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Abstract

We start by defining a class of graphs called the suspended Y -trees and give some

of its properties. We then classify all the closed sets of a general suspended Y -tree.

This will lead us to counting the graph compositions of the suspended Y -tree. We

then contract these closed sets one by one to obtain a set of minors for the suspended

Y -trees. We will use this information to compute some of the general expression of

the k-defect polynomial of a suspended Y -tree. Finally we compute the explicit Tutte

polynomial of the suspended Y -trees.

— Simon Werner
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Chapter 1

Introduction

1.1 Brief History of Graph Theory

Before we discuss k-Defect Polynomials and the improper colourings of graphs, we

need to understand how this theory of colourings came about. Augustus De Morgan

(born 27 June 1806, died 18 March 1871) was a British mathematician and logician.

One of his students, in 1852, noted that when colouring a map of England, only

four colours were needed in order for each county to be a different colour to any

adjacent county. De Morgan then sent a letter to Sir William Rowan Hamilton (born

4 August 1805, died 2 September 1865) who was an Irish physicist, astronomer, and

mathematician. This letter contained details of the students observations and may

be considered the origin of graph colouring. The problem extended to a more formal

version in the letter: ”What is the least possible number of colours needed to fill in

any map (real or invented) on the plane?”. Arthur Cayley (born 16 August 1821, died

26 January 1895) was a British mathematician who published the first problem in

the form of a puzzle in 1878. Sir Alfred Bray Kempe (born 6 July 1849, died 21 April

1922, London) was a mathematician best known for his work on linkages and the four

colour theorem (F.C.T.). In 1879 Kempe wrote his famous proof of the four colour

theorem. Percy John Heawood (born 8 September 1861, died 24 January 1955) was
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a British mathematician who discovered an error in Kempe’s proof. An error that

could not be repaired. In contrast though, he did use Kempe’s methods of proof to

show that every map is 5-colourable. In other words, a maximum of five colours is

needed in order to colour any map. George David Birkhoff (born 21 March 1884,

died 12 November 1944) was an American mathematician who, in 1913, introduced

the concept of reducibility, which proved to be quite essential in the ensuing proof of

the F.C.T. He showed how a four colouring portion of a map can be expanded into

a colouring of the entire map. Based on the technique of reducible configurations,

Kenneth Ira Appel (born October 8, 1932) and Wolfgang Haken (born June 21, 1928

) proclaimed a complete proof in 1976. The radical inclusion of computation in

combinatorics was frowned upon by skeptics. An alternative, less computer reliant,

proof was later developed by G. Neil Robertson (born 1938) and Paul D. Seymour

(born July 26, 1950). This research was activated by Read in 1968, in his paper

An introduction to chromatic polynomials. This research has expanded and instead

of looking at the proper colouring only, researchers are also looking at improper

colourings, see [13].

1.2 Overview of Dissertation

In Chapter 1, we introduce basic definitions, concepts, notations, classes and oper-

ations in graph theory that are relevant to this dissertation. We give examples of

some of the cases and introduce closed sets which lead into Chapter 2. In Chapter

2, we introduce the class of Y -trees and the concept of suspended trees. We combine

these to yield a suspended Y -tree, which is the main graph focus of this dissertation.

We discuss some properties of suspended Y -trees. We continue in Chapter 2 with

the introduction of closed sets applied to suspended Y -trees. Our main theorem in

Chapter 2 is one which essentially counts the number of closed sets of a certain size

in a suspended Y -tree graph of a certain order. We then see how these concepts are
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applicable to graph compositions. A paper was submitted for publication on this very

topic - using methods of counting closed sets in suspended Y -trees to counting graph

compositions of suspended Y -trees [10]. In Chapter 3, we introduce the concepts of

graph colourings, chromatic polynomials, characteristic polynomials and operations

to find chromatic polynomials. We then introduce the coboundary polynomial and

discuss how to obtain the k-defect polynomial. We illustrate this with some examples

before applying it to suspended Y -trees. We then discuss and explore explicit ex-

pressions for k-defect polynomials and verify our results. In Chapter 4, we introduce

the Tutte polynomial. We discuss properties and operations before applying it to

suspended Y -trees. We discover an explicit expression for the Tutte polynomial of

suspended Y -trees and verify our results. We then mention how to derive the chro-

matic polynomial from the Tutte polynomial and verify this result using examples.

1.3 Basic Definitions

In this section, we discuss basic concepts, definitions and notions in graph theory

which are relevant to this dissertation. We refer the reader to [1] and [6] unless

otherwise stated.

Definition 1.3.1. A graph, denoted G, is made up of a set of vertices, V (G), and

a set of edges, E(G). An edge connects two vertices. If two vertices u and v are

endpoints of an edge, they are referred to as adjacent. If a vertex u and edge e are

incident, it means that u is an endpoint of e.

Definition 1.3.2. A loop is an edge which connects a vertex to itself. In other words,

it is an edge whose endpoints are equal.

Definition 1.3.3. A parallel edge or a multiple edge is a set of one or more edges

which connect the same two vertices. In other words, edges whose endpoints are

equal. A graph with no loops or parallel edges is known as a simple graph.
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Definition 1.3.4. The degree of a vertex is the number of edges incident to it.

Definition 1.3.5. A graph is connected if there is a path from each vertex to any

other vertex. In other words, if there is a path from u to v for u, v ∈ V (G).

Definition 1.3.6. An edge e ∈ E(G) of a graph G is called an isthmus if its deletion

renders the graph G as disconnected, that is k(G\e) > k(G).

g

d

f

a

b

c

e

Figure 1.1: An example of a graph.

In the diagram in Figure 1.1 is a graph, G with vertex set V (G) = {a, b, c, d, e, f, g}.

We can also clearly see that this graph has two components, abcd and efg. The edge

connecting a to itself would be a loop while the edges connecting c to d and vice versa

is a parallel edge.

Definition 1.3.7. A subgraph, H, of a graph G, is a graph with the following prop-

erties:

V (H) ⊆ V (G)

E(H) ⊆ E(G).

We say H is contained within G and we display this fact as H ⊆ G.
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Definition 1.3.8. A walk is a graph or a subgraph with vertices that are listed as

v0, e1, v1, e2, v2, ..., ei, vi, ..., ek−1, vk,

for 1 ≤ i ≤ k. Each edge, ei, has endpoints vi−1, vi. The length of a walk or a

path is the counted number of edges between v0 and vk. We describe a walk as closed

if it’s endpoints are equal.

Definition 1.3.9. A spanning subgraph is a subgraph whose vertex set is the entirety

of the vertex set of the graph for which it is a subgraph. In other words, if H ⊆ G,

and V (H) = V (G), then H is a spanning subgraph of G.

If this spanning subgraph is a tree, then it is known as a spanning tree.

Definition 1.3.10. The Rank, r or r(G), of a graph G is defined to be the number

of components subtracted from the number of vertices.

In Figure 1.5 we see a forest, f(8,3). It has a rank of 8− 3 = 5.

Definition 1.3.11. A closed set X of size k, is the largest rank-r subgraph of E(G)

containing X.

We denote the set of all closed sets of size k by δk. Thus the number of all closed

sets of size k is represented by |δk|.

In the diagram in Figure 1.2 is the cyclic graph C4. The vertex set is labelled

a, b, c, d while the edge set is labelled 1, 2, 3, 4. This graph has |δ1| = 4 i.e they are

just the edges 1, 2, 3, 4. This graph has 6 closed sets of size 2. They are just the edges

(1, 2), (2, 3), (3, 4), (4, 1), (1, 3), (2, 4). This graph has 0 closed sets of size 3. Any

combination of 3 edges will result in a subgraph which is not a maximum. Adding

another edge to such a subgraph will not alter the rank and therefore it is not a closed

set. This graph has 1 closed set of size 4. It is the only combination of 4 edges in this

graph, ie: (1, 2, 3, 4).
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1

3

2 b

c

d

a

Figure 1.2: C4.

Definition 1.3.12. A graph is not always connected. In other words, there is not

always a path from one vertex to every other vertex. Such graphs are called Disjoint

or Disconnected graphs.

Let G be a graph. We define k(G) to be the number of components of G.

In diagram in Figure 1.1, we see an example of a graph with two components.

We can clearly see the separate vertex sets, V1(G) = {a, b, c, d} and V2(G) = {e, f, g}.

In this case, k(G) = 2.

Definition 1.3.13. A bridge or a coloop is an edge, that if deleted, would separate

a graph G into two components, G1 and G2.

Definition 1.3.14. Two graphs, G and H are said to be isomorphic if there is a

bijection σ : V (G) 7→ V (H) which preserves adjacency. If u, v ∈ G are adjacent, then

σ(u, ), σ(v) ∈ H are adjacent.
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1.4 Classes of Graphs

The are many classes of graphs which have been studied in graph theory, the following

are examples of classes of graphs and are relevant to this work.

Definition 1.4.1. A Tree, denoted tn, is a graph with n vertices and contains no

cycles. In other words it is acyclic.

A leaf, usually associated with trees, is a vertex of degree 1. Some of the well

known properties of trees are as follows

i) A tree has n− 1 edges.

ii) A tree is connected.

iii) A tree is a simple graph.

e

g

a

b

f

h d

c

Figure 1.3: An example of a tree

In the diagram in Figure 1.3 is a tree graph, t8, with 8 vertices and 7 edges. The

vertices a, e, d, g, h are leaves as they are of degree 1.

Definition 1.4.2. A path, denoted Pn, is a graph or a subgraph with n vertices that

are adjacent if and only if they are successive.
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e
d

c

b

a

Figure 1.4: An example of a path.

In the diagram in Figure 1.4 is a path, P5. It is a simplified tree graph as it holds

all of the characteristics of a tree.

Definition 1.4.3. A Forest, denoted f(n,m), is a graph with n vertices and m com-

ponents. Each of the components is a Tree.

a

b

c h

f

e

d
g

Figure 1.5: An example of a forest.

In the diagram in Figure 1.5 is a forest, f(8,3). It has 8 vertices and 3 components,

each of which is a tree.

Definition 1.4.4. A Cyclic Graph, denoted Cn, is a graph or subgraph which has n

vertices and n edges connected in a closed chain. Each vertex has a degree of 2.
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A graph that does not contain a cycle is known as acyclic.

e
f

d

cb

a

Figure 1.6: An example of a cyclic graph.

In the diagram in Figure 1.6 is a cyclic graph, C6. It has 6 edges and 6 vertices,

each with a degree of 2.

Definition 1.4.5. A Complete Graph, denoted Kn, is a graph or subgraph which has

n vertices, each of which is connected to every other vertex.

Figure 1.7: An example of a complete graph.

In the diagram in Figure 1.7 is a complete graph, K5. It has 5 vertices, each of

which is connected to the other 4.
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Definition 1.4.6. Let Fnm
denote an n × m - complete flower graph with tensor

product Cn ⊗Cm for n,m ≥ 2. Fnm
has n(m− 1) vertices and nm edges. The cyclic

graphs of order m are called the petals and the cyclic graph of order n is called the

center of Fnm
.

b

m

o

n
l

k

i

h

j

g

f
e

a

d

c

Figure 1.8: An example of a flower graph.

In the diagram in Figure 1.8 is a flower graph, F54 , with 5 petals that are each

C4, and a center C5.

1.5 Graph Operations

In this section we will define some graph operations which are relevant to this disser-

tation.
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Definition 1.5.1. Deletion is an operation which removes an edge from a graph

completely and keeps the vertices connected by it unchanged. The deletion of an

edge e from graph G is denoted as G \ e.

Definition 1.5.2. Contraction is an operation which removes an edge from a graph

and combines the vertices connected by it. This reduces the total number of vertices

in the graph by 1. The contraction of an edge f in a graph G is denoted as G/f.

Definition 1.5.3. A Minor of a graph is the result once a closed set has been con-

tracted.

If we consider the diagram in Figure 1.2 and contract the closed set of (3, 4), we

obtain the result seen in the diagram in Figure 1.9. Here we see that vertices b and

d have merged, edges 3 and 4 have disappeared and vertex c has been removed.

2

1

b

a

Figure 1.9: The minor of C4 once the closed set (3, 4) has been contracted.
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Chapter 2

Closed sets and graph

compositions of suspended Y -trees

In this chapter we introduce a class of graphs called suspended Y -trees. We give

some properties of this class and we study the number of closed sets of these graphs.

Finally we apply techniques to counting the number of graph compositions and find

a relationship between closed sets and graph compositions.

2.1 Suspended Y -trees

In this section, we introduce a class of graphs called suspended trees. In particular we

study Y -trees and we give some properties of this class of graphs. There is not much

literature on suspended trees. We got the idea of suspended trees from a research

paper with applications to Knot Theory, see [11].

Recall the definition of a tree and a leaf from Chapter 1, Definition 1.4.1. A tree,

denoted tn, is a graph with n vertices and n− 1 edges which contains no cycles; and

a leaf is a vertex of degree 1.

Definition 2.1.1. A suspended tree is a tree graph in which an additional vertex is

added and subsequently connected to each leaf of the tree.
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We denote a suspended tree of tn by t̃n.

Example 2.1.2. The diagram in Figure 2.1 is a tree t8 with vertex set {a, b, c, d, e, f, g, h}

and leaves {a, g, h, f}. The diagram in Figure 2.2 is the suspended tree of t8, t̃8. The

vertex i is added and then joined to the leaves of t8.

a

b

g

c d

h

e

f

Figure 2.1: An example of a tree, t8, not yet suspended.

a

b

g

c d

h

e

f

i

Figure 2.2: An example of a suspended tree, t̃8.

Definition 2.1.3. A Y-Tree is a graph with n vertices {a1, a2, ..., an} with edge set

{{a1a2}, {a2a3}, ..., {an−2an−1}, {an−2an}}.
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We denote a Y -tree by Yn and the suspended tree of Yn by Ỹn.

a1 a2 a3 a4

a5

Figure 2.3: An example of a Y-Tree, Y5

The diagram in Figure 2.3 is a Y -tree with vertex set {a1, a2, a3, a4, a5} and edge

set {{a1, a2}{a2, a3}{a3, a4}{a3, a5}}.

Proposition 2.1.4. Let Yn be a Y -tree. Then Yn has three leaves.

Proof. By definition, vertex a1 is adjacent to one vertex, vertex an−1 is adjacent to

one vertex and vertex an is adjacent to one vertex. These are the three leaves.

Proposition 2.1.5. Let Ỹn be a suspended Y -tree. Then Ỹn has n+ 2 edges.

Proof. Let Yn be a Y -tree. Then Yn is a tree with n vertices and has n − 1 edges.

Hence suspending this Y -tree will add a vertex and an edge to each of the 3 leaves.

Therefore the number of edges will be n− 1 + 3 = n+ 2 as required.

Proposition 2.1.6. A suspended Y -tree, Ỹn, has one component.

Proof. Let Yn be a Y -tree. Then Yn is a tree and therefore connected. Hence all

pairs of vertices in Yn are connected by a path. Assume that vertex u is a leaf. Then

suspending this tree will add a vertex, say v. There is now an edge {uv} in Ỹn.

Therefore, through u, there exists a path from v to every other vertex. This implies

that Ỹn is connected and therefore has one component.
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Proposition 2.1.7. Let Ỹn be a suspended Y -tree. Then Ỹn is a simple graph. It has

no loops and no parallel edges.

Proof. Let Ỹn be a suspended Y -tree. By Definition 1.4.1, a tree has no parallel edges

nor loops. By construction of a suspended tree we are connecting the vertices of the

tree’s leaves to a new vertex. Therefore Ỹn cannot have parallel edges or loops.

Recall from Chapter 1, Definition 1.4.2, that Pn is a path on n vertices.

Proposition 2.1.8. Let Ỹn be a suspended Y -tree. There exists three cyclic subgraphs.

There are two Cn subgraphs and one C4 subgraph. Each of the Cn subgraphs has an

intersection of P3 with the C4 subgraph.

Proof. Let Yn represent a Y -tree. Then Yn has edge set

{{a1a2}, {a2a3}, ..., {an−2an−1}, {an−2an}}.

Suspending this Y -tree will result in an additional vertex (an+1) to create Ỹn, having

the edge set

{{a1a2}, {a2a3}, ..., {an−2an−1}, {an−2an}} ∪ {{a1an+1}, {an−1an+1}, {anan+1}}.

From this edge set we can extract the edge set

{an−2an−1}, {an−2an}}, {an−1an+1}, {anan+1}.

This creates a cyclic graph, specifically C4. We can also extract the edge sets

{{a1a2}, {a2a3}, ..., {an−2an}} ∪ {anan+1}, {a1an+1}

{{a1a2}, {a2a3}, ..., {an−2an−1}} ∪ {an−1an+1}, {a1an+1}.

These are cyclic graphs of size n. The intersecting edge set {an−2an} ∪ {anan+1} is

a path, P3. The other intersecting edge set {an−2an−1} ∪ {an−1an+1} is also a path,

P3.
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Example 2.1.9. The diagram in Figure 2.4 is Ỹ4, the smallest suspended Y -tree.

There are 5 vertices and 6 edges. We can clearly see C4 on the left and right sides

of the graph made up of vertices a, b, d, e and b, c, e, d respectively, with the path P3

(vertices b, d, e) in common.

3

5

d

6

4

a 1 b 2 c

e

Figure 2.4: An example of a suspended Y -tree

2.2 Closed Sets of Suspended Y -trees

In this section we study the number of closed sets of Ỹn. Recall from Definition 1.3.11

that a closed set of size k, is the maximum subgraph containing k edges which does

not change the rank. We will consider a few examples of closed sets of suspended

Y -trees, Ỹn, before stating the theorem.

Note: If we consider all the closed sets within Ỹn, then there are potential closed

sets from size 0 to size n + 2 as there cannot be a closed set containing more edges

than the graph itself.

Recall That δi is the set of closed sets of size i, while |δi| is the number of closed

sets of size i.

Example 2.2.1. The diagram in Figure 2.4 we have Ỹ4. Let us consider the closed

16



sets from size 1 to size 6 in terms of the edges labeled, 1 - 6.

δ0 = {∅}

|δ0| = 1

δ1 = {1, 2, 3, 4, 5, 6}

|δ1| = 6

δ2 = {(1, 2), (1, 3), (1, 4), (1, 5), (1.6), (2, 3), (2, 4),

(2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}

|δ2| = 15

δ3 = {(1, 2, 5), (3, 4, 6), (1, 2, 6), (3, 4, 5), (1, 3, 6), (2, 4, 6), (1, 3, 6), (2, 4, 5)}

|δ3| = 8

δ4 = {(1, 2, 3, 4), (1, 4, 5, 6), (2, 3, 5, 6)}

|δ4| = 3

δ5 = there are no closed sets of size k = 5.

|δ5| = 0

δ6 = {(1, 2, 3, 4, 5, 6)}

|δ6| = 1

Example 2.2.2. The diagram in Figure 2.5 is the suspended Y -tree Ỹ5, with 6

vertices and edge set {1, 2, 3, 4, 5, 6, 7}. The edge sets {1, 2, 4, 5, 7} and {3, 4, 5, 6} are

the cyclic subgraphs C5 and C4, respectively. The intersection {4, 5} is clearly a path,

P3.

Let us consider all the closed sets of Ỹ5

17



1 2 3

6

4

5

7

Figure 2.5: An example of Ỹ5

δ0 = {∅}

|δ0| = 1

δ1 = {1, 2, 3, 4, 5, 6, 7}

|δ1| = 7

δ2 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6),

(2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)}

|δ2| = 21

δ3 = {(1, 2, 3, ), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 2, 7), (1, 3, 4), (1, 3, 5), (1, 3, 6),

(1, 3, 7), (1, 4, 5), (1, 4, 6), (1, 4, 7), (1, 5, 6), (1, 5, 7), (1, 6, 7),

(2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 3, 7), (2, 4, 5), (2, 4, 6), (2, 4, 7),

(2, 5, 6), (2, 5, 7), (2, 6, 7), (3, 4, 7), (3, 5, 7), (3, 6, 7), (4, 5, 7),

(4, 6, 7), (5, 6, 7), }

|δ3| = 31

18



δ4 = {(1, 4, 6, 7), (1, 3, 4, 7), (1, 5, 6, 7), (1, 3, 4, 7),

(2, 4, 6, 7), (2, 3, 4, 7), (2, 5, 6, 7), (2, 3, 5, 7),

(1, 2, 4, 6), (1, 2, 3, 4), (1, 2, 5, 6), (1, 2, 3, 5), (3, 4, 5, 6)}

|δ4| = 13

δ5 = {(1, 2, 4, 5, 7), (1, 3, 4, 5, 6), (2, 3, 4, 5, 6), (3, 4, 5, 6, 7), (1, 2, 3, 6, 7)}

|δ5| = 5

δ6 = there are no closed sets of size k = 6.

|δ6| = 0

δ7 = {(1, 2, 3, 4, 5, 6, 7)}

|δ7| = 1.

Example 2.2.3. The diagram in Figure 2.6 is the suspended Y -tree Ỹ6, with 7 vertices

and edge set {1, 2, 3, 4, 5, 6, 7, 8}. The cyclic subgraph C4 has edge set {4, 5, 6, 7}.

The cyclic subgraphs of C6 have edge sets {1, 2, 3, 5, 6, 8} and {1, 2, 3, 4, 7, 8}. Let us

consider the number of closed sets of size k within Ỹ6.

1 2 3 4

5

6

7
8

Figure 2.6: An example of Ỹ6
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|δ0| = 1

|δ1| = 8

|δ2| = 28

|δ3| = 52

|δ4| = 54

|δ5| = 20

|δ6| = 8

|δ7| = 0

|δ8| = 1

Proposition 2.2.4. Let Ỹn be a suspended Y -tree. Then Ỹn cannot have a closed set

of size k > (n+ 2).

Proof. Let Ỹn be a suspended Y -tree. Assume that this graph can have a closed set of

size k > n+2. In other words assume that this graph, Ỹn, has at least one closed set

of size k = n+3. By Proposition 2.1.5, Ỹn has only (n+2) edges and, by Proposition

2.1.6 one component. So to find a closed set of this size, (n + 3), we need an extra

edge. This is a contradiction.

Recall that we denote the set of all closed sets of size k by δk. Thus the number of

all closed sets of size k is represented by |δk|. In the theorems below, different values

of k give different formulas. Hence we split our main result into several cases.
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Theorem 2.2.5. Let Ỹn be a suspended Y -tree graph, with n > 4. Let δk represent

the set of all closed sets of size k in Ỹn. Then for k ≤ 3 we have

|δk| =





1, k = 0

n+ 2, k = 1
(
n+ 2

2

)
, k = 2

(
n+ 2

3

)
−

(
4

3

)
, k = 3.

We will prove each of these four cases separately.

Proof. Case k = 0

Let Ỹn represent a suspended Y -tree graph. It is clear that there is only one closed

set of size k = 0, that is the empty set.

Case k = 1

Let Ỹn represent a suspended Y -tree graph. If we consider all the closed sets of size

k = 1, we are considering each edge individually. In other words, each separate edge

is, itself, a subgraph with the properties of a closed set.

By Proposition 2.1.5, there are (n + 2) edges and so there are (n + 2) closed sets of

size k = 1.

Case k = 2

Let Ỹn represent a suspended Y -tree graph. If we consider all the closed sets of size

k = 2, we are considering every possible pair of edges, since there are no parallel

edges. Hence there are (
n+ 2

2

)
.

Case k = 3

Let Ỹn represent a suspended Y -tree graph. Let us consider all the closed sets of

size k = 3. It is clear that there are
(
n+2
3

)
such combinations. However, if we are to
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consider a closed set with 3 edges on the C4 subgraph of Ỹn, we find that this set does

not fulfill the definition of a closed set. There are 4 such possibilities which leads to

the function: (
n+ 2

3

)
−

(
4

3

)

Theorem 2.2.6. Let Ỹn represent a suspended Y -tree graph, with n > 4. Let δk

represent the set of all closed sets of size k in Ỹn. Then for 4 ≤ k < (n− 1),

|δk| =

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
.

Proof. Let Ỹn represent a suspended Y -tree graph. By Proposition 2.1.8, there exists

subgraphs C4 and Cn with intersection P3. Selecting an edge set of size 4 ≤ k < (n−1)

allows for varied combinations, not all of which will be closed sets. We use the

principle of ”Inclusion/Exclusion”.

There are
(
n+2
k

)
possible combinations of edge sets of size k, both closed and non-

closed sets. If only three of these edges are contained in the C4 subgraph, then we

do not have a closed set. But there are
(
4
3

)
ways that this could happen and the

other (k − 3) edges are chosen from the (n − 2) edges. Hence we have
(
n+2
k

)
total

combinations but we subtract the four
(
n−2
k−3

)
situations. This results in

|δk| =

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
.

Lemma 2.2.7. Let Cn be a cyclic graph of order n. There is no closed set of size

n− 1.

Proof. Let Cn have edge set a1, a2, · · · , an−1, an. Extracting a subgraph with an edge

set of size n−1 will not be a closed set because the missing edge can still be included

without changing the rank of the extracted subgraph.
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The case of k = n − 1 gives a special formula. Considering that there are two

cyclic graphs, Cn. By Lemma 2.2.7, Cn has no closed set of seize n− 1.

Theorem 2.2.8. Let Ỹn represent a suspended Y -tree graph. Let δk represent the set

of all closed sets of size k in Ỹn. Then for k = (n− 1),

|δk| =

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
− 2

(
n

k

)
.

Proof. Let Ỹn represent a suspended Y -tree graph. By Proposition 2.1.8, there exists

subgraphs C4 and Cn. Selecting an edge set of size k = (n − 1) allows for varied

combinations, not all of which will be closed sets. We use the principle of ”Inclu-

sion/Exclusion”.

There are
(
n+2
n−1

)
possible combinations of edge sets of size (n − 1), both closed and

non-closed sets. If only three of these edges are contained in the subgraph C4, then

we do not have a closed set. We need to exclude these sets. There are
(
4
3

)
ways

that this could happen. In each case, of the remaining (n − 2) edges, k − 3 are now

unavailable for our potential closed set.

Furthermore, if all of these (n − 1) edges appear on either of the Cn subgraphs, by

Lemma 2.2.7, there is no closed set of set n− 1 in Cn. Hence there are
(
n

k

)
such ways

in both Cn subgraphs that this could happen. Hence the result

|δk| =

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
− 2

(
n

k

)
.

Theorem 2.2.9. Let Ỹn be a suspended Y -tree graph, with n > 4. Let δk represent

the set of all closed sets of size k in Ỹn. Then for n ≤ k ≤ (n+ 2)

|δk| =





(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
−

(
4

1

)
, k = n

0, k = (n+ 1)

1, k = (n+ 2).
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Proof. We will prove each of these three cases separately.

Case k = n

Let Ỹn be a suspended Y -tree graph. Selecting an edge set of size k = n allows

for varied combinations, not all of which will be closed sets. We use the principle

of ”Inclusion/Exclusion”. There are
(
n+2
n

)
possible combinations of edge sets of size

k = n which include both closed and non closed sets. If three of these edges are

contained in the C4 subgraph, then we do not have a closed set. There are
(
4
3

)
ways

that this could happen. In each case, of the remaining (n − 2) edges, k − 3 are now

unavailable for our potential closed set, hence we exclude these. Furthermore, there

are
(
4
1

)
, two for each Cn subgraph, where the closed set would have (k−1) of its edges

contained in a cyclic graph. Since, in this case, (k−1) = (n−1) we cannot have such

closed sets as they are not maximums.

Case k = (n+ 1)

Let Ỹn represent a suspended Y -tree graph. Any subgraph, made from a combination

of (n + 1) edges, will not be a closed set as the final edge can be added without the

rank of this subgraph being changed.

Case k = (n+ 2)

Let Ỹn represent a suspended Y -tree graph. There is only one subgraph with (n+ 2)

edges and that is the entire graph itself, which happens to be a closed set - the only

one of size k = (n+ 2).

Note that we excluded the case of n = 4. It is a special case since Proposition

2.1.8 will imply all the cyclic subgraphs are C4 as well as the case k = (n − 1) and

k = 3 being the same. See the diagram in Figure 2.7.

Theorem 2.2.10. Let Ỹ4 represent a suspended Y -tree graph. The following is true,
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3

5

d

6

4

a 1 b 2 c

e

Figure 2.7: An example of a suspended Y -tree

for the specified values of k.

|δ0| = 1

|δ1| = 6

|δ2| = 15

|δ3| = 8

|δ4| = 3

|δ5| = 0

|δ6| = 1

Proof. For Ỹ4, the cases k = 0, 1, 2, 5, 6 are similar to the suspended trees Ỹn, for

n > 4. Hence we will only show the cases k = 3 and k = 4.

Case k = 3

In Ỹ4 there are at least three subgraphs, each being C4. The only three-edge combina-

tions which are not closed sets are the three-edge sets from one of the C4 subgraphs.

There are 3 ×
(
4
3

)
of these sets. But the number of possible three-edge sets in Ỹ4 is

(
6
3

)
. Therefore the number of closed sets is

(
6

3

)
− 3

(
4

3

)
= 20− 12 = 8
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as required.

Case k = 4

In Ỹ4 there are at least three subgraphs, each being C4. There are
(
6
4

)
possible

combinations, both closed and non-closed sets of edges. There can be three-edge set

from any of the cyclic subgraphs and there are three of them, each with four edges.

Hence our result (
6

4

)
− 3

(
4

1

)
= 15− 12 = 3

as required. Note that these three closed sets are the cyclic subgraphs themselves,

with edge sets {1, 2, 3, 4}, {1, 5, 6, 4} and {2, 3, 6, 5}.

2.3 Applications to Graph Compositions

In this section we will discuss the graph compositions of suspended trees Ỹ4. It is

interesting that all non-isomorphic trees have the same number of graph composi-

tions but when we apply the operation of suspending a tree, the number of graph

compositions are completely different. We will show that even if the trees have the

same number of leaves, as long as the trees are not isomorphic, the number of graph

compositions are not equal.

Definition 2.3.1. Let G be a graph with edge set E(G) and vertex set V (G). A

composition of G, according to [7], is a partition of V (G) into subsets of connected

graphs {G1, G2, ..., Gm} with the following properties.

m⋃

i=1

V (Gi) = V (G)

V (Gi)
⋂

V (Gj) = ∅

These vertex sets, V (Gi), will be called components of a given composition.
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Definition 2.3.2. Let C(G) denote the number of compositions for a graph, G.

We begin by giving all the graph compositions of the suspended Y -tree Ỹ5, the

diagram in Figure 2.5.

The diagram in Figure 2.8 is the graph composition of size 0. There is only one.

Figure 2.8:

The diagrams in Figure 2.9 are the graph compositions of size 1. There are 7 of

them.

Figure 2.9:
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The diagrams in Figure 2.10 are the graph compositions of size 2. There are 21

of them.

Figure 2.10:
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The diagrams in Figure 2.11 are the graph compositions of size 3. There are 31

of them.

Figure 2.11:
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The diagrams in Figure 2.12 are the graph compositions of size 4. There are 13

of them.

Figure 2.12:

The diagrams in Figure 2.13 are the graph compositions of size 5. There are 5 of

them.

Figure 2.13:
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The diagram in Figure 2.14 is the graph composition of size 7. There is only one.

Figure 2.14:

We refer the reader to [7] for more information on the following theorems.

Theorem 2.3.3. Let tn be a tree graph with n vertices. Then the number of graph

compositions C(tn) = 2n−1.

Proof. Let us consider this proof by methods of induction.

Base case: n = 1.

When n = 1, the tree is merely one vertex. The number of compositions, C(t1) is

20 = 1.

Assume true for n = k.

Consider n = k + 1. We expect to have the result of 2k compositions for tk+1.

If we have tk+1 and remove an edge, we now have disconnected tk+1 into two subgraphs,

both of which are trees. Let l and k + 1 − l denote the number of vertices of these

subtrees, with 1 ≤ l. By Theorem 2.2.9, 2 · 2l−1 · 2k−l = 2k compositions for tk+1, as

expected.

We will state the following theorems without proofs. We refer the reader to [7]

for more information.

Theorem 2.3.4. Let Kn be a complete graph with n vertices. Then the number of

graph compositions C(Kn) = B(n).

Recall from Definition 1.3.12, k(G) is the number of components of a graph. Recall

from Definition 2.3.2, C(G) is the number of compositions of graph G.
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Theorem 2.3.5. Let G1 and G2 be disconnected subgraphs of G. In other words,

k(G) = 2. We have the result that C(G) = C(G1) · C(G2). This result also holds if

there is exactly one vertex in common between G1 and G2.

Recall that the total number of closed sets of Ỹ6 is 172. In Figure 2.6 has the

following closed sets

|δ0| = 1

|δ1| = 8

|δ2| = 28

|δ3| = 52

|δ4| = 54

|δ5| = 20

|δ6| = 8

|δ7| = 0

|δ8| = 1.

The number of graph compositions of Ỹ6 , C(Ỹ6) = 172.

Figure 2.15:

Recall Definition 1.3.14, which states that two graphs, G and H are said to be

isomorphic if there is a bijection σ : V (G) 7→ V (H) which preserves adjacency.

If we consider the tree τ6 in the diagram in Figure 2.15, it is clear that it is not

isomorphic to Ỹ6. For instance, the degree sequence of τ6 and Y6 are the same but
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Figure 2.16:

the diagrams in Figure 2.17 can be used to prove that they are not isomorphic. The

vertex set and edge set of Y6 are the following

V (Y6) = {a, b, c, d, e, f}, E(Y6) = {{a, b}, {b, c}, {c, d}, {d, e}, {d, f}}.

The vertex set and edge set of τ6 are the following

V (τ6) = {A,B,C,D,E, F}, E(τ6) = {{A,B}, {B,C}, {C,D}, {D,E}, {C,F}}.

Let σ be a mapping such that σ(a) 7→ A, σ(b) 7→ B, σ(c) 7→ C, σ(d) 7→ D, σ(e) 7→ E,

σ(f) 7→ F . There is no mapping of the edge {d, f} from Y6 to τ6. Therefore Y6 and

τ6 are not isomorphic.

a cb d e

f

A B C D E

F

Y6

τ6

Figure 2.17:

By Theorem 2.3.3, C(τ6) = C(Y6) = 26−1 = 32. For τ̃6 in Figure 2.16 we have the
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following number of closed sets

|δ0| = 1

|δ1| = 8

|δ2| = 28

|δ3| = 56

|δ4| = 40

|δ5| = 30

|δ6| = 24

|δ7| = 0

|δ8| = 1.

The number of graph compositions of τ̃6 , C(τ̃6) = 188.

From the above examples, we have shown that the number of graph compositions

of non isomorphic trees are the same but the number of graph compositions of these

trees after suspension is different.

Let it be stated that
∑n

k=1

(
n

k

)
= 2n for the following. For more information, we

refer the reader to [2].

Theorem 2.3.6. Let G be a labeled graph with vertex set V (G) and edge set E(G).

Let Co(G) be the set of all distinct compositions of G such that C(G) = |Co(G)| and

let F(G) be the set of all distinct closed sets of M(G). Then C(G) = |F(G)|.

Lemma 2.3.7.

n−2∑

k=4

[

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
] = 3(2n) + 4−

[
70n+ 2n3

6

]
.
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Proof. Let A =
∑n−2

k=4

(
n+ 2

k

)
and let B =

∑n−2
k=4

(
4

3

)(
n− 2

k − 3

)
. Then

A =
n−2∑

k=4

(
n+ 2

k

)

=
n+2∑

k=1

(
n+ 2

k

)
−

[(
n+ 2

0

)
+

(
n+ 2

1

)
+

(
n+ 2

2

)
+

(
n+ 2

3

)]

−

[(
n+ 2

n− 1

)
+

(
n+ 2

n

)
+

(
n+ 2

n+ 1

)
+

(
n+ 2

n+ 2

)]

= 2n+2 −

[
2

(
n+ 2

n− 1

)
+ 2

(
n+ 2

n

)
+ 2

(
n+ 2

n+ 1

)
+ 2

(
n+ 2

n+ 2

)]

= 2n+2 −

[
2
(n+ 2)(n+ 1)n

3!
+ 2

(n+ 2)(n+ 1)

2
+ 2(n+ 2) + 2

]

= 2n+2 −

[
2n3 + 12n2 + 34n

6
+ 8

]
.

B =
n−2∑

k=4

(
4

3

)(
n− 2

k − 3

)

= 4

(
n−2∑

k=0

(
n− 2

k

)
−

[(
n− 2

0

)
+

(
n− 2

n− 4

)
+

(
n− 2

n− 3

)
+

(
n− 2

n− 2

)])

= 4

(
2n−2 −

[
n2 − 3n+ 6

2

])

= 2n −
[
2n2 − 6n+ 12

]
.

Therefore

n−2∑

k=4

[

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
]

= A−B

= 2n+2 −

[
2n3 + 12n2 + 34n

6
+ 8

]
−
(
2n −

[
2n2 − 6n+ 12

])

= 3(2n) + 4−

[
70n+ 2n3

6

]
.
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Lemma 2.3.8.

(
n+ 2

n− 1

)
−

(
4

3

)(
n− 2

n− 4

)
− 2

(
n

n− 1

)
=

1

6
(n3 − 9n2 + 50n)− 12.

Proof.

(
n+ 2

n− 1

)
−

(
4

3

)(
n− 2

n− 4

)
− 2

(
n

n− 1

)

=
(n+ 2)(n+ 1)(n)(n− 1)!

(n− 1)!(3)(2)
− 4

(n− 2)(n− 3)(n− 4)!

(n− 4)!(2)
− 2

n(n− 1)!

(n− 1)!

=
(n+ 2)(n+ 1)(n)

(6)
− 4

(n− 2)(n− 3)

2
− 2n

=
n3 + 3n2 + 2n

6
−

4n2 − 20n+ 24

2
− 2n

=
n3 + 3n2 + 2n

6
−

12n2 − 60n+ 72

6
−

12n

6

=
n3 − 9n2 + 50n− 72

6

=
1

6
(n3 − 9n2 + 50n)− 12.

Lemma 2.3.9.

(
n+ 2

n

)
−

(
4

3

)(
n− 2

n− 3

)
−

(
4

1

)
=

1

6
(3n2 + 9n)− 4n+ 5.

Proof.

(
n+ 2

n

)
−

(
4

3

)(
n− 2

n− 3

)
−

(
4

1

)
=

(n+ 2)(n+ 1)(n!)

(2)(n!)
− 4

(n− 2)(n− 3)!

(n− 3)!
− 4

=
n2 + 3n+ 2

(2)
− 4(n− 2)− 4

=
n2 + 3n+ 2

2
− 4n+ 4

=
3n2 + 9n+ 6

6
− 4n+ 4

=
1

6
(3n2 + 9n)− 4n+ 5.
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Now we are in a position to state and prove the main theorem. Recall that we

denote the set of all closed sets of size k by δk. Thus the number of all closed sets of

size k is represented by |δk|. We denote the set of all distinct compositions of G by

Co(G). Recall that C(G) denotes the number of compositions of the graph G. Thus

C(G) = |Co(G)|.

Theorem 2.3.10. Let Ỹn be a suspended Y tree on n vertices. The number of graph

compositions of Ỹn,

C(Ỹn) = 3(2n − n)− 2.

Proof. By Theorem 2.3.6 we know that C(Ỹn) = |F(Ỹn)| where F(Ỹn) is the set of

all distinct closed sets of Ỹn. Thus

C(Ỹn) = |F(Ỹn)|

=
n+2∑

k=0

|δk|.

By Theorems 2.2.5, 2.2.6, 2.2.8 and 2.2.9 we get

n+2∑

k=0

|δk| = 1 + [n+ 2] + [

(
n+ 2

2

)
] + [

(
n+ 2

3

)
−

(
4

3

)
]

+
n−2∑

k=4

[

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
]

+ [

(
n+ 2

n− 1

)
−

(
4

3

)(
n− 2

n− 4

)
− 2

(
n

n− 1

)
]

+ [

(
n+ 2

n

)
−

(
4

3

)(
n− 2

n− 3

)
−

(
4

1

)
] + 1.
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Hence simplifying and applying ,

n+2∑

k=0

|δk| =

(
n3 + 3n2 + 17n

6

)
+

(
3(2n) + 4−

[
70n+ 2n3

6

])

+

(
1

6
(n3 − 9n2 + 50n)− 12

)
+

(
1

6
(3n2 + 9n)− 4n+ 5

)
+ 1

= 3(2n)− 2

+

(
n3 + 3n2 + 17n− 70n− 2n3 + n3 − 9n2 + 50n+ 3n2 + 9n− 24n

6

)

= 3(2n)− 3n− 2.

Therefore
n+2∑

k=0

|δk| = C(Ỹn) = 3(2n − n)− 2.
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Chapter 3

k-defect polynomials of suspended

Y -trees

In this chapter, we study k-defect polynomials of suspended Y -trees. For certain k

values, we find the explicit expression of the k-defect polynomial of suspended Y -trees.

3.1 Introduction

In this section we give some relevant definitions and concepts for this chapter. Unless

otherwise stated, we refer the reader to [1] for details on proper colourings and the

Definitions and Propositions in this section.

Definition 3.1.1. A proper colouring of a graph, G, is when a set of colours are

assigned to the vertices such that adjacent vertices do not share a common colour.

Definition 3.1.2. The chromatic number of a graph G is the minimum number of

colours needed for a proper vertex colouring of G. We denote it as χ(G).

Definition 3.1.3. If the chromatic number of G, χ(G) = λ then G is said to be

λ-colourable.

39



Definition 3.1.4. The characteristic polynomial is the chromatic polynomial divided

by a common factor of λ.

We state the following Propositions without a proof. For further details the reader

is referred to [1]. Recall that χ(G;λ) is the chromatic polynomial of a graph G, G \ e

denotes the subgraph of G with the edge e deleted and G/e denotes the subgraph of

G with the edge e contracted.

Proposition 3.1.5. Let G be a graph with edgeset E(G).

(a) If e ∈ E(G) and e is neither a bridge nor a loop in G, then

χ(G;λ) = χ(G \ e;λ)− χ(G/e;λ).

(b) If e ∈ E(G) and e is a bridge of G, then

χ(G;λ) = (λ− 1)χ(G \ e;λ).

(c) If there exists a loop in G, then χ(G;λ) = 0.

Proposition 3.1.6. If e1, e2 ∈ E(G) are edges connecting the same vertices, then

χ(G;λ) = χ(G \ e1;λ) = χ(G \ e2;λ).

3.2 Coboundary Polynomials and k-Defect Poly-

nomials

In this section we introduce the concept of coboundary polynomials and we show the

relationship with k-defect polynomials.

Definition 3.2.1. The coboundary polynomial of a graph G(V,E), is a polynomial

with two independent variables λ and S.
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We denote the coboundary as B(G;λ, S). The coboundary polynomial of a graph

G is defined as

B(G;λ, S) =
∑

A⊆E

(S − 1)|A|λr(E)−r(A)

where r(U) is the rank of U. Recall from Definition 1.3.10 that the rank of a graph is

defined to be the number of components subtracted from the number of vertices.

Definition 3.2.2. Let G be a graph with a certain vertex colouring. An edge,

e ∈ E(G), is called a bad if it connects two vertices of the same colour.

Definition 3.2.3. We denote the k-defect polynomial as φk(G;λ). It is the polynomial

of a graph G that counts the number of possible ways to colour G with k bad edges.

Proposition 3.2.4. In a graph G, the 0-defect polynomial is the chromatic polyno-

mial.

φ0(G;λ) = χ(G;λ).

Proof. The 0-defect polynomial is the polynomial for 0 bad edges. This is a proper

colouring which is defined by χ(G;λ).

The coboundary polynomial can be written as a generation function in S. We refer

the reader to [4] for further details.

B(G;λ, S) =

|E|∑

k=0

Skφk(G;λ). (3.1)

We state the following proposition without proof. For further details we refer the

reader to [9].

Proposition 3.2.5. Let G be a graph.

i) If e ∈ E(G) and e is neither a bridge nor a loop in G, then

B(G;λ, S) = B(G \ e;λ, S) + (S − 1)B(G/e;λ, S).
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ii) If e ∈ E(G) and e is a loop, then

B(G;λ, S) = SB(G \ e;λ, S).

iii) If e ∈ E(G) and e is a bridge, then

B(G;λ, S) = (S + λ− 1)B(G/e;λ, S).

This formula is referred to as the deletion and contraction formula for the cobound-

ary polynomial.

Proposition 3.2.6. The coboundary polynomial of a single vertex is 1. In other word

B(K1;λ, S) = 1.

Lemma 3.2.7. Let Tn be a tree graph. Then the coboundary polynomial B(Tn;λ, S) =

(S + λ− 1)n−1.

Proof. Let Tn be a tree graph. Each edge of Tn is a bridge. By Proposition 3.2.5 part

c, we get the result.

Figure 3.1: C5
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Example 3.2.8. Let G be the cyclic graph, C5, shown in Figure 3.1. We use the

deletion and contraction formula for the coboundary polynomial

B(C5;λ, S) = B(C5 \ e;λ, S) + (S − 1)B(C5/e;λ, S)

= B(T5;λ, S) + (S − 1)B(C4;λ, S)

= (S + λ− 1)4 + (S − 1)B(T4;λ, S) + (S − 1)2B(C3;λ, S)

= (S + λ− 1)4 + (S − 1)(S + λ− 1)3

+ (S − 1)2B(T3;λ, S) + (S − 1)3B(C2;λ, S)

= (S + λ− 1)4 + (S − 1)(S + λ− 1)3)

+ (S − 1)2(S + λ− 1)2 + (S − 1)3(S + λ− 1) + (S − 1)4(C1;λ, S)

= (S + λ− 1)4 + (S − 1)(S + λ− 1)3)

+ (S − 1)2(S + λ− 1)2 + (S − 1)3(S + λ− 1) + S(S − 1)4.

This can be rewritten as a generating function

B(C5;λ, S) = S5 + S3(10λ− 10) + S2(10λ2 − 30λ+ 20)

+ S1(5λ3 − 20λ2 + 30λ− 15)

+ S0(λ4 − 5λ3 + 10λ2 − 10λ+ 4).

Recall equation 3.1 that B(G;λ, S) =

|E|∑

k=0

Skφk(G;λ). Hence we can extract the

respective k-defect polynomials of C5 as

φ5(C5;λ) = 1

φ4(C5;λ) = 0

φ3(C5;λ) = 10λ− 10

φ2(C5;λ) = 10λ2 − 30λ+ 20

φ1(C5;λ) = 5λ3 − 20λ2 + 30λ− 15

φ0(C5;λ) = λ4 − 5λ3 + 10λ2 − 10λ+ 4.
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Example 3.2.9. In Figure 2.4, we have a suspended Y -tree, Ỹ4. Applying the deletion

and contraction formula for the coboundary polynomial, we get

B(Y4;λ, S) = (2S − 2 + λ)[(S + λ− 1)3

+ (S − 1)(S + λ− 1)2

+ (S − 1)2(S + λ− 1) + S(S − 1)3]

+ (S − 1)2(S + λ− 1)2 + 2S(S − 1)3(S + λ− 1)

+ S2(S − 1)4.

After expanding and collecting like terms, we get

B(Y4;λ, S) = S6

+ S4(3λ− 3)

+ S3(8λ− 8)

+ S2(15λ2 − 42λ+ 27)

+ S1(6λ3 − 30λ2 + 48λ− 24)

+ S0(λ4 − 6λ3 + 15λ2 − 17λ+ 7).

Hence, we extract the respective k-defect polynomials of Ỹ4 as

φ6(Ỹ4;λ) = 1

φ5(Ỹ4;λ) = 0

φ4(Ỹ4;λ) = 3λ− 3

φ3(Ỹ4;λ) = 8λ− 8

φ2(Ỹ4;λ) = 15λ2 − 42λ+ 27

φ1(Ỹ4;λ) = 6λ3 − 30λ2 + 48λ− 24

φ0(Ỹ4;λ) = λ4 − 6λ3 + 15λ2 − 17λ+ 7.
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Example 3.2.10. In Figure 2.5, we have a suspended Y -tree, Ỹ5. Applying the

deletion and contraction formula for the coboundary polynomial and extracting the

respective k-defect polynomials, we get

φ7(Ỹ5;λ) = 1

φ6(Ỹ5;λ) = 0

φ5(Ỹ5;λ) = 5λ− 5

φ4(Ỹ5;λ) = λ2 + 9λ− 10

φ3(Ỹ5;λ) = 31λ2 − 86λ+ 55

φ2(Ỹ5;λ) = 21λ3 − 99λ2 + 154λ− 76

φ1(Ỹ5;λ) = 7λ4 − 42λ3 + 101λ2 − 111λ

φ0(Ỹ5;λ) = λ5 − 7λ3 + 21λ3 − 34λ2 + 29λ− 10.

3.3 Properties of k-Defect Polynomials

In this section we list some useful properties of k-Defect polynomials for the purposes

of this chapter.

The following Propositions will be stated without proofs. For more information,

we refer the reader to [9].

Proposition 3.3.1. Let G be a graph. Then

φk(G;λ) =
∑

X∈L(G),|X|=k

χ(G/X;λ)

if G has one or more closed sets of size k. If not, then

φk(G;λ) = 0.
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Proposition 3.3.2. Let Ỹn be a suspended Y -tree and let δki be the ith closed set of

size k. Then

φk(Ỹn;λ) =

|δk|∑

i=0

χ(Ỹn/δki ;λ)

where |δk| is the number of closed sets of size k.

Proposition 3.3.3. Let Ỹn be a suspended Y -tree. Let 0 ≤ k ≤ n+ 2. If all minors

obtained by contracting closed sets of size k, δk, are isomorphic, then

φk(Ỹn;λ) = |δk|χ(Ỹn/δk;λ).

Figure 3.2: After the contraction of an edge in Ỹ4, all minors are isomorphic to this

graph, Ỹ4/δ1.

Figure 3.3: Ỹ4/δ1, after an edge has been deleted (left) and contracted (right).

Example 3.3.4. We shall now apply these Propositions to Ỹ4. Recall from Exam-
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ple 3.2.9 that

φ1(Ỹ4;λ) = 6λ3 − 30λ2 + 48λ− 24.

From Proposition 3.3.2, and by the properties in Proposition 3.1.5, we have that

φ1(Ỹ4;λ) =
6∑

i=0

χ(Ỹ4/δ1i ;λ)

= 6(λ− 1)χ(C3;λ)− χ(C3;λ)

from the diagrams in Figure 3.3

= 6(λ− 2)(λ)(λ− 1)(λ− 2)

= 6(λ− 2)(λ− 1)(λ− 2)

the λ is dropped because we’re dealing with the characteristic polynomial

= 6(λ2 − 4λ+ 4)(λ− 1)

= 6(λ3 − 5λ2 + 8λ− 4)

= 6λ3 − 30λ2 + 48λ− 24.

3.4 Explicit Expressions for k-Defect Polynomials

of Suspended Y -trees

In this section, we give the main results of this chapter. We will give some explicit

expressions of some k-defect polynomials.

Proposition 3.4.1. Let Ỹn be a suspended Y -tree. Then the (n+2)-defect polynomial

φn+2(Ỹn;λ) = 1.

Proof. From Proposition 2.1.5 we know that Ỹn has n+2 edges. The minor obtained

after the contraction of the closed set of size n + 2 is K1. There is one flat of size

n+ 2. This is just a single vertex, and by Proposition 3.3.2, φn+2(Ỹn;λ) = 1.

Proposition 3.4.2. Let Ỹn be a suspended Y -tree. The (n + 1)-defect polynomial

φn+1(Ỹn;λ) = 0.
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Proof. By Theorem 2.2.9, we know that there are no closed sets of size n+1. Therefore

there are no minors and no k-defect polynomials of size n+ 1.

Lemma 3.4.3. Let Cn be a cyclic graph. The minor obtained by contracting m edges

of Cn will be the cyclic graph Cn−m.

Proof. Without loss of generality, consider C8, the diagram in Figure 3.4. We can

contract the edge set {e1, e2} and the result will be the minor cyclic graph C6.

e2 e1

Figure 3.4: C8

Lemma 3.4.4. Let G be a graph without a vertex of degree 1. The minor obtained

by contracting any set of edges in G will not have a vertex of degree 1.

Proof. Let G be a graph. If there is no vertex of degree 1 then each and every edge of

G is contained within a certain cyclic subgraph of G. By Lemma 3.4.3, if we contract

an edge of one of those cyclic graphs, it will give us a minor which is a cyclic graph.

Hence we cannot have a vertex of degree 1.

Lemma 3.4.5. The n-defect polynomial φn(Ỹn;λ) has a factor (λ− 1).

Proof. By Lemma 3.4.4, if we contract n of the n+ 2 edges in Ỹn, we end up with a

pair of parallel edges. Therefore the characteristic polynomial of this will be (λ− 1).

Hence (λ− 1) is a factor.
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Proposition 3.4.6. Let Ỹn be a suspended Y -tree. Then the n-defect polynomial

φn(Ỹn;λ) =
n2 − 5n+ 10

2
(λ− 1).

Proof. By Theorem 2.2.9 we know that the number of closed sets of size n in Ỹn is

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
−

(
4

1

)
.

This can be simplified using the fact that

(
a

b

)
=

a!

b!(a− b)!
.

(
n+ 2

k

)
−

(
4

3

)(
n− 2

k − 3

)
−

(
4

1

)
=

(
n+ 2

n

)
− 4

(
n− 2

n− 3

)
− 4

=
(n+ 2)!

n!(2)!
− 4

(n− 2)!

(n− 3)!(1)!
− 4

=
(n+ 2)(n+ 1)

2
− 4(n− 2)− 4

=
n2 + 3n+ 2

2
− 4n+ 8− 4

=
n2 − 5n+ 10

2
(λ− 1).

We shall now investigate the explicit expression of the 0-defect polynomial of Ỹn.

Proposition 3.4.7. Let Ỹn be a suspended Y -tree. The 0-defect polynomial of Ỹn,

φ0(Ỹn;λ) = (λ− 1)n−1(λ2 − 3λ+ 3) + (−1)n(2λ2 − 5λ+ 3).

Proof. Let Ỹn be a suspended Y -tree. The 0-defect polynomial is just the chromatic

polynomial since it would be a proper colouring. Using the deletion and contraction
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methods in Proposition 3.1.5 we get

χ(Ỹn;λ) = (λ− 1)(χ(Cn;λ))− Cn−1(λ− 2)

= (λ− 1)((λ− 1)n + (−1)n(λ− 1))

− (λ− 2)((λ− 1)n−1 + (−1)n−1(λ− 1))

= (λ− 1)n+1 + (−1)n(λ2 − 2λ+ 1)

− (λ− 2)(λ− 1)n−1 + (−1)n(λ2 − 3λ+ 2)

= (λ− 1)n−1(λ2 − 3λ+ 3)

+ (−1)n(2λ2 − 5λ+ 3).

Figure 3.5: Zn, a minor of Ỹn.

Recall that the 0-defect polynomial, φ0(Ỹn;λ) = χ(Ỹn;λ).

Lemma 3.4.8. Let Zn be the minor of Ỹn shown in the diagram in Figure 3.5. Then

χ(Zn;λ) = (λ− 2)((λ− 1)n + (−1)n(λ− 1)).
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Proof. Let Zn be the minor of Ỹn shown in the diagram in Figure 3.5. Then

χ(Zn;λ) =
χ(Cn;λ)χ(C3;λ)

χ(K2;λ)

=
χ(Cn;λ)(λ(λ− 1)(λ− 2))

λ(λ− 1)

= (λ− 2)χ(Cn;λ)

= (λ− 2)((λ− 1)n + (−1)n(λ− 1)).

We shall now investigate the explicit expression of the 1-defect polynomial of Ỹn.

If we contract one edge from Ỹn, we can group all the minors into two groups. The

one group of minors is Zn, the diagram in Figure 3.5. The other group of minors is

Ỹn−1.

Before stating the main result, the following lemma is obtained from Proposi-

tion 3.3.1.

Lemma 3.4.9. Let Ỹn be a suspended Y -tree. Then the 1-defect polynomial

φ1(Ỹn;λ) =
n+2∑

i=1

χ(Ỹn/e1i ;λ)

where e1i is a closed set of Ỹn of size 1 and 1 ≤ i ≤ n+ 2.

Recall that the minors obtained by contracting a closed set of size 1 are either

Ỹn/e1i
∼= Zn or Ỹn/e1i

∼= Ỹn−1.

Proposition 3.4.10. Let Ỹn be a suspended Y -tree. The 1-defect polynomial of Ỹn,

φ1(Ỹn;λ) = (n− 2)

[
(−1)n(2λ2 − 5λ+ 3) + (λ− 1)n(

λ3 − 4λ2 + 5λ− 3

λ2 − 2λ+ 1
)

]

+ 4(λ− 2)(λ− 1)n(−1)n(4λ2 − 12λ+ 8).
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Proof. Let Ỹn be a suspended Y -tree. By Lemma 3.4.9 we have

φ1(Ỹn;λ) =
n+2∑

i=1

χ(Ỹn/e1i ;λ)

= 4χ(Zn;λ) + (n− 2)χ(Ỹn−1/;λ)

= 4(λ− 2)((λ− 1)n + (−1)n(λ− 1))

+ (n− 2)(λ− 1)n−2(λ2 − 3λ+ 3)

+ (−1)n−1(2λ2 − 5λ+ 3)by Proposition 3.4.7 and Lemma 3.4.8

= (n− 2)

[
(−1)n(2λ2 − 5λ+ 3) + (λ− 1)n(

λ3 − 4λ2 + 5λ− 3

λ2 − 2λ+ 1
)

]

+ 4(λ− 2)(λ− 1)n(−1)n(4λ2 − 12λ+ 8).

We have calculated the k-defect polynomials of Ỹ4 in Example 3.2.9.

φ6(Ỹ4;λ) = 1

φ5(Ỹ4;λ) = 0

φ4(Ỹ4;λ) = 3λ− 3

φ1(Ỹ4;λ) = 6λ3 − 30λ2 + 48λ− 24

φ0(Ỹ4;λ) = λ4 − 6λ3 + 15λ2 − 17λ+ 7.

From Propositon 3.4.7, the 0-defect polynomial of Ỹ4,

φ0(Ỹ4;λ) = (λ− 1)4−1(λ2 − 3λ+ 3) + (−1)4(2λ2 − 5λ+ 3)

= λ(λ4 − 6λ3 + 15λ2 − 17λ+ 7).

From Proposition 3.4.10, the 1-defect polynomial of Ỹ4,

φ1(Ỹ4;λ) = (4− 2)

[
(−1)n(2λ2 − 5λ+ 3) + (λ− 1)4(

λ3 − 4λ2 + 5λ− 3

λ2 − 2λ+ 1
)

]

+ 4(λ− 2)(λ− 1)4(−1)n(4λ2 − 12λ+ 8)

= λ(6λ3 − 30λ2 + 48λ− 24).
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From Proposition 3.4.1, then the (n+ 2)-defect polynomial

φn+2(Ỹ4;λ) = 1.

From Proposition 3.4.2, the (n+ 1)-defect polynomial

φn+1(Ỹ4;λ) = 0.

From Proposition 3.4.6, the n-defect polynomial

φn(Ỹ4;λ) =
42 − 54 + 10

2
(λ− 1).

= 3λ− 3.

In conclusion, we see that our Theorem is verified.
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Chapter 4

The Tutte Polynomial

4.1 Introduction

The Tutte polynomial has applications in graph theory, knot theory, statistical physics

and more. A powerful property of the Tutte polynomial is that if it is evaluated at

certain values, we obtain many parameters. The number of spanning trees, the num-

ber of acyclic orientations and the characteristic polynomial are just some examples

of what the Tutte polynomial can yield. For more details, we refer the reader to [8].

In this Chapter we list some properties of the Tutte polynomial, we obtain explicit

expressions of the Tutte polynomial for certain suspended Y -trees, we give specific

examples of Tutte polynomials and finally we deduce the chromatic polynomial from

the Tutte polynomial.

4.2 Properties

Definition 4.2.1. The Tutte Polynomial of a graph, G, is denoted T (G; x, y). It has

the following properties:

i) T (I; x, y) = x where I is a bridge.
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ii) T (L; x, y) = y where L is a loop.

iii) If e ∈ E(G) and e is neither a bridge nor a loop, then

T (G; x, y) = T (G \ e; x, y) + T (G/e; x, y).

iv) If e ∈ E(G) and e is either a bridge nor a loop, then

T (G; x, y) = T (G(e); x, y)T (G \ e; x, y).

For these, and additional details on the Tutte Polynomials, We refer the reader to [3]

for more information.

The coboundary polynomial can be written in terms of the Tutte polynomial. We

refer the reader to [3] for more information.

B(G;λ, S) = (S − 1)rT (G;
S + λ− 1

S − 1
, S)

4.3 Explicit Expressions of the Tutte Polynomial

for Suspended Y -trees

In this section we attempt to deduce and explicit expression for the Tutte polynomial

for suspended Y -trees.

Proposition 4.3.1. Let tn be a tree graph. Then the Tutte polynomial

T (tn; x, y) = xn−1.

Proof. Let tn be a tree graph. Then every edge of tn is a bridge and there are n− 1

of them. By repeated application of Property (i) in Definition 4.2.1 we get

T (tn; x, y) = xT (tn−1; x, y)

= x2T (tn−2; x, y)

= ...

= xn−2T (t2; x, y)

= xn−1.
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Proposition 4.3.2. Let Cn be a cyclic graph. Then the Tutte polynomial

T (Cn; x, y) =
n−1∑

i=1

xi + y.

Recall from Definition 4.2.1 that T (L; x, y) = y where L is a loop.

Proof. Let Cn be a cyclic graph. Applying the properties in Definition 4.2.1, we get

T (Cn; x, y) = T (Cn \ e; x, y) + T (Cn/e; x, y)

= T (tn; x, y) + T (Cn−1; x, y)

= xn−1 + T (tn−1; x, y) + T (Cn−2; x, y)

= xn−1 + xn−2 + T (tn−2; x, y) + T (Cn−3; x, y)

= ...

= xn−1 + xn−2 + xn−3 + ...+ x2 + x+ T (L; x, y)

=
n−1∑

i=1

xi + y.

Definition 4.3.3. For the purposes of the proof of Theorem 4.3.5, we define Dn to

be Cn with an extra edge, as shown in the diagram in Figure 4.1.

Definition 4.3.4. For the purposes of the proof of Theorem 4.3.5, we define Jn to be

Cn−2 with a parallel edge connecting to an additional vertex, as shown in the diagram

in Figure 4.2.

Theorem 4.3.5. Let Ỹn be a suspended Y -tree. Then The Tutte polynomial

T (Ỹn; x, y) = (x+ 1)T (Cn; x, y) + (x+ y)T (Cn−2; x, y)

= (x+ 1)
n−1∑

i=1

xi + y + (x+ y)
n−3∑

i=1

xi + y.
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Figure 4.1: Dn

Figure 4.2: Jn

Proof. Using the properties listed in Definition 4.2.1

T (Ỹn; x, y) = T (Ỹn \ e; x, y) + T (Ỹn/e; x, y)

= T (Dn; x, y) + T (Zn; x, y)

= xT (Cn; x, y) + T (Cn; x, y) + T (Jn; x, y)

= (x+ 1)T (Cn; x, y) + xT (Cn−2; x, y) + T (Cn−2 ∪ L; x, y) where L is a loop

= (x+ 1)T (Cn; x, y) + xT (Cn−2; x, y) + yT (Cn−2; x, y)

= (x+ 1)T (Cn; x, y) + (x+ y)T (Cn−2; x, y)

= (x+ 1)
n−1∑

i=1

xi + y + (x+ y)
n−3∑

i=1

xi + y by Proposition 4.3.2.

The following Propositions will be stated without a proof. For more details, we

refer the reader to [3]

Proposition 4.3.6. Let G be a graph with vertex set V (G) and k(G) components.

Then

χ(G;λ) = (−1)|V (G)|−k(G)λk(G)T (G; 1− λ, 0)
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where χ(G : λ) is the chromatic polynomial and T (G; x, y) is the Tutte polynomial.

4.4 Specific Examples of Tutte Polynomials

In this section we are going to compute T (Ỹ4; x, y) and T (Ỹ5; x, y) using the deletion

and contraction method in Definition 4.2.1. We will then compute T (Ỹ4; x, y) and

T (Ỹ5; x, y) using Theorem 4.3.5. We will then compare the results.

Example 4.4.1. Let us consider Ỹ4. Using the deletion and contraction method from

Definition 4.2.1, we find the Tutte polynomial

T (Ỹ4; x, y) = T (Ỹ4 \ e; x, y) + T (Ỹ4/e; x, y)

= T (D4; x, y) + T (Z4; x, y)

= xT (C4 : x, y) + T (C4; x, y) + T (J4; x, y)

= x4 + x3 + x2 + xy + x3 + x2 + x+ y + x(x+ y) + y(x+ y)

= x4 + x3 + x2 + xy + x3 + x2 + x+ y + x2 + xy + yx+ y2

= x4 + 2x3 + 3x2 + 3xy + y2 + x+ y.

Example 4.4.2. Let us consider Ỹ5. Using the deletion and contraction method from

Definition 4.2.1, we find the Tutte polynomial

T (Ỹ5; x, y) = T (Ỹ5 \ e; x, y) + T (Ỹ5/e; x, y)

= T (D5; x, y) + T (Z5; x, y)

= xT (C5 : x, y) + T (C5; x, y) + T (J5; x, y)

= x5 + x4 + x3 + x2 + xy + x4 + x3

+ x2 + x+ y + x(x2 + x+ y) + y(x2 + x+ y)

= x5 + x4 + x3 + x2 + xy + x4 + x3

+ x2 + x+ y + x3 + x2 + xy + yx2 + xy + y2

= x5 + 2x4 + 3x3 + 3x2 + 3xy + x+ y + x2y + y2.
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Example 4.4.3. Let us consider Ỹ4. Using Theorem 4.3.5, we can find the Tutte

polynomial

T (Ỹ4) = (x+ 1)T (C4; x, y) + (x+ y)T (C2; x, y)

= (x+ 1)(x3 + x2 + x+ y) + (x+ y)(x+ y)by Proposition 4.3.2

= x4 + 2x3 + 3x2 + 3xy + y2 + x+ y.

Example 4.4.4. Let us consider Ỹ5. Using Theorem 4.3.5, we can find the Tutte

polynomial

T (Ỹ5) = (x+ 1)T (C5; x, y) + (x+ y)T (C3; x, y)

= (x+ 1)(x4 + x3 + x2 + x+ y) + (x+ y)(x2 + x+ y)by Proposition 4.3.2

= x5 + 2x4 + 3x3 + 3x2 + 3xy + x+ y + x2y + y2.

Notice how, in the above examples, our theorem is verified in both the Ỹ4 and the

Ỹ5 cases.

Example 4.4.5. From Proposition 4.3.6, we have that

χ(G;λ) = (−1)|V (G)|−k(G)λk(G)T (G; 1− λ, 0).

Let us verify this Proposition for Ỹ4 and Ỹ5 by comparing the results to Examples

3.2.9 and 3.2.10.

χ(Ỹ4;λ) = (−1)|V (Ỹ4)|−k(Ỹ4)λk(Ỹ4)T (Ỹ4; 1− λ, 0)

= (−1)5−1λ1((1− λ)4 + 2(1− λ)3 + 3(1− λ)2 + 0 + 0 + (1− λ) + 0)

From Example 4.4.1

= λ((1− λ)4 + 2(1− λ)3 + 3(1− λ)2 + (1− λ))

= λ(λ4 − 6λ3 + 15λ2 − 17λ+ 7)

As in Example 3.2.9.
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χ(Ỹ5;λ) = (−1)|V (Ỹ5)|−k(Ỹ5)λk(Ỹ5)T (Ỹ5; 1− λ, 0)

= (−1)6−1λ1((1− λ)5 + 2(1− λ)4 + 3(1− λ)3 + 3(1− λ)2 + 0 + (1− λ) + 0 + 0 + 0 +

From Example 4.4.2

= λ(λ5 − 7λ3 + 21λ3 − 34λ2 + 29λ− 10

As in Example 3.2.10.

Proposition 4.3.6 is therefore verified.
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