SIMPLE METEOR SCATTER OUT-STATION ANTENNAS

Ofer Givati

A dissertation submitted to the Faculty of Engineering, University of the Witwaterstand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering

DECLARAT * \mathbf{N}
I declare that this dissertation is my own, tnaided work. It is being submitted for the Degree of Master of Science in Enginecring in the University of the Witwaterstand, Johannesburg. It has not been submitted before for any degree or examination in any other University.
\square

Abstract

This dissert rion examines simple Meteor Burst Communicaion (MBC) out-staviol , ennas. The effect of ilhmination gain, beamwidth and orientation was studied using computer smenation. Similarly, the performance of MBC links using a half-wave dipole, a quarter-wave monopole, a square loop, a long wie and a 5 -elements Yagi-Uda antennas was deternined. The performance of these links are related to the antennas' sky illumination. This investigation provides designers some bench-markresults which indicate the role played by the antennas' radiation patteras in MBC. A value system was formulated to provide practical and electical trade-offs for mobile and manpack antennas in the mereor scater environmen土. Simulated resuits indicate that simple antennas cause degraded commanications due to their reduced size and complexity. The conclusion is that the directional master station should provide adequate sky illumination. It is recornmended that the results obtained be validated by measurements and further work concentrate on master station antennas.

ACKNOWLEDGMENTS

I wish to acknowledge gratefully the following:
My wife Shelley and my sons Yaron and Yo'av for their support, love, consideration and eacouragement at all times.

APC Fourie who always found the time to listen, support, guide and encourage when needed.
AR Clark for his helpfel proof-reading.
Proí FIE Hanrahan for his kind guidance.
SALBU (PTY)Ltd. for their sponsorship.

CONTENTS

DECLARATION i
ABSTRACL ii
ACKNOWLEDGMENTS jii
CONTENTS iv
TABLE OF FIGURES vi
LIST OF SYMBOLS viì
1 INTRODUCTION 1
I. I Statement Of The Problem 1
1.2 Introduction To Meteor Burst Commuaication 1
1.3 Why Simple Antennas? 2
1.4 The Investigation Of Sirople Anternas For MBC 3
1.5 Dissertation Layout 5
2 BACKGROUND TO METEOR BURST COMMUNICATION AND THE ROLE PLAYED BY THE ANTENNA 7
2.1 The Nature Of Meteors And MBC 7
2.2 The Geomerry Of MBC Link 13
2.3 Reflection From Underdense Meteor Trails 16
2.4 The Dependence Of Trails Detection On Sky Regions 22
2.5 The Merits Of Different Type Of Anternas In The Meteor Scatter Environment 25
2.5.1 Antenta radiation pattern 26
2.5.2 Electrical problems due to size limitation 27
2.5.3 The effect of noise in relation to the antennas 29
3 DESIGN OF SIMPLE ANTENNAS FOR MBC 33
3.1 A Value System For The Remote MBC Antenna fystem 33
3.2 Computer Aided Analysis Of Antenna Performence And MBCLink Performance 36
3.2.1 Numerical Electromagnetic Code version 2, NEC2 37
3.2.2 Prediction software for MBC system perfonmance 38
3.3 Tne Effect Of Antenna Beamwidth/Directivity And Orientation On Meteor Burst Commanication 39
3.3.1 Description Of The Experiment And Evaluation Method 40
3.3.2 Test Link Descriptioni 40
3.3.3 Results 42
4 PREDICTION OF MBC LINK PERFORMANCE USING SIMPLE ANTENN $\angle S$ 46
4.1 Description Of Evaluation Method 46
4.2 Evaluation Of Traditional Simple Antennas 48
4.2.1 Radiation patterns of the taditional simple antennas 49
4.2.2 Results precticted by METEOR for the maditional simple antennas 52
4.3 Evaluation Of A Mobile Square Loop Antenna 55
4.3.1 Radiation patterns of the square loop antenna 55
4.3.2 Results predicted by METEOR for the square thip antenna 57
4.4 Evaluation Of A Manpack Long Linear Terminated Whre Anterna 61
4.4.1 Radiation pattern of the long linear terninated witi antenna 62
4.4.2 Results predicted by METEOR for the long terninated wire antenna 64
4.5 Summary Of Results 66
5 CONCLUSIONS 68
5.1 Summary Of Findings And Conclusions C3
5.1.1 Antennas for MBC 68
5.1.2 Antemna design considerations 68
5.1.3 Simple antennas in the meteor scatter environment 70
5.2 Proposal For Further Investigation 71
APPENDIX A - THE PROCEDURE OF VALUE ANALYSIS 72
APPENDIX B - THEORY AND IMPLEMENTATIONS OF THE METHOD OF MOMENTS 75
APPENDIX C - NUMERICAL MODEELJNG CONSTRAINTS AND LIMITATIONS 81
APPENDIX D - PREDICTION MODEL SETTINGS FOR MBCLINK SIMULATION 85
APPENDIXE ~ TAPULATED RESULTS 89
RFERENCES 155

TABLE OF FIGURES

Figure 1：The geometry of MBC transmission path 8
Figure 2：The earth orbit in the ecliptic plane 11
Figure 3：Phan view of the＂hot spots＂areas 12
Figure 4：A typical configuration of a remote station 13
Figure 5：Scattering geometry 14
Figure 6：Time variation of the received power 19
Figure 7：The ransmitter elecric vecior at the meteor trai 22
Figure 8：The chu－harringzon limits 27
Figute 9：Consequences of the chu－harrington 远its 28
Figure 10：Q Vs Directivity 29
Figure 11：Average median day time values of r oise 32
Figure 12：The value system for mobile ont－station antenna 35
Figure 13：The value system for marppack out－station antenua 36
Figure 14：Contour chart of meteor distribution 42
Figure 15：Graphs of Channel Duration Vs．Directivity 43
Figure 16：Graphs of Meteor count Vs．Directivity 44
Fipure 17：Graphs of Channel Duration Vs．Meteor count 45
Figite 18：Azimuth－plane radiation partern of Tx antencia 47
Figure 19：Elevationt－plane radiation pattern of Tx anterna 48
Figure 20：Radiation pattern of half－wave dipole anteana 49
Figure 21：Radiation patem of quarter－wave monopole 50
Figure 22：The orientation of the skew quarter－wave monouole 50
Figure 23：Radiation pattern of skew quarter－wave monopole 51
Figure 24：Radiation pattern of skew quarter－wave monopole 52
Figure 25：Graph of Chansel Duratioe Vs．Distance 53
Figure 26：Graph of meteors comint Vs．Distance 54
Figure 27：A mobile square loop antema 55
Figure 28：Azimuth－plane radiation pattern of square loop 56
Figure 29：Elevation－plane radiation pattem of square loop 56
Figure 30：Graph of Chanmel Duration Vs．Distance 58
Figure 31：Graph of metcors comnt Vs．Distance 59
Figare 32：Graph of Channel Duration Vs．Distance 60
Figure 33：Graph of mereors count Vs．Distance 61
Figure 34：A long linear terminated wire antenna 62
Figure 35：Azimuth－plane radiation pattem of a iong wire 63
Figure 36：Elevation－plane tadiation patem of a long wire 63
Figure 37：Graph of Channei Duration Vs．Distance 64
Figure 38：Graph of meteors count Vs．Distance 65
Figure A－1：Relative importance decision making table 72
Figure A－2：Relative importance for mobil out－station 73
Figure A－3：A raing system for any specific design 73
Figure B－1：General radiating body 75
Figue B－2：A thin cylindrical wite 75
Figure C－1：Resonant wavelength Vs．angle between sections 82
Figuse C－2：Two wire juncion 83

LIST OF SYMBOLS

Symbols	Description
λ	Is the wave length in meters.
$\lambda_{\text {I }}$	Is the transitson wave-length defining the shortest wave-length for which equation (3) is applicable.
R_{2} and R_{2}	Are respectively the points from transmitter and receiver to the point on the trail at which the reflection requirement is satisfied.
ϕ	Is half the angle between R_{1} and R_{2}.
5	Is the angle bstw, en the trail axis and the plane containing the transminer recciver and meteor trail at the centre of the principal Fresnel zone.
L	Half the length of the trail in the principal Fresnel zone.
\pm	Defines a naxow band on the celestial sphere where meteor trails must lie in order to br properly oriented to prodace a reflection between two stations.
L_{1}	Is the length of the meteor tril.
P_{r}	Is the transraited power in Watts.
G_{T} and G_{T}	Are xespectively, the transmitter and receiver antenna gain relative to an isotropic radiator imreersed in free space.
F	Is the radius of the electron in meters.
9	Is the electron line density of the trail in electrons per metre.
${ }_{9}$	Is the maximum electron tine density in electrons per metre.
\$	Is the dot product of a anitincident electric vector and a unit vector of the refiected wave in the divection of the polarization of the receiving amtenna

I. Is the ambipolar diffusion coefficient in $\mathrm{m}^{2} / \mathrm{sec}$.

To Is the initial radius of the mavi in meters.
τ and $\tau^{*} \quad$ Are signal time constants.
t Is the time measured from the formation of "the trail in seconcis.
H_{0} Is the permeability of free space.
$c \quad$ Is the charge of an electron
$\mathrm{m}_{6} \quad$ Is the mass of an election.
mi Is the initial mass of the meteor.
Is the meteor geoceatric velocity.
Is the velocity of the meteor in its orbit around the sun.
Is the velocity of the earch in its orbit around the sun.
Is the geocentric velocity of meteors taking the earth's gravity into accown.

Is the angle of the meteor radiant from the $, \quad:$, thiz
Is the apparent angle of meteor radiant from th. s apex.
Is the meteor height in km .
Is the height of maximum ionization.
Is the atmospheric scale height. This perameter depends on the temperature and degree of dissociation of the gas molecules at any given height.

Is the angle between the incideat electric vector on the trail and the electric vector at the receiving antenna.

Page-viii-

α	Is the angle between the transmitter electric vector at the meteor rail and \mathbf{R}_{2}.
ζ	Is the zenith angle of meteor path axis.
B^{+}	Is the probability that a single atom will produes a free electron.
D_{1}	Is the antensa's directivity.
$\boldsymbol{y}(\theta, \phi)_{\text {axex }}$	Is the anterna's maximum radiation intensity.
U_{om}	Is the antenna's radiation intensity averaged over all directions.
7	Is the radiation efficiency of the antenna.
T	Is the temperature in ${ }^{\text {ck }}$.
B	Is the bandwidth in Hz .
V	Is the rms value of noise voltage.
R	Is resistance in Ohms.
W_{x}	Is the noise power in Watts.

1 INTRODUCMON

1.1 Statement Of The Problem

Simple meteor scatter out-station antennas is the topic of this dissertation. The main thrust of this work is, therefore, two fold:

- To examine the effect of different illumination schemes of useful sky regions on Mereor Burst Communication (MBC) link performance.
- To evaluate the relaive performance of MBC links using various standard simple out-station aniznnas. The performance of these are thenrelated to the sky illumination they produce.

1.2 Introduction To Meteor Burst Communication

A meteor particle is a solid body that ordinarily revolves about the sun as part of our solar system. Eich day billions of thesemeteors intersect theearth's orbitand penetrate its ahmosphere. As the meteor enters the earth's atmosphere an ion'red uril is formed whict undergoes a rapid deffusion process and the density of the ionized parricles it its trail permiss the scattering of radio waves. Data transfer of ao intermittent natare can thus be accomplished via these short lived trails provided their crientation obey some geometrical requirements. Hence the name: Meteor Burst Commurication (MBC).

Commonly used methods for long range data telecommunications are telephone lines, radio repeaters stations, satellites and High Frequency (fFF) communications using reflection from the ionosphere.

Teiephone lines require a continuous interconnection between the nodes of a system. Radio repeaters stations require towers at line-of-sight distances between repeater sites, as well as power supplies. This presents an installation, mainterance and versatility problem. In recent years, satellites were thought to provide adequare coverage for long range communications. However, total dependency on satellites, due to their vuinerability to jamming and destruction, in addition to enormous capital outhay, has recently spariked the need to develop an alternative means of communication. Long range HF communications require large antennas and complex सtequency management techniques dre to changing ionospheric conditions $[1,2,3]$.

MBC is a reliable alternative to these methods of long distance data communications for low volume applications．It offers a secure method for commenications due to its jamming and intercept resistance characteristics．For any particular meteor trail there is a relatively small terrestrial＂footprint＂where thereflected signal is present，providing low probability of intersep： （LPI）and jamming．This also ensures that a single frequency can be time－shared among many stations within a network，elinamating the need for multiple frequencies．In addition，MBC may also prove useful in maintaining post nuclear attack communications．Ionospheric disturbances associated with post nuclear attack conditions are expected to greatly increase D－iayer absorption，which will in tum reduce the availability of HF commenications［4，5，6］．

The major drawback of MBC is due to the fact that only intermittent communication can be supported and bence voice communicanon，although possible，is sill very limited［7］．However， latter－day computing power allows the ase of short duration data communications signals．Such techniques have made MBC attractive for applications where intermittent communication can be tolezated．Undoubtedly，MBC systerss present a scope for applications such as monitoring water levels in remote dams；safe，long distance commanication for moops with their base station； the control of a flewt of trucks scattered over large distances as well as backing up existing cormunication methods．

1．3 Why Simple Antennas？
There exists a demand for meteor scatter communications in mobile，manpack and other simations where large and complex antemas are undesimble．This dissertation，therefore， examines aspects of simple out－station anternas for such applications．In this context，simple antennas are those complying with severe size and complexity constraints．Reducing the size and complexity of the antenna system inevitably results in cormmunication systems of degraded connectivity and hence throughput．Connectivity，the fractional duration for which a channel exists，is a major aspect determining the quality of the link，while throughput is the amount of data transmitted per unit time．In the remote out－station MBC systems of interest，these aspects are traded off for sirnpicity．

1.4 The Investigation Of Simple Antennas For MBC

Before one can proceed to design sirmple antennas for MBC out-stations, it is imperative to understand the made-offs involved with different sky illumination schemes. This outlines the imporance of the role played by the antenna's radiation pattern which may be synthesized to achieve optimumperformance. Havingestablished these, one can study the relative performance of MBC links using traditional simple antennas. This provides important guide-lines for the antenna desigaer in terms of relative performarroe of various type of antennas in the meteor scatter environment. This work, therefore, is not intended to provide novel antenna designs but rather to evaluate traditional simple antennas and relate their performance to sky illumination. This will give designers some bench-mark results as well as an indication of the role played by the different illumination schemes.

Earier research in this field was performed daring the 1950's [8.9]. These sudies illusuated the importantsole played by the antenna's radiation patern in bemedium of MBC. Of particular interest is the Hires et al. study of 1955 [8] examining the effect of:
(1) broadening the antenna beam centred on the transmitter receiver axis,
(3) swinging while broadening the beam, always maintaining itsedge along the transmitter receiver axis.
However, even though Hines's study [8] may be c. value in the design of antennas for MBC links it does not comprehensively outlines the effect of different illumination schemes of useful sky regions on MBC link performance. Neverthoiess, it enphasised the need for a methodical and comprehensive : ivestigation of this nature.

A prerequisite for a meaningful investigation of antennas is an understanding of the role of the antenna syster played in MBC. Equally imponant are the mechanisms governing the behaviour of antennas. A review of this nature delineates the fundamental trade-offs concemed wita physical constraints imposed by the remote antennas of interest, as well as these which are irmposed by the medium. Once these trade-offs are established one may proceed to design suitable antemas.

The technique of value enginecring hopes to quantify the trade-offs during design. The design phase of a product is a process whereby all the facts are organized to suppont a design concept which is later developed fnto a produca. This process requires an organized synthesis of frnown
factors and usually some creative thinking. There is ofter a sing le furdamental reason why new desigris required. The technique of value engineering, resulting in a value systera, is in essence an orgarized procedure for eliminating from a design all that is unnecessary. It ensures that the procedure has the opportanity of offering best overall va: je to the end user. Knowing what is required by the end user provides the guide-lines for the design. However, engineering desiga tools are alsorequized to investigate different approaches for the development of the end product.

Powerfull engineering tools were developed as a result of the availability of computing power. The availabifity of compating power which were not within reach until rocent years led to the development of methods which allows rigorois simulation of anterna geometries and prompt the engineer towards solutions of such problems. Of particular use for the analysis of the electromagnetic response of anteanas is the Method of Mornents technique, which solves Maxwell's equations numerically for wire structures [10,1, 1]. The problem of course in using this technique manifests itself in the loss of insight into the mechanisms of operation of the antennas and hence it should not be blindiy used as a design tool but rather as the means to evaluate an antenna's performance.
A Method of Moment based software packige is the NEC2 code [12]. Features include the facility to model wires and solid surfaces, the option of specifying many loads and sources, computation of radiation patterss and antensa interaction calcolations. Another useful feature of the NEC2 code is that it allows modelling of imperfectearths and hence its effert on antenna performance can be investigated. The mathematical and numerical modelling of the antenna and its environment is the most important aspect of simalation where accurate results of performance are desired. Numerical lizuitations may be inherent either in the mathematical model used to approximate a physical system, the actual physical complexity of the system, or in the numerical techniques used for computation. The NEC2 code thus provide with the means to evaluate antennas.

The performance of an antenea, which is an integral part of an MBC link, cannot be viewed in isolation. The anterma's ulimate worth can oniy be established subject to its performance in the medium of MBC. A computer based predictive model which is designed to simalate a point-to-point MBC links is the METEOR code [13]. This engineering tool permits the setting up of an MBC link in terms of distance, time, orientation and antenna configuration, and computes the link performance in terms of meteor counts, antenna illumination, trail duration, noise and data communication.

The work reported in this dissertation uses these computer aided design toois for the simulation of antennas and MBC link performance. The technique of value engineering is applied to establish a value system for simple out-station antenna systeras of interest.

1.5 Dissertation Layout

To conclude this introductory clapter a short preview of the remainder of this dissertation is outlined to emphasise its organisation.

The second chapter of this report commences with an overview of MBC and antenna theory. The nature of meteors and the geometry of an MBC link is delineated followed by a brief description of the mechanisms of reflection from underdense meieor trails. Next, a description of the computation method used to determine the sumber of meteor trails producing reflections arising from useful sky regions is out-ined to illustrate the imporance of the role played by the antennas in the metenr scater environment. Succeeding that, the merits of different types of antennas in the meteor scatter environment with emphasis on the antenna radiacion pattern is presented. Thereafter, electrical problems due to antenna size limitation areoutlined. The chapter concludes with a review of the effect of noise in relation to antennas. This chapter encapstlates the fundamental principles of MBC and emphasizes the role played by the antenna syste:ll

The third chapter is devoted to design aspects of anteninas for MBC. It presents a discussion on the technique of value engineering. This technique was used for the synthesis of a value system for the remote mobile and manpack MBC antenna sy sems. Thereafter the functional description of the Method of Momentbased code, the NEC2 software package [12] is outlined with reference to numerical modelling constraints and limitations as imposed by the NEC2 code, deduced by experience gained in using the code, and structure modelling considerations. This is followed by, a brief descripion of the prediction software for MBC sysiem performance, METEOR [13]. Finally, the relationships between antenna beamwidth/gain and orientation to waiting sime between raessages as well as chancil daration are established. For this investigation, idealized radiation patterns were synthesized. These ideal patterns were utilized for different illunination schemes in order to establish the trade-offs in the meteor scatter environment.

The forth chapter presents theoretical MBC link performance using simple antennas. Electrical performances of simple antennes were evaluated using the NEC2 [12]. The resulting radiation
patterns were used to predict, with the prediction software METEOR [13], the effect of these simple antennas on MBClink throughput for stations separation ranging from 100 km to 2000 km . Both optinaum antenna orientation as well as the worst case were considered.

The final chapter concludes this report with a shon hindsight overview, critical comments on principle issues concerning simple meteor scatter out-sration antenas as well as suggestions for further work.

2 BACKGROUND TO METEOR BURST COMMUNCATION AND THE ROLE PLAYED BY TLIE ANTENNA

In this chapter the process of radio waves scattering via meteor trails is briefly describeri outlining some importantcharacteristics of MBC as well as its applications and limitations. Particular attention is praid to the pectuliar geomerrical requirements imposed by the MBC link, the mechanisms of reflection from underdense meseor trails and the variation in conmibution of useful reflection firm different sky regions. Once the imponance of the rolepiayed by the antenna system becomes evident, the merits of different type of antennas in the medium of MBC are discussed. These include the antennas radiation pattern, electrical problems due to size limitation and the effect of noise on the antemas.

2.1 The Nature Of Meteors And MBC

Meteors form part of our solax system and travel in elliptical orbits with heliocentric velocities which are Jess than the solax escape velocity. The velocities of meteors approaching the earth range from $11.3 \mathrm{~km} / \mathrm{s}$ to $72 \mathrm{~km} / \mathrm{s}$. The lower limit is the escape velocity of a paricle leaving the earth. The upper limit is the sum of the escape velocity for a particle leaving the solar system ($42 \mathrm{~km} / \mathrm{s}$) and the earth's velocity aronnd the sun ($30 \mathrm{~km} / \mathrm{s}$) $[14,15]$. Each day billions of meteors intercept the earth's atmosphere. It is estimated that or the average at least $\mathbf{1 0}^{\mathbf{1 0}}$ particles of mass greater than 10^{5} grams are swept up by the earth daily [16]. Upon interception, the particle is heated by collision with air molecules, forning an ionized zail. The distribution of ionization along the trail is a function of the meteor mass, velocity, and angle of incidence [17]. These rapidly diffusing trails reflect radio signals, typically for hundreis of milliseconds duriag their brief existence, thus providing radio transmission paths over long distances. Typical spatial loss is in the order of 90 dB in addition so about 80 dB which is lost on scattering off a meteor trail. Therefore, MBC links are inherently weak signal systems $[15,18,19]$.

Meacor trails occur in a region lying roughly between 80 km and 120 km above the earth's surface, called the meteor region, pernituiag MBC over distances wp to approximately 2000 km . The average length of a trail is 15 km [17] while the diameter increases with time due to diffusion. This expansion causes rapidly weakening signal reflection and hence the duration for which it is useful for communication is limited. Thereflected wave from a typical meteor trail illuminates a small area on the earth called the "footprint". This area of reception is escimazed to be typically

Page -7-

8 kT , wide by 40 km long. The foorprint, winch is still being studied, appears to depend on the orientation, position and direction of uavel of the neteors in space as well as the position of the rectiver relative to the transmitter and the antenna pattern $[2,17,20\}$.

The communication link between transmiter and receiver is established only when these are properly oriented with respect to the meteor trail. This occurs when the angles of incidence and reflection on the trail are equal. Hence, the geometrical orientation results in a useful path when both the transmitter and receiver are located at the foci of an ellipsoid and the trail is rangential to the ellipsoid as illustrated in figure (1). This fixed-path geometry, coupled with the irregular arival of meteors, causes a highly localized footprint. MBC, therefore, offers considerable advantages in terms of Low Probability of Intercept and high resistance to jamming [2,21].

FIGURE 1: The geometry of the transmission path required for MBC .
Therefection of radio waves via meteor trails is a function of the ionization density distribution along and across the trail. In discussing the reflection properties it is customary to classify the trails either as "underdense" or "overdense". The dividing line, in terros of the electron density per merre of rail length, is $2 \times 10^{3 /}$ eiectrons per metre which conresponds to the ionization produced by meteors of about 10^{-3} grams. Meteors trails with fewer than 2×10^{14} electrons per metre are referred to as underdense. Those with elecron densities higher than this limit are termed overdense. Usable meteors for communication purposes typically have masses larger than 100^{5} grams [15]. Smaller meteors will not produce sufficienly high elecron densiry to reflect signals. The mass distribution of meteors is such that the total number of meteors greater than a certain mass is inversely proportional to that mass. The constant of proportionality is thus a measure of the influx rate and is dependent on time of day, year and the zenith angle with which meteors approach the upper atmosphere [18].

The low electron density of underdense trails allow the signal to penetrate through the ionized column, causing the signal to be seattered by the individual electrons. These electrons, which areexcited by the radio waye, act as small dipoje antennas andre-radiate the signal. Thereceived signal energy is thus the vector sunz of all discrete reflections. Since the diffusion of the trail is rapid, the phase difference increases and the amount of received energy reduces rapidly [2,15].

In overdense trails the electron deasity is sufficiently high to prevent complete penetration of the radio wave into the ionized column and therefore signals will be mostly reflected from the surface of the trails [15].

Due to the mass distribution of meteors, underdense trails are mach more common than overdense ones and hence more useful as a medium for MBC. Overdense mails on the other hand produce high signal srength and longer usabie duration for communication. Froor this it is clear that the MBC system design is based on the use of onderdense trails while overilense trails enhance the link performances [6].

At certain tines of the year meteor showers occar. These meteor showers are caused by a large number of particles moving with a common velocity about the sun and their orbit intersect the orbit of the eark at a specific times each year. They usually last for several hours only. This phenomenon only accounts for a small fraction of all meteors and is therefore of little use for reliable communications. Sporadic meteors which mostly follow random orbits about the sun and are incident upon the earth from all directions, play the most important role in MBC [14,15].

As pointed out before, the incident flux of sporadic meterss is a function of time of day, we season and the geographical location at the point of observation. The motion of the earth around the sun produces a durmal variation in the rate of arrival of meteors, since the portion of the earth experiencing dawn (the apex in figure 2) will have the maximum surface area in the direction of the carth's movement. Thus, the apex will intercept many more meteors than the opposite stde of the earth (the entiapex in figure 2) since only metears of high velocity will overtake and intercept the earth [15,16]. Furthernore, the earth encounters a higher meteor density during the second balf of the year, the period when it is closest to the sun. Some authors $[6,21,22,23]$ believe that sezsonal variations are due to the seasonal tilt of the northern hemisphere away from the earth's direction of travel. For this reasoning to hold true, the seasonal

Page -9-
variations in the southern hemisphere would be tis opposite of those experienced in the northem hemisphere. However, measurements taken in Adelaide [24], Australia, indicate similar annual uends to those in the northem hemisphere and the reason for this trend is therefore not clear.

The extent of diurnal variations in mereoric rate varies with latitude. An observer at the equator would encounter the greatest meteoric rate in the early mornigg hours suce at that time the trajectory described by the earth aboat the suan is directly overhead. During the evening hours, only those meteors moving with velocities greater than that of the earth will be detected. An obscrver at the poles on the other hand would not observe any diumal change in mereoric rate. To summarise: At moderate latitudes in either hersisphere the largest rumber of mettors wili be entering the atmosphere at about 0600 local time and during the later half of the year. The smallest number will enter at about 1800 local time and in the tirst half of the year. The ratio of maximum to minimum depends on the latitude of the point of observation [16,24].

The diurnal and seesonal characteristics described above only considered the iotal meteor influx rate. The number of meteors avalable for useful communications depends not only on their influx rate, but asso upon their radiants. The "radiant" is that point on the celestial sphere from which meteors itppear to emanate. The radiant points are not uniformily distributed in the sky. They are, however, predominantly concentrated toward the ecliptic plane (the plane of the earth's orbit) and move in the same direction around the sun as the earth. The corcentration of meteor radiants towards the apex of the earth's path, shown in figure (2), is the cardinal factor affecting the directional charteteristicsofaMBClink. This non-uniformdistribution of metens determine the relative importance of sky regions and hence the desired illumination pattern of an antenna for a particular link [25].

Noteven all meteors intercepting the earth's amosphere and which comply with the geomernical recuirements of the MBC link are useful for communication. The usefulness of meteor echoes for communication depend upon their number as well as their individual duration. The duration that the signal remains above some preciefined value, usually determined by the noise level, is colled the duty cycle. The areas that convibute most to the dury cycle of an MBC link are those where the product of number and duration of meteors is a maximum and is most favourable for meteor propagation. These arcas, as first shown by Eshleman and Manning [26], are located at either side of the midpoint berween receiver and transmitter as illustrated in figure (3) and are referred to as "hot spocs" [20,27]. However, the contourplor produced by Eshleman and Manning

FIGURE2. The earth orbit in the ecliptic plane illustrates the cause of diurnal variations of metect rates.
[26] and later supported by Hines and Pugh [28] assumsed uniform radiant distribation in calculating their results: Subsequent work illustrate [25], as stated before, non-isoropic meteor rediant distribution.

Clearly, the diumal and seasonal variations in tie radiant distribution on the celestial hemisphere above a particular meteor link control the relative magnitude and position of the two hot spots ateas of meteor acrivity. Thus, as suggested by figure (3), the importance of one hot spotrelative to the other may not be equal. Their shape and location varies diurnally, seasonally, with latitude and with path length as well as direction of comnunication paih duc to the non-uniform neteor radiant distribution [20,25]. Thus, these constantly changing hot spots characteristic is a significant factor in the design of antennas for MBC.

Abstract

ELGURE 3: Plan view of the "hot spots" areas for MBC link over a north-south path of 1000 ken berween terminals. These contours werecomputed by the prediction code METEOR [13]. Both transmitting and receiving antennas illuminate the sky with an idealized isotropic radiation pattern.

Another parametereffecting the quality of an MBClink is iss operating frequency. The operating frequency of MBC systems may vary from 30 MHzz to 100 MHz . Below 30 MFzz , the F-iayer of the ionosphere may reffect the signal independently of the meteor trail as in normal High Frequency (HF) communication, giving rise to merference. On the other hard, power reflected from the meteor trails decreases with increasing frequency as will be shown in section 2.3. Above 50 MHz the reflected power decreases rapidly with frequency and therefore a longer message waicing rime as well as lower received signai strength will result. Hence, higher transmitter power would be required to actieve the same received sigral strength. In gereral, frequencies ranging from 40 MHz to 50 MHz are preferred to minimize antenna size and allow practical levels of RF power [3]. $x=6 x^{2}$

Generally, MBC technology is ideally suited for applications such as telemery and message based communication. A network would typically consist of a master station transceiver, which is a commuication terminal with central processing controlling the system, one ormore remote stations which could either compris? of communication or data terminals as illustrated in figure (4).

FIGURE 4: A typical configuration of a remote suation.

2.2 The Grometry Of MBC Link

Since the majority of meteors used for communication exhibit underdense signal characteristics, the description of the scattering geomerry will be restricted to this class of trails. The re-radiated fields can thus be used to estimate the amount of scatter [29].

The length of a meteor tail is primarily a function of the meteor mass and the zenith angie of approach into the upper amosphere. The average length of a meteor trail is about 15 km but the usefallength of the trail for commanication purposes is determined by the length of the principal Fresnel zonc.

For a sufficient amount of energy to be reflected by the ionized trail, bath the transmitur and receiver will be iocated at the foci of an ellipsoid to which the meteor trail is tangential as shown in figures (1) and (5). The total transrwission path length between she terminals is a minimum forreflections from these tangent points, marking the cente of the principal Fresnel zone (point M in figure 5). The principal Fresnel zone is that region surrounding the tangent point where reflections between transmitter and receiver follow a path length of go more than a quarter wave lengtit longer than the minimum pach length. At the boundarics of this principal Fnesnel zone, subsequent Fresncl zones are formed. Reflections from these further Fresnel zones will be in anti-phase to those from the previous Fresnei zones. Hence, the received signal energy may be thought of as coming frofa the principal Fresuei zone only, since more remote Fresuel zones, produce reflected fieids which more or less cancel each other out $[15,29,30]$.

Thus, the portion of the meteor trail confined to the principal Fresnel zone is, hence, only a small fraction of the trail length and need not be the region of the trail where the maximum ionization occurs. This geomerry for a meteor burst propagation pati is illustrated in figure (5).

FIGURE 5: Scattering geometry.

Page-14

In figure (5), P_{4} is the plane of prof arfation defined by the transmitter, the scattering point M and the receiver. E is the ellipse uecined by the interssection of the ellipsoid, with foci at the transmitter and receiver, and the plane P_{1} of which P_{4} is a sub plane. The mereor rrail is tangential to the eltipse E, and is contained ia the tangential plane P_{2} perpendicular to plane P_{1}. The centre of the principal Fresnel zone occurs where a meteor path is exactly tangential to E. The plane P_{3} 䇇 a vertical plane from the transmifter to the receiver.

The tomil length of the trail in the princigal Fresnel zone, 2 L is given by:
$L=\sqrt{\frac{\lambda \vec{R}_{1} \mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\left(1-\sin ^{2} \phi \cos ^{2} \beta\right)}}$
Where:
λ is the wave length in meters.
R_{1} and R_{2} are respectively the points from transmitter and receiver to the point on the trail at which the reflection requirement is satisficd.
ϕ is halk the angle berween R_{1} and \mathbf{R}_{2}.
β is the angle between the trail axis and the plane containing the transmitter receiver and metcor tuail at the cenare of the principal Fresnel zone.
provided R_{1} and R_{2} are much greater than L .
Eshleman and Manning [18] stated that echoes will be received from points along a meteor trail other than those tangent to an ellipsoid defined by the foci at the receiver and tranmitter. An echo will result when the angle, Ψ_{m}, between the tangent plane (P_{2} of figure 5) and the meteor path satisfies:
$\Psi_{4} \leq \frac{L_{7}\left(R_{1}+R_{2}\right)}{4 R_{1} R_{2} \cos \phi}\left(1-\sin ^{2} \phi \cos ^{2} \beta\right)$
Where L_{T} is the length of the mereor trail, and assuming that $L_{1} \ll R_{1}$ and R_{2}

2.3 Reflection From Underdense Meteor Trails

The distribution of energy reflected by a meteor trail is a function of many variables. A sample of these are the ionization density distribution along and across the trail, the signal frequency, the polarization of the incident wave relative to the mnemina, the gain of the antennas and the motion of the trail with respeci to the coordinate system.

As a result of the randomness of the various paramerers, the probabitity of iwo identical reflections tends to zero. On the other hand, the complexity of the varions mechanisms invoived as well as the degrec of ancertainty introduced leails to a situation where formulation of the physical problems are ar best oniy useful approximations. They will apply rather well to some of the trails observeri and unute poorly to others.

The derivation of transmission laws of reflections from underdense trails [15,31,32], axe based on a mathmatical model which assumes the trail to be a inght-circular cylinder of electrons. The diameter of these electons is Fawioh smallex' than the signal wave length and their density within ths trail is fow enough for the incident vive to penerrate through the ionized coltumn without major modification. This mathemanical model is extended to account for the geometrical requirement that the trail be tangential to an elijpsoid with foci at the transmitter and receiver. Hence, the MBC link can "sce" only a fraction of all trails incident on the ionosphere within its range since most do not have the proper onientation (outined in section 2.2). For simplicity it is further assumed that the time taken for the mereor to traverse one half of the principal Fresnel zone is shori compared with the duration, t, requited for the signal amplitude to decay to e^{1} (the reciprocel of the naturar logarithm bese) of its initral value. That is, the time of formation of the meteor trail is assumed to be shor compared with the toral time that radio waves are scattered by the rail and hence transient effects are neglected. Thas, accounting for the length of the principal Fresnel zone, the reccived signal power scattered from an underdense trail cat be estimated from the expression [15,31.32]:
$P_{R}(t)=\frac{P_{T} G_{T} G_{R} \lambda^{3} q^{2} I^{2} S^{2}}{1 \cos ^{2} R_{1} R_{2}\left(R_{1}+R_{2}\right)\left(1-\sin ^{2} \phi \cos ^{2} \beta\right)} e^{\left.-\left(\frac{2}{2}\right)^{2}\right)^{-\left(2 \frac{t}{2}\right)}}$
Where:
P_{I} is the transmitted power in Wats.
G_{r} and G_{r} arerespecively, the transmitter andreceiver antenna gainfelatiotoan isotropic radiator immersed in free space.
r is the radius of the efectron in meters.
q is the electron line densify of the trail in electrons per metre.
S is the dot product of a unit incident electric vector and a unit vector of the reflected wave in the direction of the polarization of the receiving antenna [32].
D is the ambipolar diffusion coefficient in $\mathrm{m}^{2} / \mathrm{sec}$.
x_{0} is che initial radius of the trail in meters.
τ is the duration required for the signal amplitude to decay to e^{-1} of its initial value.
t is the time measured from the formation of the uail in seconds.

The classical radius of the electron is eiven by;
$\mathrm{r}=\frac{\mu_{\mathrm{e}} e^{2}}{4 \pi m_{\mathrm{a}}}=2.8178 \times 10^{-55}$ metre
Where μ_{0} is : ; permeability of free space, e is the charge of the electron and m_{i} is the mass of che electron.

The time constant, τ, requised for the signal amplifude to decay to e^{-1} of its initial value is given by:
$\tau=\frac{\lambda^{2} \sec ^{2} \phi}{16 \pi^{2} \mathrm{D}}$
In the derivation of equation (3) it was assumed, as pointed out before, that the formation time of a meteor rrail is short compare with τ. However, heincrease in the trail radius due to ambipolar diffusion during its formation can be appreciable. That is the ambipolar diffusion coefficient, D, may be large. Moreover, as indicated by equation (5), τ decreases as the square of the signai wave length. Therefore, the above assumption does not hold for short wavelengths, and/or large ambipolar diffusion coefficient.

The inaitition wave length, λ_{T}, is defined to be the shortest wave lengh for which equation (3) is applicable. This transition wave length may be estimated by equating the time of the formation of a meteor trail to the total time that radio waves are scattered by the trail. That is:
$\frac{\mathrm{L}}{\mathrm{v}}=\frac{\lambda_{\mathrm{T}}^{2} \sec ^{2} \phi}{16 \mathrm{~m}^{2} \mathrm{D}}$
Where L is half the length of tise principal Fresnel zone, given in equation (1), and v is the meteor velocity. Hence, combiving equations (1) and (6), the transition wave length, λ_{r}, may be written as:
$\hat{\lambda}_{7}=\left[\left(\frac{16 \pi^{2} \mathrm{D}}{v \sec ^{2} \phi}\right)^{2}\left(\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\left(\mathrm{~m}_{1}+\mathrm{R}_{2}\right)\left(\mathrm{I}-\sin ^{2} \phi \cos ^{2} \beta\right)}\right)\right]^{\frac{1}{2}}$
In practice, the poiameters (such as D) upon which the transition wave length deperd may vary in value. Therefore, it is necessary to evaluate the transition wave length for each specific case. Diffusion commences as soon as a meteor mail is fommed. Consequently, the radius of the trail increases with tirne and hence with distance from the meteor itself. To obtain the seceived signal from underdense trails, whith wave length shorter than λ_{7}, the trail formation period should not be neglected Accounting forthisperiod, the received signal power is estimated as follows [1.5]:
$P_{R}(t)=\left[\frac{P_{1} G_{7} G_{2} \lambda^{6} q^{2} 1^{2} \sec ^{4} \phi S^{2}}{4096 \pi^{6} R_{1}^{2} R_{2}^{2} D^{2}}\right] e^{-\left(\frac{2}{2} \frac{2}{2 x)}\right.}\left[1+K t^{t^{2}}\right]^{-1}$
Where:

$$
R=\left(\frac{v^{2} \lambda \sec \phi\left(R_{1}+R_{2}\right)\left(1-\sin ^{2} \phi \cos ^{2} \beta\right)}{8 \pi D R_{1} R_{2} \cos \phi}\right)^{2}
$$

Bothequations, (3) and (8), illustrate how the cransmission loss iscreases with signal frequency, While at frequencies below the transition frequency the transmission loss is proportional to λ^{3}, above that frequency the power falle sa λ^{6}. The firstfactor in these equations represents the peak received power. The second factor acounts for the atenuation due to trai]'s initial radius. This loss arises dee to interference between the xe-radiation from the electrons within the trail whose

Page -18-
thickness at formation is comparable with the signal wave length. The third factor indicates the received signal tize dependence. This loss factor accomss far the increase in the trail radius due to andipolar fliffusion which can be significant even for as short a period as is required for the formation of the trail.

The variation of the received signal, at frequencies above the transition frequency, with time is as shown in figure (6).

and hence can be qualitatively unitied. Quantitatively, t is the time taken for the received power estimatect in equation (3) to decay to about 0.37 of its initial value, while τ is the daration taken for the received power in equation (3) to fall to abour 0.29 of its peak value.
In order to obrain a practical estimate of the received signal power it is required to realistically approximate the various variable parameters on which it is dependent A brief surnmary, delincating how some of these variabies are quantified will be illustrative.
The velocity of a meteor approacling the earti is a function of the meteor's and the earth's orbital velocitios around the sun and the augular distance of the radiant from the apex. This geocentric velocity of the meteor before coming under the influence of the earth's gravity may be expressed [31] as:
$v^{2}=v_{H}^{2}+v_{E}^{2}+2 v_{H} v_{E} \cos \xi$
Where v_{H} and v_{E} are respectively the velocity of the meteor and earth in their orbit around the sun and ξ is the angle of the radiant from the apex.

The geocentric velocity, v_{s}, taking the earth's gravity into account, masy be whiten as [34]:
$\mathrm{v}_{\mathrm{g}}^{2}=125+\mathrm{v}^{2}$
The apparent angle of radiant from the apex, y for an observer on earth may be transformed as follows:
$\gamma=\sin ^{-4}\left(\frac{\mathrm{v}_{\mathrm{H}}}{\mathrm{v}} \sin \xi\right)$
As mentioned before the velocities of the meteors approaching the earth are in the range $11.3 \mathrm{kma} / \mathrm{s}$ to $72 \mathrm{~km} / \mathrm{s}$. Clearly, equation (10) ilhstrates that meteors which emanate from angular distances, ${ }_{6}$, smalier than 90° are speeded up. Conversely, those meteors emanating from angles greater than 90° appear to be recarded. The correction infoduced in equation (11) is based on Newton's law of gravitation.

As the mettor collides with air molecules, kinetic energy transforms to heat and the particle vaporizes. The velocity of the vaporized atoms is further restricted by air molecules, which ionize them by detachment. The ionization causes a trail of positive charged ions and free electens, with an initial radius r_{0}, to form behind the meteor. The ionization fett by the meteor
is ordinarily in a shape of a cylindrical colurne which expands rapidly to a low density. The ambipolar diffusion coefficient, D. is a measure of how fast the trail diffuses and hence thins out. Both, the ambipoiar diffusion coefficient and the inatial radius are by no means constant and rather rapidly increase in magnitude with meteor height. This may be illustrated by an expression [35] which empinicaliy telates the ambipolar diffusion coefficient to height in the region 80 km to 110 km as follow:
$\log _{10} \mathrm{D}=0.067 \mathrm{~h}-5.6$
Where D is in $\mathrm{m}^{2} \mathrm{sec}$ and h is in km . An empirical equation relating the initial radius to height [30] is as follows:
$\log _{10} \mathrm{I}_{\mathrm{c}}=0.035 \mathrm{~h}-3.45$
Where r_{0} is the initial radius of the tail in meters.
Clearly, the characteristics and orientation of the antenna employed by the MBC fink has direct bearing on the received signal power. It is, therefore, important to acquire a global overview of the various parameters governing the behaviour of this signal to gain insight of their interdependences. In the above transmission equation the factors of prime concem for the development of antennas are the polarization factor and the antenna gains.

The seceived signal power is dirtectly proportional to $\mathrm{P}_{7} \mathrm{G}_{\mathrm{T}} \mathrm{G}_{\mathrm{R}} \mathrm{q}^{2}$. Thus, if transmitter power remain colstant and the receiver threshold is unchanged then the minimum value of q can ir reduced by increasing the gain of the antennas. Lower threshold value of electron line density, 4. will in turn increase the number of detectable meteor trails illuminated and hence the link's duty cycle.

If both receiving and transmitting antennas are lineariy polarized, the polarization factor, S, may be computed by defining the angle μ between the incident electric vector on the trail and the eiectric vector at the receiving antenna. Hence the polarization factor may be expressed as $\mathrm{S}=\cos \mu$.

Alternatively, the angle between the incident electric vector and the direction of the scamering ray may be considered. That is, defining an angle α between, the transmitter electric vector at the meteor trail and R_{2}, as showninfigure (7), will providea measure of the change in polarization

Page -21-
upon scattering. Maximum signal strength will be received when a linearly polarized antenna is oriented perpendicular to the plane of propagation since $\alpha=90^{\circ}$ and $S=\sin \alpha$ will be unity [32].

FIGURE 7: The cransminer electric vector at the meteor rail.

2,4 The Dependence Of Trails Detection On Sky Regions

The theoretical prediction of the relative contribution of sky regions to the detection of meteor trails commences by evaluation of the mimer of meteors whose electron line density exceed a minimum value as a function of meteor velocity, mass, zenith angle of trail axis and height above ground. It will be assumed [31 , chapter 7] that all meteors have their point of maximum ionization at a mean height of 93 km . Furthermore, it is assumed that the variation of electron line density with respect to maximum ionization at a given height is the same for all, meteor trails. The maximum electron line density, q_{m}, in electrons per metre may be written as $\{36\}$:
$\mathrm{q}_{\mathrm{m}}=\mathrm{K}_{1} \mathrm{~B}^{\prime} \mathrm{m} \cos \zeta$
Where:
B^{\prime} - is the probability that a single atom will produce a free electron.
m - is the initial mass of the meteor.
k_{1} - is a constant of proportionality.
ζ - is the zenith angle of meteor path axis.
MYinitey [31, chapter 7] stated that $B \times v^{5}$, where V is the velocity of the meteor. Hence, on substitution into equation (15):
$\mathrm{G}_{\mathrm{m}}=\mathrm{K}_{2} \mathrm{~V}^{5} \operatorname{mocos} \zeta$

Where k_{2} is a constant of proportionality.
Following the above formulas presented by Kaiser [36], it was shown [17] that the number of frec electrons proanced per unit trail length, q, at atmospheric height is given by:

Where:
$\mathrm{h}_{\mathrm{mi}}=93 \mathrm{~km}-$ is the beight of maximum ionization,
$\mathrm{H}=7 \mathrm{~km}$ - is the atmospheric scale height. This paramerer, as shown by M^{2} cisley [31, chapter 7], depends on the temperature and degree of dissociation of the gas molecules at any given height.

Substituting eqisition (16) into equation (17) yields:
$q=\left(\frac{9}{4}\right) \operatorname{mk}_{2} v^{5} e^{\left(\frac{m_{11}-k}{4}\right)}\left[1-\left(\frac{1}{3}\right) e^{\left(\frac{p_{n i}-\Delta}{H}\right)}\right]^{2} \cos \zeta$
The number of meteors of mass greater than mentering the earth's atmosphere per unit area per unit time given by [37]:
$\mathrm{N}(\mathrm{Im})=\frac{\mathrm{k}_{3}}{\mathrm{~m}^{\mathrm{k}_{4}}}$
$k_{s}=k_{5} \cos \zeta$

Where:
k_{4} - is a constant. Based on experimental data [16], this constant hes the vaiue of about one.
k_{5} - is a function of ame of day and year also found empirionlly.
Combining equations (19) and (20) yields an expression for the number of meteors of mass greater thas Li entering the earth's amosphere per anit area per second as follows:

$$
\begin{equation*}
N(m)=\frac{k_{5} \cos \zeta}{m^{k_{4}}} \tag{21}
\end{equation*}
$$

3ubstituting for the meteor mass in equation (21) from equation (18) zesults in the number of meneor crails with elecrron line densizy greater than q as follows:
$N(q)=\left(\frac{k_{2} v^{5}}{q(h)}\right)^{k_{4}} k_{5} \cos ^{\left(\alpha_{4}+1\right)} \zeta$
Where:

Two different approaches were identified from the literature to approximate the rate at which usable underdense meteor trails are detected.

The first approach is based on the wehnique developed by Meeks and James [37] who assumed a unifonaradiant distribution and maintained the geometric requirements fos the establishment of an MBC channci. Frior to that, Pugh and Hines [28,38] have studied the uniform radiant distribution and refined the work earlier presented by Estleman and Manning [26]. As pointed out in section 2.2, Eshieman and Manning [18] stased that echoes will be received when the angle, Ψ_{n}, between the tangent plane (\vec{r}_{1} of figure 5) and the meteor path satisfies equation (2).

The statement in equation (2) may be implemented by ignoring the requirement that mewors should traverse the plane in which a trail must lie within the principal Fresnel zone, and allowing them to lie in a band cenred on that plane [18].

Hence, the number of meteor trails producing reflections, n(q), arising from a square kilomerre of the plane at height in kilometres above the transmitter and receiver, representing the meteor trail zone, per second, may be computed by integrating $\mathrm{N}(\mathrm{q})$ over a band $2 \Psi_{m}$. These bands are centred at the points of tangency of the meteor rail to the ellipsoid defined by the foci at the receiver and transmitter. Thus:
$\Pi(q)=\iint_{\text {nenc }} N(q) d A$

Page - 24

The second approach, is based on the work of Rudic [39] who improved on the work of Pugh and Hines [28,38] and Meeks and James [37] by accounting for some of their geomerrical simplifications [40]. Rudie [39] developed a mathematical model for the radiant disaribution, which approximates the empinical data reported by Davies [41]. However, it appears as though the major contribution of Rudie's work is in the development of the mathematics forcoordimates transformaion. Fe developed expressions to ransform the diswiburion of meteor orbiss frosn the helioceatric coordinate system to the distribution of meteor radiants. These radiants are the intersection of the exetcor trails and the celestial sphere, observed on the earth. Computation of the nuraber of detectable trails is performed for each point in the plane, at height h kilomerres above the ransmituer and receiver, which represents the mereor trail zone by integraion with respect to height. At cach height, betwoen the lower and upper limits of the meteor region, only meteor trails which sarisfy the requirement that meteons should raverse the plane in which a trail must lie to present a principail Fressel zone are accounted for.

As shown, in this section and section 2.3, the observed occurrence rate of useful meteors and the mean receiveri signal level is a function of the antenna system employed. The dependence can be predicted theoretically by combining the antenta illnmination pattem with a model of meteor trail distribation function, and then integrating the product over the relevant volumeric sky region illuminated by the antennas.

2.5 The Merits Of Different Type Of Antennas In The Meteor Scatter

Environment

The antenna is that component of the communication system which links and interfaces the transuitter and raceiver nerworks to the medium. throwgh which signals propagate.

Owing to the small footprint, a single frequency may be time-shared aisong all stations within ameteor scatter network. Antenna bandwidthis, therefore, of litule concem in MBC applications. This simplifies the design, since broadband anternas produce diffoculties in term of pattern and impedance constancy. Marpack and mobile applications may necessitate the use of small antennas which are the main thrust of this research. Such antennas are inherently inefficientard this parameter will be considered in more detail.

Due to the concentration of useful meteors within the hot spots, it is clear that the antenna radiation patem and its associated gain characteristics plays a predominant role in the meteor scatier enviromment. Since simple MBC systems operate at a fixed frequency, impedance matching is trivial and hence considered to be of lesser importance.

2.5.1 Antenna radiation patern

The directional characteristics of an antensa is given by its radiation pattern. Whether operating in the transmitting or receiving mode, the pattern of tinc antenna is the same in accordance with the reciprocity theorem for antemas [42,43]. The anterna radiation pattern is a graphical representation of the relative strength of radiated fields as a function of the zenith, θ, and azimuth, ϕ, angles of the spherical coordinate systern for a constant radial distance from the source. The radiation characteristics of an artitenna is, therefore, represented by a three dimensional pattern.

Some important radiation characteristics are expressed in terms of scalar quantities. One usefil measure of this is the directivity, D_{j}, which is the ratio of the maximum radiation intensity, $\mathrm{U}(\theta, \phi)_{\text {max }}$ to the Eadisition intensity averaged over all ditections, $\mathrm{U}_{\text {ave }}$ The radiation intensity is a measume of the power radiated from an antenna per unit solid angle. : 'titst
$\mathrm{D}_{\mathrm{i}}(\theta, \phi)=\frac{\mathrm{U}(\theta, \phi)_{\text {axx }}}{\mathrm{U}_{\mathrm{are}}}$
The gain of an antenn (referred to a lossless isptropic source) is a function of its directivity and efficiency. This efficiency accounts for ohmic losses arising from the conductivity of metal and delectric losses. Thus, the gain of an antenna in a specified disiction (θ, ϕ) is given by:
$G(\theta, \phi)=\eta D_{i}(\theta, \phi)$
Where T is the radiation efficiency of the antenna. Although antenna's gain can be specified in any direction, it is usual to refer to the peak value which coincides with the direction of the main beam radiated by the antenna.

In the meteor scatter environment, the question to be adriressed with regard to radiation pattern is whether better connectivity can be achieved by focusing a narrow beawn onto a region where useful meteors are more likely. The radiation innensity in the main lobe of an
antenna is, to a good approximation, inversely propontional to the nagulat width of the main lobe. As a coroliary, the gain of the antenna is inversely proportional to the beamwidth in the zenith and azimuth planes.

The use of nariow beamartennas reduces the solid angle subterded and therefore the volvme of sky illuminated. But the higher gain of the antenna compensates by increasing the observable nuraber of meteors per solid angle. MBC simulation resuits [19] indicate that a spiit beam pattern difected at the hot spots to eithot sides of the transnitter receiver axis results in a larger number of usefill meteor bursts per hour compare with a wide low-gain receiving beam directed at the transmitter.
2.5.2 Electrical problems due to size limitation

The requirsments for radiation efficiency, as shown by the Chu-Hanington limit [44], indicate the trade off between efficiency, bandwidth and antenna size. The Chu-Harrington fimits, obtained by assmrning that all possible wave modes ase excited in a sphere enclosing the radiating structure and its consequences, are illustrated in figures (8) [adapted from 44] and (9).

FIGURE 8: The chli-harington timits.

Page -27-

FIGURE 9: Consequences of the chu-tiarrington limits.
The effective Q-value of an antenna is a reciprocal measure of its bandwidth. These limits indicate that a reduction in the antema's dimension wouph 'ssult in reduced efficiency for a fixed bandwidth. Furthermore, to achieve a desired efficiency performance while reducing the anteana ${ }^{2}$ s dimension would result in a higher effective Q -value (or reduction in the antema's bandwidth). The antenag's bandwidth often suffers as a result of the reduction in dimension brought about to satisfy some practical constraints. This constraint is not a major probiem in the simple meteor scatrer environment, since such a system operate at a low data rate and hence requires narrow baxdwidth. Directivity constrints due to size limitation is a more serious problem.

The directivity of an antenna with uniformly distributed electric field (ie. constant radiation pattenn) across is aperture (termed aperture distribution) may be increased by large electric field fluctuations in the vicinity of the aperture's edges. This is known as superdirective condition [45, pp. 517-520]. Thus, antenmas whose directivity is much larger than the directivity of a uniforndy excited reference antema of the same size is known as a superdirective antenna

In an array, superdirectivity is achieved by insertion of multiple elements within a fixed length, thus decreasing the spacing. This causes large, out of phase curtents to circuiare within the elements, increasing the amomn of recirculating energy, the effecrive Q of the amay, and the ofmic loss, which in tum causes the antema's efficiency to rapidly decrease. Superdirectivity, therefore, suffers from problems such as low radiation resistance and hence low efficiency, narnuw tolerances due to large and oppositely directed currents and small Itindwidth. Figure (10) [adapted from 44] is an example of such an array. It indicates the variation of Q with a directivity increase. A two wavelength long superdirective array, occtpied by various numbers of isoropic elements illustrates an expenentiai increase of Q with directivity.

ELCURE 10: Q Vs Directivity computed for a 24 array.

2.5.3 The effect of noise in relation to the antemas

The assessment of the effect of noise on MBC systems may be categorized in terms of internal and extemal interference. The internal source of nocise is due to ohtmic resistance of the anterna. External interference affecting the reception of VHF signals inchudes galactic noi \% local amospheric noise and man-made noise. The effect of notise on the MBC link is
to decrease the usable signal duration since this is defined as the time period during which the signal tomnoise ratio is above a predefined limit. Hence, the system waiting time for transmission of an error free message frame is increased [46]. In the transminting mode, the main requirement is to radiate as much of the available energy as possiun, whereas in the receiving mode the main consideration is a good signal to noise ratio.
Owing to the thermal agitation of charges in a conductor, there is a certain amount of energy distributed over the whole radio frequency spectrum. The noise power (in Watts) resulting from this encrgy may be expressed as:
$\mathrm{W}_{\mathrm{E}}=\mathrm{kTB}=\frac{\mathrm{V}^{2}}{4 \mathrm{R}}$
Where:
$\mathrm{k}=1.38 \times 10^{-27} \mathrm{~J} / \mathrm{K}$ K is the Boltzmana's constant.
T is the temperature in ${ }^{\circ} \mathrm{K}$.
B is the bandwidth in Hz
V is the rms value of noise voitage.
R is the resistance in Olms .

This level of noise power will always be present and is often used as reference.
Galactic noise, arriving from regions outside the earth's amosphere, "seen" by an antenia depends both on its beamwidth and on the direction in which it is pointing. Tis minimize this effective noise temperature, the antenna beam should avoid pointing near discrete celestial radio sources. Although the presence of galactic noise appears to diminish as frequency is increased toward the GHz region, an isotropic noise temperature background will always prevail, independent of beam direction [47].

An atmospheric source of noise which may be significart at the VHF band is due todiscl ages taking place in the immediate vicinity of the receiving anterna. This form of noise, kown as precipitation static, is caused by electrically charged particles which may be raindrups, snow, hailstones or dust clouds. Other sources of amospheric noise is due to the cutrents caused by fashes of lightring. These currents are of such intensity and short duration that
they produce a continuous spectrum of energy throughout the band of radio frequencies. Intermittent thunderstorm activity would give rise to impulse noise in a receiver, but the combined field of many flashes in a short tine interval will appear as fluctuation noise [48].

Man-made noise include all noise sources due to electrical appliances and machinery. The lower portion of the VHF frequency spectram is dominated by industrial equipment, with power lines and automobile ignition noise being majot contributors [48].

Of all types of interference encountered man-made noise is most severe [46,48]. Noise measurements, carried out by the Nivaval Ocean Systems Centre (3NOSC) in the USA [46], indicare that man-made radio noise can be detected at distances in excess of hundred miles from large metropolitan centres and was found to increase with altituce. When man-made noise is eliminated by directing the antenna beam skywards, gaiactic noise predominates.

Aniudication of the expected neise levels in business, residential andrural areas is presented in figure (11). These correlations [49], however, should only be viewed as a yard stick since other factors, such as the orientation and height of the antenna above ground as well es the specific extemal interferences prevaling at a particular site at any point in time, will cause significant deviation from the indicated noise levels.

Figure (11) indicate median day-tirne values of surface man-made radio noise power and galactic noise power in dB above thermal noise, kTB , at $288^{\circ} \mathrm{K}$ as a function of frequency.
In general, noise sources should not be illuminated by the antenna's radiation pattern. Aithough noise cannot be completely eliminated, its level can be reduced. A sigiricant reduction of man-made noise can be achieved by increasing the elevation angle of the main beam. In addition, minimising the height of the antenna above ground will reduce noise power int aced via the antenna's minor lobes.

EIGURE 11: Average median day time values [49] of sufface man-made radio noise power for a short vertical lossiess grounded moropole antenna.

3 DESIGN OF SIMPLE ANTENNAS FOR MBC

In chapuer 2 the a theoretical overview on the mechanisms of MBC and the role played by the antenna systern was outlined. In this context the merits of differont type of antennas in the meteor scatter environment are delineated. In this chapterdesign aspects of antennas for MBCare presented. These include the synthesis of value systems of antennas for mobile and manpack applications, a review of the design tools used to acquize theoretical results of MBClink performance using different antennas; and an examination of the merits of different sky illumination sckemes for MBC.

3.1 A Value System For The Remote MBC Antenna System

Value may be defined as those antities on which the worth, desivability or uility of the system depends. The objective of this remote MBC aritenna value system aims at establishing antenna characteristics for design and cvaluation to ensore the best overall antenna system for the end-user.

The value of a system is therefore perceived in temus of the degree to which it satisfies the end-user requirement. A value system is the result of value analysis, which is the analytical investigation of the factors or circumstances which affect the value of the system. Value analysia, is therefore, the process of weighing the various aspects of a system against each other in a quantitative fashion.

This procedure is a valuable tool daring the normal design process. Ari engineer atways aims at a good value, but is often concerned with the fechnical activities of the system and it is difficult for him to make an objective appraisal of the total systems in its final application. The technique of value analysis provides a meshod whereby this could be methodically achieved.

The approach in value analysis is to identify the crucial aspects of the system and to assess these relative to each other. In the meteor scater environment these functional wirtues could typicaliy be the size of the set, waiting time between messages, the size of the antenna, its rugredness and the ? In the value analysis the user is forced to indicate the importance of the various functioni: sispects in comparison to all the others, thereby assigning a quantitative valae to each. It is often discovered that a conventional design concentrates on areas of lesser importance and simultaneously high cost. These functional aspecrs of lesser importance are ofter, the
consequences of others which are in reality more important. If the designer is able to implement the design goal using alternative methods and thereby eliminate some, or all, of these less important aspects, a better system value is achieved.

The use of a value engineering technique requires considerable skill and judgment. One must guard against degrading the system at the expenseof some quality which is notstrictiy functional, but which nevertheless contributes to its worth. This could include appearance, ultimate durability, ransporiabiisty, maintainability and so forth, An attempt was made to formulate a value system fc: both mobile and manpack use in MBC. This attempt follows a procedire of value analysis stygested by GHW' Bodman [50].

From the discussion on MBC and the rofe played by the antenna presented in chapter 2 , it is clear that MBC require high gain antennas which are synthesized to illuminate specific sky regions. The type of illumination schemes best suited for MBC will be investigated in section 3.3. This will determine the shape of the antenna's radiation pattern ideally suited for optimum performance. But these desired characteristics may differ considerably to that which can be achieved using simple antennas due to complexity and size limitations. It may be found, for instance, that the ideal antenna should have horizontal bearnwidth in the order of 8 degrees and vertical bearmwidth, including ground effects, of about 6 degrees. Minor lobes shonld be about $40 d B$ down on the main beam end the radiation efficiency of greater than 90 percent. The antenna should also illuminate the sky ragion at a height of about 95 km above the mid-path between receiver and transmitter. Clearly many of these idealized technical requirements clash with the requirement for a simple anterna, as it is difficult to obtain high directivity as well as accurate directionality of antennas mounted on tnoving velicles. Hence, a value analysis indicates how the technical requirements can be optimally met while still satisfying the practical aspects of the system.

Mobile and manpack remute our-station antema systems are of particular interesc. In mobile MBC severe constraints are placed on the anterna, especially in terms of its height and ruggedness, whereas the size of the set itself is not of that much importance. The manpack remote station, on the other hand, may emylcy a more elacorate antenna, but the antenna must be collapsable and the weight of we set should be minim sed. The size and weight of the set is related to its power capability. Clearly, remete ont-station antennas of reduced size and complexity will result in communication systems of degraded throughput. Therefore, the waiting
time betwen messages and their size will be traded off for simplicity. But just how important are these aspects in relation to one another? The answer to this must emerge from the value system analysis.

The procedure followed to deternine the weighting of the various important aspects is such that a decision is forced to be made on a one-to-one basis. The relative importance of each aspect with respeet to all other aspects is then determined. These can then be plotted to graphically illustate groups of aspects with similar importance. Often, the groups with lower weighting are those whick degrade the worth of the system. It may be passible to eliminate the less important aspects by different methods of implementing some of the more important ones, thereby enhancing the system's worit. Finally, any design of a system can be evaluated on the basis of how well the requirersents, laid down by the value system, are fulfilied. The detailed procedure of value analysis used is oftlined in Appendix A for the interested reader.

Following the procedure of value andysis presented in Appendix A, the value systems obtained for the remote mobile and manpack antenna systems in terms of priority and weighting are shown in figures (12) and (13) respectively. The weighting factors were arrived at after discussion between university researchers and engineers from SALBU(PTY)Ltd. [51] who were familiar with the end-user requirements.

MOBILE REMOTE OUT-STATION	
ASPECTS	WEIGHTING
Reduces height of antanne	11
Ruggedness of antenna	9
Short wating time bemeen messages	-1
Fecurced size of antena	4
Lagge messages (Vs. short)	4
Linit Na. of antemas to one only	1

FIGURE 12: The value systems for the mobile remote out-staionantenna systems.

Page - 35 .

MANPACK AEMOTE OUT-STATHON	
ASPECTS	WEIGMTNG
Small weight of set (power out)	10
Small size of collapsed antenna	9
Short waiting time between messages	9
Ruggodnass of antonsa	4
Ease of antenna orientation	2
Large messages (Vs. shorf)	1

FIGLRE 13: The value systems for manpack rimotes :* Tation antenna systerns.
Clearly, the weight of the set is of prime importance in the ma s staion and is not important when mounted on vehicles. This finding has an ultimate bearing on the output power capability of these stations and consequentiy the implementation of the antenna system. Short waiting time between messages is an important functional aspect in both manpack and mobile applications while large messages are of considerably lesser importance, especially formanpack appications. The point of concern in the manpack situation is the problem of having to carry the equipment on one's back. As a resulf of this, the importance of luxing competent users to align and assemble the anterna system is evident. When an MBC link is mounted on a vehicle, it is the reduced height and roggedress of the antenna which is imporant rather than its reduced size and couplexity.

3.2 Computer Aided Analysis Of Antenna Performance And MBC Link Performance

The design of antennas must adhere to the value systemestabich for its specific application and thas examined in this light. But before this can be done, an evaluation of the performance of these antennas in terms of their electrical characteristics, as well as the perionnance of MBC links cmploying these antennas must be carried out. A powerful technigue for the simulation
of antennas is the Method of Moments described in Appendix B. In this work, The Method of Moment based code NEC2 [12] was used to evaleate antenna's performance. The performance of MBC links was theoretically predicted using the compiter code METEOR [13].

3.2.1 Numerical Electromagnetic Code version 2, NEC2

The Numerical Electromagnetic Code version 2, NEC2, is a popular Method of Moments software package used for analysis of the electromagnetic response of antennas and other metal structares. The analysis is attained by the numerical solution of both an electric-ficld and magnetic-field integral equation for currents induced on the scructure by sources or incident fields [12].

Results obtained by employing computer simulation of physical systems ame only as reliable as their mathematical approximations, coupled with constraints imposed by numerical limitations. Numerical limitations may be inherent either in the mathematical model used to approxirate a physical system, the actual physical complexity of a systen, or in the numerical techniques used for computation.

The basic devices for modelling strucnures with the NEC2 code are shotm, straight segments for modelling wires, and flat patches for modeling surfaces. The proper choice of these scgments and patches is critical in order to obtain accurate results. Some guide-lines appear in Appendix C as to the modeling technique and constraints to be followed when using NEC2.

The features of NEC2 inchude:

- Analysis of arbitrarily oriented wires and surfaces.
- Inclusion of a pa fect ground plane, a rcal ground plane using Fresnel reflection coefficients or a real ground plane using the more rigorous Sommerfeld/Norton solutions.
- Up to 10 excitations can be specified on an antenna structure.
- Up to 30 lumped loads may be specified within the wire structure.
- The program output includes:
- Input impedance at the ports winch were excited.
- Carrent distribution on the antenna.
- Both, aear and far nields from the antenna.
- Efficiency of the antenas.
- Three dimensional radiation pattem.

In order toobtain valid results, the numerical and mathematical modelling of structures must obey a rigid set of reles imposed by the NEC2 code (see Appendix C). In addition, the input data file which interfaces the NEC2 code is row and column dependent. This constitutes a user unfriendly interface which demandis a high level of expertise to use. Thus, an Intelligent Pre-processor for NEC2 was witten [52]. The intent of this pre-processor is to keep the userisolated from the various constraints and limitations imposed by the NEC2 code as well as the automatic creation of the input data file.

3.2.2 Prediction software for MBC system performance

The computer code "METEOR" version 1.0 [13] is a prediction package for determining MBC link performarce. This code is implemented as a utility for MBC designs in such a way that the user is permitted to set up the model of any point-to-point link in terms of its parameters. Three type of user modes are provided for:

- The Novice mode: Permits the user to select a predefned MBC link and instriet the computation of its perfirmance.
- The User mode: For the more experienced user, allowing the setting of most of the important MBC link patameters.
- The Expert mode. Provides the aser with complete control over the MBC' systern parameters, including the mathematical model used for computation.
This prediction toot allows the user to assess the data communication performance of and MBC link through the specification of the following parminters:
- Frequency.
- Transmit power.
- Receive sensitivity.
- Xasi-Uda antenna type and orientation or NEC2 input dsta file.
- Data rate apd protocol specification.
- Srations geographical location.
- Local noize environment.
- Time of day anf year.
- Theory used for simulation.

The onput of tie program include the prediction of:

- Relative conribution of various sky regions to detectable reflections.
- Antema illumination contours and pateras.
- Absolute namber of detectable meteors.
- Distibution of trails duration.
- Esrimate of data communication performance.

Antema illumination is computed by the program for Yagi-Uda antennas or using the NEC2 code. Using the NEC2 code allow for any radiation pattern to be incorporated in the computation of the MBC link performances. From the anterna designer view point, one of the useful aspects of the prediction model is its ability to predict MBC link performances for different antennas due to incorporation of NEC2 into this package.

The package enables the user to display measured resuis obrainex for specific links during field tests. These results may be displayed together with the results computed by the prediction program. This facility serves to indicate the ditgree of confidence which may be placed on the ability of the package to produce accurate simulation results. In addition, it may be esed to test tie validity of different mathemanical models employed for the computation of MBC link performances.

The prediction code METEOR [13] uses the two approaches outlined in section 2.4. In its compatation of the number of detectable trails the anderdense transmission equation of received signal power oulined in section 2.3 is employed. Furthermore, the contribution to the number of usable nzeteor trails in the plane h kilometres above the fransmiter and receiver (used to represent the meteor trail zone) is calculated. This computation is carried out over the common sky region illuminated by the antennas.

3.3 The Effect Of Antema Beamwidth/Directivity And Orientation On Meteor Burst Communication

In the greceding sections of this chapter the synthesis of value system for antennas was discussed and tile compter codes to predict antennas and MBC links performance werc outlined. Since
mereor seatter propagation is dependent on antennas in a point-to-point link, base station as well as out station antennas need to be considered in this respect. This calls for an examination of the effect of different sky illumination schemes. In this section, therefore, the relationships between antenna beamwidih/gain to waiting time and channel duration are established.

3.3.1 Description Of The Experiment And Evaluation Method

The task of antennas employed by MBC systems is to illuminate sky regions where radio waves are most successfully reflected via meteor trails to establish channel openingg. These regions of sky will, however, vary due to the migration of the hot spots discussedin section 2.1. Therefore, to examine the effect of different illumination schemes on the MBC link performence, a fixed link had to be considered at a set time. For the purpose of this smady, an idealized radiation partem was synthesized and used for illumination.

In this experiment, theoretical channel duration above threinold and meteor count results are presented for varions idealized antema tllumination schentes over a 530 km MBC link. These show that the correct choice of antenna dircctivity and orientation may dramatically enhance link performance. This investigation was repeated for a 1115 km link to confirm the validity of the results.

The computer code METEOR [13] was used to predict the MBC link performance. As pointed out in section 3.2 .2 some coefficient contained within the fommulas implemented in this prediction model are adjustable. Hence, it is imperative to carefully calibrate tae prediction model by cromparison of results to ems acal values before treful fimalations can commence. The availability of measured data over 530 km and 1115 km paths was thus the reason for choosing these two representative links. The absolute numerical values resuiting from simmanion are therefore approximate, but the identified tends are reliabie.

3.3.2 Test Link Description

The complete description of the MBC link and the various paramerric settings of the prediction model used for this simulation are presented in Appendix D. An exract of the global features of this MBC link is as follows:

- $\quad 50 \mathrm{~km}$ link.

FIGURE 14; Contour chart of metecr dislribution (computed by the prediction code METEOR [13]) for a 530 km link with antennas radiaring an ideaiized circular core pattere of angle 72° directed at the link mid-point.

3.3.3 Results

Tabulated results are presented in Appendix E.
Figmes (15) and (16) indicate cptimm channel daration and rate of detcctable underdense bursts at 13 dBi (45° beanwidth) for type 1 illumination, 22 dBi (16° beamwidsh) for type 2 and 24 ABi (12° beamwidth) for type 3. Figure (17) portrays the uxace off between channel duration and useful meteors per bour seen for type 1 illmination. Similar trends are exhibited by illumination types 2 and 3.

Clearly, reducing the beamwidth and hence increasing the gais of the antennas beyond the optimum values, will resalt in degradation of the MBClink. To illistrate the importance of proper antenna choice and orientation, two practical cases are examined:

CASE A: Mobile and manack antennas: in major improvement for this MBC application is possible by using an optimized master station antenna. To illustrate, using a Yagi-Utia antema with gain of 13 dBi (45° beamwidth) at the cranswitting station and a $9 \mathrm{dBj}\left(72^{\circ}\right.$ beamwidth) antenna at the receiving station, as in Type 1 , results in 110 metects/hr as well

EICURE 15: The graphs of Channel Duration Vs. Directivity for the three types of iiluminarions. Note: Scaling differences are indicated on verrical axes.
as $50 \mathrm{sec} / \mathrm{hr}$ chamel duration. An optimized mester station antenna with 21 dBi gain (18° beamwidth) and a $9 \mathrm{dBi}\left(72^{\circ}\right.$ beamwidth) remote station antenna, as in 'Type 2 , yields 210 meseors/hr; $70 \mathrm{sec} / \mathrm{hr}$. A :uaster station having two beams of the above optimum value was also simulated and produced an increase in the number of 1neteors/hr to 250 metcors/hr and the channel duration to 85 sechr.
Thus, to summurise, an optimum master station antenna for mobile communications will resalt in more than double the number of meteors/hr seen and approximately 70% increase of available channel duration.

CASE B: A tixed link MBC Using the Yagi-Uda antennas witi gain of 13 dBi (45° beamwidth), directed along the Transmitier-Receiver axis, for both, master and remote stations results in 140 meteors/hr and 75 sec/hr. Using a 25 dBi (12° beamwidth) antennas, directed at one hot spot only, as in Type 3, yields 1860 meteors/hr and $575 \mathrm{sec} / \mathrm{hr}$. This is more than 10 times increase in the nurnber of mereors seen per hour and over 7 times increase

EIGIBE 16: The graphs of useful Meteors per hour Vs. Directivity for the three types of illuminations. Note: Scaling differences are indicated on vertical axes.
in available channel duration. It is possible that these theoretical results are numerically somewhat higher than those which can be achieved in practice. Nevertheless, the trend is believed to be cormect. A master station having two heams of this optimum value each. directed at the different hot spots, was also simulared and produced ar increase in the number of neteors seen and channel duration by appreximately 23%.

From this investigation it is cleat that proper antenna choice and crieitation parricr latly at the master station (for mobile communications) will result in dramatic link improvement. It should be noted that such optimum antennas are not unrealistic since a stacked array of 8 Yagi-Uda antennas with 5 elements each produce about 21 dEi gain. For networking applications, however, steerable arrays vill provide a more versatile solution.

Page -44-

FIGURE 17 . The graphs of Chamel Juration Vs, useful Meteors per hour for type 1 iltumination (shown in figures (15) and (16)). Directivity of illumination is indicated.

4 PREDICTION OF MBC LINE PERFORMANCE USING SIMPLE ANTENNAS

The study outined in section 3.3 illustrated the importance of the correct choice of antenna directivity, radiation patern and oriensation in the meteor scatuer environment. The requirement for simple antenna systems for mobile and manpaci applications results in communication systems of degraded throughput. As indicated by the value system analysis (in section 3.1) for the mobile out-station, a higher weighting of impontance is placed on the antenna's height and ruggedness than on the demand for short waiting time between messages. For the manpack remote station, the small weight of the set ws well as the small size and collapsability of the antenna, out-weighs the requirement for short waiting time between massages. In view of this guide-line information one can now examine the performance of $M B C$ links enploying differeat antermas.

In this chapter, theoretical channel duration above threshold and meteor count results are presented, usiag varions simple antennas, for stations separation ranging from 100 km to 2000 km . Tabulated results are presented in Appendix E.

4.1 Description Of Evaluation Method

The objective of this investigation is to establish performance of MBC links employing simple antennas. The performance of these, however, zan only be useful if viewed on a reference basis. That is, the performance predicted for links employing any specific antenna should be viewed with respect to these same links employing other anteanas. As reference antennas, thereforc, a dipole antenna and its monopole ve sion were studied. Another useful reference anteana is a 5 -elements Yagi-Úda antenna since this is often used for MBC. Subsequent simularions were performed for a molile square loop antenna and a marpack long wire (terminated) atenna. This antennas were deliberately simulated aither in free space or above an infinite conducting ground in order to eliminate the varying effect of real ground on the antenna's sradiation partern. Clearty, inpractical cases the NEC2 code may be used todetermine the radiation patern due to a particular ground plane. These theoretical results are presented for

- 400W transeeivers.
- 8 kHz receiver bandwidth.
- $270{ }^{\circ} \mathrm{K}$ receiver noise temperature.
- Minimum detectable signal strength of $10 a B$ above noise.
- Trails with more than 60 msec duration above tireshold.
- A time of 06h(n).

The transmittiag station of the MBC link, fixee at longitade 28° east and latitude 26° south, employs a 5 clements Yagi-Uda antenna with radiation patern as shown in figures (18) and (19).

FIGURE 18: The aximuth-plane radiation patten of the 5 elements Yagi-Uda mounted at the transmining station. Maximum forward gain: 10.1 dBi as evaluated by NEC2 [12].

This transmiting antenna is directed along the ransmifter-receiver axis always illuminating the centre of the meteonic region (height 95 km) at mid-path. The receiving station is not fixed. It traverses a north-south path along longitude 28° east, varying its latitude iocation from 100 km to 2000 km south of the transmitting station. Ali other settings of the predicion model used [13] are identizal to those ased in section 3.3. These can be viewed in 'sppentix D.

FIGURE 19: The elevation-plane xadiation patern of the 5 elements Yagi-Uda mounted at the transmitting station. Maximum forwati gain: 10.1 dBi as evaluated by : AEC 2 [12].

4.2 Evaluation Of Traditional Simple Antennas

The simplest antenna is possibly the traditional dipole. In accordance with the theory of images [53], a dipole antenna of arbitrary length can be modelled by mounting a monopole of half thar length orthogonal to an infinite perfecty conducring ground plane. This monopole must then be fed at the ground point. The input impedance of a monopole is haif that of a twice longer dipole but their radiation patterns are identical in the hemisphere above the groand. The gain of the monopole arrangement, however, is 3 dBi above that of the dipole in free space, due to the presence of ground.
Since simple entennas are investigatec, it is prudent to preseat the cormmunications performance that one may expect usiug tradiuional simple antenaas in the meteor scatter environment. For this purpose, performances of the horizontally polarized half-wave dipole in frec space as well as the vertically polarized and a 45° skew quarter-wave monopole above an infinite conducting groupd are studied.

1

4.2.1 'adiation patterns of the traditional simple antennas

The xadiation patterns of the horizontally polarizes half-wave dipole, the vertically polarized quartcr-wave monopole and the 45° skew quater-wave monopole are svaluated by NEC2 [12]. These are presented in figures (20), (21), (23) and (24). The orientation of the skew quarter-wave monopole in the spherical coordinate systern is such that its stracture's zenith angle $\theta=45^{\circ}$ and azinuth angle $\phi=90^{\circ}$ as shown in figure (22).

EIGURE 20: The azimuth-plane xadiation patern of the half-wave dipole antensa in free space. Maximam forwand gaint 2.16dBi. The elevation-plane pattem is omitted since it is constant in the $Z Y$-plane for a dipole in free space oriented along the X-axis.

GIGURE 2F：The elevation－plane radiation pattern of the quarter－wave monopole antenna on a perfectly conducting infinite ground plane．Maximum forward gain $\mathbf{5 . 1 6 d B i}$ ．The azimuth－plape pattern is omitted since it is constant．

EIGURE 22；The orientation of the skew çuarter－wave monopole．

Page－50－
y^{n}

TIGIRE 23: The elevation-plane radiation pattern of a 45°. \&kew quarter-wave monopole antenna on aperfectly conducting infinite ground plane (fromazimuth view-point $\oint=90^{\circ}$). Maximum forward gain: $4.65{ }^{3} \mathrm{Bi}$.

FIGURE 24: The aximuth-plane radiation pattern of a 45° skew quarter-wave monopole antenna on a perfectly conducting infinite ground plane. Maximarm forward gain: 4.65 dBi .

The maximum fr ward gain of the skew monopole occurs as $\theta=90^{\circ}$ while $\phi=0^{\circ}$ and $\phi=180^{\circ}$ respectively. At $\phi=90^{\circ}$ and $\phi=270^{\circ}$ the gain drops by about 0.3 dB . This marginal drop in gain cannot be easity seen in figure (24).

4.2.2 Results predicted by METEOR for the traditional simple antennas

Figures (25) and (26) indicate that the optimum orientation of the half-wave dipole is at right angle to the transmitrer-receiver axis while that of the quarter-wave monopole is at vertical position. The optimum orientation of the skew quarter-wave monopole in the arimuth-piane is at right angle to the transmitter-receiver axis while its worst orientation is along that axis.

Forchanncldaretion, as seenin figare (25), the ontimum stations scparation forthe half"wave dipole is about 1000 km . Both, the channel duration and the optimum stations separation decreases as this antenna is rotated through 90° in the aximath-plane. The optimum distance between stations for the quarter-wave monopole is about 600 km and channel duration is decreased as the zenith angle by which this antenma is skewed increases.

FIGURE 25: The graphs of Channel Duration Vs. Distance for the half-wave dipole and quarter-wave monopole at various orientations. Note: Scaling differences are indicated by symbois on verdical axes.

For average waining time berween useful meteors, which is inversely proportional to the meteoric rate, as shown in figure (26), the optimum station separation for the half-wave dipole is about 800 km . Both, the number of useful meteors seen per bour and optimitm distance between stasions decreases as the dipole is rotared through 90° in the azimuth-plane. The optimum station separation for the quarter-wave monopole is about 500 km and the meteor count is decreased as the zenith angle by which the monopole is skewed increases.

The haif-wave dipole provide improved connectivity compare to that which is achieved employing thequarter-wave monopole. Figures (20) and (21) indicute that greater skyregions are illuminated by the dipole antenna, particularly at shor range. As the distance between stations increases, the higher gain illumination of the monopole covers iacreasingly greater regions of sky and woutd, therefore, be expected to perform better then indicated in figures

FIGURE 26; The graphs of aseful Mcteors per hour Vs. Distance for the half-wave dipole and quarter-wave monopole at various orientations. Note: Scaling differences are indicated by symbols on vertical axes.
(25) and (20). However, apart for overall degraded connectivity, the optimum station separation for the monopole antenna is shorter than that which is indicated for the dipole antenna.

Nes [54] reports thar a vertically polarized wave would suffer a $3-4 \mathrm{~dB}$ larger loss than a horizontally polarized one. The aim of this worik, however, is not to qualify this statement but rather to examine the overall effect of different ilimmination patterns asing simple antemas. Nevertheless, this may explain the superiority of the fipole antenne over the monopole for MBC. From a practical view-point, on the other hand, the orientation of the dipole anterna is very critical in order to actieve optimum perfonmance, while that of the monopole is not critical at all.

4.3 Evaluation Of A Mobile Square Loop Antenna

For mobile applications, the vertically polarized quarter-wave monopole described above is deemed to be a suitable antenna configuration, Many different types of simple antenna configuratioms may be designed for mobile applications. However, in order to investigate the effectof differentillumination pattems of antennas, a horizontally polarizeti square loop antenna (shown in figure 27) of a quarter-wave long sides was simutated. This square loop antenna coraphies with the requirements for ruggedness and redaced height. Moreover, its size would not exceed the roof area of an ordinary truck cabin.

FIGURE 27: A mobile square loop antenna.

4.3.1 Radiation patterns of the square loop Antenna

This square loop anterma when placed at a height of 0.25 m above and paraliel to an infinite conducting ground plane, has radiation pattern as shown in figures (28) and (29).

Page -55-

52
25

FIGURE 38: The azimuth-plane radiation pattern of the square loop antenna sliced at zenith angle $\theta=70^{\circ}$ as computed by NEC2 [12].

FIGUBE 29: The elevation-plane radiation pattern of the square loop anteniae. Maximumu upwara gain: 9.5 dB as evaluared by NEC2 [12].

As seen in figure (29), a square loop antenma which is place parallel at a small height above a metal truck roof will radiate mostly upwards. The azimnth-plane radiation patterth, shown in figure (28), is nearly omnidirectional but the direction of the patrem maximum is seen tiltei by about 12° from the Y-axis (arimath angle $\phi=90^{\circ}$). This radiation patuern resulhed

Page -56.
from the dimension of the loop (a wavelength circumference) as well as its proximity to the ground plane. Bar since the roof is of finite dimensions and in yractice will be only slightly larger than the area occupied by the loup antenna, the radiation pattern of such an antenna will actually be directed to the sides (zenith angle $\theta> \pm 90^{\circ}$) as well. As a consequence of this, the upward gain of the loop antenna will be somewhat reduced. This effectis favourable for MBC, as may be decuree from the performance of the falf-wave dipole shown in figures (25) and (26), since greater volume of useful sky will be illuminated. On the other hrad, directing the main bean vertically upward whie reducing its height above the ground plane is desirable in order to redace the effect of man-made noise (discussed in section 2.5.3). However, as outtined in section 2.5 .2 , decreasing the spacing between the loop antenna and the ground plane canses a rapid decrease of the structure's input impedance. The antenna's input impedance needs to be matched when coupled to the MBC link. Thus, the height of the foop above the grownd was established to allow a practical impedance transformation ratio.

4.3.2 Results predicted by METEOR for the square loop antenna

The performance of this horizontally polarized square loop antenna in the meteor scatter environment, compared with that of the quarter-wave monopole described above, can be viewed in figures (30) and (31).

FIGIRE 30: The graphs of Chamel Duration Vs. Distance for the square loop and the quarter-wave monopole antennas.

Figures (30) and (31) shows that while the square loop antenna will provide better comnectivity at short zanges (up to 500 kma), plovided its orientation is optimal, the vertical quarter-wave monopole on an infinite conducting ground plane will enhance communications at ranges exceeding 500 km . Nevertheless, it should again be noted that in practice, this grownd plare is finite anci hence will produce slightly different performance to that indicated.

From figures (21) and (29) it is clear that the quatter-wave monopole) : a low take-off angle while the square loop is directed vertically upwards from the receiving antenna. The superiority of the loop antenna over the quarter-wave monopole at short ranges can be explained by noting that it illurninates a larger portion of the hot spors. As the stations separation increases, the quarter-wavemonopoie illuminate a greater portion of the important sky regions and hence provide better connectiviry.

EIGURE 31: The graphs of useful Meteors per hour-Vs. Distance for the square loop and the quarter-wave monopole artennas.

Since the radiation pattem of thes square loop antenna is directed mainly at sky regions above the receiving station, the effect of illuminating these sky regions by the transmitting antenna with higher gain was examined For this purpose, the transmiting 5 elements -Yagi-Uda antema winch thus far was directed at the link mid-point (height 95 km) was aimed at the link end-point (height 95 km above the receiving square loop antenna). Theresults, as shown in figures (32) and (33), indicate that these two types of illumination schemes produce almost identical results. Itcan therefore be concluded that there is no advantage in illaminating the end-path when using these antema. The idea of end-path illumination using different antennas should, however, be farther investigated.

Page-59-

FIGURE 32: The graphs of Channel Duration Vs. Distance for the square loop anteana with the transmitting Yagi-Uda antenna illuminating the mid-paintend end-point of the link.

FIGURE 33: The graphs of usefui Mereors per hoor Vs. Distance for the square loop anternha with the transmitring Yage-Uda antenna illuminating the mid-point and end-point of the link.

4.4 Evaluation Of A Manpack Long Linear Terminated Wire Antenna

The value system developed in section 3 .i indicates that hemost importantfeatures of amanpack remote out-station are the smanil weight of the set, the small size of the collapsed anterna and short waiting time between messages. In section 3.3, the importance of illuminating the hot-spots with sufficiens intensity was estabished. The main beam take-off angle of a long linear wire anienna can be adjusted by varying its length. Generally, the longer wire produces a smaller main beam take-off angle. This featere may be used for partial illumination of the hot spots located at either sides of the transmitter-receiver axis. In addition, this lightweight antenna can be realized using a thin flex wire which may rolled into a small bundle. These feanures make it attractive for manpack applications. Thus, a 146.5 m long linear antenna (shown in figure 34), terminated by a 200Ω resistive load, was simulated. Altshuler [55], who carried out pioneering

Page -61-
work on resistively loaded wirc antennas showed that the insertion of a suitable resistance one quarter of a wayelength from the end of the monopole effectively terminates the antenna geomery by its characterisuc impedance. Fence a travelling wave curent distribution is produced between the source and the termination.

FLGURE 34: A long linear terminated wire antenna.

4.4.1 Radiation pattern of the long limear terminated wire antenna

The Jength of this antema was chosen to be 146.5 m so it can radiate with a narrow beanwidth and high gain at abont 10° to the sides of the transmitter-receiver axis, enabling partial illumination of the hot spots. At short ranges the antensa was tiled to higher take-off angles for optimam illumination. The long wire antena shown in figure (34), when placed at a helght of 2 mabove and parallel to an infinite conducting ground plane, has radiation pattern as inticated in figures (35) and (36).

EIGURE 35: The azimuth-plane radiation pattern of the long linear (rerrinated) antenna sliced at zenith angle $\theta=80^{\circ}$ as computed by NEC2 [12].

EIGURE 36: The elevation-plane radiation patem of the long linear (terminsted) anteana. Maximum forward gain: 12 dBi as evaluated by NEC2 [12].

Radiation patterns will not be presented for the various tilt angles, but are similar to the one shown above with somewhat increased gain. The correct orientation of this cravelling wave antenna can be achieved by the use of a balloon and ropes to control its elevation angle and direction.

4.4.2 Results predicted by METEOR for the long terininated wire antenna

The performances of this long wire anterna is compared with the 5 elements Yagi-Uda anterma (pointed to mid-path) and the half-wave dipole described before. These results are presented in figures (37) and (38).

For channel duration, the optimum stations separation is abcut 1000 km for the long wire antenna and about 1300 kn for the Yagi-Uda antemna. For meteor count (or average waing time), the optimum range is about 1000 km for the long wire antenna, and about 1100 km for the Xagi-Uda antenna. Optimum illuminatinn of the hot spots is difficult to achieve with the long wire antenna due to ground effecss and multiple nulls. Therefore, the curves presenting the results for the long wire arseana are not smooth.

FIGURE 37: The graphs of Channel Daration Vs. Distance for the long (ternainated) wise, 5 elements Yagi-Uda and half-wave dipole antennas.

Page-64-

EIGURE 38: The graphs of useful Meteors per hour Vs. Distance for the long (terminared) wire, 5 elements Yagi-Uda and half-wave dipole antentias.

These resulns clearly indicate the importance of the antenna's gain and illumination patrern. The Yagi-Uda and the long wire antennas have maxiaxdm forward gains of compaxable magnitude. The main beam produced by the Yagi-Uda antenna, however, is mbeh wider than that produced by the long wire antenna. Hence, larger portion of useful sky regions can be ilimminated by the Yagi-Uda antenna which results in improved connectivity. On the other hand, the half-wave dipoie anterna's beamwidth is comparable to that produced by the Yagi-Uda antenra, but with much reduced gain. Thus using the dipole antenns results in poorer connectivity than can be achieved when using the Yagi-Uda and the long wire antenal.

4.5 Summary Of Resuits

The take-off angle required for midi-path illumination at 100 km station separation is about 59°. This angle decreases as the distance between stations increases. The elevation-plane raciiation pattern of the balf-wave dipole in free space is constant in the ZY-plane (see figure (20)). Simpilariy, the arimuth-plane rafiation pattern of the vertical monopole is constant at any elevation angle (see figure (21)). Thus, as seen in figures (20) and (21), at shor ranges the half-wave dipole antenna provides better illumination of useful sky regions than the quarter-wave monopole antensa As the station separation increases, the illumination pattern produced by the monopole antenna will cover a greater portion of useful sky regions with improved gain. In fact, using the illumination pattern and gain argument, at large distances the mernopole anteana would beexpected to provide with improved connectivity to that which may be achicved with the dipole antenna. However, ticoretical results (presented in figures (25) and (26)) indicate that the half-wave dipele provide with better connecrivity at all distances. This may be explained by the effect of antenna polarization on MBC performance. As discussed in section 2.3 and pointed out in section 4.2.2, a horizontally polarized antenna performs better then $\$$ vertically polarized antenna in the meteor scather enviromment.

The half-wave dipole antenia, modelled in free space, was included in this investigation as a reference antenna. The square loop and the monopole antennas were considered to be suitable for mobile applications. The radiation pattera produced by the square loop anzenna is directed vertically upwards, with high gain, to illuminate mainly siky regions above the receiving station (as shown in figure (29)). At short ranges (ap to 300 km) this loop anterna performs bemer than the hatf-wave dipole (as can be seen when comparing figures (30) and (31) to (25) and (26)). As the station separation increases, the connectivity achieved with the square loop antenna is rapidy degraded below that which may be achieved using a quarter-wave monopole. This is due to the fact that it illuminates smaller portions of usefuil sky regions as the station separation increases. However, as pointed out before, in practice this loop antenna will be place above a finite conducting plarte. As a consequerice, it is expected to illuminate a larger volume of sky at the expense of reduced upward gain and thereby offer improved connectivity.

As shown in figunss (37) and (38), much improved connectivity can be achieved with a long wire manpack antenna compare to that which can be realized using mobile antennas. This is dise to the requirements differences in the value systems (discussed in section 3.1) established

Page -66-
for the remote mobsile and manpack anter sat systems in terms of priority and weighting. Wrile for mobile applications the emphasis k, in the reduced height, size and the ruggedness of the antema, for manpack applications it is only important to have a rugged and small size collapsed amenna

5 CONCLUSIONS

In a given point-to-point link, the success of meteor scatter commurication is largely dupendent on the antenna system. Thus, base station as weil as out-station antennas need to be considered in chis respect. The work presented in this dissertation, however, is concemed only with the investigation of simple ont-station antennas which are suitable for mobil $>$ and manpack applications.

5.1 Summary Of Findings And Conclusions

5.1.1 Antemnas for MBC

The basic concepts of MBC, introduced in chapter 2, underlines the importance of the role played by the antenna system in the meteor scater cavironment. Direcrional properies are exhibited by the geomery of tie link, the reflection mechanisms of meteor scatier propagation; and the dependence of trail detection on the illumination of certain sky regions. These directional properties are directly related wo the antenna system employed. Hence, the antena's polarization, radiation pattern, gain and attitude effects the performance of the MBC link. To maximize throughput, all tegiens of sky which contribute to MBC should be illumsinated with high gain antennas.

3.1.2 Antenna design considerations

A logical extension was therefore 10 examine the principle factors governing the behaviour of simple antennas and she effect of noise on the systern. The requirement of simple antenna systems tnevitably results n MBC systems of degraded performance due to their reduced size and complexity. The onus is thus placed on the directional master station to provite adequate illumination of sky regions connecicagremote stations. Theeffect of noise on MBC links is to decrease the number of detectable rails as well as the usable signal duration, since signal duration is detennined by the period illuing which the signal-to-noise ratio is above some predefined limit. Unfortunately, noise cannot be completely eliminated, but its introduction via the antenas's beam can be reduced.

Page -68-

Simple antennas are generally defined in this dissertation as those complying with severe size and complexity limitations. However, a simple untenna suitable formobile applicaripns differs from that which is suitable for a matipack or any other application.

In chapter 3, the value systems for the remote enviroments of interest are formulatsci. The value systems enumerate all that is neces zary to ensure best value for money in terms of prionity and weighting in the antenne design phase. It furmishes a concise specification of the antenna required for ary specific application.

Knowing what sort of antennas are required paves the way for their synthesis, evaluation and the prediction of their effect on MBC link performance. In chapter 3 the computer aided antenna analysis tool, NEC_{2}, which is incorporated within the MBC predictive model code, METEOR. is described. These computer based codes, as well as the value systems derived for manpack and mobile applications, are used as engineering tools in the investigation of simple out-station antennas for MBC (outlined in chapter 4). But before particular designs of antennas were appraised in the meteor scatter environment, it was important to establish the effect of different types of sky illumination schemes on MBC link performance. This information, as generalized as it may be, is vital for the design of any antenna for MBC. Hence, a clear categorisation of the link type is fumished in terms of its illumination capability.

For this investigation of the relationships between antenwa beamwidth/gain and crientation to the MBC link performance, idealized radiation patterns were synthesized. These ideal patrerns were used in the simulation of different illumination schemes. Theresults, presented in chapter 3, support what is already deduced from the theory (in chapter 2) with regard to theimportance of the mastar station illumination when simple out-staticn antennas are used. While situple out-station mobile anternas may be of limited directionality, a directional base station concentrating its radiated power on those regions of sky which contritute most to the duty cycle of an MBC link (the "hot spots") will result in dramatic link improvement. Best connectivity is achieved when both ends of the link direct their beams at the hot spots, but this requires complex antennas at the two ends. For each type of illumination scheme there is a trade-off berween beamwidth (which is relared to the antenna's gain) and throughput, Reducing the antenna's beamwidth (while increasing its gain) results in the

Page-69.
illumination vitureduced volume of sky with increased intensity. Up to a certain beamadidh (which is, link dependent) this effect improves the throughput. Beyond that point, further reiluction of the beamwidth will degrade the throughput.

The indicated optimum master station antenna illumination is not unrealistic since an array of 8 Yagi-Uda antennas with 5 elements each produces approximately 21 dBi gain. For networking applications, though, steerable arrays or other versatile solutions should be sought. However, antenna design for master stations is outside the scope of this work.

5.1.3 Simple antennas in the meteor scatter environment

In chapter 4, the electrical performance of sirople antennas was evaluated using the NEC2 code. The resulting radiation pattems of these antennas were used to predict, usiag the prediction software $M^{F}{ }^{\prime \prime R} \mathrm{FOR}_{\text {, the }}$ the effect of these simple antennas on MBC link throughput for station separation 1 m ging from 100 km to 2000 km . Both optimum antenna bearning as well as worst case beaming was used in this evaluation.

The purpose of this investigation whs to establish bench-mark performance guide for MBC links using simple oat-station antennas with emphasis on mobile and manpack applications. The relative performance of MBC links employing three traditional antennas were evaluated in addition to particular designs for mobile and manpack applications. The traditional antennas chosen were the half-wave dipole, the quarter-wave monopole and a 5 element Yagi-Uda antennas. For mofile and manpack applications, a square loop and a long wire antenna was designed and cvaluated respectively.

The quarter-wave monopole and the square loop are practical mobile antennas. Theoretical results indicate that at short ranges (up to about 500 km) the square loop anteman will offer improved connectivity. Owing to the intbility of the loop antenna to illuminate sufficient useful sky regions at larger station separation, the quarter-wave monopole will enhance communications. Both antensas, however, are modelledi on an infinite conducting ground plane. In practice, the ground plane is firite and hence slightly different performance to that indicated is expecred. The effect of mounting the square loop above a finite conducting plane (such as the roof of a truck) will be to ta , rinate a larger volume of sky at the expense of upward gain. This should effectively improve communications as range increases since
more sky regions will be inluminated. The effect of a finite conducting plane on the monopole antena is to reduce its forward gain and thereby degrade the overall performonce of the link.

Considerably improved timoughput can be achieved with a long wire manipack antenna compare to that which is attainable using the mobile antennas described This is due to the differences in the requiremenss indicated in the value systems established for remote mobile end manpack antenna systems. While for mobile applications the emphasis is on the reduced height, size and the ruggedness of the anterna, for manpack use is is only important to have a lightweight, sugged and small size collapsed antenna. In fact, for manpack applications the entire communication set must be lightweight as it has to be carried on one's back. Mobile stations are not constrained by weight mad hence their transmit power capability can be increased to enhance throughput. The improved perfornance of the manpack antenna thus compensates for power restrictions on the manpack out-station.

5.2 Proposal For Further Investigation

The workpresented in this dissertation is limited to the theoretical investigation of simple meteor scater out-station antennas. The theoretical results obtained by performing computer simalations of physical systems are only as reliable as their mathematical approximations, coupled with the ronstraints imposed by the numerical limitations. It is recommended that the theoretical results oblained be validated by measurements. However, in terms of the statement of the problem set to beexamined in this dissertasion, the effect of different illumination schemes on MBC link performance is established. Different illumination schemes may be dictated for different links such as mobile-to-mobile, manpack-to-manpack, mobile-to-base station, manpack-10-base station ecc. Nevertheless, the relative performance associated with these schemes for MBC are indicated. In addition, designs of simple antennas can be assessed with reference to the bench-matk results presented here.

It is envisaged that subsequent work will concentrate on validation of the theoretical results by measurements of simple antennas and MBC link performance. Due to the importance of the maser station discussed previously, fanther work should be carried out on their design and evaluation. Validation of theoretical results will provide the confidence needed to ensure that these form a solid base for further design.

Page -71~

APPENOIX A - THE PROCEDURE OF VALUE ANALYSE

The valut analysis is performed as shown in fig re (A-1):

MOBILE REMOTETE STATION									rexas
FUNGTION		COMPARISON							
A	Smaliste of sot	A	B3	G_{2}	D_{3}	E_{1}	F,	G,	0
B	Ruggedress of antensa		B	B_{1}	Di	B_{2}	B_{2}	B_{1}	9
C	Rediced size of antenra			c	D_{2}	C_{2}	F_{1}	G;	4
D	Redution in height of ante				0	D_{3}	D_{1}	D,	11
E	Limit No of antennas to on					E	F_{2}	G_{3}	1
F	Large messuges						F	G_{2}	4
G	Sbort writing time helwer	nessa						G	7

FIGURE A-1: Relative importance decision maling table.
Importance index:
3 - Much more important
2 - More irpportant
1 - Not much more important

The first eatry " B_{3} " indicate that the ruggedness of the antenna is much more important than having. a set of reduced size. In a sinilar fasthion the rest of the table is completed. The numbers associated with each fetter are then summed across the matrix and entered in the "TOTAL" column on the right. These could then be normalized with respect to the highest score, multiphed by a factor of 10 or 100 for convenience, and plotted as shown in figure (A-2)
It can be seen from the plotin figure (A.2) that the reduced height of the antenna, which is the most important aspect, can be fulfilled by designing a aigh power system, thereby increasing the toral value of the system. Thris, of course, would result in a large set. But as indicated, che size of the mobile remote station set is of least importance.
Generally, the designer may use this graph to group the individual aspects into higher order units. Ordinarily, the resoling unit of lower weighting is that which degrades the worth of the system. The elimisation of aspects within that anit is often possible by implementing functions within a higher weighting unit differently. This iterative process is carried out to enhance the system's worth.

Page -72-

ELGURE A-2: A graphical view of the relative importance for a mobile remote out-station antenna system.
Finally, any design of a system can be evaliated on the basis of how well the requirements, laid down by the vaiue systern, are fulfiled using a rating system as shown in figure ($A-3$)

FUNCTION	B	C	D	E	F	G	total
FOMHAL IZEO WEGGHT OFMPORTANES	8.2	3.6	to.	0.9	3.6	6.4	*
RATMGG	3	4	2	4	3	9	-
COMFOUND RATMES	24.6	14,4	20.0	3.6	10.8	19.2	90,6

$\left[\begin{array}{l}5 \text {-EXCELLENT } \\ 4 \text { - YERYGCOO } \\ 3+G O O D \\ 2+F A R R \\ 1-P Q O R\end{array}\right.$

EIGURE A.3; A rating system for any specific design.

Page -73-

The sermalized weight of importance values corresponds to those presented in figure (A-2). Axy desigued system can then be rated on the basis of the individual aspects. The compound rating of each functional aspect is the muitiplication of the normalized weight of impontance of each aspect by the rating of the implementation of that functional aspect. Clearly, the higher total score of the compound rating indicates a better design.

APPENDIX B - THEORY AND MMPLEMENTATIONS OF THE METHOD OF MOMENTS

The Method of Monents is a technique used for the simuiation of antennas. This technique, which solves Maxwell's equations humerically for cylindrical wize suractures and surfaces, is reviewed in [12]. This technique is in general applicable to conducting bodies with current disribution, J, as shown in figure (B-1). Of particular interest is the current distribution along a thin wire as shown in figure ($\mathrm{B}-2$).

EEGEXRE B-1: General radiating body.

BlivURE B-at A thin cylindrical wire.

Assuming the wire radius to be much smaller than the wavelength implies that current flows axially only. At the surface of the conducting wire, the electric field boundary condition states that the tangential field component is zero. That is:
$\mathrm{E}_{\mathrm{z}}^{\mathrm{i}}+\mathrm{E}_{\mathrm{z}}^{\mathrm{s}}=0$
where E_{Z} is the tangential component of the scatened electric field radiated by $\mathrm{J}_{\text {, and }} \mathrm{E}_{\mathrm{Z}}^{f}$ is the tangential incident (or impressed) component of the electric field diue to some source of excitation. It can be shown [56] that Focklington eçuation may be written as:
$-\mathrm{E}_{\mathrm{Z}}^{\mathrm{L}}=\frac{1}{j \omega \varepsilon_{0}} \int_{-L / 2}^{\mathrm{L} / 2} \mathrm{I}\left(\mathrm{Z}^{\prime}\right)\left(\frac{\partial^{2} \Phi\left(Z, Z^{\prime}\right)}{\partial Z^{2}}+\beta^{2} \Phi(Z, Z)\right) d Z^{\prime}$
Where:
$I(Z)$ denotes the current.
$\beta=\omega \sqrt{\mu \varepsilon}$ is the phase constant.
$\Phi(Z, Z)$ is the fire sprace Green's function given by:
$\Phi\left(Z, Z^{\prime}\right)=\frac{1}{4 \pi R} e^{-j R R}$
where R is the distance between the two points (X, Y, Z) and $\left(X^{\prime}, Y^{\prime}, Z\right)$ given by :
$R=\sqrt{(X-X)^{2}+\left(\mathbf{Y}-Y^{\prime}\right)^{2}+(Z-Z)^{2}}$
For simplicity, equation (B-2) may be writen as:
$-E_{X}^{i}=\int_{-1 / 2}^{1 / 2} I\left(Z^{\prime}\right) K\left(Z, Z^{\prime}\right) d Z^{\prime}$
The solution obtained for $I(Z Z)$ is obtained by using the Method of Momenes as follows:
Consider the epproximation of the current by a series of expansion functions, F_{n}, such that:
$I\left(Z^{\prime}\right)=\sum_{n=1}^{N} I_{n} F_{n}\left(Z^{\prime}\right)$
where I_{n} 's are complex expansion coefficients.
For simplicity, consider a set of puise functions:
$F_{\mathrm{v}}=1$ for $Z^{\prime} \in \Delta Z_{\mathrm{c}}^{\prime}$
$=0$ elsewhere

$$
Z_{m, n}=f\left(Z_{m}, Z_{i n}\right)
$$

and

$$
V_{m}=-E_{Z}^{i}\left(Z_{n d}\right)
$$

Equation (B-12) has N anknowns. We therefore require N such equations for a solution to be acquixet, This can be achieved by enforcing the indegral equation at N points on the wire. This process is called "Point Matching" which is a special case of the Method of Moments.
Hence:

$$
\begin{equation*}
\left.\left[Z_{m, i}\right] I_{n}\right]=\left[V_{m}\right] \tag{B-13}
\end{equation*}
$$

Where:

$$
\left[Z_{\mathrm{m}} \mathrm{~B}\right]\left[I_{N} \mathrm{~N}=\left(\begin{array}{cccc}
I_{1} f\left(Z_{1}, Z_{4}^{\prime}\right) & I_{2} f\left(Z_{1}, Z_{2}^{\prime}\right) & \ldots & I_{N} f\left(Z_{1}, Z_{N}^{\prime}\right) \\
I_{1} f\left(Z_{2}, Z_{1}\right) & I_{2} f\left(Z_{2}, Z_{2}^{\prime}\right) & \ldots & I_{N} f\left(Z_{2}, Z_{N}^{\prime}\right) \\
\cdot & \cdot & , & , \\
\cdot & \cdot & \cdot & , \\
\cdot & \cdot & \cdot & , \\
I_{1} f\left(Z_{N}, Z_{1}^{\prime}\right) & I_{2} f\left(Z_{N}, Z_{2}\right) & \ldots & I_{N} f\left(Z_{N}, Z_{N}^{\prime}\right)
\end{array}\right)\right.
$$

and

$$
\left[V_{\mathrm{w}}\right]=\left(\begin{array}{c}
-\mathrm{E}_{2}^{i}\left(Z_{1}\right) \\
-E_{Z}^{i}\left(Z_{2}\right) \\
\cdot \\
\cdot \\
\cdot \\
-E_{2}^{i}\left(Z_{\mathrm{N}}\right)
\end{array}\right)
$$

Therefors:

$$
\begin{equation*}
\left[I_{n d}\right]=\left[Z_{n, 5}\right]^{-1}\left[V_{n}\right] \tag{B-14}
\end{equation*}
$$

Page -78-
where:
[4] is a column vector of generalized currents.
$\left\{Z_{a, n}\right\}$ is a matrix of generalized impedances.
$\left[V_{\mathrm{n}}\right]$ is a colima vector of generalized voltages.
Clearly, this derivation assumes only a single wire on the Z-axis, but could be extended to arbitrarily orientated wires interacting with each other. The special case of Point Matching can be viewed as a relaxation of the boundary conditions such that it is only satisfied at a specific point. In between. these points we can only hope that the boundary conditions are not so badly violated that the solution is not useful.

The more general method is derived by considering the so called "Residual", $\mathrm{R}(\mathrm{Z})$, as:
$R(Z)=E_{Z}^{6}+E_{Z}^{i}$
Clearly, we wish $R(Z)$ to be zero in order to satisfy boundary conditions. Hence:
$R(Z)=\sum_{o=1}^{N} r_{n} f\left(Z, Z_{i}^{i}\right)+E_{Z}^{i}(Z)$
This equation evaluated at $Z=Z_{n}$ gives the residual $R\left(Z_{n}\right)$ at the $n^{\text {at }}$ point where it must clearly be zero. However, at other points the residual electric field may not be zero. In the method of weighted residuals, the current are found such that $R(Z)$ is forced to be zero in the average sense, by means of weighted functions $\mathrm{W}_{\mathrm{m}}(\mathrm{Z})$. ie.:

$$
\begin{align*}
\int \mathrm{W}_{\mathrm{m}}(\mathrm{Z}) \mathrm{R}(\mathrm{Z}) d \mathrm{Z} & =0 \tag{B-17}\\
\mathrm{~m} & =1 \ldots \mathrm{~N}
\end{align*}
$$

Hence, substituting for $R(Z)$, we can write the integral equation as:
$\int_{-L / 2}^{L / 2} W_{m}(Z) \sum_{n=1}^{N} L_{n} f\left(Z, Z_{n}\right) d Z+\int_{-L n}^{L / 2} W_{m}(Z) E_{R}^{j}(Z) d Z=0$
If we use impulse weighting functions:

$$
\begin{equation*}
W_{w}(Z)=\delta\left(Z-Z_{\Omega}\right) \tag{B-19}
\end{equation*}
$$

Page -29
with pulse testing functions where $\delta\left(Z-Z_{n}\right)$ are the Dirac-delta functions, then substitution into equation (3-18) yields:

$$
\begin{equation*}
\sum_{n=1}^{N} I_{n} f\left(Z_{n}, Z_{n}^{\prime}\right)=-E_{z}^{i}\left(Z_{u}\right) \tag{B-20}
\end{equation*}
$$

which is the special cases of Point Matching as shown above. However, if alternatively we define W_{m} to be pulse functions:
$W_{\mathrm{m}}=1$ for $Z \in \Delta Z_{\mathrm{m}}$
$=0$ elsewhere
with pulse testing functions, then we obtain what is known as a "Galetkin Method", iss.:

$$
\begin{gathered}
\sum_{n=1}^{N} I_{d} \int_{\Delta Z_{d}} f\left(Z, Z_{N}^{\prime}\right) d Z+\int_{\Delta Z_{\mu}} E_{Z}^{i}(Z) d Z=0 \\
m=1 \ldots N
\end{gathered}
$$

The Method of Moments is therefore equivalent to the method of weighted residuals ante the choice of expansion and weighting functions ultimately determines the value of the specific method.

NEC2 utilizes the Pocklington integral equation for currents on thin wires. NEC2 analysis is carried out using the "point matching" Method of Moments technique which uses the Dirac delta functions as weighting functions and a three term function for test functions. These titer aims consist of the sum of a Sine, Cosine and a constant term. In the Method of Moments computer time is proportional to the thirst power of the number of segments thereby limiting che possible size of structures that may be analysed.

APPENDIX C - NUMERICAL MODCLLING CONSTRAINTS AND LIMITATIONS

The mathematical modelling of the antennt and its enviromment is the most important aspect of stmulation where accurate results of performance are desired. This together with the constraints and linvitations of the particular method of anzeysis used, coupled with the comprater capabilities determines the accuracy of the evaleation.

The Method of Monnents, presented in Appendix B, assumes all wires to have a sadins which is much smajler than the wavelengh. This implies that cument flows in the axial direction only since the Method of Moments does not account for circulaing carrents. As a result of this the rario of wire rijus to wavelength, the ratio of segments length to radias and the namber of segments per Wavelength are parameters on winich some limit is imposed [12].

The effect of mutual interaction between the antenna and its environment rast not be oyerionked. A common environmental cffect on antennas, especiaily at lower frequeacies, is the tarth above which the structure is erected. Hansen [57] demonstrated the following effect of different ground planes on the antennas performance : The effect of power lost into an imperfect earth becomes indepencent of the height once the astenna is higher than about 0.2 wavelengths above ground level. This finding joplies that antennas can be compared in terms of structure efficiency once it is arected higher than 4.2 waveiength above dee earch.

Another important aspect in antenna modelling, especially for the purpose of complex structure simplification, is the effect of the wire iength. Is has been demonstrated be Finzie [55] that the physical length of a wire between discontinuities is retained as long as the autak between sections does not exceed a certain himit The valiciation of this finding is illustrated in figure (C-1) [adapted Tromief. 58l. Figure ($\mathrm{C}-1$) shows the model on which simulation was perfianed and theinvestigation results of the extent to which the wire length, rather than the dimensions measuredin a suraght line, is the predominant factor in abtenna performance.

For evaluation usiag the NEC2 code, a wire is defined by its radius and the coordinates of irs cwo end points. The wire consists of straight segments following its path in a piece-wisc linear fashioni, Generally, a segment length should be less than 0.1 of a wavelength and greater than 0.001 of a wavelength at the desired frequency of analysis.

Page -81-

FIGUREC-1: The graph of antema resonant wavelengti versus the angle with the vertical, θ.

The Method of Moments technique used considers only current flow in the axial direction on a segment. The acceptability of these approximations is dependent on the wire racius such that unless the ratio of wire radius to wavelength is much less than $1 /(2 \pi)$, the validity of these approximations is not necessarily accurate.

The accartacy of the numerical solution for axial currents is also dependent on the ratio of segment length to wire radius. This ratio must be greati t than 8 in order to achieve errors of less than 1 percent, using the stancari thin wixe kernel, and may be as small as 2 , if the extended thin wire kernel is used.

Segmens are treated as connected when the separation of the τ ends in less than 0.001 times the length of the shortest segruent.

Maintenance of current continimity across wire junction presents another limitation since anternas with shors sections of wire coupled to long ones require exceedingly large number of segrnents to be analysed [58]. Kubina's rule of thumbstates that "Therestrictioncn therelativelength of segments that form a junction, require that these lengths be comparable within a factor of five" [59]. Further more, the number of wires joined at a siagle junction camos exceed 30 due to a dimeasion limitation in the NEC2 code.

Kubua's rule of thamb, which can be viewed in conjunction with figure (C-2), states that the restriction on the relative length of segments that form a junction is given by:
$5\left(\frac{\Delta_{1}}{\Delta_{2}}\right)=\frac{1}{5}$

A condactisg surface is modelled by means of multiple, small flat surface patches corresponding to segments used to model wires. The patches are specified sucl that they cover the entire surface
to be modelled. The parameters defining a surface patch are the cantesian coordinates of the patch to segments used to model wires. The patches are specified sucl that they cover the entire surface
to be modelled. The parameters defining a surface patch are the canesian coordinates of the patch evente, the component of the outward directed unit normal wetor and the patch area.
For accuracy of results, a mimimum of 25 patches per square wavelengtion of surface area should be used and the maxinum size of arr individual patch should not exceed 0.04 square wavelengths.
Since the division of current between two overlapping segments or patches is indeterminate, segments or patches may not overlap.

Page -83-
HGUREC-2: Two wire junction.

The radius of tapered wires may notchangedrastically since alargeradius change between connected segments may decrease accuracy. This ruie particulariy applies where dhe ratio of segment fength to radiks is small.

A segmentmust exist ateach point where a network connection or voltage source will be positioned. This constraint is imposed so that voltage drop can be specifice as a boundary condition.

Finally, the orderin which the various cards ate specified mustobey somerules which are imperative for al successful run of the NEC2 code. Generally, the card deck begins with cards containing comments made by the user. These are followed by geoniery dara cards specifying the geomery of the antenna and thereafter the program control cards, specifying electrical parameters and requests for the computation of anterna characteristics.

The above does not attempt to cover ali the modelling constraints which are imposed by the NEC2 code but only to highlight a cross section of them. This is carried out in the hope of conveying the complexity which is involved with strucure modelling, such that meaningful evaluarion results may be obtained. Furthemore, numerical evaluation of the performance of antennas, using the Method of Moments would bemore erroncous when computing parameters such as inputimpediance rather than integrated quantitias such as efficiency, radiation patern or gain [59]. This is due to the fact that the input impedance calcalation is based on the absolnte value of current at the feed point. Subsequent integration has a smoothing effect thus reducing the crror. Hen:c, measued results which compare well with the compoted input impedance may serve as a good indication as to the validity of the numerical model employed.

Page -84-

APPENDIX D - PREDICTION MODEL SETTINGS FOR MBC LINK SIMULATION

The detailed description of the MBC link and the various parametric settings of the prediction model, METEOR [13], used for the investigation discarded in section 3.3 is as follows:

```
Moteor Ecatiteg Prediletion Systum Var 1.10 P.J.Rodran/J.D.Larson 19s3/8
    Systemaz25T, Nx;R1,Tx:TA,Earth:TEST, Erotoool:TEST
        D{stn:TESJ;, Nolse:TESY, Var: fD (quung)
                            Earthit Environment
A: Path Ionyth:
A% Path Longtan:
C. Date:
D; X Erom:
E: X Yo:
E: X Yo:
G: Y To:
#: Grid
I: Recoivar Lazitude:
* Recelver Iongdtude:
K: Rocolvar gircation from North:
IN: Tranmuittar Iat?tude:
S: FrsmamiEter: Longitonde;
```



```
O: offact of Local then from thar:
```



```
533.4 km
    3/12/的
        13/12/的 (Day; 3v%)
        -700.0 knt
    700.0 knt
    300.0 km
y To:
    300.0 km
    300.0 km
    30.0 km
m$0:00:00 { )
    31:00:00 (12FI: 11:23:14)
            -34.2 ceg
-26:09:00 ()
20:00:00 {159: 11:23:14}
            47.2 dog
```


Nolse Enviranment

Gonstanta A

月：	1.40
B：Langeh of TE－－\therefore zantth（Itz）：	15.00 km
E： $\mathrm{F}, 106 \mathrm{mog})$ ：	4．35－0001
D： 5 （18800）：	$5.0 \mathrm{E}+0002$
F＊32：	＊． 0500023
F：Efalght ：	97.0 lm
G：Velooity／Feloht slope：	0.3300
	$\mathrm{BO}, 00 \mathrm{~kJ}$
I：Trineition Lina pmontity（qw）：	$2.08+9024$ a／m
5：Mustirlioc：	
X：E3：	5.0
I：耻lhocuntric Vesocity（Vh）：	$40.0 \mathrm{tcm}^{\prime} \mathrm{s}$
H：2A：	0.0
＊：Velocity calculation；	Wh／va
O：Velocity／Geight Reletionship：	İnear
	2.40
Q：Bre Anaual cycle Info：	

Page－87－

23xf0
Wetact scacter Prmaliction systan Ver 1.10 E.J.Rodman/J.D.Larsen $1937 / B$

Constarts 3

L: Rudin $\mathrm{m}^{2} \mathrm{zt}$ (Capo:

- 0 C톨

M: Ructer's xt1 Negetion:
X_{F} Rudia's tve Case Erom:
Of Ructio's +we Cung Ro: Ho Change
$0.00 \mathrm{~F}^{1}$
F: Wae fudia't....:
Nome
Q: Rocitaf erthorion Eouter: $0.07+0000$
k: Ractle's Orbit Solection: 00001000 Hucdiar \& oxble

Apart for the geographical location of the stations, the same settinge were used for the simulations outlined in chapter 4.

Page -88-

APPENDIXE - TABULATED RESULTS

Tabulated results for the investigation of the effect of antenna beansuridthldizectivity and orientation on MBC.presented in section 3.3.3:

Type 1 illumination			Type 2 illumination			Type 7 illumination		
D	M/h	DU	D	M/h	DU	D	M/h	DU
9.0	83.8	34.0	16.6	141.0	52.1	16.6	583.3	203.7
. 9.5	89.8	36.6	17.2	148.8	54.2	17.2	657.3	226.2
10.0	95.8	39.4	17.9	159.4	57.5	17.9	754.2	258.0
10.6	101.1	42.0	18.6	168.3	59.7	18.6	861.0	289.5
11.2	105.5	44.5	19.3	180.8	63.3	19.3	997.5	331.5
11.8	109.8	47.1	20.1	189.3	64.9	20.1	1143.2	373.5
12.5	111.3	48.8	21.0	202.9	68.7	21.0	1286.9	414.0
13.3	111.5	50.2	22.1	207.6	69.1	22.1	1494.5.	474.9
14.1	108.3	50.2	23.2	200.7	66.0	23.2	1634.2	511.9
15.0	103.0	49.5	24.6	195.6	63.5	24.6	1858.3	573.9
16.1	95.3	47.4	26.2	180.5	59.8	26.2	1798.0	542.7
17.2	84.7	43.9	28.1	161.9	53.6	28.1	1953.2	608.4
18.6	72.6	39.1	30.6	114.5	39.2	30.6	634.2	190.2
20.1	49.3	29.7	34.1	89.0	30.4			
22.0	15.3	13.9						
24.6	4.1	5.0						
28.1	1.0	1.5						

Page -89-
(2-4 x

Index:
$\mathrm{D}=$ Directivity (dBi).
$\mathbf{M} / \mathrm{h}=$ Metears per hour.
$\mathrm{DU}=$ Chamnel duration ($\mathrm{Sec} / \mathrm{hr}$).
Type 1, 2 and 3 illuminations are as described in section 3.3.2.

Results for half-wave dipole, vertical quarter-wave monopole and 45° skew quarter-wve monopoke (section 4.2.2)

reroainder of table on next page...

Page -91-

	HWD				$\frac{\mathrm{QWM}}{\text { Best }}$		SWQM					
	Best		Worst				Best		Worst			
D	M/h	DU										
1500	3.0	5.5			0.2	03	0.1	0.2	0.1	0.2		
1600	1.9	3.9			01	0.2	0.1	0.1	0.1	0.1		
1700	1.4	30.7			0.1	0.1						
1800	0.7	1.7										
1900	0.4	1.1										
2000	0.2	0.5										

Index:
KWD = Half-wave dipole.
QWM = Quarter-wave monopole.
$S Q W M=45^{\circ}$ skew quatter-wave monopole.
Best $=$ Restorientation of antenna.
Worst $=$ Worst orientation of antenna.
$\mathrm{D}=$ Stations separation (km).
M/h = Meteors per hour:
$\mathrm{DU}=$ Channel duration ${ }^{-3} \mathrm{sc} / \mathrm{hr}$).

Tabulated results for the squate loop aytenna presented in section 4.3:

	SLOOP (MID-PATH)				SLOOP (END-PATH)			
	Best		Worst		Rest		Worst	
D	M/	DU	M/h	DU	M/h	DU	M/h	DU
100	2.7	0.4	1.5	0.2	2.6	0.4	1.5	0.2
200	4.8	0.9	2.4	0.4	4.8	0.9	2.5	0.5
300	6.3	1.6	2.9	0.7	6.2	1.5	3.1	0.7
400	5.3	1.7	29	0.5	5.3	1.6	2.1	0.5
500	4.8	1.9	1.4	0.4	4.8	1.8	1.4	0.4
500	3.5	1.5	0.9	0.3	3.7	1.6	0.9	0.3
700	2.6	12	0.5	0.2	2.6	± 2	0.6	0.2
(2)	1.8	0.9	0.3	02	1.8	0.9	0.4	0.1
900	12	0.6	n2	01	1.2	0.6	0.2	0.1
Suna	08	0.4			0.8	0.4		
2300	0.5	0.3			0.5	03		
120\%	9.1	0.1			0.1	0.1		

Mryex

CLOOP: Square loop anterat
MIDPATH $=$ Mid-parh illumanaioiby the Yyi-Uda anterna at the otier end of the link.
END-PATH = End-path ilharinikarion by the Vygi-Uda anterna at the other end of the link.
Best $=$ Best orientation of squiar lcesp antenne.
Worst = Worst orisgisasis of square loop antensia.
$D=$ Stacions separation (kni).
$\mathrm{M} / \mathrm{h}=$ Metens ger hour.
$\mathrm{DEJ}=$ Channel derration (Sec/hr).

Page -8.

Tabulted results for the Yagi-Uda and long wire (texainated) antennas pa sented in section 4.4:

		LONG-WRE	YAGI-IDA	
D	Mh	$D U$	MA	$D U$
100	1.7	0.3	4.7	0.7
200	4.7	0.9	11.0	2.2
300	13.2	3.5	24.7	6.7
400	28.0	9.6	44.0	15.1
500	44.1	17.1	68.3	28.5
600	64.2	29.6	91.2	44.7
700	77.0	41.3	111.8	62.7
800	79.8	46.1	128.4	81.1
900	85.6	61.5	139.5	98.3
1000	88.9	70.3	147.1	113.5
1100	80.0	62.6	149.7	125.8
1200	71.6	60.7	145.5	133.0
1300	61.5	56.4	134.0	133.9
1400	49.3	49.0	116.8	127.4
1500	34.9	37.6	89.8	104.3

remair der mf table on next page...

Page -94.

Zenith-plane radiation patterz of the 5 -clements Yagi-Uda antenna.

ANGLES		DİRECTIVE GAINS		
Theta	Phi	Verrical	Horizontal	Total
Degrees	Degrees	dB	di	dB
0	90	-99.31	-1.46	-1.46
4	90	-99.33	-2.31	-2.31
8	90	-99.39	-3.69	-3.69
12	90	-99.49	-5.9	-5.9
16	90	-99.64	-9.52	.9.52
20	90	-99.83.	-15.34	-15.34
24	90	-100.06	-13.11	-13.11
28	90	-100.35	-6.92	-6.92
32	90	-100.69	-2.89	-2.89
36	90	-101.1	. 3.04	-0.04
40	90	-101.56	2.11	2.11
44	90	-102.1	3.8	3.8
48	90	-102.72	5.16	5.16
52	90	-103.44	6.26	6.26
56	90	-104.27	7.16	7.16
60	90	-105.24	7.9	7.9
64	90	-106.38	8.5	8.5
68	90	-107.75	8.99	8.99
72	90	-109.42	9.37	9.37

Page -96-

76	90	-111.54	9.66	9.66
80	90	-114.42	9.87	9.87
84	90	-118.83	10.01	10.01
88	90	-128.36	10.08	10.08
92	90	- 128.36	10.08	10.08
96	90	-118.83	10.01	10.01
100	90	-114.42	9.87	9.87
104	90	-111.54	9.66	9.66
108	90	-109.42	9.37	9.37
112	90	-107.75	8.99	8.99
116	90	-106.38	8.5	8.5
120	90	-105.24	7.9	7.9
124	90	-104.27	7.16	7.16
128	90	-103.44	6.26	6.26
132	90	-102.72	5.16	5.16
136	90	-102.1	3.8	3.8
140	90	-101.56	2.11	2.11
144	90	-101.09	-0.04	-0.04
148	90	-100.69	-2.89	. 2.89
152	90	-100.35	-6.92	-6.92
156	90	-100.06	-13.11	-13.11
160	90	-99.83	-15.34	-15.34
164	90	-99.64	-9.52	-9.52

Page -97-

168	90	-99.49	-5.9	-5.9
172	90	-99.39	-3.69	-3.69
176	90	-99.33	-2.31	-2.31
180	90	-99.31	-1.46	-1.46
184	90	.99.32	-1.02	-1.02
188	90	-99.39	-0.88	-0.88
192	90	-99.49	-1	-1
196	90	-99.64	-1.32	-1.32
200	90	. 99.83	-1.81	-1.81
204	90	-100.07	-2.44	-2.44
208	90	-100.36	-3.16	-3.16
212	90	-100.71	-3.96	-3.96
216	90	-101.12	-4.81	-4,81
220	90	-101.59	-5.68	-5.68
224	90	-102,13	-6.58	-6.58
228	90	-10..76	-7.5	-7.5
232	90	-103.49	-8.47	-8.47
236	90	-104.32	-9.48	-9.48
240	90	-105.3	-10.56	-10.56
244	90	-106.44	-11.69	-11.69
248	90	-107.81	-12.88	-12.88
252	90	-109.48	-14.08	-14.08
256	90	-111.61	-15.23	-15.23

Page-98-

260	90	-114.49	-16.24	-16.24
264	90	-118.9	-16.99	-16.99
268	90	-128.43	-17.4	-17.4
272	90	-128.43	-17.4	-17.4
276	90	-118.9	-16.99	-16.99
280	90	-114.49	-16.24	-16.24
284	90	-111.61	-15.23	-15.23
288	90	-109.48	-14.08	-14.08
292	90	-107.81	-12.88	-12.88
296	99	-106.44.	-11.69	-11.69
300	90	-105.3	. 10.56	-10.56
304	90	-104.32	-9.48	-9.48
308	90	-103.49	-8.47	-8.47
312	90	-102.76	-7.5	-7.5
316	90	-102.13	-6.58	-6.58
320	90	-101.59	-5.68	-5.68
324	90	-101.12	-4.81	-4.81
328	90	-100.71	-3.96	-3.96
332	90	-100.36	-3.16	-3.16
336	90	-100.07	-2.44	-2.44
340	90	-99.83	-1.81	-1.81
' 344	90	-99.64	-1.32	-1.32
348	90	-99.49	-1	-1

Page -99.

352	90	-99.39	-0.88	-0.88
356	90	-99.32	-1.02	-1.02
360	90	-99.31	-1.46	-1.46

Azimuth-plane radiation pattern of the 5-elements Yagi-Uda antenca.

ANGLES		DIRECTIVEGAINS		
Theta	Phi	Verrical	Horizontal	Total
Degrees	Degrees	dB	dB	dB
90	2	-151.07	-33.47	-33.47
90	6	-152.23	-26.05	-26.05
90	10	-154.13	-23.04	-23.04
90	14	-157.22	- 23.1	-23.1
90	18	-162.7	-27.45	-27.45
90	22	-166.53	-33.24	-33.24
90	26	-159	-18.82	-18.82
90	30	-154.26	-12.19	-12.19
90	34	-151.23	-7.69	-7,69
90	38	-149.12	-4.26	-4.26
90	42	.147.63	-1.5	-1.5
90	45	-146.59	0.77	0.77
90	50	-145.93	2.66	2.66
90	54	-145.59	4.26	4.26
90	58	-145.56	5.61	5.61
90	62	-145.85	6.74	6.74
90	66	-146.46	7.67	7.67
90	70	-147.45	8.44	8.44
90	74	-148.91	9.04	9.04

Page-101-

90	78	-151.05	9.5	9.5
90	82	-154.32	9.83	9.83
90	86	-160.2	10.02	10.02
90	90	-999.99	10.08	10.08
90	94	-160.2	10.02	10.02
90	98	-154.32	9.83	9.83
90	102.	-151.05	9.5	9.5
90	106	-148.91	¢ 74	9.04
90	110	-147.45	8.44	8.44
90	114	-146.46	7.67	7.67
90	118	-145.85	6.74	6.74
90	122	-145.56	5.61	5.61
90	126	-145.59	4.26	4.26
90	130	.145 .93	2.66	2.66
90	134	-146.59	0.77	0.77
90	138	W147.63	-1.5	-1.5
90	142	-149.12	-4.26	-4.26
90	146	-151.23	-7.69	-7.69
90	150	-154.26	-12.19	-12.19
90	154	-159	-18.82	-18.82
90	158	-166.53	-33.24	-33.24
90	162	-162.7	-27.44	-27.44
90	166	-157.22	-23.1	-23.1

Page-102-

90	170	-154.13	-23.03	-23.03
90	174	-152.23	-26.05	-26.05
90	178	-151.07	-33.47	-33.47
$\geqslant 0$	182	-150.4	-26.78	-26.78
90	186	-150.12	-20.33	-20.33
90	190	-150.16	-16.6	-16.6
90	194	-150.46	-14.18	-14.18
90	198	-150.98	-12.56	-12.56
90	202	-151.7	-11.47	-11.47
90	206	-152.59	-10.77	-10.77
90	210	-133.61	-10.37	-10.37
90	214	-154.74	-10.19	-10.19
90	218	-155.95	-10.18	-10.18
90	222	-157.25	-10.32	-10.32
90	226	-158.63	-10.57	-10.57
90	230	-150.1	-10.93	-10.93
90	234	-161.7	-11.4	-11.4
90	238	-163.44	-11.97	-11.97
90	242	-165.38	-12.66	-12.66
90	246	-167.53	-13.46	-13.46
90	250	-169.95	-14.33	-14.33
90	254	-172.71	-15.23	-15.23
90	258	. 175.94	-16.08	-16.08

Fage -103~
$\ddot{\sim}$ \rightarrow -

90	262	-180.04	-16.8	-16.8
90	266	-186.44	-17.28	-17.28
90	270	-999.99	-17.45	-17.45
90	274	-186.43	-17.28	-17.28
90	278	-180.04	-16.8	-16.8
90	282	-175.93	-16.08	-16.08
90	286	-172.7	-15.23	-15.23
90	290	-169.95	-14.33	-14.33
90	294	-167.53	-13.46	-13.46
90	298	-165.38	-12.66	-12.66
90	302	-163.44	-11.97	-11.97
90	306	-161.7	-11.4	-11.4
90	310	-160.1	-10.93	-10.93
90	314	-158.63	-10.57	-10.57
90	318	-157.25	-10.32	-10.32
90	322	-155.95	-10.18	-10.18
90	326	-154.74	-10.19	-10.19
90	330	-153.61	-10.37	-10.37
90	334	-152.59	-10.77	-10.77
90	338	-151.7	-11.47	-11.47
90	342	-150.98	-12.56	-12.56
90	346	-1.50.46	-14.18	-14.18
90	350	-150.16	-16.6	-16.6

Page -104-

90	354	-150.12	-20.33	-20.33
90	358	-150.4	-26.78	-26.78
90	362	-151.07	-33.47	-33.47

Arimath-plane radiation pattern of the half-wave dipole antenna in free space.

ANGLES		DIRECTIVE GAINS		
Theta	Phi	Vertical	Horizontal	Total
Degrees	Degrees	dB	dB	dB
90	2	-147.29	-29.24	-29.24
90	6	-147.31	-19.68	-19.68
90	10	-147.35	-15.23	-15.23
90	14	-147.41	-12.28	-12.28
90	18	-147.5	-10.07	-10.07
90	22	-147.61	-8.3	-8.3
90	26	-147.76	-6.81	. 6.81
90	30	-147.95	-5.54	-5.54
90	34	-148.19	-4,42	-4.42
90	38	-148.48	-3.43	-3.43
90	42	+148.83	-2.55	-2.55
90	46	-149.26	-1.77	-1.77
90	50	-149.78	-1.07	-1.07
90	54	-150.4	-0.44	-0.44
90	58	-151.16	0.11	0.11
90	62	-152.08	0.59	0.59
90	66	-153.2	1.01	1.01
90	70	-154.6	1.36	1.36
90	74	-156.39	1.65	1.65

Page - 106 .

90	78	- 158.77	1.87	1.87
90	82	-162.2	2.03	2.03
90	86	-168.17	2.13	2.13
90	90	-999.99	2.16	2.16
90	94	-168.17	2.13	2.13
90	98	-162.2	2.03	2.03
90	102	-158.77	1.87	1.87
90	106	-156.39	1.65	1.55
90	110	-154.6	1.36	1.36
90	114	-153.2	1.01	1.01
90	118	-152.08	0.59	0.59
90	122	-151.16	0.11	0.11
90	126	-150.4	-0.44	-0.44
90	130	-149.78	-1.07	-1.07
90	134	-149.26	-1.77	-1.77
90	138	-148.83	-2.55	-2.55
90	142	-148.48	-3.43	-3,43
90	146	-148.19	-4.42	-4.42
90	150	-147.95	-5.54	-5.54
90	154	-147.76	-6.81	-6.81
90	158	-147.61	-8.3	-8.3
90	162	-147.5	-10.67	-10.07
90	166	-147.41	-12.28	-12.28

Page -107.

	90	170	-147.35	-15.23	-15.23
	90	174	-147.31	-19.68	-19.68
	90	178	-147.29	-29.24	-29.24
	90	182	-147.29	-29.24	-29.24
	90	186	-147.31	-19.68	-19.68
	90	190	-147.35	-15.23	-15.23
	90	194	-147.41	. 12.28	-12.28
	90	198	-147.5	-10.07	-10.07
	90	202	-147.61	-8.3	-8.3
	90	206	-147.76.	-5.81	-6.81
	90	210	-147.95	-5.54	-5.54
	90	214	-148.19	-4.42	-4.42
	90	218	${ }^{-148.48}$	-3.43	-3.43
	90	222	-148.83	-2.55	-2.55
	90	226	-149.26	-1.77	-1.77
	90	230	-149.78	-1.07	-1.07
	90	234	-150.4	-0.44	-0.44
-	90	238	-151.16	0.11	0.11
	90	242	-152.08	0.59	0.59
(90	246	-153.2	1.01	1.01
	90	250	. 154.6	1.36	1.36
	90	254	-156.39	1.65	1.65
6	90	258	-158.77	1.87	1.87

Page-108.

50	262	-162.2	2.03	2.03
9	266	-168.17	2.13	2.13
90	270	-999.99	2.16	2.16
90	274	-168.17	2.13	2.13
90	278	-162.2	2.03	2.03
90	282	-158.77	1.87	1.87
90	286	-156.39	1.65	1.65
90	290	- 154.6	1.36	1.36
90	294	-153.2	1.01	1.01
90	298	-152.08	0.59	0.59
90	302	-151.16	0.11	0.11
90	306	-150.4	-0.44	-0.44
90	310	-149.78	-1.07	-1.07
90	314	-149.26	-1.77	-1.77
90	318	-148.83	-2.55	-2.55
90	322	-148.48	-3.43	-3.43
90	326	-148.19	-4.42	-4.42
90	330	-147.95	-5.54	-5.54
90	334	-147.76	-6.81	-6.81
90	338	-147.61	-8.3	-8.3
90	342	-147.5	-10.07	-10.07
90	346	-147.41	-12.28	-12.28
90	350	-147.35	-15.23	-15.23

Paris-109-

90	354	-147.31	-19.68	-19.68
90	358	-147.29	-29.24	-29.24
90	362	-147.29	-29.24	-29.24

?

Zenith-plane zadiation pattern of the vertical quarter-wave monopole on a perfectly conducting infinite ground plane.

ANGLES		DIRECTIVE GAINS		
Theta	Phi	Vertical	Horizontal	Total
Degrees	Degrees	dB	dB	${ }^{6}$
-90	90	5.16	-999.99	5.16
-88	90	5.15	-999.99	5.15
-86	90	5.13	-999.99	5.13
-84	90	5.09	-999.99	5.09
-82	90	5.03	-999.99	5.03
-80	90	4.96	-999.99	4.96
-78	90	4.87	-999.99	4.87
-76	130	4.77	.999.99	4.77
-74	90	4.65	-999.99	4.65
-72	90	4.51	-999.99	4.51
-70	90	4.36	-999.99	4.36
-68	90	4.19	-999.99	4.19
-66	90	4	-999.99	4
-64	90	38	-999.99	3.8
-62	90	3.58	. 999.99	3.58
-60	90	3.34	-999.99	3.34
-58	90	3.09	-999.99	3.09
-56	90	2.82	-999.99	2.82
-54	90	2,53	-999.99	2.53

Page-111-

. 52	90	2.22	-999.99	2.22
-50	90	1.9	.999.99	1.9
-48	90	1.56	-999.99	1.56
-46	90	1.19	-999.99	1.19
-44	90	0.81	-999.99	0.81
-42	90	0.4	-999.99	0.4
-40	90	-0.03	-999.99	-0.03
-38	90	-0.49	-999.99	-0.49
-36	90	-0.97	-999.99	-0.97
-34	90	-1.48.	-999.99	-1.48
. 32	90	-2.02	-999.99	-2.02
-30	90	-2.6	-999.99	-2.6
-28	90	-3.22	-994.99	-3,22
-26	90	-3.88	. 999.99	-3.88
-24	90	-4.6	-999.99	-4.6
. 22	90	-5.37	-999.99	-5.37
-20	90	-6.22	-999.99	-6.22
-18	90	-7.15	-999.99	+7.15
-16	90	-8.19	-999.99	-8.19
-14	90	.9.37	. 999.99	-9.37
-12	90	-10.72	-999.99	-10.72
-10	90	-12.32	-999.99	-12.32
-8	90	-14.26	-999.99	-14.26

Page - 112 -

-6	90	-16.77	-999.99	-16.77
-4	90	-20.3	.999.99	-20.3
-2	90	-26.32	-999.99	-26.32
0	90	-999.99	-999.99	-999,99
2	90	-26.32	-999.99	-26.32
4	90	-20.3	-999.99	-20.3
6	90	-16.77	-999.99	-16.77
8	90	-14.26	-999.99	-14.26
10	90	-12.32	-999.99	-12.32
12	90	-10.72.	- 999.99	-10.72
14	90	-9.37	-999.99	-9.37
16	90	-8.19	-999.99	-8.19
18	90	-7. 15	-999.99	-7.15
20	90	-6.22	-999.99	- 6.22
22	90	-5.37	-999.99	-5.37
24	90	4.6	-999.99	-4.6
26	90	-3.88	-999.99	-3.88
28	90	-3.22	-999.99	-3.22
30	90	-2.6	-999.99	-2.6
32	90	-2.02	. 999.99	-2.02
34	90	-1.48	-999.99	-1.48
36	90	-0.97	. 999.99	-0.97
38	90	-0.49	-999.99	-0.49

Page-113-

40	90	-0.03	-999.99	-0.03
42	90	0.4	-999.99	0.4
44	90	0.81	99999	0.81
46	90	1.19	-999.99	1.19
48	90	1.55	-999.99	1.56
50	90	1.9	-999.99	1.9
52	90	2.22	-999.99	2.22
54	90	2.53	-999.99	2.53
56	90	2.82	-999.99	2.82
58	90	3.109.	-999.99	3.09
60	90	3.34	-999.99	3.34
62	90	3.58	-999.99	3.58
64	90	3.8	-999.99	3.8
66	90	4	-999.99	4
68	90	4.19	-999.99	4.19
70	90	4.36	-999.99	4.36
72	90	4.51	-999.99	4.51
74	90	4.65	-999.99	4.65
76	90	4.77	-999.99	4.77
78	90	4.87	-999.99	4,87
80	90	4.96	-999.99	4.96
82	90	5.03	-999.99	5.03
84	90	5.09	-999.99	5.09

Page 114
\therefore 为

86	90	5.13	-999.99	5.13
88	90	5.15	-999.99	5.15
90	90	5.16	-999.99	5.16

Page-1is-

Zenith-plane radiacion pattert of the 45° skew quarter wwave monopole on a perfectly conducting infiaite ground plane.

ANGLES		DIRECTIVE GAINS		
Theta	Phi	Vertical	Horizontal	Total
Degrees	Degrees	HB	dB	dB
-90	0	4.65	-999.99	4.65
-88	0	4.65	-31.91	4.65
-86	0	4.63	-25.89	4.63
-84	0	4.59	-22.38	4.6
-82	0	4.55	-19.9	4.56
-80	0	4.49	-17.99	4.51
-78	0	4.41	-16.43	4.45
-76	0	4.32	-15.13	4.37
-74	0	4.22	-14	4.29
-72	0	4.11	. 13.02	4.19
.70	0	3.98	-12.15	4.08
-68	0	3.84	-11.38	3.97
-66	0	3.68	-10.68	3.84
. 64	0	3.51	-10.05	3.7
-62	0	3.32	-9.47	3.55
-60	0	3.12	-8.94	3.38
-58	0	2.9	-8.45	3.21
-56	0	2.67	-8.01	3.03
-54	0	2.42	-7.59	2.83

Page-116-

-52	0	2.15	-7.21	2.63
-50	0	1.87	-6.86	2.42
-48	0	1.57	-6.53	2.19
-46	0	1.24	-6.23	1.96
-44	0	0.9	-5.95	1.72
-42	0	0.54	-5.69	1.47
-40	0	0.15	-5.45	1.24
-38	0	- 9.27	-5.22	0.94
-36	0	-0.71	-5.01	0.66
-34	0	-1.18.	-4.82	0.38
-32	0	-1.68	-4.64	0.1
-30	0	-2.22	-4.48	-0.2
-28	0	-2.8	-4.33	-0,49
-26	0	-3.43	-4.2	-0.79
-24	0	-4.11	-4,07	-1.08
. 22	0	-4.86	-3.96	-1.37
-20	0	-5.67	-3.86	-1.66
-18	0	-6.58	4.77	-1.94
-16	0	-7.6	-3.69	-2.2
-14	0	-8.75	-3.62	-2.45
-12	0	-10.08	-3.55	-2.68
-10	0	-11.66	-3.5	-2.89
-8	0	-13.6	-3.46	-3.06

Page -117.

-6	0	-16.09	-3.43	-3.2
-4	0	-19.61	-3.41	-3.31
-2	0	-25.63	-3.39	-3.37
0	0	-999.99	-3.39	-3.39
2	0	-25.63	-3.39	-3.37
4	0	-19.61	-3.41	-3.31
6	0	-16.09	-3.43	-3.2
8	0	-13.6	-3.46	-3.06
10	0	-17.66	-3.5	-2.89
12	0	-10.08	-3.55	-2.68
14	0	-8.75	-3.62	-2.45
16	0	-7.6	-3.69	-2.2
18	0	-6.58	-3.77	-1.94
20	0	-5.67	-3.86	-1.66
22	0	-4.86	-3.96	-1.37
24	0	-4.11	-4.07	-1.08
26	0	-3.43	-4.2	-0.79
28	0	-2.8	-4.33	-0.49
30	0	-2.22	-4.48	-0.2
32	0	-1.68	-4.64	0.1
34	0	-1.18	-4.82	0.38
36	0	-0.71	-5.01	0.66
38	0	-0.27	-5.22	0.94

Page -118.

40	0	0.15	-5.45	1.21
42	0	0.54	-5.69	1.47
44	0	0.9	-5.95	1.72
45	0	1.24	-6.23	1.96
48	0	1.57	-6.53	2.19
50	0	1.87	. 6.86	2.42
52	0	2.15	-7.21	2.63
54	0	2.42	-7.59	2.83
56	0	2.67	-8.01	3.03
58	0	2.9	-8.45	3.21
क	0	3.12	-8.94	3.38
62	0	3.32	-9.47	3.55
64	0	3.51	-10.05	3.7
66	0	3.68	-10.68	3.84
68	0	3.84	-11.38	3.97
70	0	3.98	-12.15	4.08
72	0	4.11	-13.02	4.19
74	0	4.22	-24	4.29
76	0	4.32	-15.13	4.37
78	0	4.41	-16.43	4.45
80	0	4.49	-17.99	4.51
32	0	4.55	-19.9	4.56
84	0	4.59	-22.38	4.6

Page-119-

86	0	4.63	-25.89	4.63
88	0	4.65	-31.91	4.65

Page - 120 -

Azimutheplane radiation pattern of the $45^{\text {a }}$ skew quartor-wave monopoie on a perfectly conducting infinive ground plane.

ANGLES		DIRECTIVE GANS		
Theta	Phi	Vertical	Horizontal	Total
Degrees	Degres	dB	dB	dB
90	0	4.65	-999.99	4.65
90	2	4.65	-999.99	4.65
90	4	4.55	-999.99	4.65
90	6	4.65	-999.99	4.65
90	8	4.65	-141.98	4.65
90	10	4.65	-999.99	4.65
90	12	4.64	-145.1	4.64
90	14	4.64	-999.99	4.64
90	16	4.63	-999.99	4.63
90	18	4.63	-145.34	4.63
90	20	4.62	-138.46	4.62
90	22	4.62	. 999.99	4.62
90	24	4.61	-999.99	4.61
90	26	4.6	-999.99	4.6
90	28	4.59	-999.99	4.59
90	30	4.58	-999.99	4.58
90	32	4.57	-146.34	4.57
90	34	4.56	-999.99	4.56
90	36	4.55	-146.75	4.55

Page - 121 -

90	38	4.54	.999.99	4.54
90	40	4.53	-153.24	4.53
90	42	4.52	-153.51	4.52
90	44	4.51	-141.75	4.51
90	46	4.5	-154.09	4.5
90	48	4.49	-154.42	4.49
90	50	4.48	-148.74	4.48
90	52	4.47	-149.12	4.47
90	54	4.46	-148.55	4.46
90	56	4.45	-999.99	4.45
90	58	4.44	-156.44	4.44
90	60	4.43	-150.93	4.43
90	62	4.42	-151.47	4.42
90	64	4.41	-148.55	4.41
90	66	4.4	-158.74	4.4
90	68	4.39	-159.46	4.39
90	70	4.38	-154.23	4.38
90	72	4.38	-151.58	4.38
90	74	4.37	-153.09	4.37
90	76	4.36	-163.25	4.36
90	78	4.36	-999.99	4.36
90	80	4.36	-160.11	4.36
90	82	4.35	-162.04	4.35

Page-122.

90	84	4.35	-999.99	4.35
90	86	4.35	-174.06	4.35
90	88	4.35	-180.07	4.35
90	90	4.35	-99999	4.35
90	92	4.35	-180.07	4.35
90	94	4.35	-174.06	4.35
90	96	4.35	-999.99	4.35
90	98	4.35	-162.04	4.35
90	100	4.36	-160.11	4.36
90	102	4.36.	-999.99	4.36
90	104	4.36	-163.25	4.36
90	106	4.37	-15309	4.37
90	108	4.38	-151.58	4.38
90	310	4.38	. 154.23	4.38
90	112	4.39	-159.46	4.39
90	114	4.4	-158.74	4.4
90	116	4.41	-148.55	4.41
90	118	4.42	-151.47	4.42
90	120	4.43	-147.92	4.43
90	122	4,44	-156.44	4.44
90	124	4.45	-155.98	4.45
90	126	4.46	-148.55	4.46
90	128	4.47	-149.12	4.47

Page-123

1993	130	4.48	-148.74	4.48
90	132	4.49	- 999.99	4.49
90	134	4.5	-148.07	4.5
90	136	4.51	-146.8	4.51
90	138	4.52	-153.51	4.52
90	140	4.53	-147.22	4.53
90	142	4.54	-999.99	4.54
90	144	4.55	-146.75	4.55
90	146	4.56	-999.99	4.56
90	148	4.57	-146.34	4.57
90	150	4.58	-146.16	4.58
90	152	4.59	-999.99	4.59
90	154	4.6	-999.99	4.6
90	156	4.61	-139.67	4.61
90	158	4.62	-999.99	4.62
90	160	4.62	-1.15.45	4.62
90	162	4.63	-139.32	4.63
90	164	4.63	-999.99	4.63
90	156	4.64	-999.99	4.64
90	168	4.64	-145.1	4.64
90	170	4.65	-142.03	4.65
90	172	4.65	-141.98	4.65
90	174	4.65	-999.99	4.65

Page-124-

90	176	4.65	-3,9.99	4.65
90	178	4.65	-144.91	4.65
90	180	4.65	. 999.09	4.65
90	182	4.65	-999.99	4.65
90	184	4.65	- 144.93	4.65
90	186	4.65	-144.95	4.65
90	188	4.64	+144.99	4.64
90	190	4.64	-145.04	4.64
90	192	4.63	-139.08	4.63
90	194	4.63.	-999.99	4.63
90	196	4.62	.999.99	4.62
90	198	4.61	. 999.99	4.61
90	200	4.6	-144.48	4.6
90	20.2	4.59	-151.58	4.59
90	204	4.58	-142.68	4.58
90	206	4.57	-145.83	4.57
90	208	4.55	-152.01	4.56
90	210	4.55	-152.18	4.55
90	212	4.54	-999.99	4.54
90	214	4.53	-146.53	4.53
90	216	4.52	-152.77	4.52
90	218	4.51	-153	4.5 ${ }^{1}$
90	220	4.49	-147.22	4.49

Page -125-

90	222	4.48	-147.48	4.48
90	224	4.47	-153.79	4.47
90	226	4.46	-145.06	4.46
90	228	4.44	-999.99	4.44
90	230	4.43	-148.74	4.43
90	232	4.42	-999.99	4.42
90	234	4.41	-999.99	4.41
90	236	4.4	-155.98	4.4
90	238	4.39	-149.45	4.39
90	240	4.37.	-156.95	4.37
90	242	4.36	-148.46	4.36
90	244	4.35	-152.07	4.35
90	246	4.34	-158.74	4.34
90	248	4.34	-153.43	4.34
90	250	4.33	-154.23	4.33
90	252	4.32	. 999.99	4.32
90	254	4.31	-162.12	4.31
90	256	4.31	-999.99	4.31
90	258	4.3	-158.55	4.3
90	260	4.3	-999.99	4.3
90	262	4.29	-168.06	4.29
90	264	4.29	-170.54	4.29
90	266	4.29	-167.07	4.29

Page-126-

90	268	4.29	-171.04	4.29
90	270	4.29	-999.99	4.29
90	272	4.29	. 171.04	4.29
90	274	4.29	-167.07	4.29
90	276	4.29	-170.54	4.29
90	278	4.29	-168.06	4.29
90	280	4.3	-159.14	4.3
90	282	4.3	-158.55	4.3
90	284	4.31	-999.99	4.31
90	286	4.31	-162.12	4.31
90	288	4.32	-999.99	4.32
90	290	4.33	-999.99	4.33
90	292	4.34	-999.99	4.34
90	294	4.34	-158.74	4.34
90	296	4.35	-152.07	4.35
90	298	4.36	-148.46	4.36
90	300	437	-156.95	4.37
90	302	4.39	-150.42	4.39
90	304	4.4	-155.98	4.4
90	306	4.41	-999.99	4.41
90	308	4.42	-999.99	4.42
90	310	4.43	. 999.99	4.43
90	312	4.44	-999.99	4.44

Page 127 -

90	314	4.46	-145.06	4.46
90	316	4.47	-147.77	4.47
90	318	4.48	-146.52	4.48
90	320	4.49	-147.22	4.49
90	322	4.51	. 153	4.51
90	324	4.52	-140.73	4.52
90	326	4.53	-146.53	4.53
90	328	4.54	-999.99	4.54
90	330	4.55	-152.18	4.55
90	332	4.56	-145.99	4.56
90	334	4.57	-151.85	4.57
90	336	4.58	-151.71	4.58
90	338	4.59	-151.58	4.59
90	340	4.6	-999.99	4.6
90	342	4.61	-145.34	4.61
90	344	4.62	-999.99	4.62
90	346	4.63	-145.17	4.63
90	348	4.63	-142.09	4.63
90	350	4.64	-999.99	4.64
90	352	4.64	-144.99	4.64
90	354	4.65	-144.95	4.65
90	356	4.65	-144.93	4.65
90	358	4.65	-999.99	4.65

Page -128-

Zenith-plane radiation pattern of the square loop artema.

ANGLES		DIRECITVE GAINS		
Theta	Phi	Verical	Horizontal	Total
Degrecs	Degrees	$d B$	dB	dB
-90	90	-999.99	-999.09	-999.99
-89	90	-76.77	-28.78	-28.78
-8\%	90	-64.73	-22.75	$\because 7.75$
-87	90	. 57.69	-19.23	-19.23
-86	90	-52.69	-16.73	-16.73
-85	90	-48.82.	-14.78	-14.78
-84	90	-45.66	-13.19	-13.19
-83	90	-43	-11.85	-11.84
-82	90	-40.69	-10.68	-10.68
-81.	90	-38.65	-9.65	-9.64
-80	90	-36.83	-8.72	-8.71
-79	90	-35.19	-7.88	-7.87
-78	90	-33.69	-7.11	-7.1
-77	90	-32.32	4.41	-6.39
-76	90	-31.05	-5.75	-5.73
.75	90	-29.87	-5.13	-5.12
-74	90	-28.77	-4.56	-4.54
-73	90	-27.74	-4.01	-4
-72	90	-26.77	-3.5	-3.48

Page -129-

-71	90	-25.86	-3.01	-2.99
-70	90	-24.99	-2.55	-2.53
-69	90	. 24.17	-2.11	-2.08
-68	90	-23.39	-1.68	-1.65
-67	90	-22.65	-1.28	-1.25
-65	90	-21,95	-0.89	-0.85
-65	90	-21.27	-0.51	-0.48
-64	90	-20.63	-0.15	-0.11
-63	90	-20.01	0.19	0.24
-62	90	-19.41.	0.53	0.57
-61	90	-18.85	0.86	0.9
-60	90	-18.3	1.17	1.22
-59	90	-17.77	1.48	1.53
-58	90	-17.27	1.77	1.83
-57	90	-16.78	2.06	2.11
-56	90	-16.31	2.34	2.4
-55	90	-15.86	2.61	2.67
-54	90	-15.42	2.87	2.93
-53	90	-15	3.13	3.19
-52	90	-14.59	3.37	3.44
-51	90	-14.2	3.62	3.69
-50	90	-13.82	3.85	3.92
-49	90	-13.45	4.08	4.16

Page - 130 .

-48	90	-13.09	4.3	4.38	
	-47	90	-12.75	4.52	4.6
	-46	90	-12.42	4.73	4.81

Page－ 131 －

-25	90	-7.55	8	8.12
-24	90	-7.41	8.1	8.22
-23	90	-7.27	8.2	8.33
-22	90	-7.13	8.3	8.42
21	30	-7	8.39	8.52
-20	90	-6.88	8.48	8.61
. 19	90	-6.77	8.55	8.69
-18	90	-6.66	8.64	8.77
. 17	90	-6.56	8.72	8.84
-16	90	-6.46.	8.79	8.92
-15	90	-6.37	8.85	8.98
-14	90	-6.29	8.92	9.05
-13	90	-6.21	8.97	9.1
-12	90	-6.14	9.03	9.16
-11	90	-6.07	9.08	9.21
-10	90	-6.01	9.12	9.25
-9	90	-5.95	9.16	3.29
+8	90	-5.91	9.2	9.33
-7	90	-5.86	9.23	9.36
-6	90	-5.83	9.26	9.39
-5	90	-5.79	9.28	9.42
-4	90	-5.77	9.3	9.44
-3	90	-5.75	9.32	9.45

Page -132-
$\%$ क्ष

-2	90	-5.74	9.33	9.46
-1	90	-5.73	9.34	9.47
0	90	-572	9.34	9.47
1	90	-5.73	9.34	9.47
2	90	-5.74	9.33	9.45
3	90	-5.75	9.32	9.45
4	90	- 9.77	9.31	9.44
5	90	-5.8	9.29	9.42
6	90	-5.83	9.27	9.4
7	90	-5.87	9.24	9.37
8	90	-5.91	9.21	9.34
9	90	-5.96	9.17	9.3
10	90	-6.02	9.13	9.26
11	90	-6.08	9.09	9.22
12	90	-6.14	9.04	9.8
13	90	-6.22	8.99	9.12
14	90	-6.3	8.93	9.06
15	90	-6.38	8.87	9
16	90	-6.47	8.81	8.93
17	90	-6.57	8.74	8.86
18	90	-6.67	8.67	8.79
19	90	-6.78	8.59	8.71
20	90	-6.9	8.51	8.63

Page - 133 -
\cdots

	21	90	. 7.02	8.42	8.54
	22	90	-7.15	8.33	8.45
	23	90	-7.28	8.23	8.35
	24	90	-7.42	8.13	8.25
	25	90	-7.57	8.03	8.15
	26	90	-7.73	7.92	8.04
	27	90	-7.89	7.81	7.92
	28	90	-8.06	7.69	7.81
	29	90	. 8.23	7.57	7.68
	30	90	-8.41.	7.45	7.56
	31	90	-8.6	7.32	7.42
	32	90	. 8.8	7.18	7.29
	33	90	-9.01	7.04	7.15
	34	90	-9.22	6.9	7
	35	90	-9.44	6.75	6.85
	36	90	-9.67	6.59	6.7
	37	90	-9.91	6.44	6.54
\checkmark	38	9	-10.15	6.27	6.37
	39	90	-10.41	6.11	6.2
0	40	90	-10.67	5.93	6.03
	41	90	-10.94	5.75	5.85
	42	90	-11.22	5.57	5.66
e	43	90	-11.51	5.38	5.47

Page -134-

44	90	-11.81	5.19	5.28
45	90	-12.12	4.99	5.08
46	90	-12.45	4.79	4.87
47	90	-12.78	4.58	4.66
4\%	90	-13.12	4.36	4.44
49	90	-13.48	4.14	4.21
50	90	-13.85	3.91	3.98
51	90	-14.23	3.68	3.75
52	90	-14.62	3.44	3.51
53	90	-15.03	3.19	3.26
54	90	-15.45	2.94	3
55	90	-15.89	2.67	2.73
56	90	-16.34	2.41	2.45
57	90	-16.81	2.13	2.18
58	90	-17.3	1.84	1.89
59	90	-17.81	1.55	1.6
60	90	-18.33	1.24	1.29
61	90	-18.88	0.93	0.98
62	90	-19.45	0.61	0.65
63	90	-20.04	0.27	0.31
64	90	-20.66	-0.08	-0.04
65	90	-21.31	-0.44	-0.4
66	90	-21.98	-0.81	-0.78

Page-135-

67	90	-22.69	-1.2	-1.17
68	90	-23.43	-1.6	-1.58
69	90	-24.21	-2.03	-2
79	90	-25.03	-2.47	-2.44
71	90	-25.9	-2.93	-2.91
72	90	-26.81	-3.42	-3.4
73	90	-27.78	-3.93	-3.91
74	90	-28.81	-4.47	-4.46
75	90	-29.91	-5.03	-5.03
76	90	-31.09	-5.66	-5.65
77	90	. 32.36	-6.32	-6.31
78	90	-33.73	-7.03	-7.02
79	90	-35.23	-7.8	-7.79
89	90	-36.87	-8.63	-8.63
81	90	-38.69	-9.56	${ }^{9} 9.55$
82	90	-40.72	-10.59	-10.59
83	90	-43.03	-11.76	-11.76
84	90	-45.7	-13.11	-13.1
85	90	-48.86	.14.69	-14.69
86	90	-52.73	-16.64	-16.64
87	90	-57.73	-19.14	-19.14
88	90	-64.77	-22.67	-22.66
89	90	-76.81	-23.69	-28.69

Page -136-

Azimuth-plame radiation pattern of the square loop antenna sliced at zenith angle $\theta=70^{\circ}$.

ANGLES		DIRECTIVE GAINS		
Theta	Phi	Vertical	Horizontal	Total
Degrecs	Degrees	di	$d B$	dB
70	0	-9.94	-16.46	-9.07
70	2	-10	-15.08	-8.83
70	4	-10.07	. 13.88	-8.56
70	6	-10.15	12.82	-8.28
70	8	-10.25	-11.88.	-7.98
70	10	-10.36	-11.04	-7.68
70	12	-10.48	-10.28	-7.37
70	14	-10.61	-9.59	-7.06
70	16	-10.76	-8.96	-6.76
70	18	-10.92	-8.38	-6.46
70	20	-11.1	-7.85	-6.17
70	22	-11.29	-7.36	-5.89
70	24	-11.5	-6.91	-5.62
70	26	-11.73	-6.5	-5.36
70	28	.11.97	-6.11	-5.11
70	30	-12.23	-5.75	-4.87
70	32	-12.5	-3.42	4.64
70	34	-12.8	-5.11	-4.43
70	36	-13.12	. 4.82	-4.22

Page -137-

70	38	-13.46	-4.56	-4.03
70	40	-13.83	-4.31	-3.85
70	42	-14.22	-4.08	-3.68
70	44	-14.65	-3.87	-3.52
70	46	-15.1	-3.68	-3.37
70	48	-15.59	-3.5	-3.24
70	50	-16.12	-3.33	-3.11
70	52	-16.69	-3.18	-2.99
70	54	-17.31	-3.05	-2.89
70	56	-17.99.	-2.92	-2.79
70	58	-18.73	-2.81	-2.7
70	60	-19.56	-2.71	-2.62
70	62	-20.47	-2.63	-2.55
70	64	.21.51	-2.55	2.49
70	66	-22.69	-2.48	-2.44
70	68	-24.07	-2.43	-2.4
70	70	-25.71	-2.38	-2.36
7)	72	-27.75	-2.35	-2.34
70	74	-30.42	-2.33	-2.32
70	76	-34.29	-2.31	-2.31
70	78	-41.43	-2.31	-2.3
70	80	-51.67	-2.31	-2.31
70	82	-37.55	-2.32	-3.32

Page -138.

70	84	-32.39	-2.35	-2.34
70	86	-29.18	-2.38	-2.37
70	88	-26.86	-2.42	-2.4
70	90	-25.03	-2.47	-2.44
70	92	-23.53	-2.53	-2.49
70	94	-22.26	-2.6	-2.55
70	96	-21.17	-2.68	-2.61
70	98	-20.2	-2.76	-2.69
70	100	-19.34	-2.86	-2.77
70	102	-18.57.	2.97	-2.85
70	104	- 17.86	-3.09	-2.95
70	106	-17.22	-3.22	-3.05
70	108	\% :	-3.36	-3.16
70	110	-16.03	-3.52	-3.28
'70	112	-15.59	-3.68	-3.41
70	114	-15.12	-3.86	-3.55
70	116	-14.69	-4.05	-7.7.69
70	118	-14.28	-4.26	-3.85
70	120	. 13.9	-4.48	-4.08
70	122	-13.55	-4.72	-4,5
70	124	-13.22	-4.98	-4.37
70	126	-12.9	-5.25	-4.57
70	128	-12.61	-5.55	-4.77

Page -1,39-

70	130	-12.34	-5.87	-4.98
70	132	-12.09	-6.21	-5.21
70	134	-11.85	-6.57	-5.44
70	136	. 11.62	-6.96	-5.69
70	138	- 11.42	-7.39	-5.94
70	140	-11.22	-7.8.5	-6.2
70	142	-11.04	8.34	-6.48
70	144	-10.88	-8.88	-6.76
70	146	-10.72	-9.47	-7.04
70	148	-10.58	-10.11	-7.33
70	150	-10.4S	-10.82	-7.62
70	152	-10.34	-11.6	-7.91
70	154	-10.24	- 12.47	-8.2
70	156	-10.14	-13.44	-8.48
70	158	-10.06	-14.54	-8.74
70	160	-9.99	-15.81	-8.98
70	162	-0.94	-17.27	-9.2
70	164	-9.89	-18.97	-9.38
70	166	. 9.86	-20.94	-9.53
70	168	-9.83	-23.08	-9.63
70	170	-9.82	-24.78	-9.68
70	172	- 9.82	-24.85	-9.68
70	174	-9.83	-23.2	-9.63

Page - 140 -

70	176	-9.85	-21.05	-9.53
70	178	-9.88	-19.04	-9.39
70	180	-9.93	-17.3	-9.2
70	182	-9.99	-15.8	-8.97
70	184	. 10.05	-14.51	-8.72
70	186	-10.13	-13.38	-8.45
70	188	-10.23	-12.38	-8.16
70	190	-10.33	-11.49	-7.86
70	192	-10.45	-10.69	-7.56
70	194	-10.58.	-9.96	-7.25
70	196	-10.73	-9.3	-6.95
70	198	-10.89	8.7	-6.65
70	200	-11.06	-8.14	-6.35
70	202	-11.25	-7.63	-6.07
70	204	-11.46	-7.16	-5.79
70	206	-11.68	-6.73	-5.52
70	208	- 11.92	-6.33	-5.27
70	310	-12.17	-5.96	-5.03
70	212	-12.45	-5.61	-4.79
70	214	-12.74	-5.29	-4.57
70	216	-13.06	-4.99	-4.36
70	218	-13.4	-4.72	-4.17
70	220	-13.77	-4.46	-3.98

Page -141-

70	222	－14．16	－4．23	－3．81
70	224	． 14.58	－4．01	－3．64
70	226	－15．03	－3．81	－3．49
70	228	－15．51	－3．62	－3．35
70	230	－16．04	－3．45	－3．22
70	232	－16．61	－3．3	－3．1
70	234	－17．23	－3．16	－2．99
70	236	－17．9	－3．03	－2．89
76	238	－18．64	－2．91	－2．8
70	240	－19．46	－2．81	－2．72
70	242	－20．38	－2．72	－2，65
70	244	－21．41	－2．64	－2．58
70	246	－22．59	－2．57	－2．53
70	248	－23．96	－2．52	－2．49
70	250	－25．59	－2．47	－2．45
70	252	－27．62	－2．43	－2．42
70	254	－30．26	－2．4！	－2．4
70	256	－34．09	－2．39	－2．39
70	258	－41．09	－2．39	-2.38
70	260	－52．43	－2．39	－2．39
70	262	－37．65	－2．4	－2．4
70	264	－32．41	－2．42	－2．42
70	266	－29．17	－2．46	－2．45

Page－142－

度

70	268	-26.83	-2.5	-2.48
70	270	-24.99	-2.55	-2.53
70	272	-23.49	-2.61	. 2.58
70	274	-22.22	-2.68	-2.63
70	276	-21.12	-2.76	-2.7
70	278	-30.15	-2.85	-2.77
70	280	-19.29	-2.95	-2.85
70	282	-18.51	-3.07	-2.94
70	284	-17.81	-3.19	-3.04
70	286	-17.17.	-3.32	-3.15
70	288	-16.58	-3.47	-3.26
70	290	-16.03	-3.63	-3.39
70	292	-15.53	-3.8	-3.52
70	294	-15.06	-3.98	-3.66
70	296	-14.63	-4.18	-3.81
70	298	-14.22	-4.4	-3.97
70	300	13.85	-4.63	4.14
70	302	-13.49	-4.87	-4.31
70	304	-13.16	-5.14	-4.5
70	306	-12.85	-5.42	-4.7
70	308	-12.56	-5.73	-4.91
70	310	-12.29	-6.06	-5.13
70	312	-12.94	-6.41	-5.36

Page-143.

Page -144-

Azimuth-plane radiation pattern of the long vire (terminated) ansenna sliced at zenith angle $\theta=80^{\circ}$.

ANGLES		DIRECTIVEGAIITS		
Theta	Phi	Vertical	Horizontal	Total
Degrees	Degrees	dB	dB	dB
80	0	-999.99	-6	-6
80	4	-49.69	-11.38	-11.38
80	8	-35.68	-3.43	- 5.42
80	12	-32.57	-3.91	-3.9
80	16	-3?	-11,72	-11.71
80	20	-26	-201	-1.99
86	24	$\times 29.83$	-7.59	-7.5'
80	A	-23.17	-2.47	-2.44
昭	$\underline{2}$	-26.71	-7.42.	-7.36
80	38	-18.72	274	-0.67
80	(1)	-25.48	-8.75	-8.66
8	441	-21.7	- $\square_{4} 9$	-6.07
\% ${ }^{\text {a }}$	$4{ }^{4}$	+14.94	.0.64	-0.49
80	52	-12.22	0.84	1.05
80	56	-10.35	1.44	1.72
80	60	-9.33	1.1	1.48
80	64	- 53.42	-4.45	-3.93
80	68	-9.27	-1.93	-1.19
80	72	-0.9	4.54	5.63

Page - 145 -

80	76	-6.58	-3.44	-1.72
80	80	2.75	2.88	5.82
80	84	9.26	4.9	10.61
80	88	11.13	-2.8	11.3
80	92	11.13	-2.8	11.3
80	96	9.26	4.9	10.61
80	800	2.75	2.88	5.82
80	104	-6.58	-3.44	-1.72
80	108	-0.9	4.54	5.63
80	112	-9.27.	-1.93	-1.19
80	116	-13.42	-4.45	-3.93
80	120	-9.33	1.1	1.48
80	124	-10.35	1.44	1.72
80	128	-12.22	0.84	1.05
80	132	-14.94	-0.64	. 0.49
80	136	-21.7	-6.19	-6.07
80	140	-25.48	-8.75	-8.66
80	144	-18.72	-0.74	-0.67
80	148	-26.71	-7.42	-7.36
80	152	-23.17	-2.47	-2.44
80	156	29.83	-7.59	-7.57
80	160	. 26	-2.01	-1.99
80	164	-37.78	-11.72	-11.71

Page -146-

	80	168	-32.57	-3.91	-3.9
	80	172	-35.68	-3.43	-3.42
	80	176	-49.69	-11.38	-11.38
	80	180	-162.38	-6	-6
	80	184	. 42.22	-3.91	-3.91
	80	188	-41.56	-9.31	-9.3
	80	192	-37.47	-8.81	-8.8
	80	196	-31.26	-5.21	-5.19
	80	200	-35.91	-11.93	-11.91
	80	204	-29.74	-7.51	-7.48
	80	208	-30.44	-9.75	-9.71
	80	212	-28.37	-9.08	-9.03
	80	216	-31.41	-13.43	-13.36
	80	220	-25.31	-8.58	-8.49
	80	224	-28.18	-12.67	-12.55
	80	228	-35.88	-21.59	-21.43
	80	232	-30.84	-17.77	-17.56
	80	236	-28.33	-16.54	-16.26
\square	80	240	-30.69	-20.26	-19.88
	80	244	-34.78	-25.81	-25.29
-	80	248	-18.39	+11.06	-10.32
	80	252	-15.6	-10.16	-9.07
	80	256	-15.97	-12.83	-11.11

(

Page - 147-

80	260	-11.86	-11.72	-8.78
80	$264 *$	-3.78	-8.45	-2.43
80	268	-1.55	-15.49	-1.38
80	272	-1.55	-15.49	-1.38
80	276	-3.78	-8.15	-2.43
80	280	-11.86	-11.72	-8.78
80	284	-15.97	-12.83	-11.11
80	288	-15.6	-10.16	-9.07
80	292	-18.39	-14.26	-10.32
80	296	-34.78.	-25.81	-25.29
80	300	-30.69	-20.26	-19.88
80	304	-28.33	-16.54	-16.26
80	308	-30.84	-17.77	-17.56
80	312	-35.88	-21.59	-21.43
80	316	-28.18	-12.67	-12.55
80	320	-25.32	-8.58	-8.49
80	324	-31.41	-13.43	-13.36
80	328	-28.37	-9.08	-9.03
80	332	-30.44	-9.75	-9.71
80	336	-29.74	-7.51	-7.48
80	340	-35.91	-11.93	-11.91
80	$344{ }^{\circ}$	-31.26	-5.21	-5.19
80	348	. 37.47	*8.81	. 8.8

Page -1.48*

80	352	-41.56	-9.31	-9.3
80	356	-42.22	-3.91	-4

Page-149-

Zenith-plane radiation pataern of the long wire (terminated) antenna.

ANGLES		DIRECTVE GAINS		
Theta	Phi	Vertical	Horivontal	Total
Degres	Degrees	dB	dB	dB
-90	90	-999.99	-999.99	-999.99
-88	90	-26.27	-144.32	-26.27
-86	90	-14.36	-138.42	-14.36
-84	90	-7.69	-135.26	-7.69
-82	90	-3.52	-133.58	-3.52
-80	90	-1.33	-133.31	-1.33
-78	90	-1.41	-134.96	-1.41
-76	90	-5.58	-140.44	-5.58
-74	90	-19.79	-155.78	-19.79
-72	90	-3.52	-140.5	-3.52
-70	90	-2.42	-140.29	-2.42
-68	90	-15.93	-154.59	-15.93
-66	90	-4.02	-143.39	-4.02
-64	90	-3.93	-143.95	-3.93
-62	90	-11.64	-152.26	-11.64
-60	90	-2.27	-143.44	-2.27
-58	90	-22.72	-164.39	-22.72
-56	90	-1.82	-143.96	-1.82
-54	90	-17.06	-159.63	-17.06

Page -150-

-52	90	-1.54	-144.51	-1.54
-50	90	-7.98	-151.33	-7.98
-48	90	-2.8	-146.5	-2.8
-46	90	-1.78	-145.81	-1.78
. 44	90	-9.73	-154.06	-9.73
-42	90	0.0 .23	-144.84	-0.23
-40	90	-2.04	-146.92	-2.04
-38	90	-7.47	-152.59	-7.47
-36	90	0.16	-145.19	0.16
-34	90	0.34	-145.22	0.34
-32	90	-5.41	151.17	-5.41
-30	90	-2.9	-148.84	-2.9
-28	90	1.43	-144.67	1.43
-26	90	1.4	-144.86	1.4
-24	90	-2.29	-148.69	-2.29
-22	90	-5.3	-151.83	-5.3
. 20	90	-0.27	-146.92	-0.27
-18	90	2.41	. 144.34	2.41
-16	90	2.65	-144.2	2.65
-14	90	0.78	-146.15	0.78
-12	90	- 7.15	-150.14	-3.15
-10	90	-4.28	-151,34	-4.28
-8	90	-0.05	-147.16	- 0.05

Page -151-

-6	90	2.77	-144.37	2.77
-4	90	3.89	-143.27	3.89
-2	90	3.57	-143.61	3.57
0	90	1.71	-145.47	1.71
2	90	-2.03	-149.21	-2.03
4	90	-4.24	-151.4	-4.24
6	90	0.26	-146.88	0.26
8	90	3.73	. 143.38	3.73
10	90	5.26	-141.79	5.26
12	90	5.03.	-141.97	5.03
14	90	2.56	-144.36	2.56
16	90	-3.19	+150.03	-3.19
18	90	-0.66	-147.42	-0.66
20	90	4.86	. 141.79	4.86
22	90	6.73	-139.8	6.73
24	90	5.23	-141.18	5.23
26	90	-2.03	-148.29	-2.03
28	90	1.59	-144.51	1.59
30	90	7.27	-138.67	7.27
3.2	90	6.85	-138.9	6.85
34	90	-2.71	- 348.27	-2.71
36	90	4.97	-140.38	4.97
38	90	8.55	-136.56	8.55

Page - 152 -

40	90	1.55	-143.32	1.55
42	90	5.2	-139.41	5.2
44	90	8.96	-135.36	8.96
46	90	-6.34	-150.36	-6.34
48	90	9.1	-134.6	9.1
50	90	4.72	-138.63	4.72
52	90	7.67	-135.3	7.67
54	90	7.22	-135.36	7.22
56	90	7.6	-134.54	7.6
58	90	6.58.	-135.09	6.58
60	90	9.59	-131.58	9.59
62	9	-0.68	-141.3	-0.68
64	90	11.04	-128.99	11.04
66	90	4.8	-134.57	4.8
68	90	6	-132.66	6
70	90	11.46	-126.41	11.46
72	90	7.84	-129.14	7.84
74	90	-8.22	-144.21	-8.22
76	90	8.89	-125.97	8.89
78	90	11.75	-121.8	11.75
80	90	11.32	-120.66	11.32
82	90	8.85	-121.21	8.85
84	90	4.53	-123.04	4.53

Page - 153 -

86	90	-2.23	-126.29	-2.23
88	90	-14.19	-132.23	-14.19

RFERENCES

[1]. Knce, AN. "Communications Thropgh EM-Wave Scattcring" IEEE Communications Magazine, Vol 20, No 3, May 1982, pp 27-43.
[2]. Day, WE "Meteor Burst Commanications Bounce Signals Betweerr Remote Sites" Electronics, Vol 55, No 26, Dec. 1982, pp71-75.
[3]. Westwater, GE. "Meteor Burst Cornmunications Systems" Pacific Telecommunications Council (PTC), Honaiulu Hi, USA, Jan. 1983.
[4]. Octing. ID. "An Analysis of Meteor Burst Communications for Military Applications" IEEE Transactions on Communications, Vol COM- 28 , $\mathrm{No} 9 \mathrm{Pr} 1, \mathrm{Sept}$. 1980, pp 1591-1601.
151. Gotlieb, 1. Meteoric Burst Could Keep Post-Atack Communication $O_{\text {pen }}$ Deferce Electronics, Vol 13, No 11, USA, Nov. 1981, pp 61-69.
[6]. Richmond, RI.. "Meteor Bust Communications Part I: MBC Advances Assist C3 Objectives" Military Electronics/Countermeasures (USA), Vol 8, No 8, August 1982. pp 68-72.
[7]. Herman, JR.; Duggan, CC.; Thompson, WI: Costa, RA. and Deluca, DM. "Narrowband Digital Voice Communicanions Over A Meteor Burst Channel" Electron. Lett. (GB) Vol. 23, No. 1, 2 Jan. 1987.- ... T.
[8]. Hines, CO.; Forsyth, PA.; Vogan, EL. and Pug \therefore.. "riv: ependence of Meteoric Forwand-Scattering on Anterns Pattens ang Q . Can. J. Phys., Voi. 33, 1955, pp. 609-610.
[9]. Hines, CO. and O'grady, M. "Height-Gain in the Forward-Scattering of Radio Waves by Meteor Trails" Can. J.,Phys. Vol. 35, 1957, pp. 125-127.
[10]. Harrington, RF. "Field Computation by Moment Methods" Macmillan, New York, 1968.
[1i]. Stutzman, Wh. and Thiele, GA. "Antenna Theory and Design" Chapters 2 \& 6, John Wiley and Sons, Iac. 1981.
[12]. Burke, GJ. and Poggio, AJ. "Numerical Electromagneic Code (NEC) - Method of Momens" Parts I, II, III. NOSC Tech Doc 116, Naval Ocean Systems Centre, San Diego, CA. Jolly 1977 (NEC1); Revised Jan. 1980 (NEC2).
[13]. Larsen, I. and Rodman, PJ. "Study Into Meteor Scatter Communication Systems, Project IV Part 2, Computer Prediction Model ${ }^{\text {H }}$ SALBU (PTY)Ltd. Invernal Report, 1987.
[14]. Ludlow, JDV. "VHF Meteor Scater Propagation" Radio Communication (GB), Vol 51, No 2, Feb. 1975, pp 100-107.
[15]. Sugar, RG. "Radio Propagation by Reflection from Meteor Trails" Procesdings of the IEEE, Vol 52, Feb. 1964, pp 116-136.
[16]. Villard, OG.; Eshleman, Von R.; Manninig, LA. and Peterson, AM. "The Role of Meteors In Extended-Range VHF Propagation" Proceedings of the IRE, Vol 43, Oct. 1955, pp 1473-1481.
[17]. Esbleman, Von R. "The Theoretical Length Distribution of Ionized Meteor Trails" Journal of Atmospleric and Terrestrial Physics, Vol 10, Pergamton Press Ltd. London, 1057. F\% 57-72.
[18]. Manning, LA. and Eshleman, Von R. "Meteors In The Ionosphere" Proceedings of the IRE, Vol 47, Feb. 1959, pp 186-199.
[19]. Felber, F.; Davis, H.; Stah, R. and Wright, D. "Concepts for Near Continuous Reception of VHF (Very Figh Frequency) Signals Using Mereor Burst Propagation" JAYCOR, San Diego, CA, Report No JA YCOR-J200-85-875/2393, July 1985.
[20]. Esieman, Von R. and Modnosky, RF. "Directional Characteristics of Mereor Propagation Derived from Radar Measurements" Proceedings of the IRE, Vol 45, Dec. 1957, pp 1715-1723.
[21]. Gray, KG. "Mereor Burst Communications" Signai (USA), Vol 36, No 9, May 1982, pp 125-134.
[22]. Spezio, AE. "Meteor-Burst Comrmanication Systems: Analysis and Synthesis" Naval Research Laboratory Report 8286, Washington, D.C., USA., Dec. 1978.
[23]. Helweg, QG. "Meteor-Brizst Communications: Is This What the Navy Nceds?" Naval Postgraduate Schoole, Monterey, CA., USA., Master dissertation, June 1987.
[24]. Weiss, AA. "The Tncidence of Meteor Particles Upon the Earth" Australian Joumal of Physics, Vol 10, pp 397-411.
[25]. Brown, DW. "A Physical Meteor-Burst Propagation Model and Some Significat Results for Commanication System Design" IEEE Joumal on Selected Area in Comminnications, Vol SAC-3, No 5, Sept. 1985, pp 745-755.
[26]. Estleman, Von R. and Manning, LA. "Racio Communication by Scattering from Meteoric Ionization" Proceedings of the IRE, Vol 42, March 1954, pp 530-536.
[27]. Ince, AN. "Spatial Properties of Meteor Busst Propagation" IFEE Transaction on Commonications, Yol COM-28, No 6, June 1980, pp 841-849.
[28]. Hines, CO. and Pugh, RE. "The Spatiat Distribution of Signal Sources in Meteoric Forward-Scattering" Canadian Journal of Physics, Vol 34, Oct. 1956, pp 1005-1015.
[29]. Forsyth PA.; Vogan, EL.; Hansen, DR. and Hires, CO. "Fie Principles of JANET-A Meteor-Burst Communication System" Proctedings of the IRE, Vol 45, Dec. 1957, pp 1642-1657.
[30]. Brown, DW. nnd Williams, HP. "The Performance of Metecr-Burst Communications at Different Frequencies" AGARD Conference Proceedings, Aspects of Electromagnetic Wave Scattering in Radio Communications, Cambridge Mass, Oct. 3-7, 1977, pp 24.1-24.6.
[31]. Mkinley, DWR. "Meteor Science and Engineering"Mcgraw-HillBookCo.,Inc.,New York, 1961.
[32]. James, JC. and Meeks, NL. "On the Relative Contributions of Vatious Sky Regions to Meteor-Trail Communications" Georgia Instinate of Technology, Allanta, Georgia, Engineering Experiment Station, Technicil Report No 1, Naval Research Contract No Non-991(02), June 1956, pp 1-65.
[33]. Eshleman, Voi R. "Meteor Scatter" in "The Radio Noise Speciram" Harvard Universiry Press, Cambridge Mass, Ch. 4, 1960.
[34]. Steffancin, W. and Brown, D. "CSC (Computer Sciences Corporation) Meteor Burst Model Enhancement Test Report Computer Sciences Corp., Fall Church, VA., Contract No DC100-84-C-0030. Feb. 1986.
[35]. Greenhow, IS. and Neufeld, EL. "Turbulance At Altitudes of 80-110kanand" Effects on Long-Daration Meteor Echoes" J Atmos. Terr. Phys., Vol 16, 1959, pp 384-392.
[36]. Kaiser, TR. "Radio Echo Studies of Meteor Ionization" Advances in Physics, Yol 2, 1953, pp 495-544.
[37]. Meaks, ML. and James, JC. "On the Influence of Meteor-Radiant Distributions in Meteor-Scatter Communication" Proc. of the IRE, Vol 45, Dec. 1957, pp 1724-1733.
[38]. Pugh, RE. "The Number Density of Meteor Trails Observable by the Forward-Scattering of Radio Waves" Can. J. Phys. Vol 34, April 1956, pp.997-1004.
[39]. Rudie, NH. "The Relative Distribution of ObservableMeteor Trails in Forward Scatter Meteor Communications" Ph.D thesis, Mont. State Univ., Bozeman. 1967.
[40]. Weitzen, JA. "Predicting the Arrival of Meteors Useful for Meteor Burst Communication" Radio Science (USA), Vol 21, No. 6, Nov. 1986, pp 1009-1020.
[41]. Davies, IG. "Radio Observations of Metcors" Advancees in Electronics and Electror Physics, Vol 9, Academic, Orlando, F3a., 1957. pp 95-128.
[42]. Lord Rayleigh, "The Theory of Sound" The Macmilian Company, NY., USA., Vol. 1 (1877,1937), pp. 98 and 150-157, and Vol, 2 (1878,1929), p. 145.
[43]. Carson,-JR. "A Generalization of the Reciprocal Theorem" Bell System Tech. I., 3, July 1924, pp. 393-399.
[44]. Hansen, RC. "Fundumental Limitations in Antennas" Proceedings of the IEEE, Vol 69, No 2, Feb. 1981, pp 170-182.
[45]. Kraus, JD. "Antennas" MfGraw-Hill Ync., Second Edition, 1988.
[46]. Roy, TN. "Airborne Man-Made Radio Noise Assessment" Naval Ocean Systems Center (NOSC) San Diego, USA, April 1981.
[47]. Rudge, AW.; Milne, K.; Olver, AD. and Knight, P. "The Handbook of Antenna Design" Vol 1, Peter Peregrinus Lad., London, UK, 1982.

Page -158.
[48]. Wiliams, HP. "Antenna Theory and Design" Vol 2, Sir Isaac Pitraan \& Sons Ltd., London 1966, pp 318-329.
[49]. Spaulding, AD. and Disney, RT. "Man-Made Radio Noise, Part I, Estimates for Business, Residential and Rural Areas" US Dept. of Commerce, OT Report 74.38, June 1974.
[50] Bodman, GHW. Personal Communication; The South Affican Value Management Foundation; PO Box 1894, Rivonia, Sanditon 2128, RSA.
[51] Hardlesy, P. Personal Communication; SALBU(PTY)Ltd; PO Box 109, Irene 1675, RSA.
[52]. Givati, O.; Clark, AR. and Fourie; APC. "Inielligent Pre-Processor for NEC Antenna Design Software" $5^{\text {mi }}$ Ansual Review of Progress in Applied Computational Electromagretics, Conf. Proc.4 March 1989, pp.572-583.
[53]. Kraus, JD. "Electromagnetics" McGraw-Hill Inc., Third Edition, 1984.
[54]. Nes, H. "Meteor Burst Polarization Trails" Elec. Letters (GB), Vol. 21, No. 24, Oct.1985, pp. 1132-1133.
Altshuler, EE. "The Travelling-Wave Linear Antenna" IRE Trans. on Antennas and Propagation, Vol. AP-9, No. 4. 1961.
[56]. Thiele, GA. "Wie Antennas" Chapter 2 in "Computer Techniques for Electromagnetics" By Mittra, R., Pergamon Press, 1973, pp 7-73.
[57]. Hansen. PM. PThe Radiation Efficiency of Dipole Antenna Located Above an Imperfect Conducting Ground" EEE Trans. in Antennas andPropagation, Vol AP-20, No. 6, Nov. 1972, pp 766-770.
[58]. Austin, BA. and Fourie, APC. "Numerical Modelling and Design of Loaded Broadband Wire Antennas" IEE Fourth Intemational Conference on HF Radio Systems and Techniques, April 1988, pp 125-129.
[59]. Kubina, SJ. "Numerical Modelling Methods for Predicting Antenna Performance on Aircraft" AGARD Iecture Series No. 131, Sept. 1983, pp 9-1 to 9-38.

Page-159-

Author Givati Ofer
Name of thesis Simple meteor scatter out-station antennas. 1987

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

