanosecond 

simulation. However, spin-labelled pulsed EPR spectroscopy studies did not reveal a wider 

semi-open conformer for the MDR PR. A wider fully-open conformer was rather identified
54; 

95
. It is important to note the type of starting structure used during the simulation of the 

current study. The PRs in the wide semi-open conformation (Figure 7C), displaying normal 

flap handedness, used in the current study has been likened to a wide-open conformer
47; 55

. 

Although this type of semi-open conformer does not display a reversal of flap handedness, as 

seen in conventional semi-open conformers (Figure 7B) and simulations of the fully-open 

conformer
57

, the distance between the flap tips is far greater than that displayed by the 

conventional semi-open conformer and is likened to the wider opening displayed by the fully-

open conformer
55

. Therefore, flap tip dynamics reported here may be indicative of the type of 

motions which occur when the flaps are displaced further apart, as in the fully-open 
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conformer, rather than close together as displayed by the conventional semi-open 

conformer
55

. Large-scale flap motions indicative of full flap opening occur on the 

microsecond–millisecond time-scale
51

. Sampling fully-open flap conformers via MD 

simulations on a computationally feasible time-scale has only been possible using a 

continuum solvent representation with reduced viscosity, allowing for accelerated protein 

motions
57; 96

. These studies were performed using a closed (Figure 7A) and a conventional 

semi-open conformer (Figure 7B)
57

. Whether the wide semi-open conformer is 

physiologically relevant is up for debate. However, it does exhibit some characteristics of the 

fully-open conformer. 
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Figure 7: Inter-flap distances of closed and semi-open conformers. Inter-flap distances in 

red are based on crystal structure data. The wide semi-open conformers of the subtype B and 

C-SA PRs relax to ~ 7 Å during the simulation experiment in this study. PDB ID: 1HXW 

(A)
61

, 1HHP (B)
62

 and 2PC0 (C)
55

. 
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The C-SA PR does not display larger inter-flap distances in comparison to the subtype B PR. 

Following complete equilibration of all PR starting structures (after ~ 3.8 nanoseconds), the 

PRs relax to either the closed or the wide semi-open conformer which displays closer inter-

flap distances (~ 7 Å) than that of the respective crystal structures. The subtype B and C-SA 

PRs displayed “closed” inter-flap distances (~ 5.8 Å) for part of the simulation and exhibited 

inter-flap distances indicative of the wider semi-open conformation at the end of the 

simulation. However, the range of inter-flap distances following equilibration of both 

structures is wider for the subtype C PR. These results are consistent with pulsed EPR 

spectroscopy experiments which showed a wider range of fully-open conformers for the C-

SA PR in comparison to the subtype B PR
54

. The range of semi-open conformers were 

similar
54

, consistent with the notion that differences in inter-flap distance measured in the 

present simulation report on the motion of open flaps. This difference was highlighted by a 

broader peak width at half maximal intensity for the fully-open population of the C-SA PR 

during pulsed EPR spectroscopy measurements
54

. These results together with that reported in 

the current study indicate that the C-SA PR must display altered dynamics to allow for the 

stabilisation of the wider range of open conformers. It is improbable that the wider range of 

open conformers is due to altered dynamics at the flap tips because no polymorphisms are 

located in the flap region. HDX-MS results reported in the current study did not show 

increased dynamics at the flap tips of the C-SA PR. Our results suggest that altered dynamics 

around the flaps and the increased propensity for fully-open conformations is a result of 

altered dynamics in the regions which allow for flap opening and closure.  
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5.7 Key features of dimerisation in HIV-1 PRs 

 

The N-terminus (positions 1–5) and C-terminus (positions 95–99) of HIV-1 PRs are pivotal 

in dimer stability; structure-based thermodynamic analyses showed that the N- and C-termini 

antiparallel β-sheet contributes ~ 75% to the total Gibbs energy
89

. HDX-MS data reveal that 

the N-terminus of both PRs is more flexible than the C-terminus, supporting previous 

structural analysis. These findings further substantiate the ordered initial cleavage of the 

p6
Pol

-PR junction prior to cleavage of the more stable PR-RT junction
97

.  

 

Drug resistance to currently available PIs are attributed to mutations in the active site cavity 

and flap-hinge region. Dimerisation inhibitors targeted to the conserved C-terminus of HIV 

PR may have a higher barrier to resistance. The C-terminal residues, C95 and T96, are more 

dynamic in the C-SA PR in comparison to that of the subtype B PR. Therefore, these residues 

may contribute less to the stability of the N- and C-termini β-sheet than other C-terminal 

residues and may not serve as suitable targets for preventing dimerisation. Mutation of the 

ultimate amino acid in the HIV-1 PR sequence, phenylalanine, to an alanine was shown to 

reduce the β-sheet content of the PR and disrupt dimerisation which results in complete loss 

of activity
98

. F99 is central to the large network of interactions present in the ‘lock-and-key’ 

motif. Therefore, the importance of the C-terminus for correct folding of the PR and its 

increased stability in comparison to the N-terminus, make the C-terminus, particularly F99, a 

preferred target for antiviral therapy. 

 

 

103



5.8 Conclusions 

 

Polymorphisms inherent in the C-SA PR represent non-active site and non-flap region 

mutations. These polymorphisms result in the C-SA PR displaying improved viral fitness in 

the presence of certain PIs in comparison to the subtype B PR. The improved viral fitness is 

not explained by the static structure of the C-SA PR which is comparable to that of the 

subtype B PR. Previous and current investigations of flap dynamics indicate that the C-SA 

PR has an increased preference for the fully-open conformer and polymorphisms inherent in 

the C-SA PR allow for a wider range of these fully-open conformers
27; 54

. Increased stability 

in segments of the hinge, cantilever and fulcrum regions likely allow for altered anchoring of 

the flaps ultimately increasing the preference of fully-open conformers in the C-SA PR in 

comparison to the subtype B PR. Because the C-SA PR displays reduced drug susceptibility 

and similar catalytic efficiency in comparison to the subtype B PR, selection of fully-open 

conformers preferentially affects inhibitor binding over substrate binding. FDA-approved PIs 

were designed to target the closed conformation of the PR and are more rigid than substrates 

of HIV PR. As substrate processing is more dynamic than inhibitor binding, polymorphisms 

which promote more open conformers do not hinder substrate processing; rather, they may 

improve substrate turnover as shown by the increase in kcat for the C-SA PR. Inhibitors 

designed to target the fully-open conformer of the PR, which is a prerequisite for substrate 

binding, may be preferred for PRs which have a preference for the fully-open conformer such 

as the epidemiologically relevant C-SA PR.   

 

 

104



References 

 

1. The Joint Nations Program on HIV/AIDS (UNAIDS). (2013). Global report: 

UNAIDS report on the global AIDS epidemic 2013, UNAIDS: Geneva, Switzerland. 

2. Barre-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., 

Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W. & 

Montagnier, L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk 

for acquired immune deficiency syndrome (AIDS). Science 220, 868-871. 

3. Bebenek, K., Abbotts, J., Roberts, J. D., Wilson, S. H. & Kunkel, T. A. (1989). 

Specificty and mechanism of error-prone replication by human immonodeficiency 

virus-1 reverse-transcriptase. J. Biol. Chem. 264, 16948-16956. 

4. Tomasselli, A. G. & Heinrikson, R. L. (2000). Targeting the HIV-protease in AIDS 

therapy: a current clinical perspective. Biochim. Biophys. Acta 1477, 189-214. 

5. de Oliveira, T., Engelbrecht, S., van Rensburg, E. J., Gordon, M., Bishop, K., zur 

Megede, J., Barnett, S. W. & Cassol, S. (2003). Variability at human 

immunodeficiency virus type 1 subtype C protease cleavage sites: an indication of 

viral fitness? J. Virol. 77, 9422-9430. 

6. Naicker, P. & Sayed, Y. (2014). Non-B HIV-1 subtypes in sub-Saharan Africa: 

impact of subtype on protease inhibitor efficacy Biol. Chem., In Press. 

7. Monini, P., Sgadari, C., Toschi, E., Barillari, G. & Ensoli, B. (2004). Antitumour 

effects of antiretroviral therapy. Nat. Rev. Cancer 4, 861-875. 

8. McCutchan, F. E. (2006). Global epidemiology of HIV. J. Med. Virol. 78, 7-12. 

9. Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E. & Hammer, S. M. (2008). 

Medical progress: The challenge of HIV-1 subtype diversity. N. Engl. J. Med. 358, 

1590-1602. 

105



10. Plantier, J. C., Leoz, M., Dickerson, J. E., De Oliveira, F., Cordonnier, F., Lemee, V., 

Damond, F., Robertson, D. L. & Simon, F. (2009). A new human immunodeficiency 

virus derived from gorillas. Nat. Med. 15, 871-872. 

11. Hemelaar, J., Gouws, E., Ghys, P. D. & Osmanov, S. (2011). Global trends in 

molecular epidemiology of HIV-1 during 2000-2007. AIDS 25, 679-89. 

12. Clemente, J. C., Moose, R. E., Hemrajani, R., Whitford, L. R. S., Govindasamy, L., 

Reutzel, R., McKenna, R., Agbandje-McKenna, M., Goodenow, M. M. & Dunn, B. 

M. (2004). Comparing the accumulation of active- and nonactive-site mutations in the 

HIV-1 protease. Biochemistry 43, 12141-12151. 

13. King, N. M., Prabu-Jeyabalan, M., Bandaranayake, R. M., Nalam, M. N. L., 

Nalivaika, E. A., Ozen, A., Haliloglu, T., Yilmaz, N. K. & Schiffer, C. A. (2012). 

Extreme Entropy-Enthalpy Compensation in a Drug-Resistant Variant of HIV-1 

Protease. ACS Chem. Biol. 7, 1536-1546. 

14. Muzammil, S., Armstrong, A. A., Kang, L. W., Jakalian, A., Bonneau, P. R., 

Schmelmer, V., Amzel, L. M. & Freire, E. (2007). Unique thermodynamic response 

of tipranavir to human immunodeficiency virus type 1 protease drug resistance 

mutations. J. Virol. 81, 5144-54. 

15. Velazquez-Campoy, A., Kiso, Y. & Freire, E. (2001). The binding energetics of first- 

and second-generation HIV-1 protease inhibitors: Implications for drug design. Arch. 

Biochem. Biophys. 390, 169-175. 

16. Velazquez-Campoy, A., Vega, S., Fleming, E., Bacha, U., Sayed, Y., Dirr, H.W. & 

Freire, E. (2003). Protease Inhibition in African Subtypes of HIV-1. AIDS Rev. 5, 

165-171. 

17. Hemelaar, J., Gouws, E., Ghys, P. D. & Osmanov, S. (2006). Global and regional 

distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 20, 13-23. 

106



18. Kantor, R. & Katzenstein, D. (2003). Polymorphism in HIV-1 Non-subtype B 

Protease and Reverse Transcriptase and its Potential Impact on Drug Susceptibility 

and Drug Resistance Evolution. AIDS Rev. 5, 25-35. 

19. Loeb, D. D., Hutchison, C. A., Edgell, M. H., Farmerie, W. G. & Swanstrom, R. 

(1989). Mutational  analysis of human immunodeficiency virus type-1 protease 

suggests functional homology with aspartic proteinases J. Virol. 63, 111-121. 

20. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B. K., Baldwin, E., Weber, 

I. T., Selk, L. M., Clawson, L., Schneider, J. & Kent, S. B. H. (1989). Conserved 

folding in  retroviral proteases - crystal-structure of a synthetic HIV-1 protease. 

Science 245, 616-621. 

21. Wlodawer, A. & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: A major success 

of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27, 249-284. 

22. Flexner, C. (1998). HIV-protease inhibitors. N. Engl. J. Med. 338, 1281-1292. 

23. Hirsch, M. S., Brun-Vezinet, F., D'Aquila, R. T., Hammer, S. M., Johnson, V. A., 

Kuritzkes, D. R., Loveday, C., Mellors, J. W., Clotet, B., Conway, B., Demeter, L. 

M., Vella, S., Jacobsen, D. M. & Richman, D. D. (2000). Antiretroviral drug 

resistance testing in adult HIV-1 infection - Recommendations of an International 

AIDS Society-USA panel. JAMA 283, 2417-2426. 

24. Nijhuis, M., Schuurman, R., de Jong, D., Erickson, J., Gustchina, E., Albert, J., 

Schipper, P., Gulnik, S. & Boucher, C. A. (1999). Increased fitness of drug resistant 

HIV-1 protease as a result of acquisition of compensatory mutations during 

suboptimal therapy. AIDS 13, 2349-59. 

25. Rose, R. E., Gong, Y. F., Greytok, J. A., Bechtold, C. M., Terry, B. J., Robinson, B. 

S., Alam, M., Colonno, R. J. & Lin, P. F. (1996). Human immunodeficiency virus 

107



type 1 viral background plays a major role in development of resistance to protease 

inhibitors. Proc. Natl. Acad. Sci. U.S.A. 93, 1648-53. 

26. World Health Organisation (WHO). (2013). The use of antiretroviral drugs for 

treating and preventing HIV infection, Geneva, Switzerland: WHO Press. 

27. Naicker, P., Achilonu, I., Fanucchi, S., Fernandes, M., Ibrahim, M. A. A., Dirr, H. W., 

Soliman, M. E. S. & Sayed, Y. (2013). Structural insights into the South African HIV-

1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug 

resistance. J. Biomol. Struct. Dyn. 31, 1370-1380. 

28. Kozisek, M., Lepsik, M., Grantz Saskova, K., Brynda, J., Konvalinka, J. & Rezacova, 

P. (2014). Thermodynamic and structural analysis of HIV protease resistance to 

darunavir - analysis of heavily mutated patient-derived HIV-1 proteases. FEBS J. 281, 

1834-47. 

29. Ali, A., Bandaranayake, R. M., Cai, Y. F., King, N. M., Kolli, M., Mittal, S., 

Murzycki, J. F., Nalam, M. N. L., Nalivaika, E. A., Ozen, A., Prabu-Jeyabalan, M. 

M., Thayer, K. & Schiffer, C. A. (2010). Molecular Basis for Drug Resistance in 

HIV-1 Protease. Viruses 2, 2509-2535. 

30. Wiley, R. A. & Rich, D. H. (1993). Peptidomimetics derived from natural-products. 

Med. Res. Rev. 13, 327-384. 

31. Kempf, D. J., Marsh, K. C., Kumar, G., Rodrigues, A. D., Denissen, J. F., McDonald, 

E., Kukulka, M. J., Hsu, A., Granneman, G. R., Baroldi, P. A., Sun, E., Pizzuti, D., 

Plattner, J. J., Norbeck, D. W. & Leonard, J. M. (1997). Pharmacokinetic 

enhancement of inhibitors of the human immunodeficiency virus protease by 

coadministration with ritonavir. Antimicrob. Agents Chemother. 41, 654-660. 

32. Altman, M. D., Ali, A., Reddy, G., Nalam, M. N. L., Anjum, S. G., Cao, H., 

Chellappan, S., Kairys, V., Fernandes, M. X., Gilson, M. K., Schiffer, C. A., Rana, T. 

108



M. & Tidor, B. (2008). HIV-1 protease inhibitors from inverse design in the substrate 

envelope exhibit subnanomolar binding to drug-resistant variants. J. Am. Chem. Soc. 

130, 6099-6113. 

33. Prabu-Jeyabalan, M., Nalivaika, E. & Schiffer, C. A. (2002). Substrate shape 

determines specificity of recognition for HIV-1 protease: Analysis of crystal 

structures of six substrate complexes. Structure 10, 369-381. 

34. Pokorna, J., Machala, L., Rezacova, P. & Konvalinka, J. (2009). Current and Novel 

Inhibitors of HIV Protease. Viruses 1, 1209-1239. 

35. Prabu-Jeyabalan, M., Nalivaika, E. & Schiffer, C. A. (2000). How does a symmetric 

dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J. 

Mol. Biol. 301, 1207-1220. 

36. Cherry, E., Liang, C., Rong, L., Quan, Y., Inouye, P., Li, X., Morin, N., Kotler, M. & 

Wainberg, M. A. (1998). Characterization of human immunodeficiency virus type-1 

(HIV-1) particles that express protease-reverse transcriptase fusion proteins. J. Mol. 

Biol. 284, 43-56. 

37. Co, E., Koelsch, G., Lin, Y., Ido, E., Hartsuck, J. A. & Tang, J. (1994). Proteolytic 

processing mechanisms of a miniprecursor of the aspartic protease of human 

immunodeficiency virus type 1. Biochemistry 33, 1248-54. 

38. Louis, J. M., Clore, G. M. & Gronenborn, A. M. (1999). Autoprocessing of HIV-1 

protease is tightly coupled to protein folding. Nat. Struct. Biol. 6, 868-75. 

39. Louis, J. M., Nashed, N. T., Parris, K. D., Kimmel, A. R. & Jerina, D. M. (1994). 

Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 

protease from an analog of the Gag-Pol polyprotein. Proc. Natl. Acad. Sci. U.S.A. 91, 

7970-4. 

109



40. Wondrak, E. M., Nashed, N. T., Haber, M. T., Jerina, D. M. & Louis, J. M. (1996). A 

transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of 

maturation. J. Biol. Chem. 271, 4477-81. 

41. Hyland, L. J., Tomaszek, T. A., Jr., Roberts, G. D., Carr, S. A., Magaard, V. W., 

Bryan, H. L., Fakhoury, S. A., Moore, M. L., Minnich, M. D., Culp, J. S., DesJarlais, 

R. L. & Meek, T. D. (1991). Human immunodeficiency virus-1 protease. 1. Initial 

velocity studies and kinetic characterization of reaction intermediates by 18O isotope 

exchange. Biochemistry 30, 8441-53. 

42. Shen, C. H., Tie, Y., Yu, X., Wang, Y. F., Kovalevsky, A. Y., Harrison, R. W. & 

Weber, I. T. (2012). Capturing the reaction pathway in near-atomic-resolution crystal 

structures of HIV-1 protease. Biochemistry 51, 7726-32. 

43. Hyland, L. J., Tomaszek, T. A., Jr. & Meek, T. D. (1991). Human immunodeficiency 

virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to 

elucidate details of chemical mechanism. Biochemistry 30, 8454-63. 

44. Smith, R., Brereton, I. M., Chai, R. Y. & Kent, S. B. (1996). Ionization states of the 

catalytic residues in HIV-1 protease. Nat. Struct. Biol. 3, 946-50. 

45. Wang, Y. X., Freedberg, D. I., Yamazaki, T., Wingfield, P. T., Stahl, S. J., Kaufman, 

J. D., Kiso, Y. & Torchia, D. A. (1996). Solution NMR evidence that the HIV-1 

protease catalytic aspartyl groups have different ionization states in the complex 

formed with the asymmetric drug KNI-272. Biochemistry 35, 9945-50. 

46. Coman, R. M., Robbins, A., Goodenow, M. M., McKenna, R. & Dunn, B. M. (2007). 

Expression, purification and preliminary X-ray crystallographic studies of the human 

immunodeficiency virus 1 subtype C protease. Acta Crystallogr. F 63, 320-323. 

47. Coman, R. M., Robbins, A. H., Goodenow, M. M., Dunn, B. M. & McKenna, R. 

(2008). High-resolution structure of unbound human immunodeficiency virus 1 

110



subtype C protease: implications of flap dynamics and drug resistance. Acta 

Crystallogr. D 64, 754-763. 

48. Velazquez-Campoy, A., Vega, S. & Freire, E. (2002). Amplification of the effects of 

drug resistance mutations by background polymorphisms in HIV-1 protease from 

African subtypes. Biochemistry 41, 8613-9. 

49. Coman, R. M., Robbins, A. H., Fernandez, M. A., Gilliland, C. T., Sochet, A. A., 

Goodenow, M. M., McKenna, R. & Dunn, B. M. (2008). The contribution of naturally 

occurring polymorphisms in altering the biochemical and structural characteristics of 

HIV-1 subtype C protease. Biochemistry 47, 731-43. 

50. Freedberg, D. I., Ishima, R., Jacob, J., Wang, Y. X., Kustanovich, I., Louis, J. M. & 

Torchia, D. A. (2002). Rapid structural fluctuations of the free HIV protease flaps in 

solution: relationship to crystal structures and comparison with predictions of 

dynamics calculations. Protein Sci. 11, 221-32. 

51. Ishima, R., Freedberg, D. I., Wang, Y. X., Louis, J. M. & Torchia, D. A. (1999). Flap 

opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, 

and their implications for function. Structure 7, 1047-55. 

52. Nicholson, L. K., Yamazaki, T., Torchia, D. A., Grzesiek, S., Bax, A., Stahl, S. J., 

Kaufman, J. D., Wingfield, P. T., Lam, P. Y., Jadhav, P. K. & et al. (1995). Flexibility 

and function in HIV-1 protease. Nat. Struct. Biol. 2, 274-80. 

53. Galiano, L., Bonora, M. & Fanucci, G. E. (2007). Interflap distances in HIV-1 

protease determined by pulsed EPR measurements. J. Am. Chem. Soc. 129, 11004-5. 

54. Kear, J. L., Blackburn, M. E., Veloro, A. M., Dunn, B. M. & Fanucci, G. E. (2009). 

Subtype polymorphisms among HIV-1 protease variants confer altered flap 

conformations and flexibility. J. Am. Chem. Soc. 131, 14650-1. 

111



55. Heaslet, H., Rosenfeld, R., Giffin, M., Lin, Y. C., Tam, K., Torbett, B. E., Elder, J. H., 

McRee, D. E. & Stout, C. D. (2007). Conformational flexibility in the flap domains of 

ligand-free HIV protease. Acta Crystallogr. D 63, 866-875. 

56. Scott, W. R. & Schiffer, C. A. (2000). Curling of flap tips in HIV-1 protease as a 

mechanism for substrate entry and tolerance of drug resistance. Structure 8, 1259-65. 

57. Hornak, V., Okur, A., Rizzo, R. C. & Simmerling, C. (2006). HIV-1 protease flaps 

spontaneously open and reclose in molecular dynamics simulations. Proc. Natl. Acad. 

Sci. U.S.A. 103, 915-20. 

58. Gustchina, A. & Weber, I. T. (1990). Comparison of inhibitor binding in HIV-1 

protease and in non-viral aspartic proteases: the role of the flap. FEBS Lett. 269, 269-

72. 

59. Huang, X., de Vera, I. M., Veloro, A. M., Blackburn, M. E., Kear, J. L., Carter, J. D., 

Rocca, J. R., Simmerling, C., Dunn, B. M. & Fanucci, G. E. (2012). Inhibitor-induced 

conformational shifts and ligand-exchange dynamics for HIV-1 protease measured by 

pulsed EPR and NMR spectroscopy. J. Phys. Chem. B 116, 14235-44. 

60. Martin, P., Vickrey, J. F., Proteasa, G., Jimenez, Y. L., Wawrzak, Z., Winters, M. A., 

Merigan, T. C. & Kovari, L. C. (2005). "Wide-open" 1.3 A structure of a multidrug-

resistant HIV-1 protease as a drug target. Structure 13, 1887-95. 

61. Kempf, D. J., Marsh, K. C., Denissen, J. F., McDonald, E., Vasavanonda, S., Flentge, 

C. A., Green, B. E., Fino, L., Park, C. H., Kong, X. P. & et al. (1995). ABT-538 is a 

potent inhibitor of human immunodeficiency virus protease and has high oral 

bioavailability in humans. Proc. Natl. Acad. Sci. U.S.A. 92, 2484-8. 

62. Spinelli, S., Liu, Q. Z., Alzari, P. M., Hirel, P. H. & Poljak, R. J. (1991). The three-

dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Biochimie 

73, 1391-6. 

112



63. Agniswamy, J., Shen, C. H., Aniana, A., Sayer, J. M., Louis, J. M. & Weber, I. T. 

(2012). HIV-1 protease with 20 mutations exhibits extreme resistance to clinical 

inhibitors through coordinated structural rearrangements. Biochemistry 51, 2819-28. 

64. Braz, V. A., Barkley, M. D., Jockusch, R. A. & Wintrode, P. L. (2010). Efavirenz 

Binding Site in HIV-1 Reverse Transcriptase Monomers. Biochemistry 49, 10565-

10573. 

65. Lanman, J., Lam, T. T., Barnes, S., Sakalian, M., Emmett, M. R., Marshall, A. G. & 

Prevelige, P. E. (2003). Identification of novel interactions in HIV-1 capsid protein 

assembly by high-resolution mass spectrometry. J. Mol. Biol. 325, 759-772. 

66. Lanman, J., Lam, T. T., Emmett, M. R., Marshall, A. G., Sakalian, M. & Prevelige, P. 

E. (2004). Key interactions in HIV-1 maturation identified by hydrogen-deuterium 

exchange. Nat. Struct. Mol. Biol. 11, 676-677. 

67. Monroe, E. B., Kang, S., Kyere, S. K., Li, R. & Prevelige, P. E. (2010). 

Hydrogen/Deuterium Exchange Analysis of HIV-1 Capsid Assembly and Maturation. 

Structure 18, 1483-1491. 

68. Descamps, D., Chaix, M. L., Andre, P., Brodard, V., Cottalorda, J., Deveau, C., 

Harzic, M., Ingrand, D., Izopet, J., Kohli, E., Masquelier, B., Mouajjah, S., Palmer, P., 

Pellegrin, I., Plantier, J. C., Poggi, C., Rogez, S., Ruffault, A., Schneider, V., Signori-

Schmuck, A., Tamalet, C., Wirden, M., Rouzioux, C., Brun-Vezinet, F., Meyer, L. & 

Costagliola, D. (2005). French national sentinel survey of antiretroviral drug 

resistance in patients with HIV-1 primary infection and in antiretroviral-naive 

chronically infected patients in 2001-2002. J. Acquir. Immune. Defic. Syndr. 38, 545-

52. 

69. Foster, G. M., Ambrose, J. C., Hue, S., Delpech, V. C., Fearnhill, E., Abecasis, A. B., 

Leigh Brown, A. J. & Geretti, A. M. (2014). Novel HIV-1 Recombinants Spreading 

113



across Multiple Risk Groups in the United Kingdom: The Identification and 

Phylogeography of Circulating Recombinant Form (CRF) 50_A1D. PLoS One 9, 

e83337. 

70. Holguin, A., de Mulder, M., Yebra, G., Lopez, M. & Soriano, V. (2008). Increase of 

non-B subtypes and recombinants among newly diagnosed HIV-1 native Spaniards 

and immigrants in Spain. Curr. HIV Res. 6, 327-34. 

71. Kanizsai, S., Ghidan, A., Ujhelyi, E., Banhegyi, D. & Nagy, K. (2010). Monitoring of 

drug resistance in therapy-naive HIV infected patients and detection of African HIV 

subtypes in Hungary. Acta Microbiol. Immunol. Hung. 57, 55-68. 

72. Mendoza, Y., Bello, G., Castillo Mewa, J., Martinez, A. A., Gonzalez, C., Garcia-

Morales, C., Avila-Rios, S., Reyes-Teran, G. & Pascale, J. M. (2014). Molecular 

Epidemiology of HIV-1 in Panama: Origin of Non-B Subtypes in Samples Collected 

from 2007 to 2013. PLoS One 9, e85153. 

73. Rick, S. W., Erickson, J. W. & Burt, S. K. (1998). Reaction path and free energy 

calculations of the transition between alternate conformations of HIV-1 protease. 

Proteins 32, 7-16. 

74. Tozser, J., Yin, F. H., Cheng, Y. S., Bagossi, P., Weber, I. T., Harrison, R. W. & 

Oroszlan, S. (1997). Activity of tethered human immunodeficiency virus 1 protease 

containing mutations in the flap region of one subunit. Eur. J. Biochem. 244, 235-41. 

75. Dierynck, I., De Wit, M., Gustin, E., Keuleers, I., Vandersmissen, J., Hallenberger, S. 

& Hertogs, K. (2007). Binding kinetics of darunavir to human immunodeficiency 

virus type 1 protease explain the potent antiviral activity and high genetic barrier. J. 

Virol. 81, 13845-51. 

76. Piana, S., Carloni, P. & Rothlisberger, U. (2002). Drug resistance in HIV-1 protease: 

Flexibility-assisted mechanism of compensatory mutations. Protein Sci. 11, 2393-402. 

114



77. Bai, Y., Milne, J. S., Mayne, L. & Englander, S. W. (1994). Protein stability 

parameters measured by hydrogen exchange. Proteins 20, 4-14. 

78. Kim, K. S. & Woodward, C. (1993). Protein internal flexibility and global stability: 

effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. 

Biochemistry 32, 9609-13. 

79. Li, R. & Woodward, C. (1999). The hydrogen exchange core and protein folding. 

Protein Sci. 8, 1571-90. 

80. Elber, R. & Karplus, M. (1987). Multiple conformational states of proteins: a 

molecular dynamics analysis of myoglobin. Science 235, 318-21. 

81. Kim, K. S., Fuchs, J. A. & Woodward, C. K. (1993). Hydrogen exchange identifies 

native-state motional domains important in protein folding. Biochemistry 32, 9600-

9608. 

82. Woodward, C., Simon, I. & Tuchsen, E. (1982). Hydrogen exchange and the dynamic 

structure of proteins. Mol. Cell. Biochem. 48, 135-60. 

83. Engen, J. R., Gmeiner, W. H., Smithgall, T. E. & Smith, D. L. (1999). Hydrogen 

exchange shows peptide binding stabilizes motions in Hck SH2. Biochemistry 38, 

8926-35. 

84. Englander, S. W. & Kallenbach, N. R. (1983). Hydrogen exchange and structural 

dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521-655. 

85. Roder, H., Wagner, G. & Wuthrich, K. (1985). Individual amide proton exchange 

rates in thermally unfolded basic pancreatic trypsin inhibitor. Biochemistry 24, 7407-

11. 

86. Englander, S. W., Downer, N. W. & Teitelbaum, H. (1972). Hydrogen exchange. 

Annu. Rev. Biochem. 41, 903-24. 

115



87. Miranker, A., Robinson, C. V., Radford, S. E., Aplin, R. T. & Dobson, C. M. (1993). 

Detection of transient protein folding populations by mass spectrometry. Science 262, 

896-900. 

88. Maity, H., Lim, W. K., Rumbley, J. N. & Englander, S. W. (2003). Protein hydrogen 

exchange mechanism: local fluctuations. Protein Sci. 12, 153-60. 

89. Todd, M. J., Semo, N. & Freire, E. (1998). The structural stability of the HIV-1 

protease. J. Mol. Biol. 283, 475-488. 

90. Fersht, A. R. (1972). Conformational equilibria in alpha and delta chymotrypsin. The 

energetics and importance of the salt bridge. J. Mol. Biol. 64, 497-509. 

91. Perutz, M. F. (1978). Electrostatic effects in proteins. Science 201, 1187-91. 

92. Foulkes-Murzycki, J. E., Scott, W. R. & Schiffer, C. A. (2007). Hydrophobic sliding: 

a possible mechanism for drug resistance in human immunodeficiency virus type 1 

protease. Structure 15, 225-33. 

93. Logsdon, B. C., Vickrey, J. F., Martin, P., Proteasa, G., Koepke, J. I., Terlecky, S. R., 

Wawrzak, Z., Winters, M. A., Merigan, T. C. & Kovari, L. C. (2004). Crystal 

structures of a multidrug-resistant human immunodeficiency virus type 1 protease 

reveal an expanded active-site cavity. J. Virol. 78, 3123-32. 

94. Wang, Y., Liu, Z. G., Brunzelle, J. S., Kovari, I. A., Dewdney, T. G., Reiter, S. J. & 

Kovari, L. C. (2011). The higher barrier of darunavir and tipranavir resistance for 

HIV-1 protease. Biochem. Biophys. Res. Commun. 412, 737-742. 

95. de Vera, I. M., Blackburn, M. E. & Fanucci, G. E. (2012). Correlating conformational 

shift induction with altered inhibitor potency in a multidrug resistant HIV-1 protease 

variant. Biochemistry 51, 7813-5. 

116



96. Ding, F., Layten, M. & Simmerling, C. (2008). Solution structure of HIV-1 protease 

flaps probed by comparison of molecular dynamics simulation ensembles and EPR 

experiments. J. Am. Chem. Soc. 130, 7184-5. 

97. Agniswamy, J., Sayer, J. M., Weber, I. T. & Louis, J. M. (2012). Terminal Interface 

Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of 

HIV-1 Protease. Biochemistry 51, 1041-1050. 

98. Naicker, P., Seele, P., Dirr, H. W. & Sayed, Y. (2013). F99 is critical for dimerization 

and activation of South African HIV-1 subtype C protease. Protein J. 32, 560-567. 

 

  

117


