
Symmetry Properties for First Integrals

K S Mahomed

A PhD thesis submitted to the Faculty of Science, University of the Witwatersrand,

Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy,

July 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39675433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

This is the study of Lie algebraic properties of first integrals of scalar second-, third-

and higher-order ordinary differential equations (ODEs). The Lie algebraic classifi-

cation of such differential equations is now well-known from the works of Lie [10] as

well as recently Mahomed and Leach [19]. However, the algebraic properties of first

integrals are not known except in the maximal cases for the basic first integrals and

some of their quotients. Here our intention is to investigate the complete problem for

scalar second-order and maximal symmetry classes of higher-order ODEs using Lie

algebras and Lie symmetry methods. We invoke the realizations of low-dimensional

Lie algebras.

Symmetries of the fundamental first integrals for scalar second-order ODEs which are

linear or linearizable by point transformations have already been obtained. Firstly we

show how one can determine the relationship between the point symmetries and the

first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete

classification of point symmetries of first integrals of such linear ODEs is studied. As a

consequence, we provide a counting theorem for the point symmetries of first integrals

of scalar linearizable second-order ODEs. We show that there exists the 0, 1, 2 or 3
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point symmetry cases. It is proved that the maximal algebra case is unique.

By use of Lie symmetry group methods we further analyze the relationship between the

first integrals of the simplest linear third-order ODEs and their point symmetries. It

is well-known that there are three classes of linear third-order ODEs for maximal and

submaximal cases of point symmetries which are 4, 5 and 7. The simplest scalar linear

third-order equation has seven point symmetries. We obtain the classifying relation

between the symmetry and the first integral for the simplest equation. It is shown

that the maximal Lie algebra of a first integral for the simplest equation y′′′ = 0 is

unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest

linear third-order equation is generated by the symmetries of the two basic integrals.

We also obtain counting theorems of the symmetry properties of the first integrals for

such linear third-order ODEs of maximal type. Furthermore, we provide insights into

the manner in which one can generate the full Lie algebra of higher-order ODEs of

maximal symmetry from two of their basic integrals.

The relationship between first integrals of sub-maximal linearizable third-order ODEs

and their symmetries are investigated as well. All scalar linearizable third-order e-

quations can be reduced to three classes by point transformations. We obtain the

classifying relations between the symmetries and the first integral for sub-maximal

cases of linear third-order ODEs. It is known, from the above, that the maximum Lie

algebra of the first integral is achieved for the simplest equation. We show that for

the other two classes they are not unique. We also obtain counting theorems of the

symmetry properties of the first integrals for these classes of linear third-order ODEs.

For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0,

1, 2 and 3 symmetries and for the 4 symmetry class of linear third-order ODEs they
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are 0, 1 and 2 symmetries respectively. In the case of sub-maximal linear higher-order

ODEs, we show that their full Lie algebras can be generated by the subalgebras of

certain basic integrals. For the n+ 2 symmetry class, the symmetries of the first inte-

gral I2 and a two-dimensional subalgebra of I1 generate the symmetry algebra and for

the n+ 1 symmetry class, the full algebra is generated by the symmetries of I1 and a

two-dimensional subalgebra of the quotient I3/I2.

Finally, we completely classify the first integrals of scalar nonlinear second-order ODEs

in terms of their Lie point symmetries. This is performed by first obtaining the classi-

fying relations between point symmetries and first integrals of scalar nonlinear second-

order equations which admit 1, 2 and 3 point symmetries. We show that the maximum

number of symmetries admitted by any first integral of a scalar second-order nonlinear

(which is not linearizable by point transformation) ODE is one which in turn provides

reduction to quadratures of the underlying dynamical equation. We provide physical

examples of the generalized Emden-Fowler, Lane-Emden and modified Emden equa-

tions.
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Chapter 1

Introduction

First integrals of ordinary differential equations (ODEs) are quite an active and inter-

esting area of research at the present time. Whenever one is dealing with differential

equations and especially with their solutions, one has to invariably deal with first inte-

grals. In fact, they are in general the first primary steps towards finding the reduction

and solutions of ordinary differential equations. First integrals have great importance

in classical mechanics as it deals with second-order systems of equations and conserved

quantities of the motion such as energy and momentum. There have been several con-

tributions in the search for first integrals of many equations from applications such as

the Emden-Fowler equation and its various generalizations, the Kepler problem and

the Ermakov systems [1, 2, 3, 4]. In the context of applications such as in mechanics,

first integrals are often referred to as constants of the motion. Sometimes they are even

called exact invariants. Moreover, essential studies in the theoretical development of

first integrals have also been made over the years. These can be accessed in several
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textbooks and papers (see e.g., [5, 6, 7, 8, 9]).

Lie theory was initiated by the great Norwegian mathematician Marius Sophus Lie

(see, e.g., [10, 11, 12]). Since the publications of his landmark works on the theory

and applications of continuous groups to differential equations, several important areas

in the vast field of differential equations have opened. Many of these are becoming well-

known with continually increasing appeal. Some classical works on the subject have

been contributed in monographs and books by Ovsiannikov [13], Olver [5], Stephani

[14], Ibragimov [15] and Bluman and Anco [16]. An essential advantage of Lie theory

is that it applies to both linear and non-linear problems. It provides a unification

of the many ad hoc methods that exist for the reduction and solution of differential

equations. This is the prime reason for its attraction and attention in recent decades.

However, there are some differential equations that do not admit Lie symmetries and

in those cases a generalization of Lie’s theory have also proved successful (see e.g.

[17]).

Another important aspect in the area of Lie theory and its applications is first integrals.

The most basic approach in the calculation of first integrals is the direct method.

This has been extensively used. There are other common approaches too, viz. the

characteristic or multiplier method, the variational derivative approach, the celebrated

Noether theorem, the partial Noether theorem and the method of adding a symmetry

condition with the direct method [6, 7, 8, 9]. In the last three approaches symmetry

and operators become of great utility. We utilize symmetries in our study of first

integrals.

The existence for the maximum number of symmetries for scalar nth-order ODEs
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were investigated by Lie [10] (see, e.g. Mahomed [18]). Lie showed that scalar first-

order ODEs have infinite number of point symmetries. In the case of scalar second-

order ODEs, Lie proved that the maximum is eight and this is achieved by the free

particle and indeed linearizable by point transformation equations. In a recent work

by Mahomed and Leach [19], they discovered the symmetries of the maximal cases of

scalar linear nth-order ODEs, n ≥ 3. These cases are n+ 1, n+ 2 and n+ 4. Thus for

scalar linear third-order equations these corresponds to 4, 5 and 7 symmetries. There

is yet another contribution by Leach and Mahomed [20], in which they have found that

the Lie algebra of the fundamental first integrals and their quotient of scalar linear

second-order ODEs are three-dimensional and have very interesting properties. This

also applies to linearizable by invertible transformations second-order ODEs which

are given as examples in their paper. So far, none of these authors consider the

classification of the symmetries of first integrals of scalar linear nth-order ODEs, n ≥

1, nor even investigate what could be the maximal numbers of symmetries for the

first integrals of these linear or linearizable equations. They do however give insights

into the algebraic structure of the fundamental first integrals and in some cases their

quotients.

Govinder and Leach [21] provided the algebraic structure of the basic first integrals

for scalar third-order linear ODEs. They showed that the three equivalence classes

each has certain first integrals with a specific number of point symmetries. They

followed on the initial investigation of Leach and Mahomed [20] who considered the

point symmetries of the basic first integrals of linear second-order ODEs. Then in

the work [22] Flessas et al. attempted the symmetry structure for the first integrals

of higher-order equations of maximal symmetry. However, this is incomplete. We

extend this study and provide a complete analysis on the Lie point symmetries and
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first integrals for the simplest third-order ODE including the maximal algebra case.

Algebraic properties of first integrals have been pursued as mentioned in recent works

[23, 21, 22, 20]. The first integrals of the free particle equation have remarkable

Lie algebraic properties [20]. Since this initial work, other authors [23, 21, 22] have

studied the symmetry properties of first integrals of second- and higher-order ODEs

which possess maximal symmetry. A few nonlinear equations were considered too.

In this thesis we wish to systematically analyze the Lie algebraic properties of first

integrals of second-order linear and nonlinear ODEs as well as third-order and higher-

order ODEs of maximal and submaximal symmetry. The Lie algebraic classification

of such equations is well-known [18, 24, 25, 19].

In chapter 2 we briefly present the notation as well as an overview of the common

approaches utilized for the construction of first integrals of scalar ODEs.

In chapter 3 we give the complete classification of point symmetries for the first inte-

grals of scalar linear second-order ODEs and the relationship between the symmetries

and first integrals. For this purpose we use the projective transformations to find the

different cases of symmetries for the first integrals of scalar second-order ODEs which

are linear or linearizable by point transformations. Since all scalar second-order ODEs

which are linear or linearizable by point transformations are transformable to the free

particle equation [10], we utilize this as our base ODE. We find that there are: the 0

symmetry, 1 symmetry, 2 symmetry and unique 3 symmetry cases.

Then in chapter 4 we investigate the Lie algebraic properties of first integrals of scalar

linear third-order ODEs of the maximal class which is represented by y′′′ = 0. We

remind the reader that for the simplest class there has been some analysis made
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in Flessas et al. [23]. This is in regards to the maximal algebra possessed by an

integral of y′′′ = 0 which is listed in Table 4.1, chapter 4 of this thesis. However,

this is incomplete. We extend this study and provide a complete analysis of the Lie

point symmetries and first integrals for the simplest third-order ODE including the

maximal algebra case. We firstly deduce the classifying relation between the point

symmetries and first integrals for this simple class. Then we use this to study the

point symmetry properties of the first integrals of y′′′ = 0 which also represents all

linearizable by point transformations third-order ODEs that reduce to this class. We

begin by noting the condition for symmetries of the first integrals of scalar linear

ODEs of order one. Then for completeness we review briefly the results of chapter 3

which discusses the relationship between the point symmetries of the first integrals of

scalar linear second-order ODEs. These two cases are shown to be distinct in terms

of their algebraic properties of their integrals when compared to higher-order ODEs

of maximal symmetry.

Chapter 5 commences with the classifying relation between the point symmetries and

first integrals for the submaximal classes of scalar linear third-order equations. Then by

using this we find the point symmetry properties of the first integrals of the submaximal

classes of third-order equations y′′′ − y′ = 0 and y′′′ + f(x)y′′ − y′ − f(x)y = 0 which

also represent all linearizable by point transformations third-order ODEs that reduce

to these classes. We obtain counting theorems for the number of point symmetries

possessed by an integral of such equations. Noteworthy is that the maximal algebra

is not unique. In the next section of this chapter, we study the point symmetry

properties of the integrals of the 4 symmetry class represented by y′′′ − y′ = 0. We

remind the reader under what conditions point symmetries of first integrals of scalar

linear third-order ODEs exist (see chapter 4). Then in Section 5.3 we analyze the
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class y′′′+ f(x)y′′− y′− f(x)y = 0 which has four point symmetries for the symmetry

structure of its first integrals. In Section 5.4 we focus on the generation of the full

algebra by subalgebras of certain basic integrals.

In chapter 6 we obtain the complete classification of the first integrals of scalar non-

linear second-order ODEs in terms of their symmetry algebras. It is shown in chapter

3 that the maximum symmetry algebra admitted by a first integral of linearizable

second-order ODEs is three. We also obtain a counting theorem which gives the inter-

esting result that a first integral of a scalar second-order linearizable ODE can have

0, 1, 2 or 3 point symmetries. In this chapter we provide an extension of these and

focus our attention on scalar nonlinear second-order ODEs which admit 1, 2 or 3 sym-

metries. We use the result [10] of Lie who classified all scalar second-order ODEs in

terms of their point symmetries.

Finally, in chapter 7 we present our conclusion and mention some open problems too.



Chapter 2

Mathematical Preliminaries: First

Integrals

This chapter presents the notation and results that are used for the rest of the the-

sis. An overview of different methods for the construction of first integrals of ODEs

is given. The most basic approach in the calculation of first integrals is the direct

method which is presented in the first part of this chapter. A brief review of other

common approaches are discussed in the remaining parts. These approaches are: the

characteristic or multiplier method, the variational derivative approach, the celebrated

Noether theorem, the partial Noether theorem and the method of adding a symmetry

condition with the direct method [6, 7, 8, 9].

7
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2.1 Algebraic Properties of First Integrals

First integrals are important in the reduction and solution of ODEs. There have

been several contributions in the search for first integrals of many equations from

applications such as the Emden-Fowler equation, the Kepler problem, and the Ermakov

systems [1, 2, 3, 4]. In the context of applications such as in classical mechanics, first

integrals are often referred to as constants of the motion. Sometimes they are even

called exact invariants. Moreover, essential studies in the theoretical development of

algebraic properties of first integrals have also been made over the years. These can

be accessed in textbooks and papers (see, e.g. [5, 6, 7, 8, 9]).

Algebraic properties of first integrals of paradigm ODEs have been pursued in recent

works [23, 21, 22, 20]. The first integrals of the free particle equation have remarkable

Lie algebraic properties [20]. Since this initial work, other authors [23, 21, 22] have

studied the symmetry properties of the fundamental first integrals of higher-order

ODEs which possess maximal symmetry. A few nonlinear equations were considered

too.

In this thesis we wish to systematically analyze the Lie algebraic properties of first

integrals of second- and higher-order ODEs of maximal symmetry. The Lie algebra-

ic classification of such equations are now well-known [24, 25, 19, 18]. However, the

algebraic properties of first integrals are not known except in the maximal cases and

those of the fundamental first integrals as pointed out earlier. Here our intention is

to investigate the complete problem for second- and higher-order ODEs with maxi-

mal symmetry using Lie algebras and Lie symmetry techniques. We also invoke the

realizations of low-dimensional Lie algebras when needed in chapters 3 and 4.
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2.2 Main Problems

We investigate the Lie algebraic properties of first integrals of scalar second-order and

linearizable third- and higher-order ODEs. The Lie algorithm is used to calculate the

symmetries of first integrals (see [6] and below for an example). We then obtain a

classification of the symmetries of first integrals of such equations. The symmetries

form a Lie algebra (which is a subalgebra of the equation [7]). The classification of

low-dimensional Lie algebras into different types is well-known (see e.g. [25, 18]). We

use this to achieve our goal for second-order ODEs and the maximal symmetry case

of the third-order ODE. In the cases of submaxiaml symmetry classes of second- and

higher-order ODEs, we invoke optimal systems of Lie algebras.

As an example, for the first integral I = y′ of the free particle equation y′′ = 0, the

point symmetries of I (see below) span the three-dimensional Lie algebra A3,3 (see

[20]). We use another notation for the algebra that will be encountered in the next

chapter.

Now we mention the common approaches to construct first integrals of scalar ODEs.

2.3 Direct Method

Consider the scalar nth-order (n ≥ 2) ODE

y(n) = F (x, y, y′, . . . , y(n−1)), (2.1)
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where y(i) = diy/dxi. A first integral of equation (2.1) is a differential function I ∈ A

which satisfies the equation

dI

dx
= 0,

d

dx
=

∂

∂x
+ y′

∂

∂y
+ · · ·+ y(n)

∂

∂y(n−1)
, (2.2)

for all solutions of the equation (2.1). Equation (2.2) is referred to as the conservation

law of the ODE (2.1). If one uses the form (2.2) to construct the first integrals I, then

this is called the direct method. The solution using this approach is quite complicated

for many equations, especially nonlinear.

2.4 Characteristic or Multiplier Method

One can write the conservation law in the form

dI

dx
= Q(y(n) − F (x, y, y′, . . . , y(n−1))), (2.3)

in which Q ∈ A is the characteristic or multiplier. Equation (2.3) is referred to as the

characteristic form of the conservation law (2.2). In this manner one can obtain the

first integrals I by first computing the multipliers Q. This gives another approach for

the calculation of first integrals.

2.5 Variational Derivative Method

If we take the variational derivative δ/δy of (2.3), then we have

δ

δy
Q
(
y(n) − F (x, y, y′, . . . , y(n−1))

)
= 0, (2.4)
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where the variational derivative is defined as

δ

δy
=

∂

∂y
+
∑
s≥1

(− d

dx
)s

∂

∂y(s)
. (2.5)

In this form (2.4), one calculates the characteristics Q first and then tries to deduce

the first integrals.

2.6 The Noether Theorem

Yet another approach is the classical Noether theorem which applies for even order

ODEs (2.1) when they have Lagrangian formulations. If equation (2.1), of order

n = 2k, admits a Lagrangian L ∈ A, then it can be written as the Euler-Lagrange

ODE
δL

δy
= 0, (2.6)

where δ/δy is the variational derivative as defined in (2.5).

Suppose that

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(2.7)

is a generator of Noether point symmetry of the Lagrangian L(x, y, . . . , y(k)), i.e.

X [k]L+Dx(ξ)L = DxB, (2.8)

is satisfied, where Dx = d/dx, B ∈ A is the gauge term and X [k] is the kth prolongation

of X given by

X [k] = X +
k∑
i=1

ζi
∂

∂y(i)
, (2.9)
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in which

ζ1 = Dx(η)− y′Dx(ξ),

ζi = Dx(ζi−1)− y(i)Dx(ξ), i = 2, . . . , k. (2.10)

Then the Noether first integral is given by (Noether’s theorem)

I = B −N(L), (2.11)

where N is the Noether operator

N = ξ +W
δ

δy′
+

k−1∑
s=1

Ds
x(W )

δ

δy(s+1)
. (2.12)

Here W = η− ξy′ is the Lie characteristic function and the variational derivatives are

obtained from (2.5) by replacing y by the required derivatives.

2.7 The Partial Noether Theorem

The partial Noether theorem also has first integral as in (2.11). However, the deter-

mining equations (2.8) has the extra term W δL
δy

in it as δL
δy
6= 0 (see [8]). That is we

have

X [k]L+Dx(ξ)L = W
δL

δy
+DxB, (2.13)
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2.8 Adding a Symmetry Condition to the Direct

Method

Another approach is that of adding a symmetry condition to the direct method. So

one has in addition

X [p](I) = 0, (2.14)

in which p is the order of the integral.

We will use this condition (2.14) to classify first integrals according to their symmetry

properties in this thesis. As an example, consider the first integral I = y′ of the free

particle equation y′′ = 0. Upon using (2.14) we arrive at

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
. (2.15)

The algebraic properties of such first integrals were investigated in [20]. This was

for equations having maximal symmetry. The question arises as to what happens for

submaximal cases?

We now commence our study on the symmetry classification of the first integrals of

second- and maximal symmetry classes of higher-order ODEs in terms of the algebras

they admit. In chapter 3 we begin with the symmetries of first integrals for scalar

second-order ODEs which are linearizable by point transformations. Then in chapters

4 and 5 we investigate the symmetry structures of first integrals of third-order ODEs for

the maximal and submaximal symmetry cases. In chapter 6 our focus turns to scalar

nonlinear second-order ODEs and the symmetry classification of first integrals that

they possess. We also comment on the symmetries of first integrals for higher-order

linear ODEs. Chapter 7 deals with concluding remarks and some open questions.



Chapter 3

Symmetry Classification of First

Integrals for Scalar Linearizable

Second-Order ODEs

3.1 Introduction

This chapter gives the complete classification of point symmetries for the first integrals

of scalar linear second-order ODEs and the relationship between the symmetries and

first integrals. For this purpose we use the projective transformations to find the

different cases of symmetries for the first integrals of scalar second-order ODEs which

are linear or linearizable by point transformations. Since all scalar second-order ODEs

which are linear or linearizable by point transformations are transformable to the

14



15

free particle equation, we utilize this as our base ODE. We find that there are: the

no symmetry, one symmetry, two symmetry and unique three symmetry cases. This

chapter constitutes new work which we have published in [26].

It is well-known that the second-order ODE (see e.g. [14])

E(x, y, y′, y′′) = 0 (3.1)

is invariant under the infinitesimal generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(3.2)

if and only if

X [2]E|E=0 = 0, (3.3)

where

X [2] = X + ζ1
∂

∂y′
+ ζ2

∂

∂y′′
, (3.4)

with (see prolongation formula in section 2.6)

ζ1 = Dx(η)− y′Dx(ξ),

ζ2 = Dx(ζ1)− y′′Dx(ξ) (3.5)

in which Dx is the total differentiation operator, is called the second prolongation of

the generator X.

Now we can say that (3.2) is the point symmetry of (3.1), whereas, in the case of first

integrals, the first integral

I = f(x, y, y′), (3.6)

of the ODE (3.1), is annihilated by X, i.e. (3.2) is the symmetry generator of (3.6) if

and only if (from section 2.8)

X [1]I = 0. (3.7)
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Here X annihilates I and does not leave it invariant as in the case of symmetries of

equations. Note that the procedure for finding symmetries of ODEs is different to that

of finding symmetries of first integrals. In fact the symmetries of the first integrals is

a subalgebra of the symmetries of the equation itself (see Kara and Mahomed [6]).

It is essential to point out that equation (3.1) is linearizable by point transformation

to the free particle equation if and only if it is cubic in the first derivatives as

y′′ = A(x, y)y′3 +B(x, y)y′2 + C(x, y)y′ +D(x, y), (3.8)

where the functions A to D satisfy the invariant conditions (see Tressé [27] and also

[28])

3Axx + 3AxC − 3AyD + 3ACx + Cyy − 6ADy +BCy − 2BBx − 2Bxy = 0,

6AxD − 3ByD + 3ADx +Bxx − 2Cxy − 3BDy + 3Dyy + 2CCy − CBx = 0. (3.9)

As an example we revisit the well-known modified Emden equation which has eight

point symmetries [29]

y′′ + 3yy′ + y3 = 0. (3.10)

This ODE satisfies (3.8) and (3.9) and is reducible to the free particle equation ȳ′′ = 0

via the map (see [29])

x̄ = x− 1

y
, ȳ =

1

2
x2 − x

y
.

Therefore in the sequel we consider the free particle equation as representative of all

linearizable by point transformations scalar second-order ODEs.

In the next section we give the classifying relation for the symmetries of the first

integrals of the free particle equation.
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3.2 Symmetries of the Fundamental First Integrals

We consider the free particle equation

y′′ = 0 (3.11)

which has the maximum number of symmetries, viz. eight given by (we list them here

as we use these in what follows)

X1 =
∂

∂x

X2 =
∂

∂y

X3 = x
∂

∂x

X4 = y
∂

∂y

X5 = x
∂

∂y

X6 = y
∂

∂x

X7 = x2
∂

∂x
+ xy

∂

∂y

X8 = xy
∂

∂x
+ y2

∂

∂y
. (3.12)

It is clear that the free particle equation (3.11) has two functionally independent first

integrals

I1 = y′

I2 = xy′ − y. (3.13)

The first integral (3.13a) has three symmetries [20]

X1 =
∂

∂x
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X2 =
∂

∂y

X3 = x
∂

∂x
+ y

∂

∂y
(3.14)

and (3.13b) also has three symmetries [20]

G1 = x
∂

∂x

G2 = x
∂

∂y

G3 = x2
∂

∂x
+ xy

∂

∂y
. (3.15)

We observe that the symmetries of the first integral of (3.13a) are the same as that

of (3.13b) if we multiply the symmetries of (3.13a) by x which is the multiplier or

characteristic of the free particle equation that results in the integral I2.

Let us see what happens if we find the symmetries of the quotient of the first integrals

(3.13), viz.
I2
I1

= x− y

y′
. (3.16)

As shown in [20], (3.16) possesses three symmetries as well. These are

Y1 = y
∂

∂x

Y2 = y
∂

∂y

Y3 = xy
∂

∂x
+ y2

∂

∂y
(3.17)

which are the same as the symmetries (3.14) if we multiply the symmetries of (3.13a)

by y. However, this is not a multiplier of our equation.

It was demonstrated in the seminal paper [20], that the Lie algebras of the symmetries

of the first integrals I1, I2 and their quotient I2/I1 are isomorphic. Also each triplet
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(3.14), (3.15) and (3.17) can be mapped into the other by a projective transformation.

Furthermore, it was noted in [20] that the three triplets together generate the Lie

algebra sl(3, R) of the free particle equation.

3.3 Classifying Relation for the Symmetries

We know (see [20]) the symmetries of the functionally independent first integrals I1

and I2 or their quotient of the free particle equations. These we briefly reviewed and

commented on in the previous section. Now the question arises if we want to know the

symmetry properties of say the product I1I2. We then need to compute them from

first principles by using the symmetry condition. Instead of doing this each time from

the beginning principles, can one obtain the relationship between the symmetries and

first integrals? This is what we do here. The benefit of having such a relation enables

us to also classify the first integrals of the free particle equation in terms of their point

symmetries.

Let then F be an arbitrary function of I1 and I2, viz. F = F (I1, I2). The symmetry

of this general function of the first integrals is

X [1]F = X [1]I1
∂F

∂I1
+X [1]I2

∂F

∂I2
= 0, (3.18)

where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
]y′ = ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
](xy′ − y) = ξy′ + xζx − η. (3.19)
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Now ξ, η and ζx are

ξ = a1 + xa3 + ya6 + x2a7 + xya8

η = a2 + ya4 + xa5 + xya7 + y2a8

ζx = −y′a3 + y′a4 + a5 − y′2a6 + (y − xy′)a7 + (yy′ − xy′2)a8. (3.20)

These are the coefficients of X [1] which are obtained by setting

X [1] =
8∑
i=1

aiX
[1]
i (3.21)

where Xis are the free particle symmetries as given in (3.12) and the ais are con-

stants. The reason for this is that the symmetries of the first integrals are always the

symmetries of the free particle equation (see [6, 7]).

After substituting the values of X [1]I1, X
[1]I2 as in (3.19), with ξ, η and ζx as in (3.20),

in equation (3.18), we get after some calculations

[−y′a3 + y′a4 + a5 − y′2a6 + (y − xy′)a7 + (yy′ − xy′2)a8]
∂F

∂I1
+[(a1 + xa3 + ya6 + x2a7 + xya8)y

′

+(−y′a3 + y′a4 + a5 − y′2a6 + (y − xy′)a7 + (yy′ − xy′2)a8)x

−(a2 + ya4 + xa5 + xya7 + y2a8)]
∂F

∂I2
= 0, (3.22)

Then by using the relations I1 = y′ and I2 = xy′ − y from (3.13), we finally arrive at

the classifying relation

(−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8)
∂F

∂I1

+(I1a1 − a2 + I2a4 − I1I2a6 − I22a8)
∂F

∂I2
= 0. (3.23)

The relation (3.23) provides the relationship between the symmetries and first integrals

of the free particle equation. We remind the reader that any symmetry of a first integral
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of the free particle equation is contained in the condition (3.23). We use this to classify

the first integrals according to their symmetries.

3.4 Symmetry Structure of First Integrals

We invoke the classifying relation (3.23) to establish the number of symmetries pos-

sessed by the first integrals of the free particle equation.

There arise four cases.

Case 1. No symmetry.

If F is any arbitrary function of I1 and I2, then FI1 and FI2 are not related to each

other. In this case we have from (3.23) that

−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8 = 0, (3.24)

and

I1a1 − a2 + I2a4 − I1I2a6 − I22a8 = 0. (3.25)

It is easy to see from (3.24) and (3.25) that all the a’s are zero. Therefore there exists

no symmetry for this case.

As an illustrative example, if we take F = I1 ln I2, then equation (3.23) yields

(−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8)I2 ln I2

+(I1a1 − a2 + I2a4 − I1I2a6 − I22a8)I1 = 0. (3.26)

This straightforwardly results in all the a’s being zero.
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The results here are quite unexpected and surprising. One will not have imagined a

zero symmetry case for a first integral of the simplest equation! The consequence of

this is as follows.

If we set the first integral to be a constant as in the example, we have

y′ ln(xy′ − y) = C. (3.27)

To integrate this kind of messy integral (3.27) and find the solution of the free particle

equation from it is not easy. But this difficulty is avoidable. One does not usually

obtain complicated first integral such as (3.27) in ones computation in the first place

by using the approaches such as the direct method, Noether’s theorem, multiplier

approach etc. (see chapter 2 for these methods).

Case 2. One Symmetry.

Firstly we notice that if F satisfies the classifying relation (3.23), then X which is

a linear combination of the free particle generators, is a symmetry of this classifying

relation. We also observe from (3.23) that if one has any of the free symmetry genera-

tors Xi as a symmetry of a first integral of the equation, then one ends up with three

symmetries! That is one can have more than one symmetry.

Say if we take a2 arbitrary, i.e. X = ∂/∂y, then (3.23) yields (since ∂F/∂I2 = 0 and

∂F/∂I1 6= 0)

−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8 = 0,

which in turn implies that a1 is arbitrary and a3 = a4 as well. Thus we get more than

one symmetry.
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We in fact arrive at the three symmetries given in (3.14). The same applies for the

other symmetries taken one at a time.

However, we do have several cases when exactly one symmetry occurs.

If we take F = I1I2 or any function of the product, then the relation (3.23) gives rise

to exactly the symmetry

X = 2x
∂

∂x
+ y

∂

∂y
. (3.28)

If we let F = exp(I21I2), then (3.23) results in only

X = 3x
∂

∂x
+ 2y

∂

∂y
. (3.29)

As another simple example, if we set F = I1 exp(−I2), then (3.23) implies the one

symmetry

X = x
∂

∂x
+

∂

∂y
. (3.30)

As a matter of interest there are infinitely many one symmetry cases.

To see this we consider the first integral

F =
1

2
I21 − aI2, a 6= 0. (3.31)

The relation (3.23) then yields

(−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8)I1

+(I1a1 − a2 + I2a4 − I1I2a6 − I22a8)(−a) = 0. (3.32)

Separation with respect to powers of I1 and I2 gives rise to aa1 = a5. Therefore we

have the parameter dependent symmetry

X = X1 + aX5. (3.33)
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Yet a more complicated one is

X = X1 + aX5 + aX6, a 6= 0. (3.34)

This symmetry is associated with the first integral

F =
(I2a− 1)2

I21a− a
(3.35)

which can be constructed just as before. Similarly, there are many possibilities for one

symmetry.

Therefore the one symmetry case is not unique. Next we discuss the two symmetry

case.

Case 3. Two Symmetries.

We have already seen from Case 2 that the translations in x and y symmetries fur-

ther imply the uniform scaling symmetry. Thus one cannot have two symmetries of

translations alone that are associated with a first integral of the free particle equation.

Likewise the same applies for the translations in y and the uniform scaling symmetries.

Further if we have the symmetries

X =
∂

∂y
and Y = x

∂

∂y

which forms the two-dimensional Abelian algebra, then a2 and a5 are arbitrary in

(3.23). This directly gives

∂F

∂I1
=
∂F

∂I2
= 0,
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and hence no integral. This means that one does not have these type of symmetries

admitted by any first integral of the free particle equation.

The same argument applies if we consider

X =
∂

∂y
and Y = y

∂

∂y

which forms a two-dimensional non-Abelian algebra. Here again this two-dimensional

algebra is not admitted by any integral of the equation.

So when do two symmetries occur for a first integral of the free particle equation?

From the above it is clear that the simple type of symmetry combinations do not form

two symmetries of an integral. Thus there have to be combinations of the symmetries.

One such combination is

X =
∂

∂x
− x ∂

∂x
,

Y =
∂

∂y
− x ∂

∂y
. (3.36)

The Lie algebra formed by (3.36) is two-dimensional with commutator [X, Y ] = −Y .

Here the combination of symmetries means that a3 = −a1 and a5 = −a2. The use of

these in the relation (3.23) forces F to satisfy the one condition

∂F

∂I1
+
∂F

∂I2
= 0, (3.37)

which gives the independent integral

F = I2 − I1. (3.38)

Hence this F admits two symmetries.
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We now look at a case in which at least one of the symmetries has a parameter in it.

This is provided by the operators

X = X1 + aX6, a 6= 0

Y = X2 + aX4. (3.39)

The symmetries (3.39) span a two-dimensional algebra with

[X, Y ] = −aX. (3.40)

Here F is given by

F = a
I2
I1
− 1

I1
. (3.41)

We conclude by saying that the two symmetry case is not unique.

Case 4. Three Symmetry.

We now present a detailed study of possible three-dimensional algebra of symmetries

admitted by first integrals of the free particle equation. Two essential deductions come

out of our analysis. Firstly we show that the three-dimensional algebra admitted by

a first integral is unique. Secondly we prove that three is the maximal dimension

admitted by any integral.

We utilize the realizations of three-dimensional Lie algebras in the real plane given

by Mahomed and Leach [24]. However, we use the notation given in Ibragimov and

Mahomed [25] (see also Mahomed [18]), i.e. Lα3;i, where 3 refers to the dimension of the

algebra, i to the number of the algebra in some given ordering and α is the realization

as an algebra may have more than one realization. For example, LII3;4 denotes the

second realization of the fourth Lie algebra of dimension 3.
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All canonical forms of three-dimensional real Lie algebras in the plane is given in Table

3.1. This is taken from [18].
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Table 3.1

Realizations of three-dimensional algebras in the real plane

p = ∂/∂x and q = ∂/∂y

Algebra Realizations in (x, y) plane

L3;1 X1 = q,X2 = xq,X3 = h(x)q

L3;2 X1 = q,X2 = p,X3 = xq

LI3;3 X1 = q,X2 = p,X3 = xp+ (x+ y)q

LII3;3 X1 = q,X2 = xq,X3 = p+ yq

LI3;4 X1 = p,X2 = q,X3 = xp

LII3;4 X1 = q,X2 = xq,X3 = xp+ yq

LI3;5 X1 = p,X2 = q,X3 = xp+ yq

LII3;5 X1 = q,X2 = xq,X3 = yq

LI3;6 X1 = p,X2 = q,X3 = xp+ ayq, a 6= 0, 1

LII3;6 X1 = q,X2 = xq,X3 = (1− a)xp+ yq, a 6= 0, 1

LI3;7 X1 = p,X2 = q,X3 = (bx+ y)p+ (by − x)q

LII3;7 X1 = xq,X2 = q,X3 = (1 + x2)p+ (x+ b)yq

LI3;8 X1 = q,X2 = xp+ yq,X3 = 2xyp+ y2q

LII3;8 X1 = q,X2 = xp+ yq,X3 = 2xyp+ (y2 − x2)q

LIII3;8 X1 = q,X2 = xp+ yq,X3 = 2xyp+ (y2 + x2)q

LIV3;8 X1 = q,X2 = yq,X3 = y2q

L3;9 X1 = (1 + x2)p+ xyq,X2 = xyp+ (1 + y2)q,

X3 = yp− xq
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Remark 3.1. We point out that the Lie algebras L3;1 and LIV3;8 are not admitted by

any scalar second-order ODE. Hence we do not consider these hereafter (see [24]).

Instead of using the realizations LI3;8, L
II
3;8 and LIII3;8 given in Table 3.1, we use the free

particle generators (see [30])

X1 = p, X2 = xp+
1

2
yq, X3 = x2p+ xyq, (3.42)

X1 = p+ xq, X2 = xp+ 2yq, X3 = 2(x2 − y)p+ 2xyq, (3.43)

X1 = p− xq, X2 = −xp+ 2yq, X3 = 2(x2 + y)p+ 2xyq. (3.44)

Therefore the realizations of three-dimensional algebras given in Table 3.1 by replace-

ment of LI3;8, L
II
3;8 and LIII3;8 by their free particle operators (3.42), (3.43) and (3.44)

above, except L3;1 and LIV3;8, are free particle symmetry generators. We utilize these in

our analysis below.

As L3;1 is not admitted by the free particle equation, we begin with L3;2. We want

this algebra to be admitted by a first integral of the free particle equation. We utilize

the classifying relation (3.23). Therefore a1, a2 and a5 are arbitrary which imply that

F is constant. Hence this algebra is not admitted by any first integral.

The same applies to the algebras LI3;3, L
II
3;3, L

I
3;4, L

II
3;4, L

II
3;5, L

I
3;6, L

II
3;6 L

I
3;7, L

II
3;7 and

LI3;8.

We separately consider the algebra LII3;8. We show that this algebra is not admitted by

an integral as well. For what follows we utilize the free particle representation (3.43).

We find that these operators correspond to a1 = a5, 2a3 = a4 and a6 = −a7. The
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substitution of the latter in the relation (3.23) result in the three conditions on F , viz.

I1
∂F

∂I1
+ 2I2

∂F

∂I2
= 0,

∂F

∂I1
+ I1

∂F

∂I2
= 0,

(I21 − I2)
∂F

∂I1
+ I1I2

∂F

∂I2
= 0. (3.45)

The first two imply that F is constant which satisfy the third. Thus there is no algebra

of this type admitted by a first integral of the free particle equation. The analysis for

LIII3;8 is similar and this algebra too is not admitted.

For L3;9, the operators imply that a6 = −a5, a7 = a1 and a8 = a2, the insertion of

which into the relation (3.23) gives a condition on F with a1, a2 and a5 arbitrary.

Then the result that F must be constant arises. Thus this algebra is not admitted as

well.

In the case of LI3;5 we have that I1 has this algebra. This is precisely the algebra of

the symmetries given in (3.14). We mention that the symmetries given in (3.15) and

(3.17) also form the algebra LI3;5 as a projective transformation (see [20]) maps each

of the representations to the one given in (3.14).

In conclusion, we have that the only three-dimensional algebra admitted by a first

integral of the free particle equation is LI3;5.

We can state the following theorems.

Theorem 3.1. A first integral of the free particle or any scalar linearizable, by point

transformation, second-order ODE admits a three-dimensional algebra if and only if

the algebra is LI3;5.
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The proof follows from the preceding discussion. Also we note that this algebra LI3;5

is admitted by the integrals I1, I2 or I2/I1.

Theorem 3.2. The maximum dimension of the algebra admitted by any first integral

of the free particle or any scalar linearizable, by point transformation, second-order

ODE is three and the algebra is LI3;5.

Proof. A first integral of the free particle or scalar second-order ODE which is lin-

earizable by point transformation, cannot admit a maximal algebra of dimension more

than three since the functionally independent integrals or their quotient has the unique

three-dimensional algebra which corresponds to LI3;5. The other integrals possess lower

dimensional algebras.



Chapter 4

Algebraic Properties of First

Integrals for Scalar Linear

Third-Order ODEs of Maximal

Symmetry

4.1 Introduction

The subject of the present chapter is the investigation of the Lie algebraic properties

of first integrals of scalar linear third-order ODEs of the maximal class which is rep-

resented by y′′′ = 0. We remind the reader that for the simplest class there has been

some analysis made in Flessas et al. [22]. This is in regards to the maximal algebra

32
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possessed by an integral of y′′′ = 0 which is listed in Table II of the paper cited. How-

ever, this is incomplete. We extend this study and provide a complete analysis on the

Lie point symmetries and first integrals for the simplest third-order ODE including

the maximal algebra case. We firstly deduce the classifying relation between the point

symmetries and first integrals for this simple class. Then we use this to study the

point symmetry properties of the first integrals of y′′′ = 0 which also represents all

linearizable by point transformations third-order ODEs that reduce to this class. The

contents of this chapter are original and we have published these in the paper [31].

We begin by noting the condition for symmetries of the first integrals of scalar linear

ODEs of order one. Then for completeness we review briefly the results of the previ-

ous chapter (see also Mahomed and Momoniat [26]) which discusses the relationship

between the point symmetries of the first integrals of scalar linear second-order ODEs.

These two cases are shown to be distinct in terms of their algebraic properties of their

integrals when compared to higher-order ODEs of maximal symmetry.

Linear First-Order Equations

Consider the simplest first-order ODE

y′ = 0. (4.1)

It is easy to see that

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(4.2)

is a point symmetry generator of (4.1) if

X [1]y′|y′=0 = 0, (4.3)
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where as before

X [1] = ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
(4.4)

with

ζx = Dx(η)− y′Dx(ξ), (4.5)

in which Dx is the total differentiation operator and X [1] is the first prolongation of

the generator X. We quickly see that

ηx = 0, η = η(y), (4.6)

where η is an arbitrary function of y. Therefore,

X = ξ(x, y)
∂

∂x
+ η(y)

∂

∂y
. (4.7)

Thus there is an infinite number of point symmetries. We now show that only X =

ξ(x, y)∂/∂x are symmetries of the first integral.

This forms an infinite-dimensional subalgebra of the Lie algebra of the equation (4.1).

Now I = y is a first integral of (4.1). It has point symmetry X as in (4.2) if

XI = 0. (4.8)

This implies thus η = 0 which immediately results in

X = ξ(x, y)
∂

∂x
. (4.9)

There is an infinite number of symmetries of the first integral I = y of (4.1).

Let F be an arbitrary function of I, viz. F = F (I). The symmetry of this general

function of the first integral is

XF = XI
∂F

∂I
= 0. (4.10)
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Therefore X as in (4.9) is a symmetry of I = y and also any function of F (y). Since

any scalar first-order ODE is equivalent to the simplest one (4.1), this means that a

first integral of a nonlinear first-order ODE has infinitely many symmetries too.

As an example we consider the nonlinear first-order Riccati equation

y′ + y2 = 0 (4.11)

the first integral of which is

I =
1

y
− x. (4.12)

A symmetry of the first integral (4.12) is

X =
∂

∂x
− y2 ∂

∂y
. (4.13)

In fact, we have an infinite number of symmetries given by

X = ξ(x, y)(
∂

∂x
− y2 ∂

∂y
), (4.14)

where ξ is an arbitrary function in its arguments.

Therefore we note here that the symmetries of the first integrals of a first-order equa-

tion forms a proper subalgebra of the Lie algebra of the equation itself. We cannot

generate the full algebra as is the case for linear scalar second-order ODEs [20] by use

of the algebra of the basic integral alone.

The symmetries of the first integrals of scalar linear second-order ODEs have interest-

ing properties as we have seen in Chapter 3 (see [20, 26]). The first integrals of such

linear equations can have 0, 1, 2 and the maximum 3 symmetries. The Lie algebra

of the maximum case is unique. Peculiar to such equations is the other remarkable
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property that their Lie algebra is generated by the symmetry properties of the basic

integrals and their quotient [20].

Below we study the symmetry properties of first integral for the simplest scalar linear

third-order ODEs of maximal point symmetry. In the case of the basic first integrals,

the algebraic properties are known from the work [21]. Here we pursue the relationship

between symmetries and first integrals of scalar linear third-order ODEs for the sim-

plest and maximal class. We obtain the classifying relation for this class and invoke

this to arrive at counting theorems and the result on the maximal case of symmetries

of the first integrals.

In the following we look at algebraic properties of first integrals for the seven point

symmetry case by deriving the classifying relation between the symmetries and their

first integrals. We use this relation to arrive at interesting properties which appear for

the first time in the literature.

4.2 Algebraic Properties of the First Integrals of

y′′′ = 0

We consider the simplest third-order ODE

y′′′ = 0 (4.15)

which as is well-known has the seven symmetries (Lie [10] and e.g. [18])

X1 =
∂

∂y
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X2 = x
∂

∂y

X3 = x2
∂

∂y

X4 = y
∂

∂y

X5 =
∂

∂x

X6 = x
∂

∂x
+ y

∂

∂y

X7 = x2
∂

∂x
+ 2xy

∂

∂y
. (4.16)

We have listed the symmetries in the order of the solution symmetries being first, then

the homogeneity symmetry and the remaining three which form the algebra sl(2, R).

This ODE (4.15) also represents all linearizable third-order ODEs reducible to it via

point transformation. The order in which the symmetries appear in (4.16) is used in

what follows. It is obvious that (4.15) has three functionally independent first integrals

I1 = y′′

I2 = xy′′ − y′

I3 =
1

2
x2y′′ − xy′ + y. (4.17)

We use the ordering of the integrals as given in [21]. The first integral (4.17a) has four

symmetries [21]

X1 =
∂

∂x

X2 =
∂

∂y

X3 = x
∂

∂y

X4 = x
∂

∂x
+ 2y

∂

∂y
, (4.18)
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from which we observe that there are two solution symmetries, one translation in x

symmetry and a scaling symmetry. The translation in x symmetry is a subset of the

sl(2, R) symmetries with X4 being a combination of the uniform scaling symmetry

in both variables contained in the sl(2, R) symmetries together with the homogeneity

symmetry. Part of this fact was also noted in [22]. The second first integral (4.17b)

has three symmetries [21]

Y1 =
∂

∂y

Y2 = x2
∂

∂y

Y3 = x
∂

∂x
+ y

∂

∂y
(4.19)

with two solution symmetries and Y3 being part of the sl(2, R) symmetries. The third

first integral (4.17c) also has four symmetries [21]

G1 = x
∂

∂x

G2 = x
∂

∂y

G3 = x2
∂

∂y

G4 = x2
∂

∂x
+ 2xy

∂

∂y
. (4.20)

Again one can see the solution symmetries, scaling and the symmetry G4 which is

contained in the sl(2, R) symmetries. Note further that the symmetries in (4.20) are

found by multiplying those of (4.18) by the factor x. In fact these two sets are equiv-

alent via a point transformation [21]. The other important properties are discussed in

the next section.

Below we obtain the classifying relation.
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Classifying relation for the symmetries and integrals

Now let F be an arbitrary function of the integrals (4.17), I1, I2 and I3, viz.

F = F (I1, I2, I3).

The symmetry of this general function of the first integrals is

X [2]F = X [2]I1
∂F

∂I1
+X [2]I2

∂F

∂I2
+X [2]I3

∂F

∂I3
= 0, (4.21)

where

X [2]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
]y′′

= ζxx

X [2]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](xy′′ − y′)

= ξy′′ − ζx + xζxx

X [2]I3 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](

1

2
x2y′′ − xy′ + y)

= ξ(xy′′ − y′) + η − xζx +
1

2
x2ζxx. (4.22)

The coefficient functions ξ, η, ζx and ζxx are

ξ = a5 + xa6 + x2a7

η = a1 + xa2 + x2a3 + ya4 + ya6 + 2xya7

ζx = a2 + 2xa3 + y′a4 + 2ya7

ζxx = 2a3 + y′′a4 − y′′a6 + (2y′ − 2xy′′)a7. (4.23)

These are obtained by setting

X [2] =
7∑
i=1

aiX
[2]
i , (4.24)
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where the Xi are the symmetry generators as given in (4.16) and the ai are constants.

The reason being that the symmetries of the first integrals are always the symmetries

of the equation (see [6]).

After substitution of the values of X [2]I1, X
[2]I2, X

[2]I3 as in (4.22), with ξ, η, ζx,

ζxx given in (4.23), as well as by use of the first integrals I1 = y′′, I2 = xy′′ − y′,

I3 = 1
2
x2y′′ − xy′ + y in equation (4.21), we arrive at the classifying relation

[2a3 + (a4 − a6)I1 − 2a7I2]
∂F

∂I1

+(−a2 + a4I2 + a5I1 − 2a7I3)
∂F

∂I2

+[a1 + (a4 + a6)I3 + a5I2]
∂F

∂I3
= 0. (4.25)

The relation (4.25) explicitly provides the relationship between the symmetries and

the first integrals of the simple third-order equation (4.15). We invoke this to classify

the first integrals according to their symmetries in what follows.

We use the classifying relation (4.25) to establish the number and property of symme-

tries possessed by the first integrals of the simplest third-order equation (4.15).

There arise five cases. We deal with each below.

Case 1: No symmetry

If F is any arbitrary function of I1, I2 and I3 then FI1 , FI2 and FI3 are not related to

each other. In this case we have from (4.25) that

2a3 + (a4 − a6)I1 − 2a7I2 = 0, (4.26)

−a2 + a4I2 + a5I1 − 2a7I3 = 0, (4.27)
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a1 + (a4 + a6)I3 + a5I2 = 0. (4.28)

It is easy to see from (4.26), (4.27) and (4.28) that all the a’s are zero. Therefore there

exists no symmetry for this case.

As an illustrative example, if we take F = I1I2 ln I3, then equation (4.25) straightfor-

wardly yields

[2a3 + (a4 − a6)I1 − 2a7I2]I2I3 ln I3

+(−a2 + a4I2 + a5I1 − 2a7I3)I1I3 ln I3

+[a1 + (a4 + a6)I3 + a5I2]I1I2 = 0. (4.29)

This easily results in all the a’s being zero.

Case 2: One Symmetry

If F satisfies the relation (4.25), then there exists one symmetry. For the simple

symmetries of (4.15) one obtains further symmetries except for X6 which we consider

below.

If we take F = I1I2I3 or any function of this product, then the relation (4.25) becomes

[2a3 + (a4 − a6)I1 − 2a7I2]I2I3

+(−a2 + a4I2 + a5I1 − 2a7I3)I1I3

+[a1 + (a4 + a6)I3 + a5I2]I1I2 = 0. (4.30)

In (4.30), a1 to a7 are zeros except a6 which gives the one symmetry

X6 = x
∂

∂x
+ y

∂

∂y
. (4.31)
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Consider J = I1I3− 1
2
I22 and I2 = xy′′− y′. Now let F = J/I2 (cf. [22]). Then relation

(4.25) becomes

[2a3 + (a4 − a6)I1 − 2a7I2]2I2I3

+(−a2 + a4I2 + a5I1 − 2a7I3)(−2I1I3 − I22 )

+[a1 + (a4 + a6)I3 + a5I2]2I1I2 = 0. (4.32)

We see here that all the a’s are zero except a6. Therefore there exists one symmetry

which again is (4.31).

In fact similar to the free particle equation as in chapter 3 (see also [26]), there are

many one symmetry cases.

Case 3: Two Symmetries

Here there are many cases as well. We begin by utilizing the Lie table for the classifi-

cation of the two-dimensional algebras in the plane which are given e.g. in [25]. They

are

Y1 =
∂

∂y
, Y2 =

∂

∂x
,

Y1 =
∂

∂y
, Y2 = x

∂

∂y
,

Y1 =
∂

∂y
, Y2 = x

∂

∂x
+ y

∂

∂y
,

Y1 =
∂

∂y
, Y2 = y

∂

∂y
. (4.33)

These form subalgebras of the Lie algebra of symmetries of (4.15) as can clearly be

observed.
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We take the first realization listed above. If a1 is arbitrary in (4.25), then X1 = ∂/∂y

implies that F is independent of I3. Further X5 = ∂/∂x yields that F does not depend

on I2 as well. Since we require that ∂F/∂I1 6= 0, we have

2a3 + I1(a4 − a6)− 2a7I2 = 0

from which it follows that a3 = a7 = 0 and a4 = a6. Thus we end up with two more

symmetries X2 and X4 +X6. These turn out to be the four symmetries of the integral

I1 given in (4.18).

Likewise for the second realization we obtain (4.18) again. For the third realization

listed above we find the symmetries of I2 as in (4.19).

Hence the first three realizations listed do not provide maximal two symmetries for

the first integrals of (4.15).

In fact the fourth realization results in a two symmetry case as a1 and a4 arbitrary

give rise to
∂F

∂I3
= 0, I1

∂F

∂I1
+ I2

∂F

∂I2
= 0

which has solution

F = H(I2/I1).

The further substitution of this form into the relation (4.25) constrains all the a’s to

be zero except for a1 and a4. This result prompts the following simple products and

quotients that do give two symmetries.

If F = I1I2, then relation (4.25) yields

[2a3 + (a4 − a6)I1 − 2a7I2]I2
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+(−a2 + a4I2 + a5I1 − 2a7I3)I1 = 0 (4.34)

Here we observe that a2, a3, a5 and a7 are zeros whereas a1 is arbitrary and a6 = 2a4

and therefore we obtain the two symmetries

X1 =
∂

∂y

Y = 2x
∂

∂x
+ 3y

∂

∂y
(4.35)

which form a two-dimensional algebra with

[X1, Y ] = 3X1.

If we set F = I1I3, then we end up getting a1, a3, a4, a5, a7 equal to zero. Since a2

and a6 are arbitrary so they result in two symmetries

X2 = x
∂

∂y

X6 = x
∂

∂x
+ y

∂

∂y
(4.36)

with Lie bracket

[X2, X6] = 0.

If we take F = I2I3, then we see that a3 is arbitrary and a6 = −2a4 which then give

rise to the two symmetries

X3 = x2
∂

∂y

Y = 2x
∂

∂x
+ y

∂

∂y
(4.37)

with

[X3, Y ] = −3X3.
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Consider now F = I3/I1. This shows that a2 and a4 are arbitrary and the resulting

two symmetries are

X2 = x
∂

∂y

X4 = y
∂

∂y
(4.38)

with commutation relation

[X2, X4] = X2.

If we let F = I3/I2, then here a3 and a4 are arbitrary and therefore the two symmetries

are

X3 = x2
∂

∂y

X4 = y
∂

∂y
(4.39)

with

[X3, X4] = X3.

If J = I1I3 − 1
2
I22 , I1 = y′′ and F = J/I1 (cf [22]), then we have from the relation

(4.25),

[2a3 + (a4 − a6)I1 − 2a7I2]
1

2
I22

+[−a2 + a4I2 + a5I1 − 2a7I3](−I1I2)

+[a1 + (a4 + a6)I3 + a5I2]I
2
1 = 0. (4.40)

This results in a1, a2, a3 and a7 being zero whereas a5 arbitrary and a4 = −a6, which

give rise to the two symmetries

X5 =
∂

∂x
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Y = x
∂

∂x
, (4.41)

with

[X5, Y ] = X5.

If J = I1I3 − 1
2
I22 , I3 = 1

2
x2y′′ − xy′ + y and F = J/I3 (cf [22]), then relation (4.25)

yields

[2a3 + (a4 − a6)I1 − 2a7I2]2I
2
3

+(−a2 + a4I2 + a5I1 − 2a7I3)(−2I3I2)

+[a1 + (a4 + a6)I3 + a5I2]I
2
2 = 0. (4.42)

The above relation shows that a1, a2, a3, a5 are zeros, a7 is arbitrary and a4 = a6. This

imply two symmetries

X7 = x2
∂

∂x
+ 2xy

∂

∂y

Y = x
∂

∂x
+ 2y

∂

∂y
(4.43)

together with

[X7, Y ] = −X7.

There are thus many two symmetry cases. One could obtain more. Also they could

arise as different combinations of the seven symmetries (4.16). So one concludes that

the two-dimensional algebra cases are not unique. We have seen the occurrence of

both Abelian and non-Abelian Lie algebras.

Case 4: Three Symmetries
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Here we use the three-dimensional real realizations of Mahomed and Leach [24]. The

notation used is that given in [18]. Since we adapt these realizations as symmetries of

third-order equations, the entries for the first entry L3;1 and the non-solvable algebra

LI3;8 are those which are symmetries of such equations. The table below is similar

to Table 3.1 except for these entries. To avoid confusion we present the table of

realizations here suited to our needs.

Note that for LII3;8, L
III
3;8 and LIV3;8 one can use the realizations as given in Table 4.1 or the

ones obtained by interchanging x and y in the realizations given. The reason for this

is that one still obtains third-order representative equations for the latter realizations.
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Table 4.1

Realizations of three-dimensional algebras in the real plane

p = ∂/∂x and q = ∂/∂y

Algebra Realizations in (x, y) plane

L3;1 X1 = q,X2 = xq,X3 = x2q

L3;2 X1 = q,X2 = p,X3 = xq

LI3;3 X1 = q,X2 = p,X3 = xp+ (x+ y)q

LII3;3 X1 = q,X2 = xq,X3 = p+ yq

LI3;4 X1 = p,X2 = q,X3 = xp

LII3;4 X1 = q,X2 = xq,X3 = xp+ yq

LI3;5 X1 = p,X2 = q,X3 = xp+ yq

LII3;5 X1 = q,X2 = xq,X3 = yq

LI3;6 X1 = p,X2 = q,X3 = xp+ ayq, a 6= 0, 1

LII3;6 X1 = q,X2 = xq,X3 = (1− a)xp+ yq, a 6= 0, 1

LI3;7 X1 = p,X2 = q,X3 = (bx+ y)p+ (by − x)q

LII3;7 X1 = xq,X2 = q,X3 = (1 + x2)p+ (x+ b)yq

LI3;8 X1 = p,X2 = xp+ yq,X3 = x2p+ 2xyq

LII3;8 X1 = q,X2 = xp+ yq,X3 = 2xyp+ (y2 − x2)q

LIII3;8 X1 = q,X2 = xp+ yq,X3 = 2xyp+ (y2 + x2)q

LIV3;8 X1 = q,X2 = yq,X3 = y2q

L3;9 X1 = (1 + x2)p+ xyq,X2 = xyp+ (1 + y2)q,

X3 = yp− xq
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As L3;1 is the first three-dimensional algebra in Table 4.1, we start with that. We

want this Abelian algebra to be admitted by a first integral of the equation (4.15). We

utilize the classifying relation (4.25). Therefore a1, a2 and a3 are arbitrary which imply

that F is constant. Hence this algebra is not admitted by any first integral of (4.15)

although, if it is admitted by a nonlinear third-order ODE, it implies linearization (see

Mahomed and Leach [19]).

It is not difficult to deduce that the same applies to the algebras L3;2, L
I
3;3, L

II
3;3, L

I
3;4,

LII3;4, L
I
3;5, L

II
3;5, L

I
3;6 when a 6= 2 and LII3;6 when a 6= 1/2,−1. If a = 2 for LI3;6, then

one ends up with four symmetries of F = F (I1) which are (4.18). The same applies

to LII3;6, a = 1/2. For both these cases, the algebras LI3;6, a = 2 and LII3;6, a = 1/2 are

admitted by a first integral F = F (I1) but these are not maximal and contained in a

four-dimensional algebra, spanned by operators (4.18).

Now we focus on the three symmetry case which is admitted by F = F (I2). These

three symmetries are given in (4.19). The Lie algebra of the generators (4.19) has

nonzero commutators

[X1, X3] = X1, [X2, X3] = −X2 (4.44)

with the elements thus forming the Lie algebra LII3;6, a = −1. In fact the transformation

X = x2, Y = x+ y

maps it to the canonical form of Table 4.1, viz.

X̄1 =
∂

∂Y
, X̄2 = X

∂

∂Y
, X̄3 = 2X

∂

∂X
+ Y

∂

∂Y
.

Therefore the symmetries of F = F (I2) has the Lie algebra LII3;6, a = −1.
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There is yet another three-dimensional algebra which is admitted by a first integral of

(4.15). This occurs for LI3;8. We use the classifying relation (4.25). Here a5, a6 and a7

are arbitrary. Making these constants one at a time unity and the rest zero yield

I1
∂F

∂I2
+ I2

∂F

∂I3
= 0,

−I1
∂F

∂I1
+ I3

∂F

∂I3
= 0,

I2
∂F

∂I1
+ I3

∂F

∂I2
= 0. (4.45)

The solution to this system (4.45) yields

F = F (I1I3 −
1

2
I22 ). (4.46)

Thus the basic first integral J = I1I3 − 1
2
I22 has the algebra LI3;8.

The Lie algebras LII3;8, L
III
3;8 and LIV3;8 are not admitted by any first integral of (4.15)

as these are subalgebras of the maximal six-dimensional algebras (see Ibragimov and

Mahomed [25]) which are admitted by nonlinear third-order ODEs not reducible to

the simplest equation (4.15).

In the case of the algebra L3;9 one has the situation that this algebra is not a subalgebra

of the seven-dimensional algebra of equation (4.15) (Wafo and Mahomed [32]).

In conclusion of this discussion, we have two three-dimensional algebras admitted by

a first integral of equation (4.15) which are LI3;8 and LII3;6, a = −1.

We state the following theorem.

Theorem 4.1. If a first integral of the simplest third-order ODE, y′′′ = 0, admits a

three-dimensional algebra, then it is one of the two three-dimensional algebras LII3;6,
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a = −1, or LI3;8.

The proof follows from the previous discussions. Note here that the three-dimensional

algebra admitted is not unique.

Case 5: Four Symmetries

In the four symmetry case we have that only I1 and I3 possess four symmetries. They

are given by (4.18) and (4.20). Both are similar by a point transformation [21]. The

Lie algebra of (4.18) is LI4;9 (see [22]). This can be seen by interchanging X1 and X2

in (4.18). Thus the nonzero commutation relations are

[X2, X3] = X1, [X1, X4] = 2X1

[X2, X4] = X2, [X3, X4] = X3 (4.47)

We have the following theorem.

Theorem 4.2. The maximum dimension of the Lie algebra admitted by any first

integral of the simplest third-order ODE, y′′′ = 0 or any third-order ODE linearizable

by point transformation to the simplest ODE, is LI4;9.

Proof. Any first integral of y′′′ = 0 or third-order ODE reducible to the simplest ODE

by point transformation cannot admit a maximal algebra of dimension greater then

four since the basic integrals I1 and I3 has the unique four dimension algebra LI4;9.

The other integrals have lower dimensional Lie algebras in the classification obtained

above.

Finally, we have the following counting theorem.
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Theorem 4.3. A first integral of the simplest third-order ODE, y′′′ = 0 or any

linearizable third-order ODE by point transformation to the simplest ODE, can have

0, 1, 2, 3 or the maximum 4 symmetries. The four symmetry case is unique.

4.3 Symmetry Properties of First Integrals of Higher-

Order ODEs: Some Remarks

In the case of symmetries of the simplest first-order ODE y′ = 0 we have seen that the

algebra of any first integral constitute a proper subalgebra of the equation itself. One

cannot generate the full algebra of y′ = 0 via the algebras of any integral. This result

also applies to any scalar first-order ODE due to equivalence of this with the simplest

equation.

What occurs for scalar linear second-order ODEs is very different to the first-order

ODE case. Here as has been shown in [20], the Lie algebra of y′′ = 0 which represents

any linear or linearizable second-order ODE can be generated by the three-dimensional

algebras of the triplets of the basic integrals and their quotient which are isomorphic

to each. Thus in this case one requires not only the basic integrals, say I1 and I2, but

a functionally dependent quotient integral J = I2/I1.

Another important point to make is that the full Lie algebra of the simplest third-

order equation (4.15) is generated by the four symmetries (4.18) as well as the three

symmetries G2, G3 and G4 of (4.20). Hence one requires only the symmetries of the

basic integrals I1 and I3 to generate the full algebra of our equation (4.15). One should
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contrast this with what happens for y′ = 0 and y′′ = 0 discussed above. So one has

the seven symmetries of our equation (4.15) being generated by four symmetries of

I1 together with three symmetries of I3. The natural question then is: what occurs

for higher-order ODEs of maximal symmetry? Patterns emerge, some of which are

discussed in three propositions in the paper of Flessas et al. [22]. We discuss another

important property, viz. that of generation of the full algebra via integrals now.

Consider the nth-order ODE of maximal symmetry

y(n) = 0, n ≥ 3. (4.48)

This ODE (4.48) has n+ 4 symmetries as is well-known. The n first integrals of (4.48)

are easily constructible and we focus on the first and last which are

I1 = y(n−1) (4.49)

and

In =
n∑
i=1

(−1)i−1

(n− i)!
xn−iy(n−i). (4.50)

The first integral (4.49) has n+ 1 symmetries which are

Xi = xi−1
∂

∂y
, i = 1, . . . , n− 1

Xn =
∂

∂x
,

Xn+1 = x
∂

∂x
+ (n− 1)y

∂

∂y
. (4.51)

This forms an n + 1-dimensional subalgebra of the equation (4.48). Now the first

integral (4.50) has symmetries

Yi = xi
∂

∂y
, i = 1, . . . , n− 1
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Yn = x
∂

∂x
,

Yn+1 = x2
∂

∂x
+ (n− 1)xy

∂

∂y
(4.52)

which one can see comes from multiplying the symmetries of (4.51) by x. We can

observe from these two sets (4.51) and (4.52) that the full Lie algebra of our equation

(4.48) is generated from the n + 1 symmetries of (4.51) and 3 symmetries of (4.52),

viz. Yn−1, Yn and Yn+1. Further the two sets (4.51) and (4.52) are equivalent to each

other by means of the point transformation

x̄ =
1

x
, ȳ =

y

xn−1
. (4.53)

This is an extension of the transformation given in [21] and is for higher-order ODEs.

In [21] it was given for third-order ODEs.

We have the following theorem the proof of which is evident from the above.

Theorem 4.4. The full Lie algebra of the nth-order ODE y(n) = 0, n ≥ 3, is

generated by two subalgebras, viz. the n+1-dimensional algebra < Xj : j = 1, . . . , n+

1 > of I1 and the three-dimensional subalgebra < Yn−1, Yn, Yn+1 > of In.

Hence the picture is quite distinct for the manner in which the full Lie algebra is

generated for the ODEs y′ = 0, y′′ = 0 and y(n) = 0, n ≥ 3. This is also consistent

with the properties of their symmetry algebra which are different (see, e.g. [18]).



Chapter 5

Characterization of Symmetry

Properties of First Integrals for

Submaximal Linearizable

Third-Order ODEs

5.1 Introduction

The discussion of this chapter is about the Lie algebraic properties of first integrals of

scalar linearizable third-order ODEs of the submaximal classes which are represented

by y′′′−y′ = 0 and y′′′+f(x)y′′−y′−f(x)y = 0, where f(x) is an arbitrary function of

x. The former has four point symmetries and the latter five. As we mentioned earlier

55
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that there was some work [22] commenced by Flessas et al. for the simplest class and

which we extended in the previous chapter (see also Mahomed and Momoniat in [31])

to provide a complete analysis on the symmetries and first integrals for this simplest

class of ODEs which included the maximal algebra case being generated by algebras

of two basic integrals of the equation. In the present chapter we deduce the classifying

relation between the point symmetries and first integrals for the sub-maximal classes

of scalar linear third-order equations. Then by using this we find the point symmetry

properties of the first integrals of the sub-maximal classes of third-order equations

y′′′ − y′ = 0 and y′′′ + f(x)y′′ − y′ − f(x)y = 0 which also represent all linearizable

by point transformations third-order ODEs that reduce to these classes. We obtain

counting theorems for the number of point symmetries possessed by an integral of

such equations. Noteworthy is that the maximal algebra is not unique. This chapter

appears in our published work [33].

In the next section we study the point symmetry properties of the integrals of the 4

symmetry class represented by y′′′−y′ = 0. This section is to remind the reader under

what conditions point symmetries of first integrals of scalar linear third-order ODEs

exist (see chapter 4 and [31]). Then in Section 5.3 we analyze the class y′′′+ f(x)y′′−

y′− f(x)y = 0 which has four point symmetries for the symmetry structure of its first

integrals. In Section 5.4 we focus on the generation of the full algebra by subalgebras

of certain basic integrals.
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5.2 Lie Algebraic Properties of the Integrals of y′′′−

y′ = 0

We consider the representative third-order ODE

y′′′ − y′ = 0 (5.1)

which has five point symmetries

X1 =
∂

∂x

X2 =
∂

∂y

X3 = ex
∂

∂y

X4 = e−x
∂

∂y

X5 = y
∂

∂y
. (5.2)

The ordering of these is the translation in x followed by the three solution symme-

tries and then the homogeneity symmetry. It is easy to see here that (5.1) has three

functionally independent first integrals

I1 = y′′ − y

I2 = exy′′ − exy′

I3 = e−xy′′ + e−xy′. (5.3)

The order of the integrals are dictated by their algebraic properties which come at the

end of this section.

Classifying relation for the symmetries of y′′′ − y′ = 0
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Let F be an arbitrary function of I1, I2 and I3, viz. F = F (I1, I2, I3). The symmetry

of this general function of the first integrals is

X [2]F = X [2]I1
∂F

∂I1
+X [2]I2

∂F

∂I2
+X [2]I3

∂F

∂I3
= 0, (5.4)

where

X [2]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](y′′ − y)

= −η + ζxx

X [2]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](exy′′ − exy′)

= (exy′′ − exy′)ξ − exζx + exζxx

X [2]I3 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](e−xy′′ + e−xy′)

= (−e−xy′′ − e−xy′)ξ + e−xζx + e−xζxx. (5.5)

Now ξ, η, ζx and ζxx are

ξ = a1

η = a2 + exa3 + e−xa4 + ya5

ζx = exa3 − e−xa4 + y′a5

ζxx = exa3 + e−xa4 + y′′a5. (5.6)

These are the coefficients of X [2] which are obtained by

X [2] =
5∑
i=1

aiX
[2]
i , (5.7)

where Xis are the symmetry generators as given in (5.2) and the ais are constants.

The reason for taking a linear combination is that the symmetries of the first integrals

are always the symmetries of the equation (see [34] for a general result on this).
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After substitution of the values of X [2]I1, X
[2]I2, X

[2]I3 given in (5.5), with ξ, η, ζx,

ζxx as in (5.6) and together using the first integrals I1 = y′′ − y, I2 = exy′′ − exy′,

I3 = e−xy′′ + e−xy′ in equation (5.4), we finally arrive at the classifying relation

(−a2 + I1a5)
∂F

∂I1
+ [(a1 + a5)I2 + 2a4]

∂F

∂I2

+[(a5 − a1)I3 + 2a3]
∂F

∂I3
= 0. (5.8)

The relation (5.8) provides the relationship between the symmetries and first integrals

of the third-order equation (5.1). We use this relation in order to classify the first

integrals according to their symmetries.

Symmetry structure of the first integrals of y′′′ − y′ = 0

We utilize the classifying relation (5.8) to investigate the number and properties of

the symmetries of the first integrals of the ODE (5.1).

In the first instance we see that if F is arbitrary, then by use of (5.8) we immediately

see that

−a2 + I1a5 = 0,

(a1 + a5)I2 + 2a4 = 0,

(a5 − a1)I3 + 2a3 = 0. (5.9)

The relations (5.9) imply that all the a’s are zero. Hence there is no symmetry for this

case, i.e, for F an arbitrary function.

In order to effectively and systematically study the one and higher symmetry cases

of first integrals we obtain optimal systems of one-dimensional subalgebra spanned
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by (5.2). Then we invoke the classifying relation (5.8). So the strategy followed here

is different to that employed for the simplest third-order ODE, y′′′ = 0. The reason

being that we do not have in a simple manner subalgebra structure of the symmetries

of (5.1), as we had for y′′′ = 0.

The Lie algebra of the operators (5.2) is five-dimensional and has commutator relations

given in the table below.

Table 5.1: The commutation relations for the symmetries of equation (5.1)

[Xi, Xj] X1 X2 X3 X4 X5

X1 0 0 X3 −X4 0

X2 0 0 0 0 X2

X3 −X3 0 0 0 X3

X4 X4 0 0 0 X4

X5 0 −X2 −X3 0 0

In order to calculate the adjoint representation, we utilize the Lie series (see Olver

[5]).

Ad(exp(εX))Y = Y − ε[X, Y ] +
1

2!
ε2[X, [X, Y ]]− 1

3!
ε3[X, [X, [X, Y ]]] + ... (5.10)

together with the commutator table, viz. Table 5.1. As an example,

Ad(exp(εX1))X3 = X3 − ε[X1, X3] +
1

2!
ε2[X1, [X1, X3]]− ...

= X3 − εX3 +
1

2!
ε2X3 −

1

3!
ε3X3 + ...

= e−εX3. (5.11)
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In like manner, we obtain the other entries of the adjoint table and we have the adjoint

representation given by the table below.

Table 5.2: The adjoint table for the symmetries (5.2)

Ad X1 X2 X3 X4 X5

X1 X1 X2 e−εX3 eεX4 X5

X2 X1 X2 X3 X4 X5 − εX2

X3 X1 + εX3 X2 X3 X4 X5 − εX3

X4 X1 − εX4 X2 X3 X4 X5 − εX4

X5 X1 eεX2 eεX3 eεX4 X5

Here the (i, j) entry represents Ad(exp(εXi))Xj. For a nonzero vector

X = a1X1 + a2X2 + ...+ a5X5, (5.12)

we need to simplify the coefficients ai as far as possible through adjoint maps to X. The

computations are straightforward and we find an optimal system of one-dimensional

subalgebras spanned by

X1,

X2,

X1 ±X2,

X2 ±X4,

aX1 +X5,

X1 +X5 ±X3,

−X1 +X5 ±X4. (5.13)
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The discrete symmetry transformation y 7→ −y will map X1−X2 to X1 +X2 and that

of x 7→ −x will transform the last entry in (5.13) to X1 +X5±X3. Also X1 +X5−X3

will go to X1 +X5 +X3 under y 7→ −y. Therefore the above list (5.13) is reduced by

four.

We now invoke each of the operators of (5.13) in the classifying relation (5.8) to

systematically work out the symmetry structure of the first integrals of (5.1).

Firstly we consider X1. Since a1 is arbitrary, we have

I2
∂F

∂I2
− I3

∂F

∂I3
= 0 (5.14)

and hence

F = F (I1, I2I3) (5.15)

which possesses X1 as symmetry. After the substitution of (5.14) into (5.8) and taking

into account (5.15) we arrive at

(−a2 + a5I1)
∂F

∂I1
+ 2(a5α + a3I2 + a4I3)

∂F

∂α
= 0, (5.16)

where α = I2I3. This at once gives a3 = a4 = 0.

Note that for a3, a4, nonzero we have ∂F/∂α = 0 in which case we further have that

a2 = a5 = 0. This results in F = F (I1) which has symmetry generators X1, X3, X4

which is the maximal case.

We systematically consider the cases when (5.16) imply two generators. These arise

as follows.
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(i) Suppose that a1, a2 are arbitrary. Then (5.16) gives ∂F/∂I1 = 0 and

2αa5
∂F

∂α
= 0.

For F not a constant we must have that a5 = 0 and we get

F = F (I2I3) (5.17)

which has X1 and X2 as symmetries.

(ii) Suppose that a1, a5 are arbitrary. Then (5.16) implies that

I1
∂F

∂I1
+ 2α

∂F

∂I1
= 0 (5.18)

from which we arrive at

F = F (I1(I2I3)
−1/2). (5.19)

This integral (5.19) has X1 and X5 as symmetry generators.

We do not obtain any further three symmetry cases from (5.16) apart from the earlier

for I1 as it gives F a constant and hence no integral.

Next we focus on X2. The use of the classifying relation (5.8) gives rise to

[(a1 + a5)I2 + 2a4]
∂F

∂I2
+ [(a5 − a1)I3 + 2a3]

∂F

∂I3
= 0, (5.20)

and therefore

F = F (I2, I3) (5.21)

admits X2. In a similar manner as for X1 we have the following cases.

(i) If a1, a2 are arbitrary, then we obtain F as in (5.15).
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(ii) If a2, a3 are arbitrary, then we have X2, X3, X1 −X5 and F = F (I2).

(iii) If a2, a4 are arbitrary, then we have X2, X4, X1 +X5 and F = F (I3).

(iv) If a2, a5 are arbitrary, then X2, X5 result in F = F (I3/I2).

We do not get any three symmetry case here.

The pattern is now clear. Instead of going through each of the remaining cases which

are quite tedious albeit straightforward, we present our findings in a table. For com-

pleteness this table also includes the cases X1 and X2 together with the corresponding

first integrals.

Table 5.3: One symmetry cases and the integrals of (5.1)

One symmetry F irst integral

X1 F = F (I1, I2I3)

X2 F = F (I2, I3)

X1 +X2 F = F (I2I3, I2 exp(I1))

X2 ±X4 F = F (I2 ± I1, I3)

X5 F = F (I3/(I2 ± I1))

X5 + aX1, a 6= 0 F = F (I2I
−1−a
1 , I3I

a−1
1 )

X1 +X5 +X3 F = F (I2I
−2
1 , I3 − ln I2)
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Table 5.4: Two symmetry cases and the integrals of (5.1)

Two symmetries F irst integral

X1, X2 F = F (I2I3)

X1, X5 F = F (I1(I2I3)
−1/2)

X2, X5 F = F (I3/I2)

X2 ±X4, X5 F = F (I3/(I2 ± I1))

X3, X5 F = F (I2/I1)

X5 + aX1, X2, a 6= 0 F = F (I3I
a−1/a+1
2 )

X5 + aX1, X3 F = F (I2I
−1−a
1 )

X2, X1 +X5 +X3 F = F (I3 − ln I2)

X4, X1 +X5 +X3 F = F (I3 − ln I21 )

Finally we look at the three symmetry cases.

For I1 there are three symmetries

X1 = expx
∂

∂y
,

X2 = exp(−x)
∂

∂y
,

X3 =
∂

∂x
(5.22)

which has nonzero commutation relations

[X1, X3] = −X1, [X2, X3] = X2. (5.23)

The Lie algebra is L3;4. In the case of the first integral I2, the symmetries are

X1 = expx
∂

∂y
,
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X2 =
∂

∂y
,

X3 =
1

2
y
∂

∂y
− 1

2

∂

∂x
(5.24)

which have nonzero Lie brackets

[X1, X3] = X1, [X2, X3] =
1

2
X2 (5.25)

and constitute the Lie algebra L3;5, a = 1/2. The Lie algebra of the symmetries of I3

is isomorphic to that of I2 by means of the discrete transformation x̄ = −x.

Thus there are two Lie algebras of dimension three, viz. L3;4 and L3;5, a = 1/2. There

are no four symmetry cases. Therefore we have the following result.

Theorem 5.1. The maximal dimension of the Lie algebra admitted by a first integral

of y′′′− y′ = 0 or a third-order ODE linearizable by point transformation to this linear

ODE is three. The maximal Lie algebras are L3;4 and L3;5, a = 1/2.

The proof follows easily from the preceding discussion.

We also have the following counting theorem.

Theorem 5.2. The Lie algebra admitted by a first integral of y′′′ − y′ = 0 or a

third-order ODE linearizable by point transformation to this linear ODE is 0, 1, 2 or

3.

The proof follows from equation (5.9), the above Tables 5.3, 5.4 and Theorem 5.1.
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5.3 Algebraic Properties of the Integrals of y′′′ +

fy′′ − y′ − fy = 0

We consider the representative third-order ODE

y′′′ + f(x)y′′ − y′ − f(x)y = 0, (5.26)

where f is an arbitrary function of x. This equation possesses four symmetries

X1 = ex
∂

∂y

X2 = e−x
∂

∂y

X3 = α(x)
∂

∂y

X4 = y
∂

∂y
, (5.27)

where again we commenced with the three solution symmetries and then the homo-

geneity symmetry. Here α = 1
2
ex
∫
e(−x−

∫
f(x)dx)dx− 1

2
e−x

∫
e(x−

∫
f(x)dx)dx is a solution

of the equation (5.26). The third-order equation (5.26) has the three functionally

independent first integrals

I1 = (y′′ − y)e
∫
f(x)dx

I2 = ye−x + y′e−x − [
∫
e(−x−

∫
f(x)dx)dx](y′′ − y)e

∫
f(x)dx

I3 = yex − y′ex + [
∫
e(x−

∫
f(x)dx)dx](y′′ − y)e

∫
f(x)dx. (5.28)

The first in this list is the simplest followed by the other two for which the order does

not matter.

Classifying relation for the symmetries of y′′′ + fy′′ − y′ − fy = 0.
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Let F be an arbitrary function of I1, I2 and I3, viz. F = F (I1, I2, I3). The symmetry

of this general function of the first integrals is

X [2]F = X [2]I1
∂F

∂I1
+X [2]I2

∂F

∂I2
+X [2]I3

∂F

∂I3
= 0, (5.29)

where

X [2]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
](y′′ − y)e

∫
f(x)dx

= ξ[(y′′ − y)e
∫
f(x)dxf(x)]− ηe

∫
f(x)dx + ζxxe

∫
f(x)dx

X [2]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
]

ye−x + y′e−x − [
∫
e(−x−

∫
f(x)dx)dx](y′′ − y)e

∫
f(x)dx

= [−(y + y′)e−x − (
∫
e(−x−

∫
f(x)dx)dx)(y′′ − y)e

∫
f(x)dxf(x)

−(y′′ − y)e
∫
f(x)dxe(−x−

∫
f(x)dx)]ξ + [e−x + (e

∫
f(x)dx)(

∫
e(−x−

∫
f(x)dx)dx)]η + e−xζx

−[(
∫
e(−x−

∫
f(x)dx)dx)e

∫
f(x)dx]ζxx

X [2]I3 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
+ ζxx

∂

∂y′′
]

yex − y′ex + [
∫
e(x−

∫
f(x)dx)dx](y′′ − y)e

∫
f(x)dx

= [(y − y′)ex + (
∫
e(x−

∫
f(x)dx)dx)(y′′ − y)e

∫
f(x)dxf(x)

+(y′′ − y)e
∫
f(x)dxe(x−

∫
f(x)dx)]ξ + [ex − (e

∫
f(x)dx)(

∫
e(x−

∫
f(x)dx)dx)]η − exζx

+[(
∫
e(x−

∫
f(x)dx)dx)e

∫
f(x)dx]ζxx.(5.30)

Now ξ, η, ζx and ζxx are

ξ = 0

η = exa1 + e−xa2 + α(x)a3 + ya4

ζx = exa1 − e−xa2 + α′(x)a3 + y′a4

ζxx = exa1 + e−xa2 + α′′(x)a3 + y′′a4. (5.31)
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These are the coefficients functions of X [2] are obtained by setting

X [2] =
4∑
i=1

aiX
[2]
i (5.32)

where Xis are the symmetry generators as given in (5.27) and the ais are constants.

The reason for taking a linear combination mentioned earlier is that the symmetries

of the first integrals are always the symmetries of the equation (see [34] for a general

result).

After insertion of the values of X [2]I1, X
[2]I2, X

[2]I3 as in (5.30), with ξ, η, ζx, ζxx as in

(5.31), first integrals I1 = (y′′−y)e
∫
f(x)dx, I2 = ye−x+y′e−x− [

∫
e(−x−

∫
f(x)dx)dx](y′′−

y)e
∫
f(x)dx, I3 = yex − y′ex + [

∫
e(x−

∫
f(x)dx)dx](y′′ − y)e

∫
f(x)dx as well as use of

α′′ − α = e−
∫
f(x)dx

α′ + α = ex
∫
e(−x−

∫
f(x)dx)dx

α− α′ = −e−x
∫
e(x−

∫
f(x)dx)dx

y′′ − y = I1e
−
∫
f(x)dx

(y′ + y)e−x = I2 + I1

∫
e(−x−

∫
f(x)dx)dx

(y − y′)ex = I3 − I1
∫
e(x−

∫
f(x)dx)dx (5.33)

in equation (5.29), we eventually find the classifying relation

(a3 + I1a4)
∂F

∂I1
+ (2a1 + I2a4)

∂F

∂I2

+(2a2 + I3a4)
∂F

∂I3
= 0. (5.34)

The relation (5.34) provides the relationship between the symmetries and first integrals

of the third-order equation (5.26). We utilize this to classify the first integrals in terms

of their symmetries.
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Symmetry structure of the first integrals of y′′′ + fy′′ − y′ − fy = 0

We use the relation (5.34) to systematically study the relationship between the sym-

metries and first integrals of (5.26).

We quickly note that if F is arbitrary, then (5.34) implies

a3 + I1a4 = 0,

2a1 + I2a4 = 0,

2a4 + I3a4 = 0, (5.35)

which in turn give that the a’s are zero. Thus there results no symmetry for this case.

As in the previous section on the constant coefficient ODE, we obtain the optimal sys-

tem of one-dimensional subalgebras of the four-dimensional algebra symmetry algebra

of our ODE spanned by (5.27).

The Lie algebra of the symmetries (5.27) is represented by the following table.

Table 5.5: The commutation relations for the symmetries of equation (5.26)

[Xi, Xj] X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 0 X2

X3 0 0 0 X3

X4 −X1 −X2 −X3 0

By use of this table we can construct the adjoint representation which we present in
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the following table.

Table 5.6: The adjoint table for the symmetries (5.27)

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4 − εX1

X2 X1 X2 X3 X4 − εX2

X3 X1 X2 X3 X4 − εX3

X4 eεX1 eεX2 eεX3 X4

We then obtain an optimal system of one-dimensional subalgebras spanned by

X3,

X4,

X2 + aX3,

X1 + aX2 + bX3. (5.36)

For each of these operators, we are systematically able to compute the corresponding

first integrals by using the classifying relation (5.34).

Below we tabulate the symmetries and the corresponding first integrals.
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Table 5.7: One symmetry cases and the integrals of (5.26)

One symmetry F irst integral

X3 F = F (I2, I3)

X4 F = F (I2/I1, I3/I2)

X2 + aX3 F = F (I2I3, I2 exp(I1))

X2 ±X4 F = F (I1 − 1
2
aI3, I2)

X1 + aX2 F = F (I3 − aI2, I1)

X1 + aX2 F = F (I1 − 1
2
aI2, I3)

X1 + aX2 + bX3, a, b 6= 0 F = F (bI3 − 2aI1, I2)

Table 5.8: Two symmetry cases and the integrals of (5.26)

Two symmetries F irst integral

X2, X3 F = F (I2)

X3, X4 F = F (I3/I2)

X1, X2 + aX3 F = F (I1 − 1
2
aI3)

X2 + aX3, X4 F = F (I2/(I1 − 1
2
aI3))

X1 + aX2, X3 F = F (I3 − aI2)

X1 + aX2, X4 F = F (I3 − aI2/I2)

X1 + aX3, X2, a 6= 0 F = F (I1 − 1
2
aI2)

X1 + aX3, X4, a 6= 0 F = F (I1 − 1
2
aI2/I3)

X2 + aX3, X1, a 6= 0 F = F (I1 − 1
2
aI3)

X1 + aX2 + bX3, X4, a, b 6= 0 F = F (bI3 − 2aI1/I2)

It follows that there are no three symmetry cases. Moreover, we note that the maximal

case of symmetries of the first integrals for (5.26) is two and these are listed in Table

5.8.
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We therefore have the following result.

Theorem 5.3. The Lie algebra admitted by a first integral of y′′′+f(x)y′′−y′−f(x)y =

0 or a third-order ODE linearizable by point transformation to this linear ODE is 0,

1 or 2.

The proof follows from equation (5.35) and the above Tables 5.7 and 5.8.

5.4 Further Considerations: Symmetries of First

Integrals of Submaximal Higher-Order ODEs

We know that one cannot generate the full Lie algebra of any scalar first-order ODE

via the algebras of any of its integrals (see previous chapter 4 and [31]). Also for scalar

linear second-order ODEs it has been shown in [20] that the full Lie algebra of y′′ = 0

which represents any linear or linearizable second-order ODE can be generated by

three isomorphic triplets of three-dimensional algebras of the basic integrals and one

of their quotient which have the interesting property that the algebras are isomorphic

to each other. In chapter 4 and indeed our recent work [31] we have pointed out that

the full Lie algebra of the simplest third-order equation y′′′ = 0 is generated by the

point symmetries of only two of the basic integrals I1 and I3 from the three

I1 = y′′

I2 = xy′′ − y′

I3 =
1

2
x2y′′ − xy′ + y. (5.37)
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This is indeed very different to what happens for the classes y′ = 0 and y′′ = 0. One

has that the seven symmetries of our the simplest third-order ODE is generated by

four symmetries of I1 together with three symmetries of I3. In the case of higher-order

ODEs of maximal symmetry it was shown in chapter 4 (see also [31]) that similar

properties persist. That is the full Lie algebra of y(n) = 0, n ≥ 3 is generated by

two subalgebras, viz. the n+ 1-dimensional algebra of the integral I1 = y(n−1) and the

three-dimensional subalgebra of the integral In =
∑n
i=1

(−1)i−1

(n−i)! x
n−iy(n−i).

What occurs for higher-order ODEs of submaximal symmetry? We discuss this below.

Consider the nth-order ODE of sub-maximal symmetry

y(n) − y(n−2) = 0, n ≥ 3. (5.38)

This ODE (5.38) can be taken as a representative of higher-order ODEs which has

n+ 2 point symmetries. We have chosen this in a way that reduces to the third-order

case focused on earlier. The n first integrals of (5.38) have the same pattern as for the

third-order case and are thus easily constructible and we focus on the first and second

which are

I1 = y(n−1) − y(n−3) (5.39)

and

I2 = ex(y(n−1) − y(n−2)). (5.40)

The first integral (5.39) has n point symmetries

X1 = ex
∂

∂x
, X2 = e−x

∂

∂y
, X3 =

∂

∂x
,

Xi = xi−4
∂

∂y
, i = 4, . . . , n. (5.41)
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This forms an n-dimensional subalgebra of the symmetry algebra of equation (5.38).

The nonzero commutation relations are

[X1, X3] = −X1, [X2, X3] = X2, [X3, Xi] = (i− 4)Xi−1, i = 4, . . . , n. (5.42)

The first integral (5.40) has point symmetries

Y1 = ex
∂

∂y
,

Yi = xi−2
∂

∂y
, i = 2, . . . , n− 1,

Yn = y
∂

∂y
− ∂

∂x
. (5.43)

These generators have nonzero commutation relations

[Y1, Yn] = 2Y1, [Yi, Yn] = Yi + (i− 2)Yi−1, i = 2, . . . , n− 1. (5.44)

We see that these two sets of symmetries (5.41) and (5.43) are easy to deduce as it is

clear that (5.41) form symmetries of (5.39) since they are translation in x and solution

symmetries with maximum degree power x(n−4). Also for n = 3 they reduce to the

third-order case of the previous section. The full Lie algebra of equation (5.38) is

generated from the n symmetries of (5.41) and two symmetries of (5.43), viz. Yn−1

and Yn of (5.43). However, the latter does not close due to the commutation relations

(5.44). However, if we exclude Y1, then< Y2, . . . , Yn > does span an (n−1)-dimensional

algebra. Alternatively, a simpler way to generate the full algebra of equation (5.38)

is to utilize the symmetries (5.43) together with the two symmetries X2 and X3 of

(5.41).

We therefore have the theorem the proof of which follows from the above discussion.

Theorem 5.4. The full Lie algebra of the linear nth-order ODE y(n) − y(n−1) =

0, n ≥ 3 which is n + 2 dimensional, is generated by two subalgebras, viz. the
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n-dimensional algebra < Yj : j = 1, . . . , n > of I2 = ex(y(n−1) − y(n−2)) and the

two-dimensional subalgebra < X2, X3 > of I1 = y(n−1) − y(n−3).

We now study the generation of the full algebra of a representative nth-order, n ≥ 3

of sub-maximal symmetries n+ 1. A natural extension of the third-order ODE (5.26)

is

y(n) − y(n−2) + f(x)(y(n−1) − y(n−3)) = 0, n ≥ 3, (5.45)

where f(x) is an arbitrary function of x. Following the pattern of the integrals in

(5.28), we can write the corresponding three out of n immediately. They are

I1 = (y(n−1) − y(n−3))e
∫
f(x)dx,

I2 = e−x(y(n−2) + y(n−3))− [
∫
e(−x−

∫
f(x)dx)dx](y(n−1) − y(n−3))e

∫
f(x)dx,

I3 = ex(y(n−3) − y(n−2)) + [
∫
e(x−

∫
f(x)dx)dx](y(n−1) − y(n−3))e

∫
f(x)dx. (5.46)

We show that the symmetries of these integrals are sufficient to generate the full

algebra. From the previous section Table 5.8 we notice that X1 and X2 of (5.27)

are symmetries of the integral I1 in (5.28). Further that X3 and X4 of (5.27) are

symmetries of the quotient integral I3/I2. In a similar fashion we have these algebraic

properties persisting for the linear higher-order equation (5.45). The equation (5.45)

has the n+ 1 point symmetries

X1 = ex
∂

∂y
, X2 = e−x

∂

∂y
,

Xi = xi−3
∂

∂y
, i = 3, . . . , n− 1,

Xn = α(x)
∂

∂y
,

Xn+1 = y
∂

∂y
, (5.47)
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where α is a solution to (5.45) and satisfies similar properties to that of the corre-

sponding linear third-order equation, viz.

α(n−1) − α(n−3) = e−
∫
f(x)dx,

α(n−1) − α(n−2) = −ex
∫
ex−

∫
f(x)dxdx+ e−

∫
f(x)dx,

α(n−2) + α(n−3) = ex
∫
e−x−

∫
f(x)dxdx, (5.48)

It is evident that the first n are solution symmetries and the (n + 1)th is the homo-

geneity symmetry which are straightforward to observe. The first integral I1 in (5.46)

has the n − 1 symmetries X1, . . . , Xn−1 which is clear. The algebra constituted is A-

belian. This fact can also be seen for I1 of (5.28). Now we analyze what occurs for the

quotient integral I3/I2 of (5.46). It is noticed that the homogeneity symmetry Xn+1

is a symmetry of I3/I2 as if we replace y by γy in the quotient, it is left invariant.

Moreover, for Xn we have the invariance condition

X(n−1)
n (

I3
I2

)

=
1

I2
{[ex(α(n−3) − α(n−2)) +

∫
ex−

∫
f(x)dxe

∫
f(x)dxdx(α(n−1) − α(n−3))]

−I3
I2

[e−x(α(n−2) + α(n−3))−
∫
e−x−

∫
f(x)dxe

∫
f(x)dxdx(α(n−1) − α(n−3))]}

= 0. (5.49)

The terms in the square brackets vanish due to the relations (5.48). Thus Xn is

a symmetry of this quotient integral. In view of the above, we have the following

theorem.

Theorem 5.5. The full Lie algebra of the linear nth-order ODE y(n) − y(n−2) +

f(x)(y(n−1) − y(n−3)) = 0, n ≥ 3 which is n + 1 dimensional, is generated by two
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subalgebras, viz. the (n − 1)-dimensional algebra < Xj : j = 1, . . . , n − 1 > of I1 as

given in (5.46) and the two-dimensional subalgebra < Xn, Xn+1 > of I3/I2 as in (5.46).

Hence the manner in which the full Lie algebra is generated for the ODEs y′′ = 0 [20],

y(n) = 0, n ≥ 3 (chapter 4 and [31]) and the two submaximal linear cases investigated

in the foregoing are quite interesting. This also conforms with the properties of their

symmetry algebra which are different (see, e.g. [25, 18]).



Chapter 6

Symmetry Classification of First

Integrals for Scalar Dynamical

Equations

6.1 Introduction

The aim of this chapter is to provide an extension of the classification of the first inte-

grals for scalar second-order ODEs linearizable by point transformations (see chapter 3

and [26]) and focus our attention on scalar nonlinear second-order ODEs which admit

1, 2 or 3 symmetries. We completely classify first integrals of scalar nonlinear second-

order which have submaximal Lie algebras of dimensions 1, 2 and 3. This constitutes

completely new work as symmetries of first integrals of scalar nonlinear second-order

79
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ODEs which admit 1, 2 or 3 symmetries have not been studied before. The essence of

this chapter appears in our published work [35].

Recall from chapter 2, that the first integral

I = I(x, y, y′), (6.1)

of the scalar second-order ODE E(x, y, y′, y′′) = 0 is said to be invariant under the

infinitesimal generator X = ξ(x, y)∂/px+ η(x, y)∂/∂y if and only if

X [1]I = 0, (6.2)

where X is the first prolonged generator

X [1] = X + ζ1
∂

∂y′
, (6.3)

with the usual first prolongation formula

ζ1 = Dx(η)− y′Dx(ξ), (6.4)

in which Dx is the total differentiation operator. Now the reduced first-order ODE

I = C also has the symmetry X as is known (see [6]).

This chapter is organized as follows. In section 6.2, we determine the classifying

relations between point symmetries and first integrals of scalar nonlinear second-order

equations which admit one and two point symmetries. Then we provide the symmetry

structure of the first integrals of such nonlinear equations. In section 6.3, we obtain

the classifying relations between symmetries and first integrals of scalar nonlinear

second-order equations which have three symmetries. There are four equations in

Lie’s classification that have three symmetries. We investigate each in turn for the

symmetry properties of their first integrals. Applications to generalized Emden-Fowler,

Lane-Emden and modified Emden equations are given.
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6.2 Nonlinear Equations with One and Two Sym-

metries

In Lie’s classification of scalar second-order ODEs in the complex domain [10] there

exists one general class of equations with a single point symmetry.

Consider the scalar nonlinear second-order ODE in Lie’s classification

y′′ = F (x, y′), (6.5)

where F is an arbitrary function. It is indeed easy to see that equation (6.5) has in

general one point symmetry

X =
∂

∂y
(6.6)

and the corresponding first integral for (6.5) is

I = I(x, y′). (6.7)

We observe that the first integral (6.7) has the same symmetry as given in (6.6). Hence

the symmetry of the first integral is the same as that of the equation itself.

We next investigate the symmetries of the first integrals of scalar second-order ODEs

in Lie’s classification which possess two point symmetries. There are two equations,

Type I and Type II. We study each in turn for the symmetry structure of their first

integrals.

The scalar nonlinear equation of Type I

y′′ = g(y′), (6.8)
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where g is an arbitrary function of its argument, has two point symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
(6.9)

and the two functionally independent first integrals

I1 = K(y′)− x, I2 = y − y′K(y′) +
∫
K(y′)dy′, (6.10)

where

K(y′) =
∫ 1

g(y′)
dy′.

Classifying relation for the symmetries of the first integrals of y′′ = g(y′)

We let F be an arbitrary function of I1 and I2, viz. F = F (I1, I2). Then the symmetry

of this general function of the first integrals is

X [1]F = X [1]I1
∂F

∂I1
+X [1]I2

∂F

∂I2
= 0, (6.11)

where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][K(y′)− x] = −ξ

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][y − y′K +

∫
Kdy′] = η. (6.12)

Here ξ, η and ζx are given by

ξ = a1, η = a2, ζx = 0. (6.13)

These are the coefficients of X [1] which are arrived at by setting

X [1] =
2∑
i=1

aiX
[1]
i , (6.14)
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where the Xis are the symmetries as given in (6.9) and the ais are constants. The

symmetries of a first integral are always the symmetries of the equation itself. This

is a general result proved in [6] (see also [7]). Therefore we have taken here and in

what follows X [1] to be a linear combination of the symmetries of the equation under

consideration.

After substitution of the values of X [1]I1, X
[1]I2 as in (6.12), with ξ, η, ζx as in (6.13)

and together by using the first integrals I1 = K(y′) − x, I2 = y − y′K +
∫
Kdy′ in

equation (6.11), we deduce after some calculations

−a1
∂F

∂I1
+ a2

∂F

∂I2
= 0, (6.15)

The relation (6.15) provides the relationship between the symmetries and the first

integrals of the nonlinear equation (6.8). We use this to classify the first integrals of

(6.8) according to their symmetries.

Symmetry structure of the first integrals of y′′ = g(y′)

We utilize the classifying relation (6.15) to investigate the number and properties of

the symmetries of the first integrals of the ODE (6.8).

For a1 and a2 arbitrary, it is seen that the relation (6.15) implies that F be a constant.

This clearly means that there is no first integral of (6.8) which has two symmetries

(6.9). If one of a1 or a2 is arbitrary in (6.15), we end up with either the first integral

I2 or I1 or an arbitrary function of either. In general we have that F = F (a2I1 + a1I2)

has the symmetry X = a1X1 + a2X2.
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Now we focus our attention on the nonlinear equation of Type II

xy′′ = h(y′). (6.16)

This is the second ODE in Lie’s classification with two symmetries. We find that

(6.16) has two Lie symmetries

X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
. (6.17)

The two first integrals of (6.16) are

I1 = x−1K(y′), I2 =
∫
K(y′)dy′ + (y − xy′)x−1K(y′), (6.18)

where

K(y′) = exp(
∫ dy′

h
). (6.19)

Classifying relation for the symmetries of the first integrals of xy′′ = h(y′)

We again let F to be an arbitrary function of I1 and I2, viz. F = F (I1, I2). The

symmetry of this function of the first integrals is (6.11), where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][x−1K(y′)]

= [
−1

x2
K(y′)]ξ + [

1

x
K ′(y′)]ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][
∫
Kdy′ + (y − xy′)x−1K(y′)]

= [
−y
x
K(y′)]ξ + [

1

x
K(y′)]η

+[
∂

∂y′
(
∫
Kdy′) +

y

x
K ′(y′)− y′K ′(y′)−K(y′)]ζx. (6.20)

Now ξ, η and ζx are

ξ = xa2, η = a1 + ya2, ζx = 0. (6.21)
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These are the coefficients of X [1] which are obtained by (6.14), where Xi’s are the

symmetries as given in (6.17) and the ai’s are constants.

After insertion of the values of X [1]I1, X
[1]I2 as in (6.20), with ξ, η, ζx as in (6.21)

and by invoking the first integrals I1 = x−1K(y′), I2 =
∫
Kdy′ + (y − xy′)x−1K(y′) in

equation (6.11), we have

−a2
∂F

∂I1
+ a1

∂F

∂I2
= 0. (6.22)

The relation (6.22) provides the relationship between the symmetries and first integrals

of the nonlinear equation (6.16). We use this to classify the first integrals of (6.16) in

terms of their symmetries.

Symmetry structure of the first integrals of xy′′ = h(y′)

We utilize the classifying relation (6.22) to investigate the number and properties of

the symmetries of the first integrals of the ODE (6.16). The reasoning is the same

as for the Type I Lie equation. It is evident that for arbitrary a1 and a2, (6.22)

has no nontrivial integral which has symmetry. For one of X1 or X2 we have that

F (I2) or F (I1) are the corresponding first integrals. Of course the linear combination

a1X1 + a2X2 is possessed by the integral F (a1I1 + a2I2).

In conclusion, we have proved the following theorem.

Theorem 6.1. The full Lie algebra of a scalar nonlinear second-order ODE which

is one- or two-dimensional is generated by the one-dimensional subalgebras of the

independent first integrals of the equation.
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6.3 Nonlinear Equations with Three Symmetries

In Lie’s classification, there are four scalar second-order ODEs which admit three

point symmetries. In this section we study the first integrals of the four Lie types of

nonlinear second-order equations which admit three symmetries.

Consider the first equation in Lie’s classification, viz.

y′′ = Ae−y
′
, A 6= 0, (6.23)

which possesses the three symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ (x+ y)

∂

∂y
, (6.24)

and has the two first integrals (A 6= 0)

I1 = x− A−1ey′ , I2 = A−1y′ey
′ − A−1ey′ − y. (6.25)

Classifying relation for the symmetries of the first integrals of y′′ = Ae−y
′

We let F = F (I1, I2). Then the symmetry of this general function is given by (6.11),

where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][x− A−1ey′ ]

= ξ − [A−1ey
′
]ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][A−1y′ey

′ − A−1ey′ − y]

= −η + [A−1y′ey
′
]ζx. (6.26)

The coefficient functions ξ, η and ζx are

ξ = a1 + xa3,
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η = a2 + (x+ y)a3,

ζx = a3. (6.27)

These are the coefficients of X [1] which are found from

X [1] =
3∑
i=1

aiX
[1]
i , (6.28)

where Xis are the symmetries as given in (6.24) and the ais are constants. Again the

subalgebra property of the first integrals allows us the use of the relation (6.28).

After substitution of the values of X [1]I1, X
[1]I2 in (6.26), with ξ, η, ζx of (6.27) and

together use of the first integrals I1 = x−A−1ey′ , I2 = A−1y′ey
′−A−1ey′−y in equation

(6.11), we get after some calculations

[a1 + I1a3]
∂F

∂I1
+ [−a2 + (I2 − I1)a3]

∂F

∂I2
= 0. (6.29)

The relation (6.29) provides the relationship between the symmetries and first integrals

of the nonlinear equation (6.23). We use this to classify the first integrals according

to their symmetries.

Symmetry structure of the first integrals of y′′ = Ae−y
′

In order to effectively study the one and higher symmetry cases possessed by the

integrals (6.25) we obtain optimal systems of one-dimensional subalgebras spanned by

(6.24) and then utilize these in the relation (6.29).

The Lie algebra of the operators (6.24) is three-dimensional and has commutator

relations given in Table 6.1 below.
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Table 6.1: The commutation relations for the symmetries (6.24) of equation (6.23)

[Xi, Xj] X1 X2 X3

X1 0 0 X1 +X2

X2 0 0 X2

X3 −(X1 +X2) −X2 0

In order to compute the adjoint representation, we again utilize the Lie series

Ad(exp(εX))Y = Y − ε[X, Y ] +
1

2!
ε2[X, [X, Y ]]− 1

3!
ε3[X, [X, [X, Y ]]] + ... (6.30)

together with the commutator table, viz. Table 6.1. As a simple example, it is

straightforward to determine

Ad(exp(εX1))X3 = X3 − ε[X1, X3] +
1

2!
ε2[X1, [X1, X3]]− ...

= X3 − ε(X1 +X2) +
1

2!
ε2[X1, (X1 +X2)]− ...

= X3 − ε(X1 +X2). (6.31)

In similar fashion, we find the other entries of the adjoint table and have the adjoint

representation given by the Table 6.2 below.

Table 6.2: The adjoint table for the symmetries (6.24)

Ad X1 X2 X3

X1 X1 X2 X3 − ε(X1 +X2)

X2 X1 X2 X3 − εX2

X3 X1e
ε + εeεX2 X2e

ε X3

Here the (i, j) entry represents Ad(exp(εXi))Xj. For a nonzero vector

X = a1X1 + a2X2 + a3X3, (6.32)
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we are required to simplify the coefficients ai as far as possible through adjoint maps

to X. The calculations are not difficult and we arrive at an optimal system of one-

dimensional subalgebras spanned by

{X1, X2, X3} (6.33)

We invoke each of the operators in (6.33) together with the classifying relation (6.29)

to construct the Table 6.3.

Table 6.3: One symmetry cases for the integrals of (6.23)

One symmetry F irst integral

X1 F = F (I2)

X2 F = F (I1)

X3 F = F (I2/I1 + ln I1)

From Table 6.3, we observe that the first integrals of (6.23) admit maximum one

symmetry. We do not find cases for higher symmetry. It can happen that a first

integral has no symmetry – e.g., F = I1I2. This clearly follows by substitution of this

F into (6.29) and working out the values of ai which in this case turns out to be zero.

We turn to the second equation in Lie’s classification given by

xy′′ = Ay′3 − 1

2
y′, A 6= 0, (6.34)

which has the three symmetries

X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = 2xy

∂

∂x
+ y2

∂

∂y
(6.35)
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and equation (6.34) has the two functionally independent first integrals

I1 =
A

x
− 1

2xy′2
,

I2 =
1

y′
+
Ay

x
− y

2xy′2
. (6.36)

Classifying relation for the symmetries of the first integrals of xy′′ = Ay′3− 1
2
y′

We set F be F = F (I1, I2). The invariance of this general function of the first integrals

is (6.11) where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][
A

x
− 1

2xy′2
]

= [−A
x

+
1

2x2y′2
]ξ + [

1

xy′3
]ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][

1

y′
+
Ay

x
− y

2xy′2
]

= [
−Ay
x2

+
y

2x2y′2
]ξ + [

A

x
− 1

2xy′2
]η + [

−1

y′2
+

y

xy′3
]ζx. (6.37)

Now ξ, η and ζx are given by

ξ = xa2 + 2xya3,

η = a1 + ya2 + y2a3,

ζx = −2xy′2a3. (6.38)

These are the coefficients of X [1] which are obtained by (6.28), where Xis are the

symmetries as given in (6.35) and the ai’s are constants.

After substitution of the values of X [1]I1, X
[1]I2 in (6.37) with ξ, η, ζx as in (6.38) and

together by use of the first integrals I1 = A
x
− 1

2xy′2
, I2 = 1

y′
+ Ay

x
− y

2xy′2
in equation
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(6.11), we arrive at the classifying relation

[−I21a2 − 2I1I2a3]
∂F

∂I1
+ [I21a1 + (2A− I22 )a3]

∂F

∂I2
= 0. (6.39)

The relation (6.39) relates the symmetries and first integrals of the nonlinear equation

(6.34). We use this to classify the first integrals according to their symmetries.

Symmetry structure of the first integrals of xy′′ = Ay′3 − 1
2
y′

To systematically pursue the one and higher symmetry cases we construct optimal

systems of one-dimensional subalgebras spanned by the symmetries (6.35).

The Lie algebra of the generators (6.35) is three-dimensional and has commutator

relations given in the table below. This constitutes the familiar algebra sl(2, R).

Table 6.4: The commutation relations for the symmetries (6.35) of equation (6.34)

[Xi, Xj] X1 X2 X3

X1 0 X1 2X2

X2 −X1 0 X3

X3 −2X2 −X3 0

As before, we utilize the Lie series (6.30). For example, here

Ad(exp(εX2))X3 = X3 − ε[X2, X3] +
1

2!
ε2[X2, [X2, X3]]− ...

= X3 − εX3 +
1

2!
ε2X3 − ...

= X3e
−ε. (6.40)

In similar manner, we obtain the other entries of the adjoint table and we have the

adjoint representation given by the Table 6.5 below.
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Table 6.5: The adjoint table for the symmetries (6.35)

Ad X1 X2 X3

X1 X1 X2 − εX1 X3 − 2εX2 + ε2X1

X2 eεX1 X2 e−εX3

X3 X1 + 2εX2 + ε2X3 X2 + εX3 X3

This has been calculated before in [36] where it was also found the optimal system

of one-dimensional subalgebras. This necessitated the construction of an invariant of

the adjoint group which is J = a22− 4a1a3 [36]. An optimal system of one-dimensional

subalgebras is spanned by [36]

{X1, X2, X1 +X3}. (6.41)

For each entry of (6.41), we determine its first integral via the classifying relation

(6.39). We tabulate our results in Table 6.6.

Table 6.6: One symmetry cases and the integrals of (6.34)

One symmetry F irst integral

X1 F = F (I1)

X2 F = F (I2)

X1 +X3 F = F ((I21 + I22 − 2A)/I1)

We observe from this table that each of the operators in the optimal system has in

general one integral. So the maximum number of symmetries admitted by any integral

in this case is one.

Consider now the third equation in Lie’s classification

xy′′ = −y′3 + y′ + A(1− y′2)3/2, A 6= 0 (6.42)
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which possesses the three point symmetries

X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
,

X3 = 2xy
∂

∂x
+ (y2 − x2) ∂

∂y
, (6.43)

and the two first integrals

I1 = Ax−1 + x−1y′(1 + y′2)−1/2,

I2 = (1 + x−1yy′)(1 + y′2)−1/2 + Ax−1y. (6.44)

Classifying relation for the symmetries of xy′′ = −y′3 + y′ + A(1− y′2)3/2

Let F be an arbitrary function of I1 and I2, viz. F = F (I1, I2). Then the symmetry

of this function is (6.11), where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][Ax−1 + x−1y′(1 + y′2)−1/2]

= [−A
x2
− y′(1 + y′2)−1/2

x2
]ξ + [

−y′2(1 + y′2)−3/2

x
+

(1 + y′2)−1/2

x
]ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][(1 + x−1yy′)(1 + y′2)−1/2 + Ax−1y]

= [−Ay
x2
− yy′(1 + y′2)−1/2

x2
]ξ + [

y′(1 + y′2)−1/2

x
+
A

x
]η

+[
y(1 + y′2)−1/2

x
− y′(1 + y′2)−3/2(1 +

yy′

x
)]ζx. (6.45)

Now ξ, η and ζx are

ξ = xa2 + 2xya3,

η = a1 + ya2 + (y2 − x2)a3,

ζx = −2x(1 + y′2)a3. (6.46)
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These are the coefficients of X [1] which are obtained from (6.28), where Xis are the

symmetries as given in (6.43) and the ai’s are constants.

After inserting the values of X [1]I1, X
[1]I2 in (6.45), with ξ, η, ζx as in (6.46) as well as

using the first integrals I1 = Ax−1 +x−1y′(1 +y′2)−1/2, I2 = (1 +x−1yy′)(1 +y′2)−1/2 +

Ax−1y in equation (6.11), we get after some calculations

[−I1a2 − 2I2a3]
∂F

∂I1
+ [I1a1 + (

1− A2 − I22
I1

)a3]
∂F

∂I2
= 0. (6.47)

The relation (6.47) gives the relationship between the symmetries and first integrals of

the nonlinear equation (6.42). We utilize this to classify the first integrals according

to their symmetries.

Symmetry structure of the first integrals of xy′′ = −y′3 + y′ + A(1− y′2)3/2

In order to effectively study the one and higher symmetry cases we obtain optimal

systems of one-dimensional subalgebra spanned by (6.43).

The Lie algebra of the operators (6.43) is three-dimensional and has commutator

relations given in the Table 6.4. It forms the well-known algebra sl(2, R).

An optimal system has already been obtained for this algebra and is given by (6.41).

For each operator entry of (6.41) we work out the associated first integral. These are

given in Table 6.7 below.
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Table 6.7: One symmetry cases and the integrals of (6.42)

One symmetry F irst integral

X1 F = F (I1)

X2 F = F (I2)

X1 +X3 F = F ((I21 + I22 + A2 − 1)/I1)

We remark that the maximum number of symmetries admitted by a first integral in

this case is again one.

We lastly focus on the fourth second-order ODE in Lie’s classification. This is

y′′ = Ay′
(a−2)
(a−1) , A 6= 0, a 6= 0, 1, 1/2, 2 (6.48)

and possesses the three symmetries

X1 =
∂

∂x
, X2 =

∂

∂y
,

X3 = x
∂

∂x
+ ay

∂

∂y
(6.49)

and the two first integrals

I1 = (
a− 1

a
)y′

a
a−1 − Ay,

I2 = Ax+ (1− a)y′
1

a−1 . (6.50)

Classifying relation for the symmetries of y′′ = Ay′
(a−2)
(a−1) , a 6= 0, 1, 1/2, 2

If F is an arbitrary function of I1 and I2, F = F (I1, I2), then the symmetry of this

function of the integrals is (6.11), where

X [1]I1 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][(
a− 1

a
)y′

a
a−1 − Ay]
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= −Aη + [y′
1

a−1 ]ζx

X [1]I2 = [ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′
][Ax+ (1− a)y′

1
a−1 ]

= Aξ − [y′
(2−a)
(a−1) ]ζx. (6.51)

Now ξ, η and ζx are

ξ = a1 + xa3,

η = a2 + yaa3,

ζx = y′(a− 1)a3. (6.52)

These are the coefficients of X [1] which are obtained from (6.28), where Xis are the

symmetries as given in (6.49) and the ai’s are constants.

After substituting the values of X [1]I1, X
[1]I2 as in (6.51), with ξ, η, ζx as in (6.52)

and together using the first integrals I1 = (a−1
a

)y′
a

a−1 − Ay, I2 = Ax+ (1− a)y′
1

a−1 in

equation (6.11), we obtain

[−Aa2 + I1aa3]
∂F

∂I1
+ [Aa1 + I2a3]

∂F

∂I2
= 0. (6.53)

The relation (6.53) is the relationship between the symmetries and the first integrals

of the equation (6.48). We use this to classify the first integrals in terms of their

symmetries.

Symmetry structure of the first integrals of y′′ = Ay′
(a−2)
(a−1) , a 6= 0, 1, 1/2, 2

To study the one and higher symmetry cases we again obtain optimal systems of

one-dimensional subalgebras spanned by (6.49).

The Lie algebra of the operators (6.49) is three-dimensional and has commutator

relations given in the Table 6.8 below.



97

Table 6.8: The commutation relations for the symmetries of equation (6.48)

[Xi, Xj] X1 X2 X3

X1 0 0 X1

X2 0 0 aX2

X3 −X1 −aX2 0

The calculation of the adjoint representation is as before. We utilize the Lie series. As

an example,

Ad(exp(εX3))X2 = X2 − ε[X3, X2] +
1

2!
ε2[X3, [X3, X2]]− ...

= X2 + εaX2 +
1

2!
ε2a2X2 + ...

= eεaX2. (6.54)

We obtain the other entries of the adjoint table easily and we have the adjoint repre-

sentation given by the Table 6.9 below.

Table 6.9: The adjoint table for the symmetries (6.49)

Ad X1 X2 X3

X1 X1 X2 X3 − εX1

X2 X1 X2 X3 − εaX2

X3 eεX1 eaεX2 X3

We utilize the above adjoint table to compute an optimal system. The computations

again are straightforward and we find an optimal system of one-dimensional subalge-

bras spanned by

{X3, X1 + bX2}. (6.55)
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We use the optimal system (6.55) to deduce the relation given in the following table.

Table 6.10: One symmetry cases and the integrals of (6.48)

One symmetry F irst integral

X3 F = F (I−11 Ia2 )

X1 F = F (I1)

X1 + bX2, b 6= 0 F = F (I1 + bI2)

As a consequence of the preceding discussions, we have the following result.

Theorem 6.2. The full Lie algebra of a scalar nonlinear second-order ODE which is

three-dimensional is generated by the one-dimensional subalgebras of the first integrals

of the equation as given in Tables 6.3, 6.6, 6.7 and 6.10.

Moreover, as a conclusion of the the analysis of sections 6.2 and 6.3, we have the

following theorem.

Theorem 6.3. The maximum dimension of the Lie algebra admitted by a first integral

of a scalar nonlinear second-order ODE which has symmetry is one.

We now illustrate our main focus.

6.4 Physical Applications

We consider three physical examples in order to illustrate our results.
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1. The Lane-Emden equation

y′′ +
y′

x
+ ey = 0, x 6= 0 (6.56)

has been studied on many occasions (see, e.g. [37, 38, 39, 40]). Equation (6.56) has

two point symmetries

X1 =
1

2
x
∂

∂x
− ∂

∂y

X2 = (x lnx− x)
∂

∂x
− 2 lnx

∂

∂y
(6.57)

which constitute a two-dimensional Lie algebra with [X1, X2] = X1. One can easily

effect the reduction of (6.57) to the Lie canonical form

X̄1 =
∂

∂ȳ
, X̄2 = x̄

∂

∂x̄
+ ȳ

∂

∂ȳ
(6.58)

by means of the transformation

x̄ = x−1e−y/2, ȳ = 2 ln x− 2 (6.59)

which transforms (6.56) to the type II Lie equation

x̄ȳ′′ = −4ȳ′ − 1

8
ȳ′3. (6.60)

Now equation (6.60) has the two functionally independent first integrals (see (6.18)

subject to (6.19))

I1 = x̄−1K(ȳ′), I2 =
∫
K(ȳ′)dȳ′ + (ȳ − x̄ȳ′)x̄−1K(ȳ′), (6.61)

where

K(ȳ′) = exp
∫ dȳ′

−4ȳ′ − ȳ′3/8
. (6.62)
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The relationship between the symmetries and first integrals of (6.60) is (6.22) with F

now a function of I1 and I2 in (6.61). Thus we obtain one symmetry of a first integral

of (6.60) if F is a function of I1, I2 or a1I1 + a2I2. However, if F is an arbitrary

function of the integrals, then there exists no symmetry.

As an example, we have in original coordinates that

I1 = 2xy′ +
1

2
x2y′2 + x2ey (6.63)

is the first integral of (6.56) and (6.63) admits X1 as given in (6.57). This single

symmetry can be used to effect a quadrature of the Lane-Emden equation (6.56) (for

a general result on reductions of equations, the reader is referred to the work [6]). One

uses the invariant u = x2ey corresponding to X1. Then the reduced ODE is first-order

I1 = C1, viz.
1

2
x2
u′2

u2
− 2 + u = C1, C1 = const, (6.64)

which is variables separable.

2. The generalized Emden-Fowler equation

y′′ = f(x)yn (6.65)

occur in several applications (see [41, 42, 43, 44, 45]). These works utilized the Lie and

Noether symmetry approaches in analyzing (6.65). The solutions of (6.65) for various

forms of f(x) and constant n are known in the papers cited. Here we take the form

y′′ + x−20/7y2 = 0 (6.66)

for which the solutions are known (see [42]). A first integral of (6.66) is

I1 =
1

2

(
x4/7y′ − 4

7
x−3/7y − 12

343
x3/7

)2
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+
1

3

(
x−4/7y − 6

49
x2/7

)3

. (6.67)

The integral (6.67) has symmetry generator

X = 343x8/7
∂

∂x
+ (196x1/7y + 12x)

∂

∂y
(6.68)

which is also the symmetry of equation (6.66) as given in [42]. An invariant of (6.68)

is [42]

u = x−4/7y − 6

49
x2/7. (6.69)

We write I1 = C1 which in terms of u and du/dx is

1

2
x16/7u′2 +

1

3
u3 = C1. (6.70)

Equation (6.70) is variables separable and results in the same solution as given in [42].

3. The modified Emden equation of index 3, viz.

y′′ +
3x

k + x2
y′ + y3 = 0, (6.71)

where k is a constant, was investigated in [46] in which the first integral

I = (k + x2)2y′2 + 2x(k + x2)yy′ +
1

2
(k + x2)2y4 − ky2 (6.72)

was found. The equation (6.71) is subsumed under a general class by Berkovich in [47]

who studied the Lie group properties and exact solutions of the generalized Emden-

Fowler type equation

y′′ + a1(x)y′ + a0(x)y + f(x)yn = 0, n 6= 0, n 6= 1. (6.73)

He showed that equation (6.73) is reducible to the autonomous canonical form

z̈ + b1ż + b0z + czn = 0, (6.74)
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for constants b0, b1 and c, by the Kummer-Liouville (KL) transformation y = v(x)z, dt =

u(x)dx for specific forms of the function f(x). In the paper cited, viz. [47], he gives

all the cases of f(x) for which (6.73) admits one, two or three Lie point symmetries.

The particular exact solutions of the form

y = ρv(x), b0ρ+ cρn = 0, (6.75)

are also presented once v(x) is found (see Theorem 3.1 in [47]). Furthermore in The-

orem 4.2 (see [47]) which applies to subclasses of equations of (6.73), viz. those for

which a0 = 0 and f(x) = p, p a constant, the necessary and sufficient condition that

such ODEs admit the symmetry generator

X =
1

u

∂

∂x
+ y

v′

uv

∂

∂y
(6.76)

is that a1 satisfies the nonlinear second-order ODE

a′′1 +
4n

n+ 3
a1a

′
1 +

2(n2 − 1)

(n+ 3)2
a31 = 0. (6.77)

This condition (6.77) on the coefficient a1 was previously obtained in Leach [46] as a

condition for the existence of a Noether symmetry. The complete integrability of (6.71)

was not provided in [46] (see also references cited in this paper). Now by using the

approach of Berkovich [47], one can find the KL transformation y = (k+x2)−1/2z, dt =

(k + x2)−1/2dx that reduces our modified Emden ODE (6.71) to the canonical form

(6.74) with b0 = −1, b1 = 0, c = 1 and n = 3. Then nontrivial particular exact

solutions of the form (6.75) are determined as y = ±(k + x2)−1/2 which are easily

verified by substitution into (6.71).

We now focus on the general solution here by imposing a symmetry on the integral

(6.72). By use of the symmetry condition (6.2), X is a symmetry generator of the
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integral (6.72) if the determining equations

ξy = 0, 2xξ + (ηy − ξx)(k + x2) = 0,

yξ + xη + (k + x2)ηx = 0,

x(k + x2)y4ξ + (k + x2)2y3η − kyη + xy(k + x2)ηx = 0 (6.78)

hold. The solution of (6.78) after some calculations result in the generator

X = (k + x2)1/2
∂

∂x
− xy(k + x2)−1/2

∂

∂y
(6.79)

which turns out to be the only Lie point symmetry of the modified Emden equation

(6.71). It should be noted that the symmetry operator (6.79) is precisely of the form

(6.76) with u = v = (k + x2)−1/2 since it satisfies Theorem 4.2 of [47].

An invariant function of the generator (6.79) is

u = y(k + x2)1/2. (6.80)

We utilize u in (6.80) as a new dependent variable in the reduced first-order ODE

I = C, C a constant, which in turn becomes

(k + x2)u′2 − u2 +
1

4
u4 = C. (6.81)

Equation (6.81) can be re-written as

du

±
√
u2 − 1

4
u4 + C

=
dx

(k + x2)1/2
(6.82)

The equation (6.82) easily yields the general solution of our modified Emden equation

(6.71) in terms of quadratures.



Chapter 7

Conclusion

In this work we have provided the algebraic structure of first integrals of the free

particle or any scalar linearizable, via point transformation, ODE. Firstly, we derived

the relationship between the symmetries and the first integrals of the free particle

equation. By analyzing this classifying relation, we were able to establish the num-

ber of symmetries possessed by any first integral of the free particle equation. We

obtained the important result that the symmetries admitted by a first integral can be

0, 1, 2 or 3. It was observed that the zero symmetry case was rather surprising or

unexpected as one does not have a route to integration of the equation due to the lack

of any symmetry and this too for the simplest equation. The one and two symmetry

cases were not unique - there were many first integrals with differing one and two

symmetry structures. These were carefully discussed. Finally, we studied completely

the situation when a first integral has three symmetries. We used the classification of

realizations in the plane adapted as free particle symmetries. We showed that the only

104
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three-dimensional algebra admitted by a first integral of the free particle equation is

LI3;5 which is admitted by the functionally independent integrals I1 and I2 as well as

their quotient I2/I1. Although this triplet of symmetries was discovered before in the

seminal work of Leach and Mahomed [20], these authors did not prove that it was

unique nor the maximum algebra. However, they did emphasize the important result

that the algebras of the triplets of symmetries were isomorphic and that the three

triplets of symmetries generate the sl(3, R) symmetry of the equation. We showed

that the maximum algebra is indeed the three-dimensional algebra LI3;5 by completely

analyzing all representations of the three-dimensional algebras.

For the symmetries of the simplest first-order ODE y′ = 0 we have noted that the

algebra of any first integral is a proper subalgebra of the equation itself. Also one

cannot generate its full algebra via the algebras of any integral. This result then

applies to any scalar first-order ODE. In contrast as has been shown in [20], the Lie

algebra of y′′ = 0 which represents any linear or linearizable second-order ODE can be

generated by the three-dimensional algebras of the triplets of the basic integrals and

their quotient which turn out isomorphic to each.

We have shown that the full Lie algebra of the simplest third-order equation (4.15)

is generated by the four symmetries (4.18) and the three symmetries G2, G3 and G4

of (4.20). Thus here one requires only the symmetries of the basic integrals I1 and

I3 to generate the full algebra of the equation (4.15). This is indeed different to

what happens for y′ = 0 and y′′ = 0. For higher-order ODEs of maximal symmetry,

certain patterns emerge, some of which are discussed in three propositions in the

paper of Flessas et al. [22]. We have seen another important property, viz. that of

the generation of the full algebra via integrals. In this case we proved a theorem, viz.
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that the full Lie algebra of the nth-order ODE y(n) = 0, n ≥ 3, is generated by two

subalgebras, viz. the n + 1-dimensional algebra < Xj : j = 1, . . . , n + 1 > of I1 and

the three-dimensional subalgebra < Yn−1, Yn, Yn+1 > of In. Therefore, the picture is

distinct for the way in which the full Lie algebra is generated for the ODEs y′ = 0,

y′′ = 0 and y(n) = 0, n ≥ 3. This turns out to be consistent with the properties of

their symmetry algebra which are also different (see, e.g. [18]).

The algebraic properties of the first integrals of the 8 symmetry or maximal class were

pursued in [20] in which it was shown that the algebra sl(3, R) of the linearizable

equations can be generated by three isomorphic triplets of three-dimensional algebras.

Then in [21] the authors considered the symmetry properties of the basic first integrals

of scalar linear third-order ODEs for which the symmetry structure has been investi-

gated before (see, e.g. the review [25]). In a recent paper we performed a complete

study of the symmetry structure of first integrals of the free particle or linearizable

second-order ODEs. We showed in chapter 3 (see also [26]) that the first integrals have

rich symmetry algebras - we found that they have 0, 1, 2 or 3 dimensional algebras and

that the maximal case is unique with algebra LI3,5. Motivated by this and recent works

[20, 21, 22], we performed in chapter 4 (see [31] as well) a symmetry classification

of the first integrals of the maximal class of linear third-order ODEs represented by

y′′′ = 0. Many interesting properties came to light. It was shown that the symmetry

structure of the first integrals is also rich and there exits the 0, 1, 2 and 3 symmetry

cases. In the case of the maximal algebra of the integrals which is 3, we showed that

similar to the free particle case, it is unique. We also proved that the full Lie algebra

of the equation for linear third and higher order can be generated by just two basic

integrals. This result differs from what happens for the free particle or even first order

equations as pointed out chapters 3 and 4 [20, 26, 31].
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In this work we also investigated the symmetry properties of the first integrals of scalar

linearizable third-order ODEs of submaximal classes, viz. the 4 and 5 symmetry classes

(see also [33]). Here we obtained the result that there can be the 0, 1 or 2 symmetry

cases for the 4 symmetry class and 0, 1, 2 or 3 symmetry cases for the 5 symmetry

class. Also we noted that the maximal cases are not unique as for the free particle

or simplest third-order equations. We further studied the generation of the full Lie

algebras of the submaximal classes of linear higher-order ODEs and have shown how

these are generated by subalgebras of certain basic integrals and a quotient of two

integrals.

We have further shown that the full Lie algebra of the linear nth-order ODE y(n) −

y(n−1) = 0, n ≥ 3 which is n + 2 dimensional, is generated by two subalgebras:

the n-dimensional algebra < Yj : j = 1, . . . , n > of I2 = ex(y(n−1) − y(n−2)) and the

two-dimensional subalgebra < X2, X3 > of I1 = y(n−1) − y(n−3). In the case of the

linear nth-order ODE y(n) − y(n−2) + f(x)(y(n−1) − y(n−3)) = 0, n ≥ 3 which is n+ 1

dimensional, the full Lie algebra is shown to be generated by two subalgebras: the

(n− 1)-dimensional algebra < Xj : j = 1, . . . , n− 1 > of I1 as given in (5.46) and the

two-dimensional subalgebra < Xn, Xn+1 > of I3/I2, where I2 and I3 are as given in

(5.46).

Further work could be to study submaximal classes of nonlinear higher-order ODEs

for the symmetry properties of their first integrals.

The relationship between symmetries and first integrals are of paramount importance

and arises in the famous Noether theorem (see, e.g. [48]). The Noether theorem gives

the direct relation between a symmetry and its integral via a formula. Although a
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symmetry generator X gives a first integral I by the Noether theorem for a variational

problem, the integral may have more than one symmetry generator. Also for equa-

tions that are not variational, there exists a relationship between symmetries and first

integrals (see [6]).

There have been interesting contributions that provide the link between symmetries

and first integrals for linear ODEs. In the case of scalar second- and higher-order

linear ODEs there have been important properties (see also [20, 21, 26, 31, 33]) as we

have shown in chapters 3 to 5.

Moreover, in this work we have focused on the symmetry properties of first integrals of

scalar nonlinear second-order ODEs with sub-maximal symmetry algebras, viz. those

having 1, 2 and 3 point symmetries (see as well [35]). We have shown that the max-

imum number of symmetries possessed by any first integral of a scalar second-order

ODE with sub-maximal symmetry is one. It is known that one symmetry is sufficient

for complete integrability of the scalar nonlinear second-order ODE. We have provided

physical examples of the generalized Emden-Fowler, Lane-Emden and modified Em-

den equations to illustrate how the relationship between symmetries and first integrals

lead to reduction to quadrature of the underlying equation.

It would be of interest to further investigate symmetries of first integrals which are

more general as in [49] as well as for linear second-order systems which have been

considered for symmetry properties in [50].
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