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Abstract 

Efflorescent minerals are a common feature of the soil surface in seasonal environments where 

evapotranspiration (ET) exceeds precipitation (P), and are formed by the evaporation of salt solutions 

from the soil during periods of drying. On the Highveld gold fields, ET exceeds rainfall by 

approximately two-and-a-half times during the dry season, and soils overlying acid mine drainage and 

along polluted stream banks can become covered by distinctively coloured mineral efflorescent crusts. 

Whereas some efflorescent minerals are relatively insoluble and present a negligible environmental 

hazard (for example, gypsum), others may be readily soluble and contain high concentrations of 

potentially toxic metals (for example, copiapite, jarosite and uranyl sulphate). During periods of 

rainfall, such salts are washed further afield and into surface water bodies and act as sources of episodic 

pollution.  

The presence of some efflorescent minerals can be detected from their characteristic reflectance 

signatures using remote-sensing (RS) of the electromagnetic spectrum. The species of efflorescent 

minerals present is a useful indication of the spatial extent of sub-surface contamination, and also of the 

chemical conditions of the substrate, in particular the concentration of total dissolved solids, pH and 

redox conditions.  

The aim of this study was therefore to assess the use of remote-sensing on indicator efflorescent 

minerals as a cost-effective aid in the spatial mapping of acid rock-drainage polluted soils and water-

bodies. This study describes the range of efflorescent crusts identified on different land-use areas and 

soil classes in a Highveld gold-mining region. Crusts were first measured in-situ under natural sunlight 

using a portable analytical spectral radiometer (ASD) as well as using X-ray diffraction (XRD). They 

were then dissolved in deionized water and the resulting salt solutions allowed to evaporate prior to 

analysis under controlled lighting conditions. Spectra were post-processed and compared with 



iv 

geological spectral reference libraries. The salt solutions were also analyzed for metal and sulphate 

content and the results were used to establish evaporation models from which mineral precipitation 

could be predicted. 

Minerals identified in the visible near-infra red (VNIR) region included iron oxides (hematite and 

goethite), and the sulphate mineral jarosite. In the short wave infra-red (SWIR) region clay minerals of 

the smectite group were dominant. Gypsum and Al-Mn-Mg-Na sulphate salts were identified in the 

SWIR region as mixtures occurring with clay minerals. Minerals identified in the VNIR-SWIR region 

were all confirmed by X-Ray diffraction (XRD). Upon dissolution, geochemical modeling revealed that 

gypsum and jarosite are the most common minerals expected to precipitate. The precipitation of 

gypsum and jarosite indicates persistent acidic conditions after dissolution of mineral salts.  Gypsum 

and jarosite were also accurately identified by hyper-spectral spectroscopy and confirmed by XRD and 

geochemical modeling. Agreement between spectral interpreted minerals and geochemically 

precipitated mineral phases demonstrated the ability of hyper-spectral data in detecting efflorescence 

minerals on the soil surface. Using partial least squares regression (PLSR) combined with 

bootstrapping, reflectance spectrum was significantly correlated with geochemical variables.   
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1 Background to the study 

1.1 Introduction to mine waste and acid mine drainage in the Witwatersrand basin 

Mining activities in the Witwatersrand Basin have resulted in six billion tons of mine 

waste containing 30 million tons of sulphur and approximately 430 000 tons of uranium in the 

tailings storage facilities (Hobbs and Cobbings, 2007; Weiersbye et al, 2006a). Part of this mine 

waste includes more than 270 tailings dams, which cover an area of about 400 to 500 km
2 

(Hobbs and Cobbings, 2007). In addition to the uraniferous nature of the tailings (which is a 

cause of great concern), the oxidation of sulphide bearing waste material releases metals into the 

surrounding environment. This has resulted in severe environmental degradation as a result of 

water and soil pollution. Sources of contamination from abandoned workings are two fold 

namely: 1) contamination from rising water in mine voids and 2) contamination from mine 

tailings. The contamination from rising water in mine voids is due to the large number of gold 

mines in the area that have been closed down. The closure of mines means that the pumping of 

subsurface water from mine voids is no longer taking place which results in large quantities of 

water accumulating in the cavities. The rising water levels in these workings necessitate pumping 

and treatment with lime before discarding the water into open water bodies. However, in general, 

the lime treatment was considered to be unsuccessful since large quantities of low quality water 

were entering open water bodies without treatment (Coetzee et al, 2006). Moreover, lime 

treatment results in the formation of large quantities of sludge containing elevated metal 

concentrations. It is estimated that 25 million litres of contaminated water is discharged into 

surface water bodies per day and that 100 tons of salt is deposited into the surrounding 

environment every day (Hobbs and Cobbings, 2007). The discharge of mine water has resulted in 
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high salinity levels in the Vaal River and other local streams. The water contaminated by mine 

water discharge typically has a pH of less than 4 and is associated with a high concentration of 

iron and other metals (Hobbs and Cobbing, 2007). The iron oxidizes on exposure to water and air 

and precipitates along the water flow paths, leaving visually observable precipitates on river beds 

and banks (Valente et al, 2009). An additional source of contamination is the gold-rich waste 

storage facilities which are a source of metal pollution in this region. 

 

Many studies have been conducted on acid mine drainage and metal contamination in soils, 

plants, waters and sediments (Coetzee et al, 2006; Weiersbye et al, 2006a; Tutu et al, 2005) as 

part of rehabilitation programs in the Witwatersrand gold mining areas. The assessment and 

monitoring of environmental contamination based on plant, water and soil sampling and 

physiochemical analysis using conventional methods is costly, labour intensive and time 

consuming. 

Remote sensing techniques such as multispectral imaging have been used as a cheaper 

alternative to map different materials at the surface of the earth based on their spectral signatures 

(Quental et al, 2011; Riaza et al, 2012). Imaging spectroscopy or hyperspectral remote sensing 

offers high quality data (reflectance spectra) because it measures many (> 100), narrow (2-5 nm) 

contiguous spectral bands and high spatial resolution. For mineral mapping and physiochemical 

characterization, the visible-near-infrared (VNIR) region 350 nm – 2500 nm of the 

electromagnetic spectrum is measured by hyperspectral sensors.  

Weiersbye et al. (2006b) successfully mapped secondary minerals associated with seepage zones 

to characterize ground water pollution in gold mining areas. Wu et al. (2007) successfully used 

hyperspectral data to assess sulphide related contamination. Statistical techniques such as the 
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partial least squares regression (PLSR) have been used to relate hyperspectral data to 

physiochemical data of plants, soils and minerals (Wold et al, 2001). In Europe, continuous 

analysis of hyperspectral images is used to monitor spectral indicators of acid mine drainage 

(Riaza et al, 2012). These studies prove that hyperspectral data can be used as an efficient and 

cheaper alternative to characterize and monitor environmental pollution. 

1.2 Problem statement  

Water contaminated by mine residue material is acidic and contains significant amounts of 

metals. Evaporation results in the formation of efflorescent salts from the concentrated mine 

water solutions. The precipitated salts are unstable and dissolve readily in the presence of water. 

The dissolved salts tend to increase the acidity of the water in which it they are dissolved and 

remobilise metals in the environment.  

The high concentrations of metals in the efflorescent salts pose a significant geochemical hazard. 

This hazard is compounded by the fact that these mineral salts occur in sensitive areas such as 

residential areas, cultivated fields and watercourses. In order to focus remediation efforts, cost-

effective methods are needed to characterise the acid mine drainage plume based on the 

distribution and prevalence of the salt crusts.  

1.3 Research objectives and research questions 

The ultimate objective of the research was to assess shallow groundwater contamination in 

selected portions of the Witwatersrand Basin using a combination of remote sensing techniques 

and geochemical modelling by considering efflorescent salts as surrogates for contamination. To 

achieve these objectives, the research focused on the following research questions: 
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1. To what extent do efflorescent minerals pose  geochemical hazards to the surrounding 

environment? 

2. Which minerals can be used as indicators for geochemical hazards? 

3. Which minerals can be identified using the visible portions of the electromagnetic 

spectrum? 

4. What are suitable spectral transformation techniques for characterization of efflorescent 

salts? 

5. Which spectral indices and wavelength bands can be effectively used for identification of 

mineral salts? 

6. Can spectral techniques be complemented by geochemical modelling techniques? 

 

To achieve the objectives and answer the research questions, the following field data collection 

and data analysis strategies have been performed:  

1. The assessment of changes in mining areas in the East Rand over the last 10 years using 

remote sensing data; 

2. The collection of samples of mineral salts from selected tailings storage facilities and 

capillary fringes in the vicinity of impacted water systems; 

3. The mineralogical analysis of efflorescent salts using X-ray diffraction and hand-held 

infrared spectrometer measurements; 

4. The total elemental and anionic concentration analyses of dissolved salts; 

5. The construction of evaporation models of dissolved salts to assess mineral precipitation; 

6. The assessment of shallow groundwater contamination using the resulting information as 

input;  
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7. Establishment of the relationship between geochemical parameters and reflectance 

spectra and 

8. Determination of the spectral bands suitable for modelling of geochemical variability.  

 

1.4 Description of the study area  

The study area covers the eastern part of the Witwatersrand Basin in the Ekurhuleni 

Metropolitan Municipality. Mining operations in these areas include four deep level gold mines 

with supporting infrastructure such as metallurgical plants, chemical laboratories, tailings storage 

facilities, waste rock dumps and evaporation dams. The study area has been intensively mined 

and hosts some of the oldest tailings dams. The surrounding areas are dominantly zoned for 

residential purposes and agriculture. The study area (Figure 1-1) was chosen because of the long 

history of mining and availability of geographical data. Periodical soil biogeochemical data is 

collected as part of on-going rehabilitation programs at these sites. Other rehabilitation methods 

in the area include ground water monitoring, re-vegetation of tailings dams, groundwater 

dewatering, and stream diversion and widening.   

The study area is characterized by warm to hot, rainy summers and cold dry, sunny winters. 

Annual rainfall average ranges between 600 mm – 625 mm with a mean temperature of 30°C in 

summer and 18°C in winter. Prevailing north-westerly winds are dominant in this region. 

Evaporation rates are high in the Highveld region with a summer annual average of 1900 mm per 

annum (DWA, 2012). Because the tailings dams and storage waste facilities are uncovered and 

unvegetated, winds in the study area give rise to dust storms by dispersing tailings material. 

Warm and dry conditions together with high evaporation rates promote capillary movement of 

saline groundwater in the soil profile leading to increased weathering rates.  
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Figure 1-1  Study area with selected sample points
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Tailings storage facilities are common landmarks in this region. In the Ekurhuleni Metropolitan 

Municipality region, mine residue deposits cover an area of about 7956.5 hectares, whereas slime 

dams and footprints cover 6742.4 hectares (Sutton et al., 2006). Rock and process effluents that 

are generated during the mining processes are stored in them. The tailings are generally acidic, 

with a pH that ranges from 2 to 4.11. These structures show similar mineralogy to that of the 

Witwatersrand ores. Quartz is the most abundant mineral in tailings impoundments. Within the 

oxidized zone, there is little or no pyrite because of weathering (Nengovhela et al, 2006). 

Common secondary sulphides include pyrrothite (FeS2), chalcopyrite (CuFeS2), pentlandite (Fe, 

Ni)9,S8)  and sphalerite (ZnS) (McCarthy, 2006).   

 

An aerial photography survey by Sutton et al. (2006) showed that about half of the mine residue 

deposits were situated within watercourses. Several of these deposits were built on wetlands and 

pans. The study also revealed that about 64% of the mine residue had undergone structural 

failure and, consequently, spillage resulting in extensive sedimentation along water channels. A 

small number of mine residue deposits were built on dolomite areas to take advantage of the 

neutralizing effect of dolomites, and also to improve drainage and thus structural stability. The 

majority of mine residue deposits were closely associated with residential and agricultural areas.  

 

Abiye et al. (2011) summarized the hydro-chemical characteristics of Department of Water and 

Environmental Affairs boreholes in the Witwatersrand Basin. Borehole waters are characterized 

by high salinity and pH levels. These trends are attributed to leaching from weathering profiles 

and carbonate saturation. The impermeable nature of chert-rich dolomites is responsible for 
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decreasing Mg concentration with depth. High concentrations of chloride and sulphate occur at a 

depth of up to 60 meters. The presence of soluble salts in the weathering profile and soil crusts 

contributes to high chloride concentrations. The dissolution caused by acidic conditions also 

leads to high sulphate and total iron concentrations (Abiye et al, 2011). 

1.5 Structure of the research report 

Acid mine drainage is a problem and the environmental and health and safety concerns 

require that ways to mitigate the problem need to be formulated. However, before this can be 

done, we need to understand the mechanisms that lead to acid mine drainage, the environmental 

and physical attributes of the study area that accelerate the processes and to find ways to 

effectively and efficiently map the extent of affected areas. This will enable the identification of 

mitigation and relief strategies. 

General background information on sulphide weathering, formation, chemistry and processes of 

acid mine drainage is introduced in Section 2.1. Spectral characteristics of minerals associated 

with acid mine drainage are presented in Section 2.2. This effectively provides the background 

for the use of remote sensing techniques to rapidly map large areas affected my AMD remotely. 

The materials and methods used for geochemical hazard assessment in this investigation are 

presented in Section 3. Results are presented and discussed in Chapter 4 while Chapter 5 entails 

concluding remarks and recommendations.  
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2 Literature review 

2.1 Background and chemistry of acid mine drainage 

2.1.1 Weathering of sulphide minerals 

Sulphide minerals such as arsenopyrite and pyrite are stable under reducing conditions 

where they are formed.  They become unstable in oxygenated water and react to form acidic 

plumes that result in the formation of secondary minerals (Dold, 2005). Pyrite is the main source 

of acid mine drainage. During oxidation, pyrite follows the reaction (Hammastrom et al, 2005; 

Dold, 2005): 

 2FeS2 + 2H2O + 7O2 = 2Fe
2+

 + 4SO4 
2-

 + 4H
+
   Equation 1  

The ferrous ion formed further oxidizes to form ferric iron: 

 4Fe
2+

 + O2 + 4H
+
 = 4Fe

3+
 + 2H2O     Equation 2  

  

The ferric ion becomes the primary oxidant of pyrite: 

FeS2 + 14 Fe
3+

+ 8H2O = 15 Fe
2+

 + 2SO4
2-

+ 16H
+
    Equation 3  

During hydrolysis the ferric ions releases H
+
 ions and precipitates Fe(OH)3 

 Fe
3+

 + 3H2O = Fe (OH)3 + 3H
+
     Equation 4   

The overall sequence reaction of pyrite can be summarized as follows 

 4FeS2 + 14H2O + 15O2 = 4 Fe(OH)3  + 8SO4
2-

 + 16H
+ 

  Equation 5 

Formation of Fe (OH)3 is acid generating and buffers the pH of  acid mine drainage (AMD). The 

above reactions show that for every mole of FeS2 oxidized, 4 moles of H
+
 are released. This is a 

highly acidic reaction (Dold, 2005). The liberated H
+
 ions are capable of producing more acidic 

waters. Decreasing pH conditions also increase the solubility of iron.  
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Oxidation products of pyrite (iron oxides, sulphate ions and hydrogen ions) react with minerals 

on the surface resulting in the formation of sulphuric acid which further exacerbates the acid 

mine drainage problem. For example, iron sulphate react with chalcopyrite as follows: 

 

 CuFeS2 + 2Fe2 (SO4)2 + 2 H2O + 3O2 = CuSO4 + 5 FeSO4 + 2H2SO4  Equation 6 

 

Tailings storage facilities have high surface areas with finely grained crystals that lead to 

increased mineral reactivity and high oxidation rates in these sites (Riaza et al, 2012; 

Nengovhela et al, 2006) 

Prevailing climatic conditions also affect the oxidation of sulphide minerals in tailings storage 

facilities. During rainy seasons, increased oxidation leads to a drop in pH and metals become 

soluble. Gully erosion pathways can cause water and air to penetrate into the inner parts of 

sulphide wastes promoting leaching of soluble contaminants to ground water reserves.  

A series of acid-base reactions occur when the acidic water contacts carbonate, hydroxide and 

other base-containing solids (Cheng et al, 2009). This results in the formation of different pH 

regions that are characterized by metal-bearing hydroxide and hydrosulfate minerals (Riaza and 

Muller, 2009). Ferrous sulphate salts are found close to the source of pyrite and ferric sulphate 

salts are found away from the pyrite source where most of the Fe
2+ 

has oxidized to Fe
3+

. These 

secondary minerals are highly soluble and not stable at the surface (Hammarstrom et al, 2005).  

2.1.2 Neutralisation processes 

The acid produced by the weathering of sulphide minerals can be neutralized by 

carbonate and silicate minerals. Secondary minerals that are formed act as buffers in certain pH 
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ranges (Cheng et al, 2009). The most common carbonate minerals calcite, siderite and lime react 

quickly with acidic water and neutralize it according to the following reactions: 

Calcite  CaCO3 + 2H
+
 = Ca

2+
 + CO2 + H2O    Equation 7 

Siderite  FeCO3 + H
+ 

  = Fe
2+

 + HCO3
-
  Equation 8 

Lime   Ca(OH)2 + 2H
+
 = Ca

2+
 + 2H2O     Equation 9 

An increase in pH leads to a decrease in solubility of iron oxides and mineral precipitation of 

some dissolved metal hydroxides according to the following reactions: 

Al(OH)3 + 3H
+
 = Al

3+
 + 3H2O       Equation 10 

Fe(OH)3(s) + 3H
+
 = Fe

3+
 + 3H2O      Equation 11 

FeO(OH)(s) + 3H
+
 = Fe

3+
 + 3H2O      Equation 12 

Silicate minerals such as Chlorite (Mg,Fe,Li)6AlSi3O10(OH)8 and Epidote 

(CA2Al2(Fe
3+

,Al)(SiO4)(Si2O7)O(OH)) are also capable of neutralizing the acid but to a lesser 

extent than carbonate minerals. Weathering of silicates is controlled by pH, silica, Na, K and 

calcium concentration (Dold, 2005). Dissolution of silicate minerals is slower compared to metal 

hydroxides and carbonates minerals. Slow dissolution is the result of kinetics limitations such as 

limited diffusion and limited surface reactions (such as hydrolysis).   

2.1.3 Microbiological activity 

Microorganisms play a very important role during oxidation and reduction of sulphidic 

metals. Microbial populations can initiate the oxidation of metal sulphides without the presence 

of oxygen. Additionally, the oxidation of ferric iron to ferrous iron is accelerated by bacterial 

species such as Thiobacillus ferroxidans.  Microbial populations also drive the reduction of 

sulphate to form sulphides. The sulphides can react with reduced iron to form iron 

monosulphides (FeS) which transforms after a long time to pyrite. (Hammastrom et al, 2005).  
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Iron reducing bacteria, commonly Thiobacillus ferroxidans is active under both oxic and anoxic 

conditions under a wide range of pH conditions. Reduction of sulphate and iron by microbial 

populations tends to increase alkalinity in acid mine drainage. When the microbial activity 

changes the oxidation states of Fe and S, mineralogy of iron precipitates is affected. During the 

oxidation of Fe (II), Thiobacillus ferroxidans can produce the minerals schwertmannite and 

jarosite at different pH ranges. With further microbial activity, these minerals will change into 

more stable precipitates like goethite. Microbial activity also promotes the release of cations 

from minerals such as biotite (K (Mg, Fe)3AlSi3O10(F,OH)2) and plagioclase (NaAlSi3O8 – 

CaAl2Si2O8). Other common Fe-S oxidizing bacteria that play an important role in acceleration 

pyrite weathering include Leptospirillum ferrooxidants and Sulfolobus acidocaldarius. 

2.1.4 Formation of efflorescent salts 

The formation of efflorescent salts in acid-sulphate rich soils is very common. The salts 

form in banks of water courses, depressions, mud flats and in spoil heaps. Hydraulic 

conductivity, relative humidity and temperature are some of the factors influencing the 

precipitation of efflorescent minerals (Weisbrod et al, 2005). Evaporation from unsaturated 

fractures triggers capillary flow of saline water towards the surface. This results in the 

precipitation of salts in the form of crusts. The chemical composition of the water determines the 

types of minerals that will form. Under normal conditions, the sequence in which minerals 

precipitate is:  carbonates will precipitate first, followed by sulphates and then followed by 

chlorides (Fitzpatrick et al, 2009). 

Dissolution of the crusts results in episodic release of salts into groundwater reservoir or surface 

streams. The solubility of minerals controls precipitation at the surface. For example, as the 

saline groundwater moves up towards the soil surface, minerals with low solubility like gypsum 
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form first within the profile. More soluble minerals form on top of the surface as efflorescent. 

During the rainy season, increased infiltration dissolves the accumulated salt crusts. 

Dissolution of efflorescent salts has adverse effects on streams and soils and these effects are 

well documented (Clou et al, 2013; Fang and Li 2010 and Harris et al, 2003).  Depending on the 

strength and the amount of acid and base compounds in the salts, dissolution affect the stream 

pH, increases electrical conductivity and increases metal load. These effects on water and soil 

quality can complicate remediation efforts for acid drainage.  

2.1.5 Previous research on acid mine drainage in the Witwatersrand Basin. 

Coetzee et al. (2002) noted that untreated mine water from West Wits mines was entering 

Tweelopiespruit. A large volume of water began to discharge from an abandoned shaft and 

Coetzee et al. (2002) estimated an average of 15.5 ML/d mine water discharge. The water was of 

poor quality with high Fe, Mn, Ni, Zn, and sulphates concentrations. A pH of 3 and electrical 

conductivity of 362 mS/cm were recorded for the decanting water. It was later found that 

decanting of acidic water was not limited to the shaft at West Wits mine, but to several shafts in 

the area.  

Naicker et al. (2003) studied acid mine drainage in a stream to the east of Johannesburg and 

reported  heavily contaminated ground water reserves as a result weathering of a pyrite-rich 

tailings dam. They found that the seasonal fluctuation of the water table gave rise to different 

seepage zones. The seepage zones were found to be marked by the precipitation of limonite. 

Contamination levels in soil profiles were found to decrease with depth with the highest 

concentration occurring in the top 20 cm of the soil profile. Surface water also showed high 

levels of contamination by metals. 



14 

Tutu et al. (2008) investigated the chemical characteristics of AMD in the central part of the 

Witwatersrand Basin. Tailings dams, reprocessing plants and other mining infrastructure were 

associated with low pH levels and acidification of nearby streams, dams and lakes. Salt loads and 

electrical conductivity were found to be high in water bodies adjacent to the mining 

infrastructure. Total pollution levels varied seasonally with high pollution levels occurring in 

summer during the rainy season.  

Nengovhela et al. (2006) examined the availability and the role of oxygen in gold tailings in the 

Witwatersrand Basin. The study reported a decreasing pattern of oxygen content with depth and 

oxygen depletion throughout the deeper zones. Large amounts of oxygen occur in the top 4 

metres of tailings. The tailings material (mainly sand and sandy silt) determines the availability 

of oxygen in the impoundments.  Therefore, the oxidation of sulphides and production of AMD 

was found to be limited in the tailings dams.   

Roychoudhury and Starke (2006) studied the behaviour of trace elements in a wetland located in 

the East Rand to assess the impact of mining in the environment. High levels of trace elements 

were found in sediments. High pH values of water were attributed to the underlying dolomitic 

aquifer and lime treatment in the area. These conditions were found to promote the precipitation 

of metals whilst limiting the mobility of trace elements. Furthermore, sequential extraction 

experiments indicated that metals were associated with carbonates and Fe-Mn oxide phases.  

Sutton et al. (2006) investigated the risk posed by mine residue deposits using GIS and remote 

sensing techniques. The study reported numerous contaminants in areas such as cultivated fields, 

wetlands and major water courses. Changes in contaminant secondary minerals occurred 

seasonally. 



15 

Weiersbye et al. (2006b) delineated seepage zones associated with groundwater contamination in 

the Witwatersrand Basin by mapping secondary minerals using hyperspectral AVRIS data.  

 

The assessment of environmental contamination based on plant, water and soil sampling and 

physiochemical analysis using the above conventional methods is costly, labour intensive and 

time consuming. Studies by Sutton et al. (2006) and Weiersbye et al. (2006b) show remote 

sensing can be used as a cheaper alternative to monitor contamination in mining areas. By 

focusing efflorescent salt minerals as major constituents of soils, contamination patterns can be 

mapped and monitored.  

 

2.2 Introduction to remote sensing for geochemical hazard assessment 

2.2.1 The interaction of electromagnetic waves with minerals 

In areas where little or no vegetation is present and where soil and rocks are visible, 

remote sensing techniques can differentiate different minerals in soils and rocks. This is because 

minerals absorb, reflect and or scatter the incident energy differently depending on their 

chemical compositions. Portions of the electromagnetic spectrum that are useful for mapping 

surface mineralogy include the visible and near infrared (VNIR), the short wave infrared (SWIR) 

and the thermal infrared (TIR) portions. Absorption features in the VNIR band are related to 

cation bonds and electrical processes. Absorption features in the SWIR band are related to 

vibration and stretching processes between water and cations. The Si-O absorption feature occurs 

in the TIR band (Fan et al, 2012).  The VNIR wavelength region is useful for mapping iron 

oxides and hydroxides (like hematite and goethite). The SWIR wavelengths map dioctahedral 

and trioctahedral silicates (kaolinite, white micas, smectite, chlorites, amphiboles, talc and 
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serpentine) whereas the TIR wavelengths are useful for the mapping of framework silicates 

(quartz, feldspars, garnets, pyroxenes and olivines). Furthermore, carbonates and sulphates 

produce diagnostic spectral features at both SWIR and TIR wavelengths (van der Meer et al, 

2004). 

2.2.2 The spectral reflectance of minerals associated with acid mine drainage 

The spectral signatures of minerals commonly found in mine-waste environments have 

been described in detail by Crowley et al. (2003) and Cloutis et al. (2006). The spectral 

signatures of some of these minerals are displayed in Figure 2-1 and can be summarised as 

follows:   

 Copiapite: Absorption bands at 430 nm, 540 nm and 868 nm. Absorption bands near 

1178 nm, 1453 nm, 1768 nm and 1941 nm are caused by molecular water and 

hydroxyl groups.  

 Goethite: Absorption bands at 480 nm, 674 nm and 939 nm. Aluminium substitution 

for ferric iron shifts the position of the 939 nm absorption band towards longer 

wavelengths. Water related absorption features occur at 1450 nm and 1940 nm.  

 Hematite: Absorption bands at 872 nm and 1930 nm. Like goethite; Hematite shows 

displacements of the ferric iron related to Al substitution.  

 Ferrihydrite: Absorption bands at 900 nm and 600 nm. There is a marked curve into 

the UV region. Water related absorption bands occur near 1450 nm and 1940 nm. 

 Jarosite: Absorption bands at 437 nm, 910 nm and a weak shoulder at 650 nm. Water 

related bands occur at 1467 nm, 1849 nm and 1936 nm and 2264 nm.  
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 Schwertmannite: absorption bands at 489 nm and 910 nm. Water related absorption 

features at 1450 nm and 1950 nm. The Schwertmannite spectrum is similar to that of 

Ferrihydrite.  

 Carbonate minerals and efflorescent salt have absorption features at 1400 – 2500 nm.  

 

 

Figure 2-1 Diagnostic features in the spectra of Fe minerals (USGS spectral library) 

 

In the Witwatersrand Basin, acid mine drainage is characterized by pyrite, calcium minerals, 

phyllosilicates minerals and secondary minerals like copiapite, melantirite, jarosite, ferrihydrite, 

Goethite and Hematite. These minerals are colourful and appear as yellow, orange and red in 

affected streams, river sediments and in wetlands (Figure 2-2).  

A zoning pattern of iron-bearing minerals is observed around oxidised pyrite. This zoning 

reflects the pH of the water from which the minerals precipitated. The zones consists of a central 

core of original pyrite or copiapite formed under low pH conditions and grades outwards into sub 

concentric and commonly discontinuous zones of jarosite, goethite and hematite forming under 

more neutral pH conditions. Trace elements like Cd, Pb, Zn and As can become aggregated in 
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these minerals and their solubility is affected by acidity of the water. Minerals in zone layers are 

characterized by distinct and diagnostic spectral absorption features in the VNIR region of the 

electromagnetic spectrum (Fan et al, 2012; Montero et al, 2005).  

Secondary minerals associated with acid mine drainage can be used to assess the quality of water 

in adjacent streams. FeOH precipitates appear dark red to red-orange in near neutral stream beds 

and banks. Ferryhydrite can occur in acidic and neutral environments and affect the spectral 

attributes of streams affected by AMD. Iron oxides forming under severely acidic conditions 

(pH<4) are highly reflective in the far red and the near –infrared regions. On the other hand, 

neutral pH, iron-rich streams show low reflectance (Ferrier et al, 2009). Jarosite, goethite and 

schwertmannite form in streams with low pH.  The distribution of these minerals can be used in 

remote sensing to locate potential acid-producing areas. 

 

2.2.3 Spectral characteristics of salinity 

The secondary effect of shallow saline groundwater is soil salinization. Acidic saline 

soils (ASS) are soils affected by weathering of iron sulphide materials and are dominated by Ca, 

Na, Mg, K and major anions Cl
-
, SO4

2-
, HCO3

-
, CO3

2-
, and NO3

-
.  

In areas affected by gold mining, the most common efflorescent salts include the highly soluble 

melanterite, epsomite, halotrichite and copiapite groups (Giere et al, 2003 and Harries et al, 

2003). Spectral reflectance of these salts on the surface is usually blurred by the presence of 

vegetation. The influence of salts on surface roughness can be seen in the morphological 

properties of minerals that they form.  According to Metternicht and Zinck (2003), abundance of 

sodium sulphates results in the formation of puffy crusts and chlorides result in the formation of 

smooth saline crusts. Common salt morphological features found in the West Rand basin are 
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shown in Figure 2-2. The relative reflectance from the salt crusts varies according to the 

thickness of the crust. Reflectance of hydrated salts is characterized by sharp absorptions at the 

water bands and low reflectance towards longer wavelengths. 

 

Figure 2-2 Surface features of salts in the study area 

 

Non-hydrated salts have high reflectance in longer wavelengths. Except for alkaline soils which 

are dark because of organic matter, high albedo is used to differentiate saline and non-saline 

soils. The accumulation of saline crust increases albedo by decreasing surface roughness while 

moisture decreases albedo by dissolving salts (Ferifteh et al, 2008). According to Ferifteh et al, 

(2008) high concentrations of dissolved salts in soil result in high reflectance in the 520 mn– 900 

nm regions and broad water absorption features at 1300 nm and 1650 nm. Soil electrical 

conductivity (EC) values greater than 4000 mS/cm cause low reflectance in the 500 nm – 2380 

nm. There is an inverse relationship between EC and reflectance. Electrical conductivity 

increases as the reflectance decreases.  
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3 Materials and methods  

3.1 Overview of the methodology 

A diagrammatic representation of the methodology used to assess the use of hyperspectral 

data in detecting contamination, as well as the relationship between geochemistry and spectral 

data is shown in Figure 3-1. Firstly, geochemical contamination levels in different mineral 

precipitates are determined. Secondly, the correlation between selected geochemical variables 

and spectral parameters will be examined. And lastly, the modelling of geochemical variables 

based on reflectance spectra will be carried out. A detailed description of statistical methods and 

pre-processing techniques is found in Section 4.5.4. 

 

 

Figure 3-1 General overview of study methodology. 
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3.2 Sample collection 

The collection of soil and mineral samples for laboratory analysis included samples from a 

range of soil classes and locations. To ensure that representative samples were obtained sampling 

material with varying colour, textural variation and proximity to tailings facilities were 

considered during sampling.  Top 5cm of efflorescent mineral blooms were sampled, randomly 

along stream banks, depression hallows and excavation walls. Different land use areas like 

residential areas, agricultural and mining areas were also sampled. In areas were efflorescent 

mineral blooms are not well developed, composite soil samples were taken. Samples were 

selected at depths of 0 – 10 cm collecting about 100 – 200 g of sample material. The collected 

samples were stored in plastic bags to avoid evaporation and contamination. Sampling took place 

during September 2011. 

The samples were subsequently dried in laboratory conditions and sieved with 100 

(approximately 150 micron) mesh sieve size to remove large debris and stones. Since oven-

drying affects the mineralogy of salts, the samples were air-dried for 24 hours. The drying of 

samples was considered to be crucial for subsequent spectral analysis since drying tends to 

maximize the depth of absorption features in minerals. To further concentrate the efflorescent 

material, the crust portion of the samples was dissolved with distilled water. The samples were 

subjected to evaporation at room temperature (25-30°C). After evaporation, concentrated salt 

crystals were stored for further analysis.  

Prior to analysis, a Munsell soil colour chart (Munsell Colour, 1998) was used to characterize the 

colour of the samples. The characterization of the colour of the crusts was determined since 

colour is known to be related to the chemical composition. Organic coating leads to darker 

colours, iron oxides results in yellow, red and brown colours and Al-oxide-hydroxide coatings 
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results in white colours (Alloway, 1995). The colour of the samples varied between four major 

classes: Red brown, Pale Yellow, Pale Brown and Pale White. 

 

3.3  SEM and XRD analysis 

After drying, samples were crushed using a mortar and pestle to obtain a minus 75 nm 

fraction. The powdered samples were lightly pressed into aluminium sample holders for insertion 

into the X-ray diffraction (XRD) analyser, a Philips D500 diffractometer. Estimation of the 

relative abundances of mineral phases was made by comparing the intensities of the main peaks. 

Each mineral phase identified was assigned an approximate percentage of total mineral content 

of the sample. 

The crystal structure and chemistry of salt precipitates were determined by scanning electron 

microscopy. The FE-SEM Zeiss Model Ultra operating at 3kV fitted with an Oxford energy 

dispersive X-ray detector system (EDS) was used. Dry samples were fixed on aluminium SEM 

plates with electronic-conductive carbon tapes. 

3.4 Laboratory procedures 

Geochemical analysis of precipitate samples was carried out at CGS laboratories using 

ICP-AES and AAS. Different classes of elements were targeted using water and four acids as 

digestions solutions. For quality control, analysis was performed on 3 lab duplicates. All 

duplicated were precise to 10%.  Table 3-1 summarises laboratory analytical methods used in the 

study. 

 

Partial extraction with water  
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The most important soil properties that influence the formation of efflorescent salts, pH and 

electrical conductivity were determined in the lab. Ions soluble in water like Na, Mg and Ca are 

good indicators of salt crust. Approximately 1 g of the sample was dissolved with 20 ml distilled 

water and shaken for 30 minutes and centrifuged for 15 minutes to settle down.  The leachate 

was analysed for anions and major elements (see Table 3-1).  

 

 

Total extraction digestion 

The four acid method (HF ⁄ HClO4 digestion) was used to target mineral phases and dissolve 

trace elements from crystalline phases. This method is effective in dissolving sulphide phases 

like pyrite. Ultra-pure water was used in the preparation of standard solutions and the final 

dilution of digested samples. Approximately 0.20 g of the milled sample was digested in 30 ml 

fluoro-polymer sample containers (with 3 ml HCl, 2 ml HNO3, 1 ml HClO4 and 2 ml HF). The 

digestion mixture was evaporated at various temperatures to dry the decomposition (Maritz et al, 

2010).  

Samples were diluted by adding 0.5 ml aliquot of the prepared sample solution and 9.5 ml of the 

prepared standard (indium and iridium) in 2% v/v HNO3. The resultant dilution factor was 

1:2000. The final volume was set to 10 ml with the final concentration of In 20 ng ml
-1 

and 30 ng 

ml
-1

 for Ir (Maritz et al, 2010). The decomposition was analysed for major and trace elements by 

ICP-AES.   

 

Electrical conductivity, pH determinations and total dissolved salts 
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The pH and EC for the leachates were determined. The pH meter (Figure 3-2) was calibrated 

using pH standards 4, 7 and 9.21. After calibration, the liquid samples were shaken by hand for a 

few minutes. The pH electrode was immersed in the suspension and readings were recorded 

when the number was stable.  

For electrical conductivity (EC), about 30 ml of 0.01M of Potassium chloride (KCI) solution was 

added to a glass beaker. The temperature was measured and adjusted while the EC electrode 

(Figure 3-2) was inserted into the solution. Electrical conductivity was read. Distilled water was 

used to rinse the electrodes between measurements. 

 

 

Figure 3-2 Buffer solutions and EC-pH meter 

 

The total dissolved salt (TDS) concentration was determined from the measured electrical 

conductivity. The formula used is adjusted to Witwatersrand conditions as: 

 TDS = 27.44 + 6.310 × Electrical Conductivity (mS/cm) 
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Table 3-1 Summary of chemical laboratory procedures (Adapted from Estifanos, 2006 and 

Maritz et al, 2010). 

Water extractable ions, pH and EC measurements 

Step Activity Utility Purpose/reason 

1 Weighing 1 g sample material     

2 Add 20 ml of deionised water     

3 Shake for 2 hours     

4 Ion Chromatography IC (Dionex DX300) for F, Cl, Br, NO3, 

NO2,PO4, SO4
2- 

 ICP-AES ICP-AES As to Zr 

5 Settle for an hour     

6 EC and pH measurement EC and pH meter electrical conductivity 

and pH determination 

Total extraction 

1 Weighing 0.2 g of sample material 30 ml flouro-

polymer sample 

containers 

  

2 Digestion with 3 ml HCI, 2 ml HNO3, 

1 ml HCIO4 and 2 ml HF 

   Following CGS 

protocol 

3 Evaporation Fume wood   

4 Diluting with a standard solution 

(Indium and Iridium) in 2% v/v HNO3 

Calibrated bottle-top 

dispenser. ICP-MS 

As to Zr 
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3.5 COLLECTION OF REFLECTANCE SPECTRA 

Reflectance spectrum was collected using a portable Analytical Spectra Device (ASD) 

Fieldspec Pro spectrometer.  The instrument covers the visible near infrared (VNIR) 350 – 1050 

nm, the short wave infrared (SWIR) 1000 – 1800 nm and the SWIR 2 (1800 – 2500 nm) regions 

of the electromagnetic spectrum. The sampling interval for the VNIR region was 1.4 nm with a 

spectral resolution of 3 nm. The sampling interval for the SWIR region is 2 nm and the spectral 

resolution varies between 10 nm and 12 nm depending on the scan angle of the wavelength.  The 

measured spectra can either be acquired in radiance or reflectance mode. For this study, the latter 

was used as the spectra can be readily checked and the quality monitored instantaneously. 

All spectral measurements were taken in the laboratory under darkroom conditions which are 

necessary to minimize contamination by stray light. The reflected light was measured with a 25° 

field of view (FOV) fore optic. Prior to the collection of reflectance spectra, a reference spectrum 

from a white spectralon panel was taken for calibration purposes. To avoid shadows in the 

sample material, the light source (contact probe) was orientated perpendicular to a sample 

surface at a distance of 5 cm. Since interference, noise and instrument defects can affect spectral 

measurements, a single measurement cannot be assumed to be reliable. Therefore measurements 

were repeated at least three times for all the samples. 

3.6 Analysis of reflectance spectra  

The collected reflectance spectra were subjected to qualitative and quantitative analysis to 

determine mineral end-members. Qualitative analysis involved the comparison of the spectral 

reflectance of mineral precipitates and comparing it with the spectra of known mineral end-

members (USGS spectral libraries). 
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To facilitate the quantitative analysis of measured spectra, the Continuum Removal (CR) 

algorithm was applied. Continuum Removal minimizes the effect of background absorption 

features thereby highlighting and isolating absorption features of interest for further analysis (van 

der Meer et al, 2004). By applying continuum removal, the effects of spectral brightness are also 

cancelled. The CR technique was used to normalize the spectra to make absorption features 

comparable.  Van der Meer et al. (2004) compares this normalization process to fitting a rubber 

band over the local reflectance maxima of a spectrum where the value of the hull is adjusted to 

100% reflection. Absorption values between 0 – 1 are obtained by dividing the reflectance at a 

certain wavelength of the absorption feature by the value of the hull at the same wavelength (van 

der Meer et al, 2004). CR normalized spectra show a flat background while different absorption 

features are retained. 

 

The normalization of the spectra achieved by the CR algorithm is necessary for comparison of 

the spectra to other spectra taken with different instruments or under different environmental 

conditions. Using known mineral spectra libraries, the spectral signatures were tested against 

known minerals to identify end-members using ENVI 4.7 software (ITT Visual Information 

Solution, Boulder, Co, USA).  After Continuum removal, the spectral analyst tool was used for 

comparison between measured spectra and spectral libraries. Spectral Analyst makes use of 

different algorithms to rank comparison scores of spectral information. In this study, Binary 

Encoding (BE), Spectral Angle Mapper (SAM) and Spectral Feature Fitting (SFF) were used to 

compare measured reflectance spectra to known mineral spectral libraries. 
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3.6.1 Quantitative absorption feature (QAF) analysis 

Absorption features in the electromagnetic spectrum are related to the composition and 

concentration of substances in the material. Quantitative Absorption Feature (QAF) analysis 

makes use of the assumption that absorption features are caused by chemical and physical 

structure of the material (van der Meer, 2004). The QAF method works on dominant absorption 

features after CR normalization. After CR normalization, absorption features are characterised in 

terms of wavelength position, depth area and asymmetry. The absorption position (WAVE) is 

defined as the band having the minimum reflectance value over the wavelength range of the 

absorption feature. The absorption depth (DEP) is defined as ―the reflectance value at the 

shoulders minus the reflectance value at the absorption-band minimum‖ (van der Meer, 2004). 

The width of the absorption (WID) is the full wavelength width at half DEP. The absorption area 

(AREA) is the area of the absorption feature that is the sum of DEP and WID.  

The asymmetry of the absorption feature is defined as  

S = Aleft/Aright         Equation 11 

Where Aleft is the area of the absorption feature from the left shoulder to the minimum point and 

Aright is the area of the maximum point to the right shoulder of the absorption feature (van der 

Meer, 2004). 

In numerous studies, the absorption position (WAVE), depth (DEP) and area are used for 

exploring features of materials (Choe et al, 2008). For this study, the main absorption features 

identified after continuum normalisation were processed  to identify WAVE, DEP and AREA 

parameters using Dispec45 software (van der Meer et al, 2004).  
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3.6.2 First derivative reflectance transformation 

A second technique for quantifying spectral parameters is by the determination of 

spectral derivatives. The standard first derivative is commonly used in studying physical and 

chemical properties of soils and rocks. The first derivative is related to the slope and length of 

the spectrum (Mutunga, 2004) and is derived as: 

FDR (λi) = (R (j+1) – R (j) ) /∆         Equation 11 

where FDR is the first derivative at a wavelength i midpoint between wavebands j and j +1 and 

R (j) is the reflectance at wavelength j 

• R_(j+1) is the reflectance at waveband j+1 

•  ∆_ is the difference in wavelengths between j and j+1 

In the study, first derivative is used to define spectral variability.  Derivative transform is useful 

for the identification of materials through analysis of the percentage reflectance of spectra at 

specific wavelength intervals. First-derivative values would be high at where the slope of 

reflectance values changes rapidly. In this investigation, derivatives around major absorption 

features (0.69, 0.98, 1.4, 1.8 and 2.2) were selected for spectral analysis. An example of first 

derivative transformed spectra is shown in Figure 3-3.  
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Figure 3-3 Example of first derivative spectrum for selected samples 

 

3.7 Geochemical modelling 

The results obtained from the analysis of dissolved crusts (pH, EC, metal and sulphate content) 

were modelled using the PHREEQC geochemical modelling code (Parkhurst and Appelo, 1999). 

Forward modelling based was applied to predict the evaporation sequences of the minerals. The 

predicted minerals were compared to those obtained by XRD, ASD and remote sensing. This 

way, the methods were complementary. 

3.8 Statistical modelling techniques 

Statistical regression models have been used to relate spectral data to chemical variables 

of mineral salts. In spectroscopy, regression models are used to reduce the number of spectral 

bands to a suitable number for modelling. Normal regression establishes relationships between X 

variables and Y variables. They work well with low sample numbers with no correlation between 

the samples. Spectral measurements using the handheld ASD instrument results in numerous 
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measurements that can be noisy, incomplete and strongly correlated with each other. This results 

in variables that are not independent from each other.  

 

To counteract this problem, the Partial Least Square Regression (PLSR) technique, an extension 

of Multiple Linear Regression, which deals well with multi collinearity, large number of X-

variables and simultaneously model numerous response variables, was used (Wold et al, 2001). 

In PLSR, original X variables are compressed into a few variables known as PLS components. 

Since fewer variables are considered, it is easier to explain the relationship between X and Y 

variables (Ramoelo et al, 2013). The results of the PLSR model can be improved by selecting the 

scale of variables to focus on (essentially highlighting the most important variables by giving 

more weight to the X variables). Several variables can be equally important and auto-scaling is 

the preferred standard method for selecting variables. The auto-scaling procedure standardises 

the variance of the variables by dividing the variable value with the standard deviation of the 

variable and centre it by subtracting the average. By doing so, each variable is given the same 

weight or same prior importance in the analysis (Wold et al, 2001).  

When modelling chemical variables and their spectral response, the PLSR is based on the Beer 

Lambert Law. According to this law, there is a linear relationship between absorbance of energy 

and the concentration of absorbing species (Gannouni et al, 2012; Wu et al, 2007). These studies 

suggest that the spectral measurements would differ according to the mineral content and 

concentration of mine waste.   

The Parles v3.1 (Viscal-Rossel, 2008) software was used to perform PLSR. Spectral parameters 

and geochemical variables from the analysed samples were used in the PLSR. Spectral 

parameters included the use of all reflectance values between 400 – 2500 nm and also value band 
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ratios, which are derived from specific wavelength positions. Results from the PLSR model are 

given as Root Mean Square Error (RMSE), Ratio of the Prediction to Deviation (RPD) and Mean 

and relative absolute errors (MAE). These variables assess how well the model predicts the 

variables. The coefficient of correlation (R
2
) is also determined to indicate the statistical 

correlations between the measured variables and the predicted variables. Model accuracy is 

determined by MAE and R
2
 values (Viscal-Rossel et al, 2006). 

 

Geochemical and reflectance data were stored and processed in Microsoft excel spread 

sheets for easy management. Additional spread sheets were created to include parameters such as 

land use class and sample colour. Basic statistical parameters such as minimum, mean, median, 

maximum and standard deviation were calculated. SAS Enterprise 5.1 software was used to 

construct graphs and plots for visual assessment of the data. The problem with geochemical data 

and reflectance datasets is that it does not follow normal distribution. They are usually skewed 

because of severe outliers and these datasets are characterised by wide variance. Because of such 

distributions, non-parametric tests would be used for statistical comparison. Non-parametric 

tests, known as distribution free tests are suitable to these datasets because they are effective with 

small sample sizes and are resistant to outliers.  
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4 Results and discussion 

4.1 Geochemical characteristics of salt precipitates 

4.1.1  Descriptive statistical analysis 

The chemical characteristics of the crusts are presented in Table 4-1. For comparison purposes, 

groundwater and tailings concentrations from the study area are also included in the table. 

Generally, medial values of Ni, Cr, Co, Zn, As and U were higher than the tailings and 

continental crust averages. Pb is the only element that recorded similar concentration to 

continental crust averages. Overall, the chemical results are typical of what could be expected in 

areas subjected to acid mine drainage and similar to those observed by other researchers who 

studied similar sites within the Witwatersrand Basin.  

Elevated concentrations of Cr, V, Mn and Fe occurred in wetland, cultivated and bare field areas. 

Tailings footprints were characterised by high levels of Co, Ni, Cu and As. High levels of Cd and 

Cu were associated with wetlands and tailings material. Th and Zn are the only elements that 

showed uniform distribution in all land-use areas. High levels of Pb and Sb occurred in 

residential and wetland areas.  

The pH values ranged from 2.65 to 8.2.  Figure 4-1 shows the variation of pH values. High pH 

values were associated with wetland samples. Similar values have been reported by Phaleng 

(2009) for Blesbokspruit sediments and Roychoudhury and Starke (2006) reported a median of 

8.1 for Blesbokspruit waters. Residential and cultivated areas also showed neutral to basic pH 

values. Low pH values (mean 2.65) were associated with tailings footprints.  
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Table 4-1 Statistical summary of geochemical variables (n = 29; all elements in mg kg
-1 

except for 

water quality in mg/l) 

Variable Min Average Max Median 

Water 

quality 

(average)
1
 

 

Tailings 

(median)
2
 

Continental 

Crust 

(average)
3
 

As  4 71 956 14  - 72 1.5 

Cd  0 1 14 0 3   0.10 

Co  3 162 2040 38 41 26  10 

Cu  8 96 646 43 - 37 25 

Cr  15 241 971 153 5 273  35 

Ni  15 429 5128 85 301 56 20 

Pb  2 42 542 19 16 63 20 

U  1 75 1110 5 8 76  2.8 

V  4 92 378 53 1 40  60 

Zn  22 297 1972 104 572 81 71 
 

1 
Department of water affairs, 2012 

2
 Ramontja et al, 2011 

3
 Taylor and McLennan, 1995 

 

 

Figure 4-1 Box plots showing the variation of pH according to different land uses 
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The Ficklin diagram in Figure 4-2 displays a total sum of base metals against pH of analysed 

samples. Salts are classified into Near-neutral Extreme metal and Acid Extreme-metal. This 

pattern also suggests that pH exerts a major influence on the behaviour of elements. The 

precipitation of base metals is associated with higher pH values.  

 

Figure 4-2 Distribution of samples in Ficklin Diagram 

 

Figure 4-3 shows the total sum of Al, Ca, K, Mg and Na concentration over a wide range of pH 

values. The high concentrations of these ions are indicative of pronounced levels of weathering 

associated with aluminosilicates. Weathering of aluminosilicates results in the formation of 

buffering complexes like bicarbonates (Equeenuddin et al, 2010). Therefore, Figure 4-3 also 

indicates high neutralization potential associated with salt precipitates over wide range of pH 

values.  
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Figure 4-3 Distribution of selected major ions against pH 

 

Figure 4-4  presents ratios of dissolved/total concentrations versus pH.  The results suggest that 

trace metals such as Cr, Pb, As and Cu occur in particulate phases over a wide range of pH 

conditions. In acidic pH conditions, Co, Ni, U and Zn occur as free cationic forms.  

Table 4-2 Comparison of major anions (mg kg
-1

), EC (mS/cm) and pH in crusts to soil and water 

levels.  

  Crusts Tailings soil
a
 Surface Water

b
 

Background 

Borehole water
b
 

  Mean Median Mean Median Mean Median Mean Median 

pH 6 6 2.9 2.6 3.1 3.2 7.2 7.3 

EC  3051 1425 704 652 269 169 109 88 

CI  4186 354 625 370 95 76 81 75 

SO4
2-

 106270 25164 4902 4402 1534 742 280 183 

NO3 543 40 0.3 0.2 8.1 2.3 3.0 3.0 
a
 Ramontja et al, 2011 

b
 SRK Consulting, 2012 
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Figure 4-4 Dissolved concentrations divided by total concentrations plotted against pH for 

selected elements.   

 

The distribution of electrical conductivity (EC) is presented in Figure 4-5. The EC values ranged 

from 21.2 to 20800 mS/cm. The mean EC value is lower than that of seepage waters recorded by 

Rosner and van Schalkwyk (2000). Table 4-2 shows mean concentration of EC of efflorescent 

salts is higher than tailings and groundwater EC concentration. High EC values were recorded 

where the concentration of salts was high in tailings and bare soils.  High levels of electrical 

conductivity (EC) indicate substantial amounts of dissolved in the crusts. 

Concentration of anions is shown in Figure 4-6.  The presence of nitrates indicates input of 

organic matter in the environment (Table 4-1). In the study area, elevated nitrate (NO2 and NO3) 

levels occurred in residential and wetland areas which could be due to sewerage input and a 

combination of input from sewerage and plant organic matter. Phosphate showed a distribution 

pattern similar to that of nitrates, although low concentrations of phosphate were recorded in 
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cultivated soils. High levels of sulphates were associated with tailings and residential areas. Cl
-
 

and F
- 
showed uniform distributions across all land-use areas.  

 

Figure 4-5 Variation of EC according to different land uses 

 

Figure 4-6 Variation of major anions in the study area 
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4.1.2  Multivariate statistical analysis 

 Results for the Spearman rank correlation are presented in Table 4-3.   The results show that Na, 

Mg and SO4
2-

 have significant positive correlation with EC (R
2
 = 0.64, 0.52, 0.80, respectively). 

This correlation pattern indicates that EC can be used as a useful indicator for contamination. 

High correlation of Mn and Al with Co, Ni, Zn and Cd points can be interpreted as elements 

originating from the same mineral, possibly sphalerite, a zinc sulphide containing small amounts 

of Cd (Zn and Cd have similar geochemical behaviour).  

The strong correlation between V, Cr, Sb, Pb and Mo with Fe demonstrates the scavenging effect 

of iron on highly mobile elements. Correlation strength between cations and Fe-Mn oxide is 

related to the fact that Mn oxide precipitates at higher pH conditions than Fe oxides, leading to 

high scavenging potential of Fe oxides in acidic environments (Carbone et al, 2013; 

Hammastrom et al, 2005). Uranium showed a strong positive correlation (R
2
 = 0.63) with SO4

2-
. 

This indicates that U occurs as part of the sulphates. The pH shows a strong negative correlation 

(R
2
 = -0.78) with SO4

2-
. This strong correlation can be attributed to the oxidation of sulphide 

minerals. High EC values are related to low pH values and the two parameters are significantly 

negatively correlated. According to Equeenuddin et al. (2010), this is because most elements are 

in dissolved form at low pH. There is a moderate negative correlation between Fe and SO4
2-

. 

This negative correlation indicates that oxidation of sulphide material is not a dominant process. 

This trend may also indicate hydrolysis of iron (Equation 4) where the precipitation of Ferric 

hydroxide removes iron solution.  Mg, Na and Ca recorded high positive correlation with 

sulphate ions. Mg, Na and Ca are conservative in acid mine drainage conditions and only 

precipitates with sulphate ions (to form epsomite, tamarugite, thernadite and gypsum). Al 

showed positive correlation with sulphate. Al precipitates with SO4
2-

 at higher pH conditions (to 
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form mineral alunogen). The strong correlation of Al, Mg, Na and Ca with sulphate ions suggests 

evaporation (precipitation) from highly concentrated brine solution (Fitzpatrick et al, 2009). 

Graphical display of the correlation can reveal the non-conservative nature and relative 

attenuations of elements. Chemistry of the crusts shows that sulphate is the conservative anion 

because of its high concentration and is usually unaffected by precipitation and adsorption 

processes. Plotting the concentration of elements against sulphate and pH reveals the behaviour 

of elements during hydro-geochemical processes. Uranium, V, Cr, Ni and other metals showed a 

non-linear pattern when plotted against sulphate (Figure 4-7). 

The elements (U, V, Cr, Co, Ni, Zn, Cd, Pb and Cu) are non-conservative and react rapidly with 

changes in hydro-geochemical conditions. Low pH values (3-4),   high concentrations of Co, Ni, 

Zn, Cd, U, As were observed. At a pH of 8, the concentrations of these elements decreased to 

nearly background levels. This could be attributed to their precipitation and co-precipitation with 

Fe. Cr and V, on the other hand showed the opposite trend (Figure 4-4).  These elements are 

known to form soluble complexes at high pH. Uranium also behaves similarly, but it is not very 

apparent why its behaviour is different in this case.  
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Table 4-3 Spearman correlation analysis for elements in mineral salts 

 

Na Mg Ca V Cr Mn Fe Co Ni Cu Zn Mo Cd Pb U As Sb Th Cl NO3
- PO4

3- SO4
2- pH

Na 

Mg 0.67

Ca 0.31 0.46

V -0.42 -0.50 -0.10

Cr -0.36 -0.55 -0.22 0.89

Mn 0.20 0.21 -0.11 0.21 0.14

Fe -0.22 -0.45 -0.09 0.88 0.85 0.27

Co 0.21 0.22 -0.17 0.15 0.21 0.86 0.29

Ni 0.27 0.40 -0.01 0.08 0.18 0.72 0.20 0.92

Cu -0.02 0.01 -0.25 0.46 0.60 0.63 0.46 0.77 0.80

Zn 0.26 0.37 -0.02 -0.05 -0.02 0.67 0.00 0.68 0.73 0.60

Mo -0.19 -0.26 0.15 0.76 0.76 -0.07 0.65 -0.22 -0.15 0.33 -0.16

Cd 0.23 0.32 -0.05 -0.05 0.03 0.66 0.05 0.74 0.78 0.65 0.93 -0.18

Pb -0.11 -0.30 0.09 0.53 0.65 0.19 0.59 0.15 0.22 0.53 0.25 0.67 0.29

U 0.32 0.35 -0.17 -0.37 -0.14 0.27 -0.22 0.54 0.62 0.39 0.52 -0.49 0.58 -0.03

As -0.03 -0.30 -0.14 0.23 0.43 0.08 0.48 0.26 0.26 0.22 0.08 -0.04 0.16 0.35 0.38

Sb -0.27 -0.46 0.14 0.64 0.75 -0.03 0.70 -0.05 -0.01 0.32 -0.03 0.75 -0.01 0.81 -0.27 0.43

Th -0.26 -0.27 -0.10 0.62 0.73 0.12 0.62 0.19 0.25 0.58 0.24 0.62 0.26 0.65 0.07 0.36 0.62

Cl- 0.71 0.60 0.33 -0.50 -0.54 0.08 -0.35 -0.03 0.01 -0.24 0.18 -0.23 0.16 -0.10 0.06 -0.35 -0.30 -0.35

NO3
-

0.22 0.08 0.01 0.21 0.34 0.43 0.27 0.48 0.47 0.60 0.36 0.20 0.34 0.50 0.14 0.17 0.41 0.24 0.15

PO4
3-

0.04 0.14 0.08 -0.11 -0.02 0.35 0.02 0.30 0.32 0.27 0.41 -0.03 0.48 0.34 0.05 0.13 0.24 0.09 0.15 0.48

SO4
2-

0.73 0.72 0.19 -0.71 -0.60 0.22 -0.55 0.30 0.36 -0.04 0.37 -0.58 0.34 -0.33 0.63 -0.06 -0.53 -0.35 0.54 0.02 0.07

pH -0.34 -0.14 0.33 0.47 0.21 -0.01 0.22 -0.30 -0.28 -0.05 -0.05 0.57 -0.17 0.25 -0.70 -0.53 0.35 0.16 -0.06 -0.03 0.00 -0.57

EC 0.64 0.53 0.16 -0.54 -0.40 0.29 -0.28 0.45 0.40 0.05 0.26 -0.49 0.32 -0.18 0.57 0.24 -0.35 -0.25 0.43 0.26 0.33 0.79 -0.72
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Figure 4-7 Relationship between sulphate and selected elements 

 



43 

Oxidation of sulphide material is usually followed by buffering action of calcium carbonate 

which controls the concentration of calcium and sulphate ions. The presence of dolomite in the 

area also contributes significantly to the buffering capacity in the samples. 

 According to Equeenuddin et al. (2010), the reaction of sulphide oxidation and carbonate 

buffering is consistent with a Ca
2+

/SO4
2-

 molar ratio of 2. Figure 4-8 shows Ca
2+

/SO4
2-

 ratio for 

most samples is less than 2, indicating that the are other mechanism affecting Ca and SO4
2-

 other 

than  calcium buffering reaction. 

 

Figure 4-8 Ca/SO4 ratio plotted against pH 
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4.1.3 Effect of land use and sample colour on the total concentration of elements  

The Krustal-Wallis (ANOVA) test was used for comparison where there were more than 

three groups. Statistical analysis of the geochemical dataset and reflectance datasets was 

performed to determine differences between 1) different land use areas and the concentration of 

elements, and 2) colour of the samples and the concentration of elements. 

A 95% level of significance was used for testing, meaning a p-value less than 0.05 was 

considered significant. Krustal-Wallis (ANOVA) test results are shown in Table 4-4. 

Geochemical variables V, Cr, Sb, SO4
2-

, and pH show statistical significance with land use. All 

other geochemical variables have p-values more than 0.05 meaning the difference between the 

means is not big enough to be considered statistically significant. pH is the geochemical variable 

with the lowest p-value. V, Cr, Co, U, As, SO4
2-

, pH and EC showed different levels among 

different colours (Table 4-4). For Co, U, As, SO4
2-

, pH, EC, Ni, high mean values are associated 

with white samples and V and Cr showed high mean values in red/yellow samples (Figure 4-9).  

 

Figure 4-9 Median values of selected elements in different salt precipitates 
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Table 4-4 Results (p-values) of comparison between land use and colour (α = 0.05) 

Element Land-use Colour Element Land-use Colour 

V 0.0294* 0.0202* As 0.3866 0.0363* 

Cr 0.0257* 0.0109* Sb 0.0908 0.0018* 

Co 0.3045 0.0025* Cl 0.71 0.6042 

Ni 0.3439 0.0043* NO3 0.5585 0.4381 

Cu 0.3393 0.2176 PO4 0.6068 0.4287 

Zn 0.44 0.0865 SO4
2-

 0.0976 0.0092 

Pb 0.1214 0.069 pH 0.0053 0.0028 

U 0.3343 0.0056* EC 0.1049 0.0112 

 

4.2 Geochemical assessment of contamination levels 

Several methods were used to assess the quality of the collected crusts. Firstly, the results 

of the chemical analysis of soil crusts were compared to the results of the chemical analysis of 

the mine waste residues as well as groundwater. Enrichment factors and geochemical indices 

were determined to establish the degree of contamination.  

4.2.1  Enrichment factors 

An enrichment factor (EF) is used to quantify the level of contamination of the 

environment. It is a ratio that describes the magnitude at which the contaminant is enriched 

above what is considered background value. This ratio is defined as:  

background

sample

RM

RM
Ef

)/(

)/(


        Equation 12

 

 where M is metal concentration and R is concentration of a reference element.  
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The appropriate reference metals are those not subjected to contamination by human sources. An 

element qualifies as a reference if it is of low occurrence variability and is present in the 

environment in trace amounts. Scandium (Sc) was chosen as reference element. A subsoil 

sample from an adjacent bare field was taken as a reference point and was used for EF 

calculations.  

Elements which are naturally derived from the environment have enrichment values of nearly 1, 

while elements affected by human activities have enrichment values of greater magnitudes. If the 

EF of an element is greater than 1, this indicates that a contaminant is more abundant in soil 

relative to its regional background abundance (and may indicate human influences). If the EF 

values are greater than 5, they are considered to be contaminated with related metals (Loska et 

al, 2004). Table 4-7 shows contamination levels according to EF indices. As the EF values 

increase, the contributions of the anthropogenic origins also increase (Loska et al, 2004).  

Table 4-5 Classes of contamination by metals according to EF indices 

Value Degree of Contamination 

< 2 deficiency to minimal 

2--5 moderate enrichment 

5--20 significant enrichment 

20--40 very high enrichment 

>40 extremely high enrichment 

 

Calculated EF values are presented in Figure 4-10. The majority of the elements show moderate 

to significant enrichment. There is a very high enrichment for Cr, Co, Ni, Cu, Zn, Cd and Th. 

The metal enrichment factors in mineral crusts follows the order Cd> Zn> Co> Ni> Cu> Th> Cr 

> Mo > V> Pb> U. 
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Figure 4-10 Variation of EF values for selected element 

 

4.2.2 Index of Geo-accumulation 

The geo-accumulation index is used to evaluate metal accumulation in sediments when 

compared to the background. This index measures the degree of contamination by a metal and is 

calculated as follows: 

)5.1/(2 nngeo BCLogI                        Equation 13 

where Cn is the total concentration and Bn is the background value.  

Natural variation of the background value is adjusted by the factor of 1.5 (Kalebder and Ucar, 

2013). The average concentrations of borehole soils from the Witwatersrand Basin were taken as 

geochemical background values.  
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Table 4-6 Classes of contamination by metals according to Igeo indices  

Value Degree of Contamination 

0 Unpolluted 

0 - 1 Unpolluted to moderately polluted 

1--2 Moderately polluted 

2--3 Moderately to highly polluted 

3-- 4 Highly polluted 

 

Calculated Igeo values are presented in Figure 4-11. Igeo values greater than 5 were obtained for 

Co, Ni, Cu, Zn, Cd, Pb and U, indicating metal enrichment in precipitate samples. The remainder 

of the elements fell into class 1, indicating no pollution to moderate pollution.  

 

Figure 4-11 Variation of Igeo for selected elements 
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4.2.3 Pollution Load Index 

The contamination factor (CF) is used to quantify the level of contamination by a metal. 

The contamination factor is ratio of metal concentration and background metal. Contamination 

factor is expressed as: 

metalofvalueBackground

metalaofionConcentrat
CF 

       Equation 14

 

Pollution Load Index (PLI) is used to define the total contamination effect of the metals. This 

index is the geometric mean of the concentration of different trace metals present in the study 

area. It is expressed as:  

n valuesCFofnumbernofoductPLI Pr      Equation 15
 

Where CF is the contamination factor and n is the number of metals (Kalender and Ucar, 2013).  

 

Table 4-7 Classes of contamination by metals according to PLI indices (Kalender and Ucar, 

2013) 

PLI Value Degree of Contamination 

>1.5 Nil to very low 

1.5-2 Low 

2--4 Moderate 

4--8 High 

8--16 Very High 

16--32 Extremely High 

>32 Ultra high 
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Figure 4-12 Variation of calculated PLI values 

 

Variation of calculated PLI values is shown in Figure 4-12. Calculated PLI values ranged from 

14 to 156 indicating extremely high contamination levels in all sampling sites. Extremely high 

PLI values were associated with wetlands and bare fields samples. Variation of PLI showed a 

similar trend to that of EC, SO4
2-

 and to a lesser extent pH.  

 

4.3 Mineralogy and geochemical modelling 

4.3.1 X-ray diffraction and SEM mineralogical phases 

Representative samples from all four types of precipitates were analysed for 

mineralogical composition. The XRD is a semi- quantitative method; it does not have the exact 

quantification limit (LOC).  A total of 12 precipitates were analysed by X-Ray diffraction and 
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the results accuracy ±5% are presented in Table 4-8. The main aim of mineralogical analysis was 

mineral identification and not for mineral quantification.  

 

Table 4-8 X-ray diffraction mineral weight percentage for selected mineral precipitants 

 

 

The results of the mineralogical analysis are presented in Table 4-8 can be summarized as 

follows: 

 

Silicate minerals  

The dominant mineral in all precipitates is quartz. The content of quartz ranged from 1 wt. % to 

96 wt. % and high quartz content is associated with red and yellow precipitates.  Feldspar 

minerals micas and microcline ranged from 1 wt. % to 10 wt. % in red and yellow crusts. Altered 

mica in the form of serpentine was detected in white crusts with a concentration of 5 wt. %.  

Additionally, kaolinite and chlorite were also detected. In all the samples, the concentration of 

Mineral Ideal Formula MWS 31 MWS 32 MWS 40 MWS 44 MWS 59 MWS 66 MWS 82 MWS 101MWS 131MWS 147MWS 149MWS 151

Gypsum CaSO4•2H2O Trace Trace 3 7 Trace - 5 Trace - 2 Trace 4

Quartz SiO2 5 2 4 27 86 Trace 88 96 16 77 85 87

Kaol/Chlor/Mica  Al2Si2O5(OH)4 /  ClO2 - - - - 11 - 7 - 10 13 12 6

Jarosite KFe
3+

3(OH)6(SO4)2. - - 2 - Trace - - 3 - 8 2 2

Alunogen Al(H2O)6]2(SO4)3
.
5H2O - 2 - 2 - - - - - - -

Hexahydrite MgSO4•6H2O 9 20 58 - Trace - Trace - - - - -

Blodite Na2Mg(SO4)2·4H2O - - 33 - - - - - - - - -

NH-Mn Fluoride  (NH4)2(MnF6) 23 - - - - 12 - - 40 - - -

Apjohnite MnAl2(SO4)4(H2O)22 19 23 - 63 - 87 - - 34 - - -

Tamarugite   NaAl(SO4)2(H2O)6 42 52 - - - - - - - - - -
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these clay minerals was 5 wt. % or lower. The other portion of clay minerals remained 

undifferentiated, and is reported as Interstratification.  

 

Sulphate and sulphide minerals  

Chalcopyrite, pyrite, and other dominant minerals in the tailings storage facilities and 

mineralized ore body were not detected in the mineral efflorescent crusts. Jarosite was the most 

common sulphate mineral in the samples. Jarosite (KFe (SO4)2 (OH)6)  concentration ranged 

from 1 wt. % in MWS 59 to 8 wt. % in MWS 147. Gypsum is another dominant mineral with a 

concentration range of 1wt. % to 7wt. %. Trace amounts of gypsum occurred in MWS 59, MWS 

66, MWS 101 and MWS 131. In all the samples, gypsum was found to be occurring with 

jachymovite, a uranium sulphate mineral. Jachymotive ((UO2)8(SO4)(OH)14• 13H2O) occurred in 

traces and it is not reported with the main results. Hexahydrite  (MgSO4 • 6H2O)  was found in 

high concentrations, ranging from 1 wt. % to 58 wt. % with white crusts containing 

approximately 20 wt% and brown crusts containing about 58 wt. % hexahydrite. Apjohnite 

(MnAl2 (SO4)4(H2O) 22) is a manganese aluminium sulphate salts that occurred in high 

concentrations in white mineral crusts only. Its concentration ranged from 20 wt. % to 87 wt. %. 

Tamarugite (Na Al (SO4)2(H2O)6 ), a sodium aluminium sulphate was associated with apjohnite 

and occurred in concentrations that ranged from 42 wt. % to 52 wt. %.  Tamarugite and apjohnite 

in samples MWS 31, MWS 32, MWS 44, MWS 66 and MWS 131 is associated with high 

contents of Cd, U, Ni and As. Fibroferrite (Fe(OH)(H2O)2SO4) is another sulphate mineral that 

was detected at low concentrations of 3 wt. %. Other sulphate minerals found at low 

concentrations include alunogen (Al2 (SO4)3 •17H2O) and blodite (Na2Mg (SO4)2 •4H2O). 
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Other minerals  

Hematite and goethite were only detected in one sample and at low concentrations of about 3 wt. 

%. Aragonite is the only carbonate mineral that was detected in low concentrations of 1 wt. % or 

lower. The most diverse mineral compounds detected are Fluellite (Al2PO4F2 (OH)(H2O)7) and 

Ammonium Manganese Fluoride ((NH4)2(MnF6)).  These minerals are associated with white 

mineral salts and are occur in high concentrations ranging from 5 wt. % to 40 wt. %.  

In addition to XRD analysis, the mineral crusts were subject to analysis by Scanning Electron 

Microprobe (SEM) analysis.  

 

Na-Mg bearing sulphates  

Blodite (Na2Mg (SO4)2 •4H2O) and picromerite (K2Mg (SO4)2 •6H2O) are the dominant minerals 

in white samples. Blodite is not well crystallized, and occurs as fine grained material. Blodite 

also forms tubular or lath-shaped crystals in a tamarugite matrix. Picromerite shows a prismatic 

structure and is associated with halite and hexahydrite.  

 

Figure 4-13 SEM images of Blodite and Picromerite 
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Mg-bearing sulphates  

Hexahydrite (MgSO4 • 6H2O). and wupatkiite ((Co,Mg)Al2 (SO4)4•22H2O) are the dominant 

Mg-sulphates in all salt precipitates. Hexahydrite shows thick short crystal that looks blocky. 

Hexadrite also occurs as fine grains between Mn-Mg-sulphur matrix. Wupatkiite shows feathery 

crystals intergrown with hexahydrite. Wupatkiite crystals form aggregates of curved crystals that 

show light and dark colour shades. Alunogen was present in colloidal form.  

 

Figure 4-14 SEM image of Wupartkiite and Hexahydrite 

 

Al bearing sulphates  

Tamarugite (Na Al (SO4)2(H2O)6 )  and apjohnite (MnAl2 (SO4)4(H2O) 22)  are the dominant Al-

sulphates in the samples. Tamarugite shows compact, platy crystals and it is also recognised as 

intergrowths in apjohnite and hexahydrite matrix. Apjohnite shows thin needle-like crystals 

forming fibrous aggregates.  
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Figure 4-15 SEM images of Tamarugite, Apjohnite with Mn-Mg-S matrix 

Fe bearing sulphates  

Jarosite (KFe (SO4)2 (OH)6) appears to occur in colloidal form and it is not well crystallized. 

SEM images indicate colloidal iron that has not crystallized. Jarosite is associated with platy 

crystals of mica minerals (muscovite appears to be covered with iron). Jarosite also occurs as 

coating gypsum grains. High iron content associated with jarosite indicates the presence of iron 

hydroxides.  

 

Figure 4-16 SEM image of Jarosite and Fe-rich matrix. 
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Ca-bearing sulphates and other minerals  

Gypsum (CaSO4 •2H2O) is recognised as single crystals in alunogen- blodite matrix. Gypsum is 

covered by halite.  

The crystal matrix of the minerals was dominated by chlorine. Fine crystalline habits and the 

rough texture (disorder lattices) indicate that evaporation occurred from a highly supersaturated 

groundwater. The crystal sizes of apjohnite, blodite, wupatkiite and tamarugite are generally 

small, indicating fast crystallization processes. The poor crystalline nature of jarosite, alunogen 

and hexahydrite are indicative of their high solubility.  

 

4.3.2 Geochemical modelling 

In order to identify mineral precipitates that would occur when the salt efflorescent 

dissolve in water, saturation indices were determined using the PHREEQC geochemical 

modelling code based on the Wateq4f database. Saturation indices can be defined as the 

concentration of the dissolved mineral components in saturation with the solution and is 

expressed as:  

Saturation Index (SI) = log (      ⁄ )    Equation 16 

 Where IAP is the ion activity product of the solution and Ksp is the solubility product. An SI 

value of zero (SI=0) indicates equilibrium between mineral solution and saturation. SI greater 

than zero indicates super-saturation of the mineral and precipitation will occur. An SI smaller 

than zero indicates under-saturation and mineral dissolution will occur (Sracek et al, 2010) 

 Representative samples were leached with deionised water. The chemical results from leachate 

sample analysis, shown in Table 4-9 were used as parameters for geochemical modelling. 
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In the experiment, evaporation was initiated with 1000 grams of water. Because oxidation-

reduction potential information and dissolved oxygen content for the solutions were not 

determined, modelling was performed twice for each sample. In the first model, a default pe 

value of 4 was used and the pe value varied depending on the constituents in the solution. 

Table 4-9 Physical parameters and anions of the leachates used in the evaporation 

experiment. 

  pH EC  Cl SO4
2-

 Nitrate as N Ortho Phosphate  

    (µS/cm) mg/l mg/l mg/l mg/l 

MWS 10 8.049 238 33 46 16 0.7 

MWS 38 8.204 21.2 78 165 3 <0.2 

MWS 51 3.975 2250 - 2 740 <0.2 <0.2 

MWS 68 6.393 424 <5 1 970 <0.2 <0.2 

MWS 116 6.975 96.4 <5 266 <0.2 <0.2 

MWS 149 3.662 2390 14 1 051 0.6 <0.2 

 

In the second model, the solutions were equilibrated with atmospheric oxygen. 

It was assumed that the solutions were in equilibrium with the atmosphere. Assuming that the 

atmospheric pressure is approximately 80 kPa (near Johannesburg), the partial pressure of 

oxygen is 16.8 kPa or 0.165 atm (oxygen contributes up to 21% of the total atmospheric gases). 

The saturation index for a gas is equal to log (gas pressure/1 atm). Therefore, the solutions were 

equilibrated with atmospheric oxygen by defining a saturation index of -0.78. Similarly, the 

atmosphere consists of 0.04% of carbon dioxide (0.0312 kPa or 0.000315 atm). Therefore, the 

saturation index used for CO2 was -3.5.  

Solutions were allowed to equilibrate (using the MIX function). Table 4-10 summarises charge 

balances and pe values of the systems once they were equilibrated with atmospheric oxygen and 

carbon dioxide. Negative charge balances indicate excess abundance of anions. Positive charge 

balances indicate abundance of cations. The charge balances were quite poor. Ideally, charge 

balances should be within ±5%. Their deviation from this suggests that some analytes were not 
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taken into account. Because alkalinity was not measured, initial default pe value of 4 was used 

for modelling. When the solutions were equilibrated with atmospheric oxygen, the pe value was 

allowed to change in order to provide redox equilibrium in the system. 

Table 4-10 Charge balances and pe values of the solutions  

Solution number Charge balance (%) pe 

MWS 10 -27 12.5 

MWS 38 +90.5 12.4 

MWS 51 -61.2 16.6 

MWS 69 -92.4 15.8 

MWS 116 -65.5 14.16 

MWS 149 + 8.54 16.92 

 

Several minerals followed the ideal saturation index pattern. Some of these minerals are silicate 

admixtures, which would not be expected to precipitate at a rate comparable to evaporation at 

atmospheric pressure and temperature. Therefore, silicate admixtures have not been selected as 

equilibrium minerals even though they do become oversaturated. However, quartz has been 

defined as an equilibrium phase as there have been reports of low temperature quartz 

precipitating from exposed solutions. Iron-bearing minerals such as Fe (OH)3 were oversaturated 

before evaporation began. Their precipitation could be kinetically hindered hence their 

oversaturation in the starting solution. It is possible for these minerals to precipitate in the 

environment and their absence in the evaporation profile is merely because they do not follow 

the ideal pattern. Observations and actions for specific samples can be summarized as follows: 

1. MWS 38: Evaporation models for MWS 38 are shown in Figure 4-18. This solution had 

a high pH and a large positive charge balance. Therefore, an additional run was 

undertaken in which the charge discrepancy in the solution was reduced by allowing the 

software to introduce carbonate ions until the solution was charge neutral. The solution 

was still equilibrated with the atmospheric gases. 
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Figure 4-17 Evaporation model of minerals expected to precipitate from MWS 38: a) 

Evaporation profile with no equilibrated gases and no charge balance b) With charge balance 

on carbonate species and equilibration with oxygen c) Evaporation profile with no charge 

balance and equilibration with atmospheric gases. 

 

2. MWS 51: Evaporation models for MWS 51 are shown in Figure 4-18. Without the 

addition of oxygen, the pe of the solution remains low (less than 4). This was not the case 
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in the above solutions (MWS 10 and MWS 38) because the solution contained a larger 

amount of redox active elements which equilibrated to define a greater pe (of 

approximately 12 and 11 respectively). As such, when no minerals are allowed to 

precipitate in the initial saturation indices observation model, the model predicts the over 

saturation of sulphide and ore minerals which is very unlikely in an aerobic, oxic 

environment. The precipitation of gypsum removes the sulphur from the system and the 

sulphide minerals approach saturation but do not become oversaturated.  

 

 

Figure 4-18 Evaporation model of minerals expected to precipitate from MWS 51, a) 

Evaporation profile with no equilibration of gases b) Evaporation profile with the 

equilibration of atmospheric gases 

 

With the equilibration of atmospheric gases, the model predicts only the formation of gypsum 

and not of the ore minerals as seen in the model above. 

3. MWS 68: Evaporation models for MWS 68 are shown in Figure 4-20. Looking at the 

same model and zooming in on the jarosite curves, the model predicts the complete 

dissolution of the solid solution jarosite (sodium, hydronium and potassium solid 
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solution) and the subsequent precipitation of the potassium end member. This occurs 

towards the end of the evaporation sequence when there is only 135g of water remaining 

from an initial amount of 1 kg. 

Jarosite is oversaturated from the start of the modelling process when the solution is 

equilibrated with atmospheric oxygen. The equilibration transforms iron (II) into iron 

(III). Iron (III) is present in jarosite and as such, jarosite is over saturated from the start. 

The conversion of iron (II) to iron (III) is a slow process in acidic solutions (below pH 3) 

but occurs significantly quicker at higher pH values. The modelling of the evaporation of 

this solution would be improved if dissolved oxygen content or Eh measurements were 

provided. Supposing that the addition of oxygen was modeled first, followed by the 

evaporation of water from the solution, the evaporation profile would change to the 

model presented in Figure 4-20. 
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0Figure 4-19 Evaporation model of minerals expected to precipitate from MWS 68, a) 

Evaporation profile without equilibration of gases, b) Jarosite curve of the same model, c) 

Evaporation profile assuming complete equilibration with atmospheric gases 
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Figure 4-20 Evaporation model of minerals expected to precipitate a) when equilibrated with 

oxygen b) and then with water 

 

4. MWS 116: For the solutions equilibrated with atmospheric oxygen, the solid solution and 

potassium jarosites and pyrolusite are saturated at the start of the modelling once (similar 

to MWS 68). Evaporation profile without jarosite and pyrolusite as equilibrium minerals 

is shown in Figure 4-21 and Figure 4-22 shows an evaporation model without 

atmospheric gases.  

 

Figure 4-21 Evaporation models of minerals expected to precipitate in equilibrium with 

atmospheric gases a) modelled without oversaturated solids, b) when solids jarosite and 

pyrolusite are taken into account 
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Figure 4-22 Evaporation model of minerals expected to precipitate without equilibration of 

gases. 

 

5. MWS 149: This solution contains significant proportions of redox active elements. As 

such, upon equilibration of the solution alone without any atmospheric gases, the pe is 

15.8. Therefore, most of the iron is speciated as iron (III) and jarosite is over saturated 

from the start of the modelling process. Looking at the minerals which follow the ―ideal‖ 

pattern (that is start as undersaturated and become oversaturated), the predicted sequence 

of precipitation is shown in Figure 4-23a and evaporation model for the solution when 

equilibrated with atmospheric gases in Figure 4-23b. The model does not change when 

equilibrated with atmospheric gases because the pe of the original solution is already 

high. 
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Figure 4-23 Evaporation model of minerals expected to precipitate a) without atmospheric 

gases, b) when equilibrated with atmospheric gases.   

 

 

4.3.3 Relationship between XRD and geochemical mineral phases 

Field investigations revealed diverse sulphate minerals that are highly unstable and their 

occurrence is controlled by humidity and temperature variations. Identification of mineralogical 

phases by X-ray diffraction supports the field observation and suggests that the sulphate minerals 

precipitate in the series illustrated in Figure 4-24.  
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Figure 4-24 Generalised precipitation sequence from XRD results, showing the relationship 

between evaporation, humidity and cation substitution (Adapted from Onac et al, 2003).  

 

The series of apjohnite through to tamarugite and alunogen indicates high humidity and low 

evaporation conditions (wet conditions). The sequence of epsomite (MgSO4.7H2O) to 

hexahydrite (MgSO4.6H2O) to starkeyite (MgSO4.4H2O) in Table 4-8 also indicates decreasing 

moisture contents and high evaporation rates (dry conditions).  

Geochemical modelling results indicate that carbonate minerals have the highest saturation 

indices. Salt leachates are under saturated with Al-mineral phases. High saturation indices can be 

explained by the pH of the samples and Al minerals precipitates at low pH conditions. The 

precipitation of gypsum and other sulphate minerals is largely influenced by the concentration of 

salts. Calcite, gypsum and fluorite precipitate earlier because of higher total concentrations. High 

salt content also causes these minerals to precipitate in large quantities. Anhydrite, celestite and 

magnesite are at or near equilibrium in water. These minerals were not detected by XRD, and 

their presence can be interpreted as amorphous phases. Detected sulphate salts apjhonite and 

tarmarugite are both below saturation point. Their presence suggest that they formed by 

evaporation.  



67 

Table 4-11 tabulates predicted mineral phases and observed mineral phases. Detected and 

predicted mineral phases correspond very well. Evaporation results show that upon dissolution, 

iron and sulphate remain dominant ions. The difference between detected and predicted minerals 

shows the incorporation of metals in these minerals. Dissolution releases metals and acid 

components that were incorporated in the minerals. The dominance of jarosite after dissolution 

indicates persistent acidic conditions.  

 

Table 4-11 Predicted XRD and ASD interpreted mineral of selected salt precipitates 

Sample Predicted Detected (XRD) ASD interpreted 

MWS 38 Flourite 

Gypsum 

Jarosite-K 

Magnesite  

Hexahydrite 

Fibroferrite 

Epsomite 

Anhydrite 

Hematite 

MWS 51  FeS2 

Gypsum 

Aragonite 

Jarosite 

Geothite 

Hematite 

MWS 68  Celestite 

Gypsum 

Jarosite-SS, Jarosite-

K 

Gypsum 

Apjonite 

Alunogen 

Copiapite 

Gypsum 

Thernadite 

MWS 116  Fluorite 

Jarosite 

Rhodochrosite 

Aragonite 

Hematite 

Thernadite 

Geothite 

Hematite 

Copiapite 

MWS 149 Gypsum Gypsum 

Jarosite 

Gypsum 

Jarosite 

Thernadite 
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4.4 Spectral characteristics 

 

The preceding section gave results for XRD analysis and geochemical modelling. Similarities 

and discrepancies in mineral identification between the two techniques were highlighted and 

explained. The following section presents results for spectral characterisation using the ASD 

hand held spectrometer. 

 

4.4.1  Analysis of reflectance spectra 

The reflectance spectra collected from mineral crusts were subjected to qualitative and 

quantitative analysis to determine mineral end-members. Qualitative analysis involved the 

comparison of the reflectance spectra with spectra of known end members. It also involves the 

characterisation of wavelength parameters like depth, width, area, asymmetry and position of 

lowest reflectance points. 

The 400 – 2500 nm part of the electromagnetic spectrum is particularly useful for mineral 

identification. This region was divided into two parts namely the 400 – 1300 nm and 1300 – 

2500 nm parts. Mineral absorption features in the Visible and Near Infra-Red (VNIR) (400 – 

1300 nm) are caused by electrical processes of transitional metals like Fe, Pb, Ti, Cu, Co, and Cr. 

In the shortwave infrared (SWIR) region (1300 – 2500 nm), absorption features are caused by 

vibrational processes of OH, H2O, NH4, SO4
2-

 and CO3. Vibrational absorption features only 

occur at wavelengths greater than 940 nm and are usually sharper and more defined than electric 

absorption features. The visual inspection of the spectra (Figure 4-25) from all the samples 

indicated that mixtures of quartz, carbonates, clays minerals and organic matter were present.  
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Figure 4-25 Reflectance spectrum of selected samples with wavelength positions that were 

used in mineral interpretation 

 

4.4.2 Identified minerals and their diagnostic absorption features 

The analysis of reflectance spectra were used to identify minerals Spectrally interpreted 

minerals are listed in Table 4-12 and consisted mainly of Smectite minerals, Fe-oxide and 

sulphate minerals. 

 

Smectite mineral group 

The dominant clay minerals in all the samples are the smectite group minerals. This group 

includes montmorrillonite and vermiculite. Prominent Al-OH absorption features at 1.417 nm, 

1.91 nm and 2.20 nm are clearly visible. The depths of the absorption features in  
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Figure 4-26 were useful in discriminating between montmorrillonite and vermiculite. 

 

Table 4-12 Minerals identified in spectral analysis  

Sample M
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M.031 x x x         x x         

M.038           x   x x         

M.040 x         x x x           

M.051 x         x   x       x   

M.059 x x x   x       x x x   x 

M.068   x x       x       x x x 

M.082   x               x   x x 

M.116 x   x   x x x x   x x     

M.131 x x     x x     x         

M.147     x x       x       x   

M.149   x x x             x   x 

M.159       x   x     x         

 

Two types of montmorrillonite can be differentiated. Natronite is the Fe
3+

 end-member and 

Sauconite, the Zn-containing end-member of montmorrillonite.  The Fe-OH diagnostic 

absorption feature of Natronite was identified around 2285 nm. The diagnostic Zn-OH 

absorption feature of Sauconite at 2298 nm is less well-defined.  
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Figure 4-26 Continuum removed reflectance spectra of a) Montmorrillonite and b) 

Vermiculite. 

 

Fe-Oxide mineral groups 

Characteristic absorption features of iron oxides occur at 400-450, 510 – 550, 700, 870 and 1000 

nm, because of Fe
2+

 and Fe
3+

 activity. Iron oxides also show a concave shape to the spectra 

between 450 – 850 nm. In soil mixtures, this concave shape is narrower and less absorption 

occurs when goethite is dominant. Figure 4-27a show that mixtures abundant in hematite have 

wider concavity and greater absorption.  

Absorption intensities (after continuum removal) at 550 and 900 nm are useful in distinguishing 

Fe-oxides from sulphate minerals Figure 4-27b shows that goethite is the dominant hydroxide 

mineral present in most samples. It evolves from ferrihydrite in the presence of sulphate. Over 

time, with limited sulphate (and increased liming) goethite evolves into hematite. In the study 

area, goethite is associated with hematite and magnetite, both Fe oxides but with different crystal 

composition. The presence of iron oxide absorption features at 900 nm is consistent with red 

ochre samples. 
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Figure 4-27 Continuum Removed reflectance spectrum of a) Hematite and b) Geothite 

 

Sulphide and sulphate minerals 

Sulphide minerals have low reflectance and are not easily identifiable using reflectance spectra 

except in areas where they are exposed or occur in high concentration (Montero et al, 2005). 

Pyrite and pyrrhotite are the common sulphide minerals in the study area.  Pyrrhotite is readily 

oxidised and therefore it would be expected to occur in fresh unoxidised tailings. Pyrite was only 

detected in one sample and this is in agreement with prior knowledge that there was limited 

pyrite in the tailings material. Dominant iron-free sulphates in the area include anhydrite, 

gypsum, eugsterite, blodite and thenardite. Copiapite and pyrrhotite are the main iron sulphate 

and sulphide minerals, respectively found in the study area. The spectrum of these minerals is 

dominated by water related absorption features (Table 4-13). Thenardite, anhydrite and 

pyrrhotite do not have water or hydroxyl in their crystal structures and therefore do not have 

water absorption bands in these regions. 
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Table 4-13  Wavelength position of absorption features caused by water and metal bonding 

Mineral 1.4 region 1.9 region 2.0 - 2.5 region 

Gypsum 1.45 1.95 2.20, 2.42 

Eugsterite 1.44 1.94 2.2 

Blodite 1.47 1.95 2.2 

Copiapite 1.45 1.95 2.2 

 

Eugsterite and blodite are dominant evaporate minerals. Copiapite in Error! Reference source 

not found. shows low reflectance because of water content. Evaporation of saline solution 

causes gypsum to precipitate first and thenardite precipitate over gypsum. This may explain the 

dominant spectral signature of thernardite in Figure 4-28. Blodite precipitates after thernadite. 

Flat VNIR signature in Figure 4-28 may point to well defined crystalline structure of sulphate 

minerals. 

 

4.4.3 Relationship between spectral mineral end-members and XRD mineral phases 

As discussed in Section 4.3.1, X-ray diffraction results confirmed the existence of clays 

and mica minerals. No pyrite was detected by XRD and minor amounts of goethite, hematite and 

jarosite were detected. This implies that these minerals occur in quantities below the detection 

limit of the XRD method, and that pyrite has been oxidised to goethite and hematite. Copiapite 

was interpreted as fibroferrite. The observed association of hematite and geothite is indicative of 

coating. Because of similar chemical structure and reflectance spectrum, the XRD method is not 

able to differentiate between different iron oxyhydroxides minerals.  

It is possible that the samples lost water and became dry during the period of spectral signature 

collection and XRD analysis. Because of overlapping major water absorption features, gypsum 

and sulphate salts were difficult to differentiate. This can also be interpreted as sulphates 

precipitating in clay minerals or reoccurring with clay minerals. Blodite, apjohnite, and 
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tamarugite, which were identified using XRD analysis, could not be identified by spectral 

analysis since known spectral signatures for these minerals were not available in existing spectral 

libraries.  

 

 

Figure 4-28 Reflectance spectrum of Thernadite and Copiapite 

 

4.5 Correlation between spectral charactersitics and geochemistry 

Results of Spearman correlation between single wavelength and element concentration are 

presented in Figure 4-29. The structure of correlation is the same; it is the strength of the 

correlation that varies. Correlograms show that a strong correlation occurs around the iron and 

iron oxide absorption feature at around 550 nm. The broad area between 700 -1400 nm is linked 

to the strong absorption feature band of the ferrous ion centered at 1100 nm. Strong absorptions 

at 1400 nm and 1900 nm are related to water bands and hydroxyl absorption. Absorptions at 

2195 nm indicate metal-OH bonding in clay minerals like montmorollite (Crowley et al, 2003; 

Fan et al, 2012). At 2195 nm it means Cu, U, Ni, Co, and SO4
2- 

are associated with clay mineral 

absorption features and As, Cr, V, pH and Fe show negative correlation with clay absorption 

features. Another notable strong correlation occurs at 2350 nm. This feature is caused by 

carbonate absorption. The carbonate absorption feature shows correlation trends similar to the 
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water and hydroxyl band features. Collelograms in Figure 4-29 also show correlation coefficients 

change from positive to negative at 550 nm and 790 nm regions and from negative to positive at 

790 nm to 1300 nm. This correlation trend can be interpreted to present regions sensitive to 

element concentrations.  

 

 

 
 

Figure 4-29 Collelogram of reflectance spectra and geochemical variables (n=29) 
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4.5.1 Correlation of geochemical variables with spectral parameters (QAF)   

The degree of correlation between Quantitative Absorption Feature (QAF) variables 

defined in section 3.6.1 and geochemical variables was determined using Spearman correlation 

coefficient and the results are shown in Table 4-14. Lead (Pb) showed weak negative correlation 

with 2.2 µm Depth and 2.2 µm Area variables. Cu showed a negative statistically significant 

correlation with the 2.2 µm Depth parameter. Other metals did not show any significant 

correlation with spectral variables. SO4, EC and TDS showed low significant correlation with 1.4 

µm Area, 1.4 µm Depth, 1.9 µm Area, 1.9 µm Depth variables. The pH showed significant 

correlation with 1.4 Asym, 1.9 Asym and 2.2 Asym parameters.  

 

Table 4-14 Correlation coefficients between spectral parameters variables and geochemical 

variables  

  1.4Depth 1.4Area 1.4Asym 1.9Depth 1.9Area 1.9Asym 2.2Depth 2.2Area 2.2Asym 

V  0.16 0.23 -0.17 0.15 0.11 -0.09 -0.04 0.01 -0.07 

Cr  0.15 0.18 -0.06 0.17 0.11 0.07 -0.09 -0.04 -0.09 

Ni  -0.12 -0.10 0.01 -0.20 -0.20 -0.01 -0.23 -0.21 -0.16 

Cu  -0.10 -0.05 -0.08 -0.13 -0.15 0.07 -0.33** -0.29 -0.02 

Zn  -0.06 -0.08 -0.28 -0.22 -0.17 -0.09 -0.21 -0.21 0.05 

Pb  0.09 0.11 -0.30 -0.02 -0.07 -0.03 -0.40* -0.34** 0.30 

U  -0.15 -0.20 0.25 -0.16 -0.16 0.17 -0.02 -0.09 -0.17 

As  0.19 0.11 0.14 0.08 0.06 0.21 0.20 0.15 -0.23 

Cl -0.13 -0.10 -0.05 -0.32** -0.25 -0.32** -0.24 -0.19 0.14 

NO3 -0.15 -0.12 0.01 -0.26 -0.28 0.12 -0.43* -0.38* 0.40* 

SO4
2-

 -0.33** -0.37* 0.23 -0.39* -0.39* -0.02 -0.11 -0.08 -0.13 

pH 0.19 0.28 -0.50* 0.20 0.20 -0.43 -0.17 -0.15 0.35** 

EC -0.41* -0.45* 0.36** -0.36** -0.43* 0.22 0.06 0.15 -0.20 
Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-

tailed).  
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4.5.2  Regression results with non-spectral data 

Data transformation is necessary before regression analysis to normalise potentially 

skewed distributions. The log transformation was applied after studying the shape characteristics 

of the QAF parameters. The results of the Shapiro-Wilk normality tests before and after 

transformation are shown in Table 4-15. In multiple regression analysis, several variables are 

used to determine their influence on the dependent variable. The relationship between dependent 

and independent variables is presented as the line based on the least sum of squares. The model 

is summarized by R
2 

which is the variance that can be explained by the regression model. The 

Adjusted R
2
 indicates variance that will be obtained when the model is calculated with new data. 

Using the SAS Enterprise software, statistics were tested for significance at the 95% level of 

confidence. 

 

Table 4-15 Normality test for QAF parameters (n=30) 

  Before transformation After transformation 

  S-W S-W 

1.4Depth 0.0003   

1.4Area 0.0001   

1.4Asym 0.0001   

1.9Depth 0.0512 0.0001 

1.9Area 0.0043   

1.9Asym 0.0011   

2.2Depth 0.2139 0.0011 

2.2Area 0.0008   

2.2Asym 0.0006   

MAX0.69D1 0.0001   

MAX0.98D1 0.0711   

MIN1.411D1 0.0006   

MAX1.423D1 0.0001   
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MIN1.89D1 0.0076   

MAX2.2D1 0.1473 0.0001 

 

The 15 QAF variables listed in the first column of Table 4-15 were used to describe geochemical 

variables. Only three geochemical variables, V, SO4
2-

 and pH showed a significant relationship 

with spectral variables. Figure 4-30 shows the regression coefficients of spectral parameters for 

the models. Regression loadings show that variation of V, Cr and SO4
2-

 is explained in 1400nm 

and 2200nm regions and to a lesser extent by 500 nm - 610 nm regions. The three regions gave 

good prediction estimates (R
2
 > 0.9). However, QAF parameters did not explain the variation of 

other geochemical models. 
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Figure 4-30 Significant spectral parameters for pH and SO4
2-

 variables. 

4.5.3  Spectral indices for salts  

There are numerous soil indices that have been developed for salt detection and identification. 

The most common indices are for soil colour. Soil colour indices are used to elucidate soil 

quality, weathering and oxidation reactions (Khan et al, 2001). Indices to quantify soil colour are 

also useful in agriculture and pollution studies because soil colour is the function of organic 

matter, Fe oxides, carbonates and other substances. The most useful indices for soil salinity 
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according to Khan et al (2001) are Normalized difference salinity indices (NDSI), Salinity 

indices (SI) and Simple Index and Table 4-17 shows the equations of these indices.  

 

Table 4-16 Soil Indices for soil colour characterization  

Spectral Index Equation Property 

Brightness Index (BI) (R
2
+G

2
+B

2
)/3.0)0.5 Mean soil reflectance 

Saturation Index (SI001) (R – B)/(R+B) Index spectral slope 

Hue Index (HI) (2*R-G-B)/(G-B) Dominant wavelength 

Coloration Index (CI) (R-G)/(R+G) Hematite/Hematite+Goethite ratio 

Redness Index (RI) R
2
/(B*G

3
) Hematite content 

 

Table 4-17 Spectral indices for salinity (Khan et al, 2001) 

Index Equation 

Normalized Difference Salinity Index 

(NDSI) 

NDSI = (0.63 to 0.69 μm) - (0.9 to 0.76-μm)/ 

(0.63 to 0.69 μm) + (0.76 to 0.9 μm) 

Simple Ratio (SR) SR = 0.75 - 0.90 μm / 0.63 - 0.69 μm 

Normalized Difference Salinity Index 

(NDSI(1)) 

NDSI = (10.40-12.5μm) – (0.75 .90μm)/ 

(10.40-12.5μm) +(0.750.90μm) 

Salinity Index (SI) SI = {(0.43-0.515μm) × (0.63-0.690 μm)}1/2 

SI 1 SI =   (G*R) 

SI 2 SI =  (G2 +R2 +NIR2) 

SI 3 SI =  (G2*R2) 

 

The above spectral indices were determined to identify spectral regions sensitive to salinity. In 

this study, the blue band was defined as a region from 400 nm – 490nm, the green band as 491 

nm – 580 nm, the red band as 620 nm – 780 nm and NIR band as 790 nm - 890 nm. The 

statistical variability of spectral indices is shown in Table 4-18. The measured EC and pH of 

samples were considered as measure of salinity. Correlation between soil indices and the 

measure of salinity are shown in Table 4-19. 
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Table 4-18 Explanatory statistics for all calculated spectral variables (n=29). 

Variable Mean Std Dev CV(%) 

NDSI -0.11 0.05 -49.06 

SR 1.25 0.15 11.60 

NDSI (1) 0.05 0.18 388.53 

SI 0.02 0.01 76.24 

SI 1 0.18 0.08 43.13 

SI 2 0.37 0.15 39.06 

SI 3 0.27 0.11 42.94 

BI 0.02 0.01 77.08 

SI_0001 0.30 0.15 48.64 

HI 6.94 3.63 52.24 

CI 0.19 0.09 48.30 

RI 275.84 384.83 139.51 

  

Table 4-19 Correlation between pH, EC and spectral measurements of soil salinity 

  pH EC 

NDSI 0.12 -0.07 

SR -0.12 0.07 

NDSI (1) -0.05 0.08 

SI 0.22 -0.25 

SI 1 0.16 -0.19 

SI 2 0.08 -0.12 

SI 3 0.16 -0.18 

BI 0.17 -0.18 

SI_0001 -0.42 0.46 

HI 0.14 -0.11 

CI -0.40 0.44 

RI -0.33 0.37 

 

 

Only spectral indices SI_0001 and CI showed significant correlation with salinity content. SI and 

CI showed negative correlation with pH and positive correlations with EC.  
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Figure 4-31 Variation of soil reflectance in various sample colours 

 

The investigation of the reflectance spectra and how it varies with the EC of salts was also 

performed. In order to enhance sensitive bands, the first derivative spectrum was drawn for 

comparison. Figure 4-32 shows reflectance spectra and FD spectra of efflorescent salts with 

varying EC divided according to colour. These graphs show regions around 1400 nm and 1800 

nm as the main indicators of salinity. 
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Figure 4-32 The influence of salinity in spectral reflectance of salts 

 

 

4.5.4  Partial Least Squares Regression  

Partial least squares regression (PLSR) is a quantitative multivariate technique used to 

analyse the correlation between variables and model several response variables simultaneously. 

PLSR was performed on the measured geochemical variables and wavelength range between 400 

and 2400 nm using 29 analysed samples. The PLSR results depend on pre-processing techniques 

and the number of factors selected.  

To account for albedo effects, the mean-centre normalisation technique was used (Viscarra 

Rossel et al, 2006). For spectral smoothing, the Savitzky-Golay filter, second polynomial was 

used. Savitzky-Golay smoothing is an averaging technique that calculates polynomial regression 
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on the distribution to determine the smoothed value for each point (Xie et al, 2012). This filter is 

preferred because it preserves the shape parameters (relative maximum, minimum and width) of 

the spectra while removing baseline effects (Ramoelo et al, 2013). The leave-one-out cross-

validation method was performed to determine the number of factors or latent variables to be 

fitted in a model. Mean centred data was used for constructing all PLSR models.  

To evaluate the performance of regression models, bootstrapping statistics were determined. 

Bootstrapping is useful when working with limited samples, it iteratively resample the data set, 

and in turn improving prediction accuracy of the model (Ramoelo, 2013). The same number of 

optimal factors used in model development was used for validation with the total number of 30 

bootstraps.  

These PLSR results are a set of calculated values and the performance of the model is assessed 

by the root mean square error of prediction (RMSEP), coefficient of determination (R
2
) and rapid 

prediction deviation (RPD). Evaluation parameters RMSEP, R
2
 and RPD were determined using 

the following:  

R
2
  

∑ (     )   
   

∑ (     )   
   

      Equation 18 

 

RMSEP = √
∑ (     )  
   

 
      Equation 19  

               
  

     
                            Equation 20   

Where n is the number of samples, ŷi = is the measured value, ŷ is the predicted value and SD is 

the standard deviation.  

 High R
2
 values indicate strong linear between measured and predicted values. RMSEP present 

the amount of variables not accounted for by the model, and this error should be low. RPD 
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indicated the capabilities of the model to accurately predict variables by taking into account the 

variable’s variability (Xie et al, 2012). Following Luleva (2007), Viscarra Rossel (2006) and Wu 

et al (2007), RPDs in this study were classified as follows: 

RPD greater than 2.0 as good 

RPD 1.4 – 2.0 as reasonable (acceptable accuracy). 

RPD less than 1.4 as not reliable (poor accuracy) 

The results of PLSR models are tabulated in Table 4-20. PLSR prediction results are reliable for 

major elements. Generally, the coefficient of determination is low for the selected elements. 

Reliable prediction results were obtained for SO4
2-

, and EC. These elements showed high 

concentration levels with limited variability.  

In order to display regions of spectral significance, partial coefficients for each wavelength are 

shown in Figure 4-33. The PLS plots show the correlations between significant wavelength 

regions and prediction model as peaks and valleys. The important wavelengths for all 

geochemical variables are 1400 nm, 1800 nm – 2100 nm and 2200 nm. Non-spectra regression 

also reported the similar results around these regions. PLS coefficients in Figure 4-33 show 

patterns similar to the patterns obtained by in correlation analysis (Figure 4-29).  

PLSR regression coefficients in Figure 4-33 show major absorptions around 1400 nm and 1900 

nm. This provides further proof that clay minerals absorb these elements. High clay content leads 

to high metal content and this in turn leads to a decrease in reflectance because of absorption. 

Clay absorption features are narrower than Fe absorption feature at 525 nm. This means the 

absorption capacity of clay minerals is stronger than that of iron minerals.  
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Figure 4-33 PLSR coefficients showing the contribution of each wavelength for development 

of geochemical models 

 

Table 4-20 lists results of PLSR models for different spectral transformations on VIR, NIR and 

SWIR spectral ranges. Generally, the First Derivative (FD) transformation technique 

outperformed all other spectral techniques. The FD method produced high retrieval accuracies 

for SO4
2-

 and stable estimation results for pH and EC. Continuum Removal is the second most 

important transformation technique. Original reflectance performed better than Log (1/R) 

transformation. By comparison, model results from the full wavelength range (400 – 2400 nm) 

outperformed the VIR, NIR and SWIR regions. The SWIR region showed reliable prediction 

accuracies with low prediction errors. Generally, low estimation accuracies can be attributed to 

high sample variability and geochemical behaviour of elements.  

Prediction accuracy can be improved by reducing the wavelength range by making use of 

significant regions. QAF regression and PLSR coefficients show that better predictions for SO4
2-
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and pH can be found between 1400 – 2200 nm. The ranges between 960 nm – 1850 nm and 2100 

nm and 2400 nm are useful for predicting electrical conductivity (EC). 

 

Table 4-20 Performance of spectral transformation techniques for estimating geochemical 

variables using PLSR with bootstrapping (n=29). 

 

 

Estimation accuracies can also be improved by using first derivative (FD) spectra.  Stable and 

accurate predictions from FD spectra supports the argument by Wu et al (2007) that low 

resolution spectra with broader sampling intervals leads to higher prediction estimates than high 

resolution spectra. First Derivative transformation compresses the whole spectrum into few 

spectral (low resolution) bands, reduces signal to noise ratio (SNR) and enhanced absorption 

features. 

Trans Element R
2

RMSEP ME RPD R
2

RMSEP ME RPD R
2

RMSEP ME RPD R
2

RMSEP ME RPD

None SO4
2-

0.38 0.87 -0.10 1.29 0.43 0.84 0.03 1.33 0.42 0.84 0.01 1.33 0.29 0.93 -0.01 1.20

pH 0.22 0.20 -0.01 1.15 0.32 0.19 -0.01 1.20 0.12 0.21 -0.01 1.08 0.08 0.22 0.02 1.03

EC 0.41 0.78 -0.03 1.32 0.31 0.84 0.09 1.22 0.34 0.82 0.01 1.25 0.22 1.75 0.30 0.58

CR SO4
2-

0.29 0.93 -0.02 1.20 0.16 1.02 -0.01 1.10 0.21 0.98 -0.09 1.14 0.23 0.96 0.00 1.16

pH 0.29 0.20 0.00 1.16 0.15 0.21 -0.01 1.10 0.26 0.20 0.02 1.18 0.24 0.96 0.06 1.16

EC 0.40 0.78 -0.03 1.31 0.24 0.88 0.01 1.17 0.29 0.85 -0.05 1.20 0.35 0.81 -0.03 1.26

FD SO4
2-

0.58 0.71 -0.08 1.56 0.52 0.76 -0.03 1.47 0.48 0.79 -0.03 1.41 0.58 0.73 -0.10 1.53

pH 0.41 0.18 0.00 1.30 0.37 0.19 0.00 1.24 0.23 0.20 0.00 0.16 0.45 0.17 0.01 1.34

EC 0.43 0.76 -0.01 1.35 0.35 0.81 0.01 1.27 0.38 0.80 0.03 1.28 0.43 0.76 0.02 1.35

Log SO4
2-

0.37 0.84 0.04 1.23 0.08 0.97 -0.03 1.06 0.25 0.88 0.02 1.17 0.36 0.82 -0.05 1.26

pH 0.37 0.89 -0.17 1.25 0.20 0.98 -0.05 1.14 0.21 0.98 -0.05 1.14 0.26 0.97 -0.19 1.15

EC 0.40 0.18 0.02 0.13 0.20 0.20 0.00 1.13 0.20 0.20 0.01 1.13 0.42 0.18 0.00 1.28

VIR NIR SWIRVIR-NIR-SWIR
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4.5.5 Determination of important wavelengths in PLSR models 

Partial least square regression (PLSR) weights (B coefficients) are used to determine the 

contribution of each wavelength in PLS models (Wold et al, 2001; Viscara-Rossel et al, 2006). 

The direction of the relationship between independent and dependent variables is represented by 

a negative or positive sign. The bigger (positive or negative) the coefficient in a specific 

wavelength, the stronger is the contribution to the model.  

PLSR weights of normal reflectance spectra are drawn to highlight regions of spectral 

significance. Standard deviation of each dependent variable is used as a threshold value (Rong, 

2009). Wavelengths bigger than the threshold value are considered significant. Standard 

deviation of PLSR weights of elements that showed reliable predictions estimates are shown in 

Table 4-21. Figure 4-34 shows B coefficients used in PLSR prediction models. Table 4-22 

summarizes wavelength regions with bigger threshold values. 

 

Table 4-21 B-coefficient standard deviation of selected geochemical variables 

Element SO4
2-

 pH EC 

STDev 0.04 0.01 0.04 

 

Table 4-22 Significant spectral regions selected by PLSR weights 

Element Negative (nm) Positive (nm) Important wavebands (nm) 

SO4
2-

 401-478 557-794 

1861-2014 

401-478 

1861-2014 

EC 1547-1777 

401-500 

741-900 

1866-1987 

401-500 

1866-1987 

pH 1914-1982 

2149-2257 

1584-1707 

2016-2103 

2149-2257 
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For all elements, wavelength regions around 1500nm, 1800-2100nm, 401-562nm and 2100-2260 

nm show a significant contribution to PLSR models. Basically, there are the regions of known 

absorption features of clay and iron bearing minerals (Williams et al, 2002). 

 

 

Figure 4-34 B coefficients (blue line) for SO4
2-

, EC and pH PLSR models. Black threshold 

lines are defined using standard deviation. 
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5 Conclusion and recommendations 

Four types of salt precipitates were distinguishable using the Munsell colour chart as red 

precipitates, yellow precipitates, brown/gray precipitates and white precipitates. Precipitate 

groups showed high variation in terms of bulk chemistry. The content of major ions in all 

precipitates was similar. Red precipitates, and to a lesser extent Yellow precipitates are highly 

enriched in Siderophile elements such as V, Cr, Cu and As. White precipitates showed high 

enrichment of chalcophile elements Co, Ni, Zn and U. Lead (Pb) is the only element that showed 

enrichment in brown crusts. Sulphate (SO4
2-

) and Chlorine (Cl
-
) showed high enrichment in all 

types of salt precipitates. These anions, together with soluble cations are responsible for high EC 

levels of the precipitates upon dissolution. Bulk chemistry and geochemical modeling revealed 

that elements such as Co, Cr, Ni, Pb, Zn and U occur in particulate solids at higher pH conditions 

and as free cationic species in low pH conditions.  

Four geochemical indices were used to evaluate pollution levels associated with efflorescent 

precipitates. High PLI, Igeo and EF levels for major and trace elements occurred in wetland and 

bare field precipitates. The range of Pollution load index (PLI) indicated very high to ultra-high 

pollution levels. Compared with local water and soil standards, salt precipitates have up to 2 

times high metal content. These results indicate that these salts act as hyper-accumulations of 

metals by incorporating them into their structure.  

Near-infrared reflectance spectrum (350-2500 nm) of efflorescent salts was measured using the 

ASD Fieldspec Pro Spectrometer to study mineralogical and geochemical characteristics in order 

to assess contamination related to mine wastes. In the SWIR region clay minerals of the smectite 

group were dominant. Gypsum, jarosite and anhydrite are the most prominent sulphate minerals 

identified in the SWIR region. Aluminium sulphate salts were identified as thernadite, 
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eugusterite and blodite. Comparison of spectral identifiable minerals and XRD and SEM analysis 

results show some similarities with minor discrepancies. Clays and mica minerals showed good 

agreement in both methods. Efflorescent mineral precipitates consist of 5 types of sulphate 

mineral groups, namely;  

Na, Mg Sulphite mineral Blodite 

Mg sulphate minerals Hexahydrite and Starkeyite 

Al sulphate minerals Alunogen, Tamarugite, Wupatkiite and Apjohnite 

Fe sulphate mineral Jarosite 

Ca sulphate sulphate mineral Gypsum.  

Blodite was identified in low quantities by XRD. Thernadite was interpreted as apjohnite and 

eugusteri as Tamarugite. These sulphate minerals were not correctly identified by ASD because 

they are not included in reference spectral libraries. ASD and XRD discrepencies like copiapite-

fibroferrite, epsomite-hexahydrite can be attributed to dehydration during storage of samples.  

Generally, efflorescent precipitates consist of gypsum and Al-Mn-Mg-Na sulphate salts such as 

Tamarugite and Apjohnite. Ochre precipitates consist mainly of jarosite and hematite.  

Geochemical modelling, following analysis of solutions formed by dissolving crusts in water, 

showed gypsum and jarosite as dominant minerals, indicating that iron and sulphate are the 

major ions responsible for acidity during precipitation and dissolution of mineral salts.  

Measured reflectance and the concentration of measured geochemical variables showed 

significance difference in all types of precipitates. High reflectance was associated with white 

crusts. White crusts also have elevated concentrations of Cu, Co, Ni, Zn and U and Red Crust are 

enriched in As, Fe, Cr and V. Univariate statistical analysis showed that concentration of 

elements is strongly related to land-use and prevailing environmental conditions.  
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Applicability of hyperspectral data to estimate acidity was investigated by modelling 

geochemical variables using reflectance spectrum. Low negative correlation of these spectral 

signatures supports the hypothesis that the high concentrations of metals associated with the 

absorption surface weakens the absorption feature related of the surface because the decrease in 

surface functional groups of the mineral surfaces. Using the correlation matrix, QAF parameters 

were determined to model geochemical variables. Only 15% of the geochemical variables can be 

explained by QAF parameters. Good prediction estimates were obtained for SO4
2-

, EC and pH 

which are highly correlated with iron content.  

Partial Least Squares Regression was performed to see if the reflectance spectrum can be related 

to geochemical variables. In addition to original reflectance, the study compared different 

spectral transformation techniques and found the First Derivative (FD) transformation to give 

better prediction estimates. Partial regression squares (PLSR) combined with bootstrapping show 

high capacity than regression analysis for modeling geochemical variables. Generally, prediction 

estimates were low. Poor predictions can be attributed to geochemical variability and physical 

variability of the samples. Reliable prediction estimates were obtained for elements with high EF 

values and very high coefficient of variation. Correlation pattern and partial least scores of 

geochemical variables show significant correlation with spectral regions of know absorption 

features related to Fe oxides and clay minerals.  

Study of spectral indices found the Red and Blue parts of the spectrum are good indicators of 

salinity. Indices related to hematite/geothite content, Coloration index, Redness Index and 

Saturation index have significant correlation with EC and pH. In field and image spectroscopy, 

the regions around 1400 nm, 1900 nm and 2200 nm coincides with major absorption features and 
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consist of atmospheric noise. This study shows that regions around 550 nm, 705 nm and 2360 

nm can be useful in differentiating salinity associated with efflorescent crust.  

First derivative transformation is effective in reducing spectral noise and compresses the 

spectrum into few spectral bands. The high performance of FD spectra in highlighting spectral 

features and high predictions estimates means low to medium resolution remote sensing sensors 

like IKONOS and ASTER can predict metal content associated with mineral efflorescent.  

The study has demonstrated the binding effect of trace elements to active mineral constituents, 

and this mechanism can be used to investigate spectrally featureless trace elements.  

 

Study limitations 

Availability of samples:  Because efflorescent salts are highly unstable and disappear after the 

rain, their availability is unpredictable. This influenced the sampling strategy as representative 

samples were not easy to find. Sampling was limited only to areas where these salts are well 

developed and easily accessible.  

Number of Sample: Because of limited resources, sample size of n =29 was obtained. This 

sample size was successful in identifying significant relationships in terms of chemistry.  

However, this sample size is too small for building PLSR models. Large sample size lead to 

more stable predictions models with better accuracies.  

Lack of reliable secondary data: There is a huge variation in soil and groundwater chemical data 

reported in the EIA reports (SRK, 2012; Digby Wells Environmental, 2012); academic reports 

(Swanepoel, 2009; Phaleng, 2009; Tutu et al, 2011) and government report (DWA, 2012). This 

discrepancy makes it difficult to compare results and evaluate the hazard posed by the 

efflorescent salts.  
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Measure used to analyse data: All the samples were highly enriched in organic matter.  

Eliminating organic matter was carried out during sampling and sample preparation. The 

influence of organic matter is more pronounced in reflectance spectra. The study should have 

analysed the carbon and sulphur content of the samples. Since carbon is strongly associated with 

cations, it would have been a better indicator for metal pollution and a reliable predictor in PLSR 

modelling.  

 

Based on the results of the study, the following recommendations can be made: 

 A large dataset of samples is needed to build reliable prediction models. Prediction 

accuracies can be improved by reducing sample variability. Sampling should only focus 

on efflorescent salt and ochre precipitates and not composite sample.  

 PLSR B-coefficients are useful in defining regions of spectral significance. Prediction 

accuracies can be improved by focussing on these regions. This will also reduce data to 

be used to modelling and therefore better statistical results.  

 Better performance of FD transformations indicates low resolution spectrum is more 

useful than high resolution spectra in predicting geochemical variables. Low resolution 

spectra can be obtained by spectral resampling. The studied mineral crusts have weak Fe 

absorption in 400 nm – 1300 nm region. Sampling interval greater than 10 nm will mask 

iron features and only preserve major features at 1400 nm, 1900 nm and 220 0nm. For 

preserving all the absorption features, resampling intervals of 2 nm, 4 nm and 6 nm are 

recommended.  
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