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Abstract

Three decades ago, the discovery of the Human Immunodeficiency Virus (HIV) was
announced. The subsequent HIV pandemic has continued to devastate the global
community, and many countries have set ambitious HI'V reduction targets over the years.
Reliable methods for measuring incidence, the rate of new infections, are essential for
monitoring the virus, allocating resources, and assessing interventions. The estimation of
incidence from single cross-sectional surveys using tests that distinguish between ‘recent’
and ‘non-recent’ infection has therefore attracted much interest. The approach provides a
promising alternative to traditional estimation methods which often require more complex
survey designs, rely on poorly known inputs, and are prone to bias. More specifically, the
prevalence of HIV and ‘recent” HIV infection, as measured in a survey, are used together
with relevant test properties to infer incidence. However, there has been a lack of
methodological consensus in the field, caused by limited applicability of proposed
estimators, inconsistent test characterisation (or estimation of test properties) and
uncertain test performance. This work aims to address these key obstacles. A general
theoretical framework for incidence estimation is developed, relaxing unrealistic
assumptions used in earlier estimators. Completely general definitions of the required test
properties emerge from the analysis. The characterisation of tests is then explored: a new
approach, that utilises specimens from subjects observed only once after infection, is
demonstrated; and currently-used approaches, that require that subjects are followed-up
over time after infection, are systematically benchmarked. The first independent and
consistent characterisation of multiple candidate tests is presented, and was performed on
behalf of the Consortium for the Evaluation and Performance of HIV Incidence Assays
(CEPHIA), which was established to provide guidance and foster consensus in the field.
Finally, the precision of the incidence estimator is presented as an appropriate metric for
evaluating, optimising and comparing tests, and the framework serves to counter existing
misconceptions about test performance. The contributions together provide sound
theoretical and methodological foundations for the application, characterisation and
optimisation of recent infection tests for HIV incidence surveillance, allowing the focus

to now shift towards practical application.
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Introduction and Overview 1

Chapter 1

Introduction and Overview

This body of work focuses on how to appropriately use tests designed to distinguish
between ‘recently’ and ‘non-recently’ acquired HIV infections to estimate HIV incidence
from cross-sectional surveys. This topic and the contributions made within this thesis are
introduced in three parts below. Firstly, the significance of this research is broadly
summarised, providing a context for why this work is of interest in epidemiology.
Secondly, a brief, critical review of past developments in this surveillance approach is
presented. The review aims to both provide pertinent background information to the
reader, as well as highlight key shortcomings in the field that this research aims to
address. Lastly, the contributions made, and the organisation of these in this thesis, are

outlined.
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1.1 Significance

The early 1980s proved to be a period of rapid medical advance as research groups aimed
to identify the retrovirus that was causing Acquired Immunodeficiency Syndrome
(AIDS), an illness which was then beginning to sweep across nations [1-3]. Now called
the Human Immunodeficiency Virus (HIV), the reach of the virus, particularly in the
developing world, is alarming [4]. In South Africa, an estimated 29.5% of pregnant
women attending public antenatal care clinics are HIV-positive [5] and 17.9% of the

general adult population, aged 15 to 49 years old, is living with HIV [4].

These frightening statistics highlight the need for an effective response to the epidemic.
There is thus an urgent need for reliable epidemiological measures, which are essential to
monitor viral spread, optimally allocate limited resources, and plan and assess
interventions. Incidence, the rate of new infections in a population, although more
difficult to measure, provides a more direct and current measure of the state of the
epidemic than prevalence, the proportion of the population infected at a point in time.
Incidence has therefore become the focus of ‘second-generation HIV surveillance’ [6] in

South Africa and around the world.

Time-honoured methods of estimating incidence typically require either longitudinal
studies or surveys at multiple points in time. These methods have a number of drawbacks,
such as being prone to capture unrepresentative samples, requiring prolonged study
periods and relying on highly uncertain external model inputs (such as mortality rates).
Therefore, the prospect of measuring incidence from a single cross-sectional survey,
using a test that distinguishes ‘recent’ from ‘non-recent’ infection, has attracted much
interest [7-14]. However, the widespread use of this approach has been hindered by a lack
of methodological consensus [7, 15-27] and the poor or uncertain performance of

candidate tests for recent infection [8-10, 12-14, 28].

This work has therefore aimed to address these obstacles to the application of cross-
sectional incidence surveillance. A number of closely related original contributions have
been made; and these have been shared through international journal articles [29-32],

conference presentations [33-44], local newsletters [45, 46], project websites and online
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tools [47, 48], training courses [49, 50], and various collaborations'. These contributions
can be broadly categorised as:

e The development of a general theoretical framework for incidence estimation,
relaxing the unrealistic assumptions made in earlier work — assumptions that led
to confusion about the validity of this surveillance approach

e Methodological advancement in the measurement of test properties required for
incidence estimation, both by formalising new ideas for the characterisation of
tests, and by building consensus through the rigorous benchmarking of widely
used approaches

o The first independent, large-scale and consistent characterisation of multiple
candidate tests for recent infection, aimed at promoting standardisation in the
field and guiding ongoing ‘recent’ infection ‘biomarker discovery’ projects

e The provision of guidance on the appropriate metric for the evaluation,
optimisation and comparison of tests for recent infection, serving to counter

existing misconceptions that could lead to spurious test assessments

1.2 Review of Incidence Estimation
Using Tests for Recent Infection

The history and state of HIV incidence estimation, from cross-sectional surveys using
tests for recent infection, excluding the contributions made in this work, are briefly

reviewed below.

Traditionally, disease incidence is measured by directly counting the number new
infections that occur while following a cohort of initially uninfected subjects. However,
the required longitudinal surveillance is costly and difficult to administer, both practically
and ethically, while limiting bias in results [12, 54, 55]. Another familiar approach is the
calculation of historic incidence values that are consistent with prevalence data for

multiple time points and age groups [56-60]. For example, in South Africa, prevalence

' For example, with the Centers for Disease Control and Prevention (CDC) [51], with the World
Health Organization (WHO) Technical Working Group on HIV Incidence Assays [52], as a
member of the Consortium for the Evaluation and Performance of HIV Incidence Assays
(CEPHIA) [47], and as a member of the HIV Modelling Consortium Task Team for Incidence
Assay Characterization [53].
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data from both general household surveys [61] and the sentinel surveillance of pregnant
women attending antenatal clinics [5] are used to estimate incidence. This approach also
underlies the widely-used UNAIDS Estimation and Projection Package (EPP) [62-64].
However, post-infection survival, a requisite external input, is typically poorly known and
evolving (for example, as the effectiveness of treatment, and its coverage, grows). In
countries such as the USA, case reporting data are used instead to ‘back-calculate’
incidence from reported HIV and AIDS cases [65-68]. However, often only incidence far
into the past can be estimated, and assumptions about HIV progression and testing
behaviour are required. Alternatively, microscopically descriptive models, such as the
UNAIDS Modes of Transmission Model [69, 70], could be used. While these models
attempt to capture the mechanisms of transmission in detail (for example, by estimating
counts of sexual transmissions in various risk groups), the sophistication is often at odds

with realistically available data to inform input parameters.

Consequently, the estimation of incidence using prevalence measurements obtained in a
single cross-sectional survey, and involving only a few well-estimable parameters, holds
much appeal [7-27]. This is straightforward for conditions with short and well-
characterised durations, such as influenza: the prevalence of having the condition, relative
to that of being susceptible to it, is equal to the product of incidence and the average
duration of the condition (assuming equilibrium of constant incidence and susceptible
population size over the maximum duration of the condition) [71]. Heuristically, the
number of persons currently infected is the number of persons infected in, for example,

the preceding week — and so incidence and prevalence closely track each other.

However, for an enduring condition, such as HIV, time in the infected state is long,
difficult to characterise and ever-evolving, and so prevalence becomes uninformative of
incidence. In 1995, Brookmeyer and Quinn [7] demonstrated that a cross-sectional
approach to incidence estimation could nevertheless be used, by considering instead an

early phase of HIV infection, termed ‘recent’ infection, that could be better characterised.

In the pioneering work of Brookmeyer and Quinn [7], the detection of p24 antigens in
subjects with undetectable HIV antibodies identified putatively ‘recently’ infected
subjects. However, this produced a state of ‘recent’ infection that lasted for only a few
weeks, and therefore unrealistically large samples would be required to obtain precise
incidence estimates [7, 8, 10, 11]. This triggered the development of further tests for

recent infection, seeking more enduring post-infection ‘recent’ states [8-10, 12].
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However, it quickly became evident that there is substantial inter-subject variability, with
the result that some subjects who have been infected for many years nevertheless return
‘recent’ results [8-10, 12-14, 72-81] — typically referred to as ‘false-recent’ results.
Accounting for this phenomenon has led to the emergence of two schools of thought

[18-22].

In the first school of thought, additional parameters are used to discount the observed
‘recent’ results in the survey by the ‘false-recent’ results. This was introduced in 2006 by
McDougal et al [16], who proposed an incidence estimator containing a test ‘sensitivity’,
‘short-term specificity’ and ‘long-term specificity’, which was further studied by
Hargrove et al [17]. However, in 2009, McWalter and Welte demonstrated redundancy in
these parameters [23, 82]. Furthermore, relaxing the assumption of uniform infection
times made in these earlier incidence estimators [23], McWalter and Welte showed that
one can instead obtain a particular weighted average of recent, and potentially changing,
incidence. Two parameters naturally occur in their incidence estimator: a ‘false-recent
rate’ (FRR) and ‘mean duration of recent infection” (MDRI) [25]. A comparison of
incidence estimators revealed that even under steady state conditions, only this last
estimator produced unbiased results [23]. Wang and Lagakos derived the same estimator,

however using additional assumptions [24].

Despite these advances, problematic assumptions remained: namely that (i) ‘false-recent’
results are caused (solely) by test ‘non-progressors’, defined as individuals who never
transition out of the ‘recent’ state, while all remaining individuals transition (once) out of
this state within some relatively short period after infection (for example, a year); and
(i1) post-infection survival and test classifications are independent [23-25]. Under these
assumptions, the above-mentioned FRR is the proportion of (infected) individuals who
are ‘non-progressors’, and MDRI is the average time spent alive and in the ‘recent’ state
for all other individuals [23-25]. However, it is known that subjects may transition
(multiple times) between the ‘recent’ and ‘non-recent’ states over many years post
infection (for example, patients who have AIDS or who are on antiretroviral treatment
may return to the ‘recent’ state) [72-80] and that survival and test results are dependent
(for example, survival is related to viral load and treatment [83-85], which are in turn

related to biomarker results [72-81, 86]).

In the second school of thought, the original one-parameter incidence estimator (that is,

the estimator containing a single test property) of Brookmeyer and Quinn [7] has been
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retained [15, 27, 87-90]. All inter-subject variability (including that elsewhere called
‘false-recent’ results) is captured in a consistently-defined MDRI, which, in this
paradigm, is defined as the average time spent alive and in the ‘recent’ state, considering

all subjects over their full post-infection lifetimes [7, 15].

However, as the maximum post-infection time at which a person can return a ‘true-
recent’ result can now be decades, this approach has a number of limitations. For one, the
assumption of a constant susceptible population size over this duration preceding the
survey, implicit in all estimators [7, 23, 25], becomes more likely to be substantially
violated. Also, the larger this maximum post-infection time, the less informative is the
measured incidence of recent incidence, as the implied weighting of historic incidence
extends further into the past — thus limiting the ability to detect changes in incidence.
Researchers have summarised this complexity into a ‘shadow’ or lag of the incidence
estimator: by assuming a demographic and epidemiological history for the population,
and particular dynamics of the test for recent infection, the cross-sectional study result

can be interpreted as an estimate of incidence some time into the past [15, 27].

Furthermore, the MDRI is more difficult to estimate practically, as it requires a detailed
understanding of survival and test dynamics even at very large times post infection. The
MDRI would also be prone to varying by time and place — for example, by treatment
coverage and as post-infection survival evolves. The estimation of the MDRI is
burdensome, requiring the extensive longitudinal studies [16, 17, 91-103] that this cross-
sectional surveillance approach aims to avoid. It is therefore key that a single MDRI
estimate can be used in a number of cross-sectional incidence studies (across study

populations and time).

Given these limitations of operating in a one-parameter world, and the current non-ideal
performance of tests (occurrence of ‘recent’ results at large times after infection), this

approach is not pursued in this work.

Alongside the refinement of the theoretical framework for incidence estimation, there has
been substantial development of Tests for Recent Infection (TRIs), or Recent Infection
Testing Algorithms (RITAs), over the years [8-10, 12]. These tests are typically based on
measuring some viral process or host response, with classification rules used to map
quantitative biomarker measurements onto dichotomous ‘recent’ and ‘non-recent’

classifications.
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A couple of years after the initial work of Brookmeyer and Quinn [7], Janssen et al [91]
coined the term Serological Testing Algorithm for Recent HIV Seroconversion
(STARHS) when he introduced a test for recent infection based on a modification of an
existing diagnostic test. By tailoring laboratory procedures so that antibody measurements
grew more slowly over time after infection than they did in the original diagnostic test,
readings below a chosen threshold were interpreted as being indicative of ‘recent’
infection. This concept has since been used to develop ‘less-sensitive’ or ‘detuned’

versions of other existing diagnostic tests [100, 104-106].

In 2002, the CDC attempted to overcome the HIV subtype-dependence of earlier tests
with the creation of the BED assay, specifically for this surveillance application [92, 96,
107]. Low BED measurements of HIV-specific Immunoglobulin G (IgG) in total IgG
indicate ‘recent’ infection. However, subtype differences remain [8, 9, 12, 108-110] and a
significant proportion of subjects return ‘recent’ results years after infection [9, 10, 12,
16, 17, 26, 28, 73, 75-78, 111, 112]. For this surveillance application, an FRR of even a
few percent critically undermines the potential of a test. In an attempt to address the high
FRR, the CDC consequently developed the Limiting Antigen (LAg) assay, described in
2010 [98, 113]. Antibody avidity, the strength of binding between virus antigens and host
antibodies, is expected to increase over time since infection as the host’s immune
response matures [9, 107]. LAg seeks to quantify this avidity, with measurements below a
chosen threshold producing ‘recent’ classifications [98, 113]. The assay has since become

widely used, despite remaining uncertainty about its performance [79, 81, 114].

A number of other candidate tests for recent infection have been developed, founded on
concepts similar to those introduced above [8-10, 12, 107, 115-121]. Over the last few
years, further innovative tests have been proposed: some based on measuring genetic
diversity [122-125]; some using platforms that produce a number of related serological
markers (such as measures of titre and avidity of antibodies to various HIV proteins),
which are then together used to produce a classification [39, 40, 44, 86, 102]; some
combining multiple independently-developed biomarkers, including clinical indicators
such as viral load and CD4 cell counts [13, 61, 88, 89, 95, 101, 126] (sometimes termed
Multi Assay Algorithms); and some even of the form of rapid tests [39, 40, 44, 127-129].

However, all of this development of new tests for recent infection has continued to be

undermined by a number of obstacles, discussed below.



Introduction and Overview 8

For application to incidence surveillance, tests must first be characterised — a term used
in this work to describe the estimation of test properties appearing in the incidence
estimator, namely the FRR and MDRI. This process of test characterisation has presented
a bottleneck to test development, as developers and researchers have grappled with the
questions of which test properties to estimate, how best to estimate them, and where to

get the relevant data.

Estimation of the MDRI has typically relied on longitudinal data that describes the
trajectories of biomarkers as a function of time since infection [16, 17, 91-103].
Capturing such data requires the regular follow-up and testing of (initially HIV-negative)
subjects, and is therefore costly and logistically burdensome. Even given suitable data,
confusion about the applicability of the theoretical framework for incidence inference has
led to inconsistencies in, or unclear definitions of, test properties estimated in the
literature. Furthermore, various analytical methods for characterising tests have been
applied, and understanding methodological differences and identifying best practices has

been an ongoing topic among experts in the field over recent years [130].

In principle, given a general incidence inference framework, any test can be consistently
characterised and applied in a cross-sectional study to obtain valid incidence estimates.
However, this mathematical process alone reveals little about the practical utility of a test
for this surveillance application. Further challenges in test development therefore arise
from the lack of standard measures to assess test performance, which are required to
optimise tests and understand the relative performances of proposed tests. Within the
research community, a ‘Target Product Profile’ [14] has been circulated and provides
criteria candidate tests must meet. These criteria include a minimum MDRI (of 4 months)
and maximum FRR (of 2%), and various conditions that support the viable transferability
of technology. However, there remain no standards to further discriminate among tests,
and various analyses have been published on candidate tests. These analyses often present
estimates of test ‘sensitivity’ and ‘specificity’ (to detect infection within some specified
period post infection) [92, 109, 111, 112, 115, 116, 118, 120, 124, 125] — metrics
familiar in diagnostics settings, rather than performance characteristics which can be
directly interpreted as indicating a test’s utility for this unique population-level
surveillance application. Alternatively, analyses compare incidence estimates obtained
using various tests for recent infection to one another or to incidence measured
longitudinally, studying the same population or even using the same sample of subjects

(often termed ‘field validation’) [16, 90, 95, 103, 131-133]. However, this comparison is
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uninformative as any consistent characterisation and application of tests will lead to
incidence estimators with similar expected values (although potentially different

variances).

In the light of the challenges noted above, there has been a call, in meetings convened by
the World Health Organisation (WHQO) Technical Working Group on HIV Incidence
Assays, for a statistically sound and consistent comparative analysis of existing tests for
recent infection as a logical next step to move the field forward [10, 14]. In response to
such calls, in 2010, the Bill and Melinda Gates Foundation (BMGF) awarded a grant to
establish the Consortium for the Evaluation and Performance of HIV Incidence Assays
(CEPHIA) [47] — a collaboration between Public Health England (PHE) in the UK;
Blood Systems Research Institute (BSRI) in the USA; University of California, San
Francisco (UCSF) in the USA; and the South African Centre for Epidemiological
Modelling and Analysis (SACEMA) in South Africa.

The broad mandate of CEPHIA is to foster consensus in the scientific community. More
specifically, CEPHIA was tasked with developing a specimen repository, and rigorously
evaluating existing and new tests for recent infection. Given the successes of CEPHIA, in
2013, the BMGF awarded funding for a second phase of CEPHIA: the repository is being
expanded to include non-plasma specimens (such as dried blood spots, oral fluids, stool
samples, and urine), and the consortium is providing specimens and analytical support to
a number of ‘biomarker discovery’ groups currently developing novel biomarkers to
identify ‘recent’ infection. It is as a member of the core CEPHIA team that much of the

work presented in this thesis has been performed.

Interest in tests for recent infection extends beyond cross-sectional incidence surveillance,
but the framework for each application is unique and nuanced. In particular, in countries
such as France and the USA, HIV incidence is estimated by testing patients newly
diagnosed with HIV in health care settings for ‘recent’ infection [134-138]. By applying
tests for recent infection to only patients who actively seek HIV testing, rather than those
identified as HIV-positive in a cross-sectional survey of the population, testing behaviour
needs to be accounted for when estimating incidence for the general population. Another
application that has attracted considerable interest is the estimation of the durations of
infections in (newly diagnosed) individuals and the reporting of these results to clinicians
and patients, for example, for purposes of contact tracing and tailoring treatment plans.

Tests for recent infection have been routinely utilised in clinical settings in areas of the
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UK since 2009 [139-141], and this application has been piloted elsewhere [142]. Inter-
subject variability in test dynamics should ideally be very small for such individual-level

diagnostic applications.

Furthermore, the discourse on incidence estimation is moving rapidly towards
methodologies that utilise multiple datasets to estimate incidence — combining
measurements of the prevalence of ‘recent’ HIV infection with, for example, sentinel
HIV prevalence surveillance data, national household survey data, life tables and
treatment coverage statistics. Given the substantial subtleties around each application of
tests for recent infection, the scope of this work is restricted to incidence estimation from

cross-sectional surveys.

1.3 Contributions and Structure
of Thesis

This work has focused on addressing key shortcomings in the field, which are highlighted
in the review provided in Section 1.2. The contributions made, and the presentation of

these in this thesis, are described below.

A key aspect of this research has been the dissemination of the work undertaken: in
international journals [29-32] and local newsletters [45, 46], through presentations and
posters at local and international conferences [33-44], through collaborations with various
working groups and organisations, * as a member of the Consortium for the Evaluation
and Performance of HIV Incidence Assays (CEPHIA) [47], by providing training [49, 50]
and by developing an online resource for guidance and analysis tools [48]. A selection of

these referenced items is presented in this thesis.

Within each chapter, the core (published or prepared) journal article is presented as the
first section, and remaining sections provide ancillary analysis details, related ideas, and
applications of the concepts described. All articles are reproduced with permission of the

publishers — with only minor modifications to text and notation, and so there is some

? For example, the Centers for Disease Control and Prevention (CDC) [50], World Health
Organization (WHO) Technical Working Group on HIV Incidence Assays [51], and HIV
Modelling Consortium Task Team for Incidence Assay Characterization [52].
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repetition of background information. Because accepted terms evolved over the years

during which this research was conducted, terminology varies slightly across sections.

Before trying to answer specific questions about its application, a sound theoretical
foundation for incidence inference is required. A general framework for incidence
inference was therefore derived, relaxing assumptions, made in previously proposed
incidence estimators, of demographic and epidemiological equilibrium and about test
dynamics. This derivation is presented as the opening work of this thesis in Chapter 2
[29]. The general framework was constructed by introducing a post-infection time cut-off,
T, separating ‘true-recent’ and ‘false-recent’ results, with an appropriately defined ‘false-
recent rate’ (FRR) and ‘mean duration of recent infection’ (MDRI) emerging from the
analysis as the required test properties. Any unavoidable residual bias, such as from a
varying susceptible population size, is systematically defined. Bias terms are considered
in detail as part of ancillary explorations of the incidence estimator, which also include
discussions on test characterisation, the moments of the incidence estimator, and the
prospects of estimators containing additional test property parameters. An online resource
and set of analysis tools [48], produced to support the application of the framework

presented, are also described.

Having developed a general theoretical framework for incidence inference, focus shifts to
the estimation of the required test properties — namely the FRR and MDRI. These
properties are typically estimated in separate studies, prior to the incidence survey. The

estimated test properties would ideally be recycled across multiple incidence surveys.

A bottleneck to the estimation of the MDRI has been the scarcity of specimen sets needed
to generate relevant data — traditionally understood to contain multiple specimens per
subject, drawn over time from soon after some (well-estimable) infection date.
Furthermore, any access to such precious specimens usually requires that preliminary
estimates of test properties suggest suitable promise of the test. A novel idea for obtaining
preliminary estimates of the MDRI, using more widely available specimens, is therefore

formalised, and its utility demonstrated, in Chapter 3 [31].

Under the proposed methodology, only a single specimen for each subject in the sample
is required, drawn at the time of the first HIV-positive test, as well as knowledge of the
time of the last HIV-negative test [143]. Moreover, if the period between HIV tests is
approximately equal to the post-infection time cut-off T (defined above), the proposed

method of analysis becomes non-parametric, safeguarding against bias from poor
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parametric assumptions (at the expense of reduced precision). The framework in which
these concepts are presented assumes that infection times are uniformly distributed
between HIV-negative and HIV-positive tests, and this is reasonable in settings where
testing schedules can be considered to be independent of subject behaviour. The
methodology is explored by characterising two tests for recent infection (Less-sensitive
Vitros [100] and Less-sensitive Vironostika [104]), using data from blood donors in
South Africa and the USA. Ancillary analysis details are provided, and two further
applications are summarised — a first characterisation of a new candidate test (based on
SMARTube™ technology) [35], and a local characterisation of an already widely used
test (the BED assay) [33]. At the time of performing the work, the framework of
McWalter and Welte [25] was in use, and therefore all analyses for estimating the MDRI
were founded on the definitions of test characteristics presented in their work. A
discussion of the application of the approach, under the general inference framework
provided in Chapter 2, shows how the ideas presented remain just as relevant and

valuable.

Even when the more precious panels of specimens are available, obtained by following
subjects over time, various methods of estimating the MDRI have been used. There had
been little exploration of the methodological differences, and of any artefacts in test
characterisation which would in turn bias incidence estimates. An extensive,
benchmarking exercise was therefore performed, and is presented in Chapter 4 [53].
Prominent researchers in the field were invited to participate in this project, which was
commissioned by the HIV Modelling Consortium [144]. A platform for stochastically
simulating data panels was developed. A large number of characterisation methods were
implemented, and each used to estimate the MDRI. By simulating data, the experiment
could be replicated many times, and the true MDRI calculated. This allowed the
performance of the methods to be rigorously evaluated for the first time, in scenarios

which systematically varied the extent of challenges encountered in reality.

A key obstacle to accurate MDRI estimation, as highlighted by the results of the
benchmarking exercise, is the unknown infection times of subjects (which are only
known to lie between last HIV-negative and first HIV-positive tests). An innovative idea
is presented for limiting the bias that this could cause: subjects only enter the ‘HIV-
positive’ (and ‘recent’) state some short time affer detectable infection, where the time of
entry into this deferred state could be more accurately estimated (than the time of entry

into the otherwise-defined ‘HIV-positive’ state) given typically available data [34]. The
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procedure for incidence estimation would remain unchanged, with the understanding that
a short time lag for incidence estimation is introduced. Also, a framework is outlined for
the estimation of infection times from subjects’ diagnostic testing histories. Published
analyses have paid little attention to this aspect of MDRI estimation, and any consequent
artefacts in the estimation (or inconsistent definitions) of infection times would bias

MDRI estimates.

Results from the characterisation of five prominent tests for recent infection are presented
in Chapter 5 [32], and demonstrate the application of the methodologies developed in
preceding chapters. This is the first of a series of planned publications by CEPHIA, and is
the culmination of over three years of intense specimen collection and testing, and data
gathering and analysis — all applying stringent quality control measures which it is hoped
will guide standards in the field. Potential users of cross-sectional incidence surveillance
have looked to CEPHIA for independent and careful guidance on its application, and
therefore this work represents a particularly important milestone. Results indicate that
each assay, used according to developers’ guidelines, performs inadequately in isolation,
and therefore further optimisation of these assays is required. Since viral suppression
appears to drive FRRs, optimal use of assays is likely to include supplemental viral load
tests. CEPHIA, having produced an invaluable data resource, and other groups are

currently exploring this and more.

By consistently applying the concepts presented above, any test can in principle be
characterised and used to produce valid incidence estimates. With the current surge in the
development of tests for recent infection, the need for standard measures of a test’s
performance for this surveillance application has become increasingly urgent. A guidance
article, targeted at test developers and analysts, is therefore presented in Chapter 6, and
argues against the widespread use of sensitivity and specificity measures, which can
produce spurious assessments of a test’s utility. Since bias in incidence estimation is
demonstrably small in the relevant contexts, the precision of the incidence estimator
provides the only remaining important metric of performance. Although precision is
context-specific, it provides a standard measure to assess, optimise and compare tests for

recent infection.

As general and standard frameworks for incidence estimation and test evaluation are
adopted, discourse in the field is inevitably moving towards application. Practical aspects

of test optimisation are therefore briefly discussed, and include the scope of the
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optimisation, the context-dependence of test performance, and the consideration of other
test design criteria. The intention of this final section of the work is to touch on some of
the topics that are likely to move towards the forefront of future discussions, given recent

developments in the field, including those provided in this work.

In closing, the contributions presented in this thesis are summarised in Chapter 7, and

some perspectives on future directions are provided.

Appendix A provides a detailed account of the calculation of outputs in each of the online
analysis tools. All programming was performed in Matlab (The MathWorks, Inc.,
R2013b, 8.2.0.701), and selected code is provided in Appendix B.
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Chapter 2

A General Theoretical
Framework for Incidence
Inference

A general theoretical framework for the estimation of incidence, from cross-sectional

surveys using tests for recent infection, is presented.

In Section 2.1, a general incidence estimator is derived, relaxing assumptions contained in
earlier proposed estimators. This work is a reproduction of a published journal article
[29].° The framework is further explored, and ancillary analysis details provided, in
Section 2.2, which was published as an appendix to the article. An online resource was
developed over the course of this work, providing theoretical background information and
practical analysis tools to users of this surveillance approach [48], and is described in

Section 2.3.

> The contents of Section 2.1 have been published as: ‘Kassanjee R, McWalter TA,
Bérnighausen T, Welte A. A new general biomarker-based incidence estimator. Epidemiology.
2012; 23(5):721-728’. The article was reproduced with permission from Wolters Kluwer Health,
Lippincott Williams & Wilkins. The manuscript was primarily written by RK, who performed the
analysis, both formal, and of simulated data. TAM generated the simulated data. AW and TAM
helped conceive the analysis and assisted in writing the manuscript. TB supported the project by
reviewing results and text.
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2.1 A New General Biomarker-Based
Incidence Estimator

2.1.1 Introduction

The measurement of disease incidence — the rate of new cases in a population — is
essential for effectively monitoring the spread of disease, and for targeting and assessing
interventions. Longitudinal studies which directly count new infections are costly, time-
consuming, and prone to capturing unrepresentative behaviour. Estimating incidence by
modelling multiple prevalence values requires knowledge of the survival of those affected
and unaffected by the condition. For incurable conditions such as HIV, prevalence
emerges as a slow convolution (averaging) of historic incidence with survival and the
variation in the size of the susceptible population. Thus, changes in prevalence over time
are poor proxies for recent incidence. On the other hand, it has long been noted that
prevalence of recent infection can be a very good proxy for recent incidence. Deriving an
incidence estimate from a single cross-sectional survey has enormous practical
advantages. There has consequently been considerable interest in developing recent
infection tests based on host or viral biomarkers. This approach has been explored
particularly in the context of HIV incidence [8-11]. A number of methodologies have
been proposed [7, 15-17, 24, 25, 87, 91, 107, 143, 145, 146], and these have been
reviewed and critiqued elsewhere [8-11, 18-21, 23, 26].

The limitations of current methodologies (using biomarkers for recent infection to
estimate incidence) are hindering consensus, the development of test technology, and
field implementation. There is no simple solution to the problem of estimating incidence,
a rate, from a single cross-sectional survey, because there is an unavoidable loss of
information when a population history is summarised into an instantaneous population
state. Previously proposed estimators have been derived under very specific assumptions
(known to be substantially violated) concerning both the epidemiological and
demographic context, as well as the behaviour of the recent infection tests (as will be

described below) [7, 15-17, 23-25, 87, 91, 107, 143, 145, 146].
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Methodological background

Most tests for recent HIV infection classify persons as ‘recently’ infected based on a
‘below-threshold’ immune response such as antibody titre, avidity, or HIV-specific IgG
proportion [8-10]. There is some evidence, for all tests proposed to date, that a small
minority of persons remain classified as ‘recently’ infected long after infection [16, 17].
Additionally, late-stage HIV disease or treatment leading to viral suppression may
diminish the host immune response, returning long-infected persons to the ‘recent’
infection state [8-11, 73-76]. This is the physiological basis for the introduction of the
notion of ‘false-recent’ results, the effects of which are encoded into a population-level
parameter widely called the ‘false-recent rate’ [16, 17, 24, 25]. This is not a ‘rate’ in the
conventional sense, but the proportion of persons not ‘truly’ recently infected, who
nevertheless produce a ‘recent’ result with the biomarker. In earlier analyses, dynamics

were summarised into only one parameter — a mean duration of recent infection [7, 15].

Much of the analytical complexity and methodological contention arises from the
difficulty of formally defining ‘true-recent’ and ‘false-recent’ results. Initially, attempts to
account for ‘false-recent’ results were inspired not just by the biological variability noted
above, but by a pattern of cross-sectional incidence estimates that were higher than
prospectively obtained estimates in the same populations. However, as pointed out by
Brookmeyer [18], subtracting ‘false-recent’ results is not the only way to obtain
consistency — one can simply account for all times spent in the ‘recent’ state when
defining the mean duration of recent infection. In practice, however, this creates other
problems, one being that the development of a new test, a process that includes the
estimation of a mean duration of recent infection, cannot feasibly wait for a decade or two
of follow-up of a seroconverter cohort. Also, a long duration of recent infection (as
defined by existing tests) can cause problematic temporal bias or blurring of incidence
estimates — the extreme case being the use of prevalence as a proxy for incidence. Indeed,
the notion of recent infection does not provide a totally unbiased estimate of the
instantaneous incidence, but, at best, a weighted average of recent incidence, which in
principle can be very close to a uniformly-weighted average over recent times. This
statistical weighting may be understood by noting that, as people can persist in the
‘recent’ state for some time, a range of past values of incidence contributes to the current

population count of ‘recently’ infected individuals.
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Kaplan and Brookmeyer [15] and, more recently, Brookmeyer [27] explored this in the
special case of incidence varying linearly with time, in which case the temporal statistical
weighting can be summarised as a time lag of the incidence estimator, which they refer to
as the ‘shadow’. The longer this ‘shadow’, the less informative the estimate, with less
power to detect changes in incidence over short periods of time. A key benefit of a
rigorous notion of ‘false-recent’ results (in addition to a complementary notion of the
mean duration of recent infection that is more practical to measure) is the reduction of

this temporal bias.

In order to implement a formally consistent definition of both a ‘false-recent rate’ and
mean duration of recent infection, an explicit time cut-off, T, is introduced to separate
‘true-recent’ and ‘false-recent’ results. To lead to an informative estimator, this cut-off,
though theoretically arbitrary, must be chosen to reflect the temporal dynamic range of
the test for recent infection; that is, at a time T post infection, the overwhelming majority
of infected people should no longer be testing ‘recent’, and furthermore, T should not be
larger than necessary to achieve this criterion. Although this time cut-off is reminiscent of
a cut-off in previous analyses [16, 17], the present work dispenses with problematic
assumptions of past analyses that have prevented the widespread use of cross-sectional

incidences estimation from data on recent infection.
2.1.2  Analysis

The exposition proceeds in four key steps:

1. The derivation of a simple, general expression for a weighted mean recent
incidence, which can be constructed without any particular assumptions about the
demographic or epidemiological history or the dynamics of the biomarker used to
classify persons with a disease (such as HIV infection) as ‘recently’ or ‘non-
recently’ infected.

2. The derivation of an incidence estimator by expressing the general weighted
incidence in terms of (i) quantities that can be known by an experimenter, and
(i1) a bias term, the size of which can be approximately estimated in terms of a
number of dimensionless parameters that characterise the failure of the test and
context to conform to certain idealisations.

3. The estimation of the test characteristics.

4. The application of the methodology to estimate incidence in simulated scenarios,

to confirm the consistency of confidence intervals.
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A general expression for weighted incidence

A test for recent infection may employ an arbitrarily complex combination of criteria to
classify infected persons as ‘recently’ or ‘non-recently’ infected [10]. It is understood that
there will be natural inter-subject variability in progression through these categories after
becoming infected. This range of responses may be captured in a function P (t), which is
the probability of still being alive and ‘recently’ infected at time 7 post infection. Let

P,(t) denote the probability of being alive at time 7 post infection.

Throughout this work, ‘infection’ refers to the detectable infection of HIV, which
depends on the diagnostic test being used. Practically, the delay between actual infection
and detectable infection merely implies an epidemiologically inconsequential delay in
entering the operationally HIV-positive state. This point is explored in more detail in

Section 2.2.1.

Assuming a continuous population dynamic, and using the reference time t = 0 as the
time at which a survey is conducted, consider the following explicit weighted averaging

of incidence over a period of duration T

_ Lo IONs (PR (-0 dt
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where the (possibly time-dependent) incidence is denoted by I(t) and the susceptible
population by Ng(t). The incidence at time t contributes to I; with weight Ng(t) Pg(—t),
that is, with a weight proportional to (i) the susceptible population vulnerable to being
infected at time t, Ng(t), and (ii) the probability of a person infected at time t still being
alive and ‘recent’ at the time of the survey, Pp(—t). It will emerge that, for practical
purposes, this is very close to a uniformly-weighted average of incidence over a period
preceding the survey. There is no exact way to extract either a uniformly-weighted
average or an estimate of incidence at one point in time, given the substantial

compression of information from a population history into a cross-sectional survey.

If there is a critical value, T,,;;, with the property that Ng(—t)Pg(t) = 0 for all t > T,
then all choices of T > T,,;; yield the same result — the one obtained by Brookmeyer and
Quinn [7]. For any finite value of T, the ‘shadow’, or temporal bias, is strictly less than T,
and it is less than T/2 if Ng(—t)Pg(t) is a strictly decreasing function of time in the
interval [0, T].
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Figure 2.1: Epidemiological, demographic, and recent infection test dynamics

The figure portrays the functions (and areas under functions) of relevance for interpreting
the weighted average of incidence that is measured in the cross-sectional survey,
performed at time t = 0. The functions I(t) and Ng(t) are the incidence and susceptible
population size at time t, respectively; P4(7) is the probability that a subject is alive at
time 7 after infection; and Pi(7) is the probability that a subject is alive and ‘recently’
infected at time 7 after infection.

In the interpretation of Equation (2.1), it is useful to consider the labelled areas in
Figure 2.1:

e Areas A and D (the areas under the curve I(t)Ns(t)Pgr(—t)) represent the
‘recently’ infected population att = 0, infected for times less than and greater
than T, respectively. A is the numerator of Equation (2.1).

e Areas B and C (the areas between the curves I(t)Ng(t)P,(—t) and
[(t)Ng(t)Pg(—t), that is, the infected population excluding the ‘recently’
infected population) represent the ‘non-recently’ infected population at £ = 0,
infected for times less than and greater than T, respectively.

e Area E (the area under the curve Ng(t)Pgr(—t) ) is the denominator of

Equation (2.1).
Hence, Equation (2.1) can be rewritten as

A
Iy =—=. 2.2
r=z 22)
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Previous derivations of incidence estimators have relied on assumptions of (at least
recent) epidemiological and demographic equilibrium, some simplifications of the post-
infection dynamics of tests for recent infection, or both. To elucidate the impact of
general non-equilibrium conditions, it is useful to express the crucial time-dependent

quantities in terms of time-dependent relative deviations from conveniently chosen

constants:
1©O=I-(1+£10) (2:3)
Ns(t) = Ns(0) - (1 + fus () 24)
PA() = 1+ fp,(2). (25)

These equations do not represent any approximations or truncated power series, but are
general, exact decompositions of I(t), Ng(t) and P4(t), the point of which is to
characterise, rather than assume away, the non-ideal aspects of the population and test
dynamics. More specifically: f;(t) is defined to capture the time dependence of the
fractional deviation of incidence relative to the weighted incidence as defined in the
period preceding t = 0; fy.(t) is defined to capture the time dependence of the fractional
deviation of the susceptible population from its instantaneous value at t = 0;
and —fp,(7) is defined as the probability of not surviving for at least a time T after
infection. The averages, over the period of duration T preceding the survey, of products
of fi(.), fns(-) and fp, (), will be shown to summarise the effect of these deviations on

incidence estimates.
Particular forms for an incidence estimator

Incidence estimation involves expressing Equation (2.2) as a function of test
characteristic parameters, and population states. The key link between the numerator and
the population states is

A=Np—D, (2.6)
where N, is the size of the ‘recently’ infected population at t = 0 (Figure 2.1). Various
authors have used different terms for the situation that D # 0 (Figure 2.1). These terms
have included ‘misclassification’, ‘false-positivity’, ‘false-recency’, ‘imperfect long-term
specificity’, the ‘long tail’ or ‘non-progression’ of the test for recent infection [16-21, 23,
25, 146]. Formally, the increasingly used term false-recent rate, S, given a cut-off T, is
defined in this work as the probability that a randomly chosen person infected for longer

than time T will be classified as ‘recently’ infected by the recent infection test.
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A variety of approaches may be used for estimating the area D. For example,

D
D=——-(C+D)

C+D
= Br-(Ny— (4+ B)), 2.7)
where
D
Br = 1D’ (2.8)

and the areas A + B and C + D represent the current population infected for times less
than and greater than T, respectively, so that A + B + C + D = N, is the size of the HIV-

positive population.
By inspection of Figure 2.1,

0
A+B= f I(t)Ng(t)P,4(—t) dt. (2.9)
-T

Using the parameterisation in terms of the dimensionless f;(.), fy,(.), and fp,(.)

introduced earlier, this gives:

A+ B

f OTITNS(O)(l +£0) (1+ fug(®) (1 + fo (=0 ) dt

IrNs(O)T - (L +y1+ V2 + vz +Vat+Vs+ve+v7) (2.10)
where the (also dimensionless) y terms capture the consequences of the time-dependence

of I(t), Ng(t) and P, (—t):

1 0
Y1 = ;Lf,(t) dt 2.11)
L(° 2.12
v2=o j_ g de (2.12)
L 2.13
ys = ;j_Tpr(—t) dt (2.13)
L 2.14
n=7] OO @14
L 2.15
¥s = ff_sz(t)pr(—t) dt (2.15)
(2.16)

1 0
vo=7 | Fus(Ofs, (- at
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1(° 2.17)
v =7 | AR Ofy-0
-T

These y corrections may be positive or negative, but y5 is always non-positive.

Substituting into Equation (2.6) the expression for area D given by Equation (2.7), and

then the expression for area A + B given by Equation (2.10), the numerator becomes:

7
A = Ng — BrNy + BripNs(0)T - (1 + Z )’k)- (2.18)

k=1

In the denominator of Equation (2.2),

0
E =f Ng(t)Pr(—t) dt
T

= f OTNS(O) (1+ fus(®)) Pr(=t) dt

= Ns(0)Q7 - (1 +vs), (2.19)
where
0
Qr = Pp(—t)d
r= o0 de
T
= f Pg(t) dt, (2.20)
0
and
1 0
Y=o | Fus(OPn(-0) . 2.21)

The mean duration of recent infection, (1, thus defined, given a cut-off T, is the

average time spent both alive and ‘recently’ infected, within a time T post infection.

Substituting into Equation (2.2) the expressions for the numerator, given by
Equation (2.18), and the denominator, given by Equation (2.19), gives:

Ng — BrNy + BrIpNsT - (1 + Xi—1 vi)

2.22
NgQr - (1 +vs) (222)

IT:

The right-hand side of this expression contains not only the mean duration of recent
infection, {)1; the false-recent rate, S; and the uninfected, ‘recently’ infected and ‘non-

recently’ infected populations at t = 0, Ng = Ng(0), Ng and Nyg, respectively, where
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N, = Ny + Nyp; but also the weighted incidence, I, itself. Rearranging and solving for

I yields
Iy = NSA-,}Z Q_TB_T IZIT) “(1+e)t, (2.23)
where the equation
Qr T -
e= (m) Ys — Br- (m) ; Yk (2.24)

contains all the details that cannot be directly evaluated from an experimenter’s point of

view.

Using the sample counts of uninfected, ‘recently’ infected and ‘non-recently’ infected
subjects at t =0, ng, ng and nyp, respectively, where n, = ng + nygp, a simple

estimator of weighted incidence, with relative (fractional) error e, is obtained:

ng — Brny
ng (Qr—prT)

By using definitions of the test characteristics (Qr and 1), which are subtly different

Iy = (2.25)

from those used previously [11, 16, 17, 24, 25, 146], an incidence estimator is thus
obtained in which multiple transitions between ‘recently’ and ‘non-recently’ infected
states are allowed, and no assumption is required about the independence of progression
through the ‘recent’/‘non-recent’ states and post-infection survival (see [23] for a
comparison of previously proposed incidence estimators). This estimator caters to
completely general recent infection test dynamics. Bias arising from a non-constant
incidence or susceptible population (in the period T before the incidence study) or
imperfect survival (for T after infection) is fully described by e, and further discussed

below.

The functional form for the estimator in Equation (2.25) can be obtained directly by
assuming the system is in demographic and epidemiological equilibrium [146]. The
present analysis shows that, when the system is away from equilibrium, in particular
when incidence is not close to constant, this functional form provides an estimate of a
particular weighted average of recent incidence, with a fractional bias e. In Section 2.2.1,
the structure and meaning of the terms in Equation (2.24) for e are discussed, and the bias

is computed in model scenarios.
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The yg term, closely related to a bias implicit in all previously proposed estimators [23,
25], is zero when the susceptible population is constant for T preceding the survey, but a
time-dependent susceptible population imposes a fundamental limitation to cross-
sectional incidence estimation. This highlights a key motivation for introducing T —
namely to decouple the short-term dynamics of the test for recent infection from any

long-term dynamics (which become convolved with the epidemiology and demography).

The remaining y terms appear only in conjunction with two further multiplicative factors:
(1) the fraction, dominated by T and 4, which would perhaps typically have a value
close to two, and (ii) a factor of fy. Therefore the estimator can yield a weighted
incidence as accurate as desired if S is sufficiently small, even when incidence and
survival are varying substantially over the timescale set by T. It is already well known
that informative incidence estimation requires that S be small [10, 11, 25, 147], and
developers of tests for recent infection are seeking new technologies and algorithms to

achieve this [86, 95].

Ultimately, the utility of a test for recent infection lies in its ability to produce accurate
and precise incidence estimates. The expectation value and variance of the incidence
estimator are approximated in Section 2.2.2. The uncertainty in the estimator, and its
dependence on the test characteristics, is context-specific, depending on the history of
HIV incidence and prevalence in the study population. The precision of the estimator
improves with increasing mean duration of recent infection and with decreasing false-
recent rate. This trade-off has been previously noted [11], with the additional subtlety in
the present analysis that the choice of T and the test characteristics are intrinsically

related.*

As noted in the introduction, the choice of T is theoretically arbitrary, but given the
dynamics of available and foreseeable tests for recent infection, it will need to be around
a year (or more). This implies a ‘shadow’ [15, 27] of about (but probably comfortably
less than) half a year. This is considerably smaller than ‘shadows’ substantially exceeding

one year, as obtained for a number of realistic scenarios considered by Brookmeyer [27]

* The use of the precision of the incidence estimator, as a standard metric for assessing the trade-
off between the false-recent rate and mean duration of recent infection, was formally outlined in
later work, and is discussed in Chapter 6.
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when using the original one-parameter incidence estimator [7], and indeed implies less

temporal bias or blurring than incurred in a cohort followed up for one year.
Estimation of test characteristics

As with any method aiming to infer incidence from the cross-sectional application of a
recent infection test, use of the newly derived estimator requires measuring some
characteristics of the test ahead of its application in the surveillance context. This test
characterisation should be performed as locally as feasible, because test performance may
be context-specific [131]. The false-recent rate, B, and the mean duration of recent
infection, 1, are intuitively close to previously proposed definitions [11, 16, 17, 24, 25,
146]. However, the definitions of the test characteristics emerging from this work allow,
for the first time, arbitrary and complex test dynamics to be exactly captured. The
estimation of each of the characteristics is briefly discussed below, with a slightly more

technical discussion provided in Section 2.2.3.

The false-recent rate, S, would ideally be estimated by the proportion of ‘recently’
infected subjects in a representative sample of individuals infected for longer than T. It is
also conceivable that S could be estimated from a combination of convenience samples,
knowledge of the dynamics of anomalous subpopulations (who persist in, or return to, the
‘recent’ state despite being infected for a time greater than T') and knowledge of the

embedding demography and epidemiology.

The mean duration of recent infection emerges as naturally in longitudinal surveillance
settings (where well-pedigreed biological specimens may be obtained repeatedly over
time) as it does in the context of cross-sectional incidence estimation analysed above. An
idealised experiment, which revisits initially HIV-negative persons after a time equal to
the post-infection time cut-off T, and counts the frequency of ‘recent’ results in those
who have become HIV-positive, provides a direct estimate for 7, assuming a uniform
distribution of infection times over the inter-test interval (and negligible mortality within
T post infection).” Specifically, the ratio Qr /T is the probability that a seroconverter is

‘recently’ infected. This idea can be expanded to account for varying inter-test intervals,

> The methodology for estimating the mean duration of recent infection using only specimens
drawn at subjects’ first HIV-positive visits, and when inter-test intervals may be large, was
formalised and demonstrated in earlier work, which is presented in Chapter 3.
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depending on available data and knowledge of the dynamics of the test for recent

infection, with an example of such an extension provided in Section 2.2.3.

More traditionally, measurement of the mean duration of recent infection has been based
on the frequent follow-up and recent infection testing of seroconverters. A form of
survival analysis or regression can then be used to characterise the time taken to exit the
‘recent’ state or the evolution of the biomarker over time after infection, respectively,

thereby estimating the mean duration of recent infection.’
Demonstration of methodology using simulated data

Having derived this new, general incidence estimator, and having outlined potential
approaches for estimating the required test characteristics, implementation of the full set

of analyses to infer incidence is demonstrated using simulated data.

Assuming a particular epidemiological and demographic history, post-infection survival
function, and dynamic for the test for recent infection, one thousand simulations were
performed, each producing (independent) datasets to (i) estimate the false-recent rate, fr;
(i1) estimate the mean duration of recent infection, {)r; and (iii) provide sample counts to

infer incidence, /7, using the incidence estimator in Equation (2.25).

The generation of the datasets and the maximum likelihood estimation of the test
characteristics are described in Section 2.2.4. Asymptotic normality of maximum
likelihood estimators (using estimated characteristics as proxies for true values) was used
to approximate distributions for the estimated parameters and to obtain confidence
intervals. Confidence intervals for incidence were then based on these results, the
approximate normality of the trinomial sample counts (with sample statistics
approximating population parameters), and the approximate normality of the incidence
estimator and its estimated variance as provided in Section 2.2.2. As summarised in
Table 2.1, almost exactly 95% of the one thousand thus generated 95% confidence
intervals (one for each of the datasets) contained the relevant population parameter used

in the simulation, demonstrating the numerical consistency of the full set of analyses.

6 Methods for estimating the mean duration of recent infection from longitudinal data obtained by
following (initially HIV-negative) subjects over time were systematically explored in later work,
and results are presented in Chapter 4.
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Parameter Input value' Average point Average CI CI coverage'
estimate width"

Br 2.5% 2.52% 1.93% 95.5%

Qr 160 days 160.56 days 17.96 days 93.6%

Iy 2% 1.98% 1.38% 94.6%

IThe true parameter value, as input into the data simulator
" Average width of realised 95% confidence intervals
""Percentage of realised 95% confidence intervals containing the true parameter value

Table 2.1: Observed 95% confidence interval (CI) coverage of parameters using
simulated data

Simulated datasets were used to validate the methodologies presented for estimating test
characteristics and incidence. For each parameter, namely the false-recent rate S (%),
mean duration of recent infection (1 (days) and incidence I (% per annum), 1 000 point
estimates and confidence intervals were obtained (the chosen modelled scenario and
estimation methods are described in the main text above and Section 2.2.4), for T = 450
days. The true parameter value, average point estimate, average 95% confidence interval
(CI) width and CI coverage (%) are tabulated.

2.1.3 Discussion

The use of tests for recent infection to infer incidence is of considerable and increasing
interest, especially for HIV surveillance. It is a fundamental limitation that all currently
available (and perhaps all conceivable) tests with a mean duration of recent infection that
is long enough for statistical robustness also classify some individuals as ‘recently’
infected at arbitrarily large times after infection. If there were no such ‘false-recent’
results, the use of recent infection tests for incidence estimation would be straightforward,
as shown, for example, by Brookmeyer and Quinn [7]. Various methodological advances
to accommodate a non-zero ‘false-recent rate’ have attracted attention, but consensus has
not emerged on the best approach. Previous derivations of incidence estimators have
relied on strong assumptions: perhaps most crucially that the ‘false-recent rate’ is an
innate property of the test, rather than a convolution of test properties with the
demographic and epidemiological context. This assumption is known to be substantially

violated.
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A formal approach is presented above for summarising an arbitrarily complicated recent
infection test dynamic into two parameters, namely a mean duration of recent infection
and a false-recent rate. A crucial construct is the introduction of a timescale T, describing
the dynamic range of ‘recent’ infection. The consequence of relaxing the assumptions
made by the incidence estimators developed previously is that demography and
epidemiology are no longer perfectly separated from test characteristics, reflecting
fundamental limitations to the inference of rates from instantaneous population states. If
the false-recent rate is very close to zero, the limitations imposed by a non-zero false-

recent rate become minor and its variation over time and place is restricted.

The present analysis offers the opportunity to consistently account for imperfect accuracy
and precision of the incidence estimator. The utility of the estimator may be assessed in
terms of changes in incidence and the susceptible population over the preceding period of
duration T, the probability of survival over T post infection, and the characteristics of the
recent infection test. The cross-sectional incidence estimator will be informative at
feasible sample sizes, in a given context, for a suitably well-behaved test, that is, a test

with a suitably long mean duration of recent infection and low false-recent rate.

The approach presented here is broad enough to recover previously-proposed estimators,
with minor modification. It also clarifies the use of estimators that do not account for
‘false-recent’ results at all. Setting T to a very large value forces the false-recent rate
arbitrarily close to zero, and the one-parameter estimator of Brookmeyer and Quinn [7] is
obtained. The properties of the test are then summarised by the mean duration of recent
infection. However, this mean duration, which is now the average time spent alive and
‘recently’ infected, is considerably more difficult to measure and more likely to change
over time than one based on individual durations that are each explicitly limited to T.
Also, a large T (effectively infinite, if T is not explicitly introduced) leads to a weighting
scheme for averaging incidence that extends far back into the past. For heuristic purposes,
the weighted incidence that emerges from the use of a realistically available test and a
judicious choice of T can be viewed as a good proxy for the uniformly-weighted mean
incidence in the period of duration Q1 preceding the survey. One may consider whether
there is any benefit in using additional parameters to characterise the dynamics of the test
for recent infection [97]. Incidence inference would then be based on a more complex
distribution of test results than counts of ‘recent’ and ‘non-recent’ cases. Section 2.2.4

presents a brief argument that suggests this approach has limited prospects.
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Relaxing all formal assumptions about the dynamics of a putative test for recent infection
and the demographic and epidemiological context leads to an estimator that substantially
increases the robustness of incidence estimation based on cross-sectional surveys using
tests for recent infection. The general analysis leads to a clearer characterisation of the
utility of the estimator than previously possible. While the analysis is fundamentally
novel, the resulting estimator has similarities to some previously published estimators
[24, 25]. These similarities imply that, intuitively, the crucial concepts of a false-recent
rate and mean duration of recent infection are substantially retained. Numerically, the

improvement in incidence estimates implied by the new estimator will vary with context.

While the motivation for this work has been to improve our capacity to estimate HIV
incidence, the methodology is general, and the approach could be applied to estimate
incidence of other incurable conditions, such as herpes simplex virus. Future studies
should examine the application of the methodology to a wider range of diseases, with the

practical challenge being the development of suitable tests for recent infection.

2.1.4 Conclusion

For incurable conditions such as HIV, where prevalence emerges as a slow convolution
of historic incidence with survival and the dynamics of the susceptible population,
changes in prevalence are a poor proxy for recent incidence. Estimating incidence from
cross-sectional surveys has many potential advantages over using longitudinal studies,
and has attracted much interest in recent years, particular in the HIV context. However,
previously proposed HIV incidence estimators have been derived under conditions of
epidemiological and demographic equilibrium, or specific assumptions about the recent
infection test dynamics, or both. These assumptions are known to be violated in many

settings, and this has diminished the practical utility of previous methodologies.

In this article, biomarker-based incidence estimation, which uses data obtained in cross-
sectional surveys, is consistently adapted to a general context. The generalisation implies
that the strong assumptions about epidemiological and demographic history and
biomarker dynamics required by previous estimators are no longer necessary for valid
incidence estimation. Our new estimator thus substantially improves and clarifies the
utility of tests for recent infection for estimating disease incidence. The familiar practical
challenge remains — to make available ever better, and better characterised, tests for

recent infection.
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2.2 Ancillary Explorations of the
Incidence Estimator

2.2.1 Bias of the Incidence Estimator

Bias arising from epidemiological and demographic properties of

the population

In Section 2.1, the following explicit weighted average of incidence over the preceding

period T was defined:

_ Lo IONs (PR (=) dt
T Ns@PR(-D) dt

(2.26)

where the, possibly time-dependent, incidence is given by I(t), the susceptible population

by Ng(t), and Pi(7) is the probability of being alive and ‘recent’ at time 7 post infection.

This weighted incidence was shown to be:
-1

=iy (1 o (g yn) - e

k=1

where the population at t = 0 is decomposed into
e Ny = ‘recently’ infected population,
e Nygr = ‘non-recently’ infected population, and
e N, =uninfected or susceptible population;
the characteristics of the test for recent infection is captured by
e the false-recent rate, S, which is the proportion of ‘recently’ infected individuals

among individuals infected for times greater than T, and
. . . T Lo
e the mean duration of recent infection, Q1 = fo Pr(t) dt, which is the average

time alive and returning a ‘recent’ result, while infected for times less than T';
the subscripted y terms capture non-equilibrium epidemiological/demographic conditions
for a period of duration T preceding the cross-sectional survey (performed at t = 0) and

imperfect survival until T post infection,

e n=7I0h0d,

0
o va=2L 0 fus®dt,
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o vs=fl fo,(-t)dt,

o V=7 0 fil®f (0 dt,

o ¥s =7 0 fiOfp, (-0 dt,

* Y= %f_OTfNS(t)fPA(_t) dt,

o 7 =2 O fus©fp,(—t) dt, and

o ¥o =g [ fus(OPR(=0) dt,
where P,(7) is the probability of being alive at time T post infection; and the time-
dependencies of I(t), Ns(t) and P4(7) are captured by the deviations f;(t), fy4(t) and
fp, (), respectively,

o IO =1I-(1+£©)

o Ns(t) = N5(0) (1 + fiy,(0)). and

e P(@)=1+fp,(0.

The relative bias of the estimator from the exact weighted incidence is therefore

7
e = (ﬁ) Yo — Br- (ﬁ) ;yk. (2.28)

A general discussion of the structure and the meaning of the terms that make up the
relative bias, e, is now provided (elaborating on the discussion in the previous section),

and the bias is quantified and explored in some model scenarios.

The y4 term is zero when the susceptible population is constant for a period of duration T
preceding the survey. If the susceptible population is varying considerably, the incidence
estimator would be substantially biased by the yg term. For example, if the susceptible
population is increasing (decreasing) over the preceding period T, the weighted incidence
is expected to be underestimated (overestimated) by this demographic dynamic, although
the overall net bias will also depend on changes in incidence, post-infection survival and

the characteristics of the test for recent infection.

This potential for bias highlights a key motivation for introducing T, rather than defining
recent duration simply through the function Py (t) — namely to decouple the short-term
dynamics of the test for recent infection from any long-term dynamics which become
convolved with the epidemiology/demography. Reducing T, and therefore averaging over

a much shorter period, would tend to reduce the magnitude of the y correction terms, but
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ultimately erode the statistical power of incidence estimation by making the test-defined
‘recent’ state more transient and difficult to measure with confidence at realistic sample

sizes.

The yg and y, terms are closely related, both representing (variously weighted) average
deviations of the susceptible population over the preceding period of duration T from its

current size, with yg typically expected to be smaller in magnitude than y,.

The y, terms, k = 1,2, ...,7, appear only in conjunction with two further multiplicative
factors: (i) the fraction, dominated by T and Q, which perhaps typically has a value
close to two, and (ii) a factor of ;. Therefore, the estimator can yield a weighted
incidence as accurate as desired if 57 is sufficiently small. For an ideal test for recent
infection — that is, a test for which P (t) reaches and remains at zero for t larger than the
time over which incidence is to be averaged (a time much shorter than post-infection
survival) — there is no need to explicitly introduce T into the analysis. In that case, the
false-recent rate is effectively zero and a one-parameter incidence estimator is obtained.
Since the y;, terms (k = 1,2, ...,7) are then multiplied by the factor S+ = 0, a consistent
estimate (unbiased in the limit of large sample size) of the weighted incidence is obtained

in the case of a constant susceptible population.

Therefore, bias introduced by a varying incidence (for example, in a population with an
outbreak of HIV cases, or experiencing a successful prevention intervention) or imperfect
survival until T post infection (although likely to be negligible) may be suppressed by

forcing the false-recent rate close to zero.

Under typical epidemiological conditions and in the applicable regimes of utility, the

deviations f;(.), fns(.) and fp,(.) are expected to be much less than 1. Therefore, y,

to y, are expected to be smaller in magnitude than y; to y5.

It is worth noting that the deviations, f;(.), fy,(-) and fp,(.), and resulting y correction
terms, playoff against one another in a complex way, and could together compound the
bias or bring it cumulatively closer to zero (compared to the bias arising from any one

deviation or y term considered in isolation).

In the model scenarios described below, the susceptible population and incidence vary
over the preceding period of duration T, and the exact relative bias was calculated. The

estimation of the approximate magnitude of the bias, from the point of view of the
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experimenter, is also briefly considered. The Matlab code that was produced for the

investigation below is provided in Appendix B.1.

Two model scenarios (termed Scenarios 1 and 2) were considered, corresponding to
increasing and decreasing incidence, respectively, during the period preceding the cross-
sectional incidence estimation at t = 0 (with # measured in years):

1. Incidence increased linearly over the preceding year, from 1% to /(0), where
1(0) was varied from 1% to 5% (corresponding to a percentage increase in
incidence of 0% to 400% over the year).

2. Incidence decreased linearly over the preceding year, from I(—1) to 1%, where
I1(—1) was varied from 1% to 5% (corresponding to a percentage decrease in
incidence of 0% to 80% over the year).

Incidence was constant prior to the specific changes noted.

In each scenario, the susceptible population changed exponentially over time, with the
annual growth rate ranging from -10% to 10%, and a susceptible population of

one million individuals at t = 0.

The timescale T was set to 1 year, and the following survival and test dynamics were
assumed:
e Post-infection survival times followed a Weibull distribution, with a coefficient
of variation of 50% and mean post-infection survival of 8§ years.
o The probability of being ‘recently’ infected, conditional on being alive, linearly
decreased from 100% to some constant, between 0.25 years and 0.75 years post

infection, and remained at that constant.

The probability of being both alive and ‘recently’ infected, at time T post infection,
Pr(7), equals the product of the probabilities of being (i) alive; and (ii) ‘recently’
infected, conditional on being alive; at time T post infection. By construct, the false-
recent rate, S, equals the constant probability of being ‘recently’ infected, conditional on
being alive, for times post infection greater than T = 1 year. Scenarios 1 and 2 were each
further split into two sub-scenarios, namely corresponding to a low false-recent rate of
Br = 1% (Scenarios 1A and 2A) and high false-recent rate of S+ = 5% (Scenarios 1B
and 2B) respectively. Under the assumptions above, the mean duration of recent
infection, Qr, is 184 days for Scenarios 1A and 2A, and 192 days for Scenarios 1B
and 2B.
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The population states at t = 0 (sizes of the uninfected, ‘recently’ infected and ‘non-
recently’ infected populations, Ng, N; and Nyg, respectively, where N, = Np + Nyg)
were calculated based on the described epidemiological/demographic history, survival,

and test dynamics.

The relative bias, e, of the estimator from the true weighted incidence, is shown as a
percentage in the contour plots in Figure 2.2, for each of the Scenarios 1A, 1B, 2A
and 2B:

e Even in the extreme cases, of atypically large changes in the susceptible
population and/or incidence, the expected value of the incidence estimator
remains within about 5% of the weighted incidence (for example, the expected
value lies within 1.9% and 2.1% per annum when the true weighted incidence is
2% per annum).

e The probability of dying within T post infection is less than 1%, and so imperfect
survival contributes negligible bias, and, when the percentage annual growth in
the susceptible population is 0% and the change in incidence is 0%, the bias is
undetectable.

e When the susceptible population and/or incidence experience non-zero change,
the y corrections become non-zero and bias is introduced. For example, with a
false-recent rate of 5% and increasing incidence (Scenario 1B), for a 200%
growth in incidence (from 1% to 3%) and 2% annual growth in the susceptible
population, the fractional error is 1.25%. While the exact weighted incidence is
2.42%, the expected estimated incidence is 2.45%.

e Since fr is a factor that suppresses the bias from the non-zero y terms, the biases
in Scenarios 1A and 2A (the /ow false-recent rate scenarios) are expected to be
generally smaller than those in Scenarios 1B and 2B (the Aigh false-recent rate
scenarios), respectively.

e The y corrections playoff against one another to either build-up or reduce the
cumulative bias, just as the deviations f;(.), fy(-) and fp,(.) or their products
average out in different ways to increase or decrease the magnitude of each
y term. Also, perhaps more subtly, f;(.) describes the time-dependent deviation
of incidence from the exact weighted incidence, which itself depends on how
incidence, the susceptible population, and the probability of being ‘recently’
infected and alive over time post infection a// vary. This complicated interaction

between all the crucial functions to produce the overall bias is evident in
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Figure 2.2, where, even though the susceptible population and incidence are

varying, there are contours of zero error.

Scenario 1A: Increasing incidence, ﬂT =1% Scenario 1B: Increasing incidence, ,BT =5%
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Figure 2.2: Relative bias of estimator from weighted incidence in modelled scenarios
The exact relative bias (%) of the incidence estimator is calculated for each of four model
scenarios, as a function of susceptible population growth rate and change in incidence. In
Scenarios 1A and 1B, incidence increases linearly over the preceding T =1 year,
beginning at 1% per annum, while in Scenarios 2A and 2B, incidence decreases linearly
over that time to 1%. Post-infection survival follows a Weibull distribution (mean of
8 years, coefficient of variation of 50%), and the probability of testing ‘recently’ infected,
conditional on being alive, decreases linearly from 100% to either 1 % (Scenarios 1A
and 2A) or 5% (Scenarios 1B and 2B) between 0.25 years and 0.75 years post infection.



A General Theoretical Framework for Incidence Inference 37

The experimenter may use more limited knowledge of the study population and its history
to estimate the magnitude of bias of the incidence estimator, and to understand whether a
study is in a regime of utility. There should be some data on whether there is potentially
considerable time-dependence in the susceptible population or incidence, or notable post-
infection mortality, in the study population, for the relevant timescale set by T:

e Should the experimenter believe that the susceptible population is varying
substantially over the preceding period of duration T, the magnitude of yg could
be estimated, and this correction would likely dominate the bias (due to the
remaining correction terms carrying a factor of Br). The y, term, also describing
the average deviation of the susceptible population from its current size, would
typically be larger in magnitude than yg, and therefore provides an indication of
the size of the yg term. For example, for T = 1 year, estimating a 2% annual
growth rate in the population, the experimenter may consider 0.01 to be a
conservative estimate of the magnitude of y, (y, = —0.0098 for a population
growing exponentially at 2% per annum).

e The y, correction would typically be small as it measures the uniformly averaged
deviation of incidence, over the preceding T, from an alternatively weighted (by
Ns(t)Pgr(—t)) average incidence over the same period. Estimating a large 200%
increase in incidence over the last year, the experimenter may consider 0.2 to be a
conservative estimate of the magnitude of y; (y; = —0.1725 for a 200% increase
in incidence, from 1% to 3%, and a 2% annual growth in the susceptible
population, in Scenario 1B).

e Given multiplication of the yg term by a factor of around unity in the relative
error, e, and multiplication of the y; term by two factors, one close in value to
two and the other equalling S, an initial estimate of the magnitude of relative
bias, assuming negligible T =1 year post-infection mortality, could be
0.01 + 2 X 5% X 0.2 = 0.03 for a false-recent rate of approximately 5%. This is
conservative compared to the exact relative error calculated in Scenario 1B, of

magnitude 0.0125.

The estimation of the magnitude of bias, by the experimenter, could be tackled with
increasing sophistication and detail, depending on the available data — although probably
with diminishing returns beyond an elementary calculation such as outlined. The ad-hoc
example demonstrates that the experimenter should reasonably be in a position to

understand the magnitude of bias and relate the regimes of utility to the current analysis,



A General Theoretical Framework for Incidence Inference 38

keeping in mind the inherently imperfect reproducibility in the incidence estimator
(approximated in Section 2.2.2). In short, whenever cross-sectional incidence estimation

is at all informative, bias will be small compared to variance.
Other factors impacting the incidence weighting function

The exact weighting function, Ng(t)Pgr(—t), is never exactly known, as it involves
complete knowledge of the dynamics of the test for recent infection, rather than merely a
mean duration of recent infection. For practical purposes, the estimator of this work is a

useful proxy for a uniformly-weighted mean incidence over the preceding period Q.

Sensitivity and specificity of the ‘diagnostic’ test used to identify HIV-positive
individuals may be imperfect. In particular, sensitivity will change rapidly from zero to a
value close to one over a short period post exposure, and thus be highly correlated with
status on the recent infection test. In the limit that sensitivity approaches unity at some
time post exposure, even when incidence is varying, the analysis remains consistent if the
weighting Ng(t)Pg(—t) is understood to apply to the rate of detectable infection events —
which differs from the weighting of underlying exposure events by an epidemiologically
irrelevant delay — and requires only consistent estimation of the mean duration of recent
infection.” If there is correlation between diagnostic delay and the duration of ‘recent’
infection, this delay may involve a slight time-dependent blurring, rather than a pure time
translation, but none of this changes the previously noted heuristic that the estimator is an
excellent proxy for the uniformly-weighted mean incidence over the period {1y preceding

the survey.

In HIV diagnostics, levels of sensitivity and specificity are exceptionally high, but if
indeed this analysis were to be contemplated for a context where there is substantially
imperfect diagnostic performance over the full lifetime post infection, and non-trivial
correlation with status on the recent infection test, it may warrant further investigation to
see whether the diagnostic is preferentially misclassifying individuals in the ‘recent’

versus ‘non-recent’ categories.

7 Estimation of the mean duration of recent infection, using a definition of ‘infection time’ that is
consistent with the HIV diagnostic algorithm used in the surveillance survey, is further discussed
in Section 4.3.
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If the field work for a nominally ‘cross-sectional’ survey takes an extended period of
time, comparable to (7, this would introduce additional temporal blurring of the estimate.
In the limit of fieldwork carried out over a much longer time than Q, the resulting
incidence estimate essentially averages incidence over the period of fieldwork rather than

over the duration of ‘recent’ infection.
2.2.2 Moments of the Incidence Estimator

Using the delta method [148] together with assumptions of Gaussian uncertainty in the
sample counts and estimated characteristics of the test for recent infection, the moments
of the incidence estimator are approximated (see Appendix A.1 for a summary of the
delta method and its application in this work). The key results are listed, and the

assumptions and derivation provided thereafter.

By Equation (2.25), the incidence estimator is:

ng — Brny
ng - (Qr—prT)’

where ng, ng and nyg are the counts of uninfected, ‘recently’ infected and ‘non-recently’

Iy = (2.29)

infected individuals in the cross-sectional sample at t = 0, n, = nz + nyg, and the
characteristics of the test for recent infection, namely the false-recent rate, S, and mean
duration of recent infection, (7, would need to be estimated. The test characteristics are
typically estimated in separate studies conducted prior to the cross-sectional incidence
study, though a combined study design, applicable under more restrictive assumptions,

has been proposed [93, 149].

Consider the problem of calculating the mean and the variance of the incidence estimator,
for a cross-sectional survey of sample size n = ng + ng + nyg. Let Ps, Pg and Pyg be the
true population proportions of uninfected, ‘recently’ infected and ‘non-recently’ infected

individuals. Let o, be the standard deviation of the unbiased estimator for the mean
duration of recent infection Qr, and Op, be the standard deviation of the unbiased
estimator for the false-recent rate B. Then the expected value of the incidence estimator
is

Pr — BrPs

E[iT] = Ps - (QT - BTT)

(2.30)
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and the variance is

iy o (_Pr=BrPe Y’
var(in) = (PS @ - ﬁTT))
1 (l+ PyPyg )
n- (Pg + Pyg) \Ps = (Pg — fr - (Pg + Pyg))?
1 2
2 =
+ o, <QT = ﬂTT> (2.31)

+03.< PypQr — Pg - (T — Qr) >2
Br (PR _IBT'(PR"'PNR))(QT_ﬁTT)

The coefficient of variation (ratio of standard deviation to mean) of the incidence

estimator is ¢, where:

5 1 (1+ PpPyp )
Ps ~ (Pr — fr - (Pr + Pygr))?

PurQr = P (T = Or) )2_ 232)

2,
" % <(PR_IBT'(PR+PNR))(QT_ﬁTT)

From this, it is possible to formally explore the trade-off between test characteristics: test
developers need to find biomarkers for recent infection which have a suitably large mean
duration of recent infection and a suitably small false-recent rate.® Note that the
variability of the incidence estimator inflates as the terms (Qp —fyT) and
(PR — Br-(Pg + PNR)) , which occur in denominators above, become small. Hence,
definitions of recent infection, such as being antibody negative while viral RNA or p24
antigen positive (commonly referred to as ‘acute infection’) are of little use for incidence

estimation at the population level as the mean duration of recent infection is too short.

¥ The use of the precision of the incidence estimator, as a summary metric for formally assessing
the trade-off between the false-recent rate and mean duration of recent infection, was further
explored in later work, and is presented in Chapter 6.
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The above results were derived by first assuming Gaussian uncertainty in both the sample
counts (of uninfected, ‘recently’ infected and ‘non-recently’ infected subjects, ng, ny and
nyr, respectively) and estimated test characteristics (estimated mean duration of recent
infection, {1, and estimated false-recent rate, B7). This allows the counts and estimated
parameters to be expressed as:

e ng=ng(a;) =nPs + osay,

o ng =ng(ay, ay) = nPg — ogay + ognr(ay)az,

o nyg = nyr(ay, az) = nPyg — ongay — og nr(@) g,

L4 ﬁT = QT(O(3) = QT + O-ﬁTa3 5 and

o pr= Prlay) =pr+ 0p %45

where

o O-Sz\lnPS'(l_Ps),
P

o o= R s,

PRr+PpNR

PNR

° g = g

NR PRr+PNR S»

J(n-nPs—asa)PrPNg
PRr+PNR

® ORNR () =

b

and a4, a,, a3 and a, are identically and independently distributed standard normal

random variables.

The incidence estimator was then expressed as a function of the a; (i = 1,2,3,4), and a
multivariate Taylor series expansion around a; =0 (i =1,2,3,4) was constructed.
Taking the expected value and variance of this series, retaining powers of a; of up to 1,

led to the results in Equations (2.30) to (2.32).

The approximation and distributional assumptions are highly accurate in their handling of
counting error when characteristics of the test for recent infection are known. This was
verified numerically: assuming a constant historical incidence and a constant prevalence
to incidence ratio of HIV, as well as known test characteristics, the population
proportions were calculated and the coefficient of variation of the incidence estimator
computed by directly enumerating all possible trinomially distributed survey counts. Even
with a small sample of n = 100, the maximum error in the coefficient of variation
obtained using the delta method (that is, the absolute difference between the
approximated and actual coefficient of variation) is 0.017 for all combinations of

incidence in [0.1%,3%], prevalence to incidence ratio in [2,10], Q. in [100,300] days and
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Br in [0%,15%]. Matlab code to perform this investigation is provided in Appendix B.2,

and could be used to explore other regimes of interest.

The assumption of Gaussian uncertainty in the estimated test characteristics is heuristic,
and it is difficult to ascertain the accuracy of the approximation provided. When the false-
recent rate is very close to zero, it is likely that a normal distribution will provide a poor
approximation for the distribution of its estimator, and more sophisticated methods of

error propagation should be investigated.
2.2.3 Estimation of Test Characteristics

The parameters that have been identified to describe the characteristics of the test for
recent infection required to infer incidence (namely, the false-recent rate, fr, and the
mean duration of recent infection, {11) are intuitively close to those previously proposed.
The estimation of the characteristics, demonstrating their emergence in longitudinal

surveillance settings, is discussed below.
The false-recent rate

The false-recent rate, S, is the proportion of ‘recently’ infected individuals among

individuals infected for a time greater than T.

Therefore, the binomial maximum likelihood estimator for B is:
By =" (2.33)
T — m i .
where my, is the number of ‘recently’ infected individuals in a representative sample of m

individuals infected for longer than T.

It would also be possible, although probably more challenging, to estimate S from a
combination of convenience samples, knowledge of the dynamics of anomalous
subpopulations (who persist in or return to the ‘recent’ state despite being infected for a

time greater than T) and knowledge of the embedding demography/epidemiology.
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The mean duration of recent infection

The mean duration of recent infection, (17, is the average time spent alive and ‘recently’

infected while infected for times less than T.

In an idealised experiment, which revisits initially HIV-negative individuals after a
time equal to the post-infection time cut-off T and counts the frequency of ‘recent’ results
in those who have become HIV-positive, a direct estimate for (4 is provided, assuming a
uniform distribution of infection times over the inter-test interval of duration T (and
negligible mortality within T post infection).” More specifically, the ratio Q;/T is the
probability of a seroconverter providing a ‘recent’ result on the first HIV-positive test,
and therefore the binomial maximum likelihood estimator for Q. is:
kg

Q=T 2.34
T o (2.34)

where kp, is the number of ‘recently’ infected subjects in the group of k subjects who are
HIV-positive at follow-up. Such a study would probably need to be prohibitively large to
capture a reasonably large sample of seroconverters, but it is worth noting that no
additional input parameters are needed in the estimation, overcoming a key obstacle of
unknown input parameters to the estimation of previously-defined mean durations of

recent infection [31].

This idea can be further developed to account for varying inter-test intervals, depending
on available data and knowledge of the dynamics of the test for recent infection. As an
example, a method of maximum likelihood is outlined below for estimating )+ from data
capturing recent infection test classifications at the times of the first HIV-positive tests
(that is, when there is no follow-up of HIV-positive subjects), and there are varying but
large intervals between last HIV-negative and first HIV-positive tests, utilising

assumptions about test dynamics at times post infection in the vicinity of T.

? The estimation of the mean duration of recent infection using only specimens drawn at subjects’
first HIV-positive visits, and when inter-test intervals may be large, was formalised and
demonstrated in earlier work, which is presented in Chapter 3.
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In general, the probability, p;, that the i™ seroconverter, with inter-test interval A;, returns

a ‘recent’ result at the time of the first HIV-positive test is:
0
pi=| f(=0Pg(=0t)dt, (2.35)
_Al

where f(7) is the probability density of getting infected at time 7 before the first HIV-
positive test and Pg(7) becomes the probability of being ‘recently’ infected when tested
at time 7 (< 4;) after infection, assuming no mortality for at least time A; post infection.
More specifically, for a sample of subjects who have inter-test intervals between L and U
(L<A; <U), where Land U (L < T < U) are chosen so that the probability of testing
‘recently’ infected is constant at 8 for times post infection between L and U, and
assuming that infection times are uniformly distributed in inter-test intervals (that
is, f(—t) = 1/A; for all t such that t € [—A;, 0]), p; becomes:

1 0 -T

pi =5 <f Pr(—t) dt + f Pr(—t) dt)
4; T —A;

Q468 —T)
= i ,

(2.36)

The likelihood of the entire set of classifications (for all seroconverters) can then be

maximised to estimate Q.

Traditionally, studies aimed at estimating the mean duration of recent infection often
capture seroconversion panels, obtained from the frequent follow-up and recent infection
testing of a relatively small sample of seroconverters. A form of survival analysis, or
regression, can then be used to characterise the time taken to exit the ‘recent’ state, or the
evolution of the biomarker over time after infection, respectively, thereby estimating the
mean duration of recent infection.'” For a biomarker that monotonically increases over
time after infection, what is often measured is the average time from infection to the

biomarker response crossing a selected threshold (defining the transition from the

' Methods for estimating the mean duration of recent infection from longitudinal data were
systematically explored in later work, and results are presented in Chapter 4. The dangers of
neglecting noise in a measured biomarker, by assuming that subjects have single continuous
sojourns in the ‘recent’ state, implicit in all survival analysis approaches and methods that
estimate times at which biomarkers ‘cross’ thresholds, are discussed in Chapter 4. However,
such analyses have been used to estimate the MDRI, and are therefore described here for
completeness.
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‘recently’ infected to ‘non-recently’ infected state). Such data and methods may be

related to estimation of Q0 by decomposing the parameter into two parameters, € and w:
Qr=eT+ (1 - 6w, (2.37)
where w is the estimated time from seroconversion to threshold-crossing for those

individuals who do so within T post infection, and € is the proportion of seroconverters

whose responses are still below the selected threshold at time T post infection.

In all approaches, the recent infection test classifications of subjects at follow-up are used
to estimate the mean duration of recent infection. These classifications describe the
probabilities of being in the ‘recent’ state at times post infection conditional on being
alive at follow-up, which introduces a relative error in the estimation of {1 related to the

size of y3 (see Section 2.2.1).
2.2.4 Simulation and Analysis of Test Datasets

As a further demonstration of the methods presented, 1 000 datasets were simulated and
used to infer the characteristics of the test for recent infection and incidence, and results

were presented in Section 2.1.2. The simulation of the datasets is outlined below.

The model population and test dynamics were constructed so that, at ¢ = 0 and for a time
cut-off of T = 450 days,

e HIV prevalence was 15%;

o weighted HIV incidence, I, was 2%;

o the false-recent rate, B, was 2.5%; and

e the mean duration of recent infection, (0, was 160 days.

The probability of being alive and in the state of ‘recent’ infection at time 7 post infection
(measured in years) took the form:

= (2.38)

Pr(t) = (1 — )e~ /D" 4 ¢ forall 7 such that T € [0,% ,

where ¢ = 0.0167, A = 0.4707 and k = 3.7183. This set of parameters ensures that
Q7 = 160 days. It was assumed that there is no death prior to 600 days after infection.

For each of 1 000 simulations, the following datasets were generated:
1. A dataset for estimating [y, which consisted of binomially generated
classifications of 1 000 subjects, representing a random sample of individuals

infected for longer than T = 450 days, as ‘recently’ or ‘non-recently’ infected. In
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the estimation, S was measured using the maximum likelihood method
described by Equation (2.33).

2. A dataset for estimating ;, which consisted of the recent infection test
classifications for 2 000 sampled subjects at their first HIV-positive tests, as well
as the subjects’ inter-test intervals (times between last HIV-negative and first
HIV-positive tests). Infection times for subjects were uniformly distributed in
their inter-test intervals. Inter-test intervals were generated from a uniform
distribution, with a support of 300 to 600 days. The parameter, Q, was estimated
by maximising a likelihood function based on Equation (2.36), using
L = 300 days, U = 600 days and the estimated false-recent rate as the input 6.
Although 0 and the false-recent rate are different in reality, this approximation is
likely to be made in practice. Uncertainty in the input 8, which has a true value of
1.67%, was neglected in estimation of (7.

3. A dataset providing the sample counts for inferring incidence, that is, containing
the categorisations of 10 000 subjects, captured in a cross-sectional survey at
t = 0, as uninfected, ‘recently’ infected or ‘non-recently’ infected. This dataset
was produced by calculating the proportion of the population in each of these
three states, based on being consistent with the constructions described above,
and generating classifications for the 10000 subjects from a trinomial
distribution. The incidence estimator provided in Equation (2.25) was used to

infer incidence.

2.2.5 Prospects for Tests Characterised by More

Than Two Parameters

There are a number of ways one may contemplate summarising test dynamics into a
greater number of parameters. More complex characterisations of tests for recent

infection are briefly considered below, and appear to offer limited prospects.

If the objective of a survey is to provide a single weighted average of recent incidence,
then the number of infections, in a specified recent period, is formally a ‘sufficient
statistic’ [150] of this rate — that is, there is no additional benefit in knowing the times of
occurrence of these infections. The estimation of the numerator in Equation (2.2) is very
nearly the estimation of the number of infections in the last period Q. This suggests that

a finer breakdown, beyond counts of ‘recent’ and ‘non-recent’ cases, of the survey results
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adds no significant accuracy for obtaining a single point estimate of incidence, though it

may add significant imprecision.

The characterisation of an ideal test for recent infection (one with a false-recent rate of
zero), for the purpose of estimating incidence, requires no parameters other than the mean
duration of recent infection. When the test exhibits ‘recent’ results at large times post
infection, an additional parameter, namely a false-recent rate, may be introduced
(together with the relevant timescale, T, of ‘false-recent’ results) to describe this tail. No
assumptions about the dynamics of the ‘false-recent’ results are required. If the ‘false-
recent’ results are distributed over the dynamic range of values for the measured
biomarker in a known, non-uniform manner, there may be a benefit to characterising this
dynamic with additional parameters. However, it seems unlikely that the characterisation
of this dynamic, or its statistically detectable manifestation in a survey, will be feasible,

given the need for the false-recent rate to be very low.

One final point that bears mentioning is that data from a single survey for a test for recent
infection with a long dynamic range could in principle be used to yield multiple incidence
estimates, using different recent/non-recent thresholds, and perhaps different values of T
This would provide, from a single survey, multiple estimates of incidence, each with a
subtly different weighting scheme. Given how difficult it is to provide even single
incidence estimates, or to detect differences in incidence using data from separate
surveys, the effective estimation of an incidence trend from a single survey would require

daunting sample sizes and tests for recent infection of currently unrealised performance.

2.3 Online Resource and Analysis
Tools for Practical Application

An online resource, maintained by the South African DST/NRF Centre of Excellence in
Epidemiological Modelling and Analysis (SACEMA), was developed over the course of

this project. The website, www.incidence-estimation.com, aims to provide users with

both relevant theoretical background information and supporting analysis tools for HIV
incidence estimation. Two approaches for estimating incidence are currently supported:
(1) from cross-sectional surveys using test for recent infection, which is the focus of this

work as further discussed below, and (2) from age-stratified HIV prevalence data
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measured at multiple time points, for which methodology and tools were developed by

other researchers [60].

The website’s landing page is captured in Figure 2.3. Users can then navigate to a
theoretical review of the methodology, a set of analysis tools and an archive of related
documents. Contact details are also supplied, and investigators from around the world
have enquired about the applicability and tailoring of the methodology to their particular
studies, and the choice of inputs for analysis tools and interpretation of outputs. A section
of the website is dedicated to the Consortium for the Evaluation and Performance of HIV
Incidence Assays (CEPHIA), facilitating both the consortium’s communication with the
public, and the internal sharing of documents and data files (access is restricted to
CEPHIA members). Updates are also regularly posted, describing latest developments in
the field.

The current suite of analysis tools, called Assay-Based Incidence Estimation (ABIE) v2.0,
was developed to support application of the incidence estimation framework presented in
Section 2.1. The suite provides users with various ‘calculators’, each performing a task-
specific statistical analysis. The toolset replaces and offers some advancements on
ABIE v1.0, which was both based on the less general incidence inference framework of,

and created by, McWalter and Welte [25].

The objective of ABIE v2.0 was increasing accessibility to the work, and therefore the
tools were designed to be uncomplicated and user-friendly, allowing a range of potential
users (such as test developers, individuals designing studies or HIV programme
managers, and data analysts) to more easily move from the theoretical discourse to
practical application. The calculators are in the form of Microsoft Excel spreadsheets,
providing an interface that is familiar to many. All calculations and statistical tests are
performed using simple closed-form approximations (if not exact solutions) and the most
straightforward test statistics (differences and ratios of incidences estimates) respectively.
While the spreadsheets are protected to prevent any accidental modifications of formulae,
users can unlock the spreadsheets to view all underlying calculations or even purposefully
tailor the tools to better suit their specific needs. A diverse range of warning and error
messages appear when inputs suggest inconsistencies or problematic regimes for
application of this surveillance approach. In a number of the calculators, multiple sets of
inputs can be provided, enabling the user to consider a range of contexts and analyse the

sensitivity of outputs to context.
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Incidence-Estimation

SACEMA's online resource for incidence estimation

Home e ‘ Contactus CEPHIA

Contact | Login

Home

‘Welcome to the incidence estimation portal, maintained by the South African Department of
Science and Technology / National Research Foundation Centre for Epidemiological Modelling
and Analysis (SACEMA).

Disease incidence, the rate of occurrence of new cases in a population, is typically much more
difficult to estimate than prevalence, the fraction of the population having a condition at a given
point in time. For transient conditions, such as seasonal flu, prevalence is a good proxy for
recent incidence. However, for enduring conditions, such as HIV, current prevalence depends in
detail on historical incidence, demography, and survival.

HIV epidemiology is one of the most urgent contexts in which a difficult-to-measure incidence
plays a crucial role. Reliable estimates of HIV incidence are critical for epidemiological
monitoring, understanding transmission patterns, and in the design and evaluation of
intervention or prevention programs.

Traditionally, epidemiologists have referred to the counting of infection events during the
prospective follow-up of an initially uninfected cohort as producing ‘directly observed’ incidence
estimates. For population-level surveillance, this approach is often impractical and prone to
bias. Indeed, the very definition of incidence, or any other population dynamic rate, is subtle and
potentially problematic, especially when dealing with populations and conditions which are
highly heterogeneous.

Numerous alternatives to cohort studies have attracted wide interest in recent years:

e Inferring incidence from cross-sectional surveys testing for biomarkers of ‘recent
infection’

o Inferring incidence from population renewal equations, given suitable age-stratified
prevalence and mortality

¢ Estimating incidence by fitting dynamical models to a range of available data

SACEMA is particularly interested in developing and applying new methodology covered by the
first two of these approaches.

UPDATES ‘

Talks given at Department of Health, April
2014

April 18,2014

Consortium for the Evaluation and
Performance of HIV Incidence Assays
hosts webinar on ‘Recent Infection’ and
the CEPHIA development pipeline for
incidence assays.

Nov 12,2013

New Paper: Incidence estimation from
prevalence surveys, using age- and time-
dependent prevalence and mortality data.

Nov 5, 2012

New Paper: Incidence estimation from
cross-sectional surveys testing for
biomarkers of 'recent infection'

Nov 5, 2012

The Bill & Melinda Gates Foundation
funded HIV Modelling Consortium
sponsors workshop on characterisation of
biomarkers of recent HIV infection.

July 21,2012

Read more...

CEPHIA UPDATES ‘

Management Meeting, Stellenbosch, 5-9
May 2014

May 15, 2014
Independent Evaluation of Predicate
Incidence Assays for HIV Surveillance

May 9, 2014

Using Antibodies to Detect HIV
Persistence in Treatment Intensification
and Eradication Studies

May 8, 2014
The Bio-Rad Geenius™ HIV 1/2
Supplemental Assay has been developed

for HIV-1 and HIV-2 differentiation and
confirmation.

May 6, 2014

New single point of contact

Jan 8,2014

Read more...

maintains this site with the support of the

ﬁ’ SACEMA

Canadian International
Development Agency

R

Figure 2.3: Online resource for incidence estimation

The landing page of the incidence estimation website (www.incidence-estimation.com) is
shown (as it appeared on 16 July 2014). The SACEMA-maintained website was
developed to provide users with methodological background information and analysis
tools for HIV incidence estimation.
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A detailed description of the inputs, outputs and analyses underlying each of the

calculators is provided in Appendix A. In brief, the following calculators are currently

available in ABIE v2.0:

Incidence and Prevalence Calculator — estimates HIV incidence and prevalence,
from (i) counts of uninfected, ‘recently’ infected and ‘non-recently’ infected
subjects observed in a cross-sectional survey, and (ii) properties of the test for
recent infection (the test’s MDRI and FRR, and the uncertainties with which they
are measured).

Sample Size Calculator — calculates the number of subjects required in a cross-
sectional incidence study to obtain a specified precision of the incidence
estimator, given the (i) desired precision, (ii) assumed epidemiological context
(HIV incidence and prevalence), and (iii) test properties.

Incidence Ratio Calculator — estimates the ratio of two incidence values, from
(1) counts of uninfected, ‘recently’ infected and ‘non-recently’ infected subjects
observed in each of two cross-sectional surveys, and (ii) test properties (presumed
to be the same in both populations).

P-value for Difference Calculator — calculates a conventional p-value to
summarise the discrepancy between two incidence estimates (more specifically,
the probability of obtaining as large a difference between two incidence estimates
as that actually observed), under the null hypothesis of equal incidence in the two
study populations, assuming equal HIV prevalence. Inputs are the (i) counts of
uninfected, ‘recently’ infected and ‘non-recently’ infected subjects observed in
each of the two cross-sectional surveys, and (ii) test properties (presumed to be
the same in both populations).

Power to Detect Difference Calculator — calculates the probability of inferring a
difference between two incidence values, in the correct direction, when
considering the difference between two incidence estimates, assuming equal HIV
prevalence. Inputs are the (i) assumed epidemiological context, for each study
population, (ii) incidence survey size, for each population, (iii) test properties
(equal in both populations), and (iv) statistical significance level for the test for

difference in incidence.
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e Test Performance Calculator'' — calculates the precision of the incidence
estimator, given the (i) assumed epidemiological context, (ii) incidence survey

size, and (iii) test properties.

A weakness of cross-sectional incidence surveillance, drawing some criticism, is the
potentially large samples required to obtain suitably precise incidence estimates in low
HIV incidence settings, given the current non-ideal performance of tests for recent
infection. This important topic of sample size considerations is used to illustrate an
application of the calculators. In Figures 2.4 and 2.5, the Sample Size Calculator is used
to explore the relationship between sample size and incidence estimation precision, for a
test for recent infection that has properties closely meeting the ‘Target Product
Profile’ [14]: an MDRI of 180 days and an FRR of 1%, for T = 1 year. Based on
experiences from analysing data produced by CEPHIA, the coefficient of variation (CoV)
for MDRI estimation was taken to be 5%; and the CoV for FRR estimation was set to
30%, which corresponds to estimation of the FRR in a sample of 1 000 long-infected

subjects.

In the screenshot of the Sample Size Calculator provided in Figure 2.4, the tool was used
to explore an epidemiological setting where the HIV incidence rate is low at 0.5% per
person year and HIV prevalence is 5%. The incidence value represents the weighted
incidence that would be measured in the cross-sectional survey (that is, there are no
assumptions of constant historical incidence). The input specifies that the required CoV
of the incidence estimator is 20% — roughly equivalent to requiring a 95% probability of
obtaining an HIV incidence point estimate between 0.3% and 0.7% per person year. The
calculator output indicates that a sample of 15400 subjects would be required in the
incidence study to achieve this level of precision. This can be compared to the
approximately 11 000 HIV diagnostic tests required to achieve the same precision of
incidence estimation using a longitudinal study, which identifies HIV-negative subjects in
a cross-sectional survey of the population and retests these subjects one year later, in the
described context (5 500 subjects would be tested for HIV at the start of the study, and
the enrolled HIV-negative subjects retested at the end of the study).

""The Test Performance Calculator was developed to accompany the article presented in
Chapter 6, in which the precision of the incidence estimator is proposed as a standard metric for
assessing test performance.
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Sample Size Calculator Inputs  Outputs
Calculates the sample size required for an incidence es imator CoV using assay characteristics and background incidence

Time cut-off T
Post-infection time cut-off T, separating 'true-recent' from 365
'false-recent' results (days)

Test for Recent Infection/Assay Characteristics Indicative 95% Cls, using input CoV
Estimated Mean Duration of Recent Infection (MDRI) (days) 180 (162.36 - 197.64 )

CoV (Coefficient of Variation) of MDRI estimate (%) 5.0%

Estimated False-Recent Rate (FRR) (%) 1.0% ( 0.41%-1.59% )

CoV of FRR estimate (%) 30.0%

Reference Epidemic State
Reference incidence (%) 0.5% ( 0.30%-0.70% )
Reference prevalence (%) 5.0%

CoV of incidence estimator, at an infinite sample,

Coefficient of Variation Required is 7.8% from test characteristic uncertainty
Minimum possible incidence estimator CoV at given 7.8% (using reference epidemic state)

test characteristic uncertainty (%)
CoV required for incidence es imator (%) 20.0%

Population Proportions

HIV-nega ive 0.9500
HIV-positive (classified as 'non-recently' infected) 0.0472
HIV-positive (classified as 'recently' infected) 0.0028

Sample Size Required
Sample size 15401 Warning: Sample size is greater than 5000

Figure 2.4: Example analysis using the Sample Size Calculator contained in the
ABIE v2.0 tool suite

In the screenshot of the Sample Size Calculator, the analysis tool output indicates that
15401 subjects are needed in a cross-sectional incidence study to obtain the desired
precision of the incidence estimator, in the specified scenario. Inputs indicate that an
incidence estimator with a 20% CoV is required, in a population where HIV incidence
and prevalence are 0.5% per annum and 5% respectively, using a test for recent infection
that has an MDRI of 180 days, estimated with a 5% CoV, and an FRR of 1%, estimated
with a 30% CoV, for T = 1 year.

The required sample size is expected to vary greatly by epidemiological context. The
calculator, which accommodates multiple sets of inputs, was therefore used to calculate
the sample sizes required in populations with various HIV incidence and prevalence
values. The tool output, provided in Figure 2.5, shows that the sample size required to
obtain the same CoV of the incidence estimator (20%) decreases as HIV incidence
increases or prevalence decreases. A much smaller survey, of 5 900 subjects, is required
when incidence is higher, at 1% per annum, and prevalence is lower, at 2.5% (this context

may capture, for example, an emerging epidemic among teenagers).
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Figure 2.5: Sample size required to obtain a specified CoV for the incidence
estimator by HIV incidence and prevalence in the study population, using the
Sample Size Calculator

The chart, produced by the Sample Size Calculator contained in the toolset ABIE v2.0,
shows the sample size (in tens of thousands of subjects) required in a cross-sectional
surveillance study to obtain an incidence estimator with a 20% CoV in each
epidemiological context considered. The epidemiological contexts capture different
combinations of HIV incidence (0.25%, 0.5% and 1% per annum) and prevalence (2.5%,
5% and 10%). The test for recent infection has an MDRI of 180 days, estimated with a
5% CoV, and an FRR of 1%, estimated with a 30% CoV, for T = 1 year. When HIV
incidence is 0.25% per annum, and HIV prevalence is at least 7.5%, the uncertainty from
the estimated test properties already implies a CoV of the incidence estimator greater than
20%.

The ABIE analysis tools have been endorsed by the World Health Organisation (WHO)
HIV Incidence Assays Working Group [13, 130], and are used as part of training delivered
by the Centers for Disease Control and Prevention (CDC). Locally, the ABIE tools are
used to analyse data from the South African national household surveys [61]. We, at
SACEMA, also directly hosted a training workshop, at the request of the WHO, in South
Africa in 2012 [49, 50]. Participants were primarily epidemiologists and programme
officers from national health departments and CDC divisions in countries around Africa.
The theoretical foundations were presented, and the use of each analysis tool
demonstrated. The WHO has requested that the training is continued, and a second

workshop was conducted in September 2014.
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In addition to the standard analysis tools provided online, numerous ad-hoc calculators
have been created in response to specific requests. For example, the Incidence and
Prevalence Calculator was tailored to consistently account for the scenario in which not
all of the HIV-positive subjects identified in the cross-sectional survey were tested for
‘recent’ infection.'” As another example, a tool was developed to calculate the sample
size required to achieve a desired statistical power when testing for a difference in
incidence in two populations, where incidence is estimated from a cross-sectional study
using a test for recent infection in one population, and by a conventional longitudinal

study in the other."

The next version of the tool suite, ABIE v3.0, is envisioned as providing much greater
flexibility and more rigorous statistical calculations. The intention is to develop the tools
in R, which is open-source software that is suited to statistical programming [152]. More
accurate calculations, requiring more computationally-expensive numerical methods,
could then be efficiently implemented. For example, in power calculations, the full
distribution of possible survey counts could be considered (rather than utilising closed-
form approximations that are based on expected counts), and bootstrap resampling could
be used to estimate uncertainties. A broader range of scenarios, better capturing those that
may be encountered in reality, could be accommodated, for example by relaxing
assumptions about equal HIV prevalence and equal test properties in the populations
being compared; and optimally-powered statistical tests should be developed for
hypothesis testing. A broader range of input types could also be accommodated (such as
plausible minimum and maximum values of parameters rather than specifications of
single values) and more diverse outputs produced (such as files summarising outputs in
tables or visually through various plots). While such a tool suite would not present the
simple interface and calculations contained in ABIE v2.0, progressively advancing the

analytical tools would support the expanding application of this surveillance approach.

The analysis was requested by Medicins Sans Frontiers, for data from an incidence study in
Kenya, intended to provide a baseline incidence measure for monitoring transmission over time
[151].

BThe tool was used by the South African Perinatal HIV Research Unit to design a study intended
to evaluate the impact of medical male circumcision in Soweto, South Africa.
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Chapter 3

Estimating the Mean Duration of
Recent Infection I: Observing
Subjects Once after Infection

This chapter formalises and demonstrates the utility of an approach for obtaining
preliminary estimates of a test’s mean duration of recent infection (MDRI) [143] using
previously overlooked data. The procedure requires only a single application of the test
for recent infection per subject, on specimen drawn at the time of the first HIV-positive
test. No subsequent follow-up of subjects is necessary, and the methodology is suited to

contexts where times between HIV diagnostic tests may be large (such as a year or two).

The methodology is explored in Section 3.1, and used to perform initial characterisations
of two detuned assays using the previously untapped source of specimens provided by
blood donors. This analysis is a reproduction of a published journal article [31]."
Ancillary details of the analysis, which were published in an appendix to the article, are

provided in Section 3.2.

"“The contents of Section 3.1 have been published as: ‘Kassanjee R, Welte A, McWalter TA,
Keating SM, Vermeulen M, Stramer SL, Busch MP. Seroconverting blood donors as a resource
for characterising and optimising recent infection testing algorithms for incidence estimation.
PLOS ONE. 2011; 6(6):¢20027°. PLOS applies the Creative Commons Attribution (CC BY)
license to all works published, and therefore no permission was required to reproduce the work.
The manuscript was primarily written by RK, who performed all analyses. AW and TAM
critically reviewed results and assisted in writing the manuscript. Specimen collection and
laboratory work were performed by MPB, SMK, MV and SLS, and these were led by MPB who
conceived the design.
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Two further applications of this approach are presented in Section 3.3, namely the
characterisation of a newly proposed test for recent infection, based on SMARTube™
technology, and the characterisation of the widely used BED assay for the South African

context. These applications were presented at HIV conferences [33, 35]."

At the time of the work described above, the incidence inference framework of McWalter
and Welte [25] was in use. The more general inference scheme, derived in Chapter 2, had
not yet been adopted. However, the ideas presented in this chapter are as applicable and
valuable under the more general framework of Chapter 2, and in fact benefit from it, as

shown in Section 3.4.

">The analysis described in Section 3.3.1 has been previously presented as ‘Kassanjee R, Welte A,
Jehuda-Cohen T. SMARTube as a test for recent infection. Poster 41 and presentation at the
2010 HIV Diagnostics Conference. 24-26 March 2010, Florida, USA’. The analysis presented in
Section 3.3.2 has appeared as ‘Kassanjee R, Welte A, McWalter TA, Viljoen J, Bérnighausen T,
Newell ML, Fatti, LP. Calibration of BED assay for use in incidence estimation. E-poster
CDBO018 at the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention. 19-22 July
2009, South Africa’.
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3.1 Seroconverting Blood Donors
as a Resource for Characterising
Tests for Recent Infection

3.1.1 Introduction

Incidence, the rate of new infections, provides a more direct and current indication of the
spread of HIV than prevalence, the fraction of the population in an infected state.
Incidence estimates are key to monitoring epidemics, assessing outbreaks, and targeting
and evaluating interventions. Prospective longitudinal studies, which allow for the direct
counting of new infections in cohorts of individuals, are costly, logistically difficult to set
up and maintain, and prone to capturing unrepresentative behaviours. Consequently,
estimation of incidence using cross-sectional surveys [7, 15, 91] has attracted much

interest over recent years.

Tests for recent infection, also termed Recent Infection Testing Algorithms (RITAs) [10]
or Serologic Testing Algorithms for Recent HIV Seroconversion (STARHS) [91],
classify infections as ‘recently’ or ‘non-recently’ acquired. Incidence is then related to the
prevalence of test-defined ‘recent’ infection [7, 15-17, 24-26, 91, 92, 143, 145] as

estimated in a cross-sectional survey.

Tests for recent infection traditionally employ the laboratory measurement of HIV viral
or host biomarkers which evolve over time after infection. Antibody avidity, titre, or
HIV-specific proportion is typically considered, with a measurement below a chosen

threshold indicative of ‘recent’ infection [8, 9, 107].

Immune responses vary for individuals, and so each individual experiences a unique
evolution of the biomarker. There are two test characteristics of relevance for population-
level incidence estimation.

1. The test-defined state of ‘recent’ infection should not be too transient. This
ensures that the proportion of the population in this state may be estimated with
good statistical power in surveys with feasible sample sizes. Therefore, the
average time spent in the state of ‘recent’ infection, termed the mean duration of

recent infection (MDRI), w, should be large (typically, at least six months [11]).
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2. For many tests, there is evidence that some long-infected individuals are
classified as ‘recently’ infected [8, 9]. Although the phenomenon of ‘false-recent’
results may, in principle, be accounted for without introducing bias, adjustments
result in considerable loss of statistical precision of incidence estimates [11]. The
proportion of long-standing infections classified by the test as ‘recent’, termed the

false-recent rate (FRR), &, should therefore be as low as feasible.

Increasing the threshold (the biomarker cut-off used to discriminate ‘recent’ from ‘non-
recent’ infection) increases the MDRI, but typically also results in a higher FRR.
Therefore, as the threshold varies, there is a trade-off between the two test characteristics.
Since population-level surveillance is of interest, rather than each individual’s ‘recent’ or
‘non-recent’ infection diagnosis, a sensitivity-specificity trade-off (with truly recent
infection defined by a fixed duration after infection) is not an appropriate threshold

optimisation criterion.'®

Both calibration data and cross-sectional survey data are required to estimate incidence.
Calibration data is used to estimate the test characteristics, namely the MDRI, w, and
FRR, €. Cross-sectional data is used to estimate the proportions of susceptible or
uninfected, ‘recently’ infected and ‘non-recently’ infected individuals in the population,

denoted by Pg, Pg and Pyp, respectively.

Population proportions and test characteristics are related to incidence, I, by the following

: 17
expression:

&
Pp———P
j=f 1-—¢ NR (3.1)
wPg

This has been derived in an analysis by McWalter and Welte [25], shown to be the
maximum likelihood estimator by Wang and Lagakos [24], and informally generalised by
Welte et al [11]. McWalter and Welte [23] compare this estimator to the previously
proposed estimators of McDougal et al [16] and Hargrove et al [17].

'“The optimisation of tests for recent infection, using a performance metric that is appropriate to
their application in HIV incidence surveillance, is discussed in Chapter 6.

"The general incidence inference framework, which also provides definitions of the test properties
that are free of assumptions about the test dynamics, as presented in Chapter 2, was still under
development at the time of this analysis.
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Ideally, the test should perform similarly in a number of populations, allowing for the
reuse of test characteristic estimates. However, differences in the stage of the epidemic,
or viral subtype or clade, may necessitate the estimation of these critical parameters in
relevant populations for each study. For example, the proportions of individuals who are
elite controllers (whose immune systems successfully suppress viraemia in the absence of
treatment), have advanced immunodeficiency or are receiving antiretroviral therapy, may
vary, and these individuals have a propensity to produce ‘false-recent’ classifications

8, 91.

Traditionally, methods of estimating the MDRI have relied on the testing of serial
samples from acutely infected subjects [7, 9, 15-17, 24, 91-93]. This typically requires at
least one pre-seroconversion and multiple post-seroconversion samples, with short
intervals between follow-up so that the seroconversion and threshold-crossing times may
be estimated with minimal uncertainty.'® Such panels of data are costly and difficult to
capture, requiring precisely the demanding longitudinal studies that cross-sectional

incidence estimation seeks to circumvent.

Despite being more easily obtained, specimens from seroconverting subjects with
relatively long intervals between follow-up have been largely overlooked. Obtaining such
specimens from repeat blood donors provides unique efficiencies as the collection of
blood for transfusions is ongoing in most countries, and therefore procuring specimens
does not require the establishment of new surveillance. Although the prevalence and
incidence of HIV are generally lower in blood donors than the general population, the
large-scale collection of blood and routine testing of serial donations for HIV provide a
relatively large sample of seroconverting donors. Furthermore, large volumes of plasma,

derived from routinely prepared frozen plasma components, are obtained.

In this investigation, data captured on seroconverting blood donors in South Africa and
the USA are used to demonstrate the characterisation and optimisation of tests for recent

infection.

"®In this chapter, the terms ‘seroconversion’ and ‘infection’ are used interchangeably, and both
refer to HIV infection being detectable by the HIV diagnostic test (assumed to antibody-based
here, although the work presented is completely general and any HIV diagnostic could be
considered). Seroconversion describes the development of antibodies in the subject, in response
to the virus, specifically to levels that are measurable by a chosen antibody-based HIV test.
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3.1.2 Methods

Ethics statement

The research and the incidence testing were approved by the University of California, San
Francisco (UCSF); American Red Cross (ARC) and South African National Blood

Service (SANBS) institutional review boards or ethics committees.
Specimen collection and testing for ‘recent’ infection

Specimens were collected by the South African National Blood Service (SANBS) of
South Africa and the American Red Cross (ARC) of the USA, and tested by the Blood
Systems Research Institute (BSRI) of the USA. Repeat donors who were observed to
seroconvert were tested for ‘recent’ infection using the specimens collected at the times

of the first seropositive donations.

The investigation was performed for the less-sensitive Vironostika assay (LS-
Vironostika) [104], the test for which more data are available, and thereafter, the
currently-used less-sensitive Vitros assay (LS-Vitros) [153] was characterised. These
tests are both based on ‘less-sensitive’ versions of diagnostic tests that measure antibody
titre, a concept introduced by Janssen et al [91]. For each test, ‘recent’ infection is
indicated by a measured biomarker, namely a standardised optical density (SOD), below

a chosen threshold.

LS-Vironostika is a modification of the Vironostika HIV-1 microELISA diagnostic test
(bioMérieux, Marcy I’Etoile, France) [104]. The laboratory procedures and threshold of 1
specified by Rawal et al [104] were used. Seroconverting blood donors were tested using
LS-Vironostika until 2007, as production of the Vironostika assay ceased in the year
thereafter [9]. Manufacturing of the assay has since been resumed by Avioq Inc

(Rockville, MD) [154].

LS-Vitros is based on the Ortho Vitros ECi anti-HIV 1+2 instrument (Ortho-Clinical
Diagnostics, Raritan, NJ) [153]. The laboratory conditions were established by BSRI in
earlier work that sought the closest agreement of classifications by LS-Vitros, using a

threshold of 20, to those provided by LS-Vironostika [153].
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Data consist of the biomarker reading (SOD) at the time of the first seropositive donation,
and the interval between the last seronegative and first seropositive donation, termed the
inter-donation (ID) interval, for each seroconverting blood donor. Three datasets (plotted
in Section 3.2.2) were used for the analysis: LS-Vironostika was applied to samples of
South African donors (October 2005 to September 2007, sample size of n = 485) and
North American donors (November 2001 to December 2005, n = 176), and LS-Vitros
was applied to a sample of South African donors (October 2007 to December 2009,
n = 199).

Data analysis

Test characteristics were estimated using a maximum likelihood method. Rather than
fitting a curve describing the evolution of the biomarker over time after seroconversion,
the overall probability of the test classifications at the first seropositive donations in the
sample was maximised [33]. The likelihood function is derived below (and more detail is

provided in Section 3.2.1).

Assuming that the time of seroconversion is uniformly distributed in the ID interval, the
probability that a seroconverter with ID interval A is classified as ‘recently’ infected at
the time of the first seropositive donation is

1 A
p@ =7 [ @t (32)
0
where Si(t) is the probability of being in the test-defined state of ‘recent’ infection when

tested at time t after seroconversion. For the i™ seroconverter in the sample, with ID

interval A;, the probability of testing ‘recent’ is p; = p(4;).

The likelihood, L, to be maximised, of all test classifications in a sample of n

seroconverters is
n
L= Jeosa-por (33)
i=1

where x; is the observed result for the i seroconverter, and equals 1 if the subject is

‘recently’ infected and O if the subject is ‘non-recently’ infected.

In the analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos
[24], individual biomarker curves either cross the threshold (distinguishing ‘recent’ from

‘non-recent’ infection) and readings remain above it thereafter, or else fail to reach the
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threshold, and therefore Sp(t) approaches some constant value, &, which is the
proportion of biomarker curves that fail to reach the threshold for large t. Si(t) may then

be expressed as
Se®) =a+ (1 —a)Sg(b). (3.4)
In the above-mentioned analyses, the MDRI, w, is the mean time under the threshold for

only those biomarkers curves that do cross the threshold, as described by Sg, (t).

Substituting from Equation (3.4) into Equation (3.2), the probability that the i"
seroconverter is ‘recently’ infected becomes

1 (A
() =p=a+(-a) f Sa(0) dt. 3.5)
0

4

This approach also facilitates non-parametric inference, by considering only subjects with

large A;. For a time cut-off, W, such that
Spr(t) =0 (or Sg(t) = a) VE>W, (3.6)

if A; > W, then
A; o
Spr(D) dt = f Spr(D) dt = w 3.7)
0 0
is the MDRI. Substituting from Equation (3.7) into Equation (3.5), p; becomes a function
of the two test characteristics,
)
pi=a+(1—a)A—, (3.8)
i
and no assumptions are required about the shape with which the biomarker grows after
seroconversion (that is, no full specification of Sg/(t) is required). The estimated test

characteristics maximise the likelihood, L, which is now a function of w, and also of a if

there is no input estimate of a.

McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24] additionally
assumed that post-seroconversion survival is independent of the shape of the biomarker
curves. When the above-mentioned assumptions are obeyed, @ = € in the incidence
expression in Equation (3.1). More generally, Sp(t) may not remain constant for t > W
for a value of W used in the analysis. An FRR may then be defined as the proportion of
individuals, seropositive for longer than W, that are classified as ‘recently’ infected [11].
In this case, the above procedure that produces an estimate of «, then considered only a

proxy ‘FRR’, probably overestimates the FRR if biomarker curves cross the threshold
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after W or underestimates it if biomarker curves move back below the threshold at times
since seroconversion greater than that captured in the dataset. The estimated test

characteristics, a and w, therefore provide unrefined estimates for the FRR and MDRI.

Uniformly distributed seroconversion times are reasonable when the timing of donations
and exposures to HIV are independent. Test-seeking behaviour (the donation of blood
soon after exposure specifically to receive HIV testing) or deferral of donations (the delay
of donations soon after exposure) could therefore bias estimates. In the USA, an
investigation, which highlighted test-seeking behaviour among homosexual men, noted
little indication of test-seeking behaviour among blood donors [155], while evidence of
deferred donations has been observed [156]. Behaviour in the South African donor
population may vary due to the large scale of the epidemic and stigma associated with

HIV.

In this work, various analyses involving the ‘parametric’ and ‘non-parametric’ inference
of test characteristics by maximising the likelihood function in Equation (3.3) were
performed for LS-Vironostika and LS-Vitros. In parametric inference, the probability of
being ‘recently’ infected as expressed in Equation (3.5) was used, assuming forms for
Sri(t) and including all data in the analysis; and in non-parametric inference, the
probability in Equation (3.8) was used, including only data satisfying A; > W. Using
simulated data, estimates obtained from the parametric and non-parametric approaches
were compared. Differences in test characteristics for specific subpopulations were
explored. The utility of the test for obtaining precise incidence estimates was also

investigated.

Asymptotic maximum likelihood theory was used to estimate confidence intervals (Cls)
and confidence regions (CRs) and to test the significance of parameters (based on the
distribution of the deviance statistic and using the loglikelihood ratio test) [157]. Chi-
squared goodness of fit tests were used to assess agreement between data and

assumptions [158]. All tests used a significance level of 5%.
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3.1.3 Results

Characterisation of LS-Vironostika

The estimated test characteristics for LS-Vironostika (using a threshold of 1) are shown in
Figure 3.1, for both estimation of w assuming a known « and simultaneous estimation of
w and a, and analysing South African and American blood donors separately. Non-
parametric estimation was performed, using only observations with A; > W = 1 year (the
maximum duration in the state of ‘recent’ infection has been estimated to be 200 days
[159] and 1 year [93]). The sample sizes for the analyses of South African and American
donors were n = 282 and n = 106 respectively. A comparison of the observed
proportions of seroconverters who were ‘recently’ infected to the expected proportions
(based on estimated test characteristics), as a function of ID interval, suggests good
agreement under simultaneous estimation of the parameters (see Section 3.2.2). When
exploring the sensitivity of results to W, by increasing W to values up to 2.5 years,
estimates for South African donors varied by at most 10% (n = 189 when W = 2.5
years), while the large uncertainty in estimates based on the relatively small dataset for

American donors (n = 53 when W = 2.5 years) did not support meaningful inference.

The estimated « is large, consistent with results from the application of this method to
assess the BED assay [33 — results not shown]. Estimation of w using an input estimate of
a is preferable. In the extreme case of all ID intervals being equal, w and a cannot be
simultaneously estimated as the likelihood function may be kept at its maximum while
arbitrarily increasing the estimate of a by appropriately decreasing the estimate of w.
Furthermore, using a value of W that is too low (biomarker curves cross the threshold
after W) would bias estimates of @ upwards and w downwards, based on the framework
of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24]. Note that
larger values of W would be required at higher thresholds for discriminating between

‘recent’ and ‘non-recent’ results.
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Figure 3.1: Estimated test characteristics for LS-Vironostika in the repeat donor
population
Estimates of the MDRI, w (days), for LS-Vironostika are shown, under both the
simultaneous estimation of w and «, and when using an input a, for W = 1 year. For the
latter estimation, the estimated w is plotted as a function of the assumed a. The 95%
confidence regions (CRs) for w and a (simultaneous estimation) and confidence intervals
(Cls) for w (assuming «, and not accounting for uncertainty in @) are displayed. Results
are shown for repeat blood donors from A) South Africa and B) the USA.
Legend: %  Estimates of w and a from simultaneous estimation of characteristics
(& = 13%, @ = 199 days for South Africa,
a = 21%, @ = 138 days for USA)
= 95% CR boundary for characteristics from simultaneous estimation
—  Estimate of w using an input «
=== 95% CI limits for w using an input a
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The estimated MDRIs, for a number of thresholds (holding W at 1 year), are compared to
published estimates in Figure 3.2:
1. Busch et al [160] utilised the directly measured incidence in the repeat donor
population to estimate w. Using ‘known’ incidence and proportions Pg, Pyr and
Ps (measured in the repeat donor population), and assuming a zero FRR, a ‘back-
calculation’ for w using the expression for incidence in Equation (3.1) was
performed. Since the possibility of ‘false-recent’ results was neglected,
overestimation of w is expected, with greater bias at higher thresholds.
Methodologically, estimation of w by back-calculation requires an existing
estimate of the FRR, &, for the same threshold, with such data currently
unavailable. Furthermore, uncertainty in the estimate of w arises from uncertainty
in the estimated incidence; proportions and FRR.
2. The Centers for Disease Control and Prevention (CDC) utilised seroconversion

panels to estimate w in an American population [104, 160].
Parametric versus non-parametric approach

The need for parametric assumptions about the shape of the antibody titre response curve,
summarised into parametric assumptions about the probability of testing ‘recently’
infected as a function of time since seroconversion, is circumvented by using only data
with large ID intervals. Consequently, estimation of w is no longer prone to bias arising
from poor parametric assumptions, but the dataset used for the estimation is reduced in
size, decreasing the precision (increasing the variability) of estimates of w. The
characterisation of LS-Vironostika in the South African repeat donor population was

revisited, this time using all data and parametric assumptions.

The probability that a seroconverter is ‘recently’ infected at the first seropositive donation

is given by Equation (3.5), which can be assessed once a form for Sg,(t) is fully
specified. For Sg, (t) = Sk, (t|¢>), where ¢ is a vector of parameters, the likelihood of the

data, given by Equation (3.3), becomes a function of ¢p. The MDRI estimator is then

&= fomsR, (t1$) dt. (3.9)

where é maximises the likelihood function (in Equation (3.3)).
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Figure 3.2: Comparison of mean duration of recent infection estimates for
LS-Vironostika to previously published estimates

Estimates of the MDRI, w (days), for LS-Vironostika, under both the simultaneous
estimation of w and a, and when assuming ¢ = 0%, for W = 1 year, are compared to
published estimates, as a function of test threshold. Published estimates were obtained by
‘back-calculation’ in the repeat donor population (Busch et al) [160] or using
seroconversion panels (CDC) [104, 160]. The minimum and maximum w occurring in the
95% confidence regions (CRs) for w and @ (simultaneous estimation) and 95%
confidence interval (CI) limits for w (assuming & = 0%, with no uncertainty) are also
displayed. Estimates pertain to A) South African and B) USA populations.

Legend:

o

Estimate of w from simultaneous estimation of characteristics
Minimum and maximum w in 95% CR for characteristics
from simultaneous estimation

Estimate of w using an input a = 0%

95% CI limits for w using an input & = 0%

Published back-calculation estimate of w by Busch et al
Published seroconversion panel estimate of w by CDC
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A number of parametric forms for Sg,(t) were used in the estimation of the MDRI for
LS-Vironostika, based on assumptions ranging from a fixed duration of ‘recent’ infection
for all individuals to a fat-tailed Pareto distribution for the time spent in the state of
‘recent’ infection. Widely varying estimates of w were obtained, even after excluding
estimates for which assumptions and data did not agree (and all results are shown in
Section 3.2.3). Since the true underlying dynamics of the data are unknown, the extent of

bias from any incorrect parametric assumptions is unclear.

Simulated data was therefore used to explore the trade-off between precision and bias
when moving between non-parametric and parametric approaches. Based on each of a
number of forms for Sg,(t), multiple datasets were generated. For each dataset, the MDRI
was estimated parametrically using each of the forms for Sg,(t) in turn (including all
data) as well as non-parametrically (including only data with large ID intervals).
Agreement between data and parametric assumptions was also assessed. The results of
the investigation (shown in Section 3.2.3) suggest that power to reject ‘incorrect’
parametric assumptions is at times poor and that large bias in estimates may occur. When
the assumptions leading to Equation (3.8) hold, estimates using the non-parametric

approach are unbiased, although less precise.

In the estimation of w for LS-Vironostika using the South African donor sample, by using
a non-parametric approach, there is a 40% reduction in the sample size from excluding ID
intervals smaller than W = 1 year. However, potential bias arising from poor parametric
assumptions is then eliminated, noting that one cannot easily distinguish between

appropriate and poor parametric assumptions using only the data at hand.
Population-specific test characteristics

Significant systematic bias could be introduced to incidence estimates if the test
characteristics are not evaluated in a population representative of that in which incidence
estimation is to occur [11, 26]. Since most HIV antibody assays are based primarily on
clade B antigens, antibody-antigen reactivity may vary when applying assays in
populations in which other clades occur [161], with differences in the characteristics of
LS-Vironostika already observed [104, 105, 159, 161, 162]. Other factors, such as the
association between viral RNA levels and clade, and seroconverters’ genetic

backgrounds, may also affect results [8, 9, 92, 161].
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The significance of gender (male and female) and country (South Africa and USA) on the
characteristics of LS-Vironostika was assessed. Country differences are likely to be
largely representative of clade differences, as clade C infections are predominant in South
Africa, and clade B in the USA [163]. Investigations by SANBS on a sample of donors
(data made available to authors) and studies of North American donors [164, 165]
indicate that a very small percentage (<5%) of infections are not of the predominant

clade.

The null hypothesis, that the characteristics of LS-Vironostika are the same in all four
groups (each pairing of gender and country), is not rejected with a p-value of 10.48%.
Estimated test characteristics for the groups are shown in Figure 3.3 (using non-
parametric estimation and W = 1 year). However, in this investigation, large uncertainty
in estimates, arising from small samples of seroconverters, would result in little power to

identify significant factors.
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Figure 3.3: Estimated test characteristics for LS-Vironostika in the repeat donor
population by gender and country
Estimates of w (days) and a (%) for LS-Vironostika are shown for South African male
donors, South African female donors, USA male donors and USA female donors.
Parameters were estimated simultaneously, using W = 1 year, and 95% confidence
regions (CRs) are indicated.
Legend O South Africa, males (SA, M): @ = 219 days, & = 17%, n = 162
(=== 95% CR boundary)
X South Africa, females (SA, F): @ = 185 days, @ = 5%, n = 120
(== 95% CR boundary)
O USA, males (USA, M): @ = 42 days, @ = 29%,n = 77
(=== 95% CR boundary)
X USA, females (USA, F): @ = 294 days, @ = 6%, n = 29
(== 95% CR boundary)
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Optimisation and comparison of tests for recent infection

The ultimate objective is incidence estimation. The precision of the incidence estimator
(and hence power to detect changes in incidence) increases with a larger MDRI and
smaller FRR [11]. However, when optimising a biomarker-based test for recent infection
by tuning the threshold distinguishing ‘recent’ from ‘non-recent’ infections, there is a
fundamental trade-off between these two test characteristics as both increase with
increasing threshold. Figure 3.4 shows the estimated test characteristics of
LS-Vironostika, in the South African donor population, for a range of thresholds (using

non-parametric estimation, and W = 1 year).

The precision of the incidence estimator, given the estimated test characteristics of LS-
Vironostika, is compared to that achieved by a BED-like test for recent infection in
Figure 3.5." The BED-like test has an MDRI of w = 155 days and FRR of € = 5.6%
(with no uncertainty), as per BED package insert [166], and it is assumed that € = « for
LS-Vironostika. The coefficient of variation (CoV) of the incidence estimator [25] is
calculated for a hypothetical population that has an HIV incidence of 1.5% per annum
and HIV prevalence of 17.5%, loosely based on the South African adult population
[167, 168]. Since the CoV ratio (LS-Vironostika to BED-like) is indistinguishable from 1,
at all thresholds considered, the LS-Vironostika appears comparable to a BED-like test
for recent infection. Additional data, such as captured during the follow-up of
seropositive individuals awaiting treatment, could be used to explore whether systematic
artefacts in the estimation occur (for example, from individuals progressing after

W =1 year).

PThis early work, which captures the first article in this thesis that was published, touches on a
number of ideas that were being further developed at the time. The use of the precision of the
incidence estimator as a metric for optimising and comparing tests for recent infection is further
discussed in Chapter 6.
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Estimates of w and a for LS-Vironostika, based on the South African repeat donor
sample, are shown for values of the threshold (discriminating ‘recent’ from ‘non-recent’
infection) between 0.2 and 1.5 (in SOD units). The parameters were estimated
simultaneously, and estimates for A) w (days) and B) a (%) are shown as functions of
threshold, for W = 1 year. The minimum and maximum w and « occurring in the 95%
confidence region (CR) for these parameters are also displayed.

Legend:

X

Estimated test characteristic from simultaneous estimation

Estimated test characteristics from simultaneous estimation — smoothed

(a cubic polynomial was fitted by least squares)
Minimum and maximum value of test characteristic in 95% CR for
characteristics from simultaneous estimation — smoothed
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Figure 3.5: Relative performance of LS-Vironostika for incidence estimation
The ratio of the estimated CoV of the incidence estimator, for LS-Vironostika to that of a
BED-like test for recent infection, is shown as a function of the LS-Vironostika test
threshold. For LS-Vironostika, test characteristics estimated from the South African
repeat donor sample were used to calculate the CoV, assuming € = a, while the BED-like
test was assigned ‘known’ test characteristics of w = 155 days and € = 5.6% [166]. In
the hypothetical population considered, HIV incidence is 1.5% per annum and HIV
prevalence is 17.5%.
Legend: %  Estimated CoV ratio
—  Estimated CoV ratio — smoothed (a cubic polynomial was fitted by least
squares)
===  Minimum and maximum CoV ratio in 95% CR for test characteristics
from simultaneous estimation — smoothed

Characterisation of LS-Vitros

Preliminary test characteristic estimates of the currently used LS-Vitros (using a threshold
of 20), for the South African repeat donor population, are shown in Figure 3.6.
Simultaneous (non-parametric) estimation of w and a, for a range of W, was performed
(n =108, for W =1 year, reduces to n =59, for W = 2.5 years). Observed and
expected proportions of seroconverters who were ‘recently’ infected were also compared

(see Section 3.2.2).
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Figure 3.6: Estimated test characteristics for LS-Vitros in the South African repeat
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Estimates of w and a for LS-Vitros, based on the South African repeat donor sample, are
shown for values of W between 1 and 2.5 years. The parameters were estimated
simultaneously, and estimates for A) w (days) and B) a (%) are shown as functions of
W (years). The minimum and maximum w and «a occurring in the 95% confidence region
(CR) for these parameters are also displayed

Legend: %

Estimated test characteristic from simultaneous estimation

Estimated test characteristics from simultaneous estimation — smoothed

(a cubic polynomial was fitted by least squares)
Minimum and maximum value of test characteristic in 95% CR for
characteristics from simultaneous estimation — smoothed
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For LS-Vitros, the test characteristics were plotted as a function of the time cut-off
W (Figure 3.6) as no estimates of W were found in the literature and the estimation
appeared fairly sensitive to the choice of W for this dataset. Test characteristic estimates
are highly uncertain and vary widely. This indicates the need for a larger dataset and an
external estimate of a for a carefully selected time cut-off W (large enough for the
biomarker curves to have crossed the threshold within a time W post infection) to get a
more accurate and precise estimate of the MDRI. Such data and estimates are currently
unavailable. A value of W that is too small would bias estimates of @ upwards and w
downwards, under the above-mentioned analysis assumptions. However, as the value of
W increases, the sample size reduces and ID intervals are more closely clustered together,

decreasing the power to perform simultaneous estimation.

The large, albeit highly uncertain, estimates of a suggest that one should be cautious
about the utility of LS-Vitros for incidence estimation, at this stage of the
characterisation, while being mindful that  is not the FRR in Equation (3.1) if Sg(t) is

not (approximately) constant for t > W.*
3.1.4  Discussion

Traditionally, the characterisation of tests for recent infection (individual assays and
multiple-test algorithms) has relied on the use of seroconversion panels. The scarcity of
these panels is therefore an obstacle to the development of tests for incidence estimation.
In this work, a source of more readily available specimens has been identified, and an
approach for obtaining preliminary characterisations of tests using these specimens has
been demonstrated. Further refinement of the characterisation of only the most promising
tests may thereafter be performed, thus conserving precious longitudinal specimens (for
MDRI estimation) and specimens from populations with known long-standing infections

(for FRR estimation) for this purpose.

Utilising specimens from blood donors provides unique efficiencies as relatively large
samples of seroconverters and high-volume specimens (125-250ml of plasma per

seroconverter) are captured during routine blood collection procedures. Furthermore,

*In later work, as part of CEPHIA, a large dataset (which included longitudinal data) was
produced and analysed to characterise LS-Vitros, and results are presented in Chapter 5.
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specimens from seropositive subjects around the world are collected, thus providing data

to investigate whether test characteristics are population-specific.

The method of estimating the test characteristics (MDRI and a proxy ‘FRR’ for parameter
estimation purposes) does not require the follow-up of seroconverters. Moreover, by
using data with large (pre-seroconversion) follow-up intervals, non-parametric estimation
is supported. To obtain more accurate and precise estimates of the MDRI, an external
estimate of the proportion of biomarker curves that do not reach the threshold is desirable,
as well as insight into the maximum time seroconverters otherwise spend in the test-

defined ‘recent’ state.

For incidence estimation, the utility of LS-Vironostika appears comparable to that of a
BED-like test for recent infection, over the range of thresholds considered. The precision
of the incidence estimator provides a criterion for both comparing tests and identifying
optimal thresholds. While additional data is required for LS-Vitros, preliminary results

suggest prudence when utilising the assay for incidence estimation.

The assumptions under which estimates are unbiased are strict. Potential for systematic
bias in estimates, such as that arising from individuals remaining in the state of ‘recent’
infection for prolonged periods, or from non-uniformly distributed seroconversion times,
should be explored using additional data. This method of estimating the test properties is
not intended to provide final parameter estimates required for incidence estimation, but
rather to provide cost-effective and efficient preliminary characterisations of tests using
previously overlooked data. It is hoped that the concepts and tools demonstrated in this
work will contribute to the resourceful characterisation, and subsequently focused

development, of tests for recent infection for population-level incidence estimation.

3.2 Ancillary Analysis Details

3.2.1 The Test Characteristic Estimators

In the analyses presented in Section 3.1, two test characteristics were estimated, namely
the MDRI, w, and a proxy ‘FRR’, @, defined according to the analysis constructs of
McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24]. The
maximum likelihood estimators for the test characteristics are derived below, and their

distributional properties explored.
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The function Sz (t) denotes the probability that a seroconverter is in the state of ‘recent’

infection at time t after seroconversion, conditional on being alive.

For a given seroconverter, with inter-donation (ID) interval A between the last
seronegative test and first seropositive test:

1. The random variable X denotes the result of the test for recent infection at the
time of the first seropositive test, and has a probability mass function fy(x),
where X equals 1 if the subject is ‘recently infected and O if the subject is ‘non-
recently’ infected.

2. The random variable Y captures the time since seroconversion at the time of the
first seropositive donation, and has a probability density function fy(y), where
0 <Y <A, and, in particular, is assumed to be uniformly distributed in the ID
interval.

The joint probability function of X and Y is denoted by fx y(x,y), and the distribution of
X conditional on Y by fyy (x]y).

The probability, p, that the seroconverter is classified as ‘recently’ infected at the time of

the first seropositive donation is

pQ) = fx(1)

A
=J; fxy(Ly) dy
A
=J;) fY(J’)fX|Y(1|}’) dy

A
:%f Sg(t) dt, (3.10)
0

since fy(y) = 1/Afor all y such that 0 <y < A, and fyy (1[t) = Sg(£).

The likelihood, L, of all test classifications in a sample of n seroconverters is

L= [eoma-po, (.11
i=1

where the subscript i denotes quantities relating to the i™ seroconverter in the sample and

x denotes the observed values of X. The i"™ seroconverter has ID interval A; and therefore

pi = p(4y).
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The analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos
[24] assume that individual biomarker curves either cross the threshold (distinguishing
‘recent’ from ‘non-recent’ infection) and readings remain above it thereafter, or else fail
to reach the threshold. Therefore Si (t) approaches some constant value, a, which is the
proportion of biomarker curves that fail to cross the threshold, for t larger than some time

cut-off W, and
Se@)=a+ (1A —a)Sg(t). (3.12)

In the above-mentioned analyses, the MDRI, w, is defined as the mean time under the

threshold for those curves that do cross the threshold, which is described by Sg/ (t).

Substituting from Equation (3.12) into Equation (3.10), the probability that a
seroconverter (with ID interval A) is ‘recently’ infected at the time of the first

seropositive donation becomes
1 A
p(4) =a+(1—a)Zf Sgr(t) dt. (3.13)
0

For Sp/(t) = Sy (t|¢), L is a function of the unknown parameters ¢ and « (if there is no

input estimate for @), which are estimated to maximise L. The estimate of the MDRI is

then
@ =f Sw (t19) dt, (3.14)
, ¢

where ¢ is the estimate of ¢.

This likelihood approach also facilitates non-parametric inference, by considering only

individuals with large A. Since
Spr(t) =0 (since Sg(t) =)Vt > W, (3.15)

if A > W, then

A )

fSRl(t)dt:f SR/(t)dt=a) (3.16)
0 0

is the MDRI.
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Substituting from Equation (3.16) into Equation (3.13), p(A) relies only on the test

characteristics:
w
p)=a+d-a), (3.17)

and the likelihood function becomes

n*

L= n(pi)xi (1 —p)* ¥ wherep; =p(A) =a+ (1 - a)% (3.18)
i=1 !

and n* (< n) is the size of the sample consisting of only seroconverters with ID intervals

larger than W (and the subscript i denotes quantities relating to the i™ subject in this

smaller sample). The estimated test characteristics maximise the likelihood L, which is

now a function of w, and of « if there is no input estimate of .

Simultaneous estimation of the test characteristics is less feasible in samples with closely
clustered ID intervals. In the extreme case of A; = A* > W for all i (i =1,2,..n"),
simultaneous estimation is not possible as there are no unique estimates of w and @ which

maximise the likelihood function. More specifically, the likelihood function,

o Y (1-x)
w Zi:lxl i=1 i
— ) — _ — ) — 3.19
L « (a +(1-a) A*) <1 (a +(1-a) A*)> , (3.19)
1s maximised when
X W
%=a+(1—a)—*. (3.20)
n A

The left-hand side of the equation depends on the observed data. The maximum
likelihood estimate for w appearing in the right-hand side of the equation can be chosen

arbitrarily by selecting a corresponding estimate of & that ensures the equation holds.

A maximum likelihood estimator, &, is asymptotically normally distributed around the
true parameter value, £, with variance equal to the inverse of the expected Fisher's
Information Matrix, under regularity conditions [157]:
-1
()
i—) N \é —E TZ_ asm — oo, (3.21)

where m is the size of the sample used in the estimation procedure, E(.) is the expected
value and L(.) is the likelihood function (and In(L(.)) the natural logarithm of the

likelihood function). Using this property of maximum likelihood estimators, large sample
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approximations for the distribution and moments of the test characteristic estimators

follow.

When «a is known, the distribution of the estimator for w is

-1

N
5N o, Z ( ) , (3.22)
&\ A pi(1=po)

When « is unknown, the bivariate distribution for the joint estimator for w and « is

[Al ([ l 82In(L) 02In(L) ‘1\

wlf w dw? dwoa

laJNN [“J'I_E 821n(L) 92In(L) ’ (3.23)
\ dwda da? /

where the covariance matrix is

- , .
> (5 o >x
i\ A ) opi(1—py) L Aip;
=1 . . =1 (324)
n n
S Sy
i Aip; - A pi(1—py)]

and p; = p(4;) and L = L(w, @) are given in Equation (3.18).

3.2.2 The Observed Data and Fitted Models

Plots of the data used to perform the analyses presented in Section 3.1 are provided, and
the fitted models informally assessed by visually comparing observed and expected

proportions of ‘recent’ results.

The data for each of the two tests for recent infection, LS-Vironostika and LS-Vitros, are
shown in Figure 3.7, stratified by country (South Africa and the USA). Each
seroconverting blood donor’s biomarker reading at the time of the first seropositive
donation and inter-donation interval (time between the last seronegative and first

seropositive donation) are shown.
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Figure 3.7: Observed biomarker readings for LS-Vironostika and LS-Vitros in
seroconverting blood donors, and corresponding inter-donation intervals

Each subject’s biomarker reading at the first seropositive donation, expressed as a
standardised optical density (SOD), and inter-donation interval (time between last
seronegative and first seropositive donation, in days) are shown (for inter-donation
intervals less than 4 years), for A) LS-Vironostika for donors in South Africa, B) LS-
Vironostika for donors in the USA and C) LS-Vitros for donors in South Africa.
Measurements below test thresholds (horizontal dashed lines) produce ‘recent’
classifications.
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The method of maximum likelihood, outlined in Section 3.2.1 above, was used to
characterise the tests. In Figures 3.8 to 3.11, observed proportions of seroconverters who
were ‘recently’ infected at the first seropositive donations are compared to expected
proportions, for each primary analysis presented in Section 3.1. For each analysis, firstly,
the MDRI, w, was estimated assuming a known a, and secondly, simultaneous estimation
of w and a was performed. Non-parametric estimation was applied, using data on

seroconverters with inter-donation (ID) intervals larger than the chosen time cut-off W.

The probability of testing ‘recently’ infected declines with increasing ID interval.
Subjects with similar ID intervals were therefore grouped together (at least 20 subjects
per group), and, for each group, the observed and expected proportions were plotted
against the average ID interval. Expected proportions were obtained by substituting
estimated (or input) test characteristics into Equation (3.17), and averaging the
probabilities obtained for subjects in the group. When assuming a known a (Part A of
figures), the 95% confidence interval limits for the expected proportion were obtained by
instead substituting the 95% confidence interval limits for w into Equation (3.17). When
simultaneously estimating w and a (Part B of figures), the plotted limits for the expected
proportion indicate the minimum and maximum values for this proportion that were
obtained when considering all pairs of values for the test characteristics within the 95%

confidence region for w and a.

Figure 3.8 and Figure 3.9 capture results for LS-Vironostika, for the South African
(n = 282) and American repeat donor (n = 106) samples, respectively, using W =1
year. In Figure 3.10 and Figure 3.11, observed and expected proportions are compared for
LS-Vitros in the South African donor sample for W = 1year (n = 108) and
W = 2.5 years (n = 59), respectively.
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Figure 3.8: Comparison of observed and expected proportions of ‘recently’ infected
seroconverters for LS-Vironostika, South Africa, W = 1 year
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-
Vironostika, for the South African repeat blood donor sample. Expected proportions are
based on estimated test characteristics when A) estimating only w and assuming a known
a, and B) simultaneously estimating w and a, using W = 1 year. Proportions are plotted
against average ID intervals for groups of at least 20 subjects. 95% CI limits or
uncertainty bounds for expected proportions are also indicated.
Legend: X  Observed proportion of ‘recent’ infection

+  Expected proportion of ‘recent’ infection

=== 95% CI limits / uncertainty bounds for expected proportion
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Figure 3.9: Comparison of observed and expected proportions of ‘recently’ infected
seroconverters for LS-Vironostika, USA, W = 1 year
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-
Vironostika, for the American repeat blood donor sample. Expected proportions are based
on estimated test characteristics when A) estimating only w and assuming a known «, and
B) simultaneously estimating w and «, using W = 1 year. Proportions are plotted against
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty
bounds for expected proportions are also indicated.
Legend: %  Observed proportion of ‘recent’ infection

+  Expected proportion of ‘recent’ infection

=== 95% CI limits / uncertainty bounds for expected proportion
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Figure 3.10: Comparison of observed and expected proportions of ‘recently’
infected seroconverters for LS-Vitros, South Africa, W = 1 year
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-Vitros,
for the South African repeat blood donor sample. Expected proportions are based on
estimated test characteristics when A) estimating only w and assuming a known «, and B)
simultaneously estimating w and «, using W = 1 year. Proportions are plotted against
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty
bounds for expected proportions are also indicated.
Legend: %  Observed proportion of ‘recent’ infection

+  Expected proportion of ‘recent’ infection

=== 95% CI limits / uncertainty bounds for expected proportion
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Figure 3.11: Comparison of observed and expected proportions of ‘recently’
infected seroconverters for LS-Vitros, South Africa, W = 2.5 years
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-Vitros,
for the South African repeat blood donor sample. Expected proportions are based on
estimated test characteristics when A) estimating only w and assuming a known «, and B)
simultaneously estimating w and «, using W = 2.5 years. Proportions are plotted against
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty
bounds for expected proportions are also indicated.
Legend: X  Observed proportion of ‘recent’ infection

+  Expected proportion of ‘recent’ infection

=== 95% CI limits / uncertainty bounds for expected proportion
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The expected proportions of ‘recent’ results are sensitive to the input value for a as well
as W. Expected proportions are relatively well aligned to observed proportions when « is
estimated together with w (rather than being provided as an input), but uncertainty in the
estimation procedure becomes large when the parameters are jointly estimated. This
highlights the need for external and accurate data to guide choices of @ and W. Also, in
this work, the probability of testing ‘recently’ infected, conditional on being alive, is
understood to be approximately constant (and equal to a) for all times after
seroconversion greater than W, based on the analysis constructs of McDougal et al [16],
McWalter and Welte [25] and Wang and Lagakos [24]. The behaviours of LS-
Vironostika and LS-Vitros may violate this assumption, potentially leading to

misalignment between observed and expected proportions.

3.2.3 Parametric Versus Non-Parametric

Estimation

The need for parametric assumptions about the probability of testing ‘recently’ infected
as a function of time since seroconversion is circumvented by using only data with
sufficiently large ID intervals (see Section 3.2.1). While this protects against bias arising

from poor parametric assumptions, the sample size is reduced.

The test characteristics of LS-Vironostika, in the South African repeat donor population,
were therefore also estimated using all data and a number of parametric assumptions,

captured by specifying various forms for Sg/(t) = Sgr(t|¢p), where ¢ is a vector of
parameters to be estimated from the data. The six assumed forms for Sg/(t|¢) are plotted
in Figure 3.12. For simplicity, by design, ¢ = w for each form. Estimates of the MDRI,

w, using the various parametric assumptions, are provided in Table 3.1. Results of a chi-
squared goodness of fit test [158], used to assess agreement between data and
assumptions, are also provided. Widely varying estimates of w were obtained, even after

discarding those estimates for which data and assumptions did not agree.
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Probability of ‘recent’ classification
when tested at time t after seroconversion, SR, (t|o= w)
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Figure 3.12: Parametric forms for Sg/(t|¢) used in MDRI estimation and data

generation

Each of the six forms for Sg/(t|¢) used in the analysis is plotted as a function of time

since seroconversion (days), where Sp/(t|¢) is the probability of being ‘recently’

infected when tested at time t after seroconversion (for those individuals who do
transition out of the ‘recent’ state). The function Sg/(t|¢) contains the parameter ¢,

which is estimated to maximise the likelihood of observed data for test characterisation
purposes, or for which a value is specified for data generation purposes. By design,
¢ =w for each form. The functions are plotted using ¢ = w =150 days.

*Form 6 uses a (suitably scaled and shifted) sine function to obtain an s-shaped curve that
reaches zero at time 2w after seroconversion.



Estimating the Mean Duration of Recent Infection I: Observing Subjects Once after Infection 88

Input a (%)
0 5 10 15
Estimated w, in
_daysO5%Ch |l
Parametric form 1 *84 (82-84) *83 (81-84) *83 (81-84) *83 (80-84)

Parametric form 2 | 316 (266-374) | 278 (233-333) | 251 (209-301) | 229 (188-276)
Parametric form 3 | *237 (217-249) | 228 (204-246) | 219 (192-242) | 208 (180-235)
Parametric form 4 | *429 (355-520) | 379 (309-464) | 338 (273-418) | 303 (242-378)
Parametric form 5 | 650 (528-802) | *3579 (464-721) | 516 (409-649) | *461 (361-585)
Parametric form 6 | 268 (232-309) | 241 (207-281) | 221 (188-259) | 205 (173-242)

Non-parametric 274 (234-313) 245 (199-289) 216 (165-266) 186 (132-241)
Goodness of fit
p-value

Parametric form1 | 000 000  oo0| 0.00
Parametric form 2 0.29 0.10 0.56 0.73
Parametric form 3 0.03 0.57 0.65 0.80
Parametric form 4 0.02 0.12 0.16 0.09
Parametric form 5 0.09 0.02 0.08 0.03
Parametric form 6 0.05 0.56 0.69 0.90

“Null hypothesis: The data is consistent with the assumed form for Sy (t|¢)

Table 3.1: Estimated mean duration of recent infection for LS-Vironostika, South
Africa, using various parametric assumptions

Estimates of the MDRI, w (days), for LS-Vironostika in the South African repeat donor
population are shown, using both parametric and non-parametric estimation approaches
and an input value of a (%). 95% CI limits are also provided. For the parametric
estimation, each of the six forms for Sgs(t|¢p) shown in Figure 3.12 was assumed in turn
(Parametric form 1 to 6) and all data were included. P-values from a chi-squared
goodness of fit test used to assess agreement between data and parametric assumptions
are also shown, and an estimate of w that corresponds to a p-value below 0.05 is indicated
by an asterisk (*). For non-parametric estimation, only seroconverters with ID intervals
larger than W = 1 year were included in the analysis.
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Since the underlying dynamics of the data are unknown, the extent of any bias in the
results is unclear. Simulated data was therefore used to investigate the trade-off between
the increased precision from larger samples and increased potential for bias from poor
parametric assumptions, when moving from a non-parametric to parametric approach. A
number of datasets were generated, each consisting of ID intervals and test classifications
for 500 seroconverters. For each seroconverter, the ID interval was drawn from a (kernel
density) non-parametric distribution that was fitted to the ID intervals contained in the
real-world dataset (for LS-Vironostika, South Africa); the infection time was drawn from
a uniform distribution spanning the subject’s ID interval; and the test classification was

generated from a chosen specification of S/ (t|¢) and @ = 0%. Each of the six forms for
Srr(t|®) in Figure 3.12, using ¢ = w = 150 days, was used to generate 100 datasets.

For each simulated dataset, seven estimates of w were obtained: six by assuming each of

the parametric forms for S/ (t|¢) in turn and using all data in the estimation procedure,

and one by non-parametric estimation using only ID intervals greater than W = 1 year
and assuming ¢ = 0%. For each parametric estimation, a chi-squared goodness of fit test
was performed to assess agreement between data and parametric assumptions. When data

were generated from a form of Si/(t|¢) that is non-zero at times greater than W =1

year, underestimation of w is expected. To assess the performance of MDRI estimation,
estimates of w were compared to its true value, which was 150 days throughout this
investigation, and the ability to distinguish between correct and incorrect parametric

assumptions was considered.

The results of the investigation, summarised in Table 3.2, indicate that, although moving
to a parametric approach allows all data to be exploited, there is the potential for
introducing large bias in estimates from poor parametric assumptions. The results of the
goodness of fit tests suggest that it is challenging to distinguish between appropriate and
poor parametric assumptions, using a given dataset. The average 95% confidence interval
(CD) widths, when using the correct parametric assumption or the non-parametric
approach, are also provided (Table 3.2). CIs were obtained using large sample maximum
likelihood theory (in particular, properties of the deviance statistic) [157]. The increased
CI width when moving to the non-parametric approach illustrates the loss of precision

incurred when discarding data with insufficiently large ID intervals.
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Parametric form used for data generation
1 2 3 4 5 6
Average estimated
w, in days (95%
CI width)

Parametric form1 | 1S3C@D | - e S
Parametric form 2 187 | 153 (51) 154 122 90 164
Parametric form 3 197 129 | 151 (42) 105 78 154
Parametric form 4 - 191 197 | 151 (59) 110 207
Parametric form 5 - 273 286 212 | 151 (68) 295
Parametric form 6 174 138 140 106 84 | 151 (44)
Non-parametric 150(79) | 153(79) | 148(79) | 144 (78) | 128 (74) | 149 (79)
Percentage of

estimates
rejected

Parametric form 1 | S wo| oa| 10| 10| 9
Parametric form 2 ]7 2 10 19 68 5
Parametric form 3 23 67 3 ) 92 16
Parametric form 4 100 7 37 3 13 35
Parametric form 5 100 22 68 9 3 79
Parametric form 6 28 32 7 77 97 2

*Includes only estimates not rejected (p-value>0.05) by goodness of fit test

Table 3.2: Summary of results from investigation of parametric versus
non-parametric estimation using simulated data

Average estimates of the MDRI, w (days), and percentages of estimates rejected by
goodness of fit tests (p-values below 0.05) are shown for groups of 100 simulated
datasets. The parametric form for S Rr(t@) used to generate the datasets is captured by
the table columns (Parametric form 1 to 6, see Figure 3.12). The MDRI was estimated
parametrically (assumed form for S R/(t|<_i)) captured by table rows) and non-
parametrically (using W=1 year). For each group of datasets and estimation method, the
average estimate of w was calculated after excluding those estimates rejected by the
goodness of fit test, and the average width of the 95% CI is provided when the assumed
parametric form is correct or non-parametric estimation was applied. In both data
generation and MDRI estimation, a = 0%.
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3.3 Further Applications

Two further applications of the methodology presented are described below. While this
approach is not intended to provide highly accurate and precise estimates of the MDRI, it
serves an important role in obtaining initial estimates using previously neglected sources

of specimens when that is all that is available.

3.3.1 A Biomarker for Recent Infection

Using SMARTube™

The sensitivity of an HIV diagnostic test (probability of correctly detecting virus) is
expected to increase from zero to, ideally, 100% over some short period after HIV
transmission. An antibody-based diagnostic test is unable to detect HIV infection in the
period between acquiring the infection and seroconversion, where the seroconversion
time captures when the antibody response reaches a measurable level. Therefore, an HIV-
positive subject tested in this ‘seronegative window period’ will produce a false-negative
HIV diagnosis. To reduce this period, SMART Biotech Ltd [169] developed the
Stimulating Maximal Antibody Response Tube (SMARTube™). The technology
stimulates in-vivo primed immune cells to produce antibodies in-vitro. By incubating a
specimen in a SMARTube™ before applying the HIV diagnostic test, antibodies reach

detectable levels sooner after infection [170, 171].

As illustrated in Figure 3.13 (Part A), stimulation of antibody in an incubated specimen is
expected to fade over time after infection. This suggests that a measure of the increase in
signal could provide a novel biomarker for recent infection. In this analysis, one such
measure is defined and its potential explored: the ‘Stimulation Index’ (SI) is the ratio of
stimulated to unstimulated antibody levels (Part B of Figure 3.13). A test for recent
infection is constructed by introducing a threshold, where an SI measurement above the
threshold is interpreted as indicating ‘recent’ infection. As the threshold is varied, there is
the familiar trade-off between test characteristics: while a lower threshold improves

(increases) the MDRI, a higher threshold typically improves (decreases) the FRR.
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A) Antibody signal
'S Stimulated
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Time since HIV acquisition

B) The ‘Stimulation Index’
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Time since HIV acquisition

Figure 3.13: The impact of SMARTube"™ on antibody signal, and the

‘Stimulation Index’

The schematic diagram illustrates the increase in antibody signal resulting from
incubating a specimen in a SMARTube™, and the proposed measure of this increase,
each as a function of time since HIV acquisition. A) Antibody signal, as measured by a
standard semi-quantitative HIV diagnostic test, is shown, without (‘unstimulated’) and
with (‘stimulated’) the use of a SMARTube™ and the difference in the ‘seronegative
window period’ reflected. B) The ‘Stimulation Index’ (SI) is shown, and is the ratio of the
stimulated to unstimulated antibody levels.

As is typically the case for new biomarkers, very little data to characterise the test were
available, and opportunities to generate further, tailored, data would be contingent on
demonstrating sufficient promise of the candidate biomarker. An initial, preliminary
characterisation of the test was therefore performed, using existing available specimens.
The specimens were obtained from subjects in various regions of China by the Centers
for Disease Control and Prevention (CDC) and the National Institute for the Control of
Pharmaceutical and Biological Products in Beijing (NICPBP). Intervals between HIV
tests were large (the exact sizes were unknown) and there was little background
information on the subjects, and therefore such specimen sets have typically been

overlooked. Data on the SI biomarker were generated by testing (subsets of) specimens
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using two semi-quantitative HIV diagnostic tests, developed by Abbott Diagnostics and
Beijing Wantai Biological Pharmacy. Each specimen was tested both using the standard
diagnostic procedure (to obtain an ‘unstimulated’ antibody measurement) and after
incubation in a SMARTube™ (to obtain a ‘stimulated’ antibody measurement), and SI

values were calculated.

The FRR, ¢, was estimated using specimens drawn from non-recently infected subjects
attending CDC clinics (n = 59 for Abbott and n = 73 for Wantai). The decreasing FRR,
as function of increasing threshold, is illustrated in Figure 3.14. Results suggest that a

suitably low FRR may be achievable by a choice of threshold of around 1.2 or larger.

The MDRI, w, was estimated using specimens collected during surveys of a high-risk,
injecting-drug-using population (n = 57 for Wantai). There was no follow-up of subjects,
and specimens included in the analysis were drawn at the times of first HIV-positive tests.
Since the times between last HIV-negative and first HIV-positive tests were unknown,
these were crudely all assumed to be A" in the analysis. The maximum likelihood
approach presented in Sections 3.1 and 3.2 above was used to estimate the MDRI, for a
range of thresholds beginning at 1.2 and assuming a zero FRR (based on the results
above), and for a range of values of A* beginning at 1 year (assuming A* > W , where W
is the maximum time after infection that an individual may remain in the ‘recent’ state).
The point estimate for w, as a function of threshold and inter-test interval A*, is shown in
Figure 3.15, and increases with decreasing threshold or increasing A*. At a high threshold
of 1.5 (SI units) and small A* of 1 year, w is estimated to be 0.2 years (70 days), and w
increases to 1.1 years (404 days) when the threshold decreases to 1.2 and A* increases to

3 years.

Hypothesis tests for superiority or non-inferior of the test characteristics (compared to
those of existing tests or reference values) would have little statistical power due to the
small sample sizes. Instead, for the FRR, data were used to assess the null hypothesis
& = 5% against the alternative hypothesis € > 5%. Even at a relatively low threshold
of 1.1 (the estimate for € increases as the threshold decreases), the null hypothesis was
not rejected (p-values of 0.80 and 0.71 for Abbott and Wantai kits, respectively).
Similarly, for the MDRI, data were used to evaluate the null hypothesis w = 155 days
against the alternative hypothesis w < 155 days, where 155 days is the MDRI of the
(then) widely used BED assay as per package insert [166]. Even at a high threshold of 1.4

and conservatively assuming an FRR of 5% (the estimate for w decreases as the threshold
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or input FRR increases), the null hypothesis was not rejected (p-value of at least 0.46 for
an assumed A” of at least 2 years for the Wantai kit). These results suggest that there is a
lack of evidence that the FRR is particularly large or MDRI is small. This analysis
suggests that efforts should be made to capture a larger set of specimens, appropriate for
test characterisation and including relevant background information, to further investigate
the potential of using SMARTube™ to construct a biomarker for recent infection. More
generally, the investigation strengthens the case for broadening the spectrum of

biomarkers conventionally considered.
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Figure 3.14: Estimated false-recent rate of a test using the ‘Stimulation Index’
biomarker, as a function of the ‘recent’/‘non-recent’ threshold and stratified by HIV
diagnostic test

The estimate of the FRR, € (%), and its 95% (Clopper-Pearson) confidence interval are
shown for a recent infection test that is based on the ‘Stimulation Index’ (SI), as a
function of test threshold (above which an SI value indicates ‘recent’ infection). Antibody
levels were measured using HIV diagnostic tests by A) Abbott Diagnostics and B) Beijing
Wantai Biological Pharmacy.
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Figure 3.15: Estimated mean duration of recent infection of a test using the
‘Stimulation Index’ biomarker, as a function of the ‘recent’/*non-recent’ threshold
and assumed inter-test interval

The point estimate for the MDRI, w (days), is shown for a recent infection test that is
based on the ‘Stimulation Index’ (SI), as a function of both test threshold (above which
an SI value indicates ‘recent’ infection) and the assumed inter-test interval (time between
last HIV-negative and first HIV-positive tests, in years). An input FRR of zero was used,
and antibody levels were measured using an HIV diagnostic test by Beijing Wantai
Biological Pharmacy.

This analysis suggests that efforts should be made to capture a larger set of specimens,
appropriate for test characterisation and including relevant background information, to
further investigate the potential of using SMARTube™ to construct a biomarker for
recent infection. More generally, the investigation strengthens the case for broadening the

spectrum of biomarkers conventionally considered.
3.3.2  Local Characterisation of the BED Assay

Potential regional variation in the behaviour of tests for recent infection brings into
question the ability to recycle estimates of the MDRI across different incidence studies.
In this analysis, existing specimens, captured as part of an ongoing population-based
demographic surveillance study in rural South Africa, were used to estimate the MDRI of

the BED assay [92, 107], developed in the USA, for a South African context.
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Ongoing HIV surveillance is conducted by the Africa Centre for Health and Population
Studies, University of KwaZulu-Natal [172]. The surveillance area is located near the
rural market town of Mtubatuba in KwaZulu-Natal. HIV incidence in the area has
remained at a high rate of approximately 3.4 infections per 100 person years since 2003
[173], and individuals in the area are eligible for HIV testing as part of the routine study
surveillance. For this analysis, the BED assay was applied to specimens (stored as dried
blood spots) drawn at times of first HIV-positive tests, for women aged 15-49 and men
aged 15-54 who were tested between June 2003 and June 2006. Intervals between last
HIV-negative and first HIV-positive tests were large, ranging from 0.5 years to 3 years,
with a median interval of 1.3 years. The utility of such data had been previously

overlooked, due to the infrequent observation of subjects.

The MDRI was estimated using the approach described in Sections 3.1 and 3.2 above. A
local FRR for the BED assay had previously been measured in the same population, and
was estimated to be 1.69% (95% CI: 1.00%-2.66%) for a maximum time in the ‘recent’
state of W = 306 days for test ‘progressors’ [131]. This estimated FRR and the
corresponding W were used as inputs in the MDRI estimation. The maximum likelihood

estimates of the MDRI, by gender and age, are provided in Table 3.3.

Number of subjects Estimated w in days (95% CI)
All data 274 115 (90-139)
Male 72 98 (50-146)
Female 202 120 (91-149)
Ages 15 - 24 138 103 (70-136)
Ages 25 + 136 128 (91-165)

Table 3.3: Estimated mean duration of recent infection for the BED assay in a South
African surveillance population, by gender and age

Estimates of the MDRI, w (days), for the BED assay in a surveillance population in
KwaZulu Natal, South Africa, are tabulated. Estimation used an input FRR of 1.96% and
W = 306 days. 95% confidence intervals (Cls) are also provided (based on large sample
maximum likelihood estimator properties). The MDRI was calculated using all data,
stratifying data by gender, and stratifying data by age, in turn.
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The likelihood functions for the MDRI are shown in Figures 3.16 to 3.18 (using
W =306 days throughout). The impact of varying assumptions for the FRR is
considered in Figure 3.16, where each of a number of FRR inputs were used in turn: the
local estimate of 1.69% described above; an external estimate of 5.6%, which was
measured in populations in North America and the Netherlands [16]; and zero. The
estimated MDRIs varied by 21 days. In Figure 3.17 and Figure 3.18, the likelihood
functions for the MDRI are shown when stratifying data by gender and age respectively
(using an input FRR of 1.69%). Age and gender differences were not significant (using a

likelihood ratio test and significance level of 5%).

o
(00]
T

o
»
T

L(w)

Likelihood function for MDRI,

O L 1 )
40 100115 121 180
MDRI, @ (days)

Figure 3.16: Likelihood function for the mean duration of recent infection of the
BED assay by input false-recent rate

The likelihood of observing the data (scaled to have a maximum of 1) is shown as a
function of the MDRI, w (days), for the BED assay in the studied South African
surveillance population. Data with inter-test intervals larger than W = 306 days were
included in the analysis, and various FRR inputs were used in turn: the local measurement
of 1.69%, an external measurement of 5.60%, and zero.
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Figure 3.17: Likelihood function for the mean duration of recent infection of the
BED assay by gender

The likelihood of observing the data (scaled to have a maximum of 1) is shown as a
function of the MDRI, w (days), for the BED assay in the studied South African
surveillance population. Data with inter-test intervals larger than W = 306 days were
included in the analysis, and an input FRR of 1.69% was used. Data were stratified by
gender (Male and Female).
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Figure 3.18: Likelihood function for the mean duration of recent infection of the
BED assay by age

The likelihood of observing the data (scaled to have a maximum of 1) is shown as a
function of the MDRI, w (days), for the BED assay in the studied South African
surveillance population. Data with inter-test intervals larger than W = 306 days were
included in the analysis, and an input FRR of 1.69% was used. Data were stratified by age
(Ages 15-24 and Ages 25+).
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This analysis provides the first MDRI estimate for the BED assay using specimens
collected as part of population-based HIV surveillance in Southern Africa. These
preliminary results suggest that, on average, infected individuals remain in the BED
assay-defined state of ‘recent’ infection for 115 days (95% CI: 90-139 days) in the South
African surveillance population. Previously published estimates range from 133 or 153
days in a North American cohort [16] to 187 days in a cohort of Zimbabwean women
[17]. Use of these externally obtained MDRI estimates would decrease incidence
estimates by between 14% and 39% respectively. Just as other work has cautioned against
the generalisation of FRR estimates [131], this work cautions against the use of an MDRI

that is not validated in the survey population.

3.4 Estimation within the General
Incidence Inference Framework

Throughout this chapter thus far, test characteristics have been defined based on the
analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24].
The definitions of the MDRI and FRR emerging from their work rely on specific
assumptions about the dynamics of tests for recent infection, known to be violated in
reality. These assumptions have since been relaxed and a general incidence inference
framework has been developed [29].*' Estimation of the MDRI that is defined within this

general framework is explored below.

The probability that a seroconverter, who tests seropositive at time A after testing

seronegative, is ‘recently’ infected at the time of the first seropositive test is

1 A
p(8) = p(Alp) = Zfo Sq(tl) d, (3.25)
where it is assumed that seroconversion is equally likely to have occurred at any time
between the two tests, and Sg(t|¢), which is the probability of testing ‘recent’ at time ¢
after seroconversion, depends on the parameter ¢. The likelihood of observing the test

classifications in a sample of n seroconverters is then

1-x;

L) = | |(pcad ) (1 - pead )™ (3:26)
i=1

IThe derivation of the general framework for incidence inference is presented in Chapter 2.
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where A; and x; capture the observed data (i = 1,2, ...,n), and ¢ is the (unknown) model

parameter. More specifically, for the i"™ seroconverter, A; is the inter-test interval and x; is
the observed classification at the first seropositive test, where x; equals 1 if the subject is

‘recently’ infected and equals 0 if the subject is ‘non-recently’ infected.

Any definition of a mean duration in the ‘recent’ state would involve some averaging of

Sg(t|$) over time ¢, and therefore the MDRI is generally a function of ¢. Estimation of
the MDRI then naturally proceeds by specifying a functional form for Sg(t|¢),
estimating ¢ by maximising the likelihood function, and calculating the implied MDRI
estimate. However, poor assumptions about Sg (t@) could lead to substantial bias in
results, and therefore a large part of this chapter has been dedicated to finding special
cases of this estimation procedure which require less extensive or no parametric
assumptions. More specifically, cases have been sought where p(A), and therefore the
likelihood function, depend only on the test characteristics of interest, and, if required, a
small number of ‘nuisance’ parameters (that restrict the form of SR(t@) less than a full
specification of the function in terms of ¢). In all cases considered, large sample

maximum likelihood theory can be used to obtain properties of the MDRI estimator.

Under the assumptions of McDougal et al [16], McWalter and Welte [25] and Wang and
Lagakos [24], S R(tl@) can be expressed as

Sr(tlp) = e+ (1 — &)Spr (tlg™), (3.27)
where S R'(t@*) = 0 for sufficiently large t (t > W), and the parameter ¢ is the FRR.

The MDRI is defined as w = fom S Rr(t|¢_)*) dt (assuming guaranteed survival until W

after infection). For a subject with a sufficiently large inter-test interval A (A > W), the

probability of testing ‘recently’ infected becomes
w
p(A) =p(Ale,w) = e+ (1 — S)Z' (3.28)

Therefore, by including only subjects with large inter-test intervals in the analysis dataset
(A; > W,i =1,2,...,n), the likelihood becomes a function of only the test characteristics
€ and w, which can be estimated directly by maximising the likelihood function. While
the test characteristics can be jointly estimated in principle, results from the sections
above show that estimation of the MDRI, w, is challenging without an input value of &

for a carefully chosen value of W.
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The more general analysis of Kassanjee et al [29] relaxes all assumptions about test
dynamics by introducing a post-infection time cut-off T in the construction of the
incidence estimator. The MDRI, Qr, is now the average time that an individual is
‘recently’ infected and alive, while infected for less than T. The FRR, B, is the
probability that an individual who is infected for longer than T will return a ‘recent’
result. The probability of testing ‘recently’ infected, p(A), can be expressed in a form that

contains Qr directly (assuming guaranteed survival until T after infection):

p(d) = %(LTSR(t@) dt + fTASR(t@) dt)

—“T+1fAs(t ) de (3.29)
A AR |$) dt. '
When A = T, this probability reduces to

p(A=T)=p(A=T|Qp) = % (3.30)
Therefore, by designing a study (or constructing a dataset) where all inter-test intervals
are equal to T (A; =7, i = 1,2, ..., n), the likelihood function is expressed in terms of only
the MDRI, Q, which can then be estimated directly by maximising the likelihood of the
data. In particular, the likelihood function, which now captures a binomial process, will
be maximised when the observed probability of a ‘recent’ classification at the first

seropositive test is used as an estimate of the true probability that is given in

Equation (3.30). That is, the estimated MDRI is

n

~ 1
Q. = T_Z y 331
T "y ; Xi ( )
1=
where )i, x; is the total number of ‘recent’ results among the n available results.

Importantly, no external estimates of any parameters are required to guide data inclusion

rules or assess the likelihood function.

The HIV surveillance data on the BED assay, described in Section 3.3.2, was re-analysed
to demonstrate estimation of the MDRI, Q. A time cut-off of T = 548 days (1.5 years)
was chosen for the exploratory analysis, which aimed to provide preliminary estimates of

the MDRI using two simplifications of Equation (3.29).
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Figure 3.19: Estimated mean duration of recent infection for the BED assay using
subjects with inter-test intervals close to T

The estimate of the MDRI, Q.+ (days), for the BED assay in a South African surveillance
population is shown as a function of x (%), where subjects with inter-test intervals within
[T-(1—x),T-(1+ x)] are included in the analysis and T = 548 days. In the likelihood
function approximation, all inter-test intervals are treated as being equal to T. 95%
confidence interval limits are also indicated (dashed lines).

Firstly, all subjects with inter-test intervals close to T were included in the analysis, and
the simplification given by Equation (3.30) — which requires inter-test intervals to be
exactly equal to T — was nevertheless used. A subject was included in the analysis if his
inter-test interval, A, was within [T - (1 —x),T - (1 + x)] for a chosen value of x. The
estimated MDRI, as a function of x, is shown in Figure 3.19. Point estimates appear
relatively stable, and range from 138 days to 175 days for x between 5% and 20%. As the
value of x increases from zero, bias is introduced as the likelihood function is no longer
exact. However, the number of subjects included in the analysis increases and therefore
the confidence interval width decreases (n = 32, for x = 5%, increases to n = 101, for

x = 20%).

Secondly, all subjects with inter-test intervals in some range [L, U], which contains T,

were included in the analysis, and it was assumed that Sg (tl@) remains constant at some
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value @ for all t such that t € [L, U].** The probability of a seroconverter, with inter-test

interval A, being ‘recently’ infected is then

Q 6-(A—-T
p(®) = p(ajag, 0 = T EZD

The likelihood function now contains (. and 6, where the value of 8 was specified as an

(3.32)

input in the estimation. Using L = T and U = 3 years (n = 115), the estimated MDRI, as
a function of 8, is shown in Figure 3.20. The point estimate drops from 150 days for
6 = 0% to 130 days for 8 = 15%. The sensitivity of results to the choice of L, U and 0
was explored by repeating the estimation for all combinations of values of L between 300
days and 550 days inclusive (in 25 day increments), U between 600 days and 1100 days
(25 day increments), and 8 between 0% and 15% (1% increments). A histogram of all
resulting MDRI point estimates is provided in Figure 3.21, where the minimum,
25t percentile, median, 75 percentile and maximum point estimates are 113, 131, 137,

146 and 170 days, respectively (the sample size ranged fromn = 37 ton = 275).
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Figure 3.20: Estimated mean duration of recent infection for the BED assay using
subjects with inter-test intervals larger than T

The estimate of the MDRI, Q. (days), for the BED assay in a South African surveillance
population is shown as a function of 8 (%), where the probability of testing ‘recent’ is
assumed to be constant at 8 for times since infection in [L, U]. Subjects with inter-test
intervals within [L,U] are included in the analysis, and L =T = 548 days and
U = 3 years. 95% confidence intervals are also indicated (dashed lines).

*’This simplification was also used in the analysis of simulated data in Section 2.1 and 2.2.
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Figure 3.21: Distribution of mean duration of recent infection estimates for the BED

assay when varying estimation input parameters

A histogram of estimates for the MDRI, Q1 (days), for the BED assay in a South African
surveillance population is shown. Subjects with inter-test intervals within [L, U] are
included in the analysis, and the probability of testing ‘recent’ is assumed to be constant
at @ for times since infection in [L, U]. The MDRI was estimated for combinations of
L in [300,550] days, U in [600,1100] days and 8 in [0%,15%].

While the focus of this chapter is MDRI estimation using specimens from subjects who
are observed only once after seroconversion, the approach presented could be generalised
to contexts where subjects contribute multiple specimens after seroconversion.”
Estimation of the MDRI without making parametric assumptions about Sg (t|(_j>) is of
particular interest. A generalisation of the non-parametric estimation approach described
above (captured by Equations (3.30) and (3.31)), to contexts where inter-test intervals can
be smaller than T and subjects are followed up over time, is therefore briefly outlined

below.

BThe estimation of the MDRI from longitudinal data, using alternative estimation methods, is
discussed in Chapter 4. The generalisation of the approach for MDRI estimation that is presented
in this chapter (using single specimens from infected subjects), to the context where there are
follow-up specimens, is presented here for completeness.
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The inter-test interval A; should be a divisor of T — that is, there must exist some natural
number n, such that T/A; = ng. For example, for T = 1 year, some possible values
for A4 are 2 months (n; = 6), 4 months (ng; = 3) and 1 year (ng; = 1). Subjects should
have n; specimens drawn, A, apart, from (and inclusive of) the time of the first
seropositive test (although subjects can miss draws and some subjects can be lost to
follow-up). Assuming seroconversion events are uniformly distributed between last
seronegative and first seropositive tests, the probability of a ‘recent’ classification at the
first seropositive test is
1 (A

p(00) = p(8alg) = 1 | salcig) at, (333)
as before (see Equation (3.25)). More generally, the probability of a ‘recent’ classification
at draw k (k=1,2,...,n;), which occurs at time Ay - (k-1) when using the first
seropositive visit as reference time 0, is

1 Agk
p*(k,Ag) = p(k,Dgl) = A L _(k_l)sR(t@) dt. (3.34)

The MDRI can be written in terms of these probabilities:

T
Qr =f0 Sr(tl¢) dt

Nq

— ZfAd'k Sg(t) dt

= ag -

ng
=84 ) P 8g), (3.35)
k=1

and estimated using the observed probabilities of ‘recent’ results by
ng

Qr=4, ) =5, (3.36)

where m;, results are observed for visit k, and y, of those are ‘recent’. Note that a
subject’s classifications (for various visits) would not be independent, and the estimated
uncertainty for the MDRI estimator should consistently account for this — for example, by
using the observed correlations between results as proxies for true correlations in an
analytical expression for var(Qy), or through bootstrap resampling at a subject level

[174].
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In summary, the approach for obtaining preliminary MDRI estimates, using specimens
from subjects observed only once after infection, is still as applicable and valuable when
defining test characteristics using the general incidence inference framework. By
assuming a parametric form for the probability of testing ‘recent’ as a function of time
since infection, all inter-test intervals can be accommodated. However, there are special
cases where, by restricting the inter-test intervals included in the analysis, the extent of
any parametric assumptions (and potential bias arising from these) can be reduced. When
all inter-test intervals are exactly equal to the time cut-off T (or some divisor of T when
infected subjects are in fact followed-up), the MDRI can be estimated non-parametrically
and directly, without any ‘nuisance’ parameters or the need for any external knowledge of

test dynamics.
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Chapter 4

Estimating the Mean Duration of
Recent Infection II: Longitudinal
Follow-Up of Infected Subjects

Traditionally, estimation of the mean duration of recent infection (MDRI) has relied on
longitudinal data, which provides results for the test for recent infection at multiple time
points after infection for each subject. Various approaches have been used in the literature
to analyse such data, leading to questions about best practices and the implications of
methodological differences. This chapter therefore systematically investigates various MDRI

estimation methods, and presents some ideas for potentially reducing artefacts in analyses.

A detailed benchmarking of estimation methods was performed using a data simulation
platform, and is presented in Section 4.1. The investigation forms part of a project
involving an international group of researchers and analysts brought together by the HIV
Modelling Consortium [53]. The analysis presented here forms a substantial portion of the

full body of work by the group, on which a manuscript is currently being prepared.**

*The analysis presented in Section 4.1 contributes to work being published by the following
authors, listed alphabetically and publishing on behalf of an HIV Modelling Consortium working
group: Daniela De Angelis (Medical Research Council, and Cambridge University — United
Kingdom), Marian Farah (Medical Research Council, and Cambridge University — United
Kingdom), Debra Hanson (Centers for Disease Control and Prevention — USA), Reshma
Kassanjee (SACEMA — South Africa), Phillip Labuschagne (SACEMA — South Africa), Oliver
Laeyendecker (National Institute of Allergy and Infectious Diseases — USA), Stephane Le Vu
(French Public Health Institute — France), Brian Tom (Medical Research Council, and
Cambridge University — United Kingdom), Rui Wang (Harvard University — USA), Alex Welte
(SACEMA — South Africa) and Ping Yan (Public Health Agency of Canada — Canada).
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The unknown infection times of subjects in the sample pose a particularly subtle obstacle
to accurate MDRI estimation, and potential approaches for limiting bias are explored in
the remainder of the chapter. Firstly, by redefining the effective ‘HIV-positive’ state
through the introduction of an artificially high ‘diagnostic detectability’ threshold on a
semi-quantitative assay, the time of entry into this state could potentially be more
accurately estimated by reducing extrapolation required in analyses given typically
available data. The concept is demonstrated in Section 4.2 using simulated data from the
benchmarking exercise, and was first presented in a conference poster [34] using actual
data.” Secondly, when estimating a subject’s infection time, diagnostic testing history
data should be carefully analysed, and the context-dependent definition of (perforce,
detectable) infection considered. These topics, inspired by the CEPHIA data preparation
process, are briefly explored in Section 4.3. A summary of the ideas presented has been

included in a manuscript by CEPHIA.*®

»The concept presented in Section 4.2 was first published in the following conference poster:
‘Kassanjee R, Hargrove J, Marinda E, Humphrey J, McWalter TA and Welte A. New criteria for
defining biomarker-derived ‘recent HIV infection’ for the purposes of incidence estimation.
E-poster CDC0474 at the XVIII International AIDS Conference, 18 — 23 July 2010, Austria’.

**Some of the ideas presented in Section 4.3, which were developed while preparing and analysing
CEPHIA data, are summarised in a (currently unpublished) manuscript by CEPHIA, authored
by: Christopher D Pilcher (University of San Francisco, California — USA), Sheila M Keating
(Blood Systems Research Institute — USA), Reshma Kassanjee (SACEMA — South Africa),
Elaine McKinney (Public Health England — United Kingdom), Shelley N Facente (University of
San Francisco, California — USA), Kara Marson (University of San Francisco, California —
USA), Alex Welte (SACEMA — South Africa), Michael P Busch (Blood Systems Research
Institute — USA) and Gary Murphy (Public Health England — United Kingdom).
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4.1 Benchmarking Estimation
Approaches Using Simulated
Data

4.1.1 Introduction

Conventionally, estimation of the MDRI has relied on longitudinal data, which captures
the dynamics of the test for recent infection as a function of time after infection.
Constructing such datasets requires specimens from (initially HIV-negative) subjects to
be collected regularly over time before and after infection. Such specimens are costly and

logistically difficult to obtain,?’

and, when available, a number of approaches for
analysing the resulting longitudinal data could be considered. While different
methodologies have been adopted by various research groups [16, 17, 91-103], robust
(and widely-accepted) methods for estimating the MDRI are essential for the success of a
cross-sectional incidence surveillance approach as unbiased incidence estimation requires
unbiased test characterisation. It is important to identify factors that significantly
influence test dynamics, and disentangling the variation in MDRI estimates caused by
study population differences (such as the subtype of HIV infections) from that caused by
analytical differences requires careful consideration of the estimation methods employed.
Also, to optimally design studies for characterising tests for recent infection, the

relationships between features of the data, such as sample sizes and visit gaps, and the

performance of MDRI estimation methods need to be understood.

Consequently, in 2012, the HIV Modelling Consortium tasked SACEMA with
coordinating a collaborative project to investigate the performance of MDRI estimation
approaches using simulated data [53]. The project team consists of researchers from
SACEMA, the Centers for Disease Control and Prevention (CDC), the National Institute
of Allergy and Infectious Diseases (NIAID), the British Medical Research Council
(MRC), Cambridge University, the French Public Health Institute, Harvard School of
Public Health and the Public Health Agency of Canada. The working group gathered at

“In an attempt to address the bottleneck created by the reliance on longitudinal data, the
preliminary estimation of the MDRI, using specimens from subjects observed only once after
infection, is discussed in Chapter 3.
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Harvard University in Boston in July 2012 to discuss the theoretical framework for
estimating incidence (and thus defining the MDRI), outline the project scope and
methodology, and interpret preliminary outputs. Thereafter, a teleconference was held
every second week, so that each step of the process could be critically reviewed and tasks
allocated to team members. Online structures were developed to efficiently share relevant
documents, datasets, MDRI estimation outputs and drafts of the manuscript (to be

published).

In principle, the ‘recent’ or ‘non-recent’ classification produced by a test for recent
infection may rely on multiple measured biomarkers and clinical indicators [10]. This
investigation was restricted to considering a test for recent infection based on a single
biomarker. The biomarker need not represent the measurement of a single quantity, but
may be a single summary metric of multiple measurements. In line with currently used
‘incidence assays’, a measurement below a chosen threshold, Y, was interpreted as
indicating ‘recent’ infection. The MDRI summarises the average time that biomarker
measurements are below this threshold — more specifically, the MDRI, Qr, of relevance
for incidence estimation, is the average time ‘recently’ infected and alive while infected

for less than some chosen time cut-off T [29].

A defining feature of this project is the use of simulated data: by simulating data, not only
is the true underlying MDRI computable (against which MDRI estimates can be
compared), but experiments can be replicated thousands of times and therefore the
behaviour of estimation methods fully understood. The SACEMA team developed a
comprehensive simulation platform that automated the generation and storage of datasets,

application of estimation methods, and storage of outputs in a database.

A large number of MDRI estimation methods were implemented, including both
approaches previously used and some new approaches proposed by the project team
members. The accuracy and precision of methods were assessed in a number of modelled
scenarios that capture essential features of what could be encountered in reality, such as
different underlying biomarker dynamics (for example, forms of the biomarker signals
post infection and levels of measurement noise) and different study designs or subject
behaviours (for example, sample sizes, intended visit schedules and tendency of subjects

to miss visits).
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4.1.2 Design

In practice, an analyst would typically be provided with a single dataset for estimation of
the MDRI. However, to understand the performance of any given MDRI estimation
method, this ‘experiment’ needs to be repeated a large number of times and the collection
of MDRI estimates considered. The simulation platform that was developed as a part of
this project allowed for efficient replication of experiments through the automated
generation of datasets and application of estimation methods. Detailed discussions follow
about the (i) generation of data, (ii) MDRI estimation methods, and (iii) metrics of

performance used.

Broadly outlining the approach taken, the performance of MDRI estimation methods was
assessed in a ‘base case’ scenario and then in each of a number of comparison scenarios.
The base case scenario captures a somewhat optimistic study design and high adherence
by subjects, and a biomarker dynamic inspired by experiences of researchers in the group.
Comparison scenarios were generated by systematically varying aspects of this base case
scenario, and capture features of processes that could be encountered in practice. For each
scenario, 1 000 datasets were generated and each method of MDRI estimation was
applied to each of the datasets (other than for the non-linear mixed models, which were
each applied to a common subset of 250 datasets due to the computational expense of the
estimation approach). Summary measures of accuracy and precision were used to assess

the performance of the MDRI estimation methods, relative to one another and by context.

* The simulation platform was implemented and administered by Phillip Labuschagne of
SACEMA. The platform automated the generation of data, the application of MDRI estimation
methods (which were provided by others in the group, including myself, in the form of Matlab, R
or SAS scripts) and the storage of all results. The system was developed using Python, R and
MySQL. Due to the large run times involved, computing resources provided by Amazon Web
Services were utilised.
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Data generation

The underlying processes that produce a real-world dataset for MDRI estimation can be
considered in two parts. Firstly, the study design, adherence to the protocol and subject
behaviour would drive the visit times and infection times of subjects in the sample.
Secondly, particulars of the biological signal (as a function of time since infection) and
the noise around the signal (from fluctuations within the host or simply imperfect
measurement in the laboratory) would drive the observed biomarker readings for the
visits (according to when the subjects got infected). Based on imitating these real-world
processes, stochastic models were constructed for generating the visit times, infection
times and biomarker readings of subjects. The models, inspired by experiences of
researchers in the project team, were designed to be simple and rely on relatively few
input parameters, yet provide sufficient flexibility to explore the features to be
investigated. The base case scenario was defined by choosing particular values for the
data generation parameters, based on an idealistic adherence to a somewhat optimistic
study design and insights into existing biomarkers for recent infection. Data generation

parameters were then systematically varied to create the comparison scenarios.

The model used to generate visit times was intended to portray a study where initially
HIV-negative subjects are visited regularly over time, and the intended visit gaps and
total follow-up times are specified, but the realised visits that are generated also account
for variability, missed visits and loss to follow-up. More specifically, the starting point is
to specify, for all subjects in the study, the intended time between visits while HIV-
negative, the intended visit gap once observed to be HIV-positive, and the intended total
follow-up time from a subject’s first HIV-positive test. To then account for loss to follow-
up (for example, due to participants moving out of the study area or termination of the
study period), a proportion of subjects are lost earlier than intended, and allocated
reduced total follow-up times. To account for variability in visit gaps, the potential visit
gaps (in the absence of missed visits) fluctuate around the intended or mean visit gaps. To
account for missed visits, there is a chance that a subject misses any potential visit. Since
one may expect some subjects to miss visits more frequently than others, subject-specific
probabilities of missing visits deviate from some population average probability. A total
sample size (or number of subjects who become HIV-positive) is selected, which, in
reality, results from factors such as the scale of study, observed HIV incidence, and

recruitment and retention rates.
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The timing of infection within the ‘infection interval’, used to refer to the time interval
from the last HIV-negative visit to the first HIV-positive visit, will depend on both the
study design and subject behaviour. For example, if visit times are specified by the study
administrators and strictly maintained, it is valid to assume that a subject is equally likely
to have been infected (as defined by the HIV diagnostic test used) at any time in the
infection interval. However, subjects may exhibit test-seeking behaviours (advancing
visits after exposures specifically to obtain HIV tests) or test-deferring behaviours
(delaying visits after exposures, possibly out of fear or from illness with acute HIV)
[155, 156, 175, 176]. This complexity was summarised by specifying a distribution for

generating infection times within infection intervals.

The model for generating a biomarker reading for each visit aimed to mimic a process
whereby realised biomarker readings consist of both signal and noise, and the biomarker
evolves differently in different subjects. For example, the signal may grow quickly and
saturate at a high value in one subject, and grow slowly and settle at a low level in
another. Based on plausible behaviour of a viral or host-response biomarker in a subject,
a flexible sigmoid curve was chosen to capture the biomarker signal as a function of time
after infection, thus allowing for a period of little growth, clear evolution, and then
levelling-off of the signal. To allow for subject-specific evolutions, the three parameters
(asymptote, scale and shape) defining the signal were independently generated for each
subject, with each subject’s parameters drawn from some common multivariate
population-level distribution. A flexible noise structure allowed the magnitude of the
noise to depend on the value of the signal. While this biomarker model was used to
generate readings for almost all scenarios considered (including the base case), an
alternative model was implemented for exploring the sensitivities of MDRI estimation
results to the true form of the underlying biomarker. In this alternative biomarker model,
the biomarker signal was based on a power of time, with a time lag between infection and

when the signal was observed

The described models for the simulation of data are formally outlined below, in terms of
input parameters and the specific functional forms and statistical distributions used to
generate the data. Values for the input parameters for the base case scenario are also
specified. The models produce sets of visit times {t;;}, infection times {t;nf,;}, and
biomarker readings {x;;}, where ¢;; is the time of the j™ HIV-positive visit

(J=12,..n;) for subject i (i =1,2,...,n) and x;; is the corresponding biomarker
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reading, and ¢;,r; is the time of infection for subject i. For each subject, the time of the

last HIV-negative visit provides the reference time of 0.

The generation of visit times, {t; ;}, depends on eleven parameters which are introduced

in order below, namely n, Fy gy, Pitfu> Hvgns Ovgns Cvmpn» vapna Hvgps Ovgp > Cvmpp

and Bympp-

For any given subjecti (i = 1,2, ...,n, where n is specified as an input), the total follow-

up time from the first HIV-positive visit, u;, is drawn from the following mixed

distribution:
1- Pitfu if x = Fpax
flx) = { P if X € (0, Fgx ) @.1)
Fmax
0 elsewhere

where Fyqy is the intended and maximum follow-up time and py; sy, is the proportion of
subjects lost to follow-up. The distribution treats follow-up times as uniformly

distributed. in (0,F,,,, ) for those subjects who are lost to follow-up.

The time of the first HIV-positive visit for subject i, relative to the last HIV-negative
visit, depends on the study protocol and behaviour of the subject while HIV-negative. The
first HIV-positive visit time, t;;, is drawn from a normal distribution with mean
Hvgn * (Mymn,; + 1) and variance a,fgn * (Nymn,; + 1) (truncated to exclude values below
zero), where pg, is the mean visit gap while HIV-negative and oy,4, captures the
variability in the gap, and n,,,, ; is the number of visits that are missed (before the first
HIV-positive visit). The count 7,,,,; is drawn from a geometric(pyp,y ;) distribution
(Mymn,i = 0,1,2,...), where py,;,,; 1s the subject’s probability of independently missing
any visit. This probability, pymn i, is drawn from a population-level beta(aympn, Bympn)

distribution.

Denoting the realised visit gap after the k" HIV-positive visit by 6k (k=12,..), the
time of the subsequent HIV-positive visit, t; j41, is generated using t; 41 = t;x + ik,
where §; ; depends on the study protocol and subject behaviour while HIV-positive. The
visit gap, 8;x, is drawn from a normal distribution with mean p, gy * (Nymp,ix + 1) and
variance a,}gp *(Mymp,i,x + 1) (truncated to exclude values below zero), where 1,4, is the
mean visit gap while HIV-positive and ay,4,, captures variability in the gap, and 1y ; k

is the number of visits that are missed (after the k" HIV-positive visit). The number of
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visits  missed, Nympik, 1S drawn from a geometric(Pymp,;) distribution
(Mymp,ik = 0,1,2, ...), where p,p,, ; is the subject’s probability of independently missing
any visit. This probability, pymyp i, is drawn from a population-level beta(aympp, Bumpp)

distribution.

Only visits occurring within the subject’s total follow-up time are retained — that is, n; is

the largest value such that t; ,, — t; 1 < ;.

The generation of infection times, {t;nf,;}, depends on two parameters, namely a;,r
and B, . The infection time for the it" subject, t;p, f,i» 18 ti1 - u; where u; is drawn from a
beta(ain s, Pins) distribution. Setting @ = Bing = 1 recovers uniformly distributed
infection times, and @iy = Bins, Aing > Ping and Ainy < Biny produce average test-

neutral, test-seeking and test-deferring behaviours respectively.

The generation of biomarker readings, {x;;}, depends on the thirteen parameters
contained in the inputs y;, X;, and e. For the it" subject, the signal at time t post

infection is given by:

—biz\ "~
yi(t) = y(tlb;) = b;y - (1 + (bi> > ) 4.2)
i2

where b; ; captures the maximum height or asymptote, b; , captures a horizontal scaling,
and b; 3 describes the shape, of the signal which is anchored at zero at infection. The
subject’s signal parameters, contained in b; = [b;q,b;,,b;3], are drawn from a
population-level multivariate N(up,Z,) distribution (truncated to have only a non-
negative support for each parameter). Allowing for noise, a biomarker measurement, x; ;,

for the visit at time t; ;, is drawn from a

SE
N vi(ti)), (eo +ey - yi(ti;) + ez (yi(ti,j)) )
distribution (and non-positive values are censored to be 0), where the noise parameters

are contained in e = [eg, €1, €3, €3] and t;; = t; j — tynf,; is the time since infection at the

Visit.

For the alternative biomarker model, the data depends on the five inputs by ;, by, by,

b, ,, and e. The signal for subject i at time t post infection is:

yi(®) = y(tlb;) = 8- max(0,t —b;, )", (4.3)
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where b; ; > 0 captures the time between infection and the appearance of signal, and
b; , > 0 describes the shape of signal growth. The subject’s lag parameter, b; 1, is drawn
from a uniform(by;, by,) distribution, and the shape parameter is drawn from a
uniform(by, b, ,,) distribution. Including noise, a biomarker measurement, x; ;, for the

visit at time ¢; ;, is drawn from a N (yi(ti*, j), ez) distribution (and non-positive values are

Jo

censored to be 0), where t;; = t; j — tins; is the time since infection at the visit.

For each dataset generated, the above mechanisms produce {t; ;}, {tins;} and {x; ;} for
i=12,..,nand j =12, ..n;. The infection times, {t;ns;}, would be unknown in
practice, and only the observable visit times and biomarker readings, {(¢; ;,x;;)}, are

passed to the MDRI estimation methods.

The base case scenario is described below, and values of the data generation input
parameters are provided. For each of the 50 subjects captured in the sample (n = 50), the
intended visit gaps were 3 months and 1 month while HIV-negative and HIV-positive
respectively (g, = 3 months and u,4, = 1 month), and intended follow-up time was
2 years (Fpqx = 2 years). There was a 10% coefficient of variation for visit gaps
(oygn = 3 days and 0,4, = 9 days), and no missed visits and no loss to follow-up
(@ompn = 0, Bompn =1, Qumpp 2 0, Bompp =1, Diggy = 0). Visit times were
considered to be fixed by study design and independent of infection, and therefore
infection times were uniformly distributed in infection intervals (@ = 1 and B = 1).
In terms of the biomarker dynamics, for visit times measured in days, the mean signal

parameter values were given by y;, = [85,190,5] (capturing height, scale and shape, in

order). The covariance matrix for subject-specific deviations, X;,, was such that the
standard deviations of the height, scale and shape parameters were 7.5, 50 and 1.4
respectively; and there was a correlation of -0.4 between the shape and scale parameters,
0.3 between the shape and height parameters, and -0.12 between the scale and height
parameters (arising from the relationship of each parameter with shape, without any
additional or partial correlation). The noise inputs were e = [2,0,0.3,0.5], producing a
standard deviation that began at 2 at infection and levelled off at 4.7 (based on the
average asymptote of 85). One or more parameters were varied to produce each of the

comparison scenarios, and details are specified in the tables of results.



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects 117

Approaches for estimating the mean duration of recent infection

Based on the general incidence inference framework [29], the MDRI can be expressed
mathematically as Q = fOT Pr(t) dt, where Pg(t) is the probability of being ‘recently’

infected and alive at time t after infection. > Estimation of the MDRI therefore inevitably
entails using the longitudinal data to make inferences about the function P (t). This can
be achieved either directly by fitting a chosen model for Pg(t) to the ‘recent’ and ‘non-
recent’ classifications of subjects, or indirectly by modelling the biomarker measurements
and then subsequently computing the implied probability of obtaining a measurement
below the threshold Y (that is, obtaining a ‘recent’ result). Throughout this work,
T = 1 year and Y = 40, and negligible mortality within T after infection was assumed in

the estimation of the MDRI.

Various approaches for estimating the MDRI appear in the literature [16, 17, 91-103]. For
this benchmarking exercise, a number of methods were implemented, intended to be
representative of those previously published and to provide some extensions. The
methods are represented in the mind map in Figure 4.1, and were broadly divided into
three categories, capturing (i) interpolation methods, (ii) survival analysis, and
(ii1) parametric regression. Those methods that were implemented by others in the project
team appear in grey text (Methods 18-24) and are not discussed in this thesis (additional
interpretation of all results will be provided in the manuscript to be published by the
group). Specific implementations within each category of methods are described in more

detail below.

*The derivation of the general incidence inference framework and the definitions of test
characteristics appearing in the incidence estimator are presented in Chapter 2.
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Figure 4.1. Mind map of the mean duration of recent infection estimation
approaches included in the benchmarking exercise

The 24 MDRI estimation methods that were implemented and evaluated are captured in
the mind map (each numbered and labelled in bold). Methods shown in grey text
(Methods 18-24) were implemented by other members of the team, and are therefore not
discussed in this thesis. When parametrically modelling biomarker measurements, the
three forms for the biomarker signal that were used (Signal 1-3) are given by
Da(l+ (t-exp(b))©)L, 2) a1l — exp(—(t - exp(h))©)), and

3) a(l — exp(—(t . exp(b)))) where t is time since infection and a, b and ¢ are model
parameters; and the two noise structures that were used (Noise 1-2) specify that the
standard deviation of noise is 1) a linear function of the signal, or 2) constant.
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Generally, a challenge faced when estimating the MDRI from longitudinal data is the
uncertainty of subjects’ infection times. It is only known that infection (as defined by the
HIV diagnostic test being used) occurs somewhere between the last HIV-negative and
first HIV-positive visits, and explicitly allowing for this uncertainty substantially
increases the complexity of estimation methods. One simple approach is to approximate
each subject’s infection time by some expected infection time, but even this relies on
assumptions about subject behaviour. In studies where visits times are fixed by design, it
is valid to assume that the infection time is uniformly distributed in the infection interval.
In this case, an infection time could be estimated by the midpoint of the infection interval.
A number of the MDRI methods outlined below use this ‘midpoint infection time’

approach.

Interpolation methods (Methods 1-4) use mathematical interpolation for each subject to
obtain a biomarker reading at every time point after infection (using a ‘midpoint infection
time’, assuming a biomarker reading of zero at infection, and without any extrapolation
beyond the subject’s last data point). At every time t post infection, the proportion of
those subjects with available biomarker readings (namely those that have not been lost to
follow-up) that have measurements below the test threshold Y provides an estimate of
Pr(t). Biomarker readings were interpolated either linearly or by a nearest neighbour
approach (implying that transitions between states occur at the midpoints of periods
between visits). Furthermore, the approach was implemented either using all data as is or
assuming a subject’s readings remain above the threshold, Y, after a first measurement
above Y. The first implementation allows for multiple transitions between the ‘recent’
and ‘non-recent’ states, while the second assumes and enforces single exits from the state
of ‘recent’ infection (disregarding information contained in later data points), as done in
some of the literature [91, 93-96, 98-100, 102]. This class of methods provides a basic,
informal approach for analysing the longitudinal data. The Matlab function that was

developed to implement Methods 1 and 2 is provided in Appendix B.3.

Conventional statistical survival analysis techniques are used to model the time from
entering to exiting a state of interest. For this application, even if the biomarker signal is
monotonically increasing over time after infection (at least until the time cut-off T'),
measurement noise implies that subjects may fluctuate in and out of the state of ‘recent’
infection many times, and therefore this single sojourn view of ‘recent’ infection is too
restrictive. These statistical methods have nevertheless been employed in this area [93,

94, 96, 98-100, 102] and can be easily implemented using standard software, and were
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therefore included in this benchmarking exercise. To utilise the survival analysis
framework, all data points beyond a subject’s first ‘non-recent’ data point were

effectively discarded.

Survival analysis methods are also more amenable to accommodating (at least some cases
of) data censoring. In this application, data is double interval censored as both entry and
exit times are interval censored. More specifically, a subject’s entry time lies within the
infection interval, and exit time lies in what is referred to here as the ‘exit interval’. The
exit interval is taken to be the time interval either between the subject’s first ‘non-recent’
visit and the preceding visit, or between the latest visit and infinity (or some very large

time) if there is no ‘non-recent’ result (typically referred to as a right censored exit time).

The first set of survival analysis methods (Methods 5-7) are based on fitting a parametric
distribution (Weibull, Gamma or Lognormal distribution) to the time in the ‘recent’ state,
treating the time in the state as double interval censored (that is, the infection time is
uniformly distributed in the infection interval, and then the exit time is uniformly
distributed in the exit interval). A maximum likelihood approach was used to estimate the
distribution’s parameters, and the integration required to assess the likelihood function

was performed numerically (using the composite trapezoidal rule).

Parametric assumptions about the distribution of times in the ‘recent’ state were avoided
by using a Kaplan-Meier or Product-Limit estimator [177, 178] of the survival function
(Methods 8 and 9), where the estimated survival function is a step function that
maximises the likelihood of the observed data. The standard Kaplan-Meier approach
accommodates only right censored data, and therefore ‘midpoint infection times’ were
used and exit times were estimated by interpolation between biomarker readings on either
side of the exit interval (assuming a zero biomarker measurement at infection), either
linearly or by a nearest neighbour approach. If the last visit of the subject was ‘non-
recent’, the exit time was treated as right censored. The MDRI estimates obtained from
these methods will be equal to those produced by the corresponding single-exit
interpolation methods (Methods 1 and 3) when there are no right censored exit times

within T after infection.

Founded on the principle of an Expectation-Maximisation algorithm, Turnbull's algorithm
[178, 179] extends the Kaplan-Meier estimator of the survival function to allow for
interval censored data (Method 10). The double interval censoring in the data implies that

a trapezoidal distribution should be used to describe the uncertainty in the time in the
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‘recent’ state, while the single interval censoring accommodated by Turnbull’s algorithm
utilises a uniform distribution. Therefore, while not formally exact, to facilitate
application of this approach and reproduce previous implementations [98], the data was
interpreted as capturing single interval censored times in the ‘recent’ state, with bounds
given by the minimum and maximum possible times in the ‘recent’ state implied by the
data. In this implementation, the survival function was taken to evolve piecewise linearly

(rather than being piecewise constant, as is conventionally assumed).

In parametric regression (Methods 11-17), a particular form for the expected response,
as a function of predictors, is fitted to the data. In this application, time since infection (or
transformations thereof) provide the predictor(s), and either the biomarker reading or test
classification (‘recent’ versus ‘non-recent’) provides the response. Different classes of
parametric regression can be considered, depending on the following, for example: the
method of model fitting (such as whether a Bayesian or Frequentist approach is used, and
the specific software or algorithms utilised); whether the response is the biomarker
reading or test classification; whether the defined model forms are linear or non-linear in
the parameters; whether subject-level clustering of data is accounted for by random
effects; and how the unknown infection times are accommodated. The choices made
greatly impact the statistical complexity, and computational stability and expense, of the
approach. Two classes of parametric regression models were employed and are discussed
below, namely linear binomial regression models and non-linear (normal-response)

mixed models, both using ‘midpoint infection times’. *°

The linear binomial regression models (Methods 11-14) assumed functional forms for
Pr(t), with parameters estimated to maximise the likelihood of classifications in the data
(using Matlab’s ‘glmfit’ tool). The models were of the form g(PR (t)) = ETJ_c(t), where
g(.) is the link function, and n = [_?Ta_c(t) is the linear predictor containing both the
model parameters in  and the predictors, which are functions of time since infection, in
x(t). This class of models neglects the subject-level clustering of data points. Four
parametric forms of the model were implemented (Forms 1-4), intended to provide
varying degrees of flexibility: 1) g(.) is a logit link and 7 is a cubic polynomial of time (a

four-parameter model); 2) g(.) is a logit link and 7 is a linear combination of the basis

0Additional classes of parametric regression models were implemented by other members of the
project team, and are to be presented in the group’s manuscript.
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functions of a natural cubic spline that has six equally spaced knots within [0, T] (a six-
parameter model); 3) g(.) is a loglog link and 7 is a linear function of the natural
logarithm of time (a two-parameter model, with Pg(t) resembling a Weibull survival
function); and 4) g(.) and n are such that Pz(t) is constant within each of six equally-
sized subintervals segmenting the post-infection time interval [0, T] (six parameters). In
some scenarios considered, the sparseness of data did not support meaningful use of
Forms 2 and 4. For Form 4, when fewer than five subjects contributed data points to any
subinterval, the number of subintervals was reduced in decrements of one (to a minimum

of one).

Non-linear mixed models (Methods 15-17) for the biomarker measurements are
substantially more complex and difficult to implement than any of the approaches
discussed above, but are able to capture various features of the data. In general, a
parametric form for the biomarker signal over time since infection is chosen, as is a
measurement noise structure, and subject-level clustering or correlation of data is
accounted for through subject-specific deviations (random effects) of signal parameters

from the population-level average signal parameters (fixed effects).

More specifically, the chosen model structure specified that the biomarker measurement

for subject i at time t after infection was given by

fi®) = ftla) = y(tla) + (ks + koy(tla)) - &, (44)
where the signal was described by y(t|a;) and the noise was captured by &, which is a
standard normal random variable (independently drawn for every biomarker

measurement). The subject’s n, signal parameters contained in a; followed a multivariate

normal distribution, with mean g, (the fixed effects) and covariance matrix £, (capturing
the variability of the random effects or subjects’ deviations). The model parameters were

contained in pig, X, and k = [kq, k5].
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Three forms for the signal were implemented (Signals 1-3). Signal 1 is

y(tla;) = a;q- (1 + (t X exp(ai'z))ai'g)_l, 4.5)

and Signal 2 is

(tla) = ags (1 - exp(—(e x exp(@2))")) o

and both result in eleven-parameter models (n, = 3). Signal 3, a special case of Signal 2,

is
y(tla) = a1 - (1— exp (—(t x exp(a;2)))) (4.7)

and produces a seven-parameter model (n, = 2). Signal 1 matches the biomarker signal

used to generate base case scenario data, up to transformations of the parameters.

The mixed model parameters were estimated to maximise the likelihood of the data. The
large search space and complex likelihood function can cause instabilities when using
optimisation algorithms to search for the parameters’ maximum likelihood estimates, and
therefore Markov Chain Monte Carlo (MCMC) approaches are often used. For this
exercise, stability of processes was important as estimation was performed for several
thousands of datasets through an automated system, and therefore the MCMC approach
provided by Matlab’s ‘nlmefitsa’ tool was used. Also, while (in practice) convergence
criteria would be carefully assessed when analysing any given dataset (as would the choice
of parametric forms), here the number and lengths of the chains (which aim to converge
to the maximum likelihood estimates) used in a single estimation were increased until a
balance was found between feasible run times and suitably small variation in MDRI
estimates if analysing the same dataset multiple times (three chains of 1 000 steps were
used, each with its own starting value, and the parameter estimates providing the largest

likelihood value were considered to be the maximum likelihood estimates).

For the parametric approaches above (Methods 5-7, 11-17), data points occurring at large
times after infection, relative to the time cut-off T, were discarded before model fitting, in
an attempt to achieve the best model fit specifically to data over post-infection times in
[0,T]. More specifically, data points were excluded which were beyond T plus some
margin (ranging from 0 to 0.5 - T across methods). Since the maximum follow-up time
for subjects was 2 years and biomarkers were well behaved over that time by design, this
data exclusion may have limited impact here. However, in practice, biomarker dynamics
may become less predictable years after infection, and therefore care should be taken in

choosing data to train models that are intended to describe early test dynamics.
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The output of each method of estimation described above can be expressed as an
estimated Pg(t) — possibly after some transformation of output model parameters. The
MDRI was then estimated by the area under this inferred curve, fromt =0tot =T,

either analytically or numerically (using the composite trapezoidal rule).

In practice, when any parameter is inferred, the reported estimate has little meaning
without an estimate of uncertainty, typically expressed as a confidence interval. However,
for this exercise, confidence intervals were not reported. By operating within a simulation
environment where experiments could be replicated, the bias and variance of point
estimates were directly measured. These metrics inform the coverage and widths of
confidence intervals that may be produced. Furthermore, for any given estimation
method, it is possible that a number of methods could be used to obtain confidence
intervals. The optimisation of the confidence interval approach, and finding a balance
between its complexity or computational expense and its performance, would extend this

benchmarking exercise well beyond its already broad scope.
Metrics of performance for estimation methods

For each scenario and each MDRI estimation method, a large number of MDRI estimates
were obtained by analysing each of the 1000 datasets that were generated. The
distribution of point estimates provides information about the behaviour and performance
of the estimation method. Many metrics could be considered for summarising this
distribution, and potentially how it relates to the true MDRI — for example, percentiles,
variance, the expected value, bias, or the mean squared error could be computed. For each
scenario and each estimation method, two such performance statistics are reported here:
(1) accuracy is summarised by relative bias (difference between average MDRI estimate
and true MDRI, relative to the true MDRI), and (ii) precision is captured by the relative
standard deviation or coefficient of variation (standard deviation of estimates relative to

the mean estimate).

To quantify the bias in estimation, the average MDRI estimate needs to be compared to
the true MDRI, which was therefore computed for each scenario considered. The MDRI,
Qr, depends on the dynamics of the underlying biomarker as a function of time since

infection.



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects 125

For scenarios where data was generated using the primary, base case biomarker model,
the MDRI was calculated using the following expression (substituting in the scenario’s

data generation parameter values):

t=T Y — y(t|b)
Q. = b) ® —
! fo QERsz(—) <e0+e1-y<t|@>+ez-(y<t|z_»))e3

) db dt, (4.8)

where Y > 0 is the test threshold used to distinguish between ‘recent’ and ‘non-recent’
results, T is the time cut-off appearing in the definition of the MDRI, y(t|b) is the signal
given by Equation (4.2), ®(.) is the standard normal cumulative distribution function,
and fp(b) is a multivariate normal probability density function with mean y;, and

covariance matrix X, truncated to have only a positive support.

For the alternative data generation biomarker form discussed, the MDRI was computed
by:
t=T rby=biy rbz=bzy Y — y(t|b)
Qp = f f f fo, (b1) fi, () <—-) db,db, dt,  (4.9)
t=0 Yby=by; “by=by; e
where b = [by, b,], y(t|b) is the signal given by Equation (4.3),

-1, -1

fo, (01) = (byy — byy) "ifbyy < by < byy, (0 elsewhere) and f;,, (b2) = (byy, — bay)

if by, < b, < by, (0 elsewhere).
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4.1.3 Results

The results from each method of MDRI estimation are plotted for the base case scenario
in Figure 4.2, and summary performance statistics for all scenarios are provided in
Tables 4.1 to 4.4 — namely the relative bias of the estimation procedure (accuracy) and the
relative standard deviation or coefficient of variation of point estimates (precision). The
contents of each of the tables are outlined below, and then some qualitative insights

gained from interpreting the results are highlighted.

The base scenario is somewhat idealistic, capturing monthly visits for 50 HIV-positive
subjects over two years after infection and infection times that are uniformly distributed
in intervals of 3 months. For this scenario, all categories of estimation methods appear to
provide useful estimates (Figure 4.2), but there is a clear sensitivity to parametric
assumptions when considering the mixed model results (Methods 15-17). Therefore, an
initial investigation into parametric assumptions for the mixed models was performed,
and is presented in Table 4.1. This investigation was used to down select and fine tune the
(computer-intensive) mixed models that were to be subsequently assessed alongside the
remaining estimation methods (and resulted in Signal 3 being abandoned). For each of the
three fitted signal forms (Methods 15-17), four variations of the mixed model were
implemented for this auxiliary investigation, based on assumptions about the noise
structure and correlation between random effects (Table 4.1). The scenarios that were
used to assess performance captured alternative forms of the underlying biomarker, and
variations of the noise structure and levels of correlation between random effects

(compared to the base case biomarker dynamic).

Features of the data related to study protocol and subject behaviour (that is, the generation
of visit and infection times) are considered in Table 4.2 and Table 4.3. The performance
of estimation methods when varying the number of subjects and mean visit gaps, while
HIV-negative and HIV-positive in turn, is summarised in Table 4.2; while the impact of
(increasing levels) of missed visits, loss to follow-up and non-uniformity of infection
times is explored in Table 4.3. The impact of features of the underlying biomarker
dynamic is investigated in Table 4.4, where the levels of measurement noise and inter-
subject variability are varied (for the base case biomarker form) and the alternative

biomarker form is considered.
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Figure 4.2. Box-and-whisker plots of the mean duration of recent infection point
estimates for the base case scenario by method of estimation

Box-and-whisker plots of the point estimates for the MDRI, Q1 (days), are provided for
the base case scenario, for each of the MDRI estimation methods (T = 1 year). The box
and dividing line indicate the central 50% and median of estimates respectively, and
whiskers and circles capture remaining data points and outliers respectively (outliers are
more than 1.5 times the interquartile range or box length away from the central box). The
vertical black line indicates the true MDRI.

"Methods 15-17 appear to have fewer outliers because fewer experiments were replicated
(250 instead of 1 000).
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FITTED MODEL

SPECIFICATIONS
Noise standard deviation Constant Linear in signal Constant Linear in signal
Correlation between None None Included Included

'random effects'
RELATIVE BIAS (%)
Underlying biomarker

form
Base case. -10 -02 -61| -11 -04 -60| -06 09 -67| -07 09 -67
Power function, -08 -01 -28| -07 -01 -28| -04 02 -33| -03 01 -34
no time lag'
Power function, 17 22 -11 17 22 -11| -11 00 -18| -11 -00 ~-18

with time lag’
Noise structure

Base case” -10 -02 -61| -11 -04 -60| -06 09 -67| -07 09 -67
Alternative 1° -06 03 -70| -06 03 -70( -04 09 -68| -04 10 -68
Alternative 2°* -17 -14 87| -14 -04 -87| -16 -10 -81| -15 -00 -82

Correlation between
signal 'random effects'

No correlation 03 06 -46| -04 05 -47| -03 13 -57| -03 13 -56
Base case* -10 -02 -61| -11 -04 -60| -06 09 -67| -07 09 -67
Double correlation -14 -06 -68| -14 -08 -68| -06 10 -72| -07 09 -72
coefficients
RELATIVE STANDARD
DEVIATION (%)
Underlying biomarker
form
Base case 40 40 41| 41 41 41 41 41 47| 48 48 47
Power function, 43 43 44| 43 44 44| 44 44 35| 35 36 36
no time lag'
Power function, 38 38 34| 33 37 36| 33 33 33| 33 34 34

with time lag’
Noise structure

Base case” 40 40 41 41 41 41 41 41 47 48 48 47
Alternative 1° 44 44 45| 45 43 44| 45 45 54| 54 52 51
Alternative 2* 45 51 45| 53 44 45| 44 45 51| 53 50 51

Correlation between
signal 'random effects'

No correlation 46 46 45| 46 46 46| 45 46 51| 52 51 50

Base case 40 40 41| 41 41 41| 41 41 47| 48 48 47

Double correlation 40 39 40| 40 39 38| 40 40 49| 49 48 47
coefficients

! Alternative biomarker form specified in text, by;=by, =0,by; =03, by, =0.35and e = 4, where
time is measured in days

? Alternative biomarker form specified in text, by; =15,b;,, =25,b,; =0.3,b,,, =035and e = 4,
where time is measured in days

? Noise standard deviation increases and then decreases with growing signal: e = [4, -0.26, 2.8, 0.5]

4 Noise standard deviation increases and then decreases with growing signal: e = [4,-0.22, 10, 0.25]

Table 4.1: Performance of variations of mixed models in scenarios constructed for
exploring sensitivities to parametric assumptions

The estimated relative bias (%) and relative standard deviation (%) for each MDRI
estimation procedure are shown, for variations of the non-linear mixed models for the
biomarker readings. Scenarios capture different underlying biomarker forms, and changes
in the noise structure and the correlations between signal ‘random effects’ (relative to the
base case). ~ Scenario corresponds to base case.
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RELATIVE BIAS (%)
Number of subjects
5! -00 05 -01 o05{-03 o1 -02| 00 -01 -00| 04 -09 07 09| 03 18
10 -06 -00 -08 -01f{-07 -07 -07| -06 -08 -08 -02 -02 01 03] -05 11
20 -03 01 -05 00| -04 -05 -05|-03 -05 -05( 00 -00 03 05| -06 09
50" -04 01 -07 -01|-07 -07 -07| -04 -07 -09|-01 -01 03 04} -07 09
100 -04 01 -07 -00f-06 -07 -07| -04 -06 -09|-00 -00 03 04| -03 12
150 -03 02 -05 01| -05 -05 -06| -03 -05 -08| 01 01 04 06| -02 13
Mean HIV-negative
visitgap2
1 week -04 01 -06 00| -07 -06 -05| -04 -06 -06| O1 00 05 05| -02 15
2 weeks -05 -00 -07 01| -08 -07 -06|-05 -07 -08(-01 -01 03 13] 02 16
1 month -05 -00 -06 01| -07 -06 -05| -05 -06 -06(-00 -00 03 06| 01 18
3 months” -04 o1 -07 -01f -07 -07 -07| -04 -07 -09|-01 -01 03 04| -07 09
6 months 04 01 -15 -09| -08 -06 -06| -04 -15 16| -05 -10 02 -24| -05 -02
Mean HIV-positive
visitgapz
1 week 24 01 27 02| -26 -27 27| -24 -26 -26| 02 02 05 00] -01 12
2 weeks -13 01 -15 01| -15 -15 -15| -13 -15 -15| 01 01 04 -00f -08 06
1 month” -04 01 -07 -01|-07 -07 -07| -04 -07 -09|-01 -01 03 04} -07 09
3 months 10 11 01 02| 01 00 -00/ 10 01 04| -02 18 04 -18| -15 09
6 months’ 11 11 -35 -35( 01 04 02| 11 -35 141| -32 -245 -01 -103| -88 -194
RELATIVE STANDARD
DEVIATION (%)
Number of subjects
5! 141 141 144 144|148 141 146|141 144 149|145 139 146 146|138 139
10 97 98 98 99 98 98 98| 97 98 102|100 99 100 99| 90 89
20 70 70 71 71 71 71 71 70 71 75| 71 72 72 721 73 72
50" 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
100 29 30 30 30| 30 30 30| 29 30 31| 30 30 31 301 29 29
150 25 25 26 26| 26 26 26| 25 26 27| 26 26 26 26| 24 24
Mean HIV-negative
visitgap2
1 week 40 40 41 41| 41 41 40| 40 41 41| 41 41 42 411 39 38
2 weeks 41 41 41 42 41 41 41| 41 41 42| 42 42 43 41| 42 41
1 month 40 41 41 42| 41 41 41| 40 41 42| 42 42 43 41| 39 39
3 months~ 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
6 months 53 53 56 56| 56 55 54| 53 56 49| 56 63 54 64| 50 51
Mean HIV-positive
visitgapZ
1 week 42 43 42 43| 42 42 42| 42 42 42| 43 43 43 431 42 42
2 weeks 42 43 43 43| 43 43 43| 42 43 44| 44 44 44 44| 41 41
1 month” 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
3 months 44 44 49 48| 49 50 49| 44 49 61| 49 71 50 61| 51 44
6 months’ 44 44 61 61| 62 69 74| 44 61 48[222 377 65 88 136 161

! Convergence issues arose for Methods 5-7, which were run on only 250 datasets and 80% of runs

produced outputs

2 The standard deviation for visit gaps (0ygn and 0,,4p) was 10% of the mean
3 Convergence issues were encountered for Methods 15 and 16; and Methods 12 and 14 utilised
unrealistic model forms given the sparseness of data

Table 4.2: Performance of the mean duration of recent infection estimation methods
in scenarios capturing various study designs
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI
estimation procedures are shown. Scenarios capture varying numbers of (HIV-positive)
subjects and average visit gaps, while HIV-negative and HIV-positive.
" Scenario corresponds to base case.
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RELATIVE BIAS (%)
Missed visit
probability"
0% and 0% -04 01 -07 01| -07 -07 -07|-04 -07 -09| -01 -01 03 04| -07 09
50% and 0% 15 19 -02 03| -05 -05 -05| 15 -02 11| 22 22 25 19| 21 26
75% and 0% 110 113 79 83| -07 -06 -06|110 79 35| 48 48 47 42| 77 72
0% and 50% 11 13 06 09| -02 -04 -05 11 06 -06f-01 -01 02 03] 05 14
0% and 83% 133 137 142 148 06 -02 -06| 135 145 -02f 00 -02 04 06| -13 -05
50% and 50% 29 31 13 15[ -01 -02 -03| 29 13 07| 19 18 24 20| 15 26
50% and 83% 124 128 132 137] 03 -03 -06| 125 134 -16 14 12 22 18] 05 27
Loss to follow—up2
0% withinZyears* -04 01 -07 01| -07 -07 -07|-04 -07 -09| -01 -01 03 04| -07 09
100% within 2 years 20 -00 -22 -02| -07 07 07| -06 -08 -10|-01 -02 02 08| 00 11
100% within 1 5 years 26 00 -29 01| -07 -07 -06|-05 -07 -19|-01 -01 03 11/ -00 08
100% withinlyear3 41 01 45 01| -06 -02 00| -07 -09 -29| -00 -00 01 18/ 10 13
Infection times
Uniformly distributed” 04 01 -07 -01|-07 07 -07| -04 -07 -09| -01 -01 03 04| -07 09
Test—seekingbehaviour4 78 82 76 81| 76 75 75| 78 76 74| 82 81 86 871 79 96
RELATIVE STANDARD
DEVIATION (%)
Missed visit
probahilityl
0% and 0% 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
50% and 0% 52 52 55 55| 50 51 50| 52 55 51| 51 51 52 52| 50 50
75% and 0% 60 60 64 64| 65 65 65| 60 64 66| 66 66 67 68| 67 66
0% and 50% 44 44 48 48| 49 50 49| 44 48 54| 51 51 51 50| 42 41
0% and 83% 46 46 52 52| 68 70 70| 46 52 84| 72 73 72 72| 66 71
50% and 50% 54 54 58 58| 58 58 58| 54 58 63| 60 60 60 60| 55 54
50% and 83% 56 56 63 63| 76 76 76| 56 63 97| 80 80 79 80| 63 59
Loss to follc)w-upz
0% within 2 years 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
100% within 2 years 50 50 51 52 50 50 50| 49 50 52| 51 51 52 51| 49 48
100% within 1 5 years 49 51 50 52| 50 49 49| 49 49 51| 51 51 52 51| 49 48
IOO%withinlyear3 54 58 55 59| 56 56 57| 55 56 57| 58 58 58 57| 54 55
Infection times
Uniformlydistributed* 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
Test—seekingbehaviour4 40 40 40 41] 41 41 41) 40 40 42| 41 41 42 41| 40 39

" Reported as the mean of the population-level distribution for the probability of missing a visit, which has
an absolute standard deviation of 5%, for HIV-negative subjects and HIV-positive subjects in turn

2 Reported as the percentage of subjects lost within the specified maximum follow-up time

3 Methods 2 and 4 require that at least one subject is followed-up until T = 1 year after infection, and
therefore 2% of estimations could not be completed

* Infection times occur a third of the infection interval away from the first HIV-positive visit on average,
and 80% of infection times occur closer to the first HIV-positive visit than the last HIV-negative visit

Table 4.3: Performance of the mean duration of recent infection estimation methods
in scenarios capturing various non-ideal features of subject visits
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI
estimation procedures are shown. Scenarios capture varying levels of missed visits and
loss to follow-up, and non-uniformity of infection times.
" Scenario corresponds to base case.



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects

131

e § 5e ¢ £F
v /5 § §/5 5 £/3 9 % J/F &
& 5 s = /5 § & ) &5 /8 &8 2 0§ T
g o & FE S S f33335/855
5 5 5 F /s & /5 § S5 /7 7 F F/= =
~ ~ = = & ~ ~ 3 3 z ~ =i i 5 1 1
& & & A/5 085 %5 /5 5 /5§ § § §/F
& & & & & o & & & £ s 5§ S5 5§ /& &
s £ £ £ /5 5 5 /5 5 & |58 & & & /F F
S 5 5 S/ g2 22 2 s /8 o 5o ¥ e
~ N o A L} o N oo N ~ ~ ~ ~ ~ ~ ~
RELATIVE BIAS (%)
Magnitude of noise’
4 -04 02 -06 00| -06 -06 -06/ -04 -06 -08 01 00 04 05|-05 11
10 -39 02 -45 02| -45 -45 45| -39 45 -47(-01 -02 06 03[-03 10
20 -159 -02 -173 -01] -172 -173 -171| -159 -172 -174| -02 -03 12 -01|-30 -01
Inter-subject
variability’
Base case” -04 o1 -07 -01| -07 -07 -07| -04 -07 -09|-01 -01 03 04|-07 09
Doubled -08 05 -12 02| -11 -18 -21| -08 -12 -06|-01 -00 04 -00|-34 -25
Tripled -14 -00 -18 -03| -25 -33 -46| -14 -18 -05|-08 -08 -03 -10|-63 -53
Underlying biomarker
form
Base case’ 04 01 -07 01| -07 -07 -07| 04 -07 -09|-01 -01 03 04|-07 09
Power function,
no time lag® 2101 09 -116 -04|-115 -114 -114|-101 -115 -118| -04 -04 01 -00|-03 01
Power function,
withlimelag4 -87 -06 -99 01| 99 99 99| 87 99 -100f -00 -01 05 05[-11 -00
RELATIVE STANDARD
DEVIATION (%)
Magnitude of noise’
4 45 45 45 46| 45 45 45| 45 45 47| 46 46 47 46| 47 47
10 44 45 46 45 46 46 45 44 46 48| 45 45 46 46| 43 43
20 55 45 59 46 59 58 57 55 59 60| 46 46 46 47| 69 47
Inter-subject
variability’
Base case” 44 44 45 45| 45 45  44] 44 45 46| 45 45 46 45| 41 41
Doubled 69 68 70 69 71 70 69 69 70 701 70 70 69 71| 61 61
Tripled 76 75 77 76 76 75 72 76 77 76| 78 78 76 79| 76 176
Underlying biomarker
form
Base case” 44 44 45 45| 45 45 44| 44 45 46| 45 45 46 45| 41 41
Power function,
no time lag’ 48 46 51 48 51 51 51| 48 51 53| 47 48 48 49| 43 44
Power function,
with time lag* 43 41 46 42| 46 46 46| 43 46 48| 42 42 43 42| 33 33

the test threshold (or 5%, 12% and 24% of the average range of the signal)
? Described in terms of the standard deviations of signal ‘random effects’, maintaining their correlations

? Alternative biomarker form specified in text, by;=by, =0,by; =03, by, = 0.35and e = 4, where

time is measured in days
4 Alternative biomarker form specified in text, by =15,by, = 25,by; = 0.3, by, =035 and e = 4,

where time is measured in days

! Reported as the (constant) standard deviation of noise, with values representing 10%, 25% and 50% of

Table 4.4: Performance of the mean duration of recent infection estimation methods
in scenarios capturing various features of the underling biomarker dynamics
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI
estimation procedures are shown. Scenarios capture varying magnitudes of measurement
noise, levels of inter-subject variability, and underlying biomarker forms.

* .
Scenario corresponds to base case.
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Single sojourn assumptions. A primary cause of bias in MDRI estimation is the
assumption of a single sojourn in the ‘recent’ infection state, as contained in all single-
exit and survival analysis methods (Methods 1 and 3, 5-10). The underestimation of the
MDRI became more pronounced as measurement noise was increased and HIV-positive
visit gaps were reduced — both of these features made it more likely that an (increasingly)
‘early’ upward fluctuation above the test threshold would be observed, artificially
clipping a subject’s sojourn in the ‘recent’ state. In principle, the level of bias (for a given
visit schedule) would depend on both the magnitude (and structure) of noise and the
growth in the signal (such as captured by its slope), in a vicinity of the threshold (namely,
over the time when noise may cause biomarker readings to fluctuate across the threshold).
For example, when data was generated using the alternative biomarker form, the
relatively small gradient of the signal at the test threshold resulted in greater
underestimation of the MDRI by the single sojourn approaches, even though the
magnitude of measurement noise around the threshold remained similar to that for the
base case scenario. Given the limitations of single sojourn approaches, the interpretations

below mainly focus on the results from the remaining estimation approaches.

Variability of estimates. The various methods of estimation exhibited similar variability
(relative standard deviations) in a given context (neglecting the most extreme contexts).
Results indicate that the standard deviation of estimates varies approximately inversely
proportionally to the square root of the number of subjects, and proportionally to the
standard deviation of the distribution of individual durations in the ‘recent’ state (see
investigation into inter-subject variability). Larger visit gaps, more frequently missed
visits, increased loss to follow-up, and greater measurement noise all added to the

variability in more nuanced ways.

Loss to follow-up. Increased loss to follow-up would be expected to increase the
variability of estimates, as the biomarker behaviour at later times after infection is
inferred from fewer subjects. In the extreme case that no subjects are followed until T
after (an estimated) infection, only approaches that extrapolate beyond the latest data
points can be used. When there is drop-out, those subjects that are observed to transition
out of the ‘recent’ state would over-represent the shorter sojourns, and therefore biases

arise when using methods that naively average over data (see Methods 1 and 3).

Parametric assumptions for biomarker mixed models. When considering the

parametric assumptions used in the mixed models, Signal 3 produced large biases and



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects 133

was removed early on in the benchmarking exercise (Table 4.1). This bias was anticipated
as Signal 3 is concave downwards and does not allow for a period of little growth in the
biomarker signal immediately after infection. Models using Signals 1 and 2 (Methods 15
and 16), allowing for varying noise magnitude and non-zero correlations between random
effects, were retained for the remainder of the investigation. Signal 1 exactly matched the
data generation process (up to transformations of parameters), although this ideal
alignment of assumptions with reality would not occur in practice. When analysing any
given dataset, knowledge of the underlying process, plots of the data, and statistical
model fitting diagnostic tools would be used to select a reasonable parametric form. A
comparison of the results for Signal 1 and 2 suggests that, while the true underlying form
would never be known, similar inferences can be made even when fitting the ‘wrong’
parametric model by choosing a form is that reasonably aligned with the data and
sufficiently flexible. The model fit (and therefore biases from incorrect parametric

assumptions) depends on factors such as the frequency of visits and magnitude of noise.

Noise structure. Many statistical models assume noise has either a constant standard
deviation (additive noise) or a constant coefficient of variation (proportional noise).
When incorrectly assuming the latter noise structure (or even when correctly assuming it,
while having an incorrect assumption for the biomarker signal), performance of the
estimation approach would be poor — models are forced to describe the data points with
near-zero signal values very well, at the expense of fitting the rest of the data very poorly.
A constant coefficient of variation noise structure was therefore not implemented, after

some preliminary explorations (not shown).

Binomial regression models. The binomial regression models appear to be particularly
stable across scenarios, with performance typically at least on par with that of the mixed
models. While the binomial models were computationally stable and easy to implement,
they do not account for all the data features that are captured by the mixed models —
notably, the subject-level clustering of data points — and also assume that data is missing
completely at random. Results appear to be less sensitive to parametric assumptions, with
all four models (ranging from two-parameter to six-parameter models) providing similar
results (excluding scenarios where data were insufficient to fit certain parametric forms).
Intuitively, many different biomarker dynamics could potentially be summarised into
fewer (suitably flexible) forms for Pg(t) — a topic that could now be further investigated

using this simulation platform.
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Large visit gaps. All methods of estimation were inaccurate when infection intervals
were very large (compared to the duration of ‘recent’ infection). The number of (HIV-
positive) data points captured in any dataset could be reduced by either a higher
probability of missed visits, or larger intended visit gaps. Methods employing subject-
specific biomarker interpolation were vulnerable to high missed visit probabilities (some
subjects then had very large realised visit gaps and their times in the ‘recent’ state were
particularly poorly estimated). On the other hand, population-level model fitting became
challenging and inaccurate with large scheduled visit gaps for all subjects (as there was
then no data to describe the dynamic over certain intervals of post-infection time after

anchoring infection times).

Infection times. Unknown infection times pose a fundamental obstacle to MDRI
estimation as substantial bias can be introduced when the assumptions about infection
times are violated. All methods of estimation introduced a bias (in absolute terms) equal
to the difference between the mean infection time in reality and the mean infection time
under model assumptions (namely uniformly distributed infection times within infection

intervals).

Correlation between estimates. Lastly, the MDRI estimates produced by any two
estimation procedures in a chosen scenario were highly correlated (Pearson correlation
coefficients averaged around 0.95 after excluding single-exit estimation methods and
contexts with extremely sparse data). This suggests that (the unbiased) estimation
procedures should give similar results when applied to any given dataset (keeping in mind
the similarities in precision), and limited benefit can be gained from averaging the results

of multiple methods.

4.1.4 Discussion

For tests for recent infection to be of utility for cross-sectional incidence surveillance,
tests must first be characterised — that is, test properties of relevance for incidence
estimation must be measured. Through the development of a theoretical framework for
incidence inference [29], two generally-defined test properties have emerged: the mean
duration of recent infection (MDRI), which is the average time ‘recently’ infected and

alive while infected for less than some time cut-off T, and the false-recent rate (FRR),
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which is the probability that a person who is infected for a time larger than T will produce
a ‘recent’ result.”’ While the FRR in principle captures a mixture of test dynamics and
epidemiological and demographic history (and is therefore expected to be context-
dependent), the MDRI captures (primarily) the early biological dynamics of the test for
recent infection (and should therefore be stable across contexts, which is critical to the
overarching concept that a once-calibrated test should be useful if transferred to other

contexts).

Estimation of the MDRI has traditionally relied on longitudinal data, consisting of test
results observed over time after some (estimable) infection times for a sample of subjects.
Through an extensive benchmarking exercise using simulated data, the accuracy and
precision of various methods for estimating the MDRI from such longitudinal data were
assessed in a number of modelled scenarios capturing what may be encountered in
practice. In this exercise, incidence assays, or tests for recent infection based on single
biomarkers, were considered, where measurements below a chosen test threshold indicate
‘recent’ infection. The methods of estimation therefore model either the biomarker
measurements or the ‘recent’ and ‘non-recent’ classifications, as functions of time since

infection.

Results highlight the danger of using estimation procedures that assume single continuous
sojourns in the state of ‘recent’ infection, such as conventional survival analysis
approaches. Simplistic approaches, such as the interpolation of biomarker readings (while
allowing for multiple transitions between the ‘recent’ and ‘non-recent’ states) are useful
for obtaining ‘quick and dirty’ estimates provided the times between visits are sufficiently

small.

Formal regression approaches were generally the strongest. While non-linear mixed
models for the biomarker readings most comprehensively captured the expected real-
world features of the data (such as subject-specific evolutions of the biomarker), they
were computationally demanding and required a higher level of analytical sophistication.
Furthermore, when analysing any given dataset, knowledge of the biomarker, plots of the
data, and model fit diagnostics should be carefully used to inform parametric

assumptions, at the risk of large bias occurring otherwise. While not accounting for the

3!The general framework for inferring incidence and defining test characteristics of relevance for
incidence estimation is presented in Chapter 2.
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subject-level clustering of the data, the linear binomial regression models proved
particularly useful — they provided accurate results, were potentially less sensitive to
parametric assumptions, were computationally stable, and could be fitted using standard
statistical software. The benefits of including random effects or changing to non-linear
model forms could be considered, although results suggest current implementations of
binomial regression perform well. However, these extensions may become important
when operating in scenarios outside of those considered. For example, if study drop-out
depends on the observed biomarker readings (that is, data is missing at random) over the
relevant post-infection timescale set by T, then random effects could be included to
control for bias that may otherwise arise. Other potential sensitivities, for example, to

non-normal distributions of random effects, could also be explored in more detail.

Uncertainty in infection times, or rather the violation of assumptions about infection
times, poses a particular challenge to obtaining unbiased MDRI estimates. While
computationally demanding, some research groups have formally accounted for this
uncertainty in infection times, by using a marginal likelihood function (integrating out the
infection times) [97, 103], sampling infections times [101], or incorporating prior
distributions for infection times in a Bayesian model fitting [94]. However, assumptions
about the timing of infection are still required (to inform the distributions used). Other
groups have attempted to use the biomarker readings themselves to estimate infection
times [17, 92, 96, 100, 102]. In this exercise, a single, standard diagnostic test, such as an
enzyme immunoassay (EIA), was assumed to be used at all visits, and therefore the
analyst would only know that a subject’s infection (as defined by the diagnostic test)
occurred between the last HIV-negative and first HIV-positive visit. In settings where
various HIV diagnostic tests are used and the testing histories of subjects are documented,
this external data could be used to inform the distributions of infection times.’* For
example, a subject with detectable p24 antigens and undetectable antibodies at a visit

would have been infected within the preceding few weeks [101, 180, 181].

As guidance for MDRI estimation is further developed, the nature of tests for recent
infection that are expected to be used in the future should be kept in mind. For example,
as the field moves towards tests that rely on multiple biomarkers, some methods for

estimating the MDRI (such as those that utilise the dichotomous test classifications)

*>The inference of infection times using diagnostic testing histories is briefly explored in
Section 4.3.
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would be more amenable to this extension than others (such as those that model
biomarker measurements, where many parameters would be needed to describe the
multiple biomarkers and the relationship among them). Also, biomarkers may represent
complex summary metrics of multiple responses, or quantify biological processes that are
not well-understood, and thus approaches for choosing and testing parametric
assumptions may require particular attention. Another nuance worth noting is the
assumption of guaranteed survival until T after infection implicit in most MDRI
estimations. This assumption may often lead to little bias in the MDRI for small values of
T, but, in settings where early mortality is high or the value of T is chosen to be relatively
large (to capture an enduring ‘recent’ state), analyses to estimate the MDRI should

incorporate data on survival.

It is hoped that the results presented here will help inform the design of studies, which are
costly and challenging to conduct. For example, particularly in low HIV incidence
settings, hundreds of HIV-negative subjects need to be followed to obtain just a handful
of subjects who become HIV-positive. While limited resources will always restrict study
design options, useful MDRI estimates can be obtained in a range of realistic scenarios. It
was only in the extreme scenarios of sparse data that all methods of estimation became
problematic. The results of this benchmarking exercise can therefore provide guidance on
how best to direct efforts — for example, by drawing attention to the varying benefits of
increasing the sample size versus increasing the number of visits per subject, or of having
stringent visits times that are the same for all subjects versus allowing for variability

among subjects.

The simulation platform that has been developed can now be used to extend this
benchmarking exercise, for example, to include other hypothetical scenarios, assess future
proposed estimation procedures, or investigate confidence interval coverage. The
simulation approach also holds the promise of extending the use of this environment to
explore other topics related to cross-sectional incidence surveillance, particularly those
that are intractable to being explored analytically — such as the detection of incidence

trends in populations.
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4.2 Redefining Entry into ‘Recent’
Infection for More Accurate Test
Characterisation

An obstacle to accurate estimation of the MDRI is the unobservable infection times of
subjects in the sample, where infection typically refers to detectable infection as defined
by the HIV diagnostic test being used. As highlighted by the results in Section 4.1,
substantial biases can arise when incorrect assumptions are made about subjects’ testing
behaviours. Whether simply using expected infection times in analyses [95, 96, 100, 102]
or formally accounting for their uncertainty [91, 94, 97, 101, 103], assumptions about the
relationship between infection and visit times are inevitably required. Alternatively,
infection times could be estimated from the observed recent infection test biomarker
measurements [17, 92, 96, 100, 102], rather than relying on external assumptions about
the distributions of infection times between visits. However, the extrapolation of
biomarker readings to times earlier than the first HIV-positive visit requires assumptions

or knowledge about the very early dynamics of the biomarker.

An approach for redefining the ‘HIV-negative’, ‘HIV-positive and recently infected’ and
‘HIV-positive and non-recently infected’ states is therefore proposed, and is intended to
reduce the reliance on assumptions about testing behaviour and on extrapolation of
biomarker readings back in time when estimating the MDRI. The concept is demonstrated
using the data simulation platform and estimation methods that have been presented in
Section 4.1. While the approach can be generalised, a test for recent infection based a

single biomarker is considered below.

The approach entails redefining the empirically observed ‘HIV-positive’ state by
introducing a lower ‘diagnostic’ threshold on the dynamic of the biomarker for recent
infection. In a cross-sectional survey, a subject who is classified as infected by the HIV
diagnostic test (which may be, for example, a standard enzyme immunoassay or Western
blot) must also return a recent infection biomarker measurement above this diagnostic
threshold to be classified as ‘HIV-positive’ for purposes of estimating incidence.
Effectively, an artificially less-sensitive HIV diagnostic algorithm is created. When
estimating the MDRI from longitudinal data, benefits are gained if ‘infection’ times,

defined consistently with the diagnostic algorithm described, can be more accurately
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modelled. As illustrated in Figure 4.3, a subject is now ‘HIV-positive and recently
infected” when the biomarker measurement is between some lower threshold Y; (acting as
a diagnostic threshold) and upper threshold Y}, (distinguishing ‘recent’ from ‘non-recent’
infection as before), and the MDRI summarises the average time that this occurs (within

time T of entering the ‘HIV-positive’ state).

A) Conventional definition
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Figure 4.3: Conventional and alternative definitions of the ‘HIV-negative’, ‘HIV-
positive and recently infected’ and ‘HIV-positive and non-recently infected’ states
The three states of relevance for incidence estimation, namely the ‘HIV-negative’, ‘HIV-
positive and recently infected’ and ‘HIV-positive and non-recently infected’ states, as
defined by the HIV diagnostic test and the biomarker for recent infection, are shown.
In A), which illustrates the conventional definition used, a subject is “HIV-positive’ if
diagnosed as infected by the HIV diagnostic test, and then ‘recently’ infected if the
biomarker for recent infection is below a threshold Y. In B), which illustrates the
alternative definition of states proposed, a subject is ‘HIV-positive’ if diagnosed as
infected by the HIV diagnostic test and the biomarker for recent infection is above a
threshold Y;, and is then ‘recently’ infected if the biomarker is between Y; and Yy;.
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The simulation platform described in Section 4.1 was used to generate datasets, for
estimation of the MDRI using both the conventional and alternative definitions of ‘HIV-
positive and recently infected’. Visits times for subjects were generated as in the base
case scenario, and the distribution of infection times between HIV-negative and HIV-
positive visits (all defined according to some standard HIV diagnostic test) was tuned to
create three scenarios which capture: (i) test-neutral behaviour where infection times were
uniformly distributed in the infection interval (@i,r = f iy = 1), (ii) test-seeking
behaviour where infection times were closer to the first HIV-positive visits on average
(@ing =3, Bing = 1.5), and (iii) test-deferring behaviour where infection times were
closer to the last HIV-negative visits on average (aj,r = 1.5, Bins = 3 ). In all three
scenarios, biomarker measurements were generated from the base case biomarker model,
using parameters that produced a slowly evolving signal and little inter-subject variability
(4p=[100,250,2.7], the standard deviations of the height, scale and shape random effects
were 5, 5 and 0.5 respectively, there was no correlation between random effects, and

measurement noise had a constant standard deviation of 2 biomarker units).

The MDRI was estimated by linear interpolation of biomarker readings, as described in
Section 4.1.2 (Method 2). The average time a biomarker is between two thresholds ¥; and
Yy can be expressed as the difference between (i) the average time the biomarker is
below Yy, and (ii) the average time the biomarker is below Y;. Therefore, conveniently,
no modification of the estimation method was required, although it outputs an estimate of
the average time that a biomarker is below a specified threshold (rather than between two
thresholds). To estimate the MDRI under the conventional definition of states, the
estimation method was applied using a threshold of Y; = 60. To estimate the MDRI
under the alternative definition of states, the estimation method was then also applied
using a threshold of ¥, = 10 and the difference between the results for ¥j; and Y, taken.
By design, the ‘recently’ infected state persists for less than a couple of years, and

therefore T was chosen to be large enough for the MDRI to capture all ‘recent’ results.

Results from estimating the MDRI, from the 1 000 datasets generated for each of the
three scenarios, are shown in Figure 4.4. Bias in estimation of the MDRI was reduced by
moving from the conventionally-defined MDRI (biomarker readings below Y, indicate
‘recent’ infection) to the alternatively-defined MDRI (readings between Y; and Yy
indicate ‘recent’ infection). For the alternatively-defined MDRI, there was little bias

because the vast majority of subjects (82%) had readings below Y; at their first HIV-
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positive visits (where, for purposes of referring to the data, last HIV-negative and first
HIV-positive visits still relate the standard HIV diagnostic test). For these subjects, the
‘infection’ times now of interest (that is, when biomarkers exceeded Y;) were estimated
by interpolating between observed biomarker measurements (which were one month
apart). In other words, for the vast majority of subjects in the sample, no assumptions
were made about when infections became detectable by the HIV diagnostic test (in the
three month intervals between the last HIV-negative and first HIV-positive visits) nor
was there any extrapolation of biomarker readings to times earlier than first HIV-positive
visits. These assumption and extrapolations were unavoidable in estimation of the

conventionally-defined MDRI.

A) Conventional definition B) Alternative definition
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Figure 4.4: Box-and-whisker plots of the mean duration of recent infection point
estimates, using conventional and alternative definitions of the ‘HIV-positive and
recently infected’ state, in scenarios capturing different testing behaviours
Box-and-whisker plots summarise the 1 000 point estimates for the MDRI, 0+ (days), in
test-neutral, test-seeking and test-deferring scenarios, where the MDRI was estimated
using each of two definitions for the ‘HIV-positive and recently infected’ state. The
MDRI was estimated using linear interpolation (T = 2 years). In A), a biomarker reading
below Y; = 60 indicates ‘recent’ infection (conventional definition), while in B), a
biomarker reading between Y; = 10 and Y; = 60 indicates ‘recent’ infection (alternative
definition). For each scenario, the box and dividing line indicate the central 50% and
median of estimates respectively, and whiskers and circles capture remaining data points
and outliers respectively (outliers are more than 1.5 times the interquartile range away
from the central box). The vertical black line indicates the true MDRI.



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects 142

The definitions of the MDRI and FRR are now anchored by an ‘infection’ time that
captures when a subject’s biomarker for recent infection crosses above the threshold Y;.
This is familiar in design — previously, the infection time captured when some viral or
host response (that grows after HIV transmission) crossed above some ‘detectability’
threshold of an HIV diagnostic test (for example, when seroconversion occurs if
considering an antibody-based test). The differences are that a biomarker for recent
infection produces a signal that will more slowly evolve and has a more useful dynamic
range, compared to that of a diagnostic test, and the ‘diagnostic’ or ‘detectability’

threshold is set higher than necessary to detect the virus or an immune response.

By creating a less-sensitive HIV diagnostic algorithm, a time lag is introduced to
incidence estimation as subjects who are infected in the weeks preceding a surveillance
survey (and therefore return biomarker measurements below Y;) would not contribute to
the measured incidence. However, the weighting of incidence that is measured is already
stretched over several months prior to a study, and therefore any blurring or shifting of
this weighting over a few weeks (for suitable choices of Y;) would not be meaningful.
Also, while it is a fine detail that relates to any definition of ‘infection’, it is possible that
a subject can fluctuate in and out of the ‘HIV-positive’ state for some short period
(although this is unlikely to be observed in practice given reasonable visit gaps), leading

to some negligible blurring of the weighting function.*

By introducing the lower threshold Y;, there is a trade-off between increased accuracy
and decreased precision of incidence estimation. As the discussion above highlights,
MDRI estimates become less prone to bias, and will therefore bias incidence estimates
less. However, the state of ‘recent’ infection becomes more transient, and therefore the
variance of incidence estimates increases (as it becomes more difficult to observe subjects
in this state). This gain in accuracy and loss in precision would grow as the threshold Y; is

increased, and therefore a suitable balance between these would need to be found.

3Section 2.2.1 provides some discussion about the relationship between the weighting function for
past incidence and diagnostic sensitivity. Subtleties around the detection of HIV are noted in
passing here merely for completeness, but the impact of these is considered to be negligible for
the analyses presented.
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The potential of this approach would also depend on the particular dynamics of the
biomarker for recent infection and subjects’ visit gaps. Frequent testing is not feasible for
the large numbers of HIV-negative subjects enrolled in a prospective study, and therefore
frequent follow-up is typically initiated only after a subject presents as HIV-positive. To
restrict bias in MDRI estimation, namely by reducing the reliance on assumptions about
(standard diagnostic) infection times and on extrapolation of biomarker readings, the
threshold Y;, should be large enough for subjects’ biomarker measurements to have not
evolved far beyond it, preferably still be well below it, at their first HIV-positive visits. It
should also be large enough to lie above any early noisy biomarker dynamics, so that the
evolution of the biomarker in its vicinity can be confidently modelled from the data. All
of this needs to be achieved while keeping the value of Y; small enough to obtain a
suitably enduring state of ‘recent’ infection (for an appropriate choice of the upper

threshold Yy, for distinguishing between ‘recent’ and ‘non-recent’ infections).

In principle, the framework for cross-sectional incidence estimation allows for arbitrary
definitions of the ‘HIV-negative’, ‘HIV-positive and recently infected’ and ‘HIV-positive
and non-recently infected’ states (although not all definitions will provide useful
weightings of past incidence). Accurate incidence estimation then requires only that tests
for recent infection are consistently characterised and applied in cross-sectional incidence
studies. This illustrative analysis shows how alternative definitions of HIV diagnostic
states and classifications of infections as ‘recent’ or ‘non-recent’ could be considered, in
an attempt to reduce artefacts in test characterisations arising from modelling unknown
infection times. As with estimating any parameter, there is unavoidable uncertainty in
both MDRI and incidence estimates, and therefore any gains in accuracy should be
viewed in the light of this sampling variability. While the dynamics of biomarkers
developed in the future may make this approach more appealing, current experiences with

data suggest there may be limited benefit to this strategy.
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4.3 Estimation of Infection Times
from Diagnostic Testing
Histories

Throughout this thesis, ‘infection’ has consistently referred to ‘detectable infection’,
which is largely sufficient for the needs at hand. In this section, some finer points about
estimating infection times are considered, and this warrants a review of the applicable
terminology. The time of exposure refers to the time of HIV acquisition or transmission
(for example, during a sexual contact), while the time of infection or test conversion
refers to when HIV becomes detectable by some HIV diagnostic test (which is typically
only weeks after exposure). While subjects can only be tested for detectable infection in a
study, results are dependent on the particular diagnostic test used, and therefore exposure

provides a useful general reference event for analytical purposes.

In a prospective study intended to generate longitudinal data for estimation of the MDRI,
a subject’s exact time of infection is unknown, but constrained to lie between the
subject’s last HIV-negative visit and first HIV-positive visit. When HIV exposures do not
influence the visit times of subjects, it is reasonable to assume that infection is equally
likely to have occurred at any time in this interval. This leads to uniform distributions or
flat priors for the infection times [91, 94, 97, 101, 103], often summarised into expected
infection times at the midpoints of intervals between visits [95, 96, 100, 102]. Implicit in
this approach is the assumption that the same HIV diagnostic test is used at all visits, and
that no staging information is produced by the diagnostic test (that would further
influence the analyst’s view on when a subject was infected). Furthermore, by using the
estimated MDRI for incidence estimation, it is also assumed that the same diagnostic test
(or one with the same sensitivity) is used in the incidence survey. This section aims to
consider briefly these important analytical subtleties, which are overlooked in the
literature. The estimation of exposure or infection times from subjects’ diagnostic testing
histories is briefly explored, and the need for consistent use of diagnostic rules for both

test characterisation and surveillance application is highlighted.

A large number of HIV diagnostic tests have been developed, each based on the detection
of specific components of the virus itself or specific host antibody responses (or both)

[182]. Tests may also differ by type of specimen analysed (such as plasma, dried blood
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spots or saliva) and whether they need to be performed in a laboratory or can be
completed on site (‘rapid tests’). Classes of diagnostic tests that detect antibodies include
enzyme immunoassays (EIAs) — sometimes called enzyme-linked immunosorbent assays
(ELISAs), Western blot and immunofluorescence assays (IFAs); while those that measure
the virus itself include assays to detect p24 antigens and nucleic-based assays to detect
HIV ribonucleic acid (RNA). Also, to reduce diagnostic misclassification, algorithms of
HIV diagnostic tests are often used — for example, two EIAs may be performed, and if at

least one detects HIV infection, a confirmatory Western blot test is conducted.

Despite the large variety of HIV diagnostics that are available and in use, in principle, the
behaviour of any given HIV diagnostic test (or component of a diagnostic algorithm) that
is applied to a subject who has acquired HIV can be summarised into the test sensitivity
as a function of time since exposure. The sensitivity of a test is the probability that it
correctly detects HIV, and is shown for a hypothetical test in Figure 4.5 (part A). It is
possible that this function is not monotonically increasing — for example, p24 antigens
may decline to undetectable levels after an initial period of detectability. When a subject
(who acquires HIV at some time, during the study) is tested for HIV at a study visit, the
result of the diagnostic test can be combined with the test’s sensitivity to infer likely HIV

exposure times, as shown in Figure 4.5 (part B).

Expressing this formally, the likelihood of observing the diagnostic test result d at
calendar time t;.,; (choosing an arbitrary reference time 0), as a function of the subject’s

HIV exposure time u, is

L(dlu) = (P+(ttest - u))d(l - P+(ttest - u))l_d: (4'10)

where d equals 1 if the diagnostic result is HIV-positive and 0 if it is H[V-negative, and
P, (s) is the sensitivity of the test at time s after HIV exposure. This concept can be
extended to account for the subject’s full diagnostic testing history. Various HIV
diagnostic tests (or algorithms) may be applied at each visit, and all visits times and
individual diagnostic test results then collectively used to infer the subject’s exposure

time, as outlined below.
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Figure 4.5: Sensitivity of a hypothetical HIV diagnostic test and implied likelihood
function for a subject’s HIV exposure time

In A), the sensitivity of a hypothetical HIV diagnostic test is shown as function of time
since HIV exposure, where the test’s sensitivity is its probability of correctly detecting
HIV. In B), the likelihood function for a subject’s exposure time is shown. This provides
the probability of observing a result for the diagnostic test, which is applied at some
time .4, as a function of the HIV exposure time, and depends on the test’s sensitivity.
The solid and dashed curves are the likelihood functions when the observed diagnostic
results are HIV-positive and HIV-negative respectively.

To simplify some of the interpretations that follow, it is now assumed that a subject has a
single time of entering the infected state (defined by some diagnostic test) and remains in
the state thereafter (this view can be relaxed, as captured by the generality of
Equation (4.10)). The sensitivity function is now viewed as the cumulative distribution
function for the time from exposure to (detection of) infection. The calendar time of the

subject’s jt" visit is denoted by tj and the result of diagnostic test k at that visit

(if available) by d; ., which equals 1 if the result is HIV-positive and 0 if HIV-negative
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(J=12,..njand k = 1,2, ...,ny). First considering a particular diagnostic test K, the
likelihood of observing its results at all visits, as a function of exposure time u, can be

derived:

L({djk}jlu) = Pr+(tpos — ) = Pis(tneg — 1), (4.11)
where Py, (s) is the sensitivity of diagnostic test K at time s after exposure, tp,, is the
earliest visit time where the diagnostic test produced an HIV-positive result, and ¢, is
the latest visit time where the diagnostic test produced an HIV-negative result. If there are
no negative test results, t,,4 can be set to negative infinity (PK+(tneg - u) = 0) and if

there are no positive test results, t,,s can be set to positive infinity (PK+(tpos - u) = 1).

Assuming independence of diagnostic tests, the overall likelihood function for the time of

HIV exposure u is
ng

L@ = L({dyele) = | [0, (4.12)

K=1

where L({d]-,K}j |u) is given by Equation (4.11).

Examples of obtaining this net likelihood function from a subject’s testing history are
provided in Figure 4.6. In general, the lower bound for feasible exposure times is driven
by the most-sensitive of the diagnostic tests that returned HIV-negative results, at the
latest visit where any HIV-negative result was produced. Conversely, the upper bound for
feasible exposure times is driven by the least-sensitive of the diagnostic tests that returned

HIV-positive results, at the earliest visit where any HIV-positive result was produced.

A limitation of the framework presented above is the assumption of independence of HIV
diagnostic tests. For example, it is conceivable that the virus and host response matures
rapidly in some subjects (resulting in relatively early detection of HIV by a number of
diagnostic tests) and slowly in other subjects (resulting in relatively late detection by
multiple tests). A completely general framework would capture a multivariate distribution
for the times from exposure to (detection of) infection by various HIV diagnostic tests,
and a similar likelihood approach could be used to infer likely exposure times. However,
the practical use of such a framework would rely on (currently unrealistic) inputs to
describe the relationship among multiple tests. The analysis presented above may already
be challenging to implement without further simplifications (discussed below), as it relies

on full specifications of tests’ sensitivity functions.



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects 148

A) Diagnostic sensitivity
1 -
0.75+
0.5F
0.25+
0

Test sensitivity

Time since HIV exposure

S g - \ !

=£ 075 ‘ :

Ses ‘

=53 05 \ ‘

3~ y !

Xg 025 \ ‘

1 o 0 N |

e e

EIA- ;
WB— Time of HIV exposure, u
RNA+

I o o - -,
6 & ! 3 !
T = 075 [~ | |
ses 051 | |
HE |
£8 o2sf i |
D o |
0 | | |
EIA- EIA+
EIA- WB- RNA+

Time of HIV exposure, u
D) Likelihood function for exposure time, diagnostic history 111

1 t t
52 I [
-8.; 0.75 | |
o= | |
£33 0.5 | |
£38 02 | i
_|q_) 0 | |

|

EIA- ElA+

Time of HIV exposure, u
Figure 4.6: Likelihood functions for HIV exposure times for a number of
hypothetical diagnostic testing histories
Three hypothetical diagnostic testing histories and resulting likelihood functions for a
subject’s HIV exposure time are provided. In A), presumed sensitivities of three
diagnostic tests are shown as a function of time since exposure. In order of decreasing
sensitivity, the three tests are an RNA-detection assay (dashed line), an EIA (solid line)
and Western blot (dotted line). Possible testing histories for a subject are captured in
B) to D). In each figure, the (dashed, solid and dotted) lines capture the likelihood
functions for the exposure time based on the individual diagnostic tests, and these are
then used to obtain the overall likelihood function shown by the curve with shaded area
(scaled to have a height of one). Diagnostic test results and the times of visits are captured
on the x-axis. In B), the subject has a single visit with both HIV-positive and HIV-
negative results; in C), the subject has multiple test dates and diagnostic test results; and
in D), a single diagnostic test is used and only the last HIV-negative and first HIV-
positive visits are shown.
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The discussion above has been framed in terms of inferring a subject’s HIV exposure
time from the testing history. In practice, for unbiased incidence estimation, the MDRI
should be estimated using a definition of infection that is consistent with what is
detectable in the incidence surveillance study. For example, if a subject’s HIV status is to
be determined by Western blot in the surveillance survey, then the (estimated) time of
becoming Western blot positive should be used as the infection time when analysing data
to estimate the characteristics of the test for recent infection. The framework presented
above (summarised by Equation (4.12)) can still be used, but now the reference time
needs to be the time of test conversion by the diagnostic algorithm used in the incidence
study, rather than the exposure time. In other words, Pk (s) appearing in Equation (4.11)
should provide the sensitivity of diagnostic test K at time s after test conversion (when
using the test used in the incidence study), and a likelihood function L(w) for the

appropriately-defined test conversion or infection time w would be obtained.

Given typical visit gaps (of a few months) and the much shorter times from exposure to
infection by diagnostic tests, likelihood functions may often plateau (implying non-
unique maximum likelihood estimates of test conversion times). One approach for
interpreting the information contained in the likelihood function is through a posterior
distribution for the test conversion time of the subject. Using a uniform prior distribution
for the test conversion time, its posterior distribution is proportional to the likelihood
function (by Bayes theorem). Analyses for estimating the MDRI could make use of the
posterior expected test conversion time, or formally incorporate the full distribution — for
example, as prior knowledge, for purposes of sampling possible test conversion times, or
for producing a marginal likelihood function for the MDRI model parameters [91, 94, 97,
101, 103].

In the case that the same diagnostic test is used at all visits in the MDRI study (such as in
Part D of Figure 4.6) and in the incidence study, the above analysis recovers a uniform
posterior distribution for the test conversion time in the interval between the last HIV-
negative and first HIV-positive visits. This is the special case encountered in many of the
published analyses [91, 94, 97, 101, 103], although one may expect that more complex
diagnostic testing histories often arise, and therefore efforts should be made to document

these and incorporate them into analyses.

Given sufficient information about the sensitivities of diagnostic tests, a subject’s full

testing history could be used to formally make inferences about the ‘infection’ time. The
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empirical category of ‘infected” will depend on the diagnostic algorithm, and should be
consistent across MDRI estimation and incidence studies. Given that limited knowledge
about the sensitivities of diagnostic tests may be available, simplifications of the
framework presented here may be required. For example, for a diagnostic test which is
expected to have a sensitivity that rapidly climbs from 0 to 1, affer some period of
undetectability of HIV following exposure, the test dynamic could be summarised by the
average time from exposure to (detection of) infection, thus neglecting any inter-subject
variability. Inputs describing these average durations could be obtained from studies that
have assessed diagnostic test performance (for example, see [180, 181, 183-185]). In this
case, all posterior distributions for infection times would be uniform distributions (with

bounds determined by the data and average durations).*

The preceding analysis also highlights that more sensitive diagnostic tests naturally
extend the MDRI for any recent infection test. The trade-off between the added expense
of a more sensitive diagnostic test and more precise incidence estimation from a

(probably only very marginally) larger MDRI would need to be assessed in practice.

*This simplification for estimating the (posterior distribution of the) infection time, using a
subject’s diagnostic testing history, is applied in the analysis presented in Chapter 5.
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Chapter 5

Theory to Practice:
Characterisation of Candidate
Tests for Recent Infection

An important, practical application of the framework and methodology for test
characterisation described in the previous chapters is presented here. Over the last four
years, the Consortium for the Evaluation and Performance of HIV Incidence Assays
(CEPHIA) has established a vast repository of specimens and produced a large volume of
data to characterise, optimise and compare proposed tests for recent infection. The
consortium’s first primary analysis outputs, which describe the behaviours of five
prominent incidence assays, are presented in Section 5.1. The report is a reproduction of a

published journal article [32].%

3 Section 5.1 presents a manuscript that has been published as: ‘Kassanjee R, Pilcher CD,
Keating SM, Facente SN, McKinney E, Price MA, Martin JN, Little S, Hecht FM, Kallas EG,
Welte A, Busch MP, Murphy G, on behalf of the Consortium for the Evaluation and
Performance of HIV Incidence Assays (CEPHIA). Independent assessment of candidate HIV
incidence assays on specimens in the CEPHIA repository. AIDS. 2014; 28(16):2439-2449’. The
manuscript was published under the terms of the Creative Commons License Attribution-Non-
commercial No Derivative 3.0 (CCBY NCND), and therefore no permission was required from
the publishers to reproduce the work. The manuscript was written by RK. GM, AW, CDP and
MPB conceived the study design and sourced funding. RK and AW led the data analysis. CDP,
SNF, SJL, MAP, JNM, EGK and FMH led on specimen acquisition and related data collection.
GM, MPB, SMK and EM led on assay performance and quality, and assay results reporting. All
authors assisted in the interpretation of findings, provided input and suggestions for analysis, and
reviewed the manuscript. Funding for CEPHIA was provided by the Bill and Melinda Gates
Foundation (grant OPP1017716).
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5.1 Independent Assessment of
Candidate HIV Incidence Assays
on Specimens in the
CEPHIA Repository

5.1.1 Introduction

Reliable measurement of HIV incidence (the rate of new infections) is essential for
monitoring the epidemic, assessing interventions and planning studies. Traditionally,
incidence is measured by counting the number of new infections acquired in a cohort of
subjects followed-up over time. However, such longitudinal studies are often costly, time
consuming, and unrepresentative. Therefore, the estimation of incidence from cross-
sectional surveys, using ‘incidence assays’ that distinguish ‘recent’ from ‘non-recent’

infection, has attracted wide interest [9, 10, 12-14].

Cross-sectional surveillance is founded on the heuristic that a high prevalence of ‘recent’
infection indicates a high incidence [7, 15]. However, current incidence assays that
provide a reasonably enduring state of ‘recent’ infection also tend to produce substantial
‘false-recent’ results at large times after infection [9, 10, 12-14, 75-77, 79, 81, 112]. As
methodology matured [11, 16-27, 29, 82, 186], a general theoretical framework was
developed that supports the consistent analysis of ‘false-recent’ results [29].*° However,
there have not been independent assessments of candidate assays, or consensus metrics of

an assay’s utility for incidence estimation.

In 2010, the Bill and Melinda Gates Foundation supported the establishment of the
Consortium for the FEvaluation and Performance of HIV Incidence Assays
(CEPHIA) [47]. Over the last four years, CEPHIA has entered into collaborations and
material transfer agreements to establish a large repository of valuable plasma specimens

with sufficient clinical background data. Test developers can apply for access to a small

3%The derivation of the general incidence inference framework, performed as part of earlier work,
is presented in Chapter 2.
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‘qualification panel’ of specimens, and, if the assay is suitably promising, the assay can

be independently applied (by a CEPHIA laboratory) to a much larger ‘evaluation panel’.

Results are presented below for the first five assays that have successfully passed through
the full evaluation, namely Limiting Antigen-Avidity (LAg) [98], BED [92], Less-
Sensitive or Detuned Vitros [100], Vitros Avidity [100] and BioRad Avidity [187]. In
principle, a test for recent infection can be arbitrarily complex in design [9, 10, 12-14],
and can be optimised by tuning numerous parameters. The present evaluation is of tests
for recent infection which are based on single biomarkers, termed incidence assays,
applied according to developers’ test conditions and interpretive guidelines. Test
optimisation, by the application of alternative thresholds in the interpretation of results,
and using the assays in combination with one another or with supplemental markers (such

as viral load), is ongoing.

Translating survey counts (of HIV-negative, ‘recently’ HIV-positive and ‘non-recently’
HIV-positive subjects) into incidence estimates [29] requires knowledge of two test
properties:

e The mean duration of recent infection (MDRI), which is the average time spent
alive and ‘recently’ infected, while infected for less than some time cut-off
denoted by T

o The false-recent rate (FRR), which is the probability that a randomly chosen

subject, who is infected for longer than T, will produce a ‘recent’ result.

A ‘Target Product Profile’ for tests for recent infection has been developed and attracted
some attention [13, 14, 188], and provides a number of objectives that incidence assays
should meet to be of utility for incidence estimation. To achieve usefully precise
incidence estimates, in real-world household surveys in high incidence settings, an
incidence assay should have a sufficiently enduring MDRI (of around one year) and small
FRR (definitely less than 2%, and ideally zero). Furthermore, for feasible widespread use
of the assay, results should be highly reproducible, and the training, equipment and

sample type requirements should be modest.

In this analysis, each assay’s MDRI and FRR were evaluated. As the behaviour of
incidence assays may vary across subpopulations [75-77, 79, 189], the characteristics of

the incidence assays in various specimen sets were also explored.
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5.1.2 Methods

The CEPHIA specimen repository and the evaluation panel

The CEPHIA repository is housed at Blood System Research Institute (San Francisco;
CA) and currently consists of more than 5000 plasma specimens obtained from over 1200
subjects. The specimens used in this analysis were obtained through collaborations with
blood banks, and clinical research studies enrolling and following subjects over time:
American Red Cross [190]; Blood Centers of the Pacific [191]; South African National
Blood Service [192]; Hemocentro do Sdo Paulo [193]; the University of California, San
Francisco, Options study [194]; San Francisco Men’s Health Study [195]; the San Diego
Primary Infection Cohort [196]; the multi-centre AMPLIAR cohort [197]; the multi-centre
International AIDS Vaccine Initiative (1AVI) African Early Infection Cohort (Protocol C)
[198]; and the University of California, San Francisco, SCOPE study [199].

Two ‘panels’ of specimens were created for the present purpose: a 250-member
‘qualification panel’ for preliminary assessments (see [41] for results); and a 2500-
member ‘evaluation panel’ for the full assessments of assays showing suitable promise,

which forms the basis of this investigation.

The evaluation panel specimens were drawn from 928 subjects and 60% of subjects
contributed multiple specimens over time (these subjects contributed up to 13 specimens
and a median of 3 specimens each). Follow-up after infection ranged from 1 week to
more than 10 years, and the median follow-up time was 3 years (for subjects with

estimable infection dates, as discussed below).
Laboratory procedures and interpretation of assay results

Each of the five assays measures an aspect of an individual’s immune response, with

measurements below some threshold interpreted as indicative of ‘recent’ infection.

BED [92, 166] and LAg [98, 113, 200] (Sedia Biosciences Corporation; Portland; OR)
were developed specifically as incidence assays by the Centers for Disease Control and
Prevention (CDC). The immunoglobulin G (IgG) capture BED enzyme immunoassay
(EIA) measures the proportion of IgG that is specific to HIV, and a normalised optical
density (ODn) below 0.8 indicates ‘recent’ infection. The single-well Limiting Antigen-

Avidity EIA is responsive to the avidity of HIV-1 specific IgG, as it presents marginally
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low concentrations of a multi-subtype recombinant HIV-1 antigen, typically affording
just a single binding site to the multivalent IgG or IgM antibodies. While a ‘recent’/‘non-
recent’ threshold of 1.0 ODn was initially proposed, this was recently revised to 1.5 [200,
201], following a review of the assay in which CEPHIA participated.

Both less-sensitive Vitros (LS-Vitros) and Vitros Avidity [100] are based on the Vitros
ECV/ECiQ Immunodiagnostic System, a chemiluminescence assay that gives a
quantitative measure of HIV antibodies (Ortho-Clinical Diagnostics, Inc.; Rochester;
NY). For LS-Vitros, a reported signal-to-cutoff (S/C) below 20, for a diluted specimen, is
interpreted as a ‘recent’ result. For Vitros Avidity, the ratio of the S/C in an aliquot
treated with a chaotropic agent (guanidine) to that in an aliquot not thus treated yields an
avidity index (Al), and a ‘recent’/‘non-recent’ threshold of 60% is used to classify the

infection.

The BioRad Avidity test [187] is based on a modification of the Genetic Systems HIV-
1/HIV-2 plus O EIA (Bio-Rad Laboratories, Inc.; Hercules; CA), which involves the
testing of each specimen in the presence and absence of a chaotropic agent
(Diethylamine). The ratio of the reactivity of the treated to untreated aliquot produces an

avidity index (Al), with values below 40% indicating ‘recent’ infection.

All assays were applied according to developers’ standard operating procedures and
package inserts [92, 98, 100, 166, 200], and protocols are available on the CEPHIA
project website [47]. Testing was performed independently in CEPHIA laboratories, by
technicians trained by the test developers and blinded to specimen background
information. Three large volume ‘control’ specimens (obtained from blood donations, and
chosen to represent a range of serological responses) were supplied to laboratory
technicians with each panel, for regular confirmation of reproducibility and stability of

assays.
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Data analysis

All data captured within CEPHIA are stored in a (MySQL) relational database.’’
Database queries linked assay results to the background information on subjects and

specimens for data analysis (performed in Matlab R2013b, the MathWorks Inc.).

Test properties were evaluated in specimen sets defined by stratifying on treatment
history, viral load, CD4 cell count, time from infection to specimen draw, and HIV
subtype (based on country, for the 48% of specimens which lack explicit laboratory
subtype confirmation). The performance of assays in ‘elite controllers’ (ECs), broadly
defined as subjects who maintain undetectable or very low HIV viral loads without
antiretroviral therapy (ART), is of particular interest. As the SCOPE study purposefully
recruited ECs, specimens from these subjects were analysed separately. The subjects were
ART-naive (or without ART for at least 6 months), with all off-treatment viral load
measurements (HIV-1 RNA) below 200 copies/ml and at least 50% of these

measurements below 75 copies/ml.

The definitions of the MDRI and FRR rely on the previously mentioned construct of a
post-infection time cut-off T [29]. If T is chosen to be too short, this limits the possible
MDRI and typically raises the FRR. If T is chosen to be too long, it becomes difficult to
obtain sufficient data to characterise the test with sufficient precision over this time post
infection, and the MDRI will also develop variation by time and place (properties
inevitable for the FRR) rather than capture stable biological properties of the test. A cut-

off of T = 2 years was used throughout this analysis.

In practice, the notion of ‘infection’ implicit in the test property definitions refers to
‘detectable infection” — which depends on the particular HIV diagnostic test used in the
incidence study. In this analysis, ‘detectable infection’ was defined as the time of
seroconversion on an HIV viral lysate-based Western blot assay. Based on a methodology
described elsewhere,*® infection dates were estimated for the 56% of subjects who had

recorded dates of last HIV-negative and first HIV-positive tests (not more than 120 days

37 The CEPHIA database is currently administered by David Matten of SACEMA.

¥ Members of CEPHIA have prepared a (currently unpublished) manuscript describing the work
of CEPHIA and outlining the envisioned development pathway for new biomarkers for recent
infection. The framework for estimating infection dates from diagnostic test data, summarised in
the manuscript, is presented in Section 4.3.
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apart) and descriptions of the diagnostic assays used. Average durations of Fiebig stages
[180, 181] were used to estimate times at which subjects seroconverted (corresponding to
entering Fiebig stage 5). Subjects with unambiguous acute retroviral syndrome (ARS)
symptoms onset dates [202-205] between their last HIV-negative and first HIV-positive
test dates, were estimated to seroconvert 17 days after ARS onset (based on the
observation that the incubation period of ARS symptoms is about 14 days [206-209], and

that the time from exposure to Western blot seroconversion averages 31 days [180, 181]).

A number of methods can reasonably be used to estimate the MDRI, each with its own
accuracy, precision and complexity — as explored in a separate, detailed benchmarking
exercise [53].%" In this analysis, binomial regression was applied; this is an approach that
was found to be robust across a number of scenarios explored in the benchmarking
project and has been previously used for MDRI estimation [101]. The model form is
g(Pr(t)) = f(t), where Pg(t) is the probability of testing ‘recent’ at time ¢ after
infection, g is the chosen link function and f(t) contains the model parameters, which
are estimated by a maximum likelihood approach. Results from a four-parameter model
form are presented, where g is the logit link, and f(t) is a cubic polynomial in t
(Model A). Data points more than 1.1 X T post (estimated) infection were discarded
before model fitting (Data Exclusion Rule I), with the aim of achieving the best fit of the
model over [0,T] post-infection, while avoiding diluting the data around the boundary at
T. The sensitivity of results when increasing the data exclusion cut-off to 2 X T (Data
Exclusion Rule II) was also considered. Variation in results was explored when fitting
two other model forms, namely (i) a more restrictive two-parameter model where g is the
log-log link and f(t) is a linear function of In(t) (Model B), and (ii) a flexible seven-
parameter model where g is the logit link and f(t) is a linear combination of the natural
cubic spline basis functions with interior knots occurring every 3 months after infection,

between 0 and T = 2 years after infection (Model C). In all cases, the MDRI, expressed
mathematically as fOT Pr(t) dt, was estimated using the fitted Pg(t) = g~ 1(f(t))

(negligible mortality within T post infection was assumed).

To correctly account for the structure of the data, in the absence of explicit subject-level

clustering in the fitted models, bootstrapping was performed by sampling subjects (not

** The benchmarking of approaches for estimating the MDRI from longitudinal data is presented in
Section 4.1.
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observations) with replacement. The 2.5™ and 97.5™ percentiles of 10 000 MDRI estimate

replicates provided 95% confidence interval (CI) limits [174].

A population-level FRR is inherently dependent on the epidemiological and demographic
history of a study population [29], and so a set of specimens, such as in the CEPHIA
repository, can only be used to estimate the FRR in well-defined subpopulations.
Therefore, specimens from long-infected subjects were identified (specimens drawn at
least T after the subject’s first recorded HIV-positive visit and estimated Western blot
infection time), and the proportion of ‘recently’ infected subjects estimated in each of the
specimen sets described above. To capture subject-level clustering, when a subject
provided more than one result to any FRR estimate, the most frequent classification was
used (few subjects had equal numbers of ‘recent’ and ‘non-recent’ results, and each such
subject contributed half to the aggregate count of subjects with majority ‘recent’

classifications). Exact Clopper-Pearson 95% Cls [210] are provided.
5.1.3  Results

The incidence assay dynamics, excluding specimens from treated subjects and SCOPE
elite controllers, are shown in Figures 5.1 to 5.3. The evolution of assay readings by time
since infection is shown in Figure 5.1. The distribution of results for specimens drawn
more than T = 2 years after infection is shown in Figure 5.2. In Figure 5.3, the proportion
of ‘recent’ results (assay measurements below the ‘recent’/‘non-recent’ threshold) is
plotted by time since infection and stratified by HIV subtype (A1, B, C and D). Note that
(1) there is natural variability in biomarker maturation, leading to a significant number of
subjects reaching the standard ‘recent’/‘non-recent’ threshold more than one year, but
often less than two years, post infection; and (ii) there is significant delay or failure to

achieve maturation to ‘non-recent’ status among specimens of subtypes Al and D.
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Figure 5.1: Spaghetti plots and box-and-whisker plots of incidence assay
measurements observed over time after infection for LAg, BED, LS-Vitros,

Vitros Avidity and BioRad Avidity

Incidence assay measurements are shown as a function of (estimated) time since infection
(years), excluding treated subjects and identified elite controllers, for A) LAg, B) BED,
C) LS-Vitros, D) Vitros Avidity and E) BioRad Avidity (1376 data points from 418
subjects). A spaghetti plot (left) shows subjects’ trajectories, and box-and-whisker plots
(right) show percentiles of measurements in 6-monthly intervals of time post infection
(the central 50% and median of measurements are captured by the box and dividing line
respectively, and whiskers and ‘+’ symbols capture remaining measurements and outliers
respectively; there are 40-450 data points in each group). ‘Recent’/‘non-recent’ thresholds
are shown by horizontal solid lines.
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Figure 5.2: Distribution of incidence assay measurements for specimens from long-
infected subjects for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity

The empirical distribution of incidence assay measurements for specimens drawn more
than T = 2 years after infection, excluding treated subjects and identified elite
controllers, is shown for A) LAg, B) BED, C) LS-Vitros, D) Vitros Avidity and
E) BioRad Avidity (665 data points from 316 subjects). ‘Recent’/non-recent’ thresholds
are shown by vertical solid lines.

" The peak of BioRad Avidity results at 100% is due to a large proportion of (treated and
untreated) aliquots returning the maximum possible S/C on the equipment used.
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Figure 5.3: The proportion of ‘recent’ results stratified by time since infection and
HIV subtype for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity

The proportion of ‘recent’ results (%) as a function of time since infection (years) and
stratifying by HIV subtype (Al, B, C and D), excluding treated subjects and identified
elite controllers, is shown for A) LAg, B) BED, C) LS-Vitros, D) Vitros Avidity and
E) BioRad Avidity. Circles show observed proportions and lines capture 95% confidence
intervals. Specimens are grouped by 6-monthly intervals of time since infection until
2 years, after which all specimens are grouped together (there are 25 to 665 data points
per group, other than for subtype D, which has fewer than 20 points 1-2 years after
infection).
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Table 5.1 provides estimated test properties for the various specimen sets. LAg has an
estimated MDRI of 188 days (95% CI: 165-211), while remaining assays have MDRI
estimates of 285 to 333 days (the CI limits range from 254 to 363 days). Results were
insensitive (less than a 2% change in results) to whether ARS onset dates were used to
adjust estimated infection dates, a change to Data Exclusion Rule II, and the use of
alternative Model C. MDRI estimates increased by 2% to 4% when changing to Model B,
which was the most sensitive to the data exclusion rules (there was a 4% to 10% increase

in estimates when changing to Data Exclusion Rule II).

Excluding treated subjects and SCOPE elite controllers, and analysing all remaining
specimens drawn more than T = 2 years after infection, the measured FRR ranges from
1% (95% CI: 0.3%-3%) for LAg, to 6% to 10% (95% ClIs span 3% to 14%) for the

remaining assays.

When stratifying by time since infection, the varying persistence of ‘recent’
classifications across assays is evident, with LAg exhibiting the leanest tail of persistence

of ‘recent’ infection.

The FRR among elite controller specimens is high for all assays, and averages 25%
(minimum of 13% to a maximum of 48% across assays). The FRR among treated subjects
is even higher, averaging 65% (minimum of 50% to a maximum of 76% across assays).
Further stratifying treated subjects by time from infection to treatment initiation, the FRR
decreases as the time to treatment initiation increases: for early treatment initiation
(within 6 months of infection) the average FRR is 84% (64% to 93%), while for later

treatment initiation (more than 6 months after infection) it is 41% (27% to 57%).

The FRR for subjects with low viral loads, here defined as below 75 copies/ml, is high,
averaging 55% (41% to 69%). This is consistent with results above, as 92% of this
specimen set is made up of specimens from the identified elite controllers and treated
subjects (and 94% of specimens from SCOPE elite controllers and treated subjects have a

low viral load).

Lastly, the FRR among subjects with low CD4 cell counts, namely less than 200 cells/pl
and acting as a proxy for AIDS identification, was relatively low, averaging 2% (0% to
4%). Further stratifying this group by CD4 cell count (not shown) did not reveal any

patterns.
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Table 5.2 lists MDRI and FRR estimates by subtype. The most significant pairwise
differences in the MDRIs were between subtype Al and any other, on the Vitros
platform. With one exception, notably small p-values for subtype pairwise differences in
the FRRs involve A1l or D and a non-A1l, non-D subtype, dominated by LS-Vitros, Vitros
Avidity and BioRad Avidity results. While these initial results highlight potential subtype
differences, a more definitive analysis (beyond the present scope) should be based on a
large number of subtype D and Al specimens and estimation procedures specifically

adapted to this stratification.

5.1.4 Discussion

The application of cross-sectional HIV incidence surveillance, utilising tests for recent
infection, has been hampered by the lack of high performance incidence assays and the
lack of independent, rigorous and consistent evaluations of candidate assays [9, 10, 12-
14]. Over the last four years, CEPHIA [47] has developed a substantial repository of
precious specimens, and begun using these specimens to characterise the most promising
incidence assays. Results for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity

are presented above.

Assays can be evaluated against a ‘Target Product Profile’ (TPP) [13, 14, 188]: Not only
should the technology be affordable, practical and transferable to other laboratories, but
the mean duration of recent infection (MDRI) should be sufficiently long (of around one
year) and the false-recent rate (FRR) small (ideally zero, and less than 2%). Results
suggest that incidence assays continue to struggle to simultaneously achieve these two
test property goals, with no single assay unequivocally meeting the criteria set out in the
TPP. Compared to the increasingly used LAg assay, the other assays provide larger
MDRIs but also higher FRRs.
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While a stable, high-performance incidence assay should ideally produce a consistently
small FRR, regardless of the study population, data from this work helps to understand
some of the reasons why an assay’s performance could be unstable and FRRs may be
large. All assays produce particularly high FRRs among elite controllers (>10%) and
treated subjects (>50%), and the size of these subpopulations will vary by region and
time. In a surveillance study, identifying these subjects is problematic, as there is no
universal definition of, or test for, elite controllers, and self-reported treatment status may
be unreliable. Furthermore, earlier initiation of treatment is associated with a higher FRR,
in line with varying impacts of treatment on immune responses by treatment timing [72,
78, 213]. Context strongly affects when patients begin treatment — for example, in some
states in the USA, patients are offered treatment immediately following HIV diagnosis
[214], while in South Africa most HIV-positive patients are unable to access treatment
until CD4 cell counts drop below 350 copies/ul [215]. In this study, 94% of specimens
from elite controllers and treated subjects also had a low viral load (<75 copies/ml), and
so viral load testing provides a potential tool to screen for these high-FRR subjects —
specimens with viral loads below an optimised threshold would be classified as ‘non-
recent’ (regardless of the incidence assay measurement). Note that such a change in the
‘recent’ infection classification rule will also impact (reduce) the MDRI. Surveys could

also directly test for the presence of antiretroviral drugs to identify treated subjects [216].

Properties for each assay have been estimated here on the standardised basis of a Western
blot being used to identify HIV-positive subjects. However, other diagnostic screening
tests are likely to be used in incidence studies, and the time between HIV exposure and
reactivity on these tests can differ by several weeks [180, 181, 185]. Therefore, for
application to incidence studies, the base case MDRI reported here would need to be
increased or decreased — depending on the particular screening test or algorithm used in
the study to classify a specimen as HIV-positive, and hence eligible for ‘recent’ infection

testing.

The results presented here should not be viewed as discouraging, as they provide a
consistent, independent characterisation of these candidate incidence assays. Large FRRs
continue to limit the utility of single incidence assays, and subtype-specific test behaviour
should be further explored. This analysis provides the basis for exploring optimisation
through such adjustments as variation of ‘recent’/‘non-recent’ thresholds, inclusion of
supplemental tests (in particular, viral load), and the use of multiple incidence assays, all

of which is the subject of ongoing work within and beyond CEPHIA [10, 12, 13, 86, 88,
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101, 102]. Optimisation should also consider the time cut-off T, to distinguish ‘true-
recent’ from ‘false-recent’ results. Although T should be not be too large, the value of T
was increased from 1 year, as used in preliminary analyses [42], to 2 years in this
analysis, to better capture the tails of persisting ‘recent’ results and thus reduce FRRs.
Ongoing analyses also include the evaluation of tests for recent infection, using the
precision of the incidence estimator as a summary performance metric [30].*° In addition,
efforts are being made to capture more detailed information on cohorts’ diagnostic testing
protocols and more complete testing histories of subjects, thus providing the required data

to further refine estimated infection dates for later analyses of assay results.

The repository of specimens and data that has been generated by CEPHIA provide a
unique opportunity to further advance the investigation and refinement of markers of
‘recent’ HIV infection. Specimens and datasets are well-maintained, samples sizes are
large, specimen background information is recorded, and multiple incidence assays and

potential supplemental tests have been applied to the same specimens.

CEPHIA has begun testing the ‘evaluation panel’ using other assays, with the aim of
evaluating ten incidence assays in its first phase. A second phase of CEPHIA, known as
CEPHIA 1I and also funded by the Bill and Melinda Gates Foundation (BMGF), was
launched in the beginning of 2013. Under CEPHIA II, the repository is being expanded to
include non-plasma specimens (such as linked whole blood, oral fluid, urine and stool)
that are being prospectively collected through collaborations with various study sites.
CEPHIA is also supporting biomarker discovery projects funded by the BMGF and US
National Institute of Health (NIH), with a focus on earlier steps in the development
pathway. Further updates on CEPHIA activities can be found on the project website

(http://www.incidence-estimation.com/page/cephia).

“The use of the precision of the incidence estimator, as a standard metric for assessing test
performance, was formally outlined in earlier work, and is presented in Chapter 6.
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Chapter 6

Measuring and Optimising Test
Performance

In principle, any test for recent infection can be characterised and applied in an incidence
surveillance study. Earlier chapters of this work have both developed the theoretical
framework and explored the practical methodology for doing this. However, the lack of
standard metrics for assessing the utility of recent infection tests has been an obstacle to
test development, and therefore the measurement and optimisation of test performance

are the focus of this final contribution of the thesis.

While it has been increasingly recognised that tests should provide an enduring state of
‘recent’ infection and rarely (ideally, never) return ‘recent’ results at large times post
infection, formal metrics for trading off these two test properties have not been widely
adopted. An appropriate metric for assessing and optimising tests for recent infection,
namely the precision of the incidence estimator, is presented in Section 6.1, which is a

reproduction of a published article providing guidance to developers [30].*'

As the discourse increasingly moves towards practical application, efforts are being made
to develop high-performance biomarkers for recent infection. Some important practical
considerations are highlighted in Section 6.2, which explores the scope of the test
optimisation, the context-dependence of test performance, and other test design criteria of

relevance.

“'The contents of Section 6.1 have been published as: ‘Kassanjee R, McWalter TA, Welte A.
Defining optimality of a test for recent infection for HIV incidence surveillance. AIDS Res Hum
Retroviruses. 2014; 30(1): 45-49°. The article was reproduced with permission from AIDS
Research and Human Retroviruses, published by Mary Ann Liebert, Inc., New Rochelle, NY.
The manuscript was primarily written by RK, who also performed all analyses. AW and TAM
helped conceive the ideas, reviewed the analyses, and assisted in writing the manuscript.
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6.1 Defining Optimality of a
Test for Recent Infection for
HIV Incidence Surveillance

The measurement of HIV incidence, the rate of new infections, is essential in most
surveillance and intervention contexts. Recognising the practical challenges presented by
longitudinal studies, the estimation of incidence from cross-sectional surveys using tests
for recent infection has attracted considerable interest [8-11, 14, 147, 217]. However, the
performance and optimisation of a test that aims to categorise infections as ‘recent’ or
‘non-recent’, specifically for population-level surveillance, requires a shift from

conventional diagnostic thinking about test performance.

When individual-level detection of a condition is of primary interest, sensitivity,
specificity and predictive values are appropriate metrics of performance. These metrics
improve as inter-subject variability decreases. However, when estimating a population-
level summary parameter, such as incidence, the appropriate performance metrics are
accuracy and precision of the statistic measured. Here, incidence estimation utilises
information on the average behaviour of biomarkers, and is relatively insensitive to the
variability underlying this averaging. While the appropriate optimisation of tests for
recent infection has been noted in passing [10, 11, 14, 147, 217], there is neither

consensus nor guidance for developers.

As with any diagnostic, elements of a test for recent infection may be adjusted to alter its
performance. In the context of HIV recent infection tests, typically some quantitative host
or viral biomarkers are measured, and the infection is categorised as ‘recent’ or ‘non-
recent’ by reference to thresholds [8-10]. For example, the widely used BED assay
measures the proportion of HIV-specific immunoglobulin G (IgG) antibodies in total IgG,
and a measurement below some threshold classifies the infection as ‘recent’ [107]. While
a test may be comprised of many elements that can be varied, from the underlying
biological processes measured to the assay platforms and specific kits, ultimately, the

optimisation will involve the fine tuning of thresholds.

It is increasingly recognised that the lack of high performance recent infection tests poses
a major obstacle to the widespread implementation of cross-sectional incidence

surveillance [14, 217]. The World Health Organisation (WHO) has maintained a WHO



Measuring and Optimising Test Performance 170

Working Group on HIV Incidence Assays since 20006, the Consortium for the Evaluation
and Performance of HIV Incidence Assays (CEPHIA) was established in 2010, and both
the Bill and Melinda Gates Foundation and the National Institutes of Health have
provided substantial funding for the development of better tests [13, 47, 52, 188, 218].
Given the current surge in the development of candidate tests for recent infection, it is
important to have clarity and consensus on robust metrics of performance, and in

particular to avoid the pitfalls of traditional diagnostic thinking.

Prevalence, the fraction of a population with a condition, can at times be substantially
informative about incidence. For example, for transient conditions, such as influenza, it is

well known that near demographic equilibrium:

Incid Prevalence ©.1)
ncidence =~ , .
Mean duration of condition

where incidence is expressed as a rate of cases per person time in the entire population,
not just per person time at risk. However, when a condition is enduring, and survival in
the state is poorly known and evolving, as is the case with HIV, prevalence becomes
uninformative about incidence. In this case, it makes sense to find ways of defining and
detecting a robust early phase post infection, and using a more refined version of the

above heuristic to infer incidence from the prevalence of ‘recent’ infection.

Under simplistic assumptions, HIV incidence, expressed as a rate of infection per person
time at risk, is then formally estimated, in a cross-sectional setting, by [7]:

I= p%’ (6.2)
where pr and py are the proportions of ‘recently’ infected and susceptible or HIV-negative
subjects in the sample, and ) is the mean duration of recent infection. Currently available
tests (and perhaps all conceivable tests) for recent infection present a subtle problem in
that some individuals who have been infected for long periods of time may nevertheless
yield spurious ‘recent’ results [77, 78, 213]. With some simplifying assumptions, it has
been shown how this ‘false-recent’ phenomenon can be intuitively understood as

requiring a ‘subtraction’ of the estimated number of ‘false-recent’ results from the

observed number of ‘recent’ results [16, 17, 25, 29].

More recently, a very general analysis has been obtained by introducing a convenience
time cut-off T, which represents the time, post infection, after which a ‘recent’ test result

is a ‘false-recent’ result [29]. The test properties then are (i) a false-recent rate (FRR), B,
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which is the (population-dependent) proportion of those individuals infected for more
than time T who produce ‘recent’ test results, and (ii) a somewhat subtly-defined mean
duration of recent infection (MDRI), O, which is the average time spent ‘recently’
infected while infected for less than T [29].* Note that 1 — Sy is the (population-
dependent) specificity of the test if it aimed to identify infections that have occurred

within the preceding period T. This leads to the follo