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ABSTRACT 

Breaking from traditional typological classification, this project utilizes the principle 

of chaîne opératoire to conduct a technological analysis of a sample of 

cryptocrystalline silicate (CCS) cores, bipolar debitage and, blade and bladelets 

from Holkrans rock shelter in the Vredefort Dome, North West Province. 

Approaches to lithic material of the Later Stone Age in southern Africa have been 

predominantly typological, with a few recent studies focused on technological 

analysis. Holkrans rock shelter presents an opportunity to conduct a technological 

analysis in an area abundant with rock types that complicate standard typology. 

Chaîne opératoire is employed to understand how cores were reduced and the 

processes and techniques that were used to produce blades and bladelets within 

the chert-dominated CCS sample. Previous research at Holkrans noticed 

differences in the occurrence of various raw materials across the two occupational 

horizons (ceramic and pre-ceramic), and suggested possible differences in 

technology between the two phases (Bradfield & Sadr 2011; Banhegyi 2011). 

Analysis of chert and opaline raw material types in the present study revealed 

substantial differences in lithic technology moving from the pre-ceramic across to 

the ceramic phase. A major shift in the overall knapping technique occurred as the 

result of a change in the objectives of the reduction strategy. 
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CHAPTER 1: INTRODUCTION 

Currently, there are too few researchers willing to engage with the lithic technology 

of the Later Stone Age in southern Africa. Looking at the history of study for this 

period, only technologically informed regional typologies are used to classify stone 

artefacts (e.g. Sampson 1974; Humphreys & Thackeray 1983; Deacon 1984). This 

means that questions about how stone artefacts were produced, and how they 

were used, become conflated with attributes related to morphology and function 

(cf. Odell 1981). The late Holocene site at Holkrans in the Vredefort Dome 

provides an opportunity to conduct a comparative technological analysis between 

two phases of occupation. Earlier research at Holkrans has established that there 

are differences in the frequencies of raw material types between the ceramic 

phase and the earlier pre-ceramic phase (Banhegyi 2011; Bradfield & Sadr 2011), 

and, because of this, the suggestion has been made that a number of knapping 

techniques might be present (Banhegyi 2011: 43). The diverse geology of the 

Vredefort Dome, having provided an abundance of raw materials in the past, 

creates havoc for lithic analysts today. Despite these challenges, chaîne 

opératoire may be used to assess the production of one aspect of the lithic 

technology at Holkrans, namely cryptocrystalline silicate (CCS) blades and 

bladelets. 

1.1 AIM 

 

The aim in this study is two-fold: (1) to understand the reduction processes and 

techniques behind the production of blades and bladelets from CCS blocks, and 

(2) to situate the blade and bladelet production sequence within a broader chaîne 

opératoire for Holkrans. 

1.2 RESEARCH QUESTION 

 

What techniques were employed in working cryptocrystalline silicate (CCS) raw 

material in the production of blades and bladelets from quads A and B in square 

H5 at the late Holocene site of Holkrans Rock Shelter? 
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1.3 RATIONALE 

 

In southern Africa, technological analysis of lithics, and studies observing the 

chaîne opératoire, are relatively abundant in the study of the Earlier Stone Age 

(ESA) and Middle Stone Age (MSA) (e.g. Soriano et al. 2007; Sharon 2009; 

Wilkins & Chazan 2012; Porraz et al. 2013), but very few such studies exist in 

Later Stone Age (LSA) scholarship (Rivat 2006; Modikwa 2008). Stone tool 

typologies that predominantly focus on morphological and functional attributes 

(Sampson 1974; Humphreys & Thackeray 1983; Deacon 1984) currently define 

the lithic component of the LSA. Technological analysis seeks to overcome the 

homogenization of LSA lithic types to better the understanding of production and 

use. 

1.4 HOLKRANS ROCK SHELTER 

 

The material that forms the sample for this project was excavated from Holkrans 

rock shelter (hereafter referred to as Holkrans) in the Vredefort Dome Mountain 

Land. The site itself (BFK1) is in the North West Province, on the property of 

Thabela Thabeng, and is named after the original farm Buffelskloof 511 IQ (Fig. 

1.1). The Vredefort Dome is what remains of a colossal meteorite impact crater 

that formed 2023 million years ago (Reimold & Gibson 2009). The Dome is 

populated by „Bankenveld‟ vegetation (Bakker et al. 2004), and cross-cut by the 

Vaal River that flows generally west. Dated to within the last 2000 years, the 

archaeological deposits at Holkrans record evidence of interaction between 

hunter-gatherer and farming communities (Bradfield & Sadr 2011; Banhegyi 2011).  

The square with which we are principally concerned is H5 (Fig. 1.2). Square H5 

was excavated in sixteen alphanumeric subdivisions using letters A-D and 

numbers 1-4.  Letters have four stacks (e.g. A1-A4) of up to 11 spits (each 3-5 

cm). Only material from the „A‟ and „B‟ lines in H5 (plan area of 0.5x1 m) was 

analysed due to time constraints. The lithic component from H5. A and B contains 

3216 pieces of stone comprising more than 11 raw material types (Table 4.3). 

From this, a sample (n=863) of CCS cores and debitage was selected for 

technological analysis following Soriano et al. (2007). Dates are provided in Table 

1.1. 
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Figure 1.1: Map of Buffelskloof Farm. Holkrans rock shelter is marked by the red dot. 
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Figure 1.2: Plan view of the excavation site at Holkrans rock shelter. Material discussed in the 
present study comes from H5, indicated by the red star. 

  

Excavations at Holkrans have taken place annually since 2008 (Sadr 2008b; 2009) 

under the supervision of Prof. Karim Sadr (permit number 80/08/04/004/51) on 

behalf of the University of the Witwatersrand. Sadr has held field schools at 

Holkrans to provide field training to Honours and 3rd-year Archaeology students. 

Apart from field reports (Sadr 2008b; 2009), the initial publication of Holkrans 

focused on a suite of four bifacially tanged and barbed arrowheads from the very 

base of the ceramic phase of occupation in squares J6, F7, and E8 (Bradfield & 

Sadr 2011). One other bifacial arrowhead, neither tanged nor barbed, was also 

recovered (Bradfield & Sadr 2011). 
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Research at Holkrans has also investigated the frequencies and distribution of tool 

types produced on different raw materials (Banhegyi 2011), as well as use-wear 

(Law de Lauriston 2014) (to be discussed in Chapter 5).  

Stephen Banhegyi‟s (2011) Honours project on material from Square E8, 

investigated temporal, possibly cultural differences between two phases of 

occupation. Using the dates in Table 1.1 to correlate his observations, Banhegyi 

(2011: 45) found that there were “punctuated, possibly seasonal, occupations 

between 2 000 and 1 000 years ago”, with occupation becoming increasingly more 

sedentary from the second millennium AD (Banhegyi 2011: 45). 

Banhegyi (2011) demonstrated that the distribution of raw materials as well as 

artefact types showed some discontinuity between the pre-ceramic and ceramic 

phases of occupation, suggesting significant interaction with farmers in the area 

(Banhegyi 2011: 45). Banhegyi suggests that further research could shed light on 

the kinds of social dynamics in the more recent levels of the deposits; a change in 

subsistence economy might help provide an explanation, but Banhegyi warns 

against moving from one extreme form of economy to the other in an attempt to 

understand the nature of the observed transition (Banhegyi 2011: 45).  

Table 1.1: Radiocarbon dates from Holkrans 

Lab Number Context (BFK1) BP SD 

Beta 304272 H5.C4.2 60 40 

Beta 287474 J6.B4.4 140 40 

Beta 265301 F7.B2; B3.7 190 40 

Beta 284940 E8.A2; A1; B1.5 270 40 

Beta 304271 H5.C3.7 760 40 

Beta 304270 H5.B3.5 900 40 

Beta 304269 H5.B2.3 970 40 

Beta 287473 J6.B3.10 1080 40 

Beta 304273 H5.D4.9 1430 40 

Beta 284941 E8. A4; A3; B2.9 1830 40 

Beta 265300 F7.A2.11 2320 50 
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Figure 2: Diagram of radiocarbon dates calibrated using OxCal 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 HOLKRANS AND THE SITES OF THE TERMINAL LATER STONE AGE 

 

Known archaeological sites within the immediate vicinity of the Vredefort Dome 

represent cultural heritage ranging from the Middle Stone Age (MSA) right through 

to historic times (Pelser 2009). Most archaeological research in the area has 

focused on the significantly more abundant stone-walled sites that occur in and 

around the Dome (Mason 1968; Maggs 1976; Taylor 1979; Pelser 2003; Nkhasi-

Lesaoana 2008; Byrne 2012).  

Holkrans is, however, unusual for a number of reasons. No other rock shelters in 

the Vredefort Dome are known to show evidence of human occupation (Pelser 

2009). Thus, deposits containing lithic artefacts are unique. Other finds of lithic 

artefacts in this region are usually single items or concentrated surface scatters 

(Pelser 2009).  

One of the initial questions posed by Karim Sadr from the initial excavation of 

Holkrans asked if the apparent absence of ceramic wares (both thick and thin 

walled) from LSA and Early Iron Age (EIA) sites in the Free State and North West 

provinces (cf. Sadr 2008a: 184) was due to a lack of research focus, or if there 

was a real gap between ceramic-bearing LSA/EIA sites to the northern and 

southern parts of South Africa (K. Sadr, pers. comm. 2014). The absence of Early 

Iron Age (EIA) sites within or near to the Dome (Huffman 1996; Pelser 2009: 186; 

K. Sadr, pers. comm. 2014) and the relatively late arrival of ceramics at Holkrans 

within the last 500 years (Bradfield & Sadr 2011), suggest a reason other than a 

lack of research for the anomalous spatial distribution. 

Holkrans is thus of interest as an archaeological site both because of its position 

and age relative to other sites. Jubilee Shelter (Wadley 1987), over 140km to the 

north, and Roosfontein Rock Shelter (Klatzow 2000), over 180 km to the south, 

are the nearest published sites with deposits that date to within the age range of 

Holkrans. 
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2.2 GEOLOGICAL CONSIDERATIONS 

 

Since an investigation into technology necessarily considers raw materials (Inizan 

et al. 1999), it is important to consider the regional geology of the Vredefort Dome. 

This feature has an abundance of suitable raw materials for knapping, most of 

which are represented in the excavated material. Typologically, quartz, quartzite, 

shale, fine grained (chalcedony and chert) and 'other' (Banhegyi 2011: 27) were 

categories previously used to classify the raw materials from this region. Further 

typological analysis (since 2011) has recognised that other rock types are present 

in the Holkrans assemblage. 

I discuss two kinds of geological deposits below. The first kind is regional „outcrop‟ 

geology found on any geological map of the Vredefort Dome. The second is the 

alluvial deposits of the Vaal River. 

Some of the rock types, in the first group, result from the Vredefort Impact Event 

that occurred ca. 2023 Ma ago (Reimold & Gibson 2009). The impact uplifted 

rocks belonging to the Dominion, Witwatersrand, Ventersdorp and Transvaal 

Supergroups (Reimold & Gibson 2009). Within this sequence of rocks, quartz, 

quartzite, metapelite, andesite, dolerite/gabbro, diamictite, shale, basalt, dolomite, 

chert and iron oxides all occur (Reimold & Gibson 2009). 

Further rock types resulted specifically from the metamorphic conditions of the 

impact event. Two of these are pseudotachylitic breccia and the “Vredefort 

Granophyre” (Reimold & Gibson 2009: 132). These impact event-related rocks 

require geological „know-how‟ to identify: although the Vredefort Granophyre has a 

homogenous composition and fairly regular appearance, the formation processes 

and composition (and therefore appearance) of pseudotachylite is highly variable 

(Reimold & Gibson 2009; Roger Gibson, pers. comm. 2013).  

An unavoidable inconsistency in classification results if such unusually and 

variable rock types are identified using purely visual characteristics. In contrast, 

geochemical techniques (such as x-ray fluorescence spectrometry [XRF]) and 

neutron activation analysis [Herz & Garrison 1998]) are able to determine 

petrographic and compositional information. In turn, this information may then be 
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used to link rocks from the excavation to the locality from which they were sourced 

(for example, Luedtke 1979).  

The second kind of geological deposit in this discussion, the gravels of the Vaal 

River, are another possible source of suitable raw materials. Since the mid- 1900s, 

there has been significant interest in the archaeology and geology of the Vaal 

River Basin (Breuil et al. 1948; Van Riet Lowe 1952). In his study of the Lower 

Vaal Basin, Helgren (1979) identified primary and secondary sources of gravel in 

the Lower basin. Secondary sources are not significant to this project, and I move 

on to a discussion of the primary sources below. 

Three primary sources of gravel were identified in toto by Helgren (1979). Two 

sources, somewhat restricted to the Lower Vaal Basin, derive from the Dwyka 

glacial sediments and other lithologies of the Karoo Basin. The third primary 

source, although “a less significant source of coarse clasts”, is most important to 

this review. 

The gravels from the third source are not strictly limited to the lower part of the 

Vaal basin, and comprise  

the fine gravels dispersed in the bed-loads of nearly all rivers on the high 

plateaus of southern Africa. These pebble-grade particles of quartz, agates, 

chert, heavy mineral schists and gneisses and quartzite, produced by 

erosion of various Precambrian rocks in the Vaal basin, are virtually 

indestructible, and probably have migrated intermittently across the 

subcontinent since the early Mesozoic (Helgren 1979: 168). 

Gravel deposits in the Vaal River consist of rounded pebbles found in the river 

terraces and in river bed itself (Van Riet Lowe 1952). On the subject of the kinds of 

rock types represented in the Vaal River gravels, Van Riet Lowe remarked that the 

during the river‟s 

southward migration over and through the Karoo sediments all the softer 

elements in the conglomerates and shales were destroyed or washed 

away, and only such resistant rocks as quartzites, quartz, chert, agate, 

jasper, banded ironstone and chalcedony- rocks which had survived the 
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rigours of glacial action during earlier geological times-survived for a 

second time (1952: 137). 

Research in this project focuses on fine-grained, siliceous raw materials for two 

reasons. First, a consideration of the chaîne opératoire for all raw materials at 

Holkrans is beyond the scope of an Honours project. Secondly, the degree to 

which more macroscopically variable raw materials can be identified accurately 

without geochemical techniques is uncertain.   

The regional „outcrop‟ geology provides two types of fine-grained, siliceous raw 

materials suitable for knapping: quartz and chert (Reimold & Gibson 2009). In 

contrast, the alluvial deposits of the Vaal River contain several „pebble-grade‟ 

varieties (Van Riet Lowe 1952: 137) of what are here called cryptocrystalline 

silicates (CCS). 

2.3 CRYPTOCRYSTALLINE SILICA, CHERT, AND OPALINE 

 

The terminology of cryptocrystalline silicates (CCS) requires some elaboration with 

respect to three common terms used for varieties of this raw material. The terms 

„cryptocrystalline silica‟, „chert‟ and „opaline‟ are often used synonymously in 

archaeological literature. If not, other terms such as „agate‟, „jasper‟ and 

„chalcedony‟ (effective synonyms) are used in their place. Obviously, it is 

confusing if the reason for the use of one term over another is not specified.  

Crucially, it is important to note that the terms I am attempting to clarify refer to 

rocks, minerals and mineraloids with equivalent geological compositions; all are 

varieties of silica (SiO2), more commonly known as quartz. A term should be 

specific within the context of a project. I therefore provide some definitions from a 

modern geology dictionary and explain how the terms will be used in this project. 

The McGraw-Hill Dictionary of Geology and Mineralogy (MGHD) defines silica as  

naturally occurring silicon dioxide; occurs in five crystalline polymorphs 

(quartz, tridymite, cristobalite, coesite, and stishovite), in cryptocrystalline 

form (as chalcedony), in amorphous and hydrated forms (as opal), and 

combined in silicates  
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Cryptocrystalline silica 

One of the raw material categories in the typology at Holkrans is cryptocrystalline 

silica (CCS). To be sure, every artefact analysed in this study from lines A and B in 

H5 was identified as CCS during typological classification based on macroscopic 

attributes relating to appearance, texture, colour, and lustre.  

Cryptocrystalline (or microcrystalline) is one form of silica, as in chalcedony or 

agate (Dake et al. 1938; see also the definition for silica above). The MGHD 

defines cryptocrystalline as “a crystalline structure … of such a fine grain that 

individual components are not visible with a magnifying lens”. Strictly speaking, 

CCS should thus be used in reference to only those forms of truly cryptocrystalline 

(cf. amorphous) silica. 

In this research project, however, CCS has been used as a „lumping‟ category, 

following on from previous research (Banhegyi 2011). The use of „CCS‟ in this 

project refers, in the collective, to chert and opaline. 

Chert 

The term „chert‟ has a less strict usage in geological literature than 

cryptocrystalline silica. Partly, this is due to conflation of „chert‟ with other fine-

grained siliceous rock types, such as flint (Dake et al. 1938: 128). Ironically, the 

geological context of „chert‟ is a useful means of differentiating it from other rock 

types. According to Dake et al. (1938: 128) “Chert is one of the amorphous quartz 

minerals … usually … associated with limestones or dolomites”. Southern Africa 

has an abundance of dolomites relative to limestones, and in the Vredefort Dome 

region, siliceous material is found within the dolomites of the Transvaal 

Supergroup (Reimold & Gibson 2009). Dolomitic cherts often bear internal textures 

and patterns due to their association with stromatolitic life-forms (for example, see 

Eriksson & Altermann 1998). Within chert from the Transvaal Supergroup, bands 

of lighter and darker areas, relating to domal stromatolitic formations, are 

macroscopically recognizable in the H5 assemblage.  

„Chert‟ is used in this research project to refer only to that proportion of CCS which 

is macroscopically identifiable to originate from dolomites. 
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Opaline 

The MGHD gives the following definition for „opaline‟: “Any of several minerals 

related to or resembling opal”. Thus, „opaline‟ effectively means „resembling opal‟. 

In the paper by Soriano et al. (the method of which I follow in this project), it is 

stated that for opaline, “equivalent terms are chalcedony and opal” (2007:684). 

They add that “[o]paline is a fine-grained raw material, of variable colors (sic), from 

opaque red and light brown to green; the geode-like nodules can be translucent or 

whitish” (2007:684). 

Following the MGHD definition for silica, „chalcedony and opal‟ are not equivalent 

geological terms at all: chalcedony is a form of cryptocrystalline silica and opal is 

amorphous hydrated silica (Dake et al. 1938). Indeed, chalcedony and opal are 

structurally different forms of silicon dioxide. 

The reason „opaline‟ is used in archaeological literature is, I suggest, because the 

term is useful to a technological analysis. Opaline, in this case, refers to a group of 

raw materials with several physical properties „resembling‟ those of opal. As an 

example, Soriano (Soriano et al. 2007: 684) collected opaline material “from 

outcrops in the Golden Gate Highlands National Park (Lesotho)” and grouped the 

raw materials under “opaline”, establishing that they were “comparable to flint” 

(Soriano et al. 2007: 684). By doing this, he paid attention to the technological 

characteristics of raw materials and the implication of the raw material for different 

knapping techniques- a standard practice when investigating chaînes opératoires 

(for example, see Inizan et al. 1999). 

In this project, however, the term „opaline‟ is used to specify material within the 

CCS category that is not chert. 

In sum, a technological approach must necessarily be cognisant of the range, 

kinds, and possible sources for raw materials within the study areas. An 

understanding of raw materials from the Vredefort Dome, and artefact types 

produced from these unique rocks, will contribute to a developing body of LSA 

lithic technology research. In its entirety, such a task is beyond the scope of this 

project. However, I will attempt to gain an understanding of the relationship 

between sources of chert and opaline, and the technology of blade/bladelet 
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production at Holkrans. Next, I discuss the most common approach to stone 

artefacts from the LSA in southern Africa.  

2.4 TYPOLOGIES 

 

The well-known standard typologies for early Holocene southern Africa, 

constructed by Deacon (1984), Humphreys & Thackeray (1983), and Sampson 

(1974), all classify LSA material culture according to raw material and artefact type 

categories. Each is regional, and understandably problematic when used outside 

of the appropriate area. The difficulty of constructing a typology for Holkrans has 

been recognised: the range of suitable raw materials available in the Dome is 

wide. 

The practice of identifying artefact types has persisted in the study of the southern 

African „Stone Age‟ since the later part of the 19th century (e.g. Péringuey 1911). 

One reason for such longevity is that a typology is a successful classificatory 

system that functions to simplify large volumes of data while attempting some 

degree of “prehistoric reality” (Humphreys & Thackeray 1983: 8). 

Since the 1950s, debate has concerned the use and design of typologies (Krieger 

1944; Spaulding 1953; Hayden 1984). Brian Hayden‟s (1984) discussion of the 

relevance of emic (mind-of-the-maker) compared to etic (subjective) classification 

usefully highlights the difficulties in treating a „standard‟ typology as an 

approximation of any culturally-specific (emic) classificatory system. Typologies, it 

must be recognized, are „stand-alone‟ constructions that must be corrected by as 

much independent evidence as possible (Hayden 1984; Bar-Yosef & Van Peer 

2009). 

Somewhat ironically, technological attributes are quite easily incorporated into a 

typological scheme. In general, studies of southern African lithic assemblages use 

a typology informed or determined by aspects of the technological process that 

reduced the core and produced the end products (the reduction sequence) 

classified within the typology.  

The well-known and respected typologies of Janette Deacon (1984) and 

Humphreys & Thackeray (1983) are examples of what may termed “classification 
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schemes based on lithic reduction sequences” (Barham 1987: 49). Indeed, 

Deacon (1984: 370) begins her typology by stating that “[t]his scheme is based on 

the reduction sequence from raw material to formal tool”.  

Technological aspects within such typologies are (correctly) only mentioned when 

relevant to the strict functioning of the typology. Humphreys & Thackeray (1983: 

302), for example, observe that backed bladelets “were produced by means of a 

technological reduction process which resulted in both finished backed blades 

suitable for hafting and discard items” (Humphreys & Thackeray 1983: 302).  

As can be seen, the incorporation of technological attributes into a typological 

scheme is not difficult. This is because some morphological types that are usually 

identified by “shape and location of retouch” (Odell 1981: 319), such as scrapers 

and burins, are technologically heterogeneous. Other morphological types, 

however, are technologically specific (Odell 1981).  

Backed bladelets, as noted by Humphreys & Thackeray (1983: 302), can only be 

produced with blade technology. Blades (as a kind of flake) require specific 

techniques to be produced in contrast to most other kinds of debitage (Bar-Yosef 

& Kuhn 1999). Furthermore, blade production may relate to the size of the core as 

reduction progresses (Flenniken & White 1985), and thus a typology ignorant of 

technological attributes ignores the possibility of technological diversity for similar 

types. 

Typological classification has, in the past, been regarded as paradigmatically 

different from chaîne opératoire (Sellet 1993). Pragmatically, the two are different: 

on one hand, typologies create a classification that simplifies the data, but always 

“[a]rtefact types remain the creation of archaeologists” (Humphreys & Thackeray 

1983: 10; cf. Spaulding 1953). On the other, technological analysis aims to 

reconstruct a process closer to that originally followed from the procurement of raw 

material to the abandonment of the artefact (Soressi & Geneste 2011). 

Recent literature has stressed the similarities that exist between aspects of 

typological and technological classification. Rather than coming from different 

paradigms, the two approaches do in fact share some common ground and are 

not mutually exclusive (Shott 2003; Bar-Yosef & Van Peer 2009). A form of 
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typology called „technological classification‟ forms one of the key aspects of chaîne 

opératoire methodology (Bar-Yosef & Van Peer 2009).  

2.5 CHAÎNE OPÉRATOIRE 

 

The method I employ follows Soriano et al. (2007), who drew on ideas stemming 

from chaîne opératoire, rather than „reduction sequences‟. Chaîne opératoire is 

therefore the focus in the discussion below. 

Technological analysis can be traced back to the French tradition of chaîne 

opératoire (Sellet 1993) and the American concept of reduction sequences (Shott 

2003). The concept of reduction sequences is generally accepted to have arisen 

contemporaneously with chaîne opératoire (but see Shott 2003; Bar-Yosef & Van 

Peer 2009: 105), and there are many areas of overlap between the two 

approaches (Shott 2003). Both the French and American approaches deal with an 

analysis of fracture mechanics, raw material sourcing, and reduction procedures 

(Andrefsky 1994, 2008; Inizan et al. 1999; Odell 2000). However, the two 

approaches remain distinct largely because of their intellectual origins.  

It was André Leroi-Gourhan who coined the phrase chaîne opératoire. He 

grounded its definition in action and limited it to techniques: 

Techniques are at the same time gestures and tools, organized in 

sequences by a true syntax which gives the operational series both their 

stability and their flexibility. The operational syntax is generated by memory 

and is born from the dialogue between the brain and the material realm 

(Leroi-Gourhan 1993: 114, quoted in Audouze 1999: 168). 

Leroi-Gourhan‟s work on technique, together with Lemmonier‟s insights from 

ethnology, was particularly influential to the French school of thought (Sellet 1993). 

Processual archaeology in America addressed equivalent issues with alternative 

terminology (Sellet 1993; Shott 2003). 

Peter Bleed has recognized that 

In conception and application, however, chaîne opératoire remains 

distinctively French because, as Schlanger (1994) points out, two 
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intersecting French intellectual traditions contributed to the development of 

the modern chaîne opératoire approach. The first of these was the 

replicative work of French archaeologists, such as Bordes and Tixier. The 

second was the interest of many French anthropologists - notably Mauss 

and Leroi-Gourhan - in cognitive aspects of behavior (sic) (2001: 105). 

Thus, chaîne opératoire has a definite cognitive basis (Audouze 1999; Bleed 2001; 

Bar-Yosef & Van Peer 2009; Soressi & Geneste 2011).  

In such an approach, “[t]echnology is considered a mediator between Nature and 

Culture, material and social” (Audouze 1999: 167). For chaînes opératoires, the 

production of a tool processes raw material from the natural world into a cultural 

product (Lemonnier 1992: 26). It is principally because stone tools are durable and 

physically preserve signs of technological gestures that they are suitable 

candidates for investigations of procedures behind the manufacture of specific 

products (Modikwa 2008: 8). 

The chaîne opératoire approach boasts a well-conceptualized methodology that is 

effective because of an overarching conceptual scheme that can be understood by 

looking at the necessary relationship between the different stages in the sequence 

(Leroi-Gourhan‟s syntax). According to Soressi & Geneste, the principal 

conceptualization of the chaîne opératoire is that  

the constant elements (regularities) of the operational scheme allow 

determination of the conceptual scheme driving the operational scheme. 

The definition of the goals of the conceptual scheme allows definition of the 

initial project (2011: 337).  

Ultimately, the final product of a particular sequence is related to, and determined 

step-wise from, the initial product. Contextually, the conceptual scheme is 

culturally situated; whatever the intended product, the overall technology of the 

group is constraining (Inizan et al. 1999; Soressi & Geneste 2011: 337).  

The idea of an „overarching conceptual scheme‟ has, not surprisingly, received 

some criticism. Peter Bleed (2001: 120) has argued that the study of process-

orientated sequences, such as investigating the chaîne opératoire or reduction 

sequence, often places an emphasis either on predetermined patterning that 
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follows a strict plan, or situational responses to developments that occur during the 

knapping activity. Chaîne opératoire, with its „overarching conceptual scheme‟ 

places emphasis on the predetermined patterning towards an end product and 

does not allow much room for reactions to new situations during the knapping 

activity (Bleed 2001: 121).  

In practice, chaîne opératoire methodology has been successful in addressing 

variability due to situational responses (Bleed 2001: 121, see also Lemonnier 

1992; Bar-Yosef et al. 1992). This is because the chaîne opératoire can operate at 

different scales of analysis within specific contexts, observing small objects 

themselves and large-scale features, such as distances to raw material 

procurement sites (Soressi & Geneste 2011: 344). Chaînes opératoires are, 

nonetheless, detrimentally limited by problems of representation when „steps‟ in 

the operational sequence are missing (e.g. from the technological classification) 

and are speculated about rather than critically acknowledged (Bar-Yosef & Van 

Peer 2009; Soressi & Geneste 2011: 339-341). 

The methodology I have described above has four key pragmatic components that 

relate to levels of observation and inference (Inizan et al. 1999: 16). In no 

particular order, they are: experimental replication, refitting, reading the diacritical 

scheme, and technological classification (Bar-Yosef & Van Peer 2009).  

Experimental replication provides insight into the response of raw materials to 

various percussion and pressures, as well as the kind of technique required to 

produce specific blanks. Core refitting studies are recognized to be a fairly 

straight-forward but time consuming way of reconstructing the sequence of 

removals (for example, Bar-Yosef & Van Peer 2009). Reading the diacritical 

scheme (lecture des schemás diacritiques [Boëda 1986:16]) is a further key 

component, and entails analysing the relationship between different scar patters 

on an artefact to establish a relative sequence of removals and/or retouch phases. 

The remaining key component to be discussed, flagged during the discussion of 

typology, is technological classification.  

Technological classification is essentially a typology but gives special 

consideration to technologically relevant attributes (Bar-Yosef & Van Peer 2009). 

Bar-Yosef & Van Peer (2009: 117) remark that technological classification “is 
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instrumental to reveal patterning in the record and, hence, to provide us with an 

empirical basis for reflection on population-level processes”. Without the 

recognition of patterning no “regularities” can be identified, and what would 

otherwise be “determination of the conceptual scheme” is rendered as speculation 

(Soressi & Geneste 2011: 337).  

Despite the pragmatic differences between typological and technological 

classification, the „regularities‟ and „patterning‟ allows for forms that demonstrate a 

reasonable frequency in a typology, such as blades, bladelets, and formal tool 

categories, to be considered conceptually as part of the technical knowledge of a 

group (Bar-Yosef & Van Peer 2009).  

Southern African scholars have adopted technological analyses for studies in the 

ESA and the MSA, and then only very recently because of the lacuna that often 

exists between African and international scholars (e.g. Conard et al. 2004). 

Research into the LSA lacks the benefits of technological analyses. As noted by 

Judges Modikwa (2008: 15): 

Generally there have been few attempts at doing chaînes opératoires type 

studies in southern Africa (e.g. Conard et al. 2004; Rivat 2006; Soriano et 

al. 2007). Most of these works have pointed out the usefulness of the 

chaîne opératoire approach to lithic analysis more especially in unified 

taxonomy of lithic production sequences in Europe and southern Africa. 

Modikwa (2008) analyzed LSA blades and bladelets from the sites of Toteng 1 and 

Mphekwane Rock shelter and followed the method of Soriano et al. (2007) that 

was originally designed to investigate the production of blades from Howiesons 

Poort (HP) and post-Howiesons Poort (post-HP) levels of Rose Cottage Cave. The 

use of the same method by these researchers is advantageous if comparisons are 

to be made between the two studies because, not only have they considered 

similar kinds of material (ignoring temporal differences), but that material has been 

considered in the same way- both studies have the same kind of data. 

In the next section, I give the methodology used in this project with details of the 

characteristics used in the analysis of blades and bladelets by Soriano et al. 

(2007) and Modikwa (2008).
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CHAPTER 3: METHODOLOGY 

3.1 TYPOLOGY 

 

The initial step of this research project was the typological classification of stone 

material from BFK1. H5. A and B. Lithic material was checked for non-lithic 

remains, and any organic or ceramic remains were removed, labelled and bagged 

separately. Remaining lithic material was then cleaned with water and a 

toothbrush and then left to dry. Once dry, lithic material was typologically classified 

following a modification of Deacon‟s (1984) typology for the southern Cape 

previously used by Banhegyi (2011). The typology for each square was recorded 

by spit into Microsoft Excel spread sheets. Pieces <1 cm2 were classified as chips 

and are uncounted in this typology. A total of 3216 (Table 4.3) pieces of stone >1 

cm2 were analysed.  

The typology used by Banhegyi (2011) required some revision of raw material 

categories because of the range of raw materials available in the Dome. The raw 

material types recorded are listed in Tables 4.1 and 4.3. The „other‟ category 

contains unidentified rock types, as well as uncommon rock types, such as 

sandstone and pseudotachylitic breccia. Morphological types used are listed in 

Tables 4.1 and 4.2. „Backed pieces‟ and „MRPs‟ are further detailed in Chapter 4. 

After classification was complete, data in each spread-sheet was combined into a 

„master table‟. Totals, as well as patterns relating to frequency and distribution of 

lithic and raw material types, can be analysed from the master table. Totals from 

the master table give most of the sample size for the CCS category (Table 4.2) 

which was also analysed technologically. However, the technological sample is 

larger (by precisely 18 pieces) (Table 4.3) because the procedure did not allow 

„Wall-shavings‟ to be included in the „master table‟, which is arranged by spits in 

stratigraphic order. 

3.2 SEPARATION OF CCS FROM OTHER RAW MATERIALS 

 

Every piece of CCS material (n=863) was labelled in a non-destructive way, using 

strips of Typek computer paper with printed numbers that were applied to the 

artefacts with wood glue. The labels preserved contexts during the investigation of 
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refits between artefacts in adjacent spits and within squares. Refit relationships 

are a key part of the chaîne opératoire methodology (see Chapter 2) and could 

potentially contribute to the understanding of reduction strategies at Holkrans. 

I chose to focus only on CCS material for four reasons. First, a chaîne opératoire 

for all the lithic material in H5. A and B is beyond the scope of an Honours project. 

Secondly, the structure and method of this project follows Soriano et al. (2007) 

who focus their study of blade technology exclusively on opalines, a kind of CCS. 

Thirdly, the formal tools at Holkrans are more often made on CCS than any other 

rock type (Table 4.1). Finally, the variety of raw materials in the Dome (and the 

small volume of individual pieces in the archaeological deposit) weakens the 

current typology that does not make use of geochemical techniques.  

A minor part of this study details an attempt using a geochemical technique to 

determine where chert was sourced from. Geological field samples within a 10 km 

radius of Holkrans were analysed compositionally using a portable x-ray 

fluorescence (pXRF) spectroscope, and compared to an equally sized sample of 

chert from the archaeological sample. There is currently no entity from which one 

may obtain a research permit to remove rocks from the Vredefort Dome (cf. 

Bakker et al. 2004) I was advised to continue with my research in spite of this 

(Roger Gibson, pers. comm. 2014). 

Geological field samples came from surface scatters and outcrops on public roads 

in and around the Vredefort Dome that overlay dolomite (Fig. 4.1). The sample 

was therefore naturally randomized. The sampling of archaeological material was 

randomized by the fact that the aperture of the Niton® Thermo Scientific pXRF 

machine could only take samples of a certain size. 

The pXRF machine uses x-rays to excite electrons at the surface of a substance, 

only to a depth of 200 µm and is virtually non-destructive (Andrefsky 2005: 44). 

Two different „methods‟ were run at 230 seconds per sample. The first method– 

called „soil‟– tested for elements commonly found in soils (recorded in ppm). The 

second –called „mining‟– tested for elements commonly found in rocks (recorded 

in %). The trace element data of the mining method can be found in Appendix 3, 

and graphical results in Fig. 4.2. 



27 
 

In addition to the pXRF analysis of chert, the macroscopic characteristics of a 

sample of pebbles from a gravel deposit in the Vaal River will be discussed. 

The bulk of this project, however, concerns technological analysis. The first part of 

this analysis deals with technological classification. 

3.3 TECHNOLOGICAL CLASSIFICATION 

 

3.3.1 BIPOLAR DEBITAGE  

 

Bipolar debitage (Fig. 4, Table 12) was identified during typological classification 

with a modification to Deacon‟s (1984) typology, since that typology does not 

consider bipolar reduction. Cores were originally classified as bipolar when 

crushing was identifiable on both ends of the core and had a minimum of three 

removals (cf. Deacon 1984). Flakes were called bipolar if the bulb was negative. 

This is now recognized to have been an inadequate way of typologically 

classifying the bipolar debitage. 

Technological classification of bipolar debitage, however, loosely followed that of 

Barham (1987) for quartz and chalcedony, with some modification using the 

summary of characteristics provided by de la Peña & Toscano (2013: 42) for flint: 

The main characteristics of bipolar cores are: 

 The hammered edge and the opposite edge become smooth and rectilinear. If 

the hammered side is rotated, the core becomes quadrangular or rectangular. 

 Both the striking platform and the side placed on the anvil develop numerous 

scars. However, normally the majority of scars are on the striking platform 

 The scars are bifacial if the profile of the core is symmetrical, or they tend to 

occur on only one of the sides if the piece is asymmetrical. If the core profile 

has one straight and one convex side, the scars will tend to be on the convex 

side. 

 The core rapidly becomes smaller as a result of knapping. In fact, bipolar 

knapping can be applied to extremely small cores (as small as 2 or 3 cm). 

 Although the cores are not prepared in any way, a striking platform is 

automatically created as a result of the hammering process. 

 The scars resulting from hammering are usually step or hinge terminations. 

 The scars on bipolar cores normally have deep ripples. 
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 The scars, especially on the striking platform, develop in the following way: at 

first, the scars are large and usually overlap. The fact that the initial scars are 

hinged means the subsequent ones are also hinged, but smaller. This second 

bout of hammering tends to produce a row of parallel scars. Eventually, the 

area immediately next to the edge fissures and becomes blunt.  

 

The main features of blanks resulting from bipolar knapping are described below: 

 A wide variety of bipolar blanks was obtained, including flakes, bladelets, and 

chunks. 

 They generally have broken or linear butts and the front part shows the 

fissures mentioned above. 

 They do not exhibit a distinguishable impact point. 

 The ripples on the bulbar faces are very marked and close to each other. 

 The profile of the bipolar blanks tends to be rectilinear, but this depends on the 

morphology of the core. 

 A specific feature of recurring knapping is a pronounced hinge bulb. 

 

The above quotation excludes image references, and the important attention de la 

Peña & Toscano (2013) gave to hammers and anvils; none were found in H5. A 

and B.  

Four categories have been identified for the purposes of this study: cores, flakes, 

bladelets, and other (falling outside of the other categories). The amount of bipolar 

debitage identified during technological classification is therefore greater because 

the scheme was more detailed and comprehensive. 

3.3.2 BLADES AND BLADELET 

 

Analysis focuses on the platform attributes of blades and bladelets (Fig 3.1 

[Right]), following the method and using the specialized database for the blade 

platforms on opalines in Soriano et al. (2007: Fig. 5). The raw materials CCS, 

chert and opaline (see Chapter 2) are technologically similar enough that other 

studies of equivalent materials can be used comparably (e.g. Barham 1987; Inizan 

et al. 1999; Soriano et al. 2007; Modikwa 2008; de la Peña & Toscano 2013).  
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Blade and bladelet analysis includes all material identified as „blade‟ or „bladelet‟ 

during typological analysis.  Following Deacon (1984: 375), a bladelet is treated as 

“A narrow parallel-sided flake with a length greater than twice the maximum width 

and a width less than 12 mm.” Blades were identified using the same definition but 

for widths greater than 12 mm. After identification, technological classification 

followed Soriano et al. (2007: 688) (see Fig. 3.2, Appendix 1, Table 5.1). 

 

 

 

 

 

 

A sample of cores was identified during both typological and technological 

analysis. Definition of cores followed Deacon (1984). Cores were drawn following 

a modification of Inizan et al. (1999), and the diacritical scheme of the flake scars 

was noted during the drawing process (see Appendix 2; Table 3.1). Cores are 

classified according to Table 3.1 below: 

Figure 3.1: Left: Technological classification for blades after Soriano et al. (2007: Fig. 4). Right: 
Platform features from specialized database for after Soriano et al. (2007: Fig 5). 
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Table 3.1: Core types in the Ceramic and Pre-ceramic levels 

Core types Ceramic  Pre-ceramic   

Free-hand cores: n % n % 

Bladelet cores 1 5.6 2 28.6 

Bladelet core fragments 2 11.1 0 0 

Failed cores 2 11.1 3 42.8 

„Dual‟ core 0 0 1 14.3 

Bipolar cores:     

Bipolar cores (complete) 2 11.1 0 0 

Bipolar cores (incomplete) 11 61.1 1 14.3 

Totals 18  7  

 

Following a suggestion from Paloma de la Peña (pers. comm. 2014) that the width 

of blades and bladelets is the most likely dimension to preserve, the widths for all 

blades and bladelets were taken to check the typometrical distribution of sizes 

(Fig. 3.2). Blades and bladelets fall within a normally distributed data set. The 

terms „blade‟ and „bladelet‟ are thus used interchangeably in this study, unless 

otherwise specified. For the sake of discussion, I use blade(let)s to refer to the 

collective. 

 

 

Figure 3.2: Typometric distribution of blade and bladelet sample by width 
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After the blade and bladelet technology at Holkrans has been analysed, stone 

artefacts further along the chaîne opératoire, namely retouched tools, will be 

comparatively assessed. The final part of the analysis looks at the possible 

changes through time in raw materials, technology and formal tools. 
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CHAPTER 4: ANALYSIS AND INTERPRETATION 

 

Results are reported in two conceptual components. The first component is 

typological. The second component deals with technological analysis. 

4.1 TYPOLOGICAL CLASSIFICATION 

 

In Table 4.1 below, the results of the typological classification (following Deacon 

1984, see Banhegyi 2011) for raw material and artefact types are summarized by 

collapsing artefacts contexts so that only totals are visible. Stone material from 

wall-shavings could not be included in Table 4.1 because of the stratigraphic 

nature of the recording system. It is, however, represented in Table 4.3.  

I have already mentioned that cryptocrystalline silicate (CCS) material is the focus 

of this project for several reasons (Chapter 3). A detailed summary of the 

typological classification of CCS is given in Table 4.2. 

Table 4.1: Summary of results from typological classification excluding wall-shavings 
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Quartz 2 0 0 0 0 4 0 144 64 17 0 7 66 1 1 306 

Quartzite 0 0 0 0 0 1 0 1410 107 41 3 22 2 0 0 1586 

Hornfels 0 0 0 0 0 0 3 2 0 0 1 0 0 0  0 6 

Andesite 0 0 0 0 0 0 0 8 30 10 1 1 0 0 0 50 

CCS 6 4 4 2 3 39 9 147 347 201 14 46 24 1 0 847 

Dolerite 0 0 0 0 0 0 0 15 31 3 0 0 0 0 0 49 

Shale 0 0 0 0 0 0 0 86 32 16 0 2 0 0 0 136 

Basalt 0 0 0 0 0 0 0 11 15 0 0 0 0 0 0 26 

Other 0 0 1 0 0 3 0 46 39 9 0 1 0 0 0 99 

Ochre 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 54 

Specularite 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 

 8 4 5 2 3 47 12 1927 665 297 19 79 92 2 1 3163 
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Table 4.2: Typological classification of CCS excluding wall-shavings 
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1 7.1 0 0 0 4.8 0 0 19 26.2 26.2 0 2.4 14.3 0 

2 0 0 0 0 0 4.4 0 17.4 43.5 17.4 0 8.7 8.7 0 

3 1.6 0 0 0 1.6 4.8 1.6 24.2 38.7 12.9 1.6 6.5 4.8 1.6 

4 2.4 1.2 0 0 0 5.9 2.4 17.9 38.1 20.2 1.2 4.8 5.9 0 

5 0 0.7 1.4 1.4 0 4.1 0 24.5 36.7 24.5 0 4.8 2.04 0 

6 0 1.5 0 0 0 1.5 1.5 17.6 41.2 29.4 0 5.9 1.5 0 

7 0 0 1.2 0 0 5.8 1.2 11.5 49.4 26.4 2.3 2.3 0 0 

8 0 0 0 0 0 4.3 0 14 44.1 21.5 6.5 9.7 0 0 

9 0 0 0.9 0 0 9.4 1.9 10.4 37.7 28.3 2.8 6.6 1.9 0 

10 0 0 0 0 0 5.7 0 17.1 48.6 22.9 2.9 2.9 0 0 

11 0 0 0 0 0 3.3 3.3 13.3 60 13.3 0 3.3 3.3 0 

 

4.2 RAW MATERIALS IN THE PRE-CERAMIC AND CERAMIC LEVELS 

 

A variety of raw materials are represented in the total sample from BFK1. H5. A 

and B. It is worth noting the general pattern that emerges from the frequency and 

distribution of these rock types. In Table 4.3, quartzite is the most abundant, 

comprising just under half of the total lithic sample by count (49.9%).  

The relative abundance of quartzite may, however, be the result of „noise‟ due to 

natural rather than cultural processes (Banhegyi 2011:32). Although some 

quartzite pieces show evidence of retouch, it is currently not clear which quartzite 

pieces are spalls or chunks from the shelter‟s walls and ceiling. Nevertheless, 

some quartzite pieces are macroscopically different enough (in both colour and 

texture) from the shelter quartzite to suggest that they were transported to the 

shelter from elsewhere. 

If we exclude quartzite because of possible „contamination‟ from natural 

processes, CCS is the next most abundant raw material. Interestingly, the total 

amount of CCS (26.9%) is greater than the sum of all raw materials combined 

23.2% (excluding quartzite).  
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Table 4.3: Raw material totals for H5. A and B including wall-shavings 

R
a
w

 

m
a
te

ri
a
l 

ty
p
e

 

Q
u
a
rt

z
 

Q
u
a
rt

z
it
e

 

H
o
rn

fe
ls

 

A
n
d

e
s
it
e

 

C
C

S
 

D
o
le

ri
te

 

S
h
a

le
 

B
a
s
a
lt
 

O
th

e
r 

O
c
h
re

 

S
p
e
c
u

la
ri

te
 

T
o
ta

l 

n 313 1606 6 50 865 49 137 26 103 57 4 3216 

% 9.7 49.9 0.2 1.6 26.9 1.5 4.3 0.8 3.2 1.8 0.1 100 

 

In Chapter 2, I mentioned that two phases of occupation at Holkrans have so far 

been identified. These two phases are distinguished by the presence or absence 

of pottery in the stratigraphy, hence the designated names „pre-ceramic‟ and 

„ceramic‟. The ceramic (C) phase in H5 is restricted to the upper 5 spits because 

no ceramics were found below spit 5 during excavation. The relative arrival of 

ceramics in H5 can be tied to radiocarbon dates of 970± 40 BP (Beta 304269) in 

spit 3 and 900 ± 40 BP (Beta 304270) in spit 5 (Table 1.1). Anything below the fifth 

spit should be older, belonging to the pre-ceramic (PC) phase. 

Between these two phases there is a difference in the distribution of raw material 

types. Raw material patterning resembles that recorded by Banhegyi (2011) for 

E8. In Table 4.4, the last row of the table gives the average for each column. 

Coloured cells have above average counts of lithic artefacts. Blue indicates 

materials present in above average proportions throughout the sequence. Pink 

indicates above average counts in the lower levels of the stratigraphy (i.e. PC). 

Green indicates above average counts in the upper levels of the stratigraphy (i.e. 

C).  

In general, quartz and quartzite are relatively abundant throughout the sequence. 

Hornfels, dolerite, basalt, „other‟ and specularite, which are all dark grey to 

blackish, are predominant in the upper spits. In contrast, the averages of CCS, 

andesite, shale and ochre decrease in the upper spits and are most abundant in 

the PC levels. 
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Table 4.4: Above average lithic material concentrations by spit 
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1 0.05 0.54 0.01 0.02 0.16 0.04 0.04 0.04 0.09 0.00 0.00 

2 0.05 0.61 0.01 0.01 0.13 0.07 0.02 0.02 0.07 0.01 0.01 

3 0.10 0.48 0.00 0.01 0.19 0.05 0.03 0.03 0.10 0.02 0.00 

4 0.15 0.57 0.00 0.00 0.15 0.01 0.07 0.00 0.02 0.02 0.00 

5 0.10 0.48 0.00 0.02 0.33 0.00 0.02 0.00 0.02 0.02 0.00 

6 0.08 0.44 0.00 0.02 0.40 0.00 0.04 0.00 0.01 0.01 0.00 

7 0.03 0.51 0.00 0.01 0.38 0.01 0.03 0.00 0.00 0.02 0.00 

8 0.07 0.47 0.00 0.03 0.36 0.00 0.02 0.00 0.01 0.03 0.00 

9 0.12 0.43 0.00 0.03 0.32 0.00 0.08 0.00 0.01 0.01 0.00 

10 0.09 0.50 0.00 0.04 0.31 0.00 0.04 0.00 0.00 0.03 0.00 

11 0.16 0.53 0.00 0.01 0.24 0.00 0.03 0.00 0.02 0.02 0.00 

AV 0.09 0.50 0.00 0.02 0.27 0.02 0.04 0.01 0.03 0.02 0.00 

 

More resolution can be added to this observation. Keeping in mind the definitions 

in Chapter 2, I did a count of the 863 pieces in the sample of CCS (Table 4.3) to 

record the different CCS types. Approximately 39% was macroscopically identified 

as opaline, with 61% macroscopically identified as chert. The opaline material is 

concentrated (but not exclusive) to the upper 1-5 spits. The remaining chert 

material is concentrated (but not exclusive) to the lower 6-11 spits. 

4.3 INVESTIGATION OF REFIT RELATIONSHIPS 

 

It will be recalled that one practical component of the chaîne opératoire method is 

to refit detached flakes back onto the core. It is important to note that none of the 

refits found in this study are core-to-flake refits. All refits are broken or snapped 

pieces. Thus, the refit investigation does not inform the technological investigation. 

The lack of core-to-flake refits could be due to the small size of the sample.  

In Table 4.5, I give the number of refits found in within the study sample. Each refit 

consists of two pieces that can be put back together along a single break. The 

stratigraphic position of each piece is provided indicated, along with the artefact‟s 
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number. The refit relationships seem to be between „old‟ rather than fresh breaks. 

This suggests that there has not been too much disruption of the stratigraphy.  

Table 4.5: Refit pieces by square, spit and artefact number. Each refit is indicated by a boxed pair 
of numbers, unless indicated by underscored or bold numbers 

A2   A3   A4   B2   B3   B4   B4/C4  

spit #  spit #  spit #  spit #  spit #  spit #  spits # 

3 116  3 338  1 427  7 547  7 661  3 776  5-9 954 

3 121  4 359  1 430  7 549  7 662  3 780  5-9 955 

9 289  4 361  1 429  8 557  8 694  4 787    

9 298  4 365  1 433  8 558  8 695  4 789    

         9 576  9 698  5 801    

5 193  6 407     9 584  9 703  5 806    

            9 725  7 842    

            9 731  7 843    

               9 901    

              8 555    8  687  9 919    

                               

 

4.4 RESULTS OF TECHNOLOGICAL CLASSIFICATION 

 

Less disappointing than the results of the refit investigation are the results of the 

technological classification. I have tabulated data from the technological 

classification following the method described in Chapter 3. In Table 4.6, different 

kinds of debitage have been identified and recorded relative to their position in 

either the ceramic or pre-ceramic phase. In Table 4.7, I present the results of the 

analysis of the available sample of blade and bladelet platforms. Some differences 

between several debitage classes (Table 4.6) and attributes (Table 4.7) between 

the two phases (PC and C) may be statistically significant. Due to time constraints, 

no statistical tests for significance were run. Nevertheless, the results recorded in 

Tables 4.6 and 4.7 will be discussed in subsequent sections. 
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Table 4.6: Frequency of debitage classes from Ceramic and Pre-ceramic levels 

Debitage classes  
Ceramic 
(n=359) 

Pre-ceramic 
(n=506) 

  % % 

Flakes and chunks 76.0 78.1 

Bipolar flakes  5.8 0.8 

Bipolar bladelets 1.7 0.0 

Complete blades and proximal blade fragments 8.9 14.2 

Mesial and distal blade fragments 7.5 8.1 

 

Table 4.7: Frequencies of some of the attributes observed on the platforms of proximal blade and 

bladelets and proximal fragments from ceramic and pre-ceramic levels at Holkrans 

Total number of observable platforms Ceramic Pre-ceramic 

  n=32 n=72 

  % % 

A: Platform preparation (Fig. 3A)     

Trimming of the edge on the exterior surface of the 
core 71.9 61.1 

Abrasion on the edge 43.8 29.2 

B: Platform thickness and width     

Width: 1-3 mm 37.5 29.2 

3-5 mm 25.0 29.2 

> 5 mm 25.0 26.4 

Thickness: <2 mm 62.5 58.3 

2-5 mm 21.9 23.6 

> 5 mm 3.1 2.8 

C: Impact point     

Lateralized 18.8 20.8 

Central location 43.8 61.1 

Non-expressed 25.0 4.2 

Platforms with discernable impact point 65.6 81.9 

D: Internal platform delineation (Fig. 3B)     

Straight or curved 31.3 34.7 

Overhanging curved platform (B2) 9.4 18.1 

Overhanging with bulb in clear relief (B3) 3.1 5.6 

Double curve with two impact points 3.1 8.3 

Indeterminate 46.9 23.6 

Irregular 0.0 8.3 

E: Platform morphology (Fig. 3D)     

Punctiform 15.6 2.8 

Narrow linear 0.0 1.4 

Oval or narrow triangular (constricted) 28.1 41.7 

Curved 6.3 8.3 

Quadrangular or wide trapezoidal (unconstricted) 6.3 5.6 
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Table 4.7 (continued) 

Total number of observable platforms Ceramic Pre-ceramic 
 n=32 n=72 
 % % 

F: Bulb morphology     

Lipped, without a bulb 9.4 19.4 

Prominent bulb with or without lipping (v. prom) 9.4 12.5 

Weakly developed bulb with or without lipping (prom) 40.6 48.6 

Negative bulb 9.4 0.0 

G: Scars on the platform and on the bulb (Fig. 3C)     

Platform with impact point contoured by a fissure (C3) 0.0 0.0 

Platform with partial fissuring around impact point (C2) 34.4 68.1 

Platform with contoured Hertzian cone (C4) 3.1 5.6 

Platform with shattered bulb (C1) 3.1 5.6 

 

4.5 RECONSTRUCTION OF BLADE PRODUCTION CHAÎNE OPÉRATOIRE  

 

Where were raw material blocks collected from? 

I make two attempts to identify where the raw material blocks at Holkrans were 

collected from. The first is a geochemical comparison between archaeological 

chert (i.e. artefacts) from Holkrans, and geological samples of chert from outcrops 

and surface scatters along dirt roads in and around the Dome (Fig. 4.1). The 

second attempt happened by chance, when a gravel bar containing CCS material 

in the Vaal River was located in September of 2014 during the 3rd-year 

Archaeology field school. 

The results of the first investigation are straightforward. A hierarchical cluster 

diagram of trace elements from the geochemical compositions shows that the 

archaeological samples are, in general, more similar to each other than they are to 

the collected geological material (Fig. 4.2). Hierarchical clustering is a statistical 

investigation of the amount of dissimilarity between different observations, which 

can be plotted as a dendrogram (Hastie et al. 2009). 
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Figure 4.1: Map showing the localities of geological samples collected from around Holkrans 

The diagram in Fig. 4.2 depicts a „divisive‟ relationship- starting at the „top‟ of the 

diagram, groups split off (as in a family tree) and become increasingly dissimilar 

with the number of times that an observation (in this case, an analysed sample) 

branches off. The small cluster on the right-hand side is therefore more similar to 

the very large cluster on the left-hand side than it is to Sample 44 (top left). 

It must be said that XRF analysis is known to be an inferior method to analyse the 

compositions of CCS materials because of intra-source variability (e.g. Luedtke 

1978: 414). Despite the shortcomings of this method, it appears from the use of 

trace element compositions (cf. Luedtke 1978, 1979) that almost none of the 
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Figure 4.2: Cluster diagram of geological and archaeological samples. Archaeological samples are 

outlined in red. 
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geological samples found were from the source of the raw materials used by the 

Holkrans knappers. Although some of the archaeological samples seem to cluster 

at the same level as geological material (e.g. archaeological samples 28, 30 and 

32) the geological material in each case does not resemble the archaeological 

material macroscopically. The geological material, in general, was not 

macroscopically homogenous in texture and colour to the same extent as the 

archaeological material, and often occurred as angular rather than rounded raw 

blocks (see below). We may thus have some confidence in the results indicated by 

the dendrogram despite the issues with chemical variability. 

The clustering in the diagram suggests that the same source(s) were „tapped‟ 

throughout the occupation at Holkrans, and that from this source was not located 

during the collection of the geological samples. 

The second attempt, which looked at the similarities between the archaeological 

materials and a collection of pebbles from a gravel bank, is successful in that it 

located a source of rounded CCS material that macroscopically resembles opaline 

and chert material from Holkrans. Other than this macroscopic similarity, the 

gravel source is much nearer to the shelter than any of the geological sources. 

Because this sample comes from nearer to Holkrans, and because the gravel 

sample „looks‟ more similar to the archaeological material than the geological 

samples, it is possible that the gravel bed, or at least similar gravel deposits, is the 

source of the raw materials.  

All that can be stated with confidence in the present study is that the geological 

samples do not come from the same source of raw materials used by Holkrans 

knappers. The Vaal River gravels are the next most likely source and could be 

geochemically analysed with a more reliable method than XRF, such as neutron 

activation analysis.  

What was the shape of the collected blocks of raw material? 

There are several types of outer surfaces that are present on cores and debitage. 

Cortical surfaces in this assemblage of rocks represent the majority, and can be 

differentiated from patinated and natural planar surfaces. Raw material blocks in 

both the ceramic and pre-ceramic levels were pebbles (following the Wentworth 
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scale for the classification of clast sizes), ranging between rounded and 

subangular degrees of roundness. A rounded rather than angular surface 

suggests that the pebbles at Holkrans were indeed from the Vaal River, having 

been subjected to the abrasive processes of transport in river systems for a 

significant amount of time. Only one manuport is present in the sample, but it is 

too small to have been selected to be reduced.  

Almost all bipolar cores from H5. A and B are of opaline and come from the 

ceramic phase. The exception is Core 666, which was made on chert and comes 

from the pre-ceramic phase (see Appendix 2). Less reduced bipolar cores (that is, 

bipolar cores with a lot of cortex relative to fresh surfaces, see Appendix 2) 

suggest that pebbles subjected to the bipolar technique may have been smaller 

than pebbles selected for free-hand knapping. This may have been simply 

because the bipolar technique was better suited to the reduction of smaller 

pebbles rather than larger pebbles. In the collection of pebbles from the gravel 

bank (Fig. 4.1), opaline pebbles are relatively smaller and less rounded than chert 

pebbles.  

How were raw material blocks prepared for core reduction? 

For the two types of conceptual core categories in Table 3.1, only one of the 

categories, free-hand cores, shows evidence for the preparation of the core. The 

pattern amongst these cores is the removal of either a preferential cortical flake 

that creates a platform, or the attempted (failed) removal of a preferential flake if 

there is already an existing „natural‟ platform that would allow for a series of 

bladelets to be removed. Failed cores are most common on large flake blanks or 

chunks, rather than on pebbles. 

The percentage of bladelet platforms with cortex is relatively low (~ 11.5%, 

n=104). In addition to this, the lack of cortex on free-hand core striking platforms 

suggests that the most common way of setting up a striking platform was the 

removal of relatively large cortical flakes. Complete cores in this sample typically 

show a cortical back, similar to the Howiesons Poort cores from Rose Cottage 

Cave (Soriano et al. 2007).  
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The other category of cores, called bipolar, show no evidence of preparation of the 

core per se. However, it is possible that the raw block may have been heat treated 

prior to knapping. Many opaline pieces were noted to have feature pot-lidding 

and/or crazing (cf. Domanski & Webb 2007) during typological classification. The 

possible evidence for heat treatment has not been investigated in this research 

project due to time constraints. 

How did knapping begin? 

For bipolar cores, knapping began when the „core‟ (originally a complete pebble) 

was placed between a „hammer and an anvil‟. This set up what in effect is a 

bipolar application of force, and in most cases, force was applied along the long 

dimension of the core. 

No crested blades or bladelets were identified in the sample of free-hand cores. In 

the absence of any crested blade(let)s, the first blade(let) removal appears to have 

been opportunistic, exploiting a natural ridge that performed the same function as 

a crest. Cortical blade(let)s (>50 % cortex) are present in levels from both phases 

of occupation (Table 5.1). Blades with a triangular cross-section (Fig. 3.1 [Left]: 

A2) are evidence for the initial opportunistic exploitation, along with the attempts 

evidenced by the failed cores (see Appendix 2). 

How did knapping progress? 

In the case of bipolar cores, knapping progresses as it began because of the 

limitation of the bipolar technique (described below). It is possible that the core 

was rotated such that its „poles‟ reversed, but no such examples have been 

identified. 

For the free-hand bladelet cores, knapping progresses perpendicular to the 

striking platform. Both types of configurations identified by Soriano et al. (2007: 

687-688) for the HP at Rose Cottage Cave are identifiable at Holkrans:  

Configuration 1: useful length of the flaking surface increases as knapping 

progresses.  Examples from are seen in Core 223 (Fig. 4.3) and Core 952 (Fig. 

4.4). Although few complete blades preserving distal cortex occur in the sample (2 



44 
 

from C, 2 from PC), the percentage of fragments with distal cortex is higher (C 0%, 

PC 10.3%). 

 

Figure 4.3: Core 223, single platform bladelet core 

 

Figure 4.4: Core 952, bladelet core (from wall-shavings of spits 5-9) 

Configuration 2: useful length of the flaking surface decreases as knapping 

progresses. The only example is Core 360 (Fig. 4.5). 

 

Figure 4.5: Core 360, opposed platform bladelet core 
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What were the core maintenance strategies? 

If the platform on a free-hand core ran out, it was rejuvenated by doing one of 

three things. The first strategy was to create a new platform by removing a large 

flake whose butt was formed by the previous platform.  

The second manner in which a core was maintained is evidenced by several 

blade(let) fragments. Although they are incomplete, 8 fragments preserve 

evidence in both phases of occupation of the rejuvenation of a bladelet core 

platform by the removal of a blade(let) parallel to the ridge of the platform edge. 

The platform edge is used as a ridge to guide the removal of a blade-like flake, 

whose long dimension was parallel to the length of the core. Other blade(let)s 

could then be removed.  

The final strategy was that the remaining core could be reduced with the bipolar 

technique if suitable platforms for free-hand reduction ran out, or when the core 

became too small to work free-hand. 

How were platforms prepared? 

Platforms were only prepared in the free-hand technique. The platform edge was 

often abraded, and was often also trimmed with small removals either on the very 

edge of the platform edge, or parallel to ridges (Fig. 3.1 [Left]: A2 and A3). No 

evidence for faceting was found on either bladelets or cores. 

When are cores abandoned? 

Bipolar cores were abandoned when they became too small to hold or to be 

usefully reduced further.  

All the free-hand bladelet and failed cores could have been reduced further. It 

appears that the reason these cores were abandoned before they were exhausted 

was either because of their size, or because of flaws in the raw material. However, 

the bipolar technique could have been used to reduce cores that had become too 

small to knap with the „free-hand‟ method. 
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In at least one case, a core experienced both bipolar and free-hand knapping 

techniques. After being reduced with a free-hand technique, it was rotated and 

subjected to the bipolar technique (Fig. 4.6, extreme right frame).  

 

Figure 4.6: Core 244, ‘Dual’ core 

It is not clear why the other cores where not reduced further, or reduced with the 

bipolar technique. The bipolar technique makes maximum use of raw material 

(Inizan et al. 1999), and in the case of Core 244 (Fig. 4.6) effectively extended the 

„life‟ of the core. One possibility for the abandonment of cores is that the flaws so 

common in dolomitic chert prevented any further reduction. At Rose Cottage Cave, 

the range of “20-25 mm in length” was identified for abandoned cores of opaline by 

Soriano et al. (2007: 688). It is possible, although unlikely because of the scenario 

in Core 244, that the size of these cores is important to consider in their 

abandonment. 

4.6 IDENTIFICATION OF KNAPPING TECHNIQUES AT HOLKRANS 

 

Stone is knapped using three kinds of techniques: direct percussion, indirect 

percussion, and the application of pressure (Inizan et al. 1999). Direct percussion 

is the use of a soft or hard hammer (with or without an anvil) to deliver a blow. 

Indirect percussion involves the use of an arm (punch) to apply force to a highly 

concentrated area. The hammer blow is delivered to the punch rather than directly 

to the raw material. Pressure flaking involves the application of pressure with a 

tool to remove flakes. 

Various schemes exist to detail technical information. Soriano et al. (2007: Fig. 

10), most recently, drafted a dual axis diagram that considers hammer hardness 

and its relationship to the edge of the platform during contact. It is based on three 
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parameters proposed by Tixier for identifying the mode of blank production (1967: 

807, cited in Soriano et al. 2007: 689). At Rose Cottage Cave (RCC), it was 

noticed that the percussion technique plotted in the lower left quadrant, being 

marginal and employing a stone hammer core. With this in mind, I consider the 

techniques present at Holkrans. 

4.6.1 TECHNIQUE 1: BIPOLAR 

 

The bipolar technique introduces variability into the assemblage at Holkrans, not 

merely because it is present in the pre-ceramic phase (Core 666, see Appendix 2) 

and predominates the ceramic phase. 

Table 4.8: Summary of bipolar debitage identified during technological classification 

Debitage n Ceramic Pre-ceramic % 

Cores 14 13 1 26.4 

Bladelets 6 6 0 11.3 

Flakes 25 21 4 47.2 

Other 8 7 1 15 

Total 53 47 6 100 

 

As mentioned above, the bipolar technique is a fairly standard technique. One 

particular example of this kind of technique was described by Goodwin (1945: 73). 

A more recent description of this technique is that  

Bipolar knapping is a method in which the core is placed on an anvil and 

held with the bare hand. The rock is hit from above with a hammer held in 

the other hand, causing blanks to fly off from the top and also from the edge 

that is in direct contact with the anvil (Crabtree 1972) (de la Peña & 

Toscano for flint (2013: 33). 

Crabtree (1972), and Barham (1987) in more detail, each describe ways of 

producing bladelets with the bipolar technique. All of the bipolar bladelets from 

Holkrans preserve at least some cortex on the dorsal face, and do not seem to 

match the technique described by Barham (1987). The sample size is, however, 

too small to make a reliable comparison. 
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Six bladelets (Table 4.8), all coming from the ceramic phase, match some of the 

characteristics for bipolar products described by de la Peña & Toscano (2013: 42) 

(see Chapter 3). Five of these do not have a distinguishable impact point (cf. de la 

Peña & Toscano 2013: 42), whilst the sixth it is missing a terminal end. Four of the 

six are rectilinear, whilst two are slightly curved. They all have broken (n=4) or 

linear butts (n=2).  

In addition to the very small bladelet sample, a total of 14 cores appear to have 

been reduced with a bipolar technique (see Appendix 2). These cores match the 

description of features for bipolar cores summarised by de la Peña & Toscano 

(2013: 42). 13 of the 14 cores are restricted to the upper 4 spits of the ceramic 

phase. One core is from spit 7 of the pre-ceramic phase. Only 2 of the cores are 

entirely complete. Both have flake scars that suggest bladelet products and 

preserve evidence of the very final stage of the reduced bipolar core. Furthermore, 

the rectilinear nature of the “hammered edge and opposite edge” (de la Peña & 

Toscano 2013: 42) for the two complete bipolar cores may indicate that the 

hammerstone and the anvil used both had flat rather than round surfaces (P. de la 

Peña, pers. comm. 2014). The remaining 11 cores are missing the distal end 

which is most likely to have broken off during the knapping activity rather than 

post-depositionally.  

Bipolar debitage from H5. A and B is very similar to the debitage represented in 

Barham (1987), and contains most of the features summarised by de la Peña & 

Toscano (2013: 41-45). There is no suggestion that any of the bipolar cores were 

hammered into soft organic material, such as bone or wood, that would result in 

„wedges‟ (cf. de la Peña & Toscano 2013). It is explicitly assumed that all 14 

bipolar cores at Holkrans were produced using stone hammers and stone anvils. 

4.6.2 TECHNIQUE 2: FREE-HAND PERCUSSION 

 

I consider the free-hand percussion blade(let) production by looking at three 

aspects, following Soriano et al. (2007). First, the method used to apply force. 

Next, I consider the motion of the knapping activity. And finally, I consider the kind 

of knapping tool used. Proportions reported under the subheadings below come 

from Table 4.7 unless otherwise indicated. 
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Method used to apply force  

The use of indirect percussion or pressure in blade/bladelet production is unlikely 

at Holkrans. Inizan et al. (1999:76) note that blade/bladelets produced using 

indirect percussion have fairly consistent morphology and a flaking angle of near 

90º. The characteristics of blade debitage produced by pressure are similar in that 

such debitage often has “parallel edges and arises”, “constant thickness”, “no 

obvious ripples on the lower face”, and “a butt always narrower than the maximum 

width of the blades” (ibid: 79). In contrast, blade debitage from Holkrans does not 

have the consistent morphology that would be the result of indirect percussion or 

pressure techniques (Fig. 4.7). 

An indirect percussion technique at Holkrans is even more unlikely when one 

considers contact point diameter, that is, “the point (in fact small surface) where 

the blow is applied to fracture a piece of raw material” (Inizan et al. 1999: 143). 

The contact point diameter on the platform of debitage produced by indirect 

percussion is larger relative to debitage produced by direct percussion (e.g. 

Soriano et al. 2007: 690). It may be inferred from the majority of platform 

thicknesses < 2 mm wide (C 62.5%, PC 58. 3%), that contact point diameter is too 

small (< 3 mm, following Soriano et al. 2007: 690) for indirect percussion to have 

been used, although the diameter in each case was not directly measured. 

For the reasons outlined above, I argue that blade and bladelet products from H5. 

A and B were not produced by indirect percussion or by the application of 

pressure. Rather, a direct percussion technique is identified for blade/bladelet 

production at Holkrans. 

The motion of knapping 

There is much evidence to show that the knapping activity focused not on the 

surface of platforms, but on the edge. Abrasion on the (dorsal) edge of blade(let) 

platforms is particularly noticeable (C 43.8%, PC 29.2%). Trimming of the 

overhang is more abundant (C 71.9%, PC 61.1%). Blade(let) platforms are so thin 

that we may be confident that “the hammer did not strike the platform surface but 

its edge” (Soriano et al. 2007: 690). More than half the platforms in each phase 

are < 2 mm thick (C 62.5%, PC 58.3%). 
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Figure 4.7: The irregular morphology of blade and bladelet debitage from Holkrans suggests that 
indirect percussion was not used at Holkrans. Complete: a-e. Proximal fragments: f-i. Distal 

fragment: j. Mesial fragments: k and l. 
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Only one bladelet from the pre-ceramic phase had a lip without a bulb, indicative 

of “a “dragging” and striking motion” (Soriano et al. 2007: 690). Although 

anomalous in the present study, it may have implications for a technological study 

with a larger sample size. 

The knapping tool 

At first, it appears that there may have been two kinds of hammers used at 

Holkrans. Both soft organic percussion (lip only: C 9.4%, PC 19.4 %) and hard 

mineral percussion are suggested in both phases (marked point of contact, strong 

bulb: C 9.4%, PC 12.5%). However, a simple identification of two kinds of hammer 

is, in this case, misleading because platforms with less-developed bulbs are 

predominant in both phases (C 40.6%, PC 48.6%). 

Here I wish to provide detail of several features that indicate that a soft stone 

hammer was the percussor used at Holkrans. These features, all relating to visible 

impact points (cf. de la Peña & Toscano 2013: 42), result from “sharp contact with 

the hammer”- a trait of soft stone hammer percussion (Pelegrin 2000; Soriano et 

al. 2007: 691). 

1) Partial fissuring and contoured cones predominate over circular fissuring 

and shattered bulbs 

Partial fissuring of the bulb is predominant at Holkrans (C 34.4%, PC 

68.1%), whilst some impact points are marked by a contoured cone 

(C 3.1%, PC 5.6%). No circular fissuring is present that would 

suggest a hard stone hammer (cf. Soriano et al. 2007: 691). 

2) Abrupt delineation of some platforms on ventral surface 

The sharp contact characteristic of a soft stone hammer (Soriano et 

al. 2007: 691) resulted in an overhang of the contact point that 

abruptly delineates the platform on the ventral surface. This is visible 

on several blades and bladelets in both phases (Fig. 2.1 [Right]: B3), 

(C 3.1%, PC 5.6%). 

3) Accidents  

Several blade(let)s have shattered bulbs (C 3.1%, PC 5.6%). These 

accidental features “unequivocally prove the occurrence of soft stone 

percussion” (Soriano et al. 2007: 69). 
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Having discussed the techniques for blade production at Holkrans, we can be fairly 

confident that the kind of production at Holkrans falls within a similar part of the 

diagram to that identified for the Howiesons Poort of Rose Cottage Cave (RCC) by 

Soriano et al. (2007: Fig. 10). Across both phases of occupation at Holkrans, free-

hand blade(let) production was carried out with a soft stone hammer (such as 

sandstone). Direct blows from the hammerstone were concentrated on the very 

edge of the core‟s platform. The implications of technological similarities between 

the Howiesons Poort at RCC and lithic technology at Holkrans will be discussed in 

Chapter 5. 

4.7 HOLKRANS FORMAL TOOLS 

 

In general, flake blanks appear to have been modified into formal tools through 

pressure-flaking (any other technique is assumed to be too destructive for these 

small tools). Three categories of formal tools have been identified. The sample of 

formal tools (n=43) is summarized by percentage and phase in Table 4.9. I discuss 

each category from Table 4.9 in turn, comparing the two phases. Some of the 

tools are depicted in Fig. 4.8. 

Table 4.9: Summary of the formal tools from both phases of occupation 

  ceramic pre-ceramic 

Formal Tools n=21 n=20 

  % % 

Scrapers (% total) 23.8 0.0 

end 14.3 0.0 

side 0.0 0.0 

indeterminate 9.5 0.0 

Backed artefacts (% total) 19.1 45.0 

segments 4.8 5.0 

broken segments (halves) 9.5 5.0 

backed bladelet fragments 0.0 10.0 

partially backed pieces 0.0 5.0 

triangular fragments 0.0 10.0 

indeterminate (truncated?) 4.8 5.0 

truncated blades 0.0 5.0 

Miscellaneous retouched pieces (% total) 57.1 55.0 
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Figure 4.8: Selected formal tools. Scrapers: a-e. Segment fragments: f-h. Triangular fragments: i-j. 

Truncated blade: k. Indeterminate (truncated?): l and n. Partially backed piece: m. Backed 

bladelets: o and p. Segments: q and r. 

 

4.7.1 SCRAPERS 

 

A total of 5 scrapers (C 23.8%, PC 0.0%) were identified following Deacon (1984) 

(Fig 4.8: a-e). End scrapers are predominant in this small sample (cf. Humphreys 
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& Thackeray 1983). There is no consistency in the morphology of the 5 scrapers, 

yet all five seem to have been made on flakes that have a convex curvature that 

has been retouched or utilized to produce the characteristic morphology. This 

demonstrates the technological heterogeneity for morphological types argued by 

Odell (1981).  

4.7.2 BACKED ARTEFACTS 

 

SEGMENTS 

Both complete and broken segments were identified (Fig. 4.8). Broken 

segments were differentiated from other backed artefacts by the curvature 

of their backed edge that very closely resembled the two complete 

segments (cf. Deacon 1984).  

One complete segment was found in the ceramic phase (4.8%), and a less 

complete one was found in the pre-ceramic phase (5.0%). The ceramic-

phase segment is smaller than the other, and was made on a cortical chert 

blade flake blank. The larger segment is missing an extremity, and was 

produced from an opaline blade flake blank that lacked any cortex. 

The very large segment in the pre-ceramic phase comes from spit 11. It is 

unusually large for the period (spit 11 has been dated to at 2320 ± 50 BP in 

F7 [Beta 265300]). At present, no other dates could be obtained to clarify 

the age and context of the pre-ceramic segment. Because it is so unusual, 

it is possible that we may have another lithic industry present in the lower 

levels of the stratigraphy at Holkrans, such as the Howiesons Poort (Garth 

Sampson, pers. comm. 2014). This statement is, at present, an 

unsubstantiated claim and requires further excavation to assess its validity. 

In addition to the two complete segments, two broken segments („half 

segments‟) were identified in the ceramic phase (9.5%), and one in the pre-

ceramic phase (5.0%). Two are on chert and one on opaline. The broken 

segment pieces are similar in size and are more similar to the ceramic-

phase segment than the pre-ceramic segment.  
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There appears to be a consistency in design for the segments and the 

broken pieces; all the segments from the ceramic and pre-ceramic have 

been made on a blade flake blank with backing retouch that follows an arc, 

creating the segment shape. No retouch has been applied to the opposite 

edge. 

BACKED BLADELETS 

Only two bladelet fragments have backing (Fig. 4.8). One is a mesial 

fragment and the other is proximal. Both are from the pre-ceramic phase 

and were made on chert. It is interesting to note that the backing on the 

proximal fragment is present near the proximal part of the flake and has 

rounded this edge. This may mean that the backed bladelet is part of the 

production sequence of segments, rather than backed bladelets. No 

complete backed bladelets were found. 

PARTIALLY BACKED PIECES 

In the pre-ceramic phase, one piece of a refit set is partially backed in such 

a manner that it may represent an early stage in the production of a 

segment (Fig. 4.7). For some reason, the retouch activity was abandoned. 

TRIANGULAR FRAGMENTS 

Two triangular pieces are backed, both from the pre-ceramic phase. In each 

case, a straight flake edge makes an angle with the opposite edge that has 

been backed to give a straight edge. These fragments may or may not 

relate to segment production; one is smaller than the other segment 

fragments, and one is larger. It is difficult to tell whether they are part of the 

production sequence for segments or whether they belong to another class 

of backed geometric artefact because they are fragmentary and the backing 

is straight, rather than curved. The blanks for these are likely to be blade 

and bladelet flake blanks since the dorsal scars on several of the pieces are 

straights and parallel.  
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TRUNCATED PIECES 

One truncated blade was found in the levels of the pre-ceramic phase (Fig. 

4.7). Two other pieces are incomplete, and it cannot be said with certainty if 

these pieces (which appear to be bladelet fragments) are truly truncated. 

4.7.3 MISCELLANEOUS RETOUCHED PIECES 

 

The remaining retouched artefacts have miscellaneous retouch. In each case, the 

artefact does not resemble a specific morphological type (cf. Odell 1981). Various 

kinds of retouch are present within this category, including flat retouch and edge 

damage due to use. Use-wear analysis, already done for some artefacts from E8 

by Law de Lauriston (2014), would be able to identify the use of these pieces and 

add nuance to an otherwise lumped category. Because tool use falls outside the 

scope of this project, I do not discuss the MRPs any further in this section. 

No bifacially tanged and barbed arrowheads were recovered in H5. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

 

The results from this study allow for an interesting discussion of changes in lithic 

technology through time at Holkrans. In his Honours project, Banhegyi (2011: 43) 

wrote that  

one might expect that the different sizes, shapes and fracturing properties 

of raw materials in the preceramic (sic) and ceramic levels would have 

necessitated the use of different flaking techniques (2011: 43). 

His supposition is correct, even for raw materials within the same raw material 

category (CCS). During the ceramic phase, lithic technology concentrated on the 

bipolar reduction of opaline and was therefore significantly different from the 

predominantly free-hand production of bladelets during the pre-ceramic. 

5.1 CHANGES IN THE KNAPPING TECHNIQUE 

 

In Chapter 4, we saw that there were two techniques used in the production of 

blade and bladelets. Overall, the bipolar technique was used to a lesser extent in 

the production of blade(let)s than the predominant direct percussive technique. 

Discussion of the bipolar technique referred to six (6) bipolar bladelets, which 

make up only 1.7% of the entire sample for the ceramic phase (Table 4.6).  

From the values in Tables 4.6 and 4.7, we can see that the bipolar technique 

became the predominant knapping technique in the ceramic phase. In Table 4.7, 

there is a decrease in platforms with a discernable impact point as we move from 

the pre-ceramic into the ceramic (C 65.6%, PC 81.9%). Similarly, there is a 

dramatic rise in platforms without impact points in the ceramic phase (Table 4.7: C 

25%, PC 4.2%). A lack of a discernable impact point, it will be recalled, is one of 

the characteristics of debitage produced using the bipolar technique (de le Peña & 

Toscano 2013: 42). Blades and bladelets in the ceramic phase also see an almost 

6-fold increase in the number of punctiform platforms (Table 4.7: C 15.6%, PC 

2.8%) and a sudden appearance of blades with negative bulbs (Table 4.7: C 9.4%, 

PC 0.0%). The decrease in the number of discernable impact points, and the 
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increase in punctiform platforms and negative bulbs can be understood to result 

from increased bipolar reduction in the ceramic phase.  

Increased bipolar production in the ceramic phase makes it difficult to tell if any 

significant changes occurred in the free-hand knapping technique. Overall, the 

relatively large proportion of complete free-hand blade(let)s in the pre-ceramic 

phase decreases drastically in the ceramic phase (Table 4.6: C 8.9%, PC 14.2%). 

Several of the attributes related to the direct percussive technique (Chapter 4) 

show increased values in the ceramic phase (for example, platform preparation 

and platform thicknesses <2 mm, see Table 4.7). In contrast, the values of several 

attributes associated with soft stone hammer percussion (Chapter 4) decrease in 

the ceramic phase relative to the pre-ceramic (overhang with bulb in clear relief, 

partial fissuring around the impact point, platform with contoured Hertzian cone, 

platform with shattered bulb). 

The increase in some attribute values with simultaneous decrease in other 

attributes presents a somewhat ambiguous scenario that may result from unequal 

sample sizes. On the other hand, the „ambiguity‟ may reflect consequences of the 

shift in reduction strategy (i.e. increased bipolar reduction). Indeed, all the 

attributes that increased are associated with a direct percussive technique of 

which bipolar reduction may be considered a special example. It therefore appears 

that the change in the proportion of free-hand blades across the two phases is not 

due to changes in bladelet production technique but rather a change in overall 

reduction strategy. 

 

5.2 CHANGES IN REDUCTION STRATEGIES 

 

Two aspects are important for a consideration of the changes in reduction strategy 

at Holkrans. First, changes in free-hand blade(let) production, and second, 

changes in bipolar debitage.  
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5.2.1 CHANGES IN FREE-HAND PRODUCTION 
 

Table 5.1: Frequency distribution of complete blade types (excluding bipolar bladelets) for both 
phases of occupation  

  
Ceramic 
n=10 

Pre-ceramic 
n=31 

 Type of blades % % 

Initial stage (>50% cortex) 20.0 16.1 

Main production phase, central debitage surface 60.0 38.7 

Main production phase, from the side of the debitage surface 20.0 35.5 

Core maintenance blades 0.0 0.0 

Other blades 0.0 6.5 

Indeterminate blades 0.0 3.2 

     

Frequencies of specific blade types    

Crested blades of first generation 0.0 0.0 

Totally cortical blades or with >50% cortex 20.0 12.5 

Blades with total or partial cortex 40.0 46.9 

Plunging blades 0.0 0.0 

Blades with bidirectional flake scars 0.0 3.1 

Blades with a cortical or natural back 10.0 15.6 

Blades with a cortical lateral edge 10.0 3.1 

 

In Table 5.1, we are again confronted by a problem of sampling. A comparison of 

the changes between the phases is made difficult because the sample size of the 

pre-ceramic sample is almost triple that of the ceramic phase sample (C n=10, PC 

n=31). 

Nevertheless, from Table 5.2 we may infer that free-hand blade(let) production 

during both phases concentrated on the central debitage surface (C 60%, PC 

38.7%). During the ceramic phase, however, a decreased amount of fully or 

largely cortical blades (ceramic 40.0%, pre-ceramic 46.9%) suggests that more 

time was taken to remove cortex and prepare the core before blade(let) 

production.  

Supplementing the small sample sizes above with a consideration of cortex on 

blade fragments (Table 5.2) allows us to see that, during the ceramic phase, cores 

were indeed prepared more since the percentage of blade(let) fragments without 

cortex is higher in the ceramic phase (Table 5.2: C 74%, PC 67.8%)  
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Table 5.2: Frequency distribution of cortex type for blade fragments (excluding bipolar) from both 
phases of occupation 

  Ceramic Pre-ceramic 

 n=49 n=91 

 Type of cortex on fragment % % 

Edge and lateral  2.0 0.0 

Fully cortical 4.0 2.2 

Lateral 8.0 7.8 

Plunging distal end 2.0 1.1 

Distal 0.0 3.3 

Edge 8.0 7.8 

Back 0.0 4.4 

Other 0.0 6.7 

No cortex 74.0 67.8 

 

5.2.2 CHANGES IN BIPOLAR DEBITAGE 

 

A more significant change in reduction strategy at Holkrans is seen in the 

abundance of other bipolar debitage that appears in the ceramic phase (Fig. 5.1). 

Just less than 85% of all bipolar debitage occurs in the ceramic phase with 13 of 

the 14 bipolar cores restricted to the upper 5 spits. As seen in Table 3.1, 72% of all 

the cores in the ceramic phase are bipolar.  

The abundance of bipolar cores relative to other bipolar debitage suggests that 

some of it is missing (recall that pieces <1 cm2 were not studied), perhaps due to 

the shattering nature of the bipolar technique, or the choice of some bipolar 

debitage to make formal tools (e.g. scrapers). Indeed, the abundance of bipolar 

flakes (47.2%) is not even double the amount of cores (26.4%), and the 

percentage of cores is greater than both bipolar bladelets (11.3%) and other 

debitage (15%). 

Although the bipolar technique is indisputably present in the pre-ceramic phase 

(Table 5.2, Core 666 Appendix 2), the relative increase in bipolar debitage seen in 

the ceramic phase (Table 5.2) when compared to the relative decrease in blades 

and bladelets (Table 5.1) suggests a shift in the objectives of the knapping activity. 

Blade and bladelet blanks are not as important in the ceramic phase as they were 

in the pre-ceramic phase. 
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Figure 5.1: West wall profiles for A and B in H5. Locations of all bipolar debitage within the 
stratigraphy are indicated in blue. Horizontal scale is 1 m. 

 

5.3 CHANGES IN FORMAL TOOLS 

 

The formal tool component of the lithic assemblage at Holkrans seems to have 

experienced some significant changes between the ceramic and pre-ceramic 

phases of occupation. In the ceramic phase, scrapers appear without having been 

(morphologically) identified in the pre-ceramic (Table 4.9). Backed artefacts 

become less numerous in the ceramic phase, and there is a slight increase in 

MRPs. 

Since the designation „MRP‟ is a lumping category and thus technologically 

heterogeneous (cf. Odell 1981), it is necessary to look at use-wear in order to 

glean more information from this category. The use of the implements before 

discard in square E8 was investigated by MacLaren Law-de-Lauriston using low-
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power microscopy (2014). Law de Lauriston (2014) found that there was continuity 

in the function of stone tools from pre-ceramic to ceramic phases of occupation. 

He observed a statistically insignificant change in formal tool types, but noticed 

that raw materials changed significantly across the pre-ceramic to the ceramic 

transition (Law de Lauriston 2014). 

The same change in raw materials was noted in E8 by Banhegyi (2011) and has 

been demonstrated for H5 (Table 4.4). Since the discontinuity in raw materials 

across the pre-ceramic to the ceramic holds in E8 and H5, Law de Lauriston‟s 

(2014) research can be used to make the suggestion that the change in formal tool 

types in H5 is not likely to be statistically significant.  

5.4 COMPARISONS 

 

Broad comparisons between the isolated site of Holkrans (Chapter 1) and other 

sites can be made by considering characteristics of the lithic assemblage. In Table 

5.3, I provide a summary of twenty-nine (29) sites within an arbitrary 400 km 

radius of Holkrans. Table 5.3 refers only to securely dated sites with terminal LSA 

deposits (Lombard et al. 2012). Lombard et al. (2012) follow Peter Mitchell‟s 

(2002:10) „framework‟ approach that acknowledges the biomes in which sites 

occur. I follow the same approach in Table 5.3. 

The lithic assemblage at Holkrans appears to be dominated by CCS material (cf. 

Banhegyi 2011:32) so far as retouched artefacts are concerned (cf. discussion of 

chert at Wonderwerk Cave in Humphreys & Thackeray 1983: 53). Lithic 

assemblages dominated by CCS material have been recorded at two sites; at 

Clarke‟s Shelter (Mazel 1984a), and at Dikbosch 1 (Humphreys & Thackeray 

1983).  

The four tanged and barbed arrowheads identified by Bradfield & Sadr (2011) 

(Chapter 1) are thought to have been made with a pressure-flaking technique (e.g. 

Klatzow 2000). The use of the pressure-flaking technique has been documented at 

Likoaeng in Lesotho (Mitchell 2009; Plug et al. 2010; Mitchell et al. 2011), as well 

as at Roosfontein, specifically in the production of a tanged and barbed arrowhead 

(Klatzow 2000). 
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Table 5.3: Summary of sites within a 400 km radius of Holkrans by biome 

SAVANNA BIOME : 

 North West Province: Holkrans rock shelter (Bradfield & Sadr 2011) 

 Gauteng: Fort Troje (Wadley 1987)  

 Northern Cape: Jubilee Shelter (Wadley 1987); Dikbosch and Wonderwerk Cave 

(Humphreys & Thackeray 1983)  

 Limpopo: Goergap 113 KR, New Belgium, and Schurfpoort 112 KR (Van der Ryst 1998)  

 KwaZulu-Natal: Mzinyashana Shelter (Mazel 1997) 

GRASSLAND BIOME: 

 Free State: Mauermanshoek (Wadley 2001); Rooikrans (Thorp 1996); Roosfontein 

(Klatzow 2000); Rose Cottage Cave (Wadley & Vogel 1991; Wadley 1992; Thorp 1996); 

Tandjiesberg (Thorp 1996, 1997; Wadley & McLaren 1998); Orange Springs (Thorp 

1996); De Hoop (Klatzow 2010); Twyfelpoort (Backwell et al. 1996)  

 In Gauteng Province are the sites of Hope Hill (Wadley 1989; Wadley & Turner 1987) 

and Cave James (Wadley 1987, 1996).  

 KwaZulu-Natal: Nkupe Shelter (Mazel 1988); Clarke‟s Shelter (Mazel 1984a); Collingham 

Shelter (Mazel 1992); Driel Shelter (Maggs & Ward 1980); Good Hope Shelter (Cable et 

al. 1980); Mgede Shelter (Mazel 1986b) 

 Lesotho: Likoaeng (Mitchell et al. 2008, 2011) and Sehonghong (Mitchell 1996, 2010; 

Vinnicombe 2009)  

THICKET BIOME: 

 KwaZulu-Natal: Mbabane Shelter (Mazel 1986a); Gehle Shelter (Mazel 1984b); 

iNkolimahashi Shelter (Mazel 1999) 

 

A more specific comparison is currently only possible with Soriano et al. (2007) 

and Modikwa (2008) because they both have the same kind of data. 

A close reading of this project reveals that many similarities exist between the 

observations made in this study and those made by Soriano et al. (2007). This 

should not be come as a surprise, given that a) both studies consider blade 

production on technologically similar raw materials, and that b) the two sites are 

both in the interior of southern Africa, and are c) separated by less than 300 km of 

geography, which may have implications for the relationship of similarity between 

the technologies at each site.  

Despite these similarities there are some significant differences. These differences 

principally result from the fact that bipolar debitage of the post-HP sequence at 
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RCC makes up a relatively smaller proportion in comparison to bladelet debitage 

than it does at Holkrans.  

Table 5.4 is a composition of the data from Holkrans and two levels from RCC 

taken from Soriano et al. (2007: Table 7), one from the HP and one from the post-

HP.  This comparison highlights several things. First, it demonstrates that the lithic 

technology, overall, at Holkrans is not dominated by blade production but rather by 

flakes, unlike lithic technology at RCC. Second, the proportion of bipolar debitage 

(flakes and bladelets) in the post HP (18.1%) at RCC is much greater than in the 

ceramic phase (7.5%) at Holkrans. However, an important point of difference is 

that in the post HP of RCC, blade debitage (complete and fragments) completely 

overshadows bipolar debitage (flakes and blades). The amount of difference 

between the proportions of the two kinds of debitage is less vast at Holkrans: 

bipolar debitage (flakes and blades, 8.9%) is almost half of the proportion of blade 

debitage (complete and fragments, 18.1%). The importance of the bipolar 

technique as a reduction strategy in the ceramic phase at Holkrans is again 

underscored. 

Table 5.4: Comparison of debitage frequencies from Holkrans and Rose Cottage Cave (using data 
from Soriano et al. 2007). 

Debitage classes 
Pre-ceramic 

(n=506) 
Ceramic 
(n=359) 

HP 
(EMD) 

(n=536) 

Post HP 
(KAR) 
(n=72) 

  % % % % 

Flakes and chunks 78.1 76.0 8.2 23.6 

Bipolar flakes  0.8 5.8 0.6 5.6 

Bipolar bladelets 0.0 1.7 0 12.5 
Complete blades and proximal 
blade fragments 14.2 8.9 80.2 54.2 

Mesial and distal blade fragments 8.1 7.5 11.0 4.2 

 

The marked increase of debitage produced by the bipolar technique in the ceramic 

seems somewhat unusual. Nevertheless, Modikwa (2008) observed that, at the 

sites of Toteng 1(Botswana) and Mphekwane Shelter (Limpopo), bipolar reduction 

occurred alongside blade production in all three phases of occupation (Modikwa 

2008) (Table 5.5). 



65 
 

Table 5.5: Comparison frequencies of core types between Holkrans, Toteng 1 and Mphekwane  

 Holkrans (n=25) Toteng 1 (n=18) Mphekwane (n=53) 

Core types C
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Free-hand cores: % % % % % % % % 

Bladelet cores 5.6 28.6 12.5 12.5 17.8 28.9 11.1 13.4 
Bladelet core 
fragments 11.1 0 - - - - - - 

Failed cores 11.1 42.8 - - - - - - 

„Dual‟ core 0 14.3 - - - - - - 

Bipolar cores:         

complete 11.1 0 25 12.5 28.6 44.4 50.0 46.7 

incomplete 61.1 14.3 - - - - - - 

 

Furthermore, as seen in Table 5.5, the number of bipolar blades recorded by 

Modikwa (2008) for all three phases at both Toteng 1(n=40) and Mphekwane 

(n=19) is greater than the total number of bipolar bladelets at Holkrans (n=6). This 

suggests that the bipolar technique, in contrast to CCS lithic technology at 

Holkrans, was used significantly in the production of bladelets at the other two 

sites.  

A point of difference between the collective work of Soriano et al. (2007) and 

Modikwa (2008) in juxtaposition to this research is that I have given very little 

consideration to flake debitage and other raw materials. I stress that these have 

been excluded not because of negligence but because of time constraints 

imposed by the Honours project. The partial but focused chaîne opératoire 

described in this project for CCS bipolar and bladelet debitage is therefore limited, 

and could easily be expanded with a consideration of other debitage and raw 

materials. A more comprehensive comparison with the research of Modikwa 

(2008) could certainly be made in future research if other debitage and raw 

material types are considered, although some of Modikwa‟s (2008) analytical 

categories are too different from the present study to make any comparison (e.g. 

blade platform widths). 
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5.6 CONCLUSION 

 

An investigation of the chaîne opératoire of blade technology for CCS at Holkrans 

has revealed some interesting results. Blade technology, with the intention to 

produce blade and bladelet blanks, was predominant in the pre-ceramic phase. 

The technique during this period entailed the use of direct percussion with a soft 

stone hammer (possibly a rock type such as sandstone), delivering blows to the 

very margin of cores. The raw materials used for cores, namely chert and opaline, 

are most likely to have come from the gravels of the Vaal River. The arrival of 

ceramics at Holkrans, which in H5 seems to have been just under a thousand 

years ago (970 ± 40 BP and 900 ± 40 BP), seems to have be accompanied by a 

change in the use of several raw materials: I have shown that the usage of opaline 

raw material increased in addition to the above-average percentages of „grey-and-

black‟ raw materials previously observed by Banhegyi (2011) in E8. The increased 

use of opaline materials over chert was tied to a significant change in the 

objectives of the knapping sequence. In the ceramic phase, blades and bladelets 

were no longer, for some reason, important to the inhabitants of Holkrans rock 

shelter. 
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APPENDICES  

APPENDIX 1: BLADE ANALYSIS TABLES 

 

Blade classification observing position on the flaking surface (cf. Fig. 2). Types do 

not necessarily reflect successive stages in the debitage sequence. (after Soriano 

et al. 2007: Table 5).  

A: Initial stage 

 A1 Crested blades 

 A2 Entirely cortical blades 

 A3 Blades with more than 50% of cortex (or natural surface) 
B: Main production phase 
Blades from the central part of the debitage surface 

 B1 Blades produced during the optimal phase of the debitage, without cortex, with 
unidirectional or bidirectional scars 

 B2 Blades with distal cortical edge 

 B3 Plunging blades preserving a portion of the opposite striking platform, and 
unidirectional or bidirectional scars 

 B4 Plunging blades preserving a portion of the opposite cortical end, and unidirectional 
or bidirectional scars 

Blades from the sides of the debitage surface 

 B5 Blades directly underlying a crested blade with symmetrical or asymmetrical section 
and unidirectional or bidirectional scars 

 B6 Blades with a lateral cortical edge (less than 50% of cortex) and unidirectional or 
bidirectional scars 

 B7 Blades with a cortical or natural steep back and unidirectional or bidirectional scars 

 B8 Blades with a lateral and distal cortical edge (less than 50% of cortex) 

 B9 Blades with centripetal dorsal scars on one side only 

 B10 Blades with a cortical or natural steep back and distal cortical edge 

 B11 Plunging blades of type B4 + B6 (blades with a lateral cortical edge and plunging on 
a cortical end) 

 B12 Plunging blades of type B4 + B7 (blades with a cortical steep back and plunging on 
a cortical end) 

 B13 Plunging blade of type B3 + B6 (blades with a lateral cortical edge and plunging on 
a portion of the opposite striking platform) 

 B14 Plunging blade of type B3 + B7 (blades with a cortical steep back and plunging on a 
portion of the opposite striking platform) 

C: Core maintenance blades 

 C1 Crested blade of second generation (crest along the midline of the blade) 

 C2 Crested blade of second generation (crest in lateral position) 
D: Other 

 D1 Generic crested blades (that cannot be classed as first or second generation) 

 D2 Blades that fall outside any of the listed category 
E: Indeterminate blades 

 E1 Unclassifiable pieces as a result of damage, breakage or irregular raw material 
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List of criteria used to diagnose the percussion technique (cf. Fig. 3) (modified 

after Soriano et al. 2007: Table 6) 

Morphometric attributes 

 Width (1-3 mm, 3-5 mm and > 5 mm) and thickness (< 1 mm, 1-2 mm, 2-5 mm and > 5 
mm) by class 

 Exterior platform angle 
Attributes associated with platform preparation 

 Presence of cortex on the platform 

 Platform preparation: none (plain); faceted (bulb negatives are present); residual faceting 
(ridges, but no bulb negatives); absent (broken platform, reduced to an edge); other; 
indeterminate 

 Nature of preparation toward the flaking surface (Fig. 3, A): none (A1); trimming of the 
platform edge by very short hinged removals; (A2); reduction of the overhang by small 
removals following scar ridges (A3); lateral notching (making the point of impact more 
prominent by lateral removals (A4); other; indeterminate 

 Intensity of platform abrasion: none; slight (hardly visible to the naked eye); high; very 
high (the abrasion covers nearly the entire platform); indeterminate 

Attributes associated with the application of force, percussion movement and the kind of hammer 

 Expression and location of the fracture initiation point: non-expressed; expressed and 
centred on the platform; expressed and lateralized on the platform; indeterminate 

 Delineation of the platform on the ventral face (Fig. 3, B): regular curve (B1); curved and 
overhanging from the point of impact but without a break in the delineation (B2); curved 
and overhanging from the point of impact with a break in the delineation (B3); double-
curved with two points of contact (B4); rectilinear (B5); irregular (B6); indeterminate; other 

 Presence of fissuring on the platform and intensity (Fig. 3, C): none; total or nearly total 
circular fissuring at the point of impact (C3); accurate partial fissuring (C2); contoured 
Hertzian cone (C4); other; indeterminate 

 Specific marks: closely spaced, fine ripples on the ventral face; siret (longitudinal split) 
break; split or shattered bulb (Fig. 3, C1); other; indeterminate 

 Bulb attributes: absent, small or large lip; absent, diffuse or pronounced bulb; other; 
indeterminate 

 Platform morphology (Fig. 3D): punctiform (D1); narrow linear (D2); oval/triangular (D3); 
lunate (D4); quadrangular or wide trapezoidal (D5); other; indeterminate 
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APPENDIX 2: DIACRITICAL SCHEMATA OF CORE SAMPLE 

 

CERAMIC PHASE CORES  

Co

re 128 

Co

re 177 

Co

re 191, bladelet core fragment 
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Co

re 619, bladelet core fragment 

Core 102, bipolar 

Core 104, bipolar incomplete  
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Core 107, bipolar incomplete 

Core 134, bipolar incomplete 

Core 424, bipolar incomplete 
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Core 478, bipolar incomplete 

Core 484, bipolar incomplete 

Core 596, bipolar 
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Core 765, bipolar incomplete 

Core 766, bipolar incomplete 

Core 769, bipolar incomplete 
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Core 785, bipolar incomplete 

Core 799, bipolar incomplete 

 

PRE-CERAMIC PHASE CORES 

Core 243 
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Core 390 

Core 906 

Core 666, bipolar incomplete 
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APPENDIX 3: pXRF TRACE ELEMENT DATA 

 

The following are the numerical results obtained from pXRF analysis of the trace 

elements in both the geological (GEO) and archaeological (ARCH) chert samples. 

The results are graphically represented as a dendrogram in Fig. 4.2 

Number Type Label Units Ba Sr Pb Mn V Ti 

1 ARCH 244 % 0.012 < LOD < LOD < LOD < LOD 0.002 

2 ARCH 875 % < LOD < LOD < LOD < LOD < LOD < LOD 

3 ARCH 543 % < LOD < LOD < LOD < LOD < LOD < LOD 

4 ARCH 161 % < LOD < LOD < LOD < LOD < LOD < LOD 

5 ARCH 113 % < LOD < LOD < LOD < LOD < LOD < LOD 

6 ARCH 501 % 0.017 < LOD < LOD < LOD < LOD 0.003 

7 ARCH 647 % < LOD < LOD < LOD < LOD < LOD < LOD 

8 ARCH 384 % < LOD < LOD < LOD < LOD < LOD < LOD 

9 ARCH 803 % 0.011 < LOD < LOD < LOD < LOD 0.002 

10 ARCH 955 % < LOD < LOD < LOD < LOD < LOD < LOD 

11 ARCH 945 % < LOD < LOD < LOD < LOD < LOD 0.002 

12 ARCH 289 % < LOD < LOD < LOD < LOD < LOD < LOD 

13 ARCH 713 % < LOD < LOD < LOD < LOD < LOD 0.003 

14 ARCH 849 % < LOD < LOD < LOD < LOD < LOD 0.003 

15 ARCH 473 % 0.01 < LOD < LOD < LOD < LOD 0.002 

16 ARCH 298 % < LOD < LOD < LOD < LOD < LOD < LOD 

17 ARCH 845 % 0.008 < LOD < LOD < LOD < LOD 0.003 

18 ARCH 642 % 0.004 < LOD < LOD < LOD < LOD < LOD 

19 ARCH 117 % < LOD < LOD < LOD < LOD < LOD 0.003 

20 ARCH 695 % < LOD < LOD < LOD < LOD < LOD 0.003 

21 ARCH 683 % 0.007 < LOD < LOD < LOD < LOD 0.005 

22 ARCH 550 % 0.017 < LOD < LOD < LOD < LOD 0.004 
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23 ARCH 889 % < LOD < LOD < LOD < LOD < LOD 0.005 

24 ARCH 280 % < LOD < LOD < LOD < LOD < LOD 0.016 

25 ARCH 944 % < LOD < LOD < LOD < LOD < LOD 0.003 

26 ARCH 536 % < LOD < LOD < LOD < LOD < LOD 0.005 

27 ARCH 848 % < LOD < LOD < LOD < LOD < LOD 0.006 

28 ARCH 853 % 0.016 < LOD < LOD < LOD < LOD 0.01 

29 ARCH 694 % < LOD < LOD < LOD < LOD < LOD 0.008 

30 ARCH 503 % 0.017 < LOD < LOD < LOD < LOD 0.023 

31 ARCH 767 % 0.009 < LOD < LOD < LOD < LOD 0.011 

32 ARCH 953 % 0.018 < LOD < LOD < LOD < LOD 0.017 

33 ARCH 541 % 0.011 < LOD < LOD < LOD < LOD 0.016 

34 GEO 1 % 0.016 < LOD < LOD < LOD < LOD < LOD 

35 GEO 10010 % 0.012 < LOD < LOD < LOD < LOD < LOD 

36 GEO 1009a % 0.017 < LOD < LOD 0.009 < LOD < LOD 

37 GEO 4006a % 0.015 < LOD < LOD < LOD < LOD < LOD 

38 GEO 3006 % 0.017 < LOD < LOD < LOD < LOD 0.041 

39 GEO 5009 % 0.015 < LOD < LOD < LOD < LOD < LOD 

40 GEO 3009 % 0.018 < LOD < LOD < LOD < LOD < LOD 

41 GEO 2006 % 0.012 < LOD < LOD < LOD < LOD < LOD 

42 GEO 1003 % 0.018 0.002 < LOD < LOD < LOD 0.028 

43 GEO 2010 % 0.015 < LOD < LOD < LOD < LOD < LOD 

44 GEO 4009 % 0.019 < LOD < LOD 0.119 < LOD < LOD 

45 GEO 1009b % 0.012 < LOD < LOD < LOD < LOD < LOD 

46 GEO 1010 % 0.006 < LOD < LOD < LOD < LOD < LOD 

47 GEO 2002 % 0.017 < LOD < LOD < LOD < LOD < LOD 

48 GEO 3010 % 0.016 < LOD < LOD < LOD < LOD < LOD 

49 GEO 5010 % 0.016 < LOD < LOD < LOD < LOD < LOD 

50 GEO 4006b % 0.005 < LOD < LOD < LOD < LOD 0.003 

51 GEO 1008 % 0.005 < LOD < LOD < LOD < LOD < LOD 
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52 GEO 3002 % 0.019 < LOD < LOD < LOD < LOD 0.016 

53 GEO 6010 % 0.016 < LOD < LOD < LOD < LOD 0.005 

54 GEO 2003 % 0.016 < LOD < LOD < LOD 0.012 0.005 

55 GEO 1008b % 0.02 < LOD < LOD < LOD < LOD 0.018 

56 GEO 9010 % 0.088 0.015 0.004 < LOD 0.005 0.008 

57 GEO 1002 % 0.018 < LOD < LOD < LOD < LOD 0.023 

58 GEO 5002 % 0.015 < LOD < LOD < LOD < LOD 0.011 

59 GEO 4002 % 0.016 < LOD < LOD < LOD < LOD 0.01 

60 GEO 4010 % 0.015 < LOD < LOD < LOD < LOD 0.005 

61 GEO 2002 % 0.015 < LOD < LOD < LOD < LOD 0.017 

62 GEO 7010 % 0.014 < LOD < LOD < LOD < LOD 0.006 

63 GEO 1006 % 0.016 < LOD < LOD 0.02 < LOD 0.015 

64 GEO 8010 % 0.016 < LOD < LOD < LOD < LOD 0.005 

65 GEO 11010 % 0.016 < LOD < LOD < LOD < LOD 0.003 
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