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Abstract 

Three decades ago, the discovery of the Human Immunodeficiency Virus (HIV) was 

announced. The subsequent HIV pandemic has continued to devastate the global 

community, and many countries have set ambitious HIV reduction targets over the years. 

Reliable methods for measuring incidence, the rate of new infections, are essential for 

monitoring the virus, allocating resources, and assessing interventions. The estimation of 

incidence from single cross-sectional surveys using tests that distinguish between ‘recent’ 

and ‘non-recent’ infection has therefore attracted much interest. The approach provides a 

promising alternative to traditional estimation methods which often require more complex 

survey designs, rely on poorly known inputs, and are prone to bias. More specifically, the 

prevalence of HIV and ‘recent’ HIV infection, as measured in a survey, are used together 

with relevant test properties to infer incidence. However, there has been a lack of 

methodological consensus in the field, caused by limited applicability of proposed 

estimators, inconsistent test characterisation (or estimation of test properties) and 

uncertain test performance. This work aims to address these key obstacles. A general 

theoretical framework for incidence estimation is developed, relaxing unrealistic 

assumptions used in earlier estimators. Completely general definitions of the required test 

properties emerge from the analysis. The characterisation of tests is then explored: a new 

approach, that utilises specimens from subjects observed only once after infection, is 

demonstrated; and currently-used approaches, that require that subjects are followed-up 

over time after infection, are systematically benchmarked. The first independent and 

consistent characterisation of multiple candidate tests is presented, and was performed on 

behalf of the Consortium for the Evaluation and Performance of HIV Incidence Assays 

(CEPHIA), which was established to provide guidance and foster consensus in the field. 

Finally, the precision of the incidence estimator is presented as an appropriate metric for 

evaluating, optimising and comparing tests, and the framework serves to counter existing 

misconceptions about test performance. The contributions together provide sound 

theoretical and methodological foundations for the application, characterisation and 

optimisation of recent infection tests for HIV incidence surveillance, allowing the focus 

to now shift towards practical application. 
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Chapter	1
 

Introduction	and	Overview	

This body of work focuses on how to appropriately use tests designed to distinguish 

between ‘recently’ and ‘non-recently’ acquired HIV infections to estimate HIV incidence 

from cross-sectional surveys. This topic and the contributions made within this thesis are 

introduced in three parts below. Firstly, the significance of this research is broadly 

summarised, providing a context for why this work is of interest in epidemiology. 

Secondly, a brief, critical review of past developments in this surveillance approach is 

presented. The review aims to both provide pertinent background information to the 

reader, as well as highlight key shortcomings in the field that this research aims to 

address. Lastly, the contributions made, and the organisation of these in this thesis, are 

outlined.  
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1.1 Significance	

The early 1980s proved to be a period of rapid medical advance as research groups aimed 

to identify the retrovirus that was causing Acquired Immunodeficiency Syndrome 

(AIDS), an illness which was then beginning to sweep across nations [1-3]. Now called 

the Human Immunodeficiency Virus (HIV), the reach of the virus, particularly in the 

developing world, is alarming [4]. In South Africa, an estimated 29.5% of pregnant 

women attending public antenatal care clinics are HIV-positive [5] and 17.9% of the 

general adult population, aged 15 to 49 years old, is living with HIV [4].  

These frightening statistics highlight the need for an effective response to the epidemic. 

There is thus an urgent need for reliable epidemiological measures, which are essential to 

monitor viral spread, optimally allocate limited resources, and plan and assess 

interventions. Incidence, the rate of new infections in a population, although more 

difficult to measure, provides a more direct and current measure of the state of the 

epidemic than prevalence, the proportion of the population infected at a point in time. 

Incidence has therefore become the focus of ‘second-generation HIV surveillance’ [6] in 

South Africa and around the world. 

Time-honoured methods of estimating incidence typically require either longitudinal 

studies or surveys at multiple points in time. These methods have a number of drawbacks, 

such as being prone to capture unrepresentative samples, requiring prolonged study 

periods and relying on highly uncertain external model inputs (such as mortality rates). 

Therefore, the prospect of measuring incidence from a single cross-sectional survey, 

using a test that distinguishes ‘recent’ from ‘non-recent’ infection, has attracted much 

interest [7-14]. However, the widespread use of this approach has been hindered by a lack 

of methodological consensus [7, 15-27] and the poor or uncertain performance of 

candidate tests for recent infection [8-10, 12-14, 28].  

This work has therefore aimed to address these obstacles to the application of cross-

sectional incidence surveillance. A number of closely related original contributions have 

been made; and these have been shared through international journal articles [29-32], 

conference presentations [33-44], local newsletters [45, 46], project websites and online 
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tools [47, 48], training courses [49, 50], and various collaborations1. These contributions 

can be broadly categorised as: 

 The development of a general theoretical framework for incidence estimation,

relaxing the unrealistic assumptions made in earlier work – assumptions that led

to confusion about the validity of this surveillance approach

 Methodological advancement in the measurement of test properties required for

incidence estimation, both by formalising new ideas for the characterisation of

tests, and by building consensus through the rigorous benchmarking of widely

used approaches

 The first independent, large-scale and consistent characterisation of multiple

candidate tests for recent infection, aimed at promoting standardisation in the

field and guiding ongoing ‘recent’ infection ‘biomarker discovery’ projects

 The provision of guidance on the appropriate metric for the evaluation,

optimisation and comparison of tests for recent infection, serving to counter

existing misconceptions that could lead to spurious test assessments

1.2 Review	of	Incidence	Estimation	
Using	Tests	for	Recent	Infection	

The history and state of HIV incidence estimation, from cross-sectional surveys using 

tests for recent infection, excluding the contributions made in this work, are briefly 

reviewed below. 

Traditionally, disease incidence is measured by directly counting the number new 

infections that occur while following a cohort of initially uninfected subjects. However, 

the required longitudinal surveillance is costly and difficult to administer, both practically 

and ethically, while limiting bias in results [12, 54, 55]. Another familiar approach is the 

calculation of historic incidence values that are consistent with prevalence data for 

multiple time points and age groups [56-60]. For example, in South Africa, prevalence 

___________________________ 

1  For example, with the Centers for Disease Control and Prevention (CDC) [51], with the World 
Health Organization (WHO) Technical Working Group on HIV Incidence Assays [52], as a 
member of the Consortium for the Evaluation and Performance of HIV Incidence Assays 
(CEPHIA) [47], and as a member of the HIV Modelling Consortium Task Team for Incidence 
Assay Characterization [53]. 
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data from both general household surveys [61] and the sentinel surveillance of pregnant 

women attending antenatal clinics [5] are used to estimate incidence. This approach also 

underlies the widely-used UNAIDS Estimation and Projection Package (EPP) [62-64]. 

However, post-infection survival, a requisite external input, is typically poorly known and 

evolving (for example, as the effectiveness of treatment, and its coverage, grows). In 

countries such as the USA, case reporting data are used instead to ‘back-calculate’ 

incidence from reported HIV and AIDS cases [65-68]. However, often only incidence far 

into the past can be estimated, and assumptions about HIV progression and testing 

behaviour are required. Alternatively, microscopically descriptive models, such as the 

UNAIDS Modes of Transmission Model [69, 70], could be used. While these models 

attempt to capture the mechanisms of transmission in detail (for example, by estimating 

counts of sexual transmissions in various risk groups), the sophistication is often at odds 

with realistically available data to inform input parameters. 

Consequently, the estimation of incidence using prevalence measurements obtained in a 

single cross-sectional survey, and involving only a few well-estimable parameters, holds 

much appeal [7-27]. This is straightforward for conditions with short and well-

characterised durations, such as influenza: the prevalence of having the condition, relative 

to that of being susceptible to it, is equal to the product of incidence and the average 

duration of the condition (assuming equilibrium of constant incidence and susceptible 

population size over the maximum duration of the condition) [71]. Heuristically, the 

number of persons currently infected is the number of persons infected in, for example, 

the preceding week – and so incidence and prevalence closely track each other. 

However, for an enduring condition, such as HIV, time in the infected state is long, 

difficult to characterise and ever-evolving, and so prevalence becomes uninformative of 

incidence. In 1995, Brookmeyer and Quinn [7] demonstrated that a cross-sectional 

approach to incidence estimation could nevertheless be used, by considering instead an 

early phase of HIV infection, termed ‘recent’ infection, that could be better characterised.  

In the pioneering work of Brookmeyer and Quinn [7], the detection of p24 antigens in 

subjects with undetectable HIV antibodies identified putatively ‘recently’ infected 

subjects. However, this produced a state of ‘recent’ infection that lasted for only a few 

weeks, and therefore unrealistically large samples would be required to obtain precise 

incidence estimates [7, 8, 10, 11]. This triggered the development of further tests for 

recent infection, seeking more enduring post-infection ‘recent’ states [8-10, 12]. 
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However, it quickly became evident that there is substantial inter-subject variability, with 

the result that some subjects who have been infected for many years nevertheless return 

‘recent’ results [8-10, 12-14, 72-81] – typically referred to as ‘false-recent’ results. 

Accounting for this phenomenon has led to the emergence of two schools of thought 

[18-22].  

In the first school of thought, additional parameters are used to discount the observed 

‘recent’ results in the survey by the ‘false-recent’ results. This was introduced in 2006 by 

McDougal et al [16], who proposed an incidence estimator containing a test ‘sensitivity’, 

‘short-term specificity’ and ‘long-term specificity’, which was further studied by 

Hargrove et al [17]. However, in 2009, McWalter and Welte demonstrated redundancy in 

these parameters [23, 82]. Furthermore, relaxing the assumption of uniform infection 

times made in these earlier incidence estimators [23], McWalter and Welte showed that 

one can instead obtain a particular weighted average of recent, and potentially changing, 

incidence. Two parameters naturally occur in their incidence estimator: a ‘false-recent 

rate’ (FRR) and ‘mean duration of recent infection’ (MDRI) [25]. A comparison of 

incidence estimators revealed that even under steady state conditions, only this last 

estimator produced unbiased results [23]. Wang and Lagakos derived the same estimator, 

however using additional assumptions [24].  

Despite these advances, problematic assumptions remained: namely that (i) ‘false-recent’ 

results are caused (solely) by test ‘non-progressors’, defined as individuals who never 

transition out of the ‘recent’ state, while all remaining individuals transition (once) out of 

this state within some relatively short period after infection (for example, a year); and 

(ii) post-infection survival and test classifications are independent [23-25]. Under these 

assumptions, the above-mentioned FRR is the proportion of (infected) individuals who 

are ‘non-progressors’, and MDRI is the average time spent alive and in the ‘recent’ state 

for all other individuals [23-25]. However, it is known that subjects may transition 

(multiple times) between the ‘recent’ and ‘non-recent’ states over many years post 

infection (for example, patients who have AIDS or who are on antiretroviral treatment 

may return to the ‘recent’ state) [72-80] and that survival and test results are dependent 

(for example, survival is related to viral load and treatment [83-85], which are in turn 

related to biomarker results [72-81, 86]).  

In the second school of thought, the original one-parameter incidence estimator (that is, 

the estimator containing a single test property) of Brookmeyer and Quinn [7] has been 
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retained [15, 27, 87-90]. All inter-subject variability (including that elsewhere called 

‘false-recent’ results) is captured in a consistently-defined MDRI, which, in this 

paradigm, is defined as the average time spent alive and in the ‘recent’ state, considering 

all subjects over their full post-infection lifetimes [7, 15]. 

However, as the maximum post-infection time at which a person can return a ‘true-

recent’ result can now be decades, this approach has a number of limitations. For one, the 

assumption of a constant susceptible population size over this duration preceding the 

survey, implicit in all estimators [7, 23, 25], becomes more likely to be substantially 

violated. Also, the larger this maximum post-infection time, the less informative is the 

measured incidence of recent incidence, as the implied weighting of historic incidence 

extends further into the past – thus limiting the ability to detect changes in incidence. 

Researchers have summarised this complexity into a ‘shadow’ or lag of the incidence 

estimator: by assuming a demographic and epidemiological history for the population, 

and particular dynamics of the test for recent infection, the cross-sectional study result 

can be interpreted as an estimate of incidence some time into the past [15, 27].  

Furthermore, the MDRI is more difficult to estimate practically, as it requires a detailed 

understanding of survival and test dynamics even at very large times post infection. The 

MDRI would also be prone to varying by time and place – for example, by treatment 

coverage and as post-infection survival evolves. The estimation of the MDRI is 

burdensome, requiring the extensive longitudinal studies [16, 17, 91-103] that this cross-

sectional surveillance approach aims to avoid. It is therefore key that a single MDRI 

estimate can be used in a number of cross-sectional incidence studies (across study 

populations and time).  

Given these limitations of operating in a one-parameter world, and the current non-ideal 

performance of tests (occurrence of ‘recent’ results at large times after infection), this 

approach is not pursued in this work. 

Alongside the refinement of the theoretical framework for incidence estimation, there has 

been substantial development of Tests for Recent Infection (TRIs), or Recent Infection 

Testing Algorithms (RITAs), over the years [8-10, 12]. These tests are typically based on 

measuring some viral process or host response, with classification rules used to map 

quantitative biomarker measurements onto dichotomous ‘recent’ and ‘non-recent’ 

classifications.  
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A couple of years after the initial work of Brookmeyer and Quinn [7], Janssen et al [91] 

coined the term Serological Testing Algorithm for Recent HIV Seroconversion 

(STARHS) when he introduced a test for recent infection based on a modification of an 

existing diagnostic test. By tailoring laboratory procedures so that antibody measurements 

grew more slowly over time after infection than they did in the original diagnostic test, 

readings below a chosen threshold were interpreted as being indicative of ‘recent’ 

infection. This concept has since been used to develop ‘less-sensitive’ or ‘detuned’ 

versions of other existing diagnostic tests [100, 104-106]. 

In 2002, the CDC attempted to overcome the HIV subtype-dependence of earlier tests 

with the creation of the BED assay, specifically for this surveillance application [92, 96, 

107]. Low BED measurements of HIV-specific Immunoglobulin G (IgG) in total IgG 

indicate ‘recent’ infection. However, subtype differences remain [8, 9, 12, 108-110] and a 

significant proportion of subjects return ‘recent’ results years after infection  [9, 10, 12, 

16, 17, 26, 28, 73, 75-78, 111, 112]. For this surveillance application, an FRR of even a 

few percent critically undermines the potential of a test. In an attempt to address the high 

FRR, the CDC consequently developed the Limiting Antigen (LAg) assay, described in 

2010 [98, 113]. Antibody avidity, the strength of binding between virus antigens and host 

antibodies, is expected to increase over time since infection as the host’s immune 

response matures [9, 107]. LAg seeks to quantify this avidity, with measurements below a 

chosen threshold producing ‘recent’ classifications [98, 113]. The assay has since become 

widely used, despite remaining uncertainty about its performance [79, 81, 114]. 

A number of other candidate tests for recent infection have been developed, founded on 

concepts similar to those introduced above [8-10, 12, 107, 115-121]. Over the last few 

years, further innovative tests have been proposed: some based on measuring genetic 

diversity [122-125]; some using platforms that produce a number of related serological 

markers (such as measures of titre and avidity of antibodies to various HIV proteins), 

which are then together used to produce a classification [39, 40, 44, 86, 102]; some 

combining multiple independently-developed biomarkers, including clinical indicators 

such as viral load and CD4 cell counts [13, 61, 88, 89, 95, 101, 126] (sometimes termed 

Multi Assay Algorithms); and some even of the form of rapid tests [39, 40, 44, 127-129]. 

However, all of this development of new tests for recent infection has continued to be 

undermined by a number of obstacles, discussed below. 
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For application to incidence surveillance, tests must first be characterised – a term used 

in this work to describe the estimation of test properties appearing in the incidence 

estimator, namely the FRR and MDRI. This process of test characterisation has presented 

a bottleneck to test development, as developers and researchers have grappled with the 

questions of which test properties to estimate, how best to estimate them, and where to 

get the relevant data. 

Estimation of the MDRI has typically relied on longitudinal data that describes the 

trajectories of biomarkers as a function of time since infection [16, 17, 91-103]. 

Capturing such data requires the regular follow-up and testing of (initially HIV-negative) 

subjects, and is therefore costly and logistically burdensome. Even given suitable data, 

confusion about the applicability of the theoretical framework for incidence inference has 

led to inconsistencies in, or unclear definitions of, test properties estimated in the 

literature. Furthermore, various analytical methods for characterising tests have been 

applied, and understanding methodological differences and identifying best practices has 

been an ongoing topic among experts in the field over recent years [130]. 

In principle, given a general incidence inference framework, any test can be consistently 

characterised and applied in a cross-sectional study to obtain valid incidence estimates. 

However, this mathematical process alone reveals little about the practical utility of a test 

for this surveillance application. Further challenges in test development therefore arise 

from the lack of standard measures to assess test performance, which are required to 

optimise tests and understand the relative performances of proposed tests. Within the 

research community, a ‘Target Product Profile’ [14] has been circulated and provides 

criteria candidate tests must meet. These criteria include a minimum MDRI (of 4 months) 

and maximum FRR (of 2%), and various conditions that support the viable transferability 

of technology. However, there remain no standards to further discriminate among tests, 

and various analyses have been published on candidate tests. These analyses often present 

estimates of test ‘sensitivity’ and ‘specificity’ (to detect infection within some specified 

period post infection)  [92, 109, 111, 112, 115, 116, 118, 120, 124, 125] – metrics 

familiar in diagnostics settings, rather than performance characteristics which can be 

directly interpreted as indicating a test’s utility for this unique population-level 

surveillance application. Alternatively, analyses compare incidence estimates obtained 

using various tests for recent infection to one another or to incidence measured 

longitudinally, studying the same population or even using the same sample of subjects 

(often termed ‘field validation’) [16, 90, 95, 103, 131-133]. However, this comparison is 
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uninformative as any consistent characterisation and application of tests will lead to 

incidence estimators with similar expected values (although potentially different 

variances).  

In the light of the challenges noted above, there has been a call, in meetings convened by 

the World Health Organisation (WHO) Technical Working Group on HIV Incidence 

Assays, for a statistically sound and consistent comparative analysis of existing tests for 

recent infection as a logical next step to move the field forward [10, 14]. In response to 

such calls, in 2010, the Bill and Melinda Gates Foundation (BMGF) awarded a grant to 

establish the Consortium for the Evaluation and Performance of HIV Incidence Assays 

(CEPHIA) [47] – a collaboration between Public Health England (PHE) in the UK; 

Blood Systems Research Institute (BSRI) in the USA; University of California, San 

Francisco (UCSF) in the USA; and the South African Centre for Epidemiological 

Modelling and Analysis (SACEMA) in South Africa.  

The broad mandate of CEPHIA is to foster consensus in the scientific community. More 

specifically, CEPHIA was tasked with developing a specimen repository, and rigorously 

evaluating existing and new tests for recent infection. Given the successes of CEPHIA, in 

2013, the BMGF awarded funding for a second phase of CEPHIA: the repository is being 

expanded to include non-plasma specimens (such as dried blood spots, oral fluids, stool 

samples, and urine), and the consortium is providing specimens and analytical support to 

a number of ‘biomarker discovery’ groups currently developing novel biomarkers to 

identify ‘recent’ infection. It is as a member of the core CEPHIA team that much of the 

work presented in this thesis has been performed. 

Interest in tests for recent infection extends beyond cross-sectional incidence surveillance, 

but the framework for each application is unique and nuanced. In particular, in countries 

such as France and the USA, HIV incidence is estimated by testing patients newly 

diagnosed with HIV in health care settings for ‘recent’ infection [134-138]. By applying 

tests for recent infection to only patients who actively seek HIV testing, rather than those 

identified as HIV-positive in a cross-sectional survey of the population, testing behaviour 

needs to be accounted for when estimating incidence for the general population. Another 

application that has attracted considerable interest is the estimation of the durations of 

infections in (newly diagnosed) individuals and the reporting of these results to clinicians 

and patients, for example, for purposes of contact tracing and tailoring treatment plans. 

Tests for recent infection have been routinely utilised in clinical settings in areas of the 
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UK since 2009 [139-141], and this application has been piloted elsewhere [142]. Inter-

subject variability in test dynamics should ideally be very small for such individual-level 

diagnostic applications. 

Furthermore, the discourse on incidence estimation is moving rapidly towards 

methodologies that utilise multiple datasets to estimate incidence – combining 

measurements of the prevalence of ‘recent’ HIV infection with, for example, sentinel 

HIV prevalence surveillance data, national household survey data, life tables and 

treatment coverage statistics. Given the substantial subtleties around each application of 

tests for recent infection, the scope of this work is restricted to incidence estimation from 

cross-sectional surveys.  

1.3 Contributions	and	Structure	
	of	Thesis	

This work has focused on addressing key shortcomings in the field, which are highlighted 

in the review provided in Section 1.2. The contributions made, and the presentation of 

these in this thesis, are described below. 

A key aspect of this research has been the dissemination of the work undertaken: in 

international journals [29-32] and local newsletters [45, 46], through presentations and 

posters at local and international conferences [33-44], through collaborations with various 

working groups and organisations, 2 as a member of the Consortium for the Evaluation 

and Performance of HIV Incidence Assays (CEPHIA) [47], by providing training [49, 50] 

and by developing an online resource for guidance and analysis tools [48]. A selection of 

these referenced items is presented in this thesis. 

Within each chapter, the core (published or prepared) journal article is presented as the 

first section, and remaining sections provide ancillary analysis details, related ideas, and 

applications of the concepts described. All articles are reproduced with permission of the 

publishers – with only minor modifications to text and notation, and so there is some 

___________________________ 

2  For example, the Centers for Disease Control and Prevention (CDC) [50], World Health 
Organization (WHO) Technical Working Group on HIV Incidence Assays [51], and HIV 
Modelling Consortium Task Team for Incidence Assay Characterization [52]. 



Introduction and Overview  11 

repetition of background information. Because accepted terms evolved over the years 

during which this research was conducted, terminology varies slightly across sections. 

Before trying to answer specific questions about its application, a sound theoretical 

foundation for incidence inference is required. A general framework for incidence 

inference was therefore derived, relaxing assumptions, made in previously proposed 

incidence estimators, of demographic and epidemiological equilibrium and about test 

dynamics. This derivation is presented as the opening work of this thesis in Chapter 2 

[29]. The general framework was constructed by introducing a post-infection time cut-off, 

, separating ‘true-recent’ and ‘false-recent’ results, with an appropriately defined ‘false-

recent rate’ (FRR) and ‘mean duration of recent infection’ (MDRI) emerging from the 

analysis as the required test properties. Any unavoidable residual bias, such as from a 

varying susceptible population size, is systematically defined. Bias terms are considered 

in detail as part of ancillary explorations of the incidence estimator, which also include 

discussions on test characterisation, the moments of the incidence estimator, and the 

prospects of estimators containing additional test property parameters. An online resource 

and set of analysis tools [48], produced to support the application of the framework 

presented, are also described. 

Having developed a general theoretical framework for incidence inference, focus shifts to 

the estimation of the required test properties – namely the FRR and MDRI. These 

properties are typically estimated in separate studies, prior to the incidence survey. The 

estimated test properties would ideally be recycled across multiple incidence surveys. 

A bottleneck to the estimation of the MDRI has been the scarcity of specimen sets needed 

to generate relevant data – traditionally understood to contain multiple specimens per 

subject, drawn over time from soon after some (well-estimable) infection date. 

Furthermore, any access to such precious specimens usually requires that preliminary 

estimates of test properties suggest suitable promise of the test. A novel idea for obtaining 

preliminary estimates of the MDRI, using more widely available specimens, is therefore 

formalised, and its utility demonstrated, in Chapter 3 [31].   

Under the proposed methodology, only a single specimen for each subject in the sample 

is required, drawn at the time of the first HIV-positive test, as well as knowledge of the 

time of the last HIV-negative test [143]. Moreover, if the period between HIV tests is 

approximately equal to the post-infection time cut-off   (defined above), the proposed 

method of analysis becomes non-parametric, safeguarding against bias from poor 
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parametric assumptions (at the expense of reduced precision). The framework in which 

these concepts are presented assumes that infection times are uniformly distributed 

between HIV-negative and HIV-positive tests, and this is reasonable in settings where 

testing schedules can be considered to be independent of subject behaviour. The 

methodology is explored by characterising two tests for recent infection (Less-sensitive 

Vitros [100] and Less-sensitive Vironostika [104]), using data from blood donors in 

South Africa and the USA. Ancillary analysis details are provided, and two further 

applications are summarised – a first characterisation of a new candidate test (based on 

SMARTubeTM technology) [35], and a local characterisation of an already widely used 

test (the BED assay) [33]. At the time of performing the work, the framework of 

McWalter and Welte [25] was in use, and therefore all analyses for estimating the MDRI 

were founded on the definitions of test characteristics presented in their work. A 

discussion of the application of the approach, under the general inference framework 

provided in Chapter 2, shows how the ideas presented remain just as relevant and 

valuable. 

Even when the more precious panels of specimens are available, obtained by following 

subjects over time, various methods of estimating the MDRI have been used. There had 

been little exploration of the methodological differences, and of any artefacts in test 

characterisation which would in turn bias incidence estimates. An extensive, 

benchmarking exercise was therefore performed, and is presented in Chapter 4 [53]. 

Prominent researchers in the field were invited to participate in this project, which was 

commissioned by the HIV Modelling Consortium [144]. A platform for stochastically 

simulating data panels was developed. A large number of characterisation methods were 

implemented, and each used to estimate the MDRI. By simulating data, the experiment 

could be replicated many times, and the true MDRI calculated. This allowed the 

performance of the methods to be rigorously evaluated for the first time, in scenarios 

which systematically varied the extent of challenges encountered in reality. 

A key obstacle to accurate MDRI estimation, as highlighted by the results of the 

benchmarking exercise, is the unknown infection times of subjects (which are only 

known to lie between last HIV-negative and first HIV-positive tests). An innovative idea 

is presented for limiting the bias that this could cause: subjects only enter the ‘HIV-

positive’ (and ‘recent’) state some short time after detectable infection, where the time of 

entry into this deferred state could be more accurately estimated (than the time of entry 

into the otherwise-defined ‘HIV-positive’ state) given typically available data [34]. The 
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procedure for incidence estimation would remain unchanged, with the understanding that 

a short time lag for incidence estimation is introduced. Also, a framework is outlined for 

the estimation of infection times from subjects’ diagnostic testing histories. Published 

analyses have paid little attention to this aspect of MDRI estimation, and any consequent 

artefacts in the estimation (or inconsistent definitions) of infection times would bias 

MDRI estimates.  

Results from the characterisation of five prominent tests for recent infection are presented 

in Chapter 5 [32], and demonstrate the application of the methodologies developed in 

preceding chapters. This is the first of a series of planned publications by CEPHIA, and is 

the culmination of over three years of intense specimen collection and testing, and data 

gathering and analysis – all applying stringent quality control measures which it is hoped 

will guide standards in the field. Potential users of cross-sectional incidence surveillance 

have looked to CEPHIA for independent and careful guidance on its application, and 

therefore this work represents a particularly important milestone. Results indicate that 

each assay, used according to developers’ guidelines, performs inadequately in isolation, 

and therefore further optimisation of these assays is required. Since viral suppression 

appears to drive FRRs, optimal use of assays is likely to include supplemental viral load 

tests. CEPHIA, having produced an invaluable data resource, and other groups are 

currently exploring this and more.  

By consistently applying the concepts presented above, any test can in principle be 

characterised and used to produce valid incidence estimates. With the current surge in the 

development of tests for recent infection, the need for standard measures of a test’s 

performance for this surveillance application has become increasingly urgent. A guidance 

article, targeted at test developers and analysts, is therefore presented in Chapter 6, and 

argues against the widespread use of sensitivity and specificity measures, which can 

produce spurious assessments of a test’s utility. Since bias in incidence estimation is 

demonstrably small in the relevant contexts, the precision of the incidence estimator 

provides the only remaining important metric of performance. Although precision is 

context-specific, it provides a standard measure to assess, optimise and compare tests for 

recent infection. 

As general and standard frameworks for incidence estimation and test evaluation are 

adopted, discourse in the field is inevitably moving towards application. Practical aspects 

of test optimisation are therefore briefly discussed, and include the scope of the 
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optimisation, the context-dependence of test performance, and the consideration of other 

test design criteria. The intention of this final section of the work is to touch on some of 

the topics that are likely to move towards the forefront of future discussions, given recent 

developments in the field, including those provided in this work. 

In closing, the contributions presented in this thesis are summarised in Chapter 7, and 

some perspectives on future directions are provided. 

Appendix A provides a detailed account of the calculation of outputs in each of the online 

analysis tools. All programming was performed in Matlab (The MathWorks, Inc., 

R2013b, 8.2.0.701), and selected code is provided in Appendix B.  
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Chapter	2
 

A	General	Theoretical	
Framework	for	Incidence	
Inference	

A general theoretical framework for the estimation of incidence, from cross-sectional 

surveys using tests for recent infection, is presented. 

In Section 2.1, a general incidence estimator is derived, relaxing assumptions contained in 

earlier proposed estimators. This work is a reproduction of a published journal article 

[29]. 3  The framework is further explored, and ancillary analysis details provided, in 

Section 2.2, which was published as an appendix to the article. An online resource was 

developed over the course of this work, providing theoretical background information and 

practical analysis tools to users of this surveillance approach [48], and is described in 

Section 2.3. 

___________________________ 

3  The contents of Section 2.1 have been published as: ‘Kassanjee R, McWalter TA, 
Bärnighausen T, Welte A. A new general biomarker-based incidence estimator. Epidemiology. 
2012; 23(5):721-728’. The article was reproduced with permission from Wolters Kluwer Health, 
Lippincott Williams & Wilkins. The manuscript was primarily written by RK, who performed the 
analysis, both formal, and of simulated data. TAM generated the simulated data. AW and TAM 
helped conceive the analysis and assisted in writing the manuscript. TB supported the project by 
reviewing results and text. 
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2.1 A	New	General	Biomarker‐Based	
Incidence	Estimator	

2.1.1 Introduction	

The measurement of disease incidence — the rate of new cases in a population — is 

essential for effectively monitoring the spread of disease, and for targeting and assessing 

interventions. Longitudinal studies which directly count new infections are costly, time-

consuming, and prone to capturing unrepresentative behaviour. Estimating incidence by 

modelling multiple prevalence values requires knowledge of the survival of those affected 

and unaffected by the condition. For incurable conditions such as HIV, prevalence 

emerges as a slow convolution (averaging) of historic incidence with survival and the 

variation in the size of the susceptible population. Thus, changes in prevalence over time 

are poor proxies for recent incidence. On the other hand, it has long been noted that 

prevalence of recent infection can be a very good proxy for recent incidence. Deriving an 

incidence estimate from a single cross-sectional survey has enormous practical 

advantages. There has consequently been considerable interest in developing recent 

infection tests based on host or viral biomarkers. This approach has been explored 

particularly in the context of HIV incidence [8-11]. A number of methodologies have 

been proposed [7, 15-17, 24, 25, 87, 91, 107, 143, 145, 146], and these have been 

reviewed and critiqued elsewhere [8-11, 18-21, 23, 26].  

The limitations of current methodologies (using biomarkers for recent infection to 

estimate incidence) are hindering consensus, the development of test technology, and 

field implementation. There is no simple solution to the problem of estimating incidence, 

a rate, from a single cross-sectional survey, because there is an unavoidable loss of 

information when a population history is summarised into an instantaneous population 

state. Previously proposed estimators have been derived under very specific assumptions 

(known to be substantially violated) concerning both the epidemiological and 

demographic context, as well as the behaviour of the recent infection tests (as will be 

described below) [7, 15-17, 23-25, 87, 91, 107, 143, 145, 146]. 
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Methodological	background	

Most tests for recent HIV infection classify persons as ‘recently’ infected based on a 

‘below-threshold’ immune response such as antibody titre, avidity, or HIV-specific IgG 

proportion [8-10]. There is some evidence, for all tests proposed to date, that a small 

minority of persons remain classified as ‘recently’ infected long after infection [16, 17]. 

Additionally, late-stage HIV disease or treatment leading to viral suppression may 

diminish the host immune response, returning long-infected persons to the ‘recent’ 

infection state [8-11, 73-76]. This is the physiological basis for the introduction of the 

notion of ‘false-recent’ results, the effects of which are encoded into a population-level 

parameter widely called the ‘false-recent rate’ [16, 17, 24, 25]. This is not a ‘rate’ in the 

conventional sense, but the proportion of persons not ‘truly’ recently infected, who 

nevertheless produce a ‘recent’ result with the biomarker. In earlier analyses, dynamics 

were summarised into only one parameter – a mean duration of recent infection [7, 15].  

Much of the analytical complexity and methodological contention arises from the 

difficulty of formally defining ‘true-recent’ and ‘false-recent’ results. Initially, attempts to 

account for ‘false-recent’ results were inspired not just by the biological variability noted 

above, but by a pattern of cross-sectional incidence estimates that were higher than 

prospectively obtained estimates in the same populations. However, as pointed out by 

Brookmeyer [18], subtracting ‘false-recent’ results is not the only way to obtain 

consistency – one can simply account for all times spent in the ‘recent’ state when 

defining the mean duration of recent infection. In practice, however, this creates other 

problems, one being that the development of a new test, a process that includes the 

estimation of a mean duration of recent infection, cannot feasibly wait for a decade or two 

of follow-up of a seroconverter cohort. Also, a long duration of recent infection (as 

defined by existing tests) can cause problematic temporal bias or blurring of incidence 

estimates – the extreme case being the use of prevalence as a proxy for incidence. Indeed, 

the notion of recent infection does not provide a totally unbiased estimate of the 

instantaneous incidence, but, at best, a weighted average of recent incidence, which in 

principle can be very close to a uniformly-weighted average over recent times. This 

statistical weighting may be understood by noting that, as people can persist in the 

‘recent’ state for some time, a range of past values of incidence contributes to the current 

population count of ‘recently’ infected individuals.  
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Kaplan and Brookmeyer [15] and, more recently, Brookmeyer [27] explored this in the 

special case of incidence varying linearly with time, in which case the temporal statistical 

weighting can be summarised as a time lag of the incidence estimator, which they refer to 

as the ‘shadow’. The longer this ‘shadow’, the less informative the estimate, with less 

power to detect changes in incidence over short periods of time. A key benefit of a 

rigorous notion of ‘false-recent’ results (in addition to a complementary notion of the 

mean duration of recent infection that is more practical to measure) is the reduction of 

this temporal bias. 

In order to implement a formally consistent definition of both a ‘false-recent rate’ and 

mean duration of recent infection, an explicit time cut-off, , is introduced to separate 

‘true-recent’ and ‘false-recent’ results. To lead to an informative estimator, this cut-off, 

though theoretically arbitrary, must be chosen to reflect the temporal dynamic range of 

the test for recent infection; that is, at a time  post infection, the overwhelming majority 

of infected people should no longer be testing ‘recent’, and furthermore,  should not be 

larger than necessary to achieve this criterion. Although this time cut-off is reminiscent of 

a cut-off in previous analyses [16, 17], the present work dispenses with problematic 

assumptions of past analyses that have prevented the widespread use of cross-sectional 

incidences estimation from data on recent infection.  

2.1.2 Analysis	

The exposition proceeds in four key steps:  

1. The derivation of a simple, general expression for a weighted mean recent

incidence, which can be constructed without any particular assumptions about the

demographic or epidemiological history or the dynamics of the biomarker used to

classify persons with a disease (such as HIV infection) as ‘recently’ or ‘non-

recently’ infected.

2. The derivation of an incidence estimator by expressing the general weighted

incidence in terms of (i) quantities that can be known by an experimenter, and

(ii) a bias term, the size of which can be approximately estimated in terms of a

number of dimensionless parameters that characterise the failure of the test and

context to conform to certain idealisations.

3. The estimation of the test characteristics.

4. The application of the methodology to estimate incidence in simulated scenarios,

to confirm the consistency of confidence intervals.
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A	general	expression	for	weighted	incidence	

A test for recent infection may employ an arbitrarily complex combination of criteria to 

classify infected persons as ‘recently’ or ‘non-recently’ infected [10]. It is understood that 

there will be natural inter-subject variability in progression through these categories after 

becoming infected. This range of responses may be captured in a function , which is 

the probability of still being alive and ‘recently’ infected at time  post infection. Let 

 denote the probability of being alive at time  post infection. 

Throughout this work, ‘infection’ refers to the detectable infection of HIV, which 

depends on the diagnostic test being used. Practically, the delay between actual infection 

and detectable infection merely implies an epidemiologically inconsequential delay in 

entering the operationally HIV-positive state. This point is explored in more detail in 

Section 2.2.1. 

Assuming a continuous population dynamic, and using the reference time 0 as the 

time at which a survey is conducted, consider the following explicit weighted averaging 

of incidence over a period of duration : 

d

d
, (2.1)

where the (possibly time-dependent) incidence is denoted by  and the susceptible 

population by . The incidence at time  contributes to  with weight , 

that is, with a weight proportional to (i) the susceptible population vulnerable to being 

infected at time , , and (ii) the probability of a person infected at time  still being 

alive and ‘recent’ at the time of the survey, . It will emerge that, for practical 

purposes, this is very close to a uniformly-weighted average of incidence over a period 

preceding the survey. There is no exact way to extract either a uniformly-weighted 

average or an estimate of incidence at one point in time, given the substantial 

compression of information from a population history into a cross-sectional survey. 

If there is a critical value, , with the property that 0 for all 	 , 

then all choices of  yield the same result – the one obtained by Brookmeyer and 

Quinn [7]. For any finite value of , the ‘shadow’, or temporal bias, is strictly less than , 

and it is less than /2 if  is a strictly decreasing function of time in the 

interval 0, . 
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Figure 2.1: Epidemiological, demographic, and recent infection test dynamics 
The figure portrays the functions (and areas under functions) of relevance for interpreting 
the weighted average of incidence that is measured in the cross-sectional survey, 
performed at time 0. The functions  and  are the incidence and susceptible 
population size at time , respectively;  is the probability that a subject is alive at 
time  after infection; and  is the probability that a subject is alive and ‘recently’ 
infected at time  after infection. 

In the interpretation of Equation (2.1), it is useful to consider the labelled areas in 

Figure 2.1:  

 Areas  and  (the areas under the curve  represent the

‘recently’ infected population at 0, infected for times less than and greater

than , respectively.  is the numerator of Equation (2.1).

 Areas  and  (the areas between the curves  and

,  that is, the infected population excluding the ‘recently’

infected population) represent the ‘non-recently’ infected population at 0,

infected for times less than and greater than , respectively.

 Area  (the area under the curve ) is the denominator of

Equation (2.1).

Hence, Equation (2.1) can be rewritten as 

. (2.2)

T

A

B

C

D

I(t)NS(t)PR(−t)
I(t)NS(t)PA(−t) I(0)NS(0)

t 0

T

E

NS(t)PR(−t)
NS(0)

t 0
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Previous derivations of incidence estimators have relied on assumptions of (at least 

recent) epidemiological and demographic equilibrium, some simplifications of the post-

infection dynamics of tests for recent infection, or both. To elucidate the impact of 

general non-equilibrium conditions, it is useful to express the crucial time-dependent 

quantities in terms of time-dependent relative deviations from conveniently chosen 

constants: 

∙ 1  (2.3)

0 ∙ 1  (2.4)

1 . (2.5)

These equations do not represent any approximations or truncated power series, but are 

general, exact decompositions of ,   and , the point of which is to 

characterise, rather than assume away, the non-ideal aspects of the population and test 

dynamics. More specifically:  is defined to capture the time dependence of the 

fractional deviation of incidence relative to the weighted incidence as defined in the 

period preceding 0;  is defined to capture the time dependence of the fractional 

deviation  of  the  susceptible  population  from  its  instantaneous  value  at  0; 

and  is defined as the probability of not surviving for at least a time  after 

infection. The averages, over the period of duration  preceding the survey, of products 

of . , .  and . , will be shown to summarise the effect of these deviations on 

incidence estimates. 

Particular	forms	for	an	incidence	estimator	

Incidence estimation involves expressing Equation (2.2) as a function of test 

characteristic parameters, and population states. The key link between the numerator and 

the population states is 

, (2.6)

where  is the size of the ‘recently’ infected population at 0 (Figure 2.1). Various 

authors have used different terms for the situation that 0 (Figure 2.1). These terms 

have included ‘misclassification’, ‘false-positivity’, ‘false-recency’, ‘imperfect long-term 

specificity’, the ‘long tail’ or ‘non-progression’ of the test for recent infection [16-21, 23, 

25, 146]. Formally, the increasingly used term false-recent rate, , given a cut-off , is 

defined in this work as the probability that a randomly chosen person infected for longer 

than time  will be classified as ‘recently’ infected by the recent infection test. 
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A variety of approaches may be used for estimating the area . For example, 

∙

∙ , (2.7) 

where 

, (2.8)

and the areas  and  represent the current population infected for times less 

than and greater than , respectively, so that  is the size of the HIV-

positive population.  

By inspection of Figure 2.1,  

d . (2.9)

Using the parameterisation in terms of the dimensionless . ,  . ,  and .  

introduced earlier, this gives: 

 0 1 1 1 d  

	 0 ∙ 1 , (2.10)

where the (also dimensionless)  terms capture the consequences of the time-dependence 

of ,  and : 

1
d (2.11)

1
d

(2.12)

1
d

(2.13)

1
d

(2.14)

1
d

(2.15)

1
d

(2.16)
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1
d . 

(2.17)

These  corrections may be positive or negative, but  is always non-positive. 

Substituting into Equation (2.6) the expression for area  given by Equation (2.7), and 

then the expression for area  given by Equation (2.10), the numerator becomes: 

0 ∙ 1 . (2.18)

In the denominator of Equation (2.2), 

 d  

	 0 1 d  

0 Ω ∙ 1 , (2.19)

where  

Ω d  

d , (2.20)

and 

1
Ω

d . (2.21)

The mean duration of recent infection, Ω , thus defined, given a cut-off , is the 

average time spent both alive and ‘recently’ infected, within a time  post infection.  

Substituting into Equation (2.2) the expressions for the numerator, given by 

Equation (2.18), and the denominator, given by Equation (2.19), gives: 

∙ 1 ∑

Ω ∙ 1
. (2.22)

The right-hand side of this expression contains not only the mean duration of recent 

infection, Ω ; the false-recent rate, ; and the uninfected, ‘recently’ infected and ‘non-

recently’ infected populations at 0, 0 ,  and , respectively, where 
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; but also the weighted incidence, , itself. Rearranging and solving for 

 yields 

∙ Ω
∙ 1 , (2.23)

where the equation 

Ω
Ω

∙
Ω

 (2.24)

contains all the details that cannot be directly evaluated from an experimenter’s point of 

view. 

Using the sample counts of uninfected, ‘recently’ infected and ‘non-recently’ infected 

subjects at 0 , ,  and , respectively, where , a simple 

estimator of weighted incidence, with relative (fractional) error , is obtained: 

∙ Ω
. (2.25)

By using definitions of the test characteristics (Ω  and ), which are subtly different 

from those used previously [11, 16, 17, 24, 25, 146], an incidence estimator is thus 

obtained in which multiple transitions between ‘recently’ and ‘non-recently’ infected 

states are allowed, and no assumption is required about the independence of progression 

through the ‘recent’/‘non-recent’ states and post-infection survival (see [23] for a 

comparison of previously proposed incidence estimators). This estimator caters to 

completely general recent infection test dynamics. Bias arising from a non-constant 

incidence or susceptible population (in the period  before the incidence study) or 

imperfect survival (for  after infection) is fully described by , and further discussed 

below. 

The functional form for the estimator in Equation (2.25) can be obtained directly by 

assuming the system is in demographic and epidemiological equilibrium [146]. The 

present analysis shows that, when the system is away from equilibrium, in particular 

when incidence is not close to constant, this functional form provides an estimate of a 

particular weighted average of recent incidence, with a fractional bias . In Section 2.2.1, 

the structure and meaning of the terms in Equation (2.24) for  are discussed, and the bias 

is computed in model scenarios. 
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The  term, closely related to a bias implicit in all previously proposed estimators [23, 

25], is zero when the susceptible population is constant for  preceding the survey, but a 

time-dependent susceptible population imposes a fundamental limitation to cross-

sectional incidence estimation. This highlights a key motivation for introducing  – 

namely to decouple the short-term dynamics of the test for recent infection from any 

long-term dynamics (which become convolved with the epidemiology and demography).  

The remaining  terms appear only in conjunction with two further multiplicative factors: 

(i) the fraction, dominated by  and Ω , which would perhaps typically have a value 

close to two, and (ii) a factor of . Therefore the estimator can yield a weighted 

incidence as accurate as desired if  is sufficiently small, even when incidence and 

survival are varying substantially over the timescale set by . It is already well known 

that informative incidence estimation requires that  be small [10, 11, 25, 147], and 

developers of tests for recent infection are seeking new technologies and algorithms to 

achieve this [86, 95]. 

Ultimately, the utility of a test for recent infection lies in its ability to produce accurate 

and precise incidence estimates. The expectation value and variance of the incidence 

estimator are approximated in Section 2.2.2. The uncertainty in the estimator, and its 

dependence on the test characteristics, is context-specific, depending on the history of 

HIV incidence and prevalence in the study population. The precision of the estimator 

improves with increasing mean duration of recent infection and with decreasing false-

recent rate. This trade-off has been previously noted [11], with the additional subtlety in 

the present analysis that the choice of  and the test characteristics are intrinsically 

related.4  

As noted in the introduction, the choice of  is theoretically arbitrary, but given the 

dynamics of available and foreseeable tests for recent infection, it will need to be around 

a year (or more). This implies a ‘shadow’ [15, 27] of about (but probably comfortably 

less than) half a year. This is considerably smaller than ‘shadows’ substantially exceeding 

one year, as obtained for a number of realistic scenarios considered by Brookmeyer [27] 

___________________________ 

4 The use of the precision of the incidence estimator, as a standard metric for assessing the trade-
off between the false-recent rate and mean duration of recent infection, was formally outlined in 
later work, and is discussed in Chapter 6. 
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when using the original one-parameter incidence estimator [7], and indeed implies less 

temporal bias or blurring than incurred in a cohort followed up for one year. 

Estimation	of	test	characteristics	

As with any method aiming to infer incidence from the cross-sectional application of a 

recent infection test, use of the newly derived estimator requires measuring some 

characteristics of the test ahead of its application in the surveillance context. This test 

characterisation should be performed as locally as feasible, because test performance may 

be context-specific [131]. The false-recent rate, , and the mean duration of recent 

infection, Ω , are intuitively close to previously proposed definitions [11, 16, 17, 24, 25, 

146]. However, the definitions of the test characteristics emerging from this work allow, 

for the first time, arbitrary and complex test dynamics to be exactly captured. The 

estimation of each of the characteristics is briefly discussed below, with a slightly more 

technical discussion provided in Section 2.2.3.  

The false-recent rate, , would ideally be estimated by the proportion of ‘recently’ 

infected subjects in a representative sample of individuals infected for longer than . It is 

also conceivable that  could be estimated from a combination of convenience samples, 

knowledge of the dynamics of anomalous subpopulations (who persist in, or return to, the 

‘recent’ state despite being infected for a time greater than ) and knowledge of the 

embedding demography and epidemiology. 

The mean duration of recent infection emerges as naturally in longitudinal surveillance 

settings (where well-pedigreed biological specimens may be obtained repeatedly over 

time) as it does in the context of cross-sectional incidence estimation analysed above. An 

idealised experiment, which revisits initially HIV-negative persons after a time equal to 

the post-infection time cut-off  , and counts the frequency of ‘recent’ results in those 

who have become HIV-positive, provides a direct estimate for Ω , assuming a uniform 

distribution of infection times over the inter-test interval (and negligible mortality within 

 post infection).5 Specifically, the ratio Ω / 	is the probability that a seroconverter is 

‘recently’ infected. This idea can be expanded to account for varying inter-test intervals, 

___________________________ 

5  The methodology for estimating the mean duration of recent infection using only specimens 
drawn at subjects’ first HIV-positive visits, and when inter-test intervals may be large, was 
formalised and demonstrated in earlier work, which is presented in Chapter 3. 
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depending on available data and knowledge of the dynamics of the test for recent 

infection, with an example of such an extension provided in Section 2.2.3.  

More traditionally, measurement of the mean duration of recent infection has been based 

on the frequent follow-up and recent infection testing of seroconverters. A form of 

survival analysis or regression can then be used to characterise the time taken to exit the 

‘recent’ state or the evolution of the biomarker over time after infection, respectively, 

thereby estimating the mean duration of recent infection.6  

Demonstration	of	methodology	using	simulated	data	

Having derived this new, general incidence estimator, and having outlined potential 

approaches for estimating the required test characteristics, implementation of the full set 

of analyses to infer incidence is demonstrated using simulated data.  

Assuming a particular epidemiological and demographic history, post-infection survival 

function, and dynamic for the test for recent infection, one thousand simulations were 

performed, each producing (independent) datasets to (i) estimate the false-recent rate, ; 

(ii) estimate the mean duration of recent infection, Ω ; and (iii) provide sample counts to 

infer incidence, , using the incidence estimator in Equation (2.25). 

The generation of the datasets and the maximum likelihood estimation of the test 

characteristics are described in Section 2.2.4. Asymptotic normality of maximum 

likelihood estimators (using estimated characteristics as proxies for true values) was used 

to approximate distributions for the estimated parameters and to obtain confidence 

intervals. Confidence intervals for incidence were then based on these results, the 

approximate normality of the trinomial sample counts (with sample statistics 

approximating population parameters), and the approximate normality of the incidence 

estimator and its estimated variance as provided in Section 2.2.2. As summarised in 

Table 2.1, almost exactly 95% of the one thousand thus generated 95% confidence 

intervals (one for each of the datasets) contained the relevant population parameter used 

in the simulation, demonstrating the numerical consistency of the full set of analyses.  

___________________________ 

6  Methods for estimating the mean duration of recent infection from longitudinal data obtained by  
following (initially HIV-negative) subjects over time were systematically explored in later work, 
and results are presented in Chapter 4. 



A General Theoretical Framework for Incidence Inference  28 

Parameter Input valuei Average point 

estimate 

Average CI 

widthii 

CI coverageiii 

 2.5% 2.52% 1.93% 95.5%

 160 days 160.56 days 17.96 days 93.6% 

 2% 1.98% 1.38% 94.6%

i The true parameter value, as input into the data simulator 
ii Average width of realised 95% confidence intervals 
iii Percentage of realised 95% confidence intervals containing the true parameter value 

Table 2.1: Observed 95% confidence interval (CI) coverage of parameters using 
simulated data 
Simulated datasets were used to validate the methodologies presented for estimating test 
characteristics and incidence. For each parameter, namely the false-recent rate  (%), 
mean duration of recent infection Ω  (days) and incidence  (% per annum), 1 000 point 
estimates and confidence intervals were obtained (the chosen modelled scenario and 
estimation methods are described in the main text above and Section 2.2.4), for 450 
days. The true parameter value, average point estimate, average 95% confidence interval 
(CI) width and CI coverage (%) are tabulated. 

2.1.3 Discussion	

The use of tests for recent infection to infer incidence is of considerable and increasing 

interest, especially for HIV surveillance. It is a fundamental limitation that all currently 

available (and perhaps all conceivable) tests with a mean duration of recent infection that 

is long enough for statistical robustness also classify some individuals as ‘recently’ 

infected at arbitrarily large times after infection. If there were no such ‘false-recent’ 

results, the use of recent infection tests for incidence estimation would be straightforward, 

as shown, for example, by Brookmeyer and Quinn [7]. Various methodological advances 

to accommodate a non-zero ‘false-recent rate’ have attracted attention, but consensus has 

not emerged on the best approach. Previous derivations of incidence estimators have 

relied on strong assumptions: perhaps most crucially that the ‘false-recent rate’ is an 

innate property of the test, rather than a convolution of test properties with the 

demographic and epidemiological context. This assumption is known to be substantially 

violated. 
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A formal approach is presented above for summarising an arbitrarily complicated recent 

infection test dynamic into two parameters, namely a mean duration of recent infection 

and a false-recent rate. A crucial construct is the introduction of a timescale , describing 

the dynamic range of ‘recent’ infection. The consequence of relaxing the assumptions 

made by the incidence estimators developed previously is that demography and 

epidemiology are no longer perfectly separated from test characteristics, reflecting 

fundamental limitations to the inference of rates from instantaneous population states. If 

the false-recent rate is very close to zero, the limitations imposed by a non-zero false-

recent rate become minor and its variation over time and place is restricted.  

The present analysis offers the opportunity to consistently account for imperfect accuracy 

and precision of the incidence estimator. The utility of the estimator may be assessed in 

terms of changes in incidence and the susceptible population over the preceding period of 

duration , the probability of survival over  post infection, and the characteristics of the 

recent infection test. The cross-sectional incidence estimator will be informative at 

feasible sample sizes, in a given context, for a suitably well-behaved test, that is, a test 

with a suitably long mean duration of recent infection and low false-recent rate. 

The approach presented here is broad enough to recover previously-proposed estimators, 

with minor modification. It also clarifies the use of estimators that do not account for 

‘false-recent’ results at all. Setting  to a very large value forces the false-recent rate 

arbitrarily close to zero, and the one-parameter estimator of Brookmeyer and Quinn [7] is 

obtained. The properties of the test are then summarised by the mean duration of recent 

infection. However, this mean duration, which is now the average time spent alive and 

‘recently’ infected, is considerably more difficult to measure and more likely to change 

over time than one based on individual durations that are each explicitly limited to . 

Also, a large  (effectively infinite, if  is not explicitly introduced) leads to a weighting 

scheme for averaging incidence that extends far back into the past. For heuristic purposes, 

the weighted incidence that emerges from the use of a realistically available test and a 

judicious choice of  can be viewed as a good proxy for the uniformly-weighted mean 

incidence in the period of duration Ω  preceding the survey. One may consider whether 

there is any benefit in using additional parameters to characterise the dynamics of the test 

for recent infection [97]. Incidence inference would then be based on a more complex 

distribution of test results than counts of ‘recent’ and ‘non-recent’ cases. Section 2.2.4 

presents a brief argument that suggests this approach has limited prospects. 
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Relaxing all formal assumptions about the dynamics of a putative test for recent infection 

and the demographic and epidemiological context leads to an estimator that substantially 

increases the robustness of incidence estimation based on cross-sectional surveys using 

tests for recent infection. The general analysis leads to a clearer characterisation of the 

utility of the estimator than previously possible. While the analysis is fundamentally 

novel, the resulting estimator has similarities to some previously published estimators 

[24, 25]. These similarities imply that, intuitively, the crucial concepts of a false-recent 

rate and mean duration of recent infection are substantially retained. Numerically, the 

improvement in incidence estimates implied by the new estimator will vary with context.  

While the motivation for this work has been to improve our capacity to estimate HIV 

incidence, the methodology is general, and the approach could be applied to estimate 

incidence of other incurable conditions, such as herpes simplex virus. Future studies 

should examine the application of the methodology to a wider range of diseases, with the 

practical challenge being the development of suitable tests for recent infection.  

2.1.4 Conclusion	

For incurable conditions such as HIV, where prevalence emerges as a slow convolution 

of historic incidence with survival and the dynamics of the susceptible population, 

changes in prevalence are a poor proxy for recent incidence. Estimating incidence from 

cross-sectional surveys has many potential advantages over using longitudinal studies, 

and has attracted much interest in recent years, particular in the HIV context. However, 

previously proposed HIV incidence estimators have been derived under conditions of 

epidemiological and demographic equilibrium, or specific assumptions about the recent 

infection test dynamics, or both. These assumptions are known to be violated in many 

settings, and this has diminished the practical utility of previous methodologies.  

In this article, biomarker-based incidence estimation, which uses data obtained in cross-

sectional surveys, is consistently adapted to a general context. The generalisation implies 

that the strong assumptions about epidemiological and demographic history and 

biomarker dynamics required by previous estimators are no longer necessary for valid 

incidence estimation. Our new estimator thus substantially improves and clarifies the 

utility of tests for recent infection for estimating disease incidence. The familiar practical 

challenge remains – to make available ever better, and better characterised, tests for 

recent infection.  
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2.2 Ancillary	Explorations	of	the	
Incidence	Estimator	

2.2.1 Bias	of	the	Incidence	Estimator	

Bias	arising	from	epidemiological	and	demographic	properties	of	

the	population	

In Section 2.1, the following explicit weighted average of incidence over the preceding 

period  was defined: 

d

d
, (2.26)

where the, possibly time-dependent, incidence is given by , the susceptible population 

by , and  is the probability of being alive and ‘recent’ at time  post infection. 

This weighted incidence was shown to be: 

∙ Ω
∙ 1

Ω
Ω

∙
Ω

, (2.27)

where the population at 0 is decomposed into 

  = ‘recently’ infected population,

  = ‘non-recently’ infected population, and

  = uninfected or susceptible population;

the characteristics of the test for recent infection is captured by 

 the false-recent rate, , which is the proportion of ‘recently’ infected individuals

among individuals infected for times greater than , and

 the mean duration of recent infection, Ω 	d , which is the average 

time alive and returning a ‘recent’ result, while infected for times less than ; 

the subscripted  terms capture non-equilibrium epidemiological/demographic conditions 

for a period of duration  preceding the cross-sectional survey (performed at 0) and 

imperfect survival until  post infection, 

 	d , 

 	d , 
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 	d , 

 	d , 

 	d , 

 	d , 

 	d , and 

 	 , 

where  is the probability of being alive at time  post infection; and the time-

dependencies of ,  and  are captured by the deviations ,  and 

, respectively, 

 ∙ 1

 0 ∙ 1 , and

 1 .

The relative bias of the estimator from the exact weighted incidence is therefore 

Ω
Ω

∙
Ω

. (2.28)

A general discussion of the structure and the meaning of the terms that make up the 

relative bias, , is now provided (elaborating on the discussion in the previous section), 

and the bias is quantified and explored in some model scenarios.  

The 	term is zero when the susceptible population is constant for a period of duration  

preceding the survey. If the susceptible population is varying considerably, the incidence 

estimator would be substantially biased by the  term. For example, if the susceptible 

population is increasing (decreasing) over the preceding period , the weighted incidence 

is expected to be underestimated (overestimated) by this demographic dynamic, although 

the overall net bias will also depend on changes in incidence, post-infection survival and 

the characteristics of the test for recent infection. 

This potential for bias highlights a key motivation for introducing , rather than defining 

recent duration simply through the function  – namely to decouple the short-term 

dynamics of the test for recent infection from any long-term dynamics which become 

convolved with the epidemiology/demography. Reducing , and therefore averaging over 

a much shorter period, would tend to reduce the magnitude of the  correction terms, but 
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ultimately erode the statistical power of incidence estimation by making the test-defined 

‘recent’ state more transient and difficult to measure with confidence at realistic sample 

sizes. 

The  and  terms are closely related, both representing (variously weighted) average 

deviations of the susceptible population over the preceding period of duration  from its 

current size, with  typically expected to be smaller in magnitude than . 

The  terms, 	 	1, 2, … ,7, appear only in conjunction with two further multiplicative 

factors: (i) the fraction, dominated by  and Ω , which perhaps typically has a value 

close to two, and (ii) a factor of . Therefore, the estimator can yield a weighted 

incidence as accurate as desired if  is sufficiently small. For an ideal test for recent 

infection – that is, a test for which  reaches and remains at zero for  larger than the 

time over which incidence is to be averaged (a time much shorter than post-infection 

survival) – there is no need to explicitly introduce  into the analysis. In that case, the 

false-recent rate is effectively zero and a one-parameter incidence estimator is obtained. 

Since the  terms ( 1,2, … ,7) are then multiplied by the factor 0, a consistent 

estimate (unbiased in the limit of large sample size) of the weighted incidence is obtained 

in the case of a constant susceptible population. 

Therefore, bias introduced by a varying incidence (for example, in a population with an 

outbreak of HIV cases, or experiencing a successful prevention intervention) or imperfect 

survival until  post infection (although likely to be negligible) may be suppressed by 

forcing the false-recent rate close to zero.  

Under typical epidemiological conditions and in the applicable regimes of utility, the 

deviations . , .  and .  are expected to be much less than 1. Therefore,  

to  are expected to be smaller in magnitude than  to .  

It is worth noting that the deviations, . , .  and . , and resulting  correction 

terms, playoff against one another in a complex way, and could together compound the 

bias or bring it cumulatively closer to zero (compared to the bias arising from any one 

deviation or  term considered in isolation). 

In the model scenarios described below, the susceptible population and incidence vary 

over the preceding period of duration , and the exact relative bias was calculated. The 

estimation of the approximate magnitude of the bias, from the point of view of the 



A General Theoretical Framework for Incidence Inference  34 

experimenter, is also briefly considered. The Matlab code that was produced for the 

investigation below is provided in Appendix B.1. 

Two model scenarios (termed Scenarios 1 and 2) were considered, corresponding to 

increasing and decreasing incidence, respectively, during the period preceding the cross-

sectional incidence estimation at 0 (with t measured in years): 

1. Incidence increased linearly over the preceding year, from 1% to 0 , where

0  was varied from 1% to 5% (corresponding to a percentage increase in

incidence of 0% to 400% over the year).

2. Incidence decreased linearly over the preceding year, from 1  to 1%, where

1  was varied from 1% to 5% (corresponding to a percentage decrease in

incidence of 0% to 80% over the year).

Incidence was constant prior to the specific changes noted. 

In each scenario, the susceptible population changed exponentially over time, with the 

annual growth rate ranging from -10% to 10%, and a susceptible population of 

one million individuals at 0.  

The timescale  was set to 1 year, and the following survival and test dynamics were 

assumed: 

 Post-infection survival times followed a Weibull distribution, with a coefficient

of variation of 50% and mean post-infection survival of 8 years.

 The probability of being ‘recently’ infected, conditional on being alive, linearly

decreased from 100% to some constant, between 0.25 years and 0.75 years post

infection, and remained at that constant.

The probability of being both alive and ‘recently’ infected, at time  post infection, 

, equals the product of the probabilities of being (i) alive; and (ii) ‘recently’ 

infected, conditional on being alive; at time  post infection. By construct, the false-

recent rate, , equals the constant probability of being ‘recently’ infected, conditional on 

being alive, for times post infection greater than 1 year. Scenarios 1 and 2 were each 

further split into two sub-scenarios, namely corresponding to a low false-recent rate of 

1% (Scenarios 1A and 2A) and high false-recent rate of 5% (Scenarios 1B 

and 2B) respectively. Under the assumptions above, the mean duration of recent 

infection, Ω , is 184 days for Scenarios 1A and 2A, and 192 days for Scenarios 1B 

and 2B. 
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The population states at 0  (sizes of the uninfected, ‘recently’ infected and ‘non-

recently’ infected populations, 	 ,  and , respectively, where ) 

were calculated based on the described epidemiological/demographic history, survival, 

and test dynamics.  

The relative bias, , of the estimator from the true weighted incidence, is shown as a 

percentage in the contour plots in Figure 2.2, for each of the Scenarios 1A, 1B, 2A 

and 2B: 

 Even in the extreme cases, of atypically large changes in the susceptible

population and/or incidence, the expected value of the incidence estimator

remains within about 5% of the weighted incidence (for example, the expected

value lies within 1.9% and 2.1% per annum when the true weighted incidence is

2% per annum).

 The probability of dying within  post infection is less than 1%, and so imperfect

survival contributes negligible bias, and, when the percentage annual growth in

the susceptible population is 0% and the change in incidence is 0%, the bias is

undetectable.

 When the susceptible population and/or incidence experience non-zero change,

the  corrections become non-zero and bias is introduced. For example, with a

false-recent rate of 5% and increasing incidence (Scenario 1B), for a 200%

growth in incidence (from 1% to 3%) and 2% annual growth in the susceptible

population, the fractional error is 1.25%. While the exact weighted incidence is

2.42%, the expected estimated incidence is 2.45%.

 Since  is a factor that suppresses the bias from the non-zero  terms, the biases

in Scenarios 1A and 2A (the low false-recent rate scenarios) are expected to be

generally smaller than those in Scenarios 1B and 2B (the high false-recent rate

scenarios), respectively.

 The  corrections playoff against one another to either build-up or reduce the

cumulative bias, just as the deviations . , .  and .  or their products

average out in different ways to increase or decrease the magnitude of each

 term. Also, perhaps more subtly, .  describes the time-dependent deviation

of incidence from the exact weighted incidence, which itself depends on how

incidence, the susceptible population, and the probability of being ‘recently’

infected and alive over time post infection all vary. This complicated interaction

between all the crucial functions to produce the overall bias is evident in
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Figure 2.2, where, even though the susceptible population and incidence are 

varying, there are contours of zero error. 

Figure 2.2: Relative bias of estimator from weighted incidence in modelled scenarios 
The exact relative bias (%) of the incidence estimator is calculated for each of four model 
scenarios, as a function of susceptible population growth rate and change in incidence. In 
Scenarios 1A and 1B, incidence increases linearly over the preceding 1  year, 
beginning at 1% per annum, while in Scenarios 2A and 2B, incidence decreases linearly 
over that time to 1%. Post-infection survival follows a Weibull distribution (mean of 
8 years, coefficient of variation of 50%), and the probability of testing ‘recently’ infected, 
conditional on being alive, decreases linearly from 100% to either 1 % (Scenarios 1A 
and 2A) or 5% (Scenarios 1B and 2B) between 0.25 years and 0.75 years post infection. 
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The experimenter may use more limited knowledge of the study population and its history 

to estimate the magnitude of bias of the incidence estimator, and to understand whether a 

study is in a regime of utility. There should be some data on whether there is potentially 

considerable time-dependence in the susceptible population or incidence, or notable post-

infection mortality, in the study population, for the relevant timescale set by : 

 Should the experimenter believe that the susceptible population is varying

substantially over the preceding period of duration , the magnitude of  could

be estimated, and this correction would likely dominate the bias (due to the

remaining correction terms carrying a factor of ). The  term, also describing

the average deviation of the susceptible population from its current size, would

typically be larger in magnitude than , and therefore provides an indication of

the size of the  term. For example, for 1 year, estimating a 2% annual

growth rate in the population, the experimenter may consider 0.01 to be a

conservative estimate of the magnitude of  ( 0.0098 for a population

growing exponentially at 2% per annum).

 The 	correction would typically be small as it measures the uniformly averaged

deviation of incidence, over the preceding , from an alternatively weighted (by

) average incidence over the same period. Estimating a large 200%

increase in incidence over the last year, the experimenter may consider 0.2 to be a

conservative estimate of the magnitude of  ( 0.1725 for a 200% increase

in incidence, from 1% to 3%, and a 2% annual growth in the susceptible

population, in Scenario 1B).

 Given multiplication of the  term by a factor of around unity in the relative

error, , and multiplication of the  term by two factors, one close in value to

two and the other equalling , an initial estimate of the magnitude of relative

bias, assuming negligible 1  year post-infection mortality, could be

0.01 2 5% 0.2 0.03	for a false-recent rate of approximately 5%. This is

conservative compared to the exact relative error calculated in Scenario 1B, of

magnitude 0.0125.

The estimation of the magnitude of bias, by the experimenter, could be tackled with 

increasing sophistication and detail, depending on the available data – although probably 

with diminishing returns beyond an elementary calculation such as outlined. The ad-hoc 

example demonstrates that the experimenter should reasonably be in a position to 

understand the magnitude of bias and relate the regimes of utility to the current analysis, 
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keeping in mind the inherently imperfect reproducibility in the incidence estimator 

(approximated in Section 2.2.2). In short, whenever cross-sectional incidence estimation 

is at all informative, bias will be small compared to variance. 

Other	factors	impacting	the	incidence	weighting	function	

The exact weighting function, , is never exactly known, as it involves 

complete knowledge of the dynamics of the test for recent infection, rather than merely a 

mean duration of recent infection. For practical purposes, the estimator of this work is a 

useful proxy for a uniformly-weighted mean incidence over the preceding period Ω .  

Sensitivity and specificity of the ‘diagnostic’ test used to identify HIV-positive 

individuals may be imperfect. In particular, sensitivity will change rapidly from zero to a 

value close to one over a short period post exposure, and thus be highly correlated with 

status on the recent infection test. In the limit that sensitivity approaches unity at some 

time post exposure, even when incidence is varying, the analysis remains consistent if the 

weighting  is understood to apply to the rate of detectable infection events – 

which differs from the weighting of underlying exposure events by an epidemiologically 

irrelevant delay – and requires only consistent estimation of the mean duration of recent 

infection.7 If there is correlation between diagnostic delay and the duration of ‘recent’ 

infection, this delay may involve a slight time-dependent blurring, rather than a pure time 

translation, but none of this changes the previously noted heuristic that the estimator is an 

excellent proxy for the uniformly-weighted mean incidence over the period Ω  preceding 

the survey.  

In HIV diagnostics, levels of sensitivity and specificity are exceptionally high, but if 

indeed this analysis were to be contemplated for a context where there is substantially 

imperfect diagnostic performance over the full lifetime post infection, and non-trivial 

correlation with status on the recent infection test, it may warrant further investigation to 

see whether the diagnostic is preferentially misclassifying individuals in the ‘recent’ 

versus ‘non-recent’ categories. 

___________________________ 

7 Estimation of the mean duration of recent infection, using a definition of ‘infection time’ that is 
consistent with the HIV diagnostic algorithm used in the surveillance survey, is further discussed 
in Section 4.3. 
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If the field work for a nominally ‘cross-sectional’ survey takes an extended period of 

time, comparable to Ω , this would introduce additional temporal blurring of the estimate. 

In the limit of fieldwork carried out over a much longer time than Ω , the resulting 

incidence estimate essentially averages incidence over the period of fieldwork rather than 

over the duration of ‘recent’ infection. 

2.2.2 Moments	of	the	Incidence	Estimator	

Using the delta method [148] together with assumptions of Gaussian uncertainty in the 

sample counts and estimated characteristics of the test for recent infection, the moments 

of the incidence estimator are approximated (see Appendix A.1 for a summary of the 

delta method and its application in this work). The key results are listed, and the 

assumptions and derivation provided thereafter. 

By Equation (2.25), the incidence estimator is: 

∙ Ω
, (2.29)

where ,  and  are the counts of uninfected, ‘recently’ infected and ‘non-recently’ 

infected individuals in the cross-sectional sample at 0 , , and the 

characteristics of the test for recent infection, namely the false-recent rate, , and mean 

duration of recent infection, Ω , would need to be estimated. The test characteristics are 

typically estimated in separate studies conducted prior to the cross-sectional incidence 

study, though a combined study design, applicable under more restrictive assumptions, 

has been proposed [93, 149]. 

Consider the problem of calculating the mean and the variance of the incidence estimator, 

for a cross-sectional survey of sample size . Let ,  and 	be the 

true population proportions of uninfected, ‘recently’ infected and ‘non-recently’ infected 

individuals. Let  be the standard deviation of the unbiased estimator for the mean 

duration of recent infection Ω , and  be the standard deviation of the unbiased 

estimator for the false-recent rate . Then the expected value of the incidence estimator 

is 

∙ Ω
(2.30)
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and the variance is 
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(2.31) 

The coefficient of variation (ratio of standard deviation to mean) of the incidence 

estimator is c, where: 
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∙ Ω
. (2.32) 

From this, it is possible to formally explore the trade-off between test characteristics: test 

developers need to find biomarkers for recent infection which have a suitably large mean 

duration  of  recent  infection  and  a  suitably  small  false-recent  rate.8 Note  that  the 

variability of the incidence estimator inflates as the terms Ω  and  

∙ 	,  which  occur  in  denominators  above,  become  small.  Hence, 

definitions of recent infection, such as being antibody negative while viral RNA or p24 

antigen positive (commonly referred to as ‘acute infection’) are of little use for incidence 

estimation at the population level as the mean duration of recent infection is too short. 

___________________________ 

8  The use of the precision of the incidence estimator, as a summary metric for formally assessing 
the trade-off between the false-recent rate and mean duration of recent infection, was further 
explored in later work, and is presented in Chapter 6. 
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The above results were derived by first assuming Gaussian uncertainty in both the sample 

counts (of uninfected, ‘recently’ infected and ‘non-recently’ infected subjects, ,  and 

, respectively) and estimated test characteristics (estimated mean duration of recent 

infection, Ω , and estimated false-recent rate, ). This allows the counts and estimated 

parameters to be expressed as: 

 ,

 , , ,

 , , ,

 Ω 	Ω α Ω 	, and

 	 ,

where 

 ∙ 1 	,

 , 

 , 

 ,
	

	, 

and , ,  and  are identically and independently distributed standard normal 

random variables. 

The incidence estimator was then expressed as a function of the  ( 1,2,3,4), and a 

multivariate Taylor series expansion around 0   ( 1,2,3,4 ) was constructed. 

Taking the expected value and variance of this series, retaining powers of  of up to 1, 

led to the results in Equations (2.30) to (2.32). 

The approximation and distributional assumptions are highly accurate in their handling of 

counting error when characteristics of the test for recent infection are known. This was 

verified numerically: assuming a constant historical incidence and a constant prevalence 

to incidence ratio of HIV, as well as known test characteristics, the population 

proportions were calculated and the coefficient of variation of the incidence estimator 

computed by directly enumerating all possible trinomially distributed survey counts. Even 

with a small sample of 100 , the maximum error in the coefficient of variation 

obtained using the delta method (that is, the absolute difference between the 

approximated and actual coefficient of variation) is 0.017 for all combinations of 

incidence in [0.1%,3%], prevalence to incidence ratio in [2,10], Ω 	in [100,300] days and 
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 in [0%,15%]. Matlab code to perform this investigation is provided in Appendix B.2, 

and could be used to explore other regimes of interest. 

The assumption of Gaussian uncertainty in the estimated test characteristics is heuristic, 

and it is difficult to ascertain the accuracy of the approximation provided. When the false-

recent rate is very close to zero, it is likely that a normal distribution will provide a poor 

approximation for the distribution of its estimator, and more sophisticated methods of 

error propagation should be investigated.  

2.2.3 Estimation	of	Test	Characteristics	

The parameters that have been identified to describe the characteristics of the test for 

recent infection required to infer incidence (namely, the false-recent rate, , and the 

mean duration of recent infection, Ω ) are intuitively close to those previously proposed. 

The estimation of the characteristics, demonstrating their emergence in longitudinal 

surveillance settings, is discussed below. 

The	false‐recent	rate	

The false-recent rate, , is the proportion of ‘recently’ infected individuals among 

individuals infected for a time greater than .  

Therefore, the binomial maximum likelihood estimator for  is: 

, (2.33)

where  is the number of ‘recently’ infected individuals in a representative sample of  

individuals infected for longer than . 

It would also be possible, although probably more challenging, to estimate  from a 

combination of convenience samples, knowledge of the dynamics of anomalous 

subpopulations (who persist in or return to the ‘recent’ state despite being infected for a 

time greater than ) and knowledge of the embedding demography/epidemiology. 
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The	mean	duration	of	recent	infection	

The mean duration of recent infection, Ω , is the average time spent alive and ‘recently’ 

infected while infected for times less than .  

In an idealised experiment, which revisits initially HIV-negative individuals after a 

time equal to the post-infection time cut-off  and counts the frequency of ‘recent’ results 

in those who have become HIV-positive, a direct estimate for Ω 	is provided, assuming a 

uniform distribution of infection times over the inter-test interval of duration  (and 

negligible mortality within  post infection).9 More specifically, the ratio Ω /  is the 

probability of a seroconverter providing a ‘recent’ result on the first HIV-positive test, 

and therefore the binomial maximum likelihood estimator for Ω  is: 

Ω , (2.34)

where  is the number of ‘recently’ infected subjects in the group of  subjects who are 

HIV-positive at follow-up. Such a study would probably need to be prohibitively large to 

capture a reasonably large sample of seroconverters, but it is worth noting that no 

additional input parameters are needed in the estimation, overcoming a key obstacle of 

unknown input parameters to the estimation of previously-defined mean durations of 

recent infection [31]. 

This idea can be further developed to account for varying inter-test intervals, depending 

on available data and knowledge of the dynamics of the test for recent infection. As an 

example, a method of maximum likelihood is outlined below for estimating Ω  from data 

capturing recent infection test classifications at the times of the first HIV-positive tests 

(that is, when there is no follow-up of HIV-positive subjects), and there are varying but 

large intervals between last HIV-negative and first HIV-positive tests, utilising 

assumptions about test dynamics at times post infection in the vicinity of .  

___________________________ 

9 The estimation of the mean duration of recent infection using only specimens drawn at subjects’ 
first HIV-positive visits, and when inter-test intervals may be large, was formalised and 
demonstrated in earlier work, which is presented in Chapter 3. 
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In general, the probability, , that the th seroconverter, with inter-test interval Δ , returns 

a ‘recent’ result at the time of the first HIV-positive test is: 

d
∆

, (2.35)

where  is the probability density of getting infected at time  before the first HIV-

positive test and  becomes the probability of being ‘recently’ infected when tested 

at time  Δ  after infection, assuming no mortality for at least time Δ  post infection. 

More specifically, for a sample of subjects who have inter-test intervals between  and  

( Δ ), where  and   are chosen so that the probability of testing 

‘recently’ infected is constant at  for times post infection between  and ,  and 

assuming that infection times are uniformly distributed in inter-test intervals (that 

is, 	1/Δ  for all  such that ∈ Δ , 0 ),  becomes: 

 
1
∙ d d

∆
 

Ω ∙ ∆
∆

. (2.36)

The likelihood of the entire set of classifications (for all seroconverters) can then be 

maximised to estimate Ω . 

Traditionally, studies aimed at estimating the mean duration of recent infection often 

capture seroconversion panels, obtained from the frequent follow-up and recent infection 

testing of a relatively small sample of seroconverters. A form of survival analysis, or 

regression, can then be used to characterise the time taken to exit the ‘recent’ state, or the 

evolution of the biomarker over time after infection, respectively, thereby estimating the 

mean duration of recent infection.10 For a biomarker that monotonically increases over 

time after infection, what is often measured is the average time from infection to the 

biomarker response crossing a selected threshold (defining the transition from the 

___________________________ 

10  Methods for estimating the mean duration of recent infection from longitudinal data were 
systematically explored in later work, and results are presented in Chapter 4. The dangers of 
neglecting noise in a measured biomarker, by assuming that subjects have single continuous 
sojourns in the ‘recent’ state, implicit in all survival analysis approaches and methods that 
estimate times at which biomarkers ‘cross’ thresholds, are discussed in Chapter 4. However, 
such analyses have been used to estimate the MDRI, and are therefore described here for 
completeness. 
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‘recently’ infected to ‘non-recently’ infected state). Such data and methods may be 

related to estimation of Ω  by decomposing the parameter into two parameters,  and :  

Ω 1 , (2.37)

where  is the estimated time from seroconversion to threshold-crossing for those 

individuals who do so within  post infection, and  is the proportion of seroconverters 

whose responses are still below the selected threshold at time  post infection. 

In all approaches, the recent infection test classifications of subjects at follow-up are used 

to estimate the mean duration of recent infection. These classifications describe the 

probabilities of being in the ‘recent’ state at times post infection conditional on being 

alive at follow-up, which introduces a relative error in the estimation of Ω 	related to the 

size of 	(see Section 2.2.1). 

2.2.4 Simulation	and	Analysis	of	Test	Datasets	

As a further demonstration of the methods presented, 1 000 datasets were simulated and 

used to infer the characteristics of the test for recent infection and incidence, and results 

were presented in Section 2.1.2. The simulation of the datasets is outlined below. 

The model population and test dynamics were constructed so that, at 0 and for a time 

cut-off of 450 days,  

 HIV prevalence was 15%;

 weighted HIV incidence, , was 2%;

 the false-recent rate, , was 2.5%; and

 the mean duration of recent infection, Ω , was 160 days.

The probability of being alive and in the state of ‘recent’ infection at time 	post infection 

(measured in years) took the form: 

1 ⁄ for all  such that ∈ 0, , (2.38)

where 0.0167 , 	0.4707  and 3.7183 . This set of parameters ensures that 

Ω 160 days. It was assumed that there is no death prior to 600 days after infection. 

For each of 1 000 simulations, the following datasets were generated: 

1. A dataset for estimating ,  which consisted of binomially generated

classifications of 1 000 subjects, representing a random sample of individuals

infected for longer than 450 days, as ‘recently’ or ‘non-recently’ infected. In
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the estimation,  was measured using the maximum likelihood method 

described by Equation (2.33). 

2. A dataset for estimating Ω , which consisted of the recent infection test

classifications for 2 000 sampled subjects at their first HIV-positive tests, as well

as the subjects’ inter-test intervals (times between last HIV-negative and first

HIV-positive tests). Infection times for subjects were uniformly distributed in

their inter-test intervals. Inter-test intervals were generated from a uniform

distribution, with a support of 300 to 600 days. The parameter, Ω , was estimated

by maximising a likelihood function based on Equation (2.36), using

300	days, 600	days and the estimated false-recent rate as the input .

Although  and the false-recent rate are different in reality, this approximation is

likely to be made in practice. Uncertainty in the input , which has a true value of

1.67%, was neglected in estimation of Ω .

3. A dataset providing the sample counts for inferring incidence, that is, containing

the categorisations of 10 000 subjects, captured in a cross-sectional survey at

0, as uninfected, ‘recently’ infected or ‘non-recently’ infected. This dataset

was produced by calculating the proportion of the population in each of these

three states, based on being consistent with the constructions described above,

and generating classifications for the 10 000 subjects from a trinomial

distribution. The incidence estimator provided in Equation (2.25) was used to

infer incidence.

2.2.5 Prospects	for	Tests	Characterised	by	More	

Than	Two	Parameters	

There are a number of ways one may contemplate summarising test dynamics into a 

greater number of parameters. More complex characterisations of tests for recent 

infection are briefly considered below, and appear to offer limited prospects.  

If the objective of a survey is to provide a single weighted average of recent incidence, 

then the number of infections, in a specified recent period, is formally a ‘sufficient 

statistic’ [150] of this rate – that is, there is no additional benefit in knowing the times of 

occurrence of these infections. The estimation of the numerator in Equation (2.2) is very 

nearly the estimation of the number of infections in the last period Ω . This suggests that 

a finer breakdown, beyond counts of ‘recent’ and ‘non-recent’ cases, of the survey results 
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adds no significant accuracy for obtaining a single point estimate of incidence, though it 

may add significant imprecision. 

The characterisation of an ideal test for recent infection (one with a false-recent rate of 

zero), for the purpose of estimating incidence, requires no parameters other than the mean 

duration of recent infection. When the test exhibits ‘recent’ results at large times post 

infection, an additional parameter, namely a false-recent rate, may be introduced 

(together with the relevant timescale, , of ‘false-recent’ results) to describe this tail.  No 

assumptions about the dynamics of the ‘false-recent’ results are required. If the ‘false-

recent’ results are distributed over the dynamic range of values for the measured 

biomarker in a known, non-uniform manner, there may be a benefit to characterising this 

dynamic with additional parameters. However, it seems unlikely that the characterisation 

of this dynamic, or its statistically detectable manifestation in a survey, will be feasible, 

given the need for the false-recent rate to be very low. 

One final point that bears mentioning is that data from a single survey for a test for recent 

infection with a long dynamic range could in principle be used to yield multiple incidence 

estimates, using different recent/non-recent thresholds, and perhaps different values of . 

This would provide, from a single survey, multiple estimates of incidence, each with a 

subtly different weighting scheme. Given how difficult it is to provide even single 

incidence estimates, or to detect differences in incidence using data from separate 

surveys, the effective estimation of an incidence trend from a single survey would require 

daunting sample sizes and tests for recent infection of currently unrealised performance. 

2.3 Online	Resource	and	Analysis	
Tools	for	Practical	Application	

An online resource, maintained by the South African DST/NRF Centre of Excellence in 

Epidemiological Modelling and Analysis (SACEMA), was developed over the course of 

this project. The website, www.incidence-estimation.com, aims to provide users with 

both relevant theoretical background information and supporting analysis tools for HIV 

incidence estimation. Two approaches for estimating incidence are currently supported: 

(1) from cross-sectional surveys using test for recent infection, which is the focus of this 

work as further discussed below, and (2) from age-stratified HIV prevalence data 
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measured at multiple time points, for which methodology and tools were developed by 

other researchers [60]. 

The website’s landing page is captured in Figure 2.3. Users can then navigate to a 

theoretical review of the methodology, a set of analysis tools and an archive of related 

documents. Contact details are also supplied, and investigators from around the world 

have enquired about the applicability and tailoring of the methodology to their particular 

studies, and the choice of inputs for analysis tools and interpretation of outputs. A section 

of the website is dedicated to the Consortium for the Evaluation and Performance of HIV 

Incidence Assays (CEPHIA), facilitating both the consortium’s communication with the 

public, and the internal sharing of documents and data files (access is restricted to 

CEPHIA members). Updates are also regularly posted, describing latest developments in 

the field. 

The current suite of analysis tools, called Assay-Based Incidence Estimation (ABIE) v2.0, 

was developed to support application of the incidence estimation framework presented in 

Section 2.1. The suite provides users with various ‘calculators’, each performing a task-

specific statistical analysis. The toolset replaces and offers some advancements on 

ABIE v1.0, which was both based on the less general incidence inference framework of, 

and created by, McWalter and Welte [25]. 

The objective of ABIE v2.0 was increasing accessibility to the work, and therefore the 

tools were designed to be uncomplicated and user-friendly, allowing a range of potential 

users (such as test developers, individuals designing studies or HIV programme 

managers, and data analysts) to more easily move from the theoretical discourse to 

practical application. The calculators are in the form of Microsoft Excel spreadsheets, 

providing an interface that is familiar to many. All calculations and statistical tests are 

performed using simple closed-form approximations (if not exact solutions) and the most 

straightforward test statistics (differences and ratios of incidences estimates) respectively. 

While the spreadsheets are protected to prevent any accidental modifications of formulae, 

users can unlock the spreadsheets to view all underlying calculations or even purposefully 

tailor the tools to better suit their specific needs. A diverse range of warning and error 

messages appear when inputs suggest inconsistencies or problematic regimes for 

application of this surveillance approach. In a number of the calculators, multiple sets of 

inputs can be provided, enabling the user to consider a range of contexts and analyse the 

sensitivity of outputs to context. 
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Figure 2.3: Online resource for incidence estimation  
The landing page of the incidence estimation website (www.incidence-estimation.com) is 
shown (as it appeared on 16 July 2014). The SACEMA-maintained website was 
developed to provide users with methodological background information and analysis 
tools for HIV incidence estimation. 

Contact | Login

Incidence-Estimation

SACEMA's online resource for incidence estimation

Home

Welcome to the incidence estimation portal, maintained by the South African Department of

Science and Technology / National Research Foundation Centre for Epidemiological Modelling

and Analysis (SACEMA).

Disease incidence, the rate of occurrence of new cases in a population, is typically much more

difficult to estimate than prevalence, the fraction of the population having a condition at a given

point in time. For transient conditions, such as seasonal flu, prevalence is a good proxy for

recent incidence. However, for enduring conditions, such as HIV, current prevalence depends in

detail on historical incidence, demography, and survival.

HIV epidemiology is one of the most urgent contexts in which a difficult-to-measure incidence

plays a crucial role. Reliable estimates of HIV incidence are critical for epidemiological

monitoring, understanding transmission patterns, and in the design and evaluation of

intervention or prevention programs.

Traditionally, epidemiologists have referred to the counting of infection events during the

prospective follow-up of an initially uninfected cohort as producing ‘directly observed’ incidence

estimates. For population-level surveillance, this approach is often impractical and prone to

bias. Indeed, the very definition of incidence, or any other population dynamic rate, is subtle and

potentially problematic, especially when dealing with populations and conditions which are

highly heterogeneous.

Numerous alternatives to cohort studies have attracted wide interest in recent years:

Inferring incidence from cross-sectional surveys testing for biomarkers of ‘recent

infection’

Inferring incidence from population renewal equations, given suitable age-stratified

prevalence and mortality

Estimating incidence by fitting dynamical models to a range of available data

SACEMA is particularly interested in developing and applying new methodology covered by the

first two of these approaches.

UPDATES

Talks given at Department of Health, April
2014

April 18, 2014

Consortium for the Evaluation and
Performance of HIV Incidence Assays
hosts webinar on ‘Recent Infection’ and
the CEPHIA development pipeline for
incidence assays.

Nov 12, 2013

New Paper: Incidence estimation from
prevalence surveys, using age- and time-
dependent prevalence and mortality data.

Nov 5, 2012

New Paper: Incidence estimation from
cross-sectional surveys testing for
biomarkers of 'recent infection'

Nov 5, 2012

The Bill & Melinda Gates Foundation
funded HIV Modelling Consortium
sponsors workshop on characterisation of
biomarkers of recent HIV infection.

July 21, 2012

Read more...

CEPHIA UPDATES

Management Meeting, Stellenbosch, 5-9
May 2014

May 15, 2014

Independent Evaluation of Predicate
Incidence Assays for HIV Surveillance

May 9, 2014

Using Antibodies to Detect HIV
Persistence in Treatment Intensification
and Eradication Studies

May 8, 2014

The Bio-Rad Geenius™ HIV 1/2
Supplemental Assay has been developed
for HIV-1 and HIV-2 differentiation and
confirmation.

May 6, 2014

New single point of contact

Jan 8, 2014

Read more...

Home Theory Tools Archive Contact us CEPHIA

maintains this site with the support of the
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A detailed description of the inputs, outputs and analyses underlying each of the 

calculators is provided in Appendix A. In brief, the following calculators are currently 

available in ABIE v2.0: 

 Incidence and Prevalence Calculator – estimates HIV incidence and prevalence,

from (i) counts of uninfected, ‘recently’ infected and ‘non-recently’ infected

subjects observed in a cross-sectional survey, and (ii) properties of the test for

recent infection (the test’s MDRI and FRR, and the uncertainties with which they

are measured).

 Sample Size Calculator – calculates the number of subjects required in a cross-

sectional incidence study to obtain a specified precision of the incidence

estimator, given the (i) desired precision, (ii) assumed epidemiological context

(HIV incidence and prevalence), and (iii) test properties.

 Incidence Ratio Calculator – estimates the ratio of two incidence values, from

(i) counts of uninfected, ‘recently’ infected and ‘non-recently’ infected subjects

observed in each of two cross-sectional surveys, and (ii) test properties (presumed

to be the same in both populations).

 P-value for Difference Calculator – calculates a conventional p-value to

summarise the discrepancy between two incidence estimates (more specifically,

the probability of obtaining as large a difference between two incidence estimates

as that actually observed), under the null hypothesis of equal incidence in the two

study populations, assuming equal HIV prevalence. Inputs are the (i) counts of

uninfected, ‘recently’ infected and ‘non-recently’ infected subjects observed in

each of the two cross-sectional surveys, and (ii) test properties (presumed to be

the same in both populations).

 Power to Detect Difference Calculator – calculates the probability of inferring a

difference between two incidence values, in the correct direction, when

considering the difference between two incidence estimates, assuming equal HIV

prevalence. Inputs are the (i) assumed epidemiological context, for each study

population, (ii) incidence survey size, for each population, (iii) test properties

(equal in both populations), and (iv) statistical significance level for the test for

difference in incidence.
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 Test Performance Calculator 11  – calculates the precision of the incidence

estimator, given the (i) assumed epidemiological context, (ii) incidence survey

size, and (iii) test properties.

A weakness of cross-sectional incidence surveillance, drawing some criticism, is the 

potentially large samples required to obtain suitably precise incidence estimates in low 

HIV incidence settings, given the current non-ideal performance of tests for recent 

infection. This important topic of sample size considerations is used to illustrate an 

application of the calculators. In Figures 2.4 and 2.5, the Sample Size Calculator is used 

to explore the relationship between sample size and incidence estimation precision, for a 

test for recent infection that has properties closely meeting the ‘Target Product 

Profile’ [14]: an MDRI of 180 days and an FRR of 1%, for 1  year. Based on 

experiences from analysing data produced by CEPHIA, the coefficient of variation (CoV) 

for MDRI estimation was taken to be 5%; and the CoV for FRR estimation was set to 

30%, which corresponds to estimation of the FRR in a sample of 1 000 long-infected 

subjects. 

In the screenshot of the Sample Size Calculator provided in Figure 2.4, the tool was used 

to explore an epidemiological setting where the HIV incidence rate is low at 0.5% per 

person year and HIV prevalence is 5%. The incidence value represents the weighted 

incidence that would be measured in the cross-sectional survey (that is, there are no 

assumptions of constant historical incidence). The input specifies that the required CoV 

of the incidence estimator is 20% – roughly equivalent to requiring a 95% probability of 

obtaining an HIV incidence point estimate between 0.3% and 0.7% per person year. The 

calculator output indicates that a sample of 15 400 subjects would be required in the 

incidence study to achieve this level of precision. This can be compared to the 

approximately 11 000 HIV diagnostic tests required to achieve the same precision of 

incidence estimation using a longitudinal study, which identifies HIV-negative subjects in 

a cross-sectional survey of the population and retests these subjects one year later, in the 

described context (5 500 subjects would be tested for HIV at the start of the study, and 

the enrolled HIV-negative subjects retested at the end of the study). 

___________________________ 

11 The Test Performance Calculator was developed to accompany the article presented in 
Chapter 6, in which the precision of the incidence estimator is proposed as a standard metric for 
assessing test performance.  
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Figure 2.4: Example analysis using the Sample Size Calculator contained in the 
ABIE v2.0 tool suite  
In the screenshot of the Sample Size Calculator, the analysis tool output indicates that 
15 401 subjects are needed in a cross-sectional incidence study to obtain the desired 
precision of the incidence estimator, in the specified scenario. Inputs indicate that an 
incidence estimator with a 20% CoV is required, in a population where HIV incidence 
and prevalence are 0.5% per annum and 5% respectively, using a test for recent infection 
that has an MDRI of 180 days, estimated with a 5% CoV, and an FRR of 1%, estimated 
with a 30% CoV, for 1 year. 

The required sample size is expected to vary greatly by epidemiological context. The 

calculator, which accommodates multiple sets of inputs, was therefore used to calculate 

the sample sizes required in populations with various HIV incidence and prevalence 

values. The tool output, provided in Figure 2.5, shows that the sample size required to 

obtain the same CoV of the incidence estimator (20%) decreases as HIV incidence 

increases or prevalence decreases. A much smaller survey, of 5 900 subjects, is required 

when incidence is higher, at 1% per annum, and prevalence is lower, at 2.5% (this context 

may capture, for example, an emerging epidemic among teenagers). 

Sample Size Calculator Inputs Outputs
Calculates the sample size required for an incidence es imator CoV using assay characteristics and background incidence

Time cut-off T
Post-infection time cut-off T , separating 'true-recent' from 365
   'false-recent' results (days)

Test for Recent Infection/Assay Characteristics Indicative 95% CIs, using input CoV
Estimated Mean Duration of Recent Infection (MDRI) (days) 180 ( 162.36 - 197.64 )
CoV (Coefficient of Variation) of MDRI estimate (%) 5.0%
Estimated False-Recent Rate (FRR) (%) 1.0% ( 0.41% - 1.59% )
CoV of FRR estimate (%) 30.0%

Reference Epidemic State
Reference incidence (%) 0.5% ( 0.30% - 0.70% )
Reference prevalence (%) 5.0%

CoV of incidence estimator, at an infinite sample, 
Coefficient of Variation Required is 7.8% from test characteristic uncertainty 
Minimum possible incidence estimator CoV at given 7.8% (using reference epidemic state)
   test characteristic uncertainty (%)
CoV required for incidence es imator (%) 20.0%

Population Proportions
HIV-nega ive 0.9500
HIV-positive (classified as 'non-recently' infected) 0.0472
HIV-positive (classified as 'recently' infected) 0.0028

Sample Size Required
Sample size 15401 Warning: Sample size is greater than 5000
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Figure 2.5: Sample size required to obtain a specified CoV for the incidence 
estimator by HIV incidence and prevalence in the study population, using the 
Sample Size Calculator 
The chart, produced by the Sample Size Calculator contained in the toolset ABIE v2.0, 
shows the sample size (in tens of thousands of subjects) required in a cross-sectional 
surveillance study to obtain an incidence estimator with a 20% CoV in each 
epidemiological context considered. The epidemiological contexts capture different 
combinations of HIV incidence (0.25%, 0.5% and 1% per annum) and prevalence (2.5%, 
5% and 10%). The test for recent infection has an MDRI of 180 days, estimated with a 
5% CoV, and an FRR of 1%, estimated with a 30% CoV, for T 1 year. When HIV 
incidence is 0.25% per annum, and HIV prevalence is at least 7.5%, the uncertainty from 
the estimated test properties already implies a CoV of the incidence estimator greater than 
20%. 

The ABIE analysis tools have been endorsed by the World Health Organisation (WHO) 

HIV Incidence Assays Working Group [13, 130], and are used as part of training delivered 

by the Centers for Disease Control and Prevention (CDC). Locally, the ABIE tools are 

used to analyse data from the South African national household surveys [61]. We, at 

SACEMA, also directly hosted a training workshop, at the request of the WHO, in South 

Africa in 2012 [49, 50]. Participants were primarily epidemiologists and programme 

officers from national health departments and CDC divisions in countries around Africa. 

The theoretical foundations were presented, and the use of each analysis tool 

demonstrated. The WHO has requested that the training is continued, and a second 

workshop was conducted in September 2014. 
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In addition to the standard analysis tools provided online, numerous ad-hoc calculators 

have been created in response to specific requests. For example, the Incidence and 

Prevalence Calculator was tailored to consistently account for the scenario in which not 

all of the HIV-positive subjects identified in the cross-sectional survey were tested for 

‘recent’ infection.12 As another example, a tool was developed to calculate the sample 

size required to achieve a desired statistical power when testing for a difference in 

incidence in two populations, where incidence is estimated from a cross-sectional study 

using a test for recent infection in one population, and by a conventional longitudinal 

study in the other.13 

The next version of the tool suite, ABIE v3.0, is envisioned as providing much greater 

flexibility and more rigorous statistical calculations. The intention is to develop the tools 

in R, which is open-source software that is suited to statistical programming [152]. More 

accurate calculations, requiring more computationally-expensive numerical methods, 

could then be efficiently implemented. For example, in power calculations, the full 

distribution of possible survey counts could be considered (rather than utilising closed-

form approximations that are based on expected counts), and bootstrap resampling could 

be used to estimate uncertainties. A broader range of scenarios, better capturing those that 

may be encountered in reality, could be accommodated, for example by relaxing 

assumptions about equal HIV prevalence and equal test properties in the populations 

being compared; and optimally-powered statistical tests should be developed for 

hypothesis testing. A broader range of input types could also be accommodated (such as 

plausible minimum and maximum values of parameters rather than specifications of 

single values) and more diverse outputs produced (such as files summarising outputs in 

tables or visually through various plots). While such a tool suite would not present the 

simple interface and calculations contained in ABIE v2.0, progressively advancing the 

analytical tools would support the expanding application of this surveillance approach. 

___________________________ 

12The analysis was requested by Medicins Sans Frontiers, for data from an incidence study in 
Kenya, intended to provide a baseline incidence measure for monitoring transmission over time 
[151]. 

13The tool was used by the South African Perinatal HIV Research Unit to design a study intended 
to evaluate the impact of medical male circumcision in Soweto, South Africa. 
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Chapter	3
 

Estimating	the	Mean	Duration	of	
Recent	Infection	I:	Observing	
Subjects	Once	after	Infection		

This chapter formalises and demonstrates the utility of an approach for obtaining 

preliminary estimates of a test’s mean duration of recent infection (MDRI) [143] using 

previously overlooked data. The procedure requires only a single application of the test 

for recent infection per subject, on specimen drawn at the time of the first HIV-positive 

test. No subsequent follow-up of subjects is necessary, and the methodology is suited to 

contexts where times between HIV diagnostic tests may be large (such as a year or two). 

The methodology is explored in Section 3.1, and used to perform initial characterisations 

of two detuned assays using the previously untapped source of specimens provided by 

blood donors. This analysis is a reproduction of a published journal article [31]. 14 

Ancillary details of the analysis, which were published in an appendix to the article, are 

provided in Section 3.2. 

___________________________ 

14The contents of Section 3.1 have been published as: ‘Kassanjee R, Welte A, McWalter TA, 
Keating SM, Vermeulen M, Stramer SL, Busch MP. Seroconverting blood donors as a resource 
for characterising and optimising recent infection testing algorithms for incidence estimation. 
PLOS ONE. 2011; 6(6):e20027’. PLOS applies the Creative Commons Attribution (CC BY) 
license to all works published, and therefore no permission was required to reproduce the work. 
The manuscript was primarily written by RK, who performed all analyses. AW and TAM 
critically reviewed results and assisted in writing the manuscript. Specimen collection and 
laboratory work were performed by MPB, SMK, MV and SLS, and these were led by MPB who 
conceived the design.  
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Two further applications of this approach are presented in Section 3.3, namely the 

characterisation of a newly proposed test for recent infection, based on SMARTubeTM 

technology, and the characterisation of the widely used BED assay for the South African 

context. These applications were presented at HIV conferences [33, 35].15 

At the time of the work described above, the incidence inference framework of McWalter 

and Welte [25] was in use. The more general inference scheme, derived in Chapter 2, had 

not yet been adopted. However, the ideas presented in this chapter are as applicable and 

valuable under the more general framework of Chapter 2, and in fact benefit from it, as 

shown in Section 3.4. 

___________________________ 

15The analysis described in Section 3.3.1 has been previously presented as ‘Kassanjee R, Welte A, 
Jehuda-Cohen T. SMARTube as a test for recent infection. Poster 41 and presentation at the 
2010 HIV Diagnostics Conference. 24-26 March 2010, Florida, USA’. The analysis presented in 
Section 3.3.2 has appeared as ‘Kassanjee R, Welte A, McWalter TA, Viljoen J, Bärnighausen T, 
Newell ML, Fatti, LP. Calibration of BED assay for use in incidence estimation. E-poster 
CDB018 at the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention. 19-22 July 
2009, South Africa’. 
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3.1 Seroconverting	Blood	Donors		
as	a	Resource	for	Characterising	
Tests	for	Recent	Infection	

3.1.1 Introduction	

Incidence, the rate of new infections, provides a more direct and current indication of the 

spread of HIV than prevalence, the fraction of the population in an infected state. 

Incidence estimates are key to monitoring epidemics, assessing outbreaks, and targeting 

and evaluating interventions. Prospective longitudinal studies, which allow for the direct 

counting of new infections in cohorts of individuals, are costly, logistically difficult to set 

up and maintain, and prone to capturing unrepresentative behaviours. Consequently, 

estimation of incidence using cross-sectional surveys [7, 15, 91] has attracted much 

interest over recent years. 

Tests for recent infection, also termed Recent Infection Testing Algorithms (RITAs) [10] 

or Serologic Testing Algorithms for Recent HIV Seroconversion (STARHS) [91], 

classify infections as ‘recently’ or ‘non-recently’ acquired. Incidence is then related to the 

prevalence of test-defined ‘recent’ infection [7, 15-17, 24-26, 91, 92, 143, 145] as 

estimated in a cross-sectional survey. 

Tests for recent infection traditionally employ the laboratory measurement of HIV viral 

or host biomarkers which evolve over time after infection. Antibody avidity, titre, or 

HIV-specific proportion is typically considered, with a measurement below a chosen 

threshold indicative of ‘recent’ infection [8, 9, 107]. 

Immune responses vary for individuals, and so each individual experiences a unique 

evolution of the biomarker. There are two test characteristics of relevance for population-

level incidence estimation. 

1. The test-defined state of ‘recent’ infection should not be too transient. This

ensures that the proportion of the population in this state may be estimated with

good statistical power in surveys with feasible sample sizes. Therefore, the

average time spent in the state of ‘recent’ infection, termed the mean duration of

recent infection (MDRI), , should be large (typically, at least six months [11]).
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2. For many tests, there is evidence that some long-infected individuals are

classified as ‘recently’ infected [8, 9]. Although the phenomenon of ‘false-recent’

results may, in principle, be accounted for without introducing bias, adjustments

result in considerable loss of statistical precision of incidence estimates [11]. The

proportion of long-standing infections classified by the test as ‘recent’, termed the

false-recent rate (FRR), , should therefore be as low as feasible.

Increasing the threshold (the biomarker cut-off used to discriminate ‘recent’ from ‘non-

recent’ infection) increases the MDRI, but typically also results in a higher FRR. 

Therefore, as the threshold varies, there is a trade-off between the two test characteristics. 

Since population-level surveillance is of interest, rather than each individual’s ‘recent’ or 

‘non-recent’ infection diagnosis, a sensitivity-specificity trade-off (with truly recent 

infection defined by a fixed duration after infection) is not an appropriate threshold 

optimisation criterion.16  

Both calibration data and cross-sectional survey data are required to estimate incidence. 

Calibration data is used to estimate the test characteristics, namely the MDRI, , and 

FRR, . Cross-sectional  data  is  used  to  estimate  the  proportions  of  susceptible  or 

uninfected, ‘recently’ infected and ‘non-recently’ infected individuals in the population, 

denoted by ,  and , respectively. 

Population proportions and test characteristics are related to incidence, , by the following 

expression:17 

1 . (3.1)

This has been derived in an analysis by McWalter and Welte [25], shown to be the 

maximum likelihood estimator by Wang and Lagakos [24], and informally generalised by 

Welte et al [11]. McWalter and Welte [23] compare this estimator to the previously 

proposed estimators of McDougal et al [16] and Hargrove et al [17]. 

___________________________ 

16The optimisation of tests for recent infection, using a performance metric that is appropriate to 
their application in HIV incidence surveillance, is discussed in Chapter 6. 

17The general incidence inference framework, which also provides definitions of the test properties 
that are free of assumptions about the test dynamics, as presented in Chapter 2, was still under 
development at the time of this analysis. 
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Ideally, the test should perform similarly in a number of populations, allowing for the 

reuse of test characteristic estimates. However, differences in the stage of the epidemic, 

or viral subtype or clade, may necessitate the estimation of these critical parameters in 

relevant populations for each study. For example, the proportions of individuals who are 

elite controllers (whose immune systems successfully suppress viraemia in the absence of 

treatment), have advanced immunodeficiency or are receiving antiretroviral therapy, may 

vary, and these individuals have a propensity to produce ‘false-recent’ classifications 

[8, 9].  

Traditionally, methods of estimating the MDRI have relied on the testing of serial 

samples from acutely infected subjects [7, 9, 15-17, 24, 91-93]. This typically requires at 

least one pre-seroconversion and multiple post-seroconversion samples, with short 

intervals between follow-up so that the seroconversion and threshold-crossing times may 

be estimated with minimal uncertainty.18 Such panels of data are costly and difficult to 

capture, requiring precisely the demanding longitudinal studies that cross-sectional 

incidence estimation seeks to circumvent. 

Despite being more easily obtained, specimens from seroconverting subjects with 

relatively long intervals between follow-up have been largely overlooked. Obtaining such 

specimens from repeat blood donors provides unique efficiencies as the collection of 

blood for transfusions is ongoing in most countries, and therefore procuring specimens 

does not require the establishment of new surveillance. Although the prevalence and 

incidence of HIV are generally lower in blood donors than the general population, the 

large-scale collection of blood and routine testing of serial donations for HIV provide a 

relatively large sample of seroconverting donors. Furthermore, large volumes of plasma, 

derived from routinely prepared frozen plasma components, are obtained. 

In this investigation, data captured on seroconverting blood donors in South Africa and 

the USA are used to demonstrate the characterisation and optimisation of tests for recent 

infection. 

___________________________ 

18In this chapter, the terms ‘seroconversion’ and ‘infection’ are used interchangeably, and both 
refer to HIV infection being detectable by the HIV diagnostic test (assumed to antibody-based 
here, although the work presented is completely general and any HIV diagnostic could be 
considered). Seroconversion describes the development of antibodies in the subject, in response 
to the virus, specifically to levels that are measurable by a chosen antibody-based HIV test. 



Estimating the Mean Duration of Recent Infection I: Observing Subjects Once after Infection  60 

3.1.2 Methods	

Ethics	statement	

The research and the incidence testing were approved by the University of California, San 

Francisco (UCSF); American Red Cross (ARC) and South African National Blood 

Service (SANBS) institutional review boards or ethics committees. 

Specimen	collection	and	testing	for	‘recent’	infection	

Specimens were collected by the South African National Blood Service (SANBS) of 

South Africa and the American Red Cross (ARC) of the USA, and tested by the Blood 

Systems Research Institute (BSRI) of the USA. Repeat donors who were observed to 

seroconvert were tested for ‘recent’ infection using the specimens collected at the times 

of the first seropositive donations. 

The investigation was performed for the less-sensitive Vironostika assay (LS-

Vironostika) [104], the test for which more data are available, and thereafter, the 

currently-used less-sensitive Vitros assay (LS-Vitros) [153] was characterised. These 

tests are both based on ‘less-sensitive’ versions of diagnostic tests that measure antibody 

titre, a concept introduced by Janssen et al [91]. For each test, ‘recent’ infection is 

indicated by a measured biomarker, namely a standardised optical density (SOD), below 

a chosen threshold. 

LS-Vironostika is a modification of the Vironostika HIV-1 microELISA diagnostic test 

(bioMérieux, Marcy l’Étoile, France) [104]. The laboratory procedures and threshold of 1 

specified by Rawal et al [104] were used. Seroconverting blood donors were tested using 

LS-Vironostika until 2007, as production of the Vironostika assay ceased in the year 

thereafter [9]. Manufacturing of the assay has since been resumed by Avioq Inc 

(Rockville, MD) [154]. 

LS-Vitros is based on the Ortho Vitros ECi anti-HIV 1+2 instrument (Ortho-Clinical 

Diagnostics, Raritan, NJ) [153]. The laboratory conditions were established by BSRI in 

earlier work that sought the closest agreement of classifications by LS-Vitros, using a 

threshold of 20, to those provided by LS-Vironostika [153]. 
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Data consist of the biomarker reading (SOD) at the time of the first seropositive donation, 

and the interval between the last seronegative and first seropositive donation, termed the 

inter-donation (ID) interval, for each seroconverting blood donor. Three datasets (plotted 

in Section 3.2.2) were used for the analysis: LS-Vironostika was applied to samples of 

South African donors (October 2005 to September 2007, sample size of 485) and 

North American donors (November 2001 to December 2005, 176), and LS-Vitros 

was applied to a sample of South African donors (October 2007 to December 2009, 

199). 

Data	analysis	

Test characteristics were estimated using a maximum likelihood method. Rather than 

fitting a curve describing the evolution of the biomarker over time after seroconversion, 

the overall probability of the test classifications at the first seropositive donations in the 

sample was maximised [33]. The likelihood function is derived below (and more detail is 

provided in Section 3.2.1). 

Assuming that the time of seroconversion is uniformly distributed in the ID interval, the 

probability that a seroconverter with ID interval Δ is classified as ‘recently’ infected at 

the time of the first seropositive donation is 

Δ
1
Δ

d , (3.2)

where  is the probability of being in the test-defined state of ‘recent’ infection when 

tested at time  after seroconversion. For the th seroconverter in the sample, with ID 

interval Δ , the probability of testing ‘recent’ is Δ . 

The  likelihood,  ,  to  be  maximised,  of  all  test  classifications  in  a  sample  of   

seroconverters is 

1 , (3.3)

where  is the observed result for the th seroconverter, and equals 1 if the subject is 

‘recently’ infected and 0 if the subject is ‘non-recently’ infected. 

In the analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos 

[24], individual biomarker curves either cross the threshold (distinguishing ‘recent’ from 

‘non-recent’ infection) and readings remain above it thereafter, or else fail to reach the 
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threshold,  and  therefore    approaches  some  constant  value, ,  which  is  the 

proportion of biomarker curves that fail to reach the threshold for large .  may then 

be expressed as 

1 . (3.4)

In the above-mentioned analyses, the MDRI, , is the mean time under the threshold for 

only those biomarkers curves that do cross the threshold, as described by . 

Substituting  from  Equation  (3.4)  into  Equation  (3.2),  the  probability  that  the  th 

seroconverter is ‘recently’ infected becomes 

Δ 1
1
Δ

d . (3.5)

This approach also facilitates non-parametric inference, by considering only subjects with 

large Δ . For a time cut-off, , such that 

0 or ∀ , (3.6)

if Δ , then 

d d  (3.7)

is the MDRI. Substituting from Equation (3.7) into Equation (3.5),  becomes a function 

of the two test characteristics, 

1
Δ
, (3.8)

and no assumptions are required about the shape with which the biomarker grows after 

seroconversion (that is, no full specification of  is required). The estimated test 

characteristics maximise the likelihood, , which is now a function of , and also of  if 

there is no input estimate of . 

McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24] additionally 

assumed that post-seroconversion survival is independent of the shape of the biomarker 

curves. When the above-mentioned assumptions are obeyed,  in the incidence 

expression in Equation (3.1). More generally,  may not remain constant for  

for a value of 	used in the analysis. An FRR may then be defined as the proportion of 

individuals, seropositive for longer than , that are classified as ‘recently’ infected [11]. 

In this case, the above procedure that produces an estimate of , then considered only a 

proxy ‘FRR’, probably overestimates the FRR if biomarker curves cross the threshold 
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after  or underestimates it if biomarker curves move back below the threshold at times 

since seroconversion greater than that captured in the dataset. The estimated test 

characteristics,  and , therefore provide unrefined estimates for the FRR and MDRI. 

Uniformly distributed seroconversion times are reasonable when the timing of donations 

and exposures to HIV are independent. Test-seeking behaviour (the donation of blood 

soon after exposure specifically to receive HIV testing) or deferral of donations (the delay 

of donations soon after exposure) could therefore bias estimates. In the USA, an 

investigation, which highlighted test-seeking behaviour among homosexual men, noted 

little indication of test-seeking behaviour among blood donors [155], while evidence of 

deferred donations has been observed [156]. Behaviour in the South African donor 

population may vary due to the large scale of the epidemic and stigma associated with 

HIV. 

In this work, various analyses involving the ‘parametric’ and ‘non-parametric’ inference 

of test characteristics by maximising the likelihood function in Equation (3.3) were 

performed for LS-Vironostika and LS-Vitros. In parametric inference, the probability of 

being ‘recently’ infected as expressed in Equation (3.5) was used, assuming forms for 

 and including all data in the analysis; and in non-parametric inference, the 

probability in Equation (3.8) was used, including only data satisfying Δ . Using 

simulated data, estimates obtained from the parametric and non-parametric approaches 

were compared. Differences in test characteristics for specific subpopulations were 

explored. The utility of the test for obtaining precise incidence estimates was also 

investigated. 

Asymptotic maximum likelihood theory was used to estimate confidence intervals (CIs) 

and confidence regions (CRs) and to test the significance of parameters (based on the 

distribution of the deviance statistic and using the loglikelihood ratio test) [157]. Chi-

squared goodness of fit tests were used to assess agreement between data and 

assumptions [158]. All tests used a significance level of 5%. 
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3.1.3 Results	

Characterisation	of	LS‐Vironostika		

The estimated test characteristics for LS-Vironostika (using a threshold of 1) are shown in 

Figure 3.1, for both estimation of  assuming a known  and simultaneous estimation of 

 and , and analysing South African and American blood donors separately. Non-

parametric estimation was performed, using only observations with Δ 1 year (the 

maximum duration in the state of ‘recent’ infection has been estimated to be 200 days 

[159] and 1 year [93]). The sample sizes for the analyses of South African and American 

donors were 282  and 106	  respectively. A comparison of the observed 

proportions of seroconverters who were ‘recently’ infected to the expected proportions 

(based on estimated test characteristics), as a function of ID interval, suggests good 

agreement under simultaneous estimation of the parameters (see Section 3.2.2). When 

exploring the sensitivity of results to , by increasing  to values up to 2.5 years, 

estimates for South African donors varied by at most 10% ( 189 when 2.5 

years), while the large uncertainty in estimates based on the relatively small dataset for 

American donors ( 53 when 2.5 years) did not support meaningful inference. 

The estimated  is large, consistent with results from the application of this method to 

assess the BED assay [33 – results not shown]. Estimation of  using an input estimate of 

 is preferable. In the extreme case of all ID intervals being equal,  and  cannot be 

simultaneously estimated as the likelihood function may be kept at its maximum while 

arbitrarily increasing the estimate of  by appropriately decreasing the estimate of . 

Furthermore, using a value of  that is too low (biomarker curves cross the threshold 

after ) would bias estimates of  upwards and  downwards, based on the framework 

of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24]. Note that 

larger values of  would be required at higher thresholds for discriminating between 

‘recent’ and ‘non-recent’ results. 
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Figure 3.1: Estimated test characteristics for LS-Vironostika in the repeat donor 
population 
Estimates of the MDRI,  (days), for LS-Vironostika are shown, under both the 
simultaneous estimation of  and , and when using an input , for 1 year. For the 
latter estimation, the estimated  is plotted as a function of the assumed . The 95% 
confidence regions (CRs) for  and  (simultaneous estimation) and confidence intervals 
(CIs) for  (assuming , and not accounting for uncertainty in ) are displayed. Results 
are shown for repeat blood donors from A) South Africa and B) the USA. 
Legend:  Estimates of  and  from simultaneous estimation of characteristics 

( 13%, 199 days for South Africa,  
 21%, 138 days for USA) 
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The estimated MDRIs, for a number of thresholds (holding  at 1 year), are compared to 

published estimates in Figure 3.2: 

1. Busch et al [160] utilised the directly measured incidence in the repeat donor

population to estimate . Using ‘known’ incidence and proportions ,  and

 (measured in the repeat donor population), and assuming a zero FRR, a ‘back-

calculation’ for  using the expression for incidence in Equation (3.1) was

performed. Since the possibility of ‘false-recent’ results was neglected,

overestimation of  is expected, with greater bias at higher thresholds.

Methodologically, estimation of  by back-calculation requires an existing

estimate of the FRR, , for the same threshold, with such data currently

unavailable. Furthermore, uncertainty in the estimate of  arises from uncertainty

in the estimated incidence; proportions and FRR.

2. The Centers for Disease Control and Prevention (CDC) utilised seroconversion

panels to estimate  in an American population [104, 160].

Parametric	versus	non‐parametric	approach	

The need for parametric assumptions about the shape of the antibody titre response curve, 

summarised into parametric assumptions about the probability of testing ‘recently’ 

infected as a function of time since seroconversion, is circumvented by using only data 

with large ID intervals. Consequently, estimation of  is no longer prone to bias arising 

from poor parametric assumptions, but the dataset used for the estimation is reduced in 

size, decreasing the precision (increasing the variability) of estimates of .  The 

characterisation of LS-Vironostika in the South African repeat donor population was 

revisited, this time using all data and parametric assumptions. 

The probability that a seroconverter is ‘recently’ infected at the first seropositive donation 

is given by Equation (3.5), which can be assessed once a form for  is fully 

specified. For | , where  is a vector of parameters, the likelihood of the 

data, given by Equation (3.3), becomes a function of . The MDRI estimator is then 

| d . (3.9)

where  maximises the likelihood function (in Equation (3.3)). 
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Figure 3.2: Comparison of mean duration of recent infection estimates for  
LS-Vironostika to previously published estimates 
Estimates of the MDRI,  (days), for LS-Vironostika, under both the simultaneous 
estimation of  and , and when assuming 0%, for 1 year, are compared to 
published estimates, as a function of test threshold. Published estimates were obtained by 
‘back-calculation’ in the repeat donor population (Busch et al) [160] or using 
seroconversion panels (CDC) [104, 160]. The minimum and maximum  occurring in the 
95% confidence regions (CRs) for  and  (simultaneous estimation) and 95% 
confidence interval (CI) limits for  (assuming 0%, with no uncertainty) are also 
displayed. Estimates pertain to A) South African and B) USA populations. 
Legend:  Estimate of  from simultaneous estimation of characteristics 
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from simultaneous estimation 
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A number of parametric forms for  were used in the estimation of the MDRI for 

LS-Vironostika, based on assumptions ranging from a fixed duration of ‘recent’ infection 

for all individuals to a fat-tailed Pareto distribution for the time spent in the state of 

‘recent’ infection. Widely varying estimates of  were obtained, even after excluding 

estimates for which assumptions and data did not agree (and all results are shown in 

Section 3.2.3). Since the true underlying dynamics of the data are unknown, the extent of 

bias from any incorrect parametric assumptions is unclear. 

Simulated data was therefore used to explore the trade-off between precision and bias 

when moving between non-parametric and parametric approaches. Based on each of a 

number of forms for , multiple datasets were generated. For each dataset, the MDRI 

was estimated parametrically using each of the forms for  in turn (including all 

data) as well as non-parametrically (including only data with large ID intervals). 

Agreement between data and parametric assumptions was also assessed. The results of 

the investigation (shown in Section 3.2.3) suggest that power to reject ‘incorrect’ 

parametric assumptions is at times poor and that large bias in estimates may occur. When 

the assumptions leading to Equation (3.8) hold, estimates using the non-parametric 

approach are unbiased, although less precise. 

In the estimation of  for LS-Vironostika using the South African donor sample, by using 

a non-parametric approach, there is a 40% reduction in the sample size from excluding ID 

intervals smaller than 1 year. However, potential bias arising from poor parametric 

assumptions is then eliminated, noting that one cannot easily distinguish between 

appropriate and poor parametric assumptions using only the data at hand.  

Population‐specific	test	characteristics	

Significant systematic bias could be introduced to incidence estimates if the test 

characteristics are not evaluated in a population representative of that in which incidence 

estimation is to occur [11, 26]. Since most HIV antibody assays are based primarily on 

clade B antigens, antibody-antigen reactivity may vary when applying assays in 

populations in which other clades occur [161], with differences in the characteristics of 

LS-Vironostika already observed [104, 105, 159, 161, 162]. Other factors, such as the 

association between viral RNA levels and clade, and seroconverters’ genetic 

backgrounds, may also affect results [8, 9, 92, 161].  
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The significance of gender (male and female) and country (South Africa and USA) on the 

characteristics of LS-Vironostika was assessed. Country differences are likely to be 

largely representative of clade differences, as clade C infections are predominant in South 

Africa, and clade B in the USA [163]. Investigations by SANBS on a sample of donors 

(data made available to authors) and studies of North American donors [164, 165] 

indicate that a very small percentage (<5%) of infections are not of the predominant 

clade. 

The null hypothesis, that the characteristics of LS-Vironostika are the same in all four 

groups (each pairing of gender and country), is not rejected with a p-value of 10.48%. 

Estimated test characteristics for the groups are shown in Figure 3.3 (using non-

parametric estimation and 1 year). However, in this investigation, large uncertainty 

in estimates, arising from small samples of seroconverters, would result in little power to 

identify significant factors. 

Figure 3.3: Estimated test characteristics for LS-Vironostika in the repeat donor 
population by gender and country 
Estimates of  (days) and  (%) for LS-Vironostika are shown for South African male 
donors, South African female donors, USA male donors and USA female donors. 
Parameters were estimated simultaneously, using 1 year, and 95% confidence 
regions (CRs) are indicated. 
Legend  South Africa, males (SA, M): 219 days, 17%, 162 

(  95% CR boundary) 
 South Africa, females (SA, F): 185 days, 5%, 120  

(▬ 95% CR boundary) 
 USA, males (USA, M): 42 days, 29%, 77

(  95% CR boundary) 
 USA, females (USA, F): 294 days, 6%, 29  

(▬ 95% CR boundary) 
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Optimisation	and	comparison	of	tests	for	recent	infection	

The ultimate objective is incidence estimation. The precision of the incidence estimator 

(and hence power to detect changes in incidence) increases with a larger MDRI and 

smaller FRR [11]. However, when optimising a biomarker-based test for recent infection 

by tuning the threshold distinguishing ‘recent’ from ‘non-recent’ infections, there is a 

fundamental trade-off between these two test characteristics as both increase with 

increasing threshold. Figure 3.4 shows the estimated test characteristics of 

LS-Vironostika, in the South African donor population, for a range of thresholds (using 

non-parametric estimation, and 1 year). 

The precision of the incidence estimator, given the estimated test characteristics of LS-

Vironostika, is compared to that achieved by a BED-like test for recent infection in 

Figure 3.5.19 The BED-like test has an MDRI of 155 days and FRR of 5.6% 

(with no uncertainty), as per BED package insert [166], and it is assumed that  for 

LS-Vironostika. The coefficient of variation (CoV) of the incidence estimator [25] is 

calculated for a hypothetical population that has an HIV incidence of 1.5% per annum 

and HIV prevalence of 17.5%, loosely based on the South African adult population 

[167, 168]. Since the CoV ratio (LS-Vironostika to BED-like) is indistinguishable from 1, 

at all thresholds considered, the LS-Vironostika appears comparable to a BED-like test 

for recent infection. Additional data, such as captured during the follow-up of 

seropositive individuals awaiting treatment, could be used to explore whether systematic 

artefacts in the estimation occur (for example, from individuals progressing after 

1 year).  

___________________________ 

19This early work, which captures the first article in this thesis that was published, touches on a 
number of ideas that were being further developed at the time. The use of the precision of the 
incidence estimator as a metric for optimising and comparing tests for recent infection is further 
discussed in Chapter 6. 
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Figure 3.4: Estimated test characteristics for LS-Vironostika in the South African 
donor population as a function of test threshold 
Estimates of  and  for LS-Vironostika, based on the South African repeat donor 
sample, are shown for values of the threshold (discriminating ‘recent’ from ‘non-recent’ 
infection) between 0.2 and 1.5 (in SOD units). The parameters were estimated 
simultaneously, and estimates for A)  (days) and B)  (%) are shown as functions of 
threshold, for 	 	1 year. The minimum and maximum  and  occurring in the 95% 
confidence region (CR) for these parameters are also displayed. 
Legend:  Estimated test characteristic from simultaneous estimation 

▬ Estimated test characteristics from simultaneous estimation – smoothed 
(a cubic polynomial was fitted by least squares) 

 Minimum and maximum value of test characteristic in 95% CR for 
characteristics from simultaneous estimation – smoothed 

0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

Threshold

E
st

im
at

e 
of

 ω
 (

da
ys

)

 

A) MDRI, ω

0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

35

Threshold

E
st

im
at

e 
of

 α
 (

%
)

 

B) Proportion of curves not reaching threshold, α



Estimating the Mean Duration of Recent Infection I: Observing Subjects Once after Infection  72 

Figure 3.5: Relative performance of LS-Vironostika for incidence estimation 
The ratio of the estimated CoV of the incidence estimator, for LS-Vironostika to that of a 
BED-like test for recent infection, is shown as a function of the LS-Vironostika test 
threshold. For LS-Vironostika, test characteristics estimated from the South African 
repeat donor sample were used to calculate the CoV, assuming , while the BED-like 
test was assigned ‘known’ test characteristics of 155 days and 5.6% [166]. In 
the hypothetical population considered, HIV incidence is 1.5% per annum and HIV 
prevalence is 17.5%. 
Legend:  Estimated CoV ratio  

▬ Estimated CoV ratio – smoothed (a cubic polynomial was fitted by least 
squares) 

 Minimum and maximum CoV ratio in 95% CR for test characteristics 
from simultaneous estimation – smoothed 

Characterisation	of	LS‐Vitros	

Preliminary test characteristic estimates of the currently used LS-Vitros (using a threshold 

of 20), for the South African repeat donor population, are shown in Figure 3.6. 

Simultaneous (non-parametric) estimation of  and , for a range of , was performed 

( 108,  for  1  year, reduces  to 	 59,  for  2.5  years).  Observed  and 

expected proportions of seroconverters who were ‘recently’ infected were also compared 

(see Section 3.2.2). 
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Figure 3.6: Estimated test characteristics for LS-Vitros in the South African repeat 
donor population as a function of  
Estimates of  and  for LS-Vitros, based on the South African repeat donor sample, are 
shown for values of  between 1 and 2.5 years. The parameters were estimated 
simultaneously, and estimates for A)  (days) and B)  (%) are shown as functions of 

(years). The minimum and maximum  and  occurring in the 95% confidence region 
(CR) for these parameters are also displayed 
Legend:  Estimated test characteristic from simultaneous estimation 

▬ Estimated test characteristics from simultaneous estimation – smoothed 
(a cubic polynomial was fitted by least squares) 

 Minimum and maximum value of test characteristic in 95% CR for 
characteristics from simultaneous estimation – smoothed 
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For LS-Vitros, the test characteristics were plotted as a function of the time cut-off 

(Figure 3.6) as no estimates of  were found in the literature and the estimation 

appeared fairly sensitive to the choice of  for this dataset. Test characteristic estimates 

are highly uncertain and vary widely. This indicates the need for a larger dataset and an 

external estimate of  for a carefully selected time cut-off  (large enough for the 

biomarker curves to have crossed the threshold within a time  post infection) to get a 

more accurate and precise estimate of the MDRI. Such data and estimates are currently 

unavailable. A value of  that is too small would bias estimates of  upwards and  

downwards, under the above-mentioned analysis assumptions. However, as the value of 

 increases, the sample size reduces and ID intervals are more closely clustered together, 

decreasing the power to perform simultaneous estimation. 

The large, albeit highly uncertain, estimates of  suggest that one should be cautious 

about the utility of LS-Vitros for incidence estimation, at this stage of the 

characterisation, while being mindful that  is not the FRR in Equation (3.1) if  is 

not (approximately) constant for .20 

3.1.4 Discussion	

Traditionally, the characterisation of tests for recent infection (individual assays and 

multiple-test algorithms) has relied on the use of seroconversion panels. The scarcity of 

these panels is therefore an obstacle to the development of tests for incidence estimation. 

In this work, a source of more readily available specimens has been identified, and an 

approach for obtaining preliminary characterisations of tests using these specimens has 

been demonstrated. Further refinement of the characterisation of only the most promising 

tests may thereafter be performed, thus conserving precious longitudinal specimens (for 

MDRI estimation) and specimens from populations with known long-standing infections 

(for FRR estimation) for this purpose. 

Utilising specimens from blood donors provides unique efficiencies as relatively large 

samples of seroconverters and high-volume specimens (125-250ml of plasma per 

seroconverter) are captured during routine blood collection procedures. Furthermore, 

___________________________ 

20 In later work, as part of CEPHIA, a large dataset (which included longitudinal data) was 
produced and analysed to characterise LS-Vitros, and results are presented in Chapter 5. 
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specimens from seropositive subjects around the world are collected, thus providing data 

to investigate whether test characteristics are population-specific. 

The method of estimating the test characteristics (MDRI and a proxy ‘FRR’ for parameter 

estimation purposes) does not require the follow-up of seroconverters. Moreover, by 

using data with large (pre-seroconversion) follow-up intervals, non-parametric estimation 

is supported. To obtain more accurate and precise estimates of the MDRI, an external 

estimate of the proportion of biomarker curves that do not reach the threshold is desirable, 

as well as insight into the maximum time seroconverters otherwise spend in the test-

defined ‘recent’ state. 

For incidence estimation, the utility of LS-Vironostika appears comparable to that of a 

BED-like test for recent infection, over the range of thresholds considered. The precision 

of the incidence estimator provides a criterion for both comparing tests and identifying 

optimal thresholds. While additional data is required for LS-Vitros, preliminary results 

suggest prudence when utilising the assay for incidence estimation. 

The assumptions under which estimates are unbiased are strict. Potential for systematic 

bias in estimates, such as that arising from individuals remaining in the state of ‘recent’ 

infection for prolonged periods, or from non-uniformly distributed seroconversion times, 

should be explored using additional data. This method of estimating the test properties is 

not intended to provide final parameter estimates required for incidence estimation, but 

rather to provide cost-effective and efficient preliminary characterisations of tests using 

previously overlooked data. It is hoped that the concepts and tools demonstrated in this 

work will contribute to the resourceful characterisation, and subsequently focused 

development, of tests for recent infection for population-level incidence estimation. 

3.2 Ancillary	Analysis	Details	

3.2.1 The	Test	Characteristic	Estimators	

In the analyses presented in Section 3.1, two test characteristics were estimated, namely 

the MDRI, , and a proxy ‘FRR’, , defined according to the analysis constructs of 

McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24]. The 

maximum likelihood estimators for the test characteristics are derived below, and their 

distributional properties explored. 
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The function  denotes the probability that a seroconverter is in the state of ‘recent’ 

infection at time  after seroconversion, conditional on being alive.  

For a given seroconverter, with inter-donation (ID) interval Δ  between the last 

seronegative test and first seropositive test: 

1. The random variable  denotes the result of the test for recent infection at the

time of the first seropositive test, and has a probability mass function ,

where  equals 1 if the subject is ‘recently infected and 0 if the subject is ‘non-

recently’ infected.

2. The random variable  captures the time since seroconversion at the time of the

first seropositive donation, and has a probability density function , where

0 Δ, and, in particular, is assumed to be uniformly distributed in the ID

interval.

The joint probability function of  and  is denoted by , , , and the distribution of 

 conditional on  by | | .  

The probability, , that the seroconverter is classified as ‘recently’ infected at the time of 

the first seropositive donation is 

Δ 1  

, 1, y d

| 1| d

1
Δ

d , (3.10)

since 1/Δ	for all  such that 0 Δ, and | 1| . 

The likelihood, , of all test classifications in a sample of  seroconverters is 

1 , (3.11)

where the subscript  denotes quantities relating to the th seroconverter in the sample and 

 denotes the observed values of . The th seroconverter has ID interval Δ  and therefore 

Δ . 
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The analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos 

[24] assume that individual biomarker curves either cross the threshold (distinguishing 

‘recent’ from ‘non-recent’ infection) and readings remain above it thereafter, or else fail 

to reach the threshold. Therefore  approaches some constant value, , which is the 

proportion of biomarker curves that fail to cross the threshold, for  larger than some time 

cut-off , and 

1  . (3.12)

In the above-mentioned analyses, the MDRI, , is defined as the mean time under the 

threshold for those curves that do cross the threshold, which is described by . 

Substituting from Equation (3.12) into Equation (3.10), the probability that a 

seroconverter (with ID interval Δ  is ‘recently’ infected at the time of the first 

seropositive donation becomes 

Δ 1
1
Δ

d . (3.13)

For ,  is a function of the unknown parameters  and  (if there is no 

input estimate for , which are estimated to maximise . The estimate of the MDRI is 

then  

| d , (3.14)

where   is the estimate of . 

This likelihood approach also facilitates non-parametric inference, by considering only 

individuals with large Δ. Since 

0 since ∀ , (3.15)

if Δ , then 

d d  (3.16)

is the MDRI. 
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Substituting from Equation (3.16) into Equation (3.13), Δ  relies only on the test 

characteristics:  

Δ 1
Δ
, (3.17)

and the likelihood function becomes 

∗

1 where Δ 1
Δ

(3.18)

and ∗  is the size of the sample consisting of only seroconverters with ID intervals 

larger than  (and the subscript  denotes quantities relating to the th subject in this 

smaller sample). The estimated test characteristics maximise the likelihood , which is 

now a function of , and of  if there is no input estimate of . 

Simultaneous estimation of the test characteristics is less feasible in samples with closely 

clustered ID intervals. In the extreme case of Δ Δ∗  for all  ( 1,2, … ∗ ), 

simultaneous estimation is not possible as there are no unique estimates of  and  which 

maximise the likelihood function. More specifically, the likelihood function, 

∝ 1
Δ∗

∑
∗

1 1
Δ∗

∑
∗

, (3.19)

is maximised when 

∑
∗

∗ 1
Δ∗
. (3.20)

The left-hand side of the equation depends on the observed data. The maximum 

likelihood estimate for  appearing in the right-hand side of the equation can be chosen 

arbitrarily by selecting a corresponding estimate of  that ensures the equation holds. 

A maximum likelihood estimator, , is asymptotically normally distributed around the 

true parameter value, , with variance equal to the inverse of the expected Fisher's 

Information Matrix, under regularity conditions [157]: 

→ 		 ,
ln

as → ∞, (3.21)

where  is the size of the sample used in the estimation procedure, .  is the expected 

value and .  is the likelihood function (and ln .  the natural logarithm of the 

likelihood function). Using this property of maximum likelihood estimators, large sample 
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approximations for the distribution and moments of the test characteristic estimators 

follow. 

When  is known, the distribution of the estimator for  is  

~ ,
1
Δ

1
1

∗

. (3.22)

When  is unknown, the bivariate distribution for the joint estimator for  and  is 

~ ,

ln ln

ln ln
, (3.23)

where the covariance matrix is 

1
Δ

1
1

∗

1
Δ

∗

1
Δ

∗

1
Δ

∗

1
1

(3.24)

and Δ  and ,  are given in Equation (3.18). 

3.2.2 The	Observed	Data	and	Fitted	Models		

Plots of the data used to perform the analyses presented in Section 3.1 are provided, and 

the fitted models informally assessed by visually comparing observed and expected 

proportions of ‘recent’ results.  

The data for each of the two tests for recent infection, LS-Vironostika and LS-Vitros, are 

shown in Figure 3.7, stratified by country (South Africa and the USA). Each 

seroconverting blood donor’s biomarker reading at the time of the first seropositive 

donation and inter-donation interval (time between the last seronegative and first 

seropositive donation) are shown. 
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Figure 3.7: Observed biomarker readings for LS-Vironostika and LS-Vitros in 
seroconverting blood donors, and corresponding inter-donation intervals  
Each subject’s biomarker reading at the first seropositive donation, expressed as a 
standardised optical density (SOD), and inter-donation interval (time between last 
seronegative and first seropositive donation, in days) are shown (for inter-donation 
intervals less than 4 years), for A) LS-Vironostika for donors in South Africa, B) LS-
Vironostika for donors in the USA and C) LS-Vitros for donors in South Africa. 
Measurements below test thresholds (horizontal dashed lines) produce ‘recent’ 
classifications. 
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The method of maximum likelihood, outlined in Section 3.2.1 above, was used to 

characterise the tests. In Figures 3.8 to 3.11, observed proportions of seroconverters who 

were ‘recently’ infected at the first seropositive donations are compared to expected 

proportions, for each primary analysis presented in Section 3.1. For each analysis, firstly, 

the MDRI, , was estimated assuming a known , and secondly, simultaneous estimation 

of  and  was performed. Non-parametric estimation was applied, using data on 

seroconverters with inter-donation (ID) intervals larger than the chosen time cut-off .  

The probability of testing ‘recently’ infected declines with increasing ID interval. 

Subjects with similar ID intervals were therefore grouped together (at least 20 subjects 

per group), and, for each group, the observed and expected proportions were plotted 

against the average ID interval. Expected proportions were obtained by substituting 

estimated (or input) test characteristics into Equation (3.17), and averaging the 

probabilities obtained for subjects in the group. When assuming a known  (Part A of 

figures), the 95% confidence interval limits for the expected proportion were obtained by 

instead substituting the 95% confidence interval limits for  into Equation (3.17). When 

simultaneously estimating  and  (Part B of figures), the plotted limits for the expected 

proportion indicate the minimum and maximum values for this proportion that were 

obtained when considering all pairs of values for the test characteristics within the 95% 

confidence region for  and .  

Figure 3.8 and Figure 3.9 capture results for LS-Vironostika, for the South African 

( 282) and American repeat donor ( 106) samples, respectively, using 1 

year. In Figure 3.10 and Figure 3.11, observed and expected proportions are compared for 

LS-Vitros  in  the  South  African  donor  sample  for  1 year  ( 108)  and 

2.5 years ( 	59), respectively. 
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A) Estimation of  using input 

B) Simultaneous estimation of  and  (  days and %)

Figure 3.8: Comparison of observed and expected proportions of ‘recently’ infected 
seroconverters for LS-Vironostika, South Africa,  year 
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive 
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-
Vironostika, for the South African repeat blood donor sample. Expected proportions are 
based on estimated test characteristics when A) estimating only  and assuming a known 

, and B) simultaneously estimating  and , using 1 year. Proportions are plotted 
against average ID intervals for groups of at least 20 subjects. 95% CI limits or 
uncertainty bounds for expected proportions are also indicated. 
Legend:  Observed proportion of ‘recent’ infection 
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A) Estimation of  using input 

B) Simultaneous estimation of  and  (  days and %)

Figure 3.9: Comparison of observed and expected proportions of ‘recently’ infected 
seroconverters for LS-Vironostika, USA,  year 
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive 
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-
Vironostika, for the American repeat blood donor sample. Expected proportions are based 
on estimated test characteristics when A) estimating only  and assuming a known , and 
B) simultaneously estimating  and , using 1 year. Proportions are plotted against
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty 
bounds for expected proportions are also indicated. 
Legend:  Observed proportion of ‘recent’ infection 
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A) Estimation of  using input 

B) Simultaneous estimation of  and  (  days and %)

Figure 3.10: Comparison of observed and expected proportions of ‘recently’ 
infected seroconverters for LS-Vitros, South Africa,  year 
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive 
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-Vitros, 
for the South African repeat blood donor sample. Expected proportions are based on 
estimated test characteristics when A) estimating only  and assuming a known , and B) 
simultaneously estimating  and , using 1 year. Proportions are plotted against 
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty 
bounds for expected proportions are also indicated. 
Legend:  Observed proportion of ‘recent’ infection 
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A) Estimation of  using input 

B) Simultaneous estimation of  and  (  days and %)

Figure 3.11: Comparison of observed and expected proportions of ‘recently’ 
infected seroconverters for LS-Vitros, South Africa, .  years 
Observed and expected proportions of ‘recently’ infected subjects, at first seropositive 
donations, are shown as a function of inter-donation (ID) intervals (days) for LS-Vitros, 
for the South African repeat blood donor sample. Expected proportions are based on 
estimated test characteristics when A) estimating only  and assuming a known , and B) 
simultaneously estimating  and , using 2.5 years. Proportions are plotted against 
average ID intervals for groups of at least 20 subjects. 95% CI limits or uncertainty 
bounds for expected proportions are also indicated. 
Legend:  Observed proportion of ‘recent’ infection 
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The expected proportions of ‘recent’ results are sensitive to the input value for  as well 

as . Expected proportions are relatively well aligned to observed proportions when  is 

estimated together with  (rather than being provided as an input), but uncertainty in the 

estimation procedure becomes large when the parameters are jointly estimated. This 

highlights the need for external and accurate data to guide choices of  and . Also, in 

this work, the probability of testing ‘recently’ infected, conditional on being alive, is 

understood  to  be  approximately  constant  (and  equal  to  )  for  all  times  after 

seroconversion greater than , based on the analysis constructs of McDougal et al [16], 

McWalter and Welte [25] and Wang and Lagakos [24]. The behaviours of LS-

Vironostika and LS-Vitros may violate this assumption, potentially leading to 

misalignment between observed and expected proportions. 

3.2.3 Parametric	Versus	Non‐Parametric	

Estimation	

The need for parametric assumptions about the probability of testing ‘recently’ infected 

as a function of time since seroconversion is circumvented by using only data with 

sufficiently large ID intervals (see Section 3.2.1). While this protects against bias arising 

from poor parametric assumptions, the sample size is reduced.  

The test characteristics of LS-Vironostika, in the South African repeat donor population, 

were therefore also estimated using all data and a number of parametric assumptions, 

captured by specifying various forms for | , where  is a vector of 

parameters to be estimated from the data. The six assumed forms for |  are plotted 

in Figure 3.12. For simplicity, by design,  for each form. Estimates of the MDRI, 

, using the various parametric assumptions, are provided in Table 3.1. Results of a chi-

squared goodness of fit test [158], used to assess agreement between data and 

assumptions, are also provided. Widely varying estimates of  were obtained, even after 

discarding those estimates for which data and assumptions did not agree. 
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Figure 3.12: Parametric forms for |  used in MDRI estimation and data 

generation 

Each of the six forms for |  used in the analysis is plotted as a function of time 

since seroconversion (days), where |  is the probability of being ‘recently’ 

infected when tested at time  after seroconversion (for those individuals who do 
transition out of the ‘recent’ state). The function |  contains the parameter , 

which is estimated to maximise the likelihood of observed data for test characterisation 
purposes, or for which a value is specified for data generation purposes. By design, 

 for each form. The functions are plotted using 150  days.

*Form 6 uses a (suitably scaled and shifted) sine function to obtain an s-shaped curve that
reaches zero at time 2  after seroconversion. 
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Input  (%) 

0 5 10 15

Estimated , in 
   days (95% CI) 

Parametric form 1 *84 (82-84) *83 (81-84) *83 (81-84) *83 (80-84)

Parametric form 2 316 (266-374) 278 (233-333) 251 (209-301) 229 (188-276) 

Parametric form 3 *237 (217-249) 228 (204-246) 219 (192-242) 208 (180-235) 

Parametric form 4 *429 (355-520) 379 (309-464) 338 (273-418) 303 (242-378) 

Parametric form 5 650 (528-802) *579 (464-721) 516 (409-649) *461 (361-585)

Parametric form 6 268 (232-309) 241 (207-281) 221 (188-259) 205 (173-242)

Non-parametric 274 (234-313) 245 (199-289) 216 (165-266) 186 (132-241)

Goodness of fit  
   p-valuea 

Parametric form 1 0.00 0.00 0.00 0.00

Parametric form 2 0.29 0.10 0.56 0.73

Parametric form 3 0.03 0.57 0.65 0.80

Parametric form 4 0.02 0.12 0.16 0.09

Parametric form 5 0.09 0.02 0.08 0.03

Parametric form 6 0.05 0.56 0.69 0.90
a Null hypothesis: The data is consistent with the assumed form for |  

Table 3.1: Estimated mean duration of recent infection for LS-Vironostika, South 
Africa, using various parametric assumptions 
Estimates of the MDRI,  (days), for LS-Vironostika in the South African repeat donor 
population are shown, using both parametric and non-parametric estimation approaches 
and an input value of  (%). 95% CI limits are also provided. For the parametric 
estimation, each of the six forms for |  shown in Figure 3.12 was assumed in turn 

(Parametric form 1 to 6) and all data were included. P-values from a chi-squared 
goodness of fit test used to assess agreement between data and parametric assumptions 
are also shown, and an estimate of  that corresponds to a p-value below 0.05 is indicated 
by an asterisk (*). For non-parametric estimation, only seroconverters with ID intervals 
larger than 1 year were included in the analysis.  
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Since the underlying dynamics of the data are unknown, the extent of any bias in the 

results is unclear. Simulated data was therefore used to investigate the trade-off between 

the increased precision from larger samples and increased potential for bias from poor 

parametric assumptions, when moving from a non-parametric to parametric approach. A 

number of datasets were generated, each consisting of ID intervals and test classifications 

for 500 seroconverters. For each seroconverter, the ID interval was drawn from a (kernel 

density) non-parametric distribution that was fitted to the ID intervals contained in the 

real-world dataset (for LS-Vironostika, South Africa); the infection time was drawn from 

a uniform distribution spanning the subject’s ID interval; and the test classification was 

generated from a chosen specification of |  and 0%. Each of the six forms for 

|  in Figure 3.12, using 150 days, was used to generate 100 datasets. 

For each simulated dataset, seven estimates of  were obtained: six by assuming each of 

the parametric forms for |  in turn and using all data in the estimation procedure, 

and one by non-parametric estimation using only ID intervals greater than 1 year 

and assuming 0%. For each parametric estimation, a chi-squared goodness of fit test 

was performed to assess agreement between data and parametric assumptions. When data 

were generated from a form of |  that is non-zero at times greater than 1 

year, underestimation of  is expected. To assess the performance of MDRI estimation, 

estimates of  were compared to its true value, which was 150 days throughout this 

investigation, and the ability to distinguish between correct and incorrect parametric 

assumptions was considered. 

The results of the investigation, summarised in Table 3.2, indicate that, although moving 

to a parametric approach allows all data to be exploited, there is the potential for 

introducing large bias in estimates from poor parametric assumptions. The results of the 

goodness of fit tests suggest that it is challenging to distinguish between appropriate and 

poor parametric assumptions, using a given dataset. The average 95% confidence interval 

(CI) widths, when using the correct parametric assumption or the non-parametric 

approach, are also provided (Table 3.2). CIs were obtained using large sample maximum 

likelihood theory (in particular, properties of the deviance statistic) [157]. The increased 

CI width when moving to the non-parametric approach illustrates the loss of precision 

incurred when discarding data with insufficiently large ID intervals. 
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Parametric form used for data generation 

1 2 3 4 5 6

Average estimated 
   , in days (95%   
   CI width)a 

Parametric form 1 153 (27) -  102 -  -  108 

Parametric form 2 187 153 (51) 154 122 90 164 

Parametric form 3 197 129 151 (42) 105 78 154 

Parametric form 4 -  191 197 151 (59) 110 207 

Parametric form 5 -  273 286 212 151 (68) 295 

Parametric form 6 174 138 140 106 84 151 (44) 

Non-parametric 150 (79) 153 (79) 148 (79) 144 (78) 128 (74) 149 (79) 

Percentage of 
   estimates 
   rejected 

Parametric form 1 2 100 94 100 100 96 

Parametric form 2 87 2 10 19 68 5

Parametric form 3 23 67 3 80 92 16

Parametric form 4 100 7 37 5 13 35

Parametric form 5 100 22 68 9 3 79

Parametric form 6 28 32 7 77 97 2
a Includes only estimates not rejected (p-value≥0.05) by goodness of fit test 

Table 3.2: Summary of results from investigation of parametric versus  
non-parametric estimation using simulated data 

Average estimates of the MDRI,  (days), and percentages of estimates rejected by 
goodness of fit tests (p-values below 0.05) are shown for groups of 100 simulated 
datasets. The parametric form for  used to generate the datasets is captured by 

the table columns (Parametric form 1 to 6, see Figure 3.12). The MDRI was estimated 
parametrically (assumed form for  captured by table rows) and non-

parametrically (using =1 year). For each group of datasets and estimation method, the 
average estimate of  was calculated after excluding those estimates rejected by the 
goodness of fit test, and the average width of the 95% CI is provided when the assumed 
parametric form is correct or non-parametric estimation was applied. In both data 
generation and MDRI estimation, 0%. 
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3.3 Further	Applications	

Two further applications of the methodology presented are described below. While this 

approach is not intended to provide highly accurate and precise estimates of the MDRI, it 

serves an important role in obtaining initial estimates using previously neglected sources 

of specimens when that is all that is available.  

3.3.1 A	Biomarker	for	Recent	Infection		

Using	SMARTubeTM		

The sensitivity of an HIV diagnostic test (probability of correctly detecting virus) is 

expected to increase from zero to, ideally, 100% over some short period after HIV 

transmission. An antibody-based diagnostic test is unable to detect HIV infection in the 

period between acquiring the infection and seroconversion, where the seroconversion 

time captures when the antibody response reaches a measurable level. Therefore, an HIV-

positive subject tested in this ‘seronegative window period’ will produce a false-negative 

HIV diagnosis. To reduce this period, SMART Biotech Ltd [169] developed the 

Stimulating Maximal Antibody Response Tube (SMARTubeTM). The technology 

stimulates in-vivo primed immune cells to produce antibodies in-vitro. By incubating a 

specimen in a SMARTubeTM before applying the HIV diagnostic test, antibodies reach 

detectable levels sooner after infection [170, 171]. 

As illustrated in Figure 3.13 (Part A), stimulation of antibody in an incubated specimen is 

expected to fade over time after infection. This suggests that a measure of the increase in 

signal could provide a novel biomarker for recent infection. In this analysis, one such 

measure is defined and its potential explored: the ‘Stimulation Index’ (SI) is the ratio of 

stimulated to unstimulated antibody levels (Part B of Figure 3.13). A test for recent 

infection is constructed by introducing a threshold, where an SI measurement above the 

threshold is interpreted as indicating ‘recent’ infection. As the threshold is varied, there is 

the familiar trade-off between test characteristics: while a lower threshold improves 

(increases) the MDRI, a higher threshold typically improves (decreases) the FRR. 
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A) Antibody signal

B) The ‘Stimulation Index’

Figure 3.13: The impact of SMARTubeTM on antibody signal, and the 
‘Stimulation Index’ 
The schematic diagram illustrates the increase in antibody signal resulting from 
incubating a specimen in a SMARTubeTM, and the proposed measure of this increase, 
each as a function of time since HIV acquisition. A) Antibody signal, as measured by a 
standard semi-quantitative HIV diagnostic test, is shown, without (‘unstimulated’) and 
with (‘stimulated’) the use of a SMARTubeTM

, and the difference in the ‘seronegative 
window period’ reflected. B) The ‘Stimulation Index’ (SI) is shown, and is the ratio of the 
stimulated to unstimulated antibody levels.  

As is typically the case for new biomarkers, very little data to characterise the test were 

available, and opportunities to generate further, tailored, data would be contingent on 

demonstrating sufficient promise of the candidate biomarker. An initial, preliminary 

characterisation of the test was therefore performed, using existing available specimens. 

The specimens were obtained from subjects in various regions of China by the Centers 

for Disease Control and Prevention (CDC) and the National Institute for the Control of 

Pharmaceutical and Biological Products in Beijing (NICPBP). Intervals between HIV 

tests were large (the exact sizes were unknown) and there was little background 

information on the subjects, and therefore such specimen sets have typically been 

overlooked. Data on the SI biomarker were generated by testing (subsets of) specimens 
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using two semi-quantitative HIV diagnostic tests, developed by Abbott Diagnostics and 

Beijing Wantai Biological Pharmacy. Each specimen was tested both using the standard 

diagnostic procedure (to obtain an ‘unstimulated’ antibody measurement) and after 

incubation in a SMARTubeTM (to obtain a ‘stimulated’ antibody measurement), and SI 

values were calculated. 

The FRR, , was estimated using specimens drawn from non-recently infected subjects 

attending CDC clinics ( 59 for Abbott and 73 for Wantai). The decreasing FRR, 

as function of increasing threshold, is illustrated in Figure 3.14. Results suggest that a 

suitably low FRR may be achievable by a choice of threshold of around 1.2 or larger. 

The MDRI, , was estimated using specimens collected during surveys of a high-risk, 

injecting-drug-using population ( 57 for Wantai). There was no follow-up of subjects, 

and specimens included in the analysis were drawn at the times of first HIV-positive tests. 

Since the times between last HIV-negative and first HIV-positive tests were unknown, 

these were crudely all assumed to be Δ∗  in the analysis. The maximum likelihood 

approach presented in Sections 3.1 and 3.2 above was used to estimate the MDRI, for a 

range of thresholds beginning at 1.2 and assuming a zero FRR (based on the results 

above), and for a range of values of Δ∗ beginning at 1 year (assuming Δ∗  , where  

is the maximum time after infection that an individual may remain in the ‘recent’ state). 

The point estimate for , as a function of threshold and inter-test interval Δ∗, is shown in 

Figure 3.15, and increases with decreasing threshold or increasing Δ∗. At a high threshold 

of 1.5 (SI units) and small Δ∗ of 1 year,  is estimated to be 0.2 years (70 days), and  

increases to 1.1 years (404 days) when the threshold decreases to 1.2 and Δ∗ increases to 

3 years. 

Hypothesis tests for superiority or non-inferior of the test characteristics (compared to 

those of existing tests or reference values) would have little statistical power due to the 

small sample sizes. Instead, for the FRR, data were used to assess the null hypothesis 

5% against the alternative hypothesis 	5%. Even at a relatively low threshold 

of 1.1 (the estimate for  increases as the threshold decreases), the null hypothesis was 

not rejected (p-values of 0.80 and 0.71 for Abbott and Wantai kits, respectively). 

Similarly, for the MDRI, data were used to evaluate the null hypothesis 155 days 

against the alternative hypothesis 155 days, where 155 days is the MDRI of the 

(then) widely used BED assay as per package insert [166]. Even at a high threshold of 1.4 

and conservatively assuming an FRR of 5% (the estimate for  decreases as the threshold 
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or input FRR increases), the null hypothesis was not rejected (p-value of at least 0.46 for 

an assumed Δ∗ of at least 2 years for the Wantai kit). These results suggest that there is a 

lack of evidence that the FRR is particularly large or MDRI is small. This analysis 

suggests that efforts should be made to capture a larger set of specimens, appropriate for 

test characterisation and including relevant background information, to further investigate 

the potential of using SMARTubeTM to construct a biomarker for recent infection. More 

generally, the investigation strengthens the case for broadening the spectrum of 

biomarkers conventionally considered. 

A) Abbott

B) Wantai

Figure 3.14: Estimated false-recent rate of a test using the ‘Stimulation Index’ 
biomarker, as a function of the ‘recent’/‘non-recent’ threshold and stratified by HIV 
diagnostic test 
The estimate of the FRR,  (%), and its 95% (Clopper-Pearson) confidence interval are 
shown for a recent infection test that is based on the ‘Stimulation Index’ (SI), as a 
function of test threshold (above which an SI value indicates ‘recent’ infection). Antibody 
levels were measured using HIV diagnostic tests by A) Abbott Diagnostics and B) Beijing 
Wantai Biological Pharmacy. 
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Figure 3.15: Estimated mean duration of recent infection of a test using the 
‘Stimulation Index’ biomarker, as a function of the ‘recent’/‘non-recent’ threshold 
and assumed inter-test interval 
The point estimate for the MDRI,  (days), is shown for a recent infection test that is 
based on the ‘Stimulation Index’ (SI), as a function of both test threshold (above which 
an SI value indicates ‘recent’ infection) and the assumed inter-test interval (time between 
last HIV-negative and first HIV-positive tests, in years). An input FRR of zero was used, 
and antibody levels were measured using an HIV diagnostic test by Beijing Wantai 
Biological Pharmacy. 

This analysis suggests that efforts should be made to capture a larger set of specimens, 

appropriate for test characterisation and including relevant background information, to 

further investigate the potential of using SMARTubeTM to construct a biomarker for 

recent infection. More generally, the investigation strengthens the case for broadening the 

spectrum of biomarkers conventionally considered. 

3.3.2 Local	Characterisation	of	the	BED	Assay		

Potential regional variation in the behaviour of tests for recent infection brings into 

question the ability to recycle estimates of the MDRI across different incidence studies. 

In this analysis, existing specimens, captured as part of an ongoing population-based 

demographic surveillance study in rural South Africa, were used to estimate the MDRI of 

the BED assay [92, 107], developed in the USA, for a South African context. 
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Ongoing HIV surveillance is conducted by the Africa Centre for Health and Population 

Studies, University of KwaZulu-Natal [172]. The surveillance area is located near the 

rural market town of Mtubatuba in KwaZulu-Natal. HIV incidence in the area has 

remained at a high rate of approximately 3.4 infections per 100 person years since 2003 

[173], and individuals in the area are eligible for HIV testing as part of the routine study 

surveillance. For this analysis, the BED assay was applied to specimens (stored as dried 

blood spots) drawn at times of first HIV-positive tests, for women aged 15-49 and men 

aged 15-54 who were tested between June 2003 and June 2006. Intervals between last 

HIV-negative and first HIV-positive tests were large, ranging from 0.5 years to 3 years, 

with a median interval of 1.3 years. The utility of such data had been previously 

overlooked, due to the infrequent observation of subjects.  

The MDRI was estimated using the approach described in Sections 3.1 and 3.2 above. A 

local FRR for the BED assay had previously been measured in the same population, and 

was estimated to be 1.69% (95% CI: 1.00%-2.66%) for a maximum time in the ‘recent’ 

state of 306  days for test ‘progressors’ [131]. This estimated FRR and the 

corresponding  were used as inputs in the MDRI estimation. The maximum likelihood 

estimates of the MDRI, by gender and age, are provided in Table 3.3. 

Number of subjects Estimated  in days (95% CI) 

All data 274 115 (90-139)

Male 72 98 (50-146)

Female 202 120 (91-149)

Ages 15 - 24 138 103 (70-136)

Ages 25 + 136 128 (91-165)

Table 3.3: Estimated mean duration of recent infection for the BED assay in a South 
African surveillance population, by gender and age 
Estimates of the MDRI,  (days), for the BED assay in a surveillance population in 
KwaZulu Natal, South Africa, are tabulated. Estimation used an input FRR of 1.96% and 

306 days. 95% confidence intervals (CIs) are also provided (based on large sample 
maximum likelihood estimator properties). The MDRI was calculated using all data, 
stratifying data by gender, and stratifying data by age, in turn. 
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The likelihood functions for the MDRI are shown in Figures 3.16 to 3.18 (using 

306  days throughout). The impact of varying assumptions for the FRR is 

considered in Figure 3.16, where each of a number of FRR inputs were used in turn: the 

local estimate of 1.69% described above; an external estimate of 5.6%, which was 

measured in populations in North America and the Netherlands [16]; and zero. The 

estimated MDRIs varied by 21 days. In Figure 3.17 and Figure 3.18, the likelihood 

functions for the MDRI are shown when stratifying data by gender and age respectively 

(using an input FRR of 1.69%). Age and gender differences were not significant (using a 

likelihood ratio test and significance level of 5%). 

Figure 3.16: Likelihood function for the mean duration of recent infection of the 
BED assay by input false-recent rate 
The likelihood of observing the data (scaled to have a maximum of 1) is shown as a 
function of the MDRI,  (days), for the BED assay in the studied South African 
surveillance population. Data with inter-test intervals larger than 306 days were 
included in the analysis, and various FRR inputs were used in turn: the local measurement 
of 1.69%, an external measurement of 5.60%, and zero. 
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Figure 3.17: Likelihood function for the mean duration of recent infection of the 
BED assay by gender 

The likelihood of observing the data (scaled to have a maximum of 1) is shown as a 
function of the MDRI,  (days), for the BED assay in the studied South African 
surveillance population. Data with inter-test intervals larger than 306 days were 
included in the analysis, and an input FRR of 1.69% was used. Data were stratified by 
gender (Male and Female). 

Figure 3.18: Likelihood function for the mean duration of recent infection of the 
BED assay by age 
The likelihood of observing the data (scaled to have a maximum of 1) is shown as a 
function of the MDRI,  (days), for the BED assay in the studied South African 
surveillance population. Data with inter-test intervals larger than 306 days were 
included in the analysis, and an input FRR of 1.69% was used. Data were stratified by age 
(Ages 15-24 and Ages 25+). 
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This analysis provides the first MDRI estimate for the BED assay using specimens 

collected as part of population-based HIV surveillance in Southern Africa. These 

preliminary results suggest that, on average, infected individuals remain in the BED 

assay-defined state of ‘recent’ infection for 115 days (95% CI: 90-139 days) in the South 

African surveillance population. Previously published estimates range from 133 or 153 

days in a North American cohort [16]  to 187 days in a cohort of Zimbabwean women 

[17]. Use of these externally obtained MDRI estimates would decrease incidence 

estimates by between 14% and 39% respectively. Just as other work has cautioned against 

the generalisation of FRR estimates [131], this work cautions against the use of an MDRI 

that is not validated in the survey population. 

3.4 Estimation	within	the	General	
Incidence	Inference	Framework	

Throughout this chapter thus far, test characteristics have been defined based on the 

analyses of McDougal et al [16], McWalter and Welte [25] and Wang and Lagakos [24]. 

The definitions of the MDRI and FRR emerging from their work rely on specific 

assumptions about the dynamics of tests for recent infection, known to be violated in 

reality. These assumptions have since been relaxed and a general incidence inference 

framework has been developed [29].21 Estimation of the MDRI that is defined within this 

general framework is explored below.  

The probability that a seroconverter, who tests seropositive at time Δ  after testing 

seronegative, is ‘recently’ infected at the time of the first seropositive test is 

Δ Δ|
1
Δ

| d , (3.25)

where it is assumed that seroconversion is equally likely to have occurred at any time 

between the two tests, and | , which is the probability of testing ‘recent’ at time  

after seroconversion, depends on the parameter . The likelihood of observing the test 

classifications in a sample of  seroconverters is then 

	 Δ | 1 Δ | , (3.26)

___________________________ 

21The derivation of the general framework for incidence inference is presented in Chapter 2. 
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where Δ  and  capture the observed data ( 1,2, … , ), and  is the (unknown) model 

parameter. More specifically, for the th seroconverter, Δ  is the inter-test interval and  is 

the observed classification at the first seropositive test, where  equals 1 if the subject is 

‘recently’ infected and equals 0 if the subject is ‘non-recently’ infected. 

Any definition of a mean duration in the ‘recent’ state would involve some averaging of 

|  over time , and therefore the MDRI is generally a function of . Estimation of 

the  MDRI  then  naturally  proceeds  by  specifying  a  functional  form  for  | , 

estimating  by maximising the likelihood function, and calculating the implied MDRI 

estimate. However, poor assumptions about |  could lead to substantial bias in 

results, and therefore a large part of this chapter has been dedicated to finding special 

cases of this estimation procedure which require less extensive or no parametric 

assumptions. More specifically, cases have been sought where Δ , and therefore the 

likelihood function, depend only on the test characteristics of interest, and, if required, a 

small number of ‘nuisance’ parameters (that restrict the form of |  less than a full 

specification of the function in terms of . In all cases considered, large sample 

maximum likelihood theory can be used to obtain properties of the MDRI estimator. 

Under the assumptions of McDougal et al [16], McWalter and Welte [25] and Wang and 

Lagakos [24], |  can be expressed as 

| 1 | ∗ , (3.27)

where | ∗ 0 for sufficiently large  ( ), and the parameter  is the FRR. 

The MDRI is defined as | ∗ d  (assuming guaranteed survival until  

after infection). For a subject with a sufficiently large inter-test interval Δ (Δ ), the 

probability of testing ‘recently’ infected becomes 

Δ Δ| , 1
Δ
. (3.28)

Therefore, by including only subjects with large inter-test intervals in the analysis dataset 

(Δ , 1,2, … , ), the likelihood becomes a function of only the test characteristics 

 and , which can be estimated directly by maximising the likelihood function. While 

the test characteristics can be jointly estimated in principle, results from the sections 

above show that estimation of the MDRI, , is challenging without an input value of  

for a carefully chosen value of . 
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The more general analysis of Kassanjee et al [29] relaxes all assumptions about test 

dynamics by introducing a post-infection time cut-off  in the construction of the 

incidence  estimator.  The  MDRI, Ω ,  is  now  the  average  time  that  an  individual  is 

‘recently’  infected  and  alive,  while  infected  for  less  than  .  The  FRR,  ,  is  the 

probability that an individual who is infected for longer than  will return a ‘recent’ 

result. The probability of testing ‘recently’ infected, Δ , can be expressed in a form that 

contains Ω  directly (assuming guaranteed survival until  after infection): 

Δ  
1
Δ

| d | d  

Ω
Δ

1
Δ

| d . (3.29)

When Δ , this probability reduces to 

Δ Δ |Ω
Ω

. (3.30)

Therefore, by designing a study (or constructing a dataset) where all inter-test intervals 

are equal to  (Δ T, 1,2, … , ), the likelihood function is expressed in terms of only 

the MDRI, Ω , which can then be estimated directly by maximising the likelihood of the 

data. In particular, the likelihood function, which now captures a binomial process, will 

be maximised when the observed probability of a ‘recent’ classification at the first 

seropositive test is used as an estimate of the true probability that is given in 

Equation (3.30). That is, the estimated MDRI is  

Ω
1

, (3.31)

where ∑  is the total number of ‘recent’ results among the  available results. 

Importantly, no external estimates of any parameters are required to guide data inclusion 

rules or assess the likelihood function.  

The HIV surveillance data on the BED assay, described in Section 3.3.2, was re-analysed 

to demonstrate estimation of the MDRI, Ω . A time cut-off of  548 days (1.5 years) 

was chosen for the exploratory analysis, which aimed to provide preliminary estimates of 

the MDRI using two simplifications of Equation (3.29). 
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Figure 3.19: Estimated mean duration of recent infection for the BED assay using 
subjects with inter-test intervals close to  
The estimate of the MDRI, Ω  (days), for the BED assay in a South African surveillance 
population is shown as a function of  (%), where subjects with inter-test intervals within 
∙ 1 , ∙ 1  are included in the analysis and 548 days. In the likelihood 

function approximation, all inter-test intervals are treated as being equal to . 95% 
confidence interval limits are also indicated (dashed lines). 

Firstly, all subjects with inter-test intervals close to  were included in the analysis, and 

the simplification given by Equation (3.30) – which requires inter-test intervals to be 

exactly equal to  – was nevertheless used. A subject was included in the analysis if his 

inter-test interval, Δ, was within ∙ 1 , ∙ 1  for a chosen value of . The 

estimated MDRI, as a function of , is shown in Figure 3.19. Point estimates appear 

relatively stable, and range from 138 days to 175 days for  between 5% and 20%. As the 

value of  increases from zero, bias is introduced as the likelihood function is no longer 

exact. However, the number of subjects included in the analysis increases and therefore 

the confidence interval width decreases ( 32, for 5%, increases to 101, for 

20%).  

Secondly, all subjects with inter-test intervals in some range , , which contains , 

were included in the analysis, and it was assumed that |  remains constant at some 
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value  for all  such that ∈ , .22 The probability of a seroconverter, with inter-test 

interval Δ, being ‘recently’ infected is then 

Δ Δ|Ω ,
Ω ∙ Δ

Δ
. (3.32)

The likelihood function now contains Ω  and , where the value of  was specified as an 

input in the estimation. Using  and 3 years ( 115), the estimated MDRI, as 

a function of , is shown in Figure 3.20. The point estimate drops from 150 days for 

0% to 130 days for 15%. The sensitivity of results to the choice of ,  and  

was explored by repeating the estimation for all combinations of values of  between 300 

days and 550 days inclusive (in 25 day increments),  between 600 days and 1100 days 

(25 day increments), and  between 0% and 15% (1% increments). A histogram of all 

resulting MDRI point estimates is provided in Figure 3.21, where the minimum, 

25th percentile, median, 75th percentile and maximum point estimates are 113, 131, 137, 

146 and 170 days, respectively (the sample size ranged from 37 to 275).  

Figure 3.20: Estimated mean duration of recent infection for the BED assay using 
subjects with inter-test intervals larger than  
The estimate of the MDRI, Ω  (days), for the BED assay in a South African surveillance 
population is shown as a function of  (%), where the probability of testing ‘recent’ is 
assumed to be constant at  for times since infection in , . Subjects with inter-test 
intervals within ,  are included in the analysis, and 548  days and 

3 years. 95% confidence intervals are also indicated (dashed lines).  

___________________________ 

22This simplification was also used in the analysis of simulated data in Section 2.1 and 2.2. 
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Figure 3.21: Distribution of mean duration of recent infection estimates for the BED 
assay when varying estimation input parameters 
A histogram of estimates for the MDRI, Ω  (days), for the BED assay in a South African 
surveillance population is shown. Subjects with inter-test intervals within ,  are 
included in the analysis, and the probability of testing ‘recent’ is assumed to be constant 
at  for times since infection in , . The MDRI was estimated for combinations of 

 in [300,550] days,  in [600,1100] days and  in [0%,15%]. 

While the focus of this chapter is MDRI estimation using specimens from subjects who 

are observed only once after seroconversion, the approach presented could be generalised 

to  contexts  where  subjects  contribute  multiple  specimens  after  seroconversion.23 

Estimation of the MDRI without making parametric assumptions about |  is of 

particular interest. A generalisation of the non-parametric estimation approach described 

above (captured by Equations (3.30) and (3.31)), to contexts where inter-test intervals can 

be smaller than  and subjects are followed up over time, is therefore briefly outlined 

below. 

___________________________ 

23The estimation of the MDRI from longitudinal data, using alternative estimation methods, is 
discussed in Chapter 4. The generalisation of the approach for MDRI estimation that is presented 
in this chapter (using single specimens from infected subjects), to the context where there are 
follow-up specimens, is presented here for completeness. 
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The inter-test interval Δ  should be a divisor of  – that is, there must exist some natural 

number  such that /Δ . For example, for 1  year, some possible values 

for Δ  are 2 months ( 6), 4 months ( 3) and 1 year ( 1). Subjects should 

have  specimens drawn, Δ  apart, from (and inclusive of) the time of the first 

seropositive test (although subjects can miss draws and some subjects can be lost to 

follow-up). Assuming seroconversion events are uniformly distributed between last 

seronegative and first seropositive tests, the probability of a ‘recent’ classification at the 

first seropositive test is 

Δ Δ |
1
Δ

| d , (3.33)

as before (see Equation (3.25)). More generally, the probability of a ‘recent’ classification 

at draw  ( 1,2, … , ), which occurs at time Δ ∙ -1) when using the first 

seropositive visit as reference time 0, is 

∗ , Δ ∗ , Δ |
1
Δ

| d
∙

∙
. (3.34)

The MDRI can be written in terms of these probabilities: 

Ω | d

d
∙

∙

Δ ∗ , Δ , (3.35)

and estimated using the observed probabilities of ‘recent’ results by 

Ω Δ , (3.36)

where  results are observed for visit , and  of those are ‘recent’. Note that a 

subject’s classifications (for various visits) would not be independent, and the estimated 

uncertainty for the MDRI estimator should consistently account for this – for example, by 

using the observed correlations between results as proxies for true correlations in an 

analytical expression for Ω , or through bootstrap resampling at a subject level 

[174]. 
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In summary, the approach for obtaining preliminary MDRI estimates, using specimens 

from subjects observed only once after infection, is still as applicable and valuable when 

defining test characteristics using the general incidence inference framework. By 

assuming a parametric form for the probability of testing ‘recent’ as a function of time 

since infection, all inter-test intervals can be accommodated. However, there are special 

cases where, by restricting the inter-test intervals included in the analysis, the extent of 

any parametric assumptions (and potential bias arising from these) can be reduced. When 

all inter-test intervals are exactly equal to the time cut-off  (or some divisor of  when 

infected subjects are in fact followed-up), the MDRI can be estimated non-parametrically 

and directly, without any ‘nuisance’ parameters or the need for any external knowledge of 

test dynamics. 
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Chapter	4	
 

Estimating	the	Mean	Duration	of	
Recent	Infection	II:	Longitudinal	
Follow‐Up	of	Infected	Subjects	

Traditionally, estimation of the mean duration of recent infection (MDRI) has relied on 

longitudinal data, which provides results for the test for recent infection at multiple time 

points after infection for each subject. Various approaches have been used in the literature 

to analyse such data, leading to questions about best practices and the implications of 

methodological differences. This chapter therefore systematically investigates various MDRI 

estimation methods, and presents some ideas for potentially reducing artefacts in analyses.  

A detailed benchmarking of estimation methods was performed using a data simulation 

platform, and is presented in Section 4.1. The investigation forms part of a project 

involving an international group of researchers and analysts brought together by the HIV 

Modelling Consortium [53]. The analysis presented here forms a substantial portion of the 

full body of work by the group, on which a manuscript is currently being prepared.24 

___________________________ 

24The analysis presented in Section 4.1 contributes to work being published by the following 
authors, listed alphabetically and publishing on behalf of an HIV Modelling Consortium working 
group: Daniela De Angelis (Medical Research Council, and Cambridge University – United 
Kingdom), Marian Farah (Medical Research Council, and Cambridge University – United 
Kingdom),  Debra Hanson (Centers for Disease Control and Prevention – USA), Reshma 
Kassanjee (SACEMA – South Africa), Phillip Labuschagne (SACEMA – South Africa), Oliver 
Laeyendecker (National Institute of Allergy and Infectious Diseases – USA), Stepháne Le Vu 
(French Public Health Institute – France), Brian Tom (Medical Research Council, and 
Cambridge University – United Kingdom), Rui Wang (Harvard University – USA), Alex Welte 
(SACEMA – South Africa) and Ping Yan (Public Health Agency of Canada – Canada). 
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The unknown infection times of subjects in the sample pose a particularly subtle obstacle 

to accurate MDRI estimation, and potential approaches for limiting bias are explored in 

the remainder of the chapter. Firstly, by redefining the effective ‘HIV-positive’ state 

through the introduction of an artificially high ‘diagnostic detectability’ threshold on a 

semi-quantitative assay, the time of entry into this state could potentially be more 

accurately estimated by reducing extrapolation required in analyses given typically 

available data. The concept is demonstrated in Section 4.2 using simulated data from the 

benchmarking exercise, and was first presented in a conference poster [34] using actual 

data.25 Secondly, when estimating a subject’s infection time, diagnostic testing history 

data should be carefully analysed, and the context-dependent definition of (perforce, 

detectable) infection considered. These topics, inspired by the CEPHIA data preparation 

process, are briefly explored in Section 4.3. A summary of the ideas presented has been 

included in a manuscript by CEPHIA.26 

___________________________ 

25The concept presented in Section 4.2 was first published in the following conference poster: 
‘Kassanjee R, Hargrove J, Marinda E, Humphrey J, McWalter TA and Welte A. New criteria for 
defining biomarker-derived ‘recent HIV infection’ for the purposes of incidence estimation. 
E-poster CDC0474 at the XVIII International AIDS Conference, 18 – 23 July 2010, Austria’. 

26Some of the ideas presented in Section 4.3, which were developed while preparing and analysing 
CEPHIA data, are summarised in a (currently unpublished) manuscript by CEPHIA, authored 
by: Christopher D Pilcher (University of San Francisco, California – USA), Sheila M Keating 
(Blood Systems Research Institute – USA), Reshma Kassanjee (SACEMA – South Africa), 
Elaine McKinney (Public Health England – United Kingdom), Shelley N Facente (University of 
San Francisco, California – USA), Kara Marson (University of San Francisco, California – 
USA), Alex Welte (SACEMA – South Africa), Michael P Busch (Blood Systems Research 
Institute – USA) and Gary Murphy (Public Health England – United Kingdom). 
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4.1 Benchmarking	Estimation	
Approaches	Using	Simulated	
Data	

4.1.1 Introduction	

Conventionally, estimation of the MDRI has relied on longitudinal data, which captures 

the dynamics of the test for recent infection as a function of time after infection. 

Constructing such datasets requires specimens from (initially HIV-negative) subjects to 

be collected regularly over time before and after infection. Such specimens are costly and 

logistically difficult to obtain, 27  and, when available, a number of approaches for 

analysing the resulting longitudinal data could be considered. While different 

methodologies have been adopted by various research groups [16, 17, 91-103], robust 

(and widely-accepted) methods for estimating the MDRI are essential for the success of a 

cross-sectional incidence surveillance approach as unbiased incidence estimation requires 

unbiased test characterisation. It is important to identify factors that significantly 

influence test dynamics, and disentangling the variation in MDRI estimates caused by 

study population differences (such as the subtype of HIV infections) from that caused by 

analytical differences requires careful consideration of the estimation methods employed. 

Also, to optimally design studies for characterising tests for recent infection, the 

relationships between features of the data, such as sample sizes and visit gaps, and the 

performance of MDRI estimation methods need to be understood. 

Consequently, in 2012, the HIV Modelling Consortium tasked SACEMA with 

coordinating a collaborative project to investigate the performance of MDRI estimation 

approaches using simulated data [53]. The project team consists of researchers from 

SACEMA, the Centers for Disease Control and Prevention (CDC), the National Institute 

of Allergy and Infectious Diseases (NIAID), the British Medical Research Council 

(MRC), Cambridge University, the French Public Health Institute, Harvard School of 

Public Health and the Public Health Agency of Canada. The working group gathered at 

___________________________ 

27 In an attempt to address the bottleneck created by the reliance on longitudinal data, the 
preliminary estimation of the MDRI, using specimens from subjects observed only once after 
infection, is discussed in Chapter 3. 
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Harvard University in Boston in July 2012 to discuss the theoretical framework for 

estimating incidence (and thus defining the MDRI), outline the project scope and 

methodology, and interpret preliminary outputs. Thereafter, a teleconference was held 

every second week, so that each step of the process could be critically reviewed and tasks 

allocated to team members. Online structures were developed to efficiently share relevant 

documents, datasets, MDRI estimation outputs and drafts of the manuscript (to be 

published). 

In principle, the ‘recent’ or ‘non-recent’ classification produced by a test for recent 

infection may rely on multiple measured biomarkers and clinical indicators [10]. This 

investigation was restricted to considering a test for recent infection based on a single 

biomarker. The biomarker need not represent the measurement of a single quantity, but 

may be a single summary metric of multiple measurements. In line with currently used 

‘incidence assays’, a measurement below a chosen threshold, , was interpreted as 

indicating ‘recent’ infection. The MDRI summarises the average time that biomarker 

measurements are below this threshold – more specifically, the MDRI, Ω , of relevance 

for incidence estimation, is the average time ‘recently’ infected and alive while infected 

for less than some chosen time cut-off  [29]. 

A defining feature of this project is the use of simulated data: by simulating data, not only 

is the true underlying MDRI computable (against which MDRI estimates can be 

compared), but experiments can be replicated thousands of times and therefore the 

behaviour of estimation methods fully understood. The SACEMA team developed a 

comprehensive simulation platform that automated the generation and storage of datasets, 

application of estimation methods, and storage of outputs in a database. 

A large number of MDRI estimation methods were implemented, including both 

approaches previously used and some new approaches proposed by the project team 

members. The accuracy and precision of methods were assessed in a number of modelled 

scenarios that capture essential features of what could be encountered in reality, such as 

different underlying biomarker dynamics (for example, forms of the biomarker signals 

post infection and levels of measurement noise) and different study designs or subject 

behaviours (for example, sample sizes, intended visit schedules and tendency of subjects 

to miss visits). 
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4.1.2 Design 

In practice, an analyst would typically be provided with a single dataset for estimation of 

the MDRI. However, to understand the performance of any given MDRI estimation 

method, this ‘experiment’ needs to be repeated a large number of times and the collection 

of MDRI estimates considered. The simulation platform28 that was developed as a part of 

this project allowed for efficient replication of experiments through the automated 

generation of datasets and application of estimation methods. Detailed discussions follow 

about the (i) generation of data, (ii) MDRI estimation methods, and (iii) metrics of 

performance used. 

Broadly outlining the approach taken, the performance of MDRI estimation methods was 

assessed in a ‘base case’ scenario and then in each of a number of comparison scenarios. 

The base case scenario captures a somewhat optimistic study design and high adherence 

by subjects, and a biomarker dynamic inspired by experiences of researchers in the group. 

Comparison scenarios were generated by systematically varying aspects of this base case 

scenario, and capture features of processes that could be encountered in practice. For each 

scenario, 1 000 datasets were generated and each method of MDRI estimation was 

applied to each of the datasets (other than for the non-linear mixed models, which were 

each applied to a common subset of 250 datasets due to the computational expense of the 

estimation approach). Summary measures of accuracy and precision were used to assess 

the performance of the MDRI estimation methods, relative to one another and by context.  

___________________________ 

28 The simulation platform was implemented and administered by Phillip Labuschagne of 
SACEMA. The platform automated the generation of data, the application of MDRI estimation 
methods (which were provided by others in the group, including myself, in the form of Matlab, R 
or SAS scripts) and the storage of all results.  The system was developed using Python, R and 
MySQL. Due to the large run times involved, computing resources provided by Amazon Web 
Services were utilised. 
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Data	generation	

The underlying processes that produce a real-world dataset for MDRI estimation can be 

considered in two parts. Firstly, the study design, adherence to the protocol and subject 

behaviour would drive the visit times and infection times of subjects in the sample. 

Secondly, particulars of the biological signal (as a function of time since infection) and 

the noise around the signal (from fluctuations within the host or simply imperfect 

measurement in the laboratory) would drive the observed biomarker readings for the 

visits (according to when the subjects got infected). Based on imitating these real-world 

processes, stochastic models were constructed for generating the visit times, infection 

times and biomarker readings of subjects. The models, inspired by experiences of 

researchers in the project team, were designed to be simple and rely on relatively few 

input parameters, yet provide sufficient flexibility to explore the features to be 

investigated. The base case scenario was defined by choosing particular values for the 

data generation parameters, based on an idealistic adherence to a somewhat optimistic 

study design and insights into existing biomarkers for recent infection. Data generation 

parameters were then systematically varied to create the comparison scenarios.  

The model used to generate visit times was intended to portray a study where initially 

HIV-negative subjects are visited regularly over time, and the intended visit gaps and 

total follow-up times are specified, but the realised visits that are generated also account 

for variability, missed visits and loss to follow-up. More specifically, the starting point is 

to specify, for all subjects in the study, the intended time between visits while HIV-

negative, the intended visit gap once observed to be HIV-positive, and the intended total 

follow-up time from a subject’s first HIV-positive test. To then account for loss to follow-

up (for example, due to participants moving out of the study area or termination of the 

study period), a proportion of subjects are lost earlier than intended, and allocated 

reduced total follow-up times. To account for variability in visit gaps, the potential visit 

gaps (in the absence of missed visits) fluctuate around the intended or mean visit gaps. To 

account for missed visits, there is a chance that a subject misses any potential visit. Since 

one may expect some subjects to miss visits more frequently than others, subject-specific 

probabilities of missing visits deviate from some population average probability. A total 

sample size (or number of subjects who become HIV-positive) is selected, which, in 

reality, results from factors such as the scale of study, observed HIV incidence, and 

recruitment and retention rates.  
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The timing of infection within the ‘infection interval’, used to refer to the time interval 

from the last HIV-negative visit to the first HIV-positive visit, will depend on both the 

study design and subject behaviour. For example, if visit times are specified by the study 

administrators and strictly maintained, it is valid to assume that a subject is equally likely 

to have been infected (as defined by the HIV diagnostic test used) at any time in the 

infection interval. However, subjects may exhibit test-seeking behaviours (advancing 

visits after exposures specifically to obtain HIV tests) or test-deferring behaviours 

(delaying visits after exposures, possibly out of fear or from illness with acute HIV) 

[155, 156, 175, 176]. This complexity was summarised by specifying a distribution for 

generating infection times within infection intervals. 

The model for generating a biomarker reading for each visit aimed to mimic a process 

whereby realised biomarker readings consist of both signal and noise, and the biomarker 

evolves differently in different subjects. For example, the signal may grow quickly and 

saturate at a high value in one subject, and grow slowly and settle at a low level in 

another. Based on plausible behaviour of a viral or host-response biomarker in a subject, 

a flexible sigmoid curve was chosen to capture the biomarker signal as a function of time 

after infection, thus allowing for a period of little growth, clear evolution, and then 

levelling-off of the signal. To allow for subject-specific evolutions, the three parameters 

(asymptote, scale and shape) defining the signal were independently generated for each 

subject, with each subject’s parameters drawn from some common multivariate 

population-level distribution. A flexible noise structure allowed the magnitude of the 

noise to depend on the value of the signal. While this biomarker model was used to 

generate readings for almost all scenarios considered (including the base case), an 

alternative model was implemented for exploring the sensitivities of MDRI estimation 

results to the true form of the underlying biomarker. In this alternative biomarker model, 

the biomarker signal was based on a power of time, with a time lag between infection and 

when the signal was observed 

The described models for the simulation of data are formally outlined below, in terms of 

input parameters and the specific functional forms and statistical distributions used to 

generate the data. Values for the input parameters for the base case scenario are also 

specified. The models produce sets of visit times , , infection times , , and 

biomarker  readings  , ,  where  ,   is  the  time  of  the  th  HIV-positive  visit 

( 1,2, … ) for subject  ( 1,2, … , ) and ,  is the corresponding biomarker 
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reading, and ,  is the time of infection for subject . For each subject, the time of the 

last HIV-negative visit provides the reference time of 0. 

The generation of visit times, , , depends on eleven parameters which are introduced 

in order below, namely , , , , ,	 , , , , , 

and . 

For any given subject  ( 1,2, … , , where  is specified as an input), the total follow-

up  time  from  the  first  HIV-positive  visit,  , is  drawn  from  the  following  mixed 

distribution: 

1 if

if ∈ 0,

0 elsewhere

, (4.1) 

where  is the intended and maximum follow-up time and  is the proportion of 

subjects lost to follow-up. The distribution treats follow-up times as uniformly 

distributed. in (0, 	) for those subjects who are lost to follow-up. 

The time of the first HIV-positive visit for subject , relative to the last HIV-negative 

visit, depends on the study protocol and behaviour of the subject while HIV-negative. The 

first  HIV-positive  visit  time,  , ,  is  drawn  from  a  normal  distribution  with  mean 

∙ , 1  and variance ∙ , 1  (truncated to exclude values below 

zero), where  is the mean visit gap while HIV-negative and 	 captures the 

variability in the gap, and ,  is the number of visits that are missed (before the first 

HIV-positive visit). The count ,  is drawn from a geometric( , ) distribution 

( , 0,1,2, …), where ,  is the subject’s probability of independently missing 

any visit. This probability, , , is drawn from a population-level beta , ) 

distribution. 

Denoting the realised visit gap after the  HIV-positive visit by ,  ( 1,2, … , the 

time of the subsequent HIV-positive visit, , , is generated using , , , , 

where ,  depends on the study protocol and subject behaviour while HIV-positive. The 

visit gap, , , is drawn from a normal distribution with mean ∙ , , 1  and 

variance ∙ , , 1  (truncated to exclude values below zero), where  is the 

mean visit gap while HIV-positive and 	captures variability in the gap, and , ,  

is the number of visits that are missed (after the  HIV-positive visit). The number of 
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visits  missed,  , , ,  is  drawn  from  a  geometric( , )  distribution 

 ( , , 0,1,2, …), where ,  is the subject’s probability of independently missing 

any visit. This probability, , , is drawn from a population-level beta , ) 

distribution. 

Only visits occurring within the subject’s total follow-up time are retained – that is,  is 

the largest value such that , , .  

The generation of infection times, , , depends on two parameters, namely  

and	 . The infection time for the  subject, , , is , ∙  where  is drawn from a 

beta , )  distribution.  Setting  1  recovers  uniformly  distributed 

infection times, and ,  and  produce average test-

neutral, test-seeking and test-deferring behaviours respectively.  

The generation of biomarker readings, , , depends on the thirteen parameters 

contained in the inputs , 	Σ , and . For the  subject, the signal at time  post 

infection is given by: 

| , ∙ 1
,

,

, (4.2) 

where ,  captures the maximum height or asymptote, ,  captures a horizontal scaling, 

and ,  describes the shape, of the signal which is anchored at zero at infection. The 

subject’s  signal  parameters,  contained  in  , , , , , ,  are  drawn  from  a 

population-level multivariate , Σ  distribution (truncated to have only a non-

negative support for each parameter). Allowing for noise, a biomarker measurement, , , 

for the visit at time , , is drawn from a 

,
∗ , ∙ ,

∗ ∙ ,
∗  

distribution (and non-positive values are censored to be 0), where the noise parameters 

are contained in , , ,  and ,
∗

, ,  is the time since infection at the 

visit.  

For the alternative biomarker model, the data depends on the five inputs , , , , , , 

,  and . The signal for subject  at time  post infection is: 

| 8 ∙ max 0, t b ,
, , (4.3)
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where , 0 captures the time between infection and the appearance of signal, and 

, 0 describes the shape of signal growth. The subject’s lag parameter, b , , is drawn 

from  a  uniform , , ,   distribution,  and  the  shape  parameter  is  drawn  from  a 

uniform , , ,  distribution. Including noise, a biomarker measurement, , , for the 

visit at time , , is drawn from a ,
∗ ,  distribution (and non-positive values are 

censored to be 0), where ,
∗

, ,  is the time since infection at the visit. 

For each dataset generated, the above mechanisms produce , , ,  and ,  for 

1,2, … ,  and 1,2, … . The infection times, , , would be unknown in 

practice, and only the observable visit times and biomarker readings, , , , , are 

passed to the MDRI estimation methods.  

The base case scenario is described below, and values of the data generation input 

parameters are provided. For each of the 50 subjects captured in the sample ( 50 , the 

intended visit gaps were 3 months and 1 month while HIV-negative and HIV-positive 

respectively ( 3 months and 1 month), and intended follow-up time was 

2 years ( 2  years). There was a 10% coefficient of variation for visit gaps 

( 3  days and 9  days), and no missed visits and no loss to follow-up 

( → 0,  1,  	 → 0,  1,  0).  Visit  times  were 

considered to be fixed by study design and independent of infection, and therefore 

infection times were uniformly distributed in infection intervals ( 1 and	 1). 

In terms of the biomarker dynamics, for visit times measured in days, the mean signal 

parameter values were given by 85,190,5  (capturing height, scale and shape, in 

order). The covariance matrix for subject-specific deviations, Σ , was such that the 

standard deviations of the height, scale and shape parameters were 7.5, 50 and 1.4 

respectively; and there was a correlation of -0.4 between the shape and scale parameters, 

0.3 between the shape and height parameters, and -0.12 between the scale and height 

parameters (arising from the relationship of each parameter with shape, without any 

additional or partial correlation). The noise inputs were 2,0,0.3,0.5 , producing a 

standard deviation that began at 2 at infection and levelled off at 4.7 (based on the 

average asymptote of 85). One or more parameters were varied to produce each of the 

comparison scenarios, and details are specified in the tables of results. 
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Approaches	for	estimating	the	mean	duration	of	recent	infection	

Based on the general incidence inference framework [29], the MDRI can be expressed 

mathematically as Ω 	d , where  is the probability of being ‘recently’ 

infected and alive at time  after infection. 29 Estimation of the MDRI therefore inevitably 

entails using the longitudinal data to make inferences about the function . This can 

be achieved either directly by fitting a chosen model for  to the ‘recent’ and ‘non-

recent’ classifications of subjects, or indirectly by modelling the biomarker measurements 

and then subsequently computing the implied probability of obtaining a measurement 

below the threshold  (that is, obtaining a ‘recent’ result). Throughout this work, 

1 year and 40, and negligible mortality within  after infection was assumed in 

the estimation of the MDRI. 

Various approaches for estimating the MDRI appear in the literature [16, 17, 91-103]. For 

this benchmarking exercise, a number of methods were implemented, intended to be 

representative of those previously published and to provide some extensions. The 

methods are represented in the mind map in Figure 4.1, and were broadly divided into 

three categories, capturing (i) interpolation methods, (ii) survival analysis, and 

(iii) parametric regression. Those methods that were implemented by others in the project 

team appear in grey text (Methods 18-24) and are not discussed in this thesis (additional 

interpretation of all results will be provided in the manuscript to be published by the 

group). Specific implementations within each category of methods are described in more 

detail below. 

___________________________ 

29 The derivation of the general incidence inference framework and the definitions of test 
characteristics appearing in the incidence estimator are presented in Chapter 2. 
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Figure 4.1. Mind map of the mean duration of recent infection estimation 
approaches included in the benchmarking exercise  
The 24 MDRI estimation methods that were implemented and evaluated are captured in 
the mind map (each numbered and labelled in bold). Methods shown in grey text 
(Methods 18-24) were implemented by other members of the team, and are therefore not 
discussed in this thesis. When parametrically modelling biomarker measurements, the 
three forms for the biomarker signal that were used (Signal 1-3) are given by
1) 1 ∙ exp , 2) 1 exp ∙ exp , and
3) 1 exp ∙ exp  where  is time since infection and ,  and  are model
parameters; and the two noise structures that were used (Noise 1-2) specify that the 
standard deviation of noise is 1) a linear function of the signal, or 2) constant. 

MDRI estimation approaches

Parametric
regression

- Subject-level linear regressions
- Response: biomarker reading

in vicinity of test threshold
- Infection times by multiple imputation

- Non-linear regression
- Response: biomarker reading
- Including random effects

Bayesian
(Winbugs and R)

Uniform priors
for infection
times

3) - Signal 3
- Noise 2

2) - Signal 2
- Noise 2

1) - Signal 1
- Noise 2

3) - Signal 3
- Noise 2

2) - Signal 2
- Noise 2

1) - Signal 1
- Noise 2

Frequentist
maximum likelihood
(Matlab)

3) - Signal 3
- Noise 1

2) - Signal 2
- Noise 1

1) - Signal 1
- Noise 1

- Linear regression
- Response: probability of

'recent' infection
- No random effects

Frequentist
maximum likelihood
(Matlab)

4) - Link: identity
- Predictor: interval of time

3) - Link: loglog
- Predictor: linear in ln(time)

2) - Link: logit
- Predictor: natural cubic spline

1) - Link: logit
- Predictor: cubic polynomial

Survival analysis

Non-parametric

Turnbull's algorithm
(single interval
censoring)

Kaplan Meier
with interpolation Nearest neighour

Linear

Parametric
(double interval
censoring) Lognormal

Gamma

Weibull 5. Surv_Par_Weibull

Interpolation

Nearest neighbour
Multiple transitions 4. Interp_Midp_ME

Single exit  3. Interp_Midp_SE

Linear
Multiple transitions 2. Interp_Linear_ME

Single exit 1. Interp_Linear_SE

6. Surv_Par_Gamma

7. Surv_Par_Lognormal

8. Surv_NonPar_KM_Lin

9. Surv_NonPar_KM_Midp

10. Surv_NonPar_Turnbull

11. Binomial_Logit_Cubic

12. Binomial_Logit_Spline

13. Binomial_LogLog_Linear

14. Binomial_Ident_Interval

15. Mixed_MLE_Sig1

16. Mixed_MLE_Sig2

17. Mixed_MLE_Sig3

18. Mixed_Bayes_Sig1

19. Mixed_Bayes_Sig2

20. Mixed_Bayes_Sig3

21. Mixed_Bayes_Sig1_Unif

22. Mixed_Bayes_Sig2_Unif

23. Mixed_Bayes_Sig3_Unif

24. Mixed_Linear_MI
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Generally, a challenge faced when estimating the MDRI from longitudinal data is the 

uncertainty of subjects’ infection times. It is only known that infection (as defined by the 

HIV diagnostic test being used) occurs somewhere between the last HIV-negative and 

first HIV-positive visits, and explicitly allowing for this uncertainty substantially 

increases the complexity of estimation methods. One simple approach is to approximate 

each subject’s infection time by some expected infection time, but even this relies on 

assumptions about subject behaviour. In studies where visits times are fixed by design, it 

is valid to assume that the infection time is uniformly distributed in the infection interval. 

In this case, an infection time could be estimated by the midpoint of the infection interval. 

A number of the MDRI methods outlined below use this ‘midpoint infection time’ 

approach. 

Interpolation methods (Methods 1-4) use mathematical interpolation for each subject to 

obtain a biomarker reading at every time point after infection (using a ‘midpoint infection 

time’, assuming a biomarker reading of zero at infection, and without any extrapolation 

beyond the subject’s last data point). At every time  post infection, the proportion of 

those subjects with available biomarker readings (namely those that have not been lost to 

follow-up) that have measurements below the test threshold  provides an estimate of 

. Biomarker readings were interpolated either linearly or by a nearest neighbour 

approach (implying that transitions between states occur at the midpoints of periods 

between visits). Furthermore, the approach was implemented either using all data as is or 

assuming a subject’s readings remain above the threshold, , after a first measurement 

above . The first implementation allows for multiple transitions between the ‘recent’ 

and ‘non-recent’ states, while the second assumes and enforces single exits from the state 

of ‘recent’ infection (disregarding information contained in later data points), as done in 

some of the literature [91, 93-96, 98-100, 102]. This class of methods provides a basic, 

informal approach for analysing the longitudinal data. The Matlab function that was 

developed to implement Methods 1 and 2 is provided in Appendix B.3. 

Conventional statistical survival analysis techniques are used to model the time from 

entering to exiting a state of interest. For this application, even if the biomarker signal is 

monotonically increasing over time after infection (at least until the time cut-off ), 

measurement noise implies that subjects may fluctuate in and out of the state of ‘recent’ 

infection many times, and therefore this single sojourn view of ‘recent’ infection is too 

restrictive. These statistical methods have nevertheless been employed in this area [93, 

94, 96, 98-100, 102] and can be easily implemented using standard software, and were 
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therefore included in this benchmarking exercise. To utilise the survival analysis 

framework, all data points beyond a subject’s first ‘non-recent’ data point were 

effectively discarded.  

Survival analysis methods are also more amenable to accommodating (at least some cases 

of) data censoring. In this application, data is double interval censored as both entry and 

exit times are interval censored. More specifically, a subject’s entry time lies within the 

infection interval, and exit time lies in what is referred to here as the ‘exit interval’. The 

exit interval is taken to be the time interval either between the subject’s first ‘non-recent’ 

visit and the preceding visit, or between the latest visit and infinity (or some very large 

time) if there is no ‘non-recent’ result (typically referred to as a right censored exit time). 

The first set of survival analysis methods (Methods 5-7) are based on fitting a parametric 

distribution (Weibull, Gamma or Lognormal distribution) to the time in the ‘recent’ state, 

treating the time in the state as double interval censored (that is, the infection time is 

uniformly distributed in the infection interval, and then the exit time is uniformly 

distributed in the exit interval). A maximum likelihood approach was used to estimate the 

distribution’s parameters, and the integration required to assess the likelihood function 

was performed numerically (using the composite trapezoidal rule). 

Parametric assumptions about the distribution of times in the ‘recent’ state were avoided 

by using a Kaplan-Meier or Product-Limit estimator [177, 178] of the survival function 

(Methods 8 and 9), where the estimated survival function is a step function that 

maximises the likelihood of the observed data. The standard Kaplan-Meier approach 

accommodates only right censored data, and therefore ‘midpoint infection times’ were 

used and exit times were estimated by interpolation between biomarker readings on either 

side of the exit interval (assuming a zero biomarker measurement at infection), either 

linearly or by a nearest neighbour approach. If the last visit of the subject was ‘non-

recent’, the exit time was treated as right censored. The MDRI estimates obtained from 

these methods will be equal to those produced by the corresponding single-exit 

interpolation methods (Methods 1 and 3) when there are no right censored exit times 

within  after infection. 

Founded on the principle of an Expectation-Maximisation algorithm, Turnbull's algorithm 

[178, 179] extends the Kaplan-Meier estimator of the survival function to allow for 

interval censored data (Method 10). The double interval censoring in the data implies that 

a trapezoidal distribution should be used to describe the uncertainty in the time in the 
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‘recent’ state, while the single interval censoring accommodated by Turnbull’s algorithm 

utilises a uniform distribution. Therefore, while not formally exact, to facilitate 

application of this approach and reproduce previous implementations [98], the data was 

interpreted as capturing single interval censored times in the ‘recent’ state, with bounds 

given by the minimum and maximum possible times in the ‘recent’ state implied by the 

data. In this implementation, the survival function was taken to evolve piecewise linearly 

(rather than being piecewise constant, as is conventionally assumed). 

In parametric regression (Methods 11-17), a particular form for the expected response, 

as a function of predictors, is fitted to the data. In this application, time since infection (or 

transformations thereof) provide the predictor(s), and either the biomarker reading or test 

classification (‘recent’ versus ‘non-recent’) provides the response. Different classes of 

parametric regression can be considered, depending on the following, for example: the 

method of model fitting (such as whether a Bayesian or Frequentist approach is used, and 

the specific software or algorithms utilised); whether the response is the biomarker 

reading or test classification; whether the defined model forms are linear or non-linear in 

the parameters; whether subject-level clustering of data is accounted for by random 

effects; and how the unknown infection times are accommodated. The choices made 

greatly impact the statistical complexity, and computational stability and expense, of the 

approach. Two classes of parametric regression models were employed and are discussed 

below, namely linear binomial regression models and non-linear (normal-response) 

mixed models, both using ‘midpoint infection times’. 30 

The linear binomial regression models (Methods 11-14) assumed functional forms for 

, with parameters estimated to maximise the likelihood of classifications in the data 

(using Matlab’s ‘glmfit’ tool). The models were of the form , where 

.  is the link function, and 	 		is the linear predictor containing both the 

model parameters in  and the predictors, which are functions of time since infection, in 

. This class of models neglects the subject-level clustering of data points. Four 

parametric forms of the model were implemented (Forms 1-4), intended to provide 

varying degrees of flexibility: 1) .  is a logit link and  is a cubic polynomial of time (a 

four-parameter model); 2) .  is a logit link and  is a linear combination of the basis 

___________________________ 

30Additional classes of parametric regression models were implemented by other members of the 
project team, and are to be presented in the group’s manuscript. 
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functions of a natural cubic spline that has six equally spaced knots within 0,  (a six-

parameter model); 3) .  is a loglog link and  is a linear function of the natural 

logarithm of time (a two-parameter model, with  resembling a Weibull survival 

function); and 4)	 .  and  are such that  is constant within each of six equally-

sized subintervals segmenting the post-infection time interval 0,  (six parameters). In 

some scenarios considered, the sparseness of data did not support meaningful use of 

Forms 2 and 4. For Form 4, when fewer than five subjects contributed data points to any 

subinterval, the number of subintervals was reduced in decrements of one (to a minimum 

of one). 

Non-linear mixed models (Methods 15-17) for the biomarker measurements are 

substantially more complex and difficult to implement than any of the approaches 

discussed above, but are able to capture various features of the data. In general, a 

parametric form for the biomarker signal over time since infection is chosen, as is a 

measurement noise structure, and subject-level clustering or correlation of data is 

accounted for through subject-specific deviations (random effects) of signal parameters 

from the population-level average signal parameters (fixed effects).  

More specifically, the chosen model structure specified that the biomarker measurement 

for subject  at time  after infection was given by 

| | | ∙ , (4.4)

where the signal was described by |  and the noise was captured by , which is a 

standard normal random variable (independently drawn for every biomarker 

measurement). The subject’s  signal parameters contained in  followed a multivariate 

normal distribution, with mean  (the fixed effects) and covariance matrix Σ  (capturing 

the variability of the random effects or subjects’ deviations). The model parameters were 

contained in , Σ  and 	 , .  
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Three forms for the signal were implemented (Signals 1-3). Signal 1 is 

| 	 , ∙ 1 ,
,

, (4.5) 

and Signal 2 is 

| 	 , ∙ 1 exp ,
, , (4.6) 

and both result in eleven-parameter models ( 3). Signal 3, a special case of Signal 2, 

is  

| 	 , ∙ 1 exp ,  (4.7) 

and produces a seven-parameter model ( 2 . Signal 1 matches the biomarker signal 

used to generate base case scenario data, up to transformations of the parameters. 

The mixed model parameters were estimated to maximise the likelihood of the data. The 

large search space and complex likelihood function can cause instabilities when using 

optimisation algorithms to search for the parameters’ maximum likelihood estimates, and 

therefore Markov Chain Monte Carlo (MCMC) approaches are often used. For this 

exercise, stability of processes was important as estimation was performed for several 

thousands of datasets through an automated system, and therefore the MCMC approach 

provided by Matlab’s ‘nlmefitsa’ tool was used. Also, while (in practice) convergence 

criteria would be carefully assessed when analysing any given dataset (as would the choice 

of parametric forms), here the number and lengths of the chains (which aim to converge 

to the maximum likelihood estimates) used in a single estimation were increased until a 

balance was found between feasible run times and suitably small variation in MDRI 

estimates if analysing the same dataset multiple times (three chains of 1 000 steps were 

used, each with its own starting value, and the parameter estimates providing the largest 

likelihood value were considered to be the maximum likelihood estimates). 

For the parametric approaches above (Methods 5-7, 11-17), data points occurring at large 

times after infection, relative to the time cut-off , were discarded before model fitting, in 

an attempt to achieve the best model fit specifically to data over post-infection times in 

0, . More specifically, data points were excluded which were beyond  plus some 

margin (ranging from 0 to 0. 5 ∙  across methods). Since the maximum follow-up time 

for subjects was 2 years and biomarkers were well behaved over that time by design, this 

data exclusion may have limited impact here. However, in practice, biomarker dynamics 

may become less predictable years after infection, and therefore care should be taken in 

choosing data to train models that are intended to describe early test dynamics. 
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The output of each method of estimation described above can be expressed as an 

estimated  – possibly after some transformation of output model parameters. The 

MDRI was then estimated by the area under this inferred curve, from 0 to , 

either analytically or numerically (using the composite trapezoidal rule). 

In practice, when any parameter is inferred, the reported estimate has little meaning 

without an estimate of uncertainty, typically expressed as a confidence interval. However, 

for this exercise, confidence intervals were not reported. By operating within a simulation 

environment where experiments could be replicated, the bias and variance of point 

estimates were directly measured. These metrics inform the coverage and widths of 

confidence intervals that may be produced. Furthermore, for any given estimation 

method, it is possible that a number of methods could be used to obtain confidence 

intervals. The optimisation of the confidence interval approach, and finding a balance 

between its complexity or computational expense and its performance, would extend this 

benchmarking exercise well beyond its already broad scope. 

Metrics	of	performance	for	estimation	methods	

For each scenario and each MDRI estimation method, a large number of MDRI estimates 

were obtained by analysing each of the 1 000 datasets that were generated. The 

distribution of point estimates provides information about the behaviour and performance 

of the estimation method. Many metrics could be considered for summarising this 

distribution, and potentially how it relates to the true MDRI – for example, percentiles, 

variance, the expected value, bias, or the mean squared error could be computed. For each 

scenario and each estimation method, two such performance statistics are reported here: 

(i) accuracy is summarised by relative bias (difference between average MDRI estimate 

and true MDRI, relative to the true MDRI), and (ii) precision is captured by the relative 

standard deviation or coefficient of variation (standard deviation of estimates relative to 

the mean estimate). 

To quantify the bias in estimation, the average MDRI estimate needs to be compared to 

the true MDRI, which was therefore computed for each scenario considered. The MDRI, 

Ω , depends on the dynamics of the underlying biomarker as a function of time since 

infection.  
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For scenarios where data was generated using the primary, base case biomarker model, 

the MDRI was calculated using the following expression (substituting in the scenario’s 

data generation parameter values): 

Ω 	 Φ
|

∙ | ∙ |
	

∈
d 	d , (4.8) 

where 0 is the test threshold used to distinguish between ‘recent’ and ‘non-recent’ 

results,  is the time cut-off appearing in the definition of the MDRI, |  is the signal 

given by Equation (4.2), Φ .  is the standard normal cumulative distribution function, 

and  is a multivariate normal probability density function with mean  and 

covariance matrix Σ , truncated to have only a positive support. 

For the alternative data generation biomarker form discussed, the MDRI was computed 

by: 

Ω Φ
|

d 	d 	d
,

,

,

,

, (4.9) 

where , , |  is the signal given by Equation (4.3), 

	 , , if , ,  (0 elsewhere) and 	 , ,

if , ,  (0 elsewhere). 



Estimating the Mean Duration of Recent Infection II: Longitudinal Follow-Up of Infected Subjects  126 

4.1.3 Results	

The results from each method of MDRI estimation are plotted for the base case scenario 

in Figure 4.2, and summary performance statistics for all scenarios are provided in 

Tables 4.1 to 4.4 – namely the relative bias of the estimation procedure (accuracy) and the 

relative standard deviation or coefficient of variation of point estimates (precision). The 

contents of each of the tables are outlined below, and then some qualitative insights 

gained from interpreting the results are highlighted.  

The base scenario is somewhat idealistic, capturing monthly visits for 50 HIV-positive 

subjects over two years after infection and infection times that are uniformly distributed 

in intervals of 3 months. For this scenario, all categories of estimation methods appear to 

provide useful estimates (Figure 4.2), but there is a clear sensitivity to parametric 

assumptions when considering the mixed model results (Methods 15-17). Therefore, an 

initial investigation into parametric assumptions for the mixed models was performed, 

and is presented in Table 4.1. This investigation was used to down select and fine tune the 

(computer-intensive) mixed models that were to be subsequently assessed alongside the 

remaining estimation methods (and resulted in Signal 3 being abandoned). For each of the 

three fitted signal forms (Methods 15-17), four variations of the mixed model were 

implemented for this auxiliary investigation, based on assumptions about the noise 

structure and correlation between random effects (Table 4.1). The scenarios that were 

used to assess performance captured alternative forms of the underlying biomarker, and 

variations of the noise structure and levels of correlation between random effects 

(compared to the base case biomarker dynamic).  

Features of the data related to study protocol and subject behaviour (that is, the generation 

of visit and infection times) are considered in Table 4.2 and Table 4.3. The performance 

of estimation methods when varying the number of subjects and mean visit gaps, while 

HIV-negative and HIV-positive in turn, is summarised in Table 4.2; while the impact of 

(increasing levels) of missed visits, loss to follow-up and non-uniformity of infection 

times is explored in Table 4.3. The impact of features of the underlying biomarker 

dynamic is investigated in Table 4.4, where the levels of measurement noise and inter-

subject variability are varied (for the base case biomarker form) and the alternative 

biomarker form is considered. 
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Figure 4.2. Box-and-whisker plots of the mean duration of recent infection point 
estimates for the base case scenario by method of estimation
Box-and-whisker plots of the point estimates for the MDRI, Ω  (days), are provided for 
the base case scenario, for each of the MDRI estimation methods ( 1 year). The box 
and dividing line indicate the central 50% and median of estimates respectively, and 
whiskers and circles capture remaining data points and outliers respectively (outliers are 
more than 1.5 times the interquartile range or box length away from the central box). The 
vertical black line indicates the true MDRI.  
* Methods 15-17 appear to have fewer outliers because fewer experiments were replicated
(250 instead of 1 000). 
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1 Alternative biomarker form specified in text, , , 0, , 0.3, , 0.35 and 4, where 
   time is measured in days 
2 Alternative biomarker form specified in text, , 15, , 25, , 0.3, , 0.35 and 4,  
  where time is measured in days 
3 Noise standard deviation increases and then decreases with growing signal: 4, -0.26, 2.8, 0.5   
4 Noise standard deviation increases and then decreases with growing signal: 4, -0.22, 10, 0.25   

Table 4.1: Performance of variations of mixed models in scenarios constructed for 
exploring sensitivities to parametric assumptions 
The estimated relative bias (%) and relative standard deviation (%) for each MDRI 
estimation procedure are shown, for variations of the non-linear mixed models for the 
biomarker readings. Scenarios capture different underlying biomarker forms, and changes 
in the noise structure and the correlations between signal ‘random effects’ (relative to the 
base case).  * Scenario corresponds to base case. 
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FITTED MODEL
   SPECIFICATIONS
Noise standard deviation
Correlation between 
   'random effects'
RELATIVE BIAS (%)
Underlying biomarker
   form

Base case* -1 0   -0 2   -6 1   -1 1   -0 4   -6 0   -0 6   0 9    -6 7   -0 7   0 9    -6 7   

Power function, 

   no time lag1

-0 8   -0 1   -2 8   -0 7   -0 1   -2 8   -0 4   0 2    -3 3   -0 3   0 1    -3 4   

Power function, 

   with time lag2

1 7    2 2    -1 1   1 7  2 2    -1 1   -1 1   0 0    -1 8   -1 1   -0 0   -1 8   

Noise structure

Base case* -1 0   -0 2   -6 1   -1 1   -0 4   -6 0   -0 6   0 9    -6 7   -0 7   0 9    -6 7   

Alternative 13 -0 6   0 3    -7 0   -0 6   0 3    -7 0   -0 4   0 9    -6 8   -0 4   1 0    -6 8   

Alternative 24 -1 7   -1 4   -8 7   -1 4   -0 4   -8 7   -1 6   -1 0   -8 1   -1 5   -0 0   -8 2   

Correlation between
   signal 'random effects'
No correlation -0 3   0 6  -4 6 -0 4 0 5  -4 7 -0 3 1 3  -5 7 -0 3  1 3    -5 6   
Base case* -1 0   -0 2 -6 1 -1 1 -0 4 -6 0 -0 6 0 9  -6 7 -0 7  0 9    -6 7   
Double correlation
   coefficients

-1 4   -0 6   -6 8   -1 4   -0 8   -6 8   -0 6   1 0    -7 2   -0 7   0 9    -7 2   

RELATIVE STANDARD
   DEVIATION (%)
Underlying biomarker
   form

Base case* 4 0    4 0    4 1    4 1  4 1    4 1    4 1    4 1  4 7    4 8    4 8    4 7   

Power function, 

   no time lag1

4 3    4 3    4 4    4 3  4 4    4 4    4 4    4 4  3 5    3 5    3 6    3 6   

Power function, 

   with time lag2

3 8    3 8    3 4    3 3  3 7    3 6    3 3    3 3  3 3    3 3    3 4    3 4   

Noise structure

Base case* 4 0    4 0    4 1    4 1  4 1    4 1    4 1    4 1  4 7    4 8    4 8    4 7   

Alternative 13 4 4    4 4    4 5    4 5  4 3    4 4    4 5    4 5  5 4    5 4    5 2    5 1   

Alternative 24 4 5    5 1    4 5    5 3  4 4    4 5    4 4    4 5  5 1    5 3    5 0    5 1   

Correlation between
   signal 'random effects'
No correlation 4 6    4 6  4 5  4 6  4 6  4 6  4 5  4 6  5 1  5 2   5 1    5 0   

Base case* 4 0    4 0    4 1    4 1  4 1    4 1    4 1    4 1  4 7    4 8    4 8    4 7   

Double correlation
   coefficients

4 0    3 9    4 0    4 0  3 9    3 8    4 0    4 0  4 9    4 9    4 8    4 7   

 None  None  Included  Included 
 Constant Linear in signal Constant  Linear in signal 
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1 Convergence issues arose for Methods 5-7, which were run on only 250 datasets and 80% of runs 
   produced outputs 
2 The standard deviation for visit gaps (  and ) was 10% of the mean 
3 Convergence issues were encountered for Methods 15 and 16; and Methods 12 and 14 utilised 
 unrealistic model forms given the sparseness of data 

Table 4.2: Performance of the mean duration of recent infection estimation methods 
in scenarios capturing various study designs 
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI 
estimation procedures are shown. Scenarios capture varying numbers of (HIV-positive) 
subjects and average visit gaps, while HIV-negative and HIV-positive. 
* Scenario corresponds to base case.
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RELATIVE BIAS (%)
Number of subjects

51 -0 0  0 5    -0 1  0 5    -0 3  0 1    -0 2  0 0   -0 1  -0 0  0 4    -0 9   0 7    0 9    0 3   1 8     
10 -0 6  -0 0  -0 8  -0 1 -0 7 -0 7 -0 7 -0 6 -0 8 -0 8 -0 2 -0 2 0 1    0 3    -0 5  1 1     
20 -0 3  0 1    -0 5  0 0    -0 4  -0 5  -0 5  -0 3  -0 5  -0 5  0 0    -0 0   0 3    0 5    -0 6  0 9     

50* -0 4  0 1    -0 7  -0 1  -0 7  -0 7  -0 7  -0 4  -0 7  -0 9  -0 1  -0 1   0 3    0 4    -0 7  0 9     
100 -0 4  0 1    -0 7  -0 0 -0 6 -0 7 -0 7 -0 4 -0 6 -0 9 -0 0 -0 0 0 3    0 4    -0 3  1 2     
150 -0 3  0 2    -0 5  0 1    -0 5  -0 5  -0 6  -0 3  -0 5  -0 8  0 1    0 1     0 4    0 6    -0 2  1 3     
Mean HIV-negative 

   visit gap2

1 week -0 4  0 1    -0 6  0 0  -0 7 -0 6 -0 5 -0 4 -0 6 -0 6 0 1  0 0   0 5    0 5    -0 2  1 5     
2 weeks -0 5  -0 0  -0 7  -0 1  -0 8  -0 7  -0 6  -0 5  -0 7  -0 8  -0 1  -0 1   0 3    1 3    -0 2  1 6     
1 month -0 5  -0 0  -0 6  -0 1  -0 7  -0 6  -0 5  -0 5  -0 6  -0 6  -0 0  -0 0   0 3    0 6    0 1   1 8     

3 months* -0 4  0 1    -0 7  -0 1  -0 7  -0 7  -0 7  -0 4  -0 7  -0 9  -0 1  -0 1   0 3    0 4    -0 7  0 9     
6 months -0 4  0 1    -1 5  -0 9  -0 8  -0 6  -0 6  -0 4  -1 5  1 6    -0 5  -1 0   0 2    -2 4   -0 5  -0 2   
Mean HIV-positive

   visit gap
2

1 week -2 4  0 1    -2 7  0 2    -2 6  -2 7  -2 7  -2 4  -2 6  -2 6  0 2   0 2     0 5    0 0    -0 1  1 2     
2 weeks -1 3  0 1    -1 5  0 1    -1 5  -1 5  -1 5  -1 3  -1 5  -1 5  0 1   0 1     0 4    -0 0   -0 8  0 6     

1 month* -0 4  0 1    -0 7  -0 1  -0 7  -0 7  -0 7  -0 4  -0 7  -0 9  -0 1  -0 1   0 3    0 4    -0 7  0 9     
3 months 1 0    1 1    0 1    0 2    0 1    0 0    -0 0  1 0   0 1    0 4    -0 2  1 8     0 4    -1 8   -1 5  0 9     

6 months3 1 1   1 1    -3 5  -3 5  0 1    0 4    0 2    1 1   -3 5  14 1  -3 2  -24 5 -0 1  -10 3 -8 8  -19 4 

RELATIVE STANDARD
   DEVIATION (%)
Number of subjects

51 14 1  14 1  14 4  14 4 14 8 14 1 14 6 14 1 14 4 14 9 14 5 13 9 14 6  14 6  13 8  13 9   
10 9 7    9 8    9 8    9 9    9 8    9 8    9 8    9 7   9 8    10 2  10 0  9 9     10 0  9 9    9 0   8 9     
20 7 0    7 0    7 1    7 1    7 1    7 1    7 1    7 0   7 1    7 5    7 1    7 2     7 2    7 2    7 3   7 2     

50* 4 4   4 4    4 5    4 5    4 5    4 5    4 4    4 4   4 5    4 6    4 5   4 5     4 6    4 5    4 1   4 1     
100 2 9   3 0    3 0    3 0  3 0  3 0  3 0  2 9  3 0  3 1  3 0  3 0   3 1    3 0    2 9   2 9     
150 2 5   2 5    2 6    2 6    2 6    2 6    2 6    2 5   2 6    2 7    2 6   2 6     2 6    2 6    2 4   2 4     
Mean HIV-negative 

   visit gap2

1 week 4 0   4 0    4 1    4 1    4 1    4 1    4 0    4 0   4 1    4 1    4 1   4 1     4 2    4 1    3 9   3 8     
2 weeks 4 1   4 1    4 1    4 2    4 1    4 1    4 1    4 1   4 1    4 2    4 2   4 2     4 3    4 1    4 2   4 1     
1 month 4 0   4 1    4 1    4 2  4 1  4 1  4 1  4 0  4 1  4 2  4 2  4 2   4 3    4 1    3 9   3 9     

3 months* 4 4   4 4    4 5    4 5  4 5  4 5  4 4  4 4  4 5  4 6  4 5  4 5   4 6    4 5    4 1   4 1     
6 months 5 3   5 3    5 6    5 6    5 6    5 5    5 4    5 3   5 6    4 9    5 6   6 3     5 4    6 4    5 0   5 1     
Mean HIV-positive

   visit gap2

1 week 4 2   4 3    4 2    4 3  4 2  4 2  4 2  4 2  4 2  4 2  4 3  4 3   4 3    4 3    4 2   4 2     
2 weeks 4 2   4 3    4 3    4 3    4 3    4 3    4 3    4 2   4 3    4 4    4 4   4 4     4 4    4 4    4 1   4 1     

1 month* 4 4   4 4    4 5    4 5    4 5    4 5    4 4    4 4   4 5    4 6    4 5   4 5     4 6    4 5    4 1   4 1     
3 months 4 4   4 4    4 9    4 8  4 9  5 0  4 9  4 4  4 9  6 1  4 9  7 1   5 0    6 1    5 1   4 4     

6 months3 4 4   4 4    6 1    6 1  6 2  6 9  7 4  4 4  6 1  4 8  22 2 37 7 6 5    8 8    13 6  16 1   
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1 Reported as the mean of the population-level distribution for the probability of missing a visit, which has 
   an absolute standard deviation of 5%, for HIV-negative subjects and HIV-positive subjects in turn 
2 Reported as the percentage of subjects lost within the specified maximum follow-up time 
3 Methods 2 and 4 require that at least one subject is followed-up until 1 year after infection, and  
   therefore 2% of estimations could not be completed 
4 Infection times occur a third of the infection interval away from the first HIV-positive visit on average, 
 and 80% of infection times occur closer to the first HIV-positive visit than the last HIV-negative visit 

Table 4.3: Performance of the mean duration of recent infection estimation methods 
in scenarios capturing various non-ideal features of subject visits 
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI 
estimation procedures are shown. Scenarios capture varying levels of missed visits and 
loss to follow-up, and non-uniformity of infection times. 
* Scenario corresponds to base case.
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RELATIVE BIAS (%)
Missed visit

   probability
1

0% and 0%* -0 4  0 1    -0 7  -0 1 -0 7 -0 7 -0 7 -0 4 -0 7 -0 9 -0 1 -0 1 0 3    0 4    -0 7  0 9     
50% and 0% 1 5    1 9    -0 2  0 3    -0 5  -0 5  -0 5  1 5   -0 2  1 1    2 2    2 2   2 5   1 9  2 1    2 6     
75% and 0% 11 0  11 3  7 9    8 3    -0 7  -0 6  -0 6  11 0  7 9    3 5    4 8    4 8   4 7   4 2  7 7    7 2     
0% and 50% 1 1    1 3    0 6    0 9    -0 2  -0 4  -0 5  1 1   0 6    -0 6  -0 1  -0 1   0 2    0 3    -0 5  1 4     
0% and 83% 13 3  13 7  14 2  14 8  0 6    -0 2  -0 6  13 5  14 5  -0 2  0 0    -0 2   0 4    0 6    -1 3  -0 5   
50% and 50% 2 9   3 1    1 3    1 5  -0 1 -0 2 -0 3 2 9  1 3  0 7  1 9  1 8   2 4   2 0  1 5    2 6     
50% and 83% 12 4  12 8  13 2  13 7  0 3    -0 3  -0 6  12 5  13 4  -1 6  1 4    1 2     2 2    1 8    0 5    2 7     

Loss to follow-up2

0% within 2 years* -0 4  0 1    -0 7  -0 1  -0 7  -0 7  -0 7  -0 4  -0 7  -0 9  -0 1  -0 1   0 3    0 4    -0 7  0 9     
100% within 2 years -2 0  -0 0  -2 2  -0 2 -0 7 -0 7 -0 7 -0 6 -0 8 -1 0 -0 1 -0 2 0 2    0 8    -0 0  1 1     
100% within 1 5 years -2 6  0 0    -2 9  -0 1  -0 7  -0 7  -0 6  -0 5  -0 7  -1 9  -0 1  -0 1   0 3    1 1    -0 0  0 8     

100% within 1 year3 -4 1  0 1    -4 5  -0 1  -0 6  -0 2  0 0    -0 7  -0 9  -2 9  -0 0  -0 0   0 1    1 8    1 0    1 3     
Infection times

Uniformly distributed* -0 4  0 1    -0 7  -0 1 -0 7 -0 7 -0 7 -0 4 -0 7 -0 9 -0 1 -0 1 0 3    0 4    -0 7  0 9     

Test-seeking behaviour4 7 8    8 2    7 6    8 1  7 6  7 5  7 5  7 8  7 6  7 4  8 2  8 1   8 6   8 7  7 9    9 6     
RELATIVE STANDARD
   DEVIATION (%)
Missed visit

   probability1

0% and 0%* 4 4   4 4    4 5    4 5  4 5  4 5  4 4  4 4  4 5  4 6  4 5  4 5   4 6   4 5  4 1    4 1     
50% and 0% 5 2   5 2    5 5    5 5    5 0    5 1    5 0    5 2   5 5   5 1    5 1    5 1   5 2   5 2  5 0    5 0     
75% and 0% 6 0   6 0    6 4    6 4  6 5  6 5  6 5  6 0  6 4  6 6  6 6  6 6   6 7   6 8  6 7    6 6     
0% and 50% 4 4   4 4    4 8    4 8    4 9    5 0    4 9    4 4   4 8   5 4    5 1    5 1   5 1   5 0  4 2    4 1     
0% and 83% 4 6   4 6    5 2    5 2    6 8    7 0    7 0    4 6   5 2   8 4    7 2    7 3   7 2   7 2  6 6    7 1     
50% and 50% 5 4   5 4    5 8    5 8    5 8    5 8    5 8    5 4   5 8   6 3    6 0    6 0   6 0   6 0  5 5    5 4     
50% and 83% 5 6   5 6    6 3    6 3    7 6    7 6    7 6    5 6   6 3   9 7    8 0    8 0   7 9   8 0  6 3    5 9     

Loss to follow-up2

0% within 2 years* 4 4   4 4    4 5    4 5    4 5    4 5    4 4    4 4   4 5   4 6    4 5    4 5   4 6   4 5  4 1    4 1     
100% within 2 years 5 0   5 0    5 1    5 2  5 0  5 0  5 0  4 9  5 0  5 2  5 1  5 1   5 2   5 1  4 9    4 8     
100% within 1 5 years 4 9   5 1    5 0    5 2    5 0    4 9    4 9    4 9   4 9   5 1    5 1    5 1   5 2   5 1  4 9    4 8     

100% within 1 year3 5 4   5 8    5 5    5 9    5 6    5 6    5 7    5 5   5 6   5 7    5 8    5 8   5 8   5 7  5 4    5 5     
Infection times

Uniformly distributed* 4 4   4 4    4 5    4 5  4 5  4 5  4 4  4 4  4 5  4 6  4 5  4 5   4 6   4 5  4 1    4 1     

Test-seeking behaviour4 4 0   4 0    4 0    4 1  4 1  4 1  4 1  4 0  4 0  4 2  4 1  4 1   4 2   4 1  4 0    3 9     
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1 Reported as the (constant) standard deviation of noise, with values representing 10%, 25% and 50% of 
   the test threshold (or 5%, 12% and 24% of the average range of the signal) 
2 Described in terms of the standard deviations of signal ‘random effects’, maintaining their correlations 
3 Alternative biomarker form specified in text, , , 0, , 0.3, , 0.35 and 4, where 
   time is measured in days 
4 Alternative biomarker form specified in text, , 15, , 25, , 0.3, , 0.35 and 4,  
  where time is measured in days 

Table 4.4: Performance of the mean duration of recent infection estimation methods 
in scenarios capturing various features of the underling biomarker dynamics  
The estimated relative bias (%) and relative standard deviation (%) for each of the MDRI 
estimation procedures are shown. Scenarios capture varying magnitudes of measurement 
noise, levels of inter-subject variability, and underlying biomarker forms. 
* Scenario corresponds to base case.
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RELATIVE BIAS (%)
Magnitude of noise1

4 -0 4    0 2    -0 6   0 0    -0 6   -0 6    -0 6    -0 4   -0 6   -0 8   0 1   0 0   0 4   0 5   -0 5  1 1   
10 -3 9    -0 2  -4 5   -0 2  -4 5   -4 5    -4 5    -3 9   -4 5   -4 7   -0 1  -0 2  0 6   0 3   -0 3  1 0   
20 -15 9  -0 2  -17 3 -0 1  -17 2  -17 3  -17 1  -15 9 -17 2 -17 4 -0 2  -0 3  1 2   -0 1  -3 0  -0 1  
Inter-subject
   variability2

Base case* -0 4    0 1    -0 7   -0 1  -0 7   -0 7    -0 7    -0 4   -0 7   -0 9   -0 1  -0 1  0 3   0 4   -0 7  0 9   
Doubled -0 8    0 5    -1 2   0 2    -1 1   -1 8    -2 1    -0 8   -1 2   -0 6   -0 1  -0 0  0 4   -0 0  -3 4  -2 5  
Tripled -1 4    -0 0  -1 8   -0 3  -2 5   -3 3    -4 6    -1 4   -1 8   -0 5   -0 8  -0 8  -0 3  -1 0  -6 3  -5 3  
Underlying biomarker
   form

Base case* -0 4    0 1    -0 7   -0 1  -0 7   -0 7    -0 7    -0 4   -0 7   -0 9   -0 1  -0 1  0 3   0 4   -0 7  0 9   
Power function, 

   no time lag3 -10 1  -0 9  -11 6 -0 4  -11 5  -11 4  -11 4  -10 1 -11 5 -11 8 -0 4  -0 4  0 1   -0 0  -0 3  0 1   
Power function, 

   with time lag4 -8 7    -0 6  -9 9   -0 1  -9 9   -9 9    -9 9    -8 7   -9 9   -10 0 -0 0  -0 1  0 5   0 5   -1 1  -0 0  
RELATIVE STANDARD
   DEVIATION (%)

Magnitude of noise1

4 4 5     4 5    4 5     4 6    4 5    4 5   4 5     4 5     4 5     4 7     4 6   4 6   4 7   4 6   4 7   4 7   
10 4 4     4 5    4 6     4 5    4 6    4 6   4 5     4 4     4 6     4 8     4 5   4 5   4 6   4 6   4 3   4 3   
20 5 5     4 5    5 9     4 6    5 9    5 8   5 7     5 5     5 9     6 0     4 6   4 6   4 6   4 7   6 9   4 7   
Inter-subject
   variability2

Base case* 4 4     4 4    4 5     4 5    4 5    4 5   4 4     4 4     4 5     4 6     4 5   4 5   4 6   4 5   4 1   4 1   
Doubled 6 9     6 8    7 0     6 9    7 1    7 0   6 9     6 9     7 0     7 0     7 0   7 0   6 9   7 1   6 1   6 1   
Tripled 7 6     7 5    7 7     7 6    7 6    7 5   7 2     7 6     7 7     7 6     7 8   7 8   7 6   7 9   7 6   7 6   
Underlying biomarker
   form

Base case* 4 4     4 4    4 5     4 5    4 5    4 5   4 4     4 4     4 5     4 6     4 5   4 5   4 6   4 5   4 1   4 1   
Power function, 

   no time lag3 4 8     4 6    5 1     4 8    5 1    5 1   5 1     4 8     5 1     5 3     4 7   4 8   4 8   4 9   4 3   4 4   
Power function, 

   with time lag4 4 3     4 1    4 6     4 2    4 6    4 6   4 6     4 3     4 6     4 8     4 2   4 2   4 3   4 2   3 3   3 3   
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Single sojourn assumptions. A primary cause of bias in MDRI estimation is the 

assumption of a single sojourn in the ‘recent’ infection state, as contained in all single-

exit and survival analysis methods (Methods 1 and 3, 5-10). The underestimation of the 

MDRI became more pronounced as measurement noise was increased and HIV-positive 

visit gaps were reduced – both of these features made it more likely that an (increasingly) 

‘early’ upward fluctuation above the test threshold would be observed, artificially 

clipping a subject’s sojourn in the ‘recent’ state. In principle, the level of bias (for a given 

visit schedule) would depend on both the magnitude (and structure) of noise and the 

growth in the signal (such as captured by its slope), in a vicinity of the threshold (namely, 

over the time when noise may cause biomarker readings to fluctuate across the threshold). 

For example, when data was generated using the alternative biomarker form, the 

relatively small gradient of the signal at the test threshold resulted in greater 

underestimation of the MDRI by the single sojourn approaches, even though the 

magnitude of measurement noise around the threshold remained similar to that for the 

base case scenario. Given the limitations of single sojourn approaches, the interpretations 

below mainly focus on the results from the remaining estimation approaches.  

Variability of estimates. The various methods of estimation exhibited similar variability 

(relative standard deviations) in a given context (neglecting the most extreme contexts). 

Results indicate that the standard deviation of estimates varies approximately inversely 

proportionally to the square root of the number of subjects, and proportionally to the 

standard deviation of the distribution of individual durations in the ‘recent’ state (see 

investigation into inter-subject variability). Larger visit gaps, more frequently missed 

visits, increased loss to follow-up, and greater measurement noise all added to the 

variability in more nuanced ways.  

Loss to follow-up. Increased loss to follow-up would be expected to increase the 

variability of estimates, as the biomarker behaviour at later times after infection is 

inferred from fewer subjects. In the extreme case that no subjects are followed until  

after (an estimated) infection, only approaches that extrapolate beyond the latest data 

points can be used. When there is drop-out, those subjects that are observed to transition 

out of the ‘recent’ state would over-represent the shorter sojourns, and therefore biases 

arise when using methods that naïvely average over data (see Methods 1 and 3). 

Parametric assumptions for biomarker mixed models. When considering the 

parametric assumptions used in the mixed models, Signal 3 produced large biases and 
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was removed early on in the benchmarking exercise (Table 4.1). This bias was anticipated 

as Signal 3 is concave downwards and does not allow for a period of little growth in the 

biomarker signal immediately after infection. Models using Signals 1 and 2 (Methods 15 

and 16), allowing for varying noise magnitude and non-zero correlations between random 

effects, were retained for the remainder of the investigation. Signal 1 exactly matched the 

data generation process (up to transformations of parameters), although this ideal 

alignment of assumptions with reality would not occur in practice. When analysing any 

given dataset, knowledge of the underlying process, plots of the data, and statistical 

model fitting diagnostic tools would be used to select a reasonable parametric form. A 

comparison of the results for Signal 1 and 2 suggests that, while the true underlying form 

would never be known, similar inferences can be made even when fitting the ‘wrong’ 

parametric model by choosing a form is that reasonably aligned with the data and 

sufficiently flexible. The model fit (and therefore biases from incorrect parametric 

assumptions) depends on factors such as the frequency of visits and magnitude of noise. 

Noise structure. Many statistical models assume noise has either a constant standard 

deviation (additive noise) or a constant coefficient of variation (proportional noise). 

When incorrectly assuming the latter noise structure (or even when correctly assuming it, 

while having an incorrect assumption for the biomarker signal), performance of the 

estimation approach would be poor – models are forced to describe the data points with 

near-zero signal values very well, at the expense of fitting the rest of the data very poorly. 

A constant coefficient of variation noise structure was therefore not implemented, after 

some preliminary explorations (not shown). 

Binomial regression models. The binomial regression models appear to be particularly 

stable across scenarios, with performance typically at least on par with that of the mixed 

models. While the binomial models were computationally stable and easy to implement, 

they do not account for all the data features that are captured by the mixed models – 

notably, the subject-level clustering of data points – and also assume that data is missing 

completely at random. Results appear to be less sensitive to parametric assumptions, with 

all four models (ranging from two-parameter to six-parameter models) providing similar 

results (excluding scenarios where data were insufficient to fit certain parametric forms). 

Intuitively, many different biomarker dynamics could potentially be summarised into 

fewer (suitably flexible) forms for  – a topic that could now be further investigated 

using this simulation platform.  
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Large visit gaps. All methods of estimation were inaccurate when infection intervals 

were very large (compared to the duration of ‘recent’ infection). The number of (HIV-

positive) data points captured in any dataset could be reduced by either a higher 

probability of missed visits, or larger intended visit gaps. Methods employing subject-

specific biomarker interpolation were vulnerable to high missed visit probabilities (some 

subjects then had very large realised visit gaps and their times in the ‘recent’ state were 

particularly poorly estimated). On the other hand, population-level model fitting became 

challenging and inaccurate with large scheduled visit gaps for all subjects (as there was 

then no data to describe the dynamic over certain intervals of post-infection time after 

anchoring infection times).  

Infection times. Unknown infection times pose a fundamental obstacle to MDRI 

estimation as substantial bias can be introduced when the assumptions about infection 

times are violated. All methods of estimation introduced a bias (in absolute terms) equal 

to the difference between the mean infection time in reality and the mean infection time 

under model assumptions (namely uniformly distributed infection times within infection 

intervals).  

Correlation between estimates. Lastly, the MDRI estimates produced by any two 

estimation procedures in a chosen scenario were highly correlated (Pearson correlation 

coefficients averaged around 0.95 after excluding single-exit estimation methods and 

contexts with extremely sparse data). This suggests that (the unbiased) estimation 

procedures should give similar results when applied to any given dataset (keeping in mind 

the similarities in precision), and limited benefit can be gained from averaging the results 

of multiple methods. 

4.1.4 Discussion	

For tests for recent infection to be of utility for cross-sectional incidence surveillance, 

tests must first be characterised – that is, test properties of relevance for incidence 

estimation must be measured. Through the development of a theoretical framework for 

incidence inference [29], two generally-defined test properties have emerged: the mean 

duration of recent infection (MDRI), which is the average time ‘recently’ infected and 

alive while infected for less than some time cut-off , and the false-recent rate (FRR), 
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which is the probability that a person who is infected for a time larger than  will produce 

a ‘recent’ result.31 While the FRR in principle captures a mixture of test dynamics and 

epidemiological and demographic history (and is therefore expected to be context-

dependent), the MDRI captures (primarily) the early biological dynamics of the test for 

recent infection (and should therefore be stable across contexts, which is critical to the 

overarching concept that a once-calibrated test should be useful if transferred to other 

contexts). 

Estimation of the MDRI has traditionally relied on longitudinal data, consisting of test 

results observed over time after some (estimable) infection times for a sample of subjects. 

Through an extensive benchmarking exercise using simulated data, the accuracy and 

precision of various methods for estimating the MDRI from such longitudinal data were 

assessed in a number of modelled scenarios capturing what may be encountered in 

practice. In this exercise, incidence assays, or tests for recent infection based on single 

biomarkers, were considered, where measurements below a chosen test threshold indicate 

‘recent’ infection. The methods of estimation therefore model either the biomarker 

measurements or the ‘recent’ and ‘non-recent’ classifications, as functions of time since 

infection. 

Results highlight the danger of using estimation procedures that assume single continuous 

sojourns in the state of ‘recent’ infection, such as conventional survival analysis 

approaches. Simplistic approaches, such as the interpolation of biomarker readings (while 

allowing for multiple transitions between the ‘recent’ and ‘non-recent’ states) are useful 

for obtaining ‘quick and dirty’ estimates provided the times between visits are sufficiently 

small.  

Formal regression approaches were generally the strongest. While non-linear mixed 

models for the biomarker readings most comprehensively captured the expected real-

world features of the data (such as subject-specific evolutions of the biomarker), they 

were computationally demanding and required a higher level of analytical sophistication. 

Furthermore, when analysing any given dataset, knowledge of the biomarker, plots of the 

data, and model fit diagnostics should be carefully used to inform parametric 

assumptions, at the risk of large bias occurring otherwise. While not accounting for the 

___________________________ 

31The general framework for inferring incidence and defining test characteristics of relevance for 
incidence estimation is presented in Chapter 2. 
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subject-level clustering of the data, the linear binomial regression models proved 

particularly useful – they provided accurate results, were potentially less sensitive to 

parametric assumptions, were computationally stable, and could be fitted using standard 

statistical software. The benefits of including random effects or changing to non-linear 

model forms could be considered, although results suggest current implementations of 

binomial regression perform well. However, these extensions may become important 

when operating in scenarios outside of those considered. For example, if study drop-out 

depends on the observed biomarker readings (that is, data is missing at random) over the 

relevant post-infection timescale set by , then random effects could be included to 

control for bias that may otherwise arise. Other potential sensitivities, for example, to 

non-normal distributions of random effects, could also be explored in more detail. 

Uncertainty in infection times, or rather the violation of assumptions about infection 

times, poses a particular challenge to obtaining unbiased MDRI estimates. While 

computationally demanding, some research groups have formally accounted for this 

uncertainty in infection times, by using a marginal likelihood function (integrating out the 

infection times) [97, 103], sampling infections times [101], or incorporating prior 

distributions for infection times in a Bayesian model fitting [94]. However, assumptions 

about the timing of infection are still required (to inform the distributions used). Other 

groups have attempted to use the biomarker readings themselves to estimate infection 

times [17, 92, 96, 100, 102]. In this exercise, a single, standard diagnostic test, such as an 

enzyme immunoassay (EIA), was assumed to be used at all visits, and therefore the 

analyst would only know that a subject’s infection (as defined by the diagnostic test) 

occurred between the last HIV-negative and first HIV-positive visit. In settings where 

various HIV diagnostic tests are used and the testing histories of subjects are documented, 

this external data could be used to inform the distributions of infection times.32 For 

example, a subject with detectable p24 antigens and undetectable antibodies at a visit 

would have been infected within the preceding few weeks [101, 180, 181]. 

As guidance for MDRI estimation is further developed, the nature of tests for recent 

infection that are expected to be used in the future should be kept in mind. For example, 

as the field moves towards tests that rely on multiple biomarkers, some methods for 

estimating the MDRI (such as those that utilise the dichotomous test classifications) 
___________________________ 

32 The inference of infection times using diagnostic testing histories is briefly explored in 
Section 4.3. 
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would be more amenable to this extension than others (such as those that model 

biomarker measurements, where many parameters would be needed to describe the 

multiple biomarkers and the relationship among them). Also, biomarkers may represent 

complex summary metrics of multiple responses, or quantify biological processes that are 

not well-understood, and thus approaches for choosing and testing parametric 

assumptions may require particular attention. Another nuance worth noting is the 

assumption of guaranteed survival until  after infection implicit in most MDRI 

estimations. This assumption may often lead to little bias in the MDRI for small values of 

, but, in settings where early mortality is high or the value of  is chosen to be relatively 

large (to capture an enduring ‘recent’ state), analyses to estimate the MDRI should 

incorporate data on survival.  

It is hoped that the results presented here will help inform the design of studies, which are 

costly and challenging to conduct. For example, particularly in low HIV incidence 

settings, hundreds of HIV-negative subjects need to be followed to obtain just a handful 

of subjects who become HIV-positive. While limited resources will always restrict study 

design options, useful MDRI estimates can be obtained in a range of realistic scenarios. It 

was only in the extreme scenarios of sparse data that all methods of estimation became 

problematic. The results of this benchmarking exercise can therefore provide guidance on 

how best to direct efforts – for example, by drawing attention to the varying benefits of 

increasing the sample size versus increasing the number of visits per subject, or of having 

stringent visits times that are the same for all subjects versus allowing for variability 

among subjects.  

The simulation platform that has been developed can now be used to extend this 

benchmarking exercise, for example, to include other hypothetical scenarios, assess future 

proposed estimation procedures, or investigate confidence interval coverage. The 

simulation approach also holds the promise of extending the use of this environment to 

explore other topics related to cross-sectional incidence surveillance, particularly those 

that are intractable to being explored analytically – such as the detection of incidence 

trends in populations. 
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4.2 Redefining	Entry	into	‘Recent’	
Infection	for	More	Accurate	Test	
Characterisation	

An obstacle to accurate estimation of the MDRI is the unobservable infection times of 

subjects in the sample, where infection typically refers to detectable infection as defined 

by the HIV diagnostic test being used. As highlighted by the results in Section 4.1, 

substantial biases can arise when incorrect assumptions are made about subjects’ testing 

behaviours. Whether simply using expected infection times in analyses [95, 96, 100, 102] 

or formally accounting for their uncertainty [91, 94, 97, 101, 103], assumptions about the 

relationship between infection and visit times are inevitably required. Alternatively, 

infection times could be estimated from the observed recent infection test biomarker 

measurements [17, 92, 96, 100, 102], rather than relying on external assumptions about 

the distributions of infection times between visits. However, the extrapolation of 

biomarker readings to times earlier than the first HIV-positive visit requires assumptions 

or knowledge about the very early dynamics of the biomarker. 

An approach for redefining the ‘HIV-negative’, ‘HIV-positive and recently infected’ and 

‘HIV-positive and non-recently infected’ states is therefore proposed, and is intended to 

reduce the reliance on assumptions about testing behaviour and on extrapolation of 

biomarker readings back in time when estimating the MDRI. The concept is demonstrated 

using the data simulation platform and estimation methods that have been presented in 

Section 4.1. While the approach can be generalised, a test for recent infection based a 

single biomarker is considered below. 

The approach entails redefining the empirically observed ‘HIV-positive’ state by 

introducing a lower ‘diagnostic’ threshold on the dynamic of the biomarker for recent 

infection. In a cross-sectional survey, a subject who is classified as infected by the HIV 

diagnostic test (which may be, for example, a standard enzyme immunoassay or Western 

blot) must also return a recent infection biomarker measurement above this diagnostic 

threshold to be classified as ‘HIV-positive’ for purposes of estimating incidence. 

Effectively, an artificially less-sensitive HIV diagnostic algorithm is created. When 

estimating the MDRI from longitudinal data, benefits are gained if ‘infection’ times, 

defined consistently with the diagnostic algorithm described, can be more accurately 
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modelled. As illustrated in Figure 4.3, a subject is now ‘HIV-positive and recently 

infected’ when the biomarker measurement is between some lower threshold  (acting as 

a diagnostic threshold) and upper threshold  (distinguishing ‘recent’ from ‘non-recent’ 

infection as before), and the MDRI summarises the average time that this occurs (within 

time  of entering the ‘HIV-positive’ state). 

A) Conventional definition

 
B) Alternative definition

 

Figure 4.3: Conventional and alternative definitions of the ‘HIV-negative’, ‘HIV-
positive and recently infected’ and ‘HIV-positive and non-recently infected’ states 
The three states of relevance for incidence estimation, namely the ‘HIV-negative’, ‘HIV-
positive and recently infected’ and ‘HIV-positive and non-recently infected’ states, as 
defined by the HIV diagnostic test and the biomarker for recent infection, are shown. 
In A), which illustrates the conventional definition used, a subject is ‘HIV-positive’ if 
diagnosed as infected by the HIV diagnostic test, and then ‘recently’ infected if the 
biomarker for recent infection is below a threshold . In B), which illustrates the 
alternative definition of states proposed, a subject is ‘HIV-positive’ if diagnosed as 
infected by the HIV diagnostic test and the biomarker for recent infection is above a 
threshold , and is then ‘recently’ infected if the biomarker is between  and . 
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The simulation platform described in Section 4.1 was used to generate datasets, for 

estimation of the MDRI using both the conventional and alternative definitions of ‘HIV-

positive and recently infected’. Visits times for subjects were generated as in the base 

case scenario, and the distribution of infection times between HIV-negative and HIV-

positive visits (all defined according to some standard HIV diagnostic test) was tuned to 

create three scenarios which capture: (i) test-neutral behaviour where infection times were 

uniformly distributed in the infection interval (   1), (ii) test-seeking 

behaviour where infection times were closer to the first HIV-positive visits on average 

(  3 ,	  1 . 5 ), and (iii) test-deferring behaviour where infection times were 

closer to the last HIV-negative visits on average (  1 . 5 ,	  3 ). In all three 

scenarios, biomarker measurements were generated from the base case biomarker model, 

using parameters that produced a slowly evolving signal and little inter-subject variability 

( =[100,250,2.7], the standard deviations of the height, scale and shape random effects 

were 5, 5 and 0.5 respectively, there was no correlation between random effects, and 

measurement noise had a constant standard deviation of 2 biomarker units).  

The MDRI was estimated by linear interpolation of biomarker readings, as described in 

Section 4.1.2 (Method 2). The average time a biomarker is between two thresholds  and 

 can be expressed as the difference between (i) the average time the biomarker is 

below , and (ii) the average time the biomarker is below . Therefore, conveniently, 

no modification of the estimation method was required, although it outputs an estimate of 

the average time that a biomarker is below a specified threshold (rather than between two 

thresholds). To estimate the MDRI under the conventional definition of states, the 

estimation method was applied using a threshold of 60. To estimate the MDRI 

under the alternative definition of states, the estimation method was then also applied 

using a threshold of 10 and the difference between the results for  and  taken. 

By design, the ‘recently’ infected state persists for less than a couple of years, and 

therefore  was chosen to be large enough for the MDRI to capture all ‘recent’ results.  

Results from estimating the MDRI, from the 1 000 datasets generated for each of the 

three scenarios, are shown in Figure 4.4. Bias in estimation of the MDRI was reduced by 

moving from the conventionally-defined MDRI (biomarker readings below  indicate 

‘recent’ infection) to the alternatively-defined MDRI (readings between  and  

indicate ‘recent’ infection). For the alternatively-defined MDRI, there was little bias 

because the vast majority of subjects (82%) had readings below  at their first HIV-
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positive visits (where, for purposes of referring to the data, last HIV-negative and first 

HIV-positive visits still relate the standard HIV diagnostic test). For these subjects, the 

‘infection’ times now of interest (that is, when biomarkers exceeded ) were estimated 

by interpolating between observed biomarker measurements (which were one month 

apart). In other words, for the vast majority of subjects in the sample, no assumptions 

were made about when infections became detectable by the HIV diagnostic test (in the 

three month intervals between the last HIV-negative and first HIV-positive visits) nor 

was there any extrapolation of biomarker readings to times earlier than first HIV-positive 

visits. These assumption and extrapolations were unavoidable in estimation of the 

conventionally-defined MDRI. 

Figure 4.4: Box-and-whisker plots of the mean duration of recent infection point 
estimates, using conventional and alternative definitions of the ‘HIV-positive and 
recently infected’ state, in scenarios capturing different testing behaviours 
Box-and-whisker plots summarise the 1 000 point estimates for the MDRI, Ω  (days), in 
test-neutral, test-seeking and test-deferring scenarios, where the MDRI was estimated 
using each of two definitions for the ‘HIV-positive and recently infected’ state. The 
MDRI was estimated using linear interpolation ( 2 years). In A), a biomarker reading 
below 60  indicates ‘recent’ infection (conventional definition), while in B), a 
biomarker reading between 10 and 60 indicates ‘recent’ infection (alternative 
definition). For each scenario, the box and dividing line indicate the central 50% and 
median of estimates respectively, and whiskers and circles capture remaining data points 
and outliers respectively (outliers are more than 1.5 times the interquartile range away 
from the central box). The vertical black line indicates the true MDRI. 
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The definitions of the MDRI and FRR are now anchored by an ‘infection’ time that 

captures when a subject’s biomarker for recent infection crosses above the threshold . 

This is familiar in design – previously, the infection time captured when some viral or 

host response (that grows after HIV transmission) crossed above some ‘detectability’ 

threshold of an HIV diagnostic test (for example, when seroconversion occurs if 

considering an antibody-based test). The differences are that a biomarker for recent 

infection produces a signal that will more slowly evolve and has a more useful dynamic 

range, compared to that of a diagnostic test, and the ‘diagnostic’ or ‘detectability’ 

threshold is set higher than necessary to detect the virus or an immune response. 

By creating a less-sensitive HIV diagnostic algorithm, a time lag is introduced to 

incidence estimation as subjects who are infected in the weeks preceding a surveillance 

survey (and therefore return biomarker measurements below ) would not contribute to 

the measured incidence. However, the weighting of incidence that is measured is already 

stretched over several months prior to a study, and therefore any blurring or shifting of 

this weighting over a few weeks (for suitable choices of ) would not be meaningful. 

Also, while it is a fine detail that relates to any definition of ‘infection’, it is possible that 

a subject can fluctuate in and out of the ‘HIV-positive’ state for some short period 

(although this is unlikely to be observed in practice given reasonable visit gaps), leading 

to some negligible blurring of the weighting function.33 

By introducing the lower threshold , there is a trade-off between increased accuracy 

and decreased precision of incidence estimation. As the discussion above highlights, 

MDRI estimates become less prone to bias, and will therefore bias incidence estimates 

less. However, the state of ‘recent’ infection becomes more transient, and therefore the 

variance of incidence estimates increases (as it becomes more difficult to observe subjects 

in this state). This gain in accuracy and loss in precision would grow as the threshold  is 

increased, and therefore a suitable balance between these would need to be found. 

___________________________ 

33Section 2.2.1 provides some discussion about the relationship between the weighting function for 
past incidence and diagnostic sensitivity. Subtleties around the detection of HIV are noted in 
passing here merely for completeness, but the impact of these is considered to be negligible for 
the analyses presented. 
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The potential of this approach would also depend on the particular dynamics of the 

biomarker for recent infection and subjects’ visit gaps. Frequent testing is not feasible for 

the large numbers of HIV-negative subjects enrolled in a prospective study, and therefore 

frequent follow-up is typically initiated only after a subject presents as HIV-positive. To 

restrict bias in MDRI estimation, namely by reducing the reliance on assumptions about 

(standard diagnostic) infection times and on extrapolation of biomarker readings, the 

threshold  should be large enough for subjects’ biomarker measurements to have not 

evolved far beyond it, preferably still be well below it, at their first HIV-positive visits. It 

should also be large enough to lie above any early noisy biomarker dynamics, so that the 

evolution of the biomarker in its vicinity can be confidently modelled from the data. All 

of this needs to be achieved while keeping the value of  small enough to obtain a 

suitably enduring state of ‘recent’ infection (for an appropriate choice of the upper 

threshold  for distinguishing between ‘recent’ and ‘non-recent’ infections). 

In principle, the framework for cross-sectional incidence estimation allows for arbitrary 

definitions of the ‘HIV-negative’, ‘HIV-positive and recently infected’ and ‘HIV-positive 

and non-recently infected’ states (although not all definitions will provide useful 

weightings of past incidence). Accurate incidence estimation then requires only that tests 

for recent infection are consistently characterised and applied in cross-sectional incidence 

studies. This illustrative analysis shows how alternative definitions of HIV diagnostic 

states and classifications of infections as ‘recent’ or ‘non-recent’ could be considered, in 

an attempt to reduce artefacts in test characterisations arising from modelling unknown 

infection times. As with estimating any parameter, there is unavoidable uncertainty in 

both MDRI and incidence estimates, and therefore any gains in accuracy should be 

viewed in the light of this sampling variability. While the dynamics of biomarkers 

developed in the future may make this approach more appealing, current experiences with 

data suggest there may be limited benefit to this strategy.  
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4.3 Estimation	of	Infection	Times	
from	Diagnostic	Testing	
Histories	

Throughout this thesis, ‘infection’ has consistently referred to ‘detectable infection’, 

which is largely sufficient for the needs at hand. In this section, some finer points about 

estimating infection times are considered, and this warrants a review of the applicable 

terminology. The time of exposure refers to the time of HIV acquisition or transmission 

(for example, during a sexual contact), while the time of infection or test conversion 

refers to when HIV becomes detectable by some HIV diagnostic test (which is typically 

only weeks after exposure). While subjects can only be tested for detectable infection in a 

study, results are dependent on the particular diagnostic test used, and therefore exposure 

provides a useful general reference event for analytical purposes. 

In a prospective study intended to generate longitudinal data for estimation of the MDRI, 

a subject’s exact time of infection is unknown, but constrained to lie between the 

subject’s last HIV-negative visit and first HIV-positive visit. When HIV exposures do not 

influence the visit times of subjects, it is reasonable to assume that infection is equally 

likely to have occurred at any time in this interval. This leads to uniform distributions or 

flat priors for the infection times [91, 94, 97, 101, 103], often summarised into expected 

infection times at the midpoints of intervals between visits  [95, 96, 100, 102]. Implicit in 

this approach is the assumption that the same HIV diagnostic test is used at all visits, and 

that no staging information is produced by the diagnostic test (that would further 

influence the analyst’s view on when a subject was infected). Furthermore, by using the 

estimated MDRI for incidence estimation, it is also assumed that the same diagnostic test 

(or one with the same sensitivity) is used in the incidence survey. This section aims to 

consider briefly these important analytical subtleties, which are overlooked in the 

literature. The estimation of exposure or infection times from subjects’ diagnostic testing 

histories is briefly explored, and the need for consistent use of diagnostic rules for both 

test characterisation and surveillance application is highlighted. 

A large number of HIV diagnostic tests have been developed, each based on the detection 

of specific components of the virus itself or specific host antibody responses (or both) 

[182]. Tests may also differ by type of specimen analysed (such as plasma, dried blood 
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spots or saliva) and whether they need to be performed in a laboratory or can be 

completed on site (‘rapid tests’). Classes of diagnostic tests that detect antibodies include 

enzyme immunoassays (EIAs) – sometimes called enzyme-linked immunosorbent assays 

(ELISAs), Western blot and immunofluorescence assays (IFAs); while those that measure 

the virus itself include assays to detect p24 antigens and nucleic-based assays to detect 

HIV ribonucleic acid (RNA). Also, to reduce diagnostic misclassification, algorithms of 

HIV diagnostic tests are often used – for example, two EIAs may be performed, and if at 

least one detects HIV infection, a confirmatory Western blot test is conducted.  

Despite the large variety of HIV diagnostics that are available and in use, in principle, the 

behaviour of any given HIV diagnostic test (or component of a diagnostic algorithm) that 

is applied to a subject who has acquired HIV can be summarised into the test sensitivity 

as a function of time since exposure. The sensitivity of a test is the probability that it 

correctly detects HIV, and is shown for a hypothetical test in Figure 4.5 (part A). It is 

possible that this function is not monotonically increasing – for example, p24 antigens 

may decline to undetectable levels after an initial period of detectability. When a subject 

(who acquires HIV at some time, during the study) is tested for HIV at a study visit, the 

result of the diagnostic test can be combined with the test’s sensitivity to infer likely HIV 

exposure times, as shown in Figure 4.5 (part B).  

Expressing this formally, the likelihood of observing the diagnostic test result  at 

calendar time  (choosing an arbitrary reference time 0), as a function of the subject’s 

HIV exposure time , is  

| 1 , (4.10) 

where  equals 1 if the diagnostic result is HIV-positive and 0 if it is HIV-negative, and 

 is the sensitivity of the test at time  after HIV exposure. This concept can be 

extended to account for the subject’s full diagnostic testing history. Various HIV 

diagnostic tests (or algorithms) may be applied at each visit, and all visits times and 

individual diagnostic test results then collectively used to infer the subject’s exposure 

time, as outlined below. 
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A) Diagnostic sensitivity

 
B) Likelihood for exposure time

 

Figure 4.5: Sensitivity of a hypothetical HIV diagnostic test and implied likelihood 
function for a subject’s HIV exposure time 
In A), the sensitivity of a hypothetical HIV diagnostic test is shown as function of time 
since HIV exposure, where the test’s sensitivity is its probability of correctly detecting 
HIV. In B), the likelihood function for a subject’s exposure time is shown. This provides 
the probability of observing a result for the diagnostic test, which is applied at some 
time , as a function of the HIV exposure time, and depends on the test’s sensitivity. 
The solid and dashed curves are the likelihood functions when the observed diagnostic 
results are HIV-positive and HIV-negative respectively. 

To simplify some of the interpretations that follow, it is now assumed that a subject has a 

single time of entering the infected state (defined by some diagnostic test) and remains in 

the state thereafter (this view can be relaxed, as captured by the generality of 

Equation (4.10)). The sensitivity function is now viewed as the cumulative distribution 

function for the time from exposure to (detection of) infection. The calendar time of the 

subject’s  visit is denoted by  and the result of diagnostic test  at that visit 

(if available) by , , which equals 1 if the result is HIV-positive and 0 if HIV-negative 
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( 1,2, …  and 1,2, … , ). First considering a particular diagnostic test , the 

likelihood of observing its results at all visits, as a function of exposure time , can be 

derived: 

, | , (4.11) 

where  is the sensitivity of diagnostic test  at time  after exposure,  is the 

earliest visit time where the diagnostic test produced an HIV-positive result, and  is 

the latest visit time where the diagnostic test produced an HIV-negative result. If there are 

no negative test results,	  can be set to negative infinity 0  and if 

there are no positive test results,  can be set to positive infinity 1 .  

Assuming independence of diagnostic tests, the overall likelihood function for the time of 

HIV exposure  is 

, , | , | , (4.12) 

where , |  is given by Equation (4.11). 

Examples of obtaining this net likelihood function from a subject’s testing history are 

provided in Figure 4.6. In general, the lower bound for feasible exposure times is driven 

by the most-sensitive of the diagnostic tests that returned HIV-negative results, at the 

latest visit where any HIV-negative result was produced. Conversely, the upper bound for 

feasible exposure times is driven by the least-sensitive of the diagnostic tests that returned 

HIV-positive results, at the earliest visit where any HIV-positive result was produced. 

A limitation of the framework presented above is the assumption of independence of HIV 

diagnostic tests. For example, it is conceivable that the virus and host response matures 

rapidly in some subjects (resulting in relatively early detection of HIV by a number of 

diagnostic tests) and slowly in other subjects (resulting in relatively late detection by 

multiple tests). A completely general framework would capture a multivariate distribution 

for the times from exposure to (detection of) infection by various HIV diagnostic tests, 

and a similar likelihood approach could be used to infer likely exposure times. However, 

the practical use of such a framework would rely on (currently unrealistic) inputs to 

describe the relationship among multiple tests. The analysis presented above may already 

be challenging to implement without further simplifications (discussed below), as it relies 

on full specifications of tests’ sensitivity functions. 
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Figure 4.6: Likelihood functions for HIV exposure times for a number of 
hypothetical diagnostic testing histories 
Three hypothetical diagnostic testing histories and resulting likelihood functions for a 
subject’s HIV exposure time are provided. In A), presumed sensitivities of three 
diagnostic tests are shown as a function of time since exposure. In order of decreasing 
sensitivity, the three tests are an RNA-detection assay (dashed line), an EIA (solid line) 
and Western blot (dotted line). Possible testing histories for a subject are captured in 
B) to D). In each figure, the (dashed, solid and dotted) lines capture the likelihood
functions for the exposure time based on the individual diagnostic tests, and these are 
then used to obtain the overall likelihood function shown by the curve with shaded area 
(scaled to have a height of one). Diagnostic test results and the times of visits are captured 
on the x-axis. In B), the subject has a single visit with both HIV-positive and HIV-
negative results; in C), the subject has multiple test dates and diagnostic test results; and 
in D), a single diagnostic test is used and only the last HIV-negative and first HIV-
positive visits are shown. 
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The discussion above has been framed in terms of inferring a subject’s HIV exposure 

time from the testing history. In practice, for unbiased incidence estimation, the MDRI 

should be estimated using a definition of infection that is consistent with what is 

detectable in the incidence surveillance study. For example, if a subject’s HIV status is to 

be determined by Western blot in the surveillance survey, then the (estimated) time of 

becoming Western blot positive should be used as the infection time when analysing data 

to estimate the characteristics of the test for recent infection. The framework presented 

above (summarised by Equation (4.12)) can still be used, but now the reference time 

needs to be the time of test conversion by the diagnostic algorithm used in the incidence 

study, rather than the exposure time. In other words,  appearing in Equation (4.11) 

should provide the sensitivity of diagnostic test  at time  after test conversion (when 

using the test used in the incidence study), and a likelihood function  for the 

appropriately-defined test conversion or infection time  would be obtained.  

Given typical visit gaps (of a few months) and the much shorter times from exposure to 

infection by diagnostic tests, likelihood functions may often plateau (implying non-

unique maximum likelihood estimates of test conversion times). One approach for 

interpreting the information contained in the likelihood function is through a posterior 

distribution for the test conversion time of the subject. Using a uniform prior distribution 

for the test conversion time, its posterior distribution is proportional to the likelihood 

function (by Bayes theorem). Analyses for estimating the MDRI could make use of the 

posterior expected test conversion time, or formally incorporate the full distribution – for 

example, as prior knowledge, for purposes of sampling possible test conversion times, or 

for producing a marginal likelihood function for the MDRI model parameters [91, 94, 97, 

101, 103]. 

In the case that the same diagnostic test is used at all visits in the MDRI study (such as in 

Part D of Figure 4.6) and in the incidence study, the above analysis recovers a uniform 

posterior distribution for the test conversion time in the interval between the last HIV-

negative and first HIV-positive visits. This is the special case encountered in many of the 

published analyses [91, 94, 97, 101, 103], although one may expect that more complex 

diagnostic testing histories often arise, and therefore efforts should be made to document 

these and incorporate them into analyses. 

Given sufficient information about the sensitivities of diagnostic tests, a subject’s full 

testing history could be used to formally make inferences about the ‘infection’ time. The 
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empirical category of ‘infected’ will depend on the diagnostic algorithm, and should be 

consistent across MDRI estimation and incidence studies. Given that limited knowledge 

about the sensitivities of diagnostic tests may be available, simplifications of the 

framework presented here may be required. For example, for a diagnostic test which is 

expected to have a sensitivity that rapidly climbs from 0 to 1, after some period of 

undetectability of HIV following exposure, the test dynamic could be summarised by the 

average time from exposure to (detection of) infection, thus neglecting any inter-subject 

variability. Inputs describing these average durations could be obtained from studies that 

have assessed diagnostic test performance (for example, see [180, 181, 183-185]). In this 

case, all posterior distributions for infection times would be uniform distributions (with 

bounds determined by the data and average durations).34  

The preceding analysis also highlights that more sensitive diagnostic tests naturally 

extend the MDRI for any recent infection test. The trade-off between the added expense 

of a more sensitive diagnostic test and more precise incidence estimation from a 

(probably only very marginally) larger MDRI would need to be assessed in practice. 

___________________________ 

34This simplification for estimating the (posterior distribution of the) infection time, using a 
subject’s diagnostic testing history, is applied in the analysis presented in Chapter 5. 
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Chapter	5
 

Theory	to	Practice:	
Characterisation	of	Candidate	
Tests	for	Recent	Infection	

An important, practical application of the framework and methodology for test 

characterisation described in the previous chapters is presented here. Over the last four 

years, the Consortium for the Evaluation and Performance of HIV Incidence Assays 

(CEPHIA) has established a vast repository of specimens and produced a large volume of 

data to characterise, optimise and compare proposed tests for recent infection. The 

consortium’s first primary analysis outputs, which describe the behaviours of five 

prominent incidence assays, are presented in Section 5.1. The report is a reproduction of a 

published journal article [32].35  

___________________________ 

35  Section 5.1 presents a manuscript that has been published as: ‘Kassanjee R, Pilcher CD, 
Keating SM, Facente SN, McKinney E, Price MA, Martin JN, Little S, Hecht FM, Kallas EG, 
Welte A, Busch MP, Murphy G, on behalf of the Consortium for the Evaluation and 
Performance of HIV Incidence Assays (CEPHIA). Independent assessment of candidate HIV 
incidence assays on specimens in the CEPHIA repository. AIDS. 2014; 28(16):2439-2449’. The 
manuscript was published under the terms of the Creative Commons License Attribution-Non-
commercial No Derivative 3.0 (CCBY NCND), and therefore no permission was required from 
the publishers to reproduce the work. The manuscript was written by RK. GM, AW, CDP and 
MPB conceived the study design and sourced funding. RK and AW led the data analysis. CDP, 
SNF, SJL, MAP, JNM, EGK and FMH led on specimen acquisition and related data collection. 
GM, MPB, SMK and EM led on assay performance and quality, and assay results reporting. All 
authors assisted in the interpretation of findings, provided input and suggestions for analysis, and 
reviewed the manuscript. Funding for CEPHIA was provided by the Bill and Melinda Gates 
Foundation (grant OPP1017716). 
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5.1 Independent	Assessment	of	
Candidate	HIV	Incidence	Assays	
on	Specimens	in	the		
CEPHIA	Repository	

5.1.1 Introduction	

Reliable measurement of HIV incidence (the rate of new infections) is essential for 

monitoring the epidemic, assessing interventions and planning studies. Traditionally, 

incidence is measured by counting the number of new infections acquired in a cohort of 

subjects followed-up over time. However, such longitudinal studies are often costly, time 

consuming, and unrepresentative. Therefore, the estimation of incidence from cross-

sectional surveys, using ‘incidence assays’ that distinguish ‘recent’ from ‘non-recent’ 

infection, has attracted wide interest [9, 10, 12-14]. 

Cross-sectional surveillance is founded on the heuristic that a high prevalence of ‘recent’ 

infection indicates a high incidence [7, 15]. However, current incidence assays that 

provide a reasonably enduring state of ‘recent’ infection also tend to produce substantial 

‘false-recent’ results at large times after infection [9, 10, 12-14, 75-77, 79, 81, 112]. As 

methodology matured [11, 16-27, 29, 82, 186], a general theoretical framework was 

developed that supports the consistent analysis of ‘false-recent’ results [29].36 However, 

there have not been independent assessments of candidate assays, or consensus metrics of 

an assay’s utility for incidence estimation. 

In 2010, the Bill and Melinda Gates Foundation supported the establishment of the 

Consortium for the Evaluation and Performance of HIV Incidence Assays 

(CEPHIA) [47]. Over the last four years, CEPHIA has entered into collaborations and 

material transfer agreements to establish a large repository of valuable plasma specimens 

with sufficient clinical background data. Test developers can apply for access to a small 

___________________________ 

36The derivation of the general incidence inference framework, performed as part of earlier work, 
is presented in Chapter 2. 
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‘qualification panel’ of specimens, and, if the assay is suitably promising, the assay can 

be independently applied (by a CEPHIA laboratory) to a much larger ‘evaluation panel’. 

Results are presented below for the first five assays that have successfully passed through 

the full evaluation, namely Limiting Antigen-Avidity (LAg) [98], BED [92], Less-

Sensitive or Detuned Vitros [100], Vitros Avidity [100] and BioRad Avidity [187]. In 

principle, a test for recent infection can be arbitrarily complex in design [9, 10, 12-14], 

and can be optimised by tuning numerous parameters. The present evaluation is of tests 

for recent infection which are based on single biomarkers, termed incidence assays, 

applied according to developers’ test conditions and interpretive guidelines. Test 

optimisation, by the application of alternative thresholds in the interpretation of results, 

and using the assays in combination with one another or with supplemental markers (such 

as viral load), is ongoing. 

Translating survey counts (of HIV-negative, ‘recently’ HIV-positive and ‘non-recently’ 

HIV-positive subjects) into incidence estimates [29] requires knowledge of two test 

properties: 

 The mean duration of recent infection (MDRI), which is the average time spent

alive and ‘recently’ infected, while infected for less than some time cut-off

denoted by .

 The false-recent rate (FRR), which is the probability that a randomly chosen

subject, who is infected for longer than , will produce a ‘recent’ result.

A ‘Target Product Profile’ for tests for recent infection has been developed and attracted 

some attention [13, 14, 188], and provides a number of objectives that incidence assays 

should meet to be of utility for incidence estimation. To achieve usefully precise 

incidence estimates, in real-world household surveys in high incidence settings, an 

incidence assay should have a sufficiently enduring MDRI (of around one year) and small 

FRR (definitely less than 2%, and ideally zero). Furthermore, for feasible widespread use 

of the assay, results should be highly reproducible, and the training, equipment and 

sample type requirements should be modest.  

In this analysis, each assay’s MDRI and FRR were evaluated. As the behaviour of 

incidence assays may vary across subpopulations [75-77, 79, 189], the characteristics of 

the incidence assays in various specimen sets were also explored. 



Theory to Practice: Characterisation of Candidate Tests for Recent Infection  154 

5.1.2 Methods	

The	CEPHIA	specimen	repository	and	the	evaluation	panel	

The CEPHIA repository is housed at Blood System Research Institute (San Francisco; 

CA) and currently consists of more than 5000 plasma specimens obtained from over 1200 

subjects. The specimens used in this analysis were obtained through collaborations with 

blood banks, and clinical research studies enrolling and following subjects over time: 

American Red Cross [190]; Blood Centers of the Pacific [191]; South African National 

Blood Service [192]; Hemocentro do São Paulo [193]; the University of California, San 

Francisco, Options study [194]; San Francisco Men’s Health Study [195]; the San Diego 

Primary Infection Cohort [196]; the multi-centre AMPLIAR cohort [197]; the multi-centre 

International AIDS Vaccine Initiative (IAVI) African Early Infection Cohort (Protocol C) 

[198]; and the University of California, San Francisco, SCOPE study [199]. 

Two ‘panels’ of specimens were created for the present purpose: a 250-member 

‘qualification panel’ for preliminary assessments (see [41] for results); and a 2500-

member ‘evaluation panel’ for the full assessments of assays showing suitable promise, 

which forms the basis of this investigation. 

The evaluation panel specimens were drawn from 928 subjects and 60% of subjects 

contributed multiple specimens over time (these subjects contributed up to 13 specimens 

and a median of 3 specimens each). Follow-up after infection ranged from 1 week to 

more than 10 years, and the median follow-up time was 3 years (for subjects with 

estimable infection dates, as discussed below). 

Laboratory	procedures	and	interpretation	of	assay	results	

Each of the five assays measures an aspect of an individual’s immune response, with 

measurements below some threshold interpreted as indicative of ‘recent’ infection.  

BED [92, 166] and LAg [98, 113, 200] (Sedia Biosciences Corporation; Portland; OR) 

were developed specifically as incidence assays by the Centers for Disease Control and 

Prevention (CDC). The immunoglobulin G (IgG) capture BED enzyme immunoassay 

(EIA) measures the proportion of IgG that is specific to HIV, and a normalised optical 

density (ODn) below 0.8 indicates ‘recent’ infection. The single-well Limiting Antigen-

Avidity EIA is responsive to the avidity of HIV-1 specific IgG, as it presents marginally 
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low concentrations of a multi-subtype recombinant HIV-1 antigen, typically affording 

just a single binding site to the multivalent IgG or IgM antibodies. While a ‘recent’/‘non-

recent’ threshold of 1.0 ODn was initially proposed, this was recently revised to 1.5 [200, 

201], following a review of the assay in which CEPHIA participated.  

Both less-sensitive Vitros (LS-Vitros) and Vitros Avidity [100] are based on the Vitros 

ECi/ECiQ Immunodiagnostic System, a chemiluminescence assay that gives a 

quantitative measure of HIV antibodies (Ortho-Clinical Diagnostics, Inc.; Rochester; 

NY). For LS-Vitros, a reported signal-to-cutoff (S/C) below 20, for a diluted specimen, is 

interpreted as a ‘recent’ result. For Vitros Avidity, the ratio of the S/C in an aliquot 

treated with a chaotropic agent (guanidine) to that in an aliquot not thus treated yields an 

avidity index (AI), and a ‘recent’/‘non-recent’ threshold of 60% is used to classify the 

infection. 

The BioRad Avidity test [187] is based on a modification of the Genetic Systems HIV-

1/HIV-2 plus O EIA (Bio-Rad Laboratories, Inc.; Hercules; CA), which involves the 

testing of each specimen in the presence and absence of a chaotropic agent 

(Diethylamine). The ratio of the reactivity of the treated to untreated aliquot produces an 

avidity index (AI), with values below 40% indicating ‘recent’ infection.  

All assays were applied according to developers’ standard operating procedures and 

package inserts [92, 98, 100, 166, 200], and protocols are available on the CEPHIA 

project website [47]. Testing was performed independently in CEPHIA laboratories, by 

technicians trained by the test developers and blinded to specimen background 

information. Three large volume ‘control’ specimens (obtained from blood donations, and 

chosen to represent a range of serological responses) were supplied to laboratory 

technicians with each panel, for regular confirmation of reproducibility and stability of 

assays. 
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Data	analysis	

All data captured within CEPHIA are stored in a (MySQL) relational database. 37 

Database queries linked assay results to the background information on subjects and 

specimens for data analysis (performed in Matlab R2013b, the MathWorks Inc.).  

Test properties were evaluated in specimen sets defined by stratifying on treatment 

history, viral load, CD4 cell count, time from infection to specimen draw, and HIV 

subtype (based on country, for the 48% of specimens which lack explicit laboratory 

subtype confirmation). The performance of assays in ‘elite controllers’ (ECs), broadly 

defined as subjects who maintain undetectable or very low HIV viral loads without 

antiretroviral therapy (ART), is of particular interest. As the SCOPE study purposefully 

recruited ECs, specimens from these subjects were analysed separately. The subjects were 

ART-naïve (or without ART for at least 6 months), with all off-treatment viral load 

measurements (HIV-1 RNA) below 200 copies/ml and at least 50% of these 

measurements below 75 copies/ml.  

The definitions of the MDRI and FRR rely on the previously mentioned construct of a 

post-infection time cut-off  [29]. If  is chosen to be too short, this limits the possible 

MDRI and typically raises the FRR. If  is chosen to be too long, it becomes difficult to 

obtain sufficient data to characterise the test with sufficient precision over this time post 

infection, and the MDRI will also develop variation by time and place (properties 

inevitable for the FRR) rather than capture stable biological properties of the test. A cut-

off of 2 years was used throughout this analysis.  

In practice, the notion of ‘infection’ implicit in the test property definitions refers to 

‘detectable infection’ – which depends on the particular HIV diagnostic test used in the 

incidence study. In this analysis, ‘detectable infection’ was defined as the time of 

seroconversion on an HIV viral lysate-based Western blot assay. Based on a methodology 

described elsewhere,38 infection dates were estimated for the 56% of subjects who had 

recorded dates of last HIV-negative and first HIV-positive tests (not more than 120 days 

___________________________ 

37 The CEPHIA database is currently administered by David Matten of SACEMA. 
38 Members of CEPHIA have prepared a (currently unpublished) manuscript describing the work 

of CEPHIA and outlining the envisioned development pathway for new biomarkers for recent 
infection. The framework for estimating infection dates from diagnostic test data, summarised in 
the manuscript, is presented in Section 4.3. 
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apart) and descriptions of the diagnostic assays used. Average durations of Fiebig stages 

[180, 181] were used to estimate times at which subjects seroconverted (corresponding to 

entering Fiebig stage 5). Subjects with unambiguous acute retroviral syndrome (ARS) 

symptoms onset dates [202-205] between their last HIV-negative and first HIV-positive 

test dates, were estimated to seroconvert 17 days after ARS onset (based on the 

observation that the incubation period of ARS symptoms is about 14 days [206-209], and 

that the time from exposure to Western blot seroconversion averages 31 days [180, 181]). 

A number of methods can reasonably be used to estimate the MDRI, each with its own 

accuracy, precision and complexity – as explored in a separate, detailed benchmarking 

exercise [53].39 In this analysis, binomial regression was applied; this is an approach that 

was found to be robust across a number of scenarios explored in the benchmarking 

project and has been previously used for MDRI estimation [101]. The model form is 

, where  is the probability of testing ‘recent’ at time t after 

infection,  is the chosen link function and  contains the model parameters, which 

are estimated by a maximum likelihood approach. Results from a four-parameter model 

form are presented, where  is the logit link, and  is a cubic polynomial in  

(Model A). Data points more than 1.1  post (estimated) infection were discarded 

before model fitting (Data Exclusion Rule I), with the aim of achieving the best fit of the 

model over [0, ] post-infection, while avoiding diluting the data around the boundary at 

. The sensitivity of results when increasing the data exclusion cut-off to 2  (Data 

Exclusion Rule II) was also considered. Variation in results was explored when fitting 

two other model forms, namely (i) a more restrictive two-parameter model where  is the 

log-log link and  is a linear function of ln  (Model B), and (ii) a flexible seven-

parameter model where  is the logit link and  is a linear combination of the natural 

cubic spline basis functions with interior knots occurring every 3 months after infection, 

between 0 and 2 years after infection (Model C). In all cases, the MDRI, expressed 

mathematically as 	d , was estimated using the fitted  

(negligible mortality within  post infection was assumed). 

To correctly account for the structure of the data, in the absence of explicit subject-level 

clustering in the fitted models, bootstrapping was performed by sampling subjects (not 

___________________________ 

39 The benchmarking of approaches for estimating the MDRI from longitudinal data is presented in 
Section 4.1. 
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observations) with replacement. The 2.5th and 97.5th percentiles of 10 000 MDRI estimate 

replicates provided 95% confidence interval (CI) limits [174].  

A population-level FRR is inherently dependent on the epidemiological and demographic 

history of a study population [29], and so a set of specimens, such as in the CEPHIA 

repository, can only be used to estimate the FRR in well-defined subpopulations. 

Therefore, specimens from long-infected subjects were identified (specimens drawn at 

least  after the subject’s first recorded HIV-positive visit and estimated Western blot 

infection time), and the proportion of ‘recently’ infected subjects estimated in each of the 

specimen sets described above. To capture subject-level clustering, when a subject 

provided more than one result to any FRR estimate, the most frequent classification was 

used (few subjects had equal numbers of ‘recent’ and ‘non-recent’ results, and each such 

subject contributed half to the aggregate count of subjects with majority ‘recent’ 

classifications). Exact Clopper-Pearson 95% CIs [210] are provided. 

5.1.3 Results	

The incidence assay dynamics, excluding specimens from treated subjects and SCOPE 

elite controllers, are shown in Figures 5.1 to 5.3. The evolution of assay readings by time 

since infection is shown in Figure 5.1. The distribution of results for specimens drawn 

more than 2 years after infection is shown in Figure 5.2. In Figure 5.3, the proportion 

of ‘recent’ results (assay measurements below the ‘recent’/‘non-recent’ threshold) is 

plotted by time since infection and stratified by HIV subtype (A1, B, C and D). Note that 

(i) there is natural variability in biomarker maturation, leading to a significant number of 

subjects reaching the standard ‘recent’/‘non-recent’ threshold more than one year, but 

often less than two years, post infection; and (ii) there is significant delay or failure to 

achieve maturation to ‘non-recent’ status among specimens of subtypes A1 and D.  
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Figure 5.1: Spaghetti plots and box-and-whisker plots of incidence assay 
measurements observed over time after infection for LAg, BED, LS-Vitros, 
Vitros Avidity and BioRad Avidity  
Incidence assay measurements are shown as a function of (estimated) time since infection 
(years), excluding treated subjects and identified elite controllers, for A) LAg, B) BED, 
C) LS-Vitros, D) Vitros Avidity and E) BioRad Avidity (1376 data points from 418
subjects). A spaghetti plot (left) shows subjects’ trajectories, and box-and-whisker plots 
(right) show percentiles of measurements in 6-monthly intervals of time post infection 
(the central 50% and median of measurements are captured by the box and dividing line 
respectively, and whiskers and ‘+’ symbols capture remaining measurements and outliers 
respectively; there are 40-450 data points in each group). ‘Recent’/‘non-recent’ thresholds 
are shown by horizontal solid lines. 
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Figure 5.2: Distribution of incidence assay measurements for specimens from long-
infected subjects for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity 
The empirical distribution of incidence assay measurements for specimens drawn more 
than 2  years after infection, excluding treated subjects and identified elite 
controllers, is shown for A) LAg, B) BED, C) LS-Vitros, D) Vitros Avidity and 
E) BioRad Avidity (665 data points from 316 subjects). ‘Recent’/‘non-recent’ thresholds
are shown by vertical solid lines.  
* The peak of BioRad Avidity results at 100% is due to a large proportion of (treated and
untreated) aliquots returning the maximum possible S/C on the equipment used. 

0 2 4 6 8
Fr

eq
ue

nc
y

LAg ODn

0 2 4 6

Fr
eq

ue
nc

y

BED ODn

0 25 50 75 100

Fr
eq

ue
nc

y

LS-Vitros S/C

0 50 100 150

Fr
eq

ue
nc

y

Vitros Avidity AI

0 25 75 100

Fr
eq

ue
nc

y

50

BioRad Avidity AI*

A)

B)

C)

D)

E)



Theory to Practice: Characterisation of Candidate Tests for Recent Infection  161 

Figure 5.3: The proportion of ‘recent’ results stratified by time since infection and 
HIV subtype for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity 
The proportion of ‘recent’ results (%) as a function of time since infection (years) and 
stratifying by HIV subtype (A1, B, C and D), excluding treated subjects and identified 
elite controllers, is shown for A) LAg, B) BED, C) LS-Vitros, D) Vitros Avidity and 
E) BioRad Avidity. Circles show observed proportions and lines capture 95% confidence
intervals. Specimens are grouped by 6-monthly intervals of time since infection until 
2 years, after which all specimens are grouped together (there are 25 to 665 data points 
per group, other than for subtype D, which has fewer than 20 points 1-2 years after 
infection). 
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Table 5.1 provides estimated test properties for the various specimen sets. LAg has an 

estimated MDRI of 188 days (95% CI: 165-211), while remaining assays have MDRI 

estimates of 285 to 333 days (the CI limits range from 254 to 363 days). Results were 

insensitive (less than a 2% change in results) to whether ARS onset dates were used to 

adjust estimated infection dates, a change to Data Exclusion Rule II, and the use of 

alternative Model C. MDRI estimates increased by 2% to 4% when changing to Model B, 

which was the most sensitive to the data exclusion rules (there was a 4% to 10% increase 

in estimates when changing to Data Exclusion Rule II).  

Excluding treated subjects and SCOPE elite controllers, and analysing all remaining 

specimens drawn more than 2 years after infection, the measured FRR ranges from 

1% (95% CI: 0.3%-3%) for LAg, to 6% to 10% (95% CIs span 3% to 14%) for the 

remaining assays. 

When stratifying by time since infection, the varying persistence of ‘recent’ 

classifications across assays is evident, with LAg exhibiting the leanest tail of persistence 

of ‘recent’ infection. 

The FRR among elite controller specimens is high for all assays, and averages 25% 

(minimum of 13% to a maximum of 48% across assays). The FRR among treated subjects 

is even higher, averaging 65% (minimum of 50% to a maximum of 76% across assays). 

Further stratifying treated subjects by time from infection to treatment initiation, the FRR 

decreases as the time to treatment initiation increases: for early treatment initiation 

(within 6 months of infection) the average FRR is 84% (64% to 93%), while for later 

treatment initiation (more than 6 months after infection) it is 41% (27% to 57%). 

The FRR for subjects with low viral loads, here defined as below 75 copies/ml, is high, 

averaging 55% (41% to 69%). This is consistent with results above, as 92% of this 

specimen set is made up of specimens from the identified elite controllers and treated 

subjects (and 94% of specimens from SCOPE elite controllers and treated subjects have a 

low viral load). 

Lastly, the FRR among subjects with low CD4 cell counts, namely less than 200 cells/µl 

and acting as a proxy for AIDS identification, was relatively low, averaging 2% (0% to 

4%). Further stratifying this group by CD4 cell count (not shown) did not reveal any 

patterns. 
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Table 5.2 lists MDRI and FRR estimates by subtype. The most significant pairwise 

differences in the MDRIs were between subtype A1 and any other, on the Vitros 

platform. With one exception, notably small p-values for subtype pairwise differences in 

the FRRs involve A1 or D and a non-A1, non-D subtype, dominated by LS-Vitros, Vitros 

Avidity and BioRad Avidity results. While these initial results highlight potential subtype 

differences, a more definitive analysis (beyond the present scope) should be based on a 

large number of subtype D and A1 specimens and estimation procedures specifically 

adapted to this stratification.  

5.1.4 Discussion	

The application of cross-sectional HIV incidence surveillance, utilising tests for recent 

infection, has been hampered by the lack of high performance incidence assays and the 

lack of independent, rigorous and consistent evaluations of candidate assays [9, 10, 12-

14]. Over the last four years, CEPHIA [47] has developed a substantial repository of 

precious specimens, and begun using these specimens to characterise the most promising 

incidence assays. Results for LAg, BED, LS-Vitros, Vitros Avidity and BioRad Avidity 

are presented above. 

Assays can be evaluated against a ‘Target Product Profile’ (TPP) [13, 14, 188]: Not only 

should the technology be affordable, practical and transferable to other laboratories, but 

the mean duration of recent infection (MDRI) should be sufficiently long (of around one 

year) and the false-recent rate (FRR) small (ideally zero, and less than 2%). Results 

suggest that incidence assays continue to struggle to simultaneously achieve these two 

test property goals, with no single assay unequivocally meeting the criteria set out in the 

TPP. Compared to the increasingly used LAg assay, the other assays provide larger 

MDRIs but also higher FRRs. 
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While a stable, high-performance incidence assay should ideally produce a consistently 

small FRR, regardless of the study population, data from this work helps to understand 

some of the reasons why an assay’s performance could be unstable and FRRs may be 

large. All assays produce particularly high FRRs among elite controllers (>10%) and 

treated subjects (>50%), and the size of these subpopulations will vary by region and 

time. In a surveillance study, identifying these subjects is problematic, as there is no 

universal definition of, or test for, elite controllers, and self-reported treatment status may 

be unreliable. Furthermore, earlier initiation of treatment is associated with a higher FRR, 

in line with varying impacts of treatment on immune responses by treatment timing [72, 

78, 213]. Context strongly affects when patients begin treatment – for example, in some 

states in the USA, patients are offered treatment immediately following HIV diagnosis 

[214], while in South Africa most HIV-positive patients are unable to access treatment 

until CD4 cell counts drop below 350 copies/µl [215]. In this study, 94% of specimens 

from elite controllers and treated subjects also had a low viral load (<75 copies/ml), and 

so viral load testing provides a potential tool to screen for these high-FRR subjects – 

specimens with viral loads below an optimised threshold would be classified as ‘non-

recent’ (regardless of the incidence assay measurement). Note that such a change in the 

‘recent’ infection classification rule will also impact (reduce) the MDRI. Surveys could 

also directly test for the presence of antiretroviral drugs to identify treated subjects [216]. 

Properties for each assay have been estimated here on the standardised basis of a Western 

blot being used to identify HIV-positive subjects. However, other diagnostic screening 

tests are likely to be used in incidence studies, and the time between HIV exposure and 

reactivity on these tests can differ by several weeks [180, 181, 185]. Therefore, for 

application to incidence studies, the base case MDRI reported here would need to be 

increased or decreased – depending on the particular screening test or algorithm used in 

the study to classify a specimen as HIV-positive, and hence eligible for ‘recent’ infection 

testing.  

The results presented here should not be viewed as discouraging, as they provide a 

consistent, independent characterisation of these candidate incidence assays. Large FRRs 

continue to limit the utility of single incidence assays, and subtype-specific test behaviour 

should be further explored. This analysis provides the basis for exploring optimisation 

through such adjustments as variation of ‘recent’/‘non-recent’ thresholds, inclusion of 

supplemental tests (in particular, viral load), and the use of multiple incidence assays, all 

of which is the subject of ongoing work within and beyond CEPHIA [10, 12, 13, 86, 88, 
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101, 102]. Optimisation should also consider the time cut-off , to distinguish ‘true-

recent’ from ‘false-recent’ results. Although  should be not be too large, the value of  

was increased from 1 year, as used in preliminary analyses [42], to 2 years in this 

analysis, to better capture the tails of persisting ‘recent’ results and thus reduce FRRs. 

Ongoing analyses also include the evaluation of tests for recent infection, using the 

precision of the incidence estimator as a summary performance metric [30].40 In addition, 

efforts are being made to capture more detailed information on cohorts’ diagnostic testing 

protocols and more complete testing histories of subjects, thus providing the required data 

to further refine estimated infection dates for later analyses of assay results. 

The repository of specimens and data that has been generated by CEPHIA provide a 

unique opportunity to further advance the investigation and refinement of markers of 

‘recent’ HIV infection. Specimens and datasets are well-maintained, samples sizes are 

large, specimen background information is recorded, and multiple incidence assays and 

potential supplemental tests have been applied to the same specimens. 

CEPHIA has begun testing the ‘evaluation panel’ using other assays, with the aim of 

evaluating ten incidence assays in its first phase. A second phase of CEPHIA, known as 

CEPHIA II and also funded by the Bill and Melinda Gates Foundation (BMGF), was 

launched in the beginning of 2013. Under CEPHIA II, the repository is being expanded to 

include non-plasma specimens (such as linked whole blood, oral fluid, urine and stool) 

that are being prospectively collected through collaborations with various study sites. 

CEPHIA is also supporting biomarker discovery projects funded by the BMGF and US 

National Institute of Health (NIH), with a focus on earlier steps in the development 

pathway. Further updates on CEPHIA activities can be found on the project website 

(http://www.incidence-estimation.com/page/cephia). 

___________________________ 

40The use of the precision of the incidence estimator, as a standard metric for assessing test 
performance, was formally outlined in earlier work, and is presented in Chapter 6. 
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Chapter	6	
 	

Measuring	and	Optimising	Test	
Performance		

In principle, any test for recent infection can be characterised and applied in an incidence 

surveillance study. Earlier chapters of this work have both developed the theoretical 

framework and explored the practical methodology for doing this. However, the lack of 

standard metrics for assessing the utility of recent infection tests has been an obstacle to 

test development, and therefore the measurement and optimisation of test performance 

are the focus of this final contribution of the thesis. 

While it has been increasingly recognised that tests should provide an enduring state of 

‘recent’ infection and rarely (ideally, never) return ‘recent’ results at large times post 

infection, formal metrics for trading off these two test properties have not been widely 

adopted. An appropriate metric for assessing and optimising tests for recent infection, 

namely the precision of the incidence estimator, is presented in Section 6.1, which is a 

reproduction of a published article providing guidance to developers [30].41 

As the discourse increasingly moves towards practical application, efforts are being made 

to develop high-performance biomarkers for recent infection. Some important practical 

considerations are highlighted in Section 6.2, which explores the scope of the test 

optimisation, the context-dependence of test performance, and other test design criteria of 

relevance. 

___________________________ 

41The contents of Section 6.1 have been published as: ‘Kassanjee R, McWalter TA, Welte A. 
Defining optimality of a test for recent infection for HIV incidence surveillance. AIDS Res Hum 
Retroviruses. 2014; 30(1): 45-49’. The article was reproduced with permission from AIDS 
Research and Human Retroviruses, published by Mary Ann Liebert, Inc., New Rochelle, NY. 
The manuscript was primarily written by RK, who also performed all analyses. AW and TAM 
helped conceive the ideas, reviewed the analyses, and assisted in writing the manuscript. 
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6.1 Defining	Optimality	of	a		
Test	for	Recent	Infection	for		
HIV	Incidence	Surveillance		

The measurement of HIV incidence, the rate of new infections, is essential in most 

surveillance and intervention contexts. Recognising the practical challenges presented by 

longitudinal studies, the estimation of incidence from cross-sectional surveys using tests 

for recent infection has attracted considerable interest [8-11, 14, 147, 217]. However, the 

performance and optimisation of a test that aims to categorise infections as ‘recent’ or 

‘non-recent’, specifically for population-level surveillance, requires a shift from 

conventional diagnostic thinking about test performance. 

When individual-level detection of a condition is of primary interest, sensitivity, 

specificity and predictive values are appropriate metrics of performance. These metrics 

improve as inter-subject variability decreases. However, when estimating a population-

level summary parameter, such as incidence, the appropriate performance metrics are 

accuracy and precision of the statistic measured. Here, incidence estimation utilises 

information on the average behaviour of biomarkers, and is relatively insensitive to the 

variability underlying this averaging. While the appropriate optimisation of tests for 

recent infection has been noted in passing [10, 11, 14, 147, 217], there is neither 

consensus nor guidance for developers. 

As with any diagnostic, elements of a test for recent infection may be adjusted to alter its 

performance. In the context of HIV recent infection tests, typically some quantitative host 

or viral biomarkers are measured, and the infection is categorised as ‘recent’ or ‘non-

recent’ by reference to thresholds [8-10]. For example, the widely used BED assay 

measures the proportion of HIV-specific immunoglobulin G (IgG) antibodies in total IgG, 

and a measurement below some threshold classifies the infection as ‘recent’ [107]. While 

a test may be comprised of many elements that can be varied, from the underlying 

biological processes measured to the assay platforms and specific kits, ultimately, the 

optimisation will involve the fine tuning of thresholds. 

It is increasingly recognised that the lack of high performance recent infection tests poses 

a major obstacle to the widespread implementation of cross-sectional incidence 

surveillance [14, 217]. The World Health Organisation (WHO) has maintained a WHO 
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Working Group on HIV Incidence Assays since 2006, the Consortium for the Evaluation 

and Performance of HIV Incidence Assays (CEPHIA) was established in 2010, and both 

the Bill and Melinda Gates Foundation and the National Institutes of Health have 

provided substantial funding for the development of better tests [13, 47, 52, 188, 218]. 

Given the current surge in the development of candidate tests for recent infection, it is 

important to have clarity and consensus on robust metrics of performance, and in 

particular to avoid the pitfalls of traditional diagnostic thinking. 

Prevalence, the fraction of a population with a condition, can at times be substantially 

informative about incidence. For example, for transient conditions, such as influenza, it is 

well known that near demographic equilibrium: 

Incidence
Prevalence

Mean duration of condition
, (6.1)

where incidence is expressed as a rate of cases per person time in the entire population, 

not just per person time at risk. However, when a condition is enduring, and survival in 

the state is poorly known and evolving, as is the case with HIV, prevalence becomes 

uninformative about incidence. In this case, it makes sense to find ways of defining and 

detecting a robust early phase post infection, and using a more refined version of the 

above heuristic to infer incidence from the prevalence of ‘recent’ infection.  

Under simplistic assumptions, HIV incidence, expressed as a rate of infection per person 

time at risk, is then formally estimated, in a cross-sectional setting, by [7]:  

Ω
, (6.2) 

where pR and pS are the proportions of ‘recently’ infected and susceptible or HIV-negative 

subjects in the sample, and Ω is the mean duration of recent infection. Currently available 

tests (and perhaps all conceivable tests) for recent infection present a subtle problem in 

that some individuals who have been infected for long periods of time may nevertheless 

yield spurious ‘recent’ results [77, 78, 213]. With some simplifying assumptions, it has 

been shown how this ‘false-recent’ phenomenon can be intuitively understood as 

requiring a ‘subtraction’ of the estimated number of ‘false-recent’ results from the 

observed number of ‘recent’ results [16, 17, 25, 29]. 

More recently, a very general analysis has been obtained by introducing a convenience 

time cut-off , which represents the time, post infection, after which a ‘recent’ test result 

is a ‘false-recent’ result [29]. The test properties then are (i) a false-recent rate (FRR), , 
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which is the (population-dependent) proportion of those individuals infected for more 

than time  who produce ‘recent’ test results, and (ii) a somewhat subtly-defined mean 

duration of recent infection (MDRI), Ω , which is the average time spent ‘recently’ 

infected while infected for less than  [29]. 42  Note that 1  is the (population-

dependent) specificity of the test if it aimed to identify infections that have occurred 

within the preceding period . This leads to the following incidence estimator [29]: 

∙ Ω
, (6.3)

which depends on the proportions of subjects in the sample who are classified as 

‘recently’ infected, HIV-positive and HIV-negative, denoted by ,  and 1 , 

respectively; and the test properties, Ω  and , for a chosen time cut-off . When there 

are no ‘false-recent’ results ( 0), Equation (6.3) reduces to Equation (6.2), noting 

that Ω Ω  in the absence of an explicit time cut-off . In terms of epidemiological and 

demographic context, the applicability of Equation (6.3) requires only that the susceptible 

population size does not vary substantially over a period of duration  [29]. The 

biomarkers underlying the test for recent infection should mainly capture stable 

biological, as opposed to environmentally-dependent, factors over the period  post 

infection (that is, the MDRI should not vary significantly by context, but be a true 

property of the test) [29]. It is understood that the FRR will have contextual variability.  

Uncertainty in the incidence estimate arises from statistical fluctuations of the proportions 

of subjects in the sample in the various classes as well as from uncertain test properties. 

The uncertainty of the incidence estimator, described here by its coefficient of variation 

(ratio of standard deviation to mean), , can be approximated using the delta method [29]:  

 
1

∙
1

	 ∙
1

Ω

∙
Ω ∙ Ω

∙ Ω
, (6.4)

___________________________ 

42The general framework for incidence inference, producing these definitions of the MDRI and 
FRR, was developed as part of earlier work, and is presented in Chapter 2. 
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where 	 and  are the proportions of ‘recently’ and ‘non-recently’ infected 

individuals in the study population;  and 1  are the proportions 

of infected (or HIV-positive) and susceptible (or HIV-negative) individuals in the 

population; and  and  are the uncertainties (standard deviations) with which the 

test properties Ω  and  are measured. It is certainly possible that the normality 

assumptions intrinsic to deriving Equation (6.4) could be violated in practice, in which 

case the same underlying theory can be used as a basis for a numerically more complex 

calculation of the variance of incidence estimates, such as by bootstrap resampling 

methods [174]. Whether or not one uses Equation (6.4) to estimate the coefficient of 

variation is not fundamental to the present discussion about optimisation. 

The familiar statistical objective when estimating any parameter is to find a sample 

statistic that estimates the parameter with the greatest accuracy (least bias) and greatest 

precision (smallest variance). As shown in the general derivation of Equation (6.3) [29], 

the bias is negligible compared to variance in the epidemiologically and demographically 

relevant regime, using any reasonable test for recent infection. The remaining goal is 

therefore the minimisation of variance. The apparent bias reported by other researchers 

[27] is a result of an alternative summary parameterisation of biomarker dynamics, which 

declares the FRR to be zero. This leads to an MDRI which is complex, context-dependent 

and difficult to estimate; and hence produces a similarly context-dependent implicit 

weighting over historical incidence. 

To minimise variance, the state of ‘recent’ infection should not be too transient, so that a 

realistically sized cross-sectional survey can capture a sufficient number of ‘recent’ cases 

for the estimation of the ‘recent’ proportion to be statistically robust (and therefore the 

MDRI should be large). The larger the adjustment for ‘false-recent’ results, the greater 

the overall uncertainty arising from fluctuations of the sample proportions (and therefore 

the FRR should be small). However, the two test properties cannot be independently 

adjusted, as test modifications that increase the MDRI typically also increase the FRR. 

Hence, the central goal of test design is an optimal balance between these two properties. 

An ideal test would have a near-zero FRR and an MDRI of around a year, if considering a 

setting where one is interested in the average incidence over approximately the last year. 

Figure 6.1 illustrates this trade-off between the MDRI,	Ω , and FRR, . The contours 

show the coefficient of variation (CoV) of the incidence estimator as a function of the 

MDRI and FRR, in an example context. In the context,  HIV incidence is 1% per annum 
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and HIV prevalence is 10%, Ω  and  are estimated with a 5% and 30% CoV 

respectively and 1 year, and incidence is measured in a cross-sectional survey of 

5 000 subjects. Moving to the right (to a large MDRI) and down (to a low FRR) in the 

contour plot, the CoV of the incidence estimator decreases (that is, precision increases). 

For a test to begin to move into a regime of usefulness, the MDRI should be at least 6 

months and the FRR below 2% [11, 14, 188]. In the context described by the figure, this 

implies a CoV of the incidence estimator of 30%, which implies that one can be 95% 

confident of estimating the true incidence of 1% per annum as a point estimate between 

0.4% and 1.6% per annum.  

Figure 6.1: Performance of a test for recent infection as a function of test properties, 
in an example context 
The contour plot captures the coefficient of variation (CoV) of the incidence 
estimator (%), as a function of the mean duration of recent infection, Ω  (days), and 
false-recent rate,  (%), for an example context. HIV incidence is 1% per annum and 
HIV prevalence is 10%, Ω  and  are estimated with a 5% and 30% CoV respectively 
and 1 year, and incidence is measured in a cross-sectional survey of 5 000 subjects. 
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To illustrate the optimisation of test design in a simplistic scenario, consider a biomarker 

where the reading at time  after infection (years) is 

1 exp 2 0.2 ∙ , (6.5)

where  captures noise and is a standard normal random variable, and readings below 

some chosen threshold indicate ‘recent’ infection. Here, the only source of variability is 

noise in the biomarker, while in reality there is often substantial inter-subject variability, 

and effects due to immune system decline and treatment. Nevertheless, this simple model 

captures the same trade-off – that increasing the threshold increases both the MDRI and 

FRR – observed with more complex biomarker dynamics. In Figure 6.2 the precision of 

the incidence estimator is plotted as a function of test threshold, and the optimal threshold 

indicated, for an example context. In the context, there is epidemiological and 

demographic equilibrium of 1% per annum HIV incidence and 10% HIV prevalence, Ω  

and  are exactly known, 1  year, incidence is measured in a survey of 10 000 

subjects, and all individuals survive for (exactly) 10 years from infection. Note that the 

FRR, , depends on the survival dynamics and epidemiological and demographic 

history of the population (up until the maximum post-infection survival time). A tool to 

calculate the CoV of the incidence estimator is available at http://www.incidence-

estimation.com/page/tools.43 

Unfortunately, there is no single test design that will be optimal in all settings. This is 

because uncertainty in incidence estimation is determined by both the dynamics of the 

recent infection test and the context-specific epidemiological and demographic history 

(captured by HIV incidence and prevalence). Therefore, a range of anticipated contexts 

should be considered in evaluating a candidate test, or in fine tuning test design. This 

context-specific performance may be discouraging and regrettably complicated, but it is 

not unique to this surveillance application: even in a conventional simplistic diagnostics 

setting, the sensitivity and specificity of a test, if these can be assumed to be context-

independent, must be combined with a contextual prevalence to determine the predictive 

value performance of the test. 

The minimisation of the variance of the incidence estimator, or maximisation of 

precision, by trading the MDRI off against the FRR, provides a completely general 

___________________________ 

43The Test Performance Calculator is part of the online ABIE v2.0 tool suite, and is described in 
Section 2.3 and Appendix A. 
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criterion for optimising test design, regardless of the complexity of the test. For example, 

there is a trend towards using multiple biomarkers in a single test for recent infection, 

where various approaches for combining the individual biomarker results to produce a 

classification could be employed. For example, the final classification could be based on 

the sum of biomarkers readings, or on the number of individual readings below 

biomarker-specific thresholds [86, 88, 95, 101, 102]. The optimal test design is that which 

provides the lowest variance of incidence estimates across intended contexts. 

Obtaining the most precise incidence estimates also consistently captures the optimisation 

that would be appropriate in studies that aim to test for differences in incidence or 

identify risk factors for HIV acquisition. Statistical tests for differences among groups 

(for example, capturing different ages, genders or social and sexual behaviours) are more 

highly powered when incidence is more precisely estimated in each group. 

Figure 6.2: Optimal threshold for a hypothetical biomarker for recent infection, for 
an example context 
The coefficient of variation (CoV) of the incidence estimator (%) is shown, as a function 
of the threshold used to distinguish between ‘recent’ and ‘non-recent’ infection, for a 
hypothetical biomarker and example context. A biomarker measurement at time  (years) 
after infection is given by 1 exp 2 0.2 ∙ , where  is a standard normal random 
variable. HIV incidence and prevalence have remained at 1% per annum and 10% 
respectively, Ω  and  are exactly known, 1 year, incidence is measured in a cross-
sectional survey of 10 000 subjects, and post-infection survival is 10 years. 
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Much of the literature introducing new tests for recent infection has attempted to assess 

their utility in terms of sensitivity and specificity [92, 109, 111, 112, 125, 187, 219]. As 

would be appropriate in the more familiar diagnostic applications, values close to 100% 

have been regarded as realistic targets, with these two measures summarised into, for 

example, Receiver Operating Characteristic (ROC) curves and the overall classification 

accuracy. However, three major obstacles are encountered when extending the use of 

these diagnostic metrics to this surveillance application. (i) Any workable definition of 

sensitivity and specificity requires a notion of truly recent infection that is defined by a 

strict threshold on time since infection, and a fully specified distribution of times since 

infection in a population. (ii) Even if thus defined, sensitivity and specificity cannot be 

accurately estimated from interval censored seroconverter data sets. (iii) Inter-subject 

variability of infection-related biomarkers naturally increase with time post infection; and 

therefore diagnostic optimisation will tend to motivate for a category of ‘recent’ infection 

restricted to the lower variability period close to infection, whereas incidence estimation 

requires the most enduring notion of ‘recent’ infection which does not bring a substantial 

false-recent rate.  

In a clinical setting there may be substantial value in having some evidence of time since 

infection, at the time of HIV diagnosis. This opens up a multitude of new questions 

beyond the scope of this discussion. Most importantly, there needs to be further work to 

support reporting and interpreting individual biomarker values, beyond a ‘recent’ or ‘non-

recent’ categorical result, and the appropriate optimisation of a test may not be the fine 

tuning of a threshold for this clinical context.  

Any evaluation and optimisation of a test for recent infection should be based on the 

specific purpose for which the test is to be used, with the current work focusing on 

incidence estimation. The goal of HIV incidence estimation from cross-sectional surveys, 

using tests for recent infection, has attracted the interest of test developers. However, the 

assessment and optimisation of these tests, for purposes of estimating a population-level 

average, requires a fundamental shift from traditional criteria for measuring performance. 

The relevant performance metric of such tests is the precision of incidence estimates 

produced in an intended context. The central goal of the test developer, then, is the 

minimisation of the variance of the incidence estimator through a trade-off between the 

mean duration of recent infection and false-recent rate. 
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6.2 Some	Important		
Practical	Considerations		
for	Test	Optimisation	

Following the development of the theoretical and methodological foundations for 

characterising and applying tests for recent infection, discourse in the field has shifted 

towards the practical application of biomarker-based incidence surveillance. Topics of 

growing interest are therefore the identification and optimisation of the most promising 

tests, and the development of improved tests. In support of these efforts, a single 

summary measure of test performance was introduced in the previous section. This 

metric, namely the precision of the incidence estimator, provides a formal framework for 

balancing the needs for a large mean duration of recent infection (MDRI) and small false-

recent (FRR). When utilising this metric in practice, a number of important 

considerations arise. The scope of the optimisation, the context-dependence of test 

performance, and other criteria for assessing tests are briefly discussed below.  

Defining	the	scope	of	the	test	optimisation	

When optimising the design of a test for recent infection, one needs to choose which rules 

or parameters capturing the test design may be varied and how. While it is important to 

allow for sufficient flexibility to achieve high test performance, this goal needs to be 

balanced with practical limitations. For one, tests based on very complex schemes may be 

difficult to understand and consistently apply in surveillance studies. Also, if there are 

many parameters that can be tuned, an exhaustive exploration of possible test designs 

may become computationally daunting and the test design becomes vulnerable to being 

over-fitted to the data at hand. Some aspects to consider when defining the scope of the 

test optimisation are therefore briefly explored.  

For an incidence assay consisting of a single quantitative measurement that increases (or 

decreases) over time after infection, one may reasonably restrict the test design to rely on 

only one parameter – namely a threshold for distinguishing between ‘recent’ and ‘non-

recent’ infections. The optimisation of the test is then straightforward, and entails finding 

the value of the threshold that maximises the precision of incidence estimates. However, 

the uncertain or poor performance of existing incidence assays has led to increasing 
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interest in tests for recent infection based on multiple markers, in which case the 

optimisation search space can become high-dimensional, large and complex.  

To illustrate this expansion of the search space, Figure 6.3 shows some possible test 

designs when using just two quantitative biomarkers, each increasing over time after 

infection. A test design specifies how to map the two quantitative readings onto 

dichotomous ‘recent’ and ‘non-recent’ classifications, and relies on a number of tuneable 

parameters. The optimisation procedure would need to select both an approach for 

mapping the measured markers onto classifications and the particular parameter values.  

More generally, for  biomarkers (quantitative or otherwise), a region (possibly made up 

of a number of disjoint regions) in the -dimensional space describing the  results 

needs to be defined as representing ‘recent’ infection. The boundary of this region could 

be described by an arbitrarily large number of parameters, and should be optimised so 

that individuals remain within it for sufficiently enduring times after infection on average 

(large MDRI), but are rarely still within it once infected for some time, such as a couple 

of years (small FRR). Some examples of test designs for multiple biomarkers can be 

found in the literature: proposed ‘multi-assay algorithms’, which utilise a number of 

incidence assays and measures of viral load and CD4 cell counts, classify infections as 

‘recently’ acquired if each biomarker is below or above some biomarker-specific 

threshold [13, 61, 88, 89, 95, 101, 126]. Generalising this design, ‘recent’ infection may 

be identified by at least a specified number of all biomarkers being below (or above) their 

respective thresholds, as applied in the interpretation of the multiple immune responses 

produced by the Bio-Plex platform [102]. 
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Figure 6.3: Examples of test designs for two biomarkers that increase over time 
after infection 
Six possible test designs are shown for creating ‘recent’ and ‘non-recent’ infection 
classifications from two (non-negative) quantitative biomarkers (Biomarkers 1 and 2) that 
increase over time after infection. Each mapping of measurements onto classifications 
relies on at most two parameters,  and . In A), a Biomarker 1 measurement below  
produces a ‘recent’ result, while in B), a Biomarker 2 measurement below  produces a 
‘recent’ result. In C), both biomarker measurements must be below their corresponding 
thresholds for a ‘recent’ classification, while in D), at least one biomarker measurement 
must be below its corresponding threshold. In E), a linear combination of the readings 
below a chosen threshold indicates ‘recent’ infection (summarised here by specifying the 
two intercepts of the dividing line shown). Lastly, in F), a linear combination of the 
squares of the two readings below a chosen threshold indicates ‘recent’ infection 
(summarised here by the two intercepts of the dividing elliptical boundary). 
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It is worth noting that some familiar tests for recent infection are based on quantities that 

are themselves already summaries of multiple biomarkers. Such a test therefore captures a 

specific mapping of multi-dimensional space onto a one-dimensional quantitative metric, 

which is then used to classify infections based on a single threshold parameter. For 

example, this is the case for antibody avidity assays which measure the ratio of antibody 

signal in a sample treated with a chaotropic agent to that in an untreated sample [100, 

113, 115, 116, 119, 121]. A ratio, or ‘avidity index’, below a chosen threshold indicates 

‘recent’ infection. The interpretation of the treated and untreated sample antibody signals, 

as a region in two-dimensional space representing ‘recent’ infection, is shown in 

Figure 6.4. Also, genetic diversity assays provide summary measures of very large 

amounts of complex data that collectively describe virus heterogeneity – for example, in 

the work of Park et al [125], the assay reading is the lower 10th percentile of the 

Hamming distance distribution of sequences; and in the work of Cousins et al [220], a 

High Resolution Melting (HRM) score captures the melting peak width. 

Figure 6.4: The ‘recent’ infection region implied by a conventional ‘avidity index’ 
interpretation of two antibody signals 
A conventional avidity assay produces an ‘avidity index’, which is the ratio of antibody 
signal in a sample treated by a chaotropic agent (Biomarker 2) to that in a sample not thus 
treated (Biomarker 1), and a value of the avidity index below a chosen threshold  is 
interpreted as indicating ‘recent’ infection. The figure shows the ‘recent’ and ‘non-recent’ 
infection regions of the two-dimensional space that describes the two biomarker 
measurements. 
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Importantly, an understanding of the biomarker dynamics and the relationship among 

biomarkers should be used to inform which test designs should be considered in the 

optimisation. For example, in the extreme case that one biomarker can be expressed as a 

monotonic transformation of another, there can be no benefit from using both biomarkers. 

In the case that the two biomarkers are sufficiently different (uncorrelated or orthogonal), 

the performance of a test utilising both biomarkers will depend on the test design and the 

relationship between the biomarkers. 

Continuing this example, first consider a test based on one biomarker, where a 

measurement below threshold  is interpreted as indicating ‘recent’ infection (Part A in 

Figure 6.3). Then stipulating that the second biomarker measurement must also be below 

threshold  for the ‘recent’ classification to be retained (Part C in Figure 6.3) would 

decrease both the MDRI and FRR (as the size of the ‘recent’ infection region is reduced). 

This test design would be best suited to two biomarkers that are closely related soon after 

infection (little impact on the MDRI), but poorly associated at large times post infection 

(large reduction in the FRR). Alternatively, stipulating that an infection is considered to 

be ‘recent’ if the first biomarker measurement is below  or the additional second 

biomarker measurement is below  (Part D in Figure 6.3) would increase both the MDRI 

and FRR. This design would be suited to biomarkers that are independent soon after 

infection (large increase in the MDRI) but highly related at large times post infection 

(small increase in the FRR). In practice, the optimal choice of threshold for the first 

biomarker is likely to change once the second biomarker is introduced.  

As another example of how knowledge of individual biomarker dynamics can be used to 

select a plausible test design, consider a set of biomarkers where each aims to detect a 

different type of host immune response (capturing a particular type of antibody 

responding to a specific component of the virus). These responses may be transient, each 

growing and waning over a short and different time after infection, as captured in 

Figure 6.5 (Part A). By identifying which of these responses occur within a year or two 

after infection, and which occur later, it may be possible to construct a rule that provides 

a useful definition of ‘recent’ infection. A suitably enduring state of ‘recent’ infection 

could be obtained by requiring the detection of at least one early response, while the FRR 

could be kept low by also requiring that none of the later responses are detectable (Part B 

of Figure 6.5). 
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Figure 6.5: The dynamic of a hypothetical test for recent infection based on the 
detection of transient immune responses observed at different times after infection  
The dynamic of a hypothetical test for recent infection, based on the detection of each of 
seven transient responses, is shown. In A), the probability of detecting each response is 
shown as a function of time since infection. In B), the dynamic of the test for recent 
infection is summarised by the probability of testing ‘recently’ infected as a function of 
time since infection. A ‘recent’ classification is produced if at least one of the five earlier 
responses (solid lines in Part A) is observed, and neither of the two later responses 
(dashed lines) is observed. 

When considering a large number of complex biomarkers that are not well understood, 

more data-driven approaches may be required to inform test designs. Formal supervised 

learning methods may be considered, such as support vector machines, discriminant 

analysis, classification trees and generalised additive models. These machine learning 
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probably recently or non-recently acquired, based on the individual biomarkers. In 

addition to being critical of assumptions and the interpretability of the models, it is 

essential that the methods for fitting these models are appropriately adapted to this 

surveillance application. 

Supervised learning approaches conventionally seek model parameters that maximise the 

probability of a ‘correct’ classification. This frames the optimisation in terms of metrics 

that are useful for individual diagnostic settings (namely sensitivity, specificity and 

predictive values), rather than those that are directly meaningful for incidence 

surveillance (namely those capturing the precision of the incidence estimator). For 

argument’s sake, suppose that a test for recent infection is viewed as a test for identifying 

infections that have occurred in the preceding period . The ratio of the MDRI to  could 

then be described as the average sensitivity of the test, specifically when the true time 

since infection is uniformly distributed between 0 and , and the FRR could be described 

as one minus the context-dependent test specificity. For incidence surveillance, a high-

performance test should then have a specificity close to 100%, but, critically, does not 

require a sensitivity close to 100%, and values larger than 50% would probably be 

difficult to achieve. This performance regime, though excellent for surveillance purposes, 

would be considered far from optimal by machine learning approaches that aim to 

maximise overall classification accuracy (and also conventionally assign the same ‘costs’ 

to ‘false-positive’ and ‘false-negative’ results). 

Another aspect of defining a test for recent infection is choosing the post-infection time 

cut-off T, separating ‘true-recent’ from ‘false-recent’ results. A larger  would typically 

produce better test performance, as a larger  implies a larger (or unchanged) MDRI and 

(typically, but not always) a smaller FRR. However,  determines the maximum period in 

the past over which incidence is averaged, and allows for the decoupling of early test 

dynamics (summarised into the MDRI) from later dynamics which become convolved 

with the population’s epidemiological and demographic history (captured by the FRR).44 

Therefore, while  should be large enough for the overwhelming majority of individuals 

to no longer return ‘recent’ results beyond  after infection, it should not be chosen much 

larger than necessary to achieve this. While not envisioned as being a parameter that is 

___________________________ 

44
 The decoupling of short-term and long-term test dynamics, achieved by introducing the post-
infection time cut-off  into the framework for incidence estimation, is explored in Chapter 2.  
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finely tuned during test optimisation, choosing a suitable value of  is an important 

aspect of test design. For example, a value of one, two or three years might be chosen, 

depending on the test dynamics, surveillance study objectives, and availability of test 

characterisation data. 

All of the discussion above has focused specifically on the interpretation of quantitative 

biomarker measurements to produce ‘recent’ and ‘non-recent’ classifications. Stepping 

further upstream into the development process, the optimisation of the technology that 

produces the measurements themselves should be considered. For example, tests for 

recent infection based on ‘detuned’ or ‘less-sensitive’ versions of standard HIV 

diagnostic assays were developed by modifying laboratory procedures, such as dilution 

specifications and incubation times. The modifications were introduced so that the 

measured biomarker grew more slowly over time post infection and produced a dynamic 

that supported the introduction of a threshold to distinguish ‘recent’ from ‘non-recent’ 

infection [91, 100, 104-106]. The laboratory procedures for these and other biomarkers 

for recent infection could be further modified to provide more optimal evolutions of 

quantitative measurements. 

In principle, the optimisation of a test for recent infection, aiming to maximise the 

precision of incidence estimates, could be pushed arbitrarily far back into the 

development process. However, to be practical, early test development would simply seek 

biomarkers that appear predictive of the timing of infection, and that could potentially 

produce tests for recent infection with large MDRIs and small FRRs. It is in these earlier 

development stages that simple performance targets, such as those provided by the 

‘Target Product Profile’ [13, 14, 188], are particularly useful. In fact, funding agencies 

are currently supporting the development of a collection of ‘Target Product Profiles’, 

each tailored to a particular use of a biomarker for recent infection (for example, as a 

stand-alone test for recent infection, or as part of a ‘multi-assay algorithm’ [88, 101]). It 

is only later on in the development process, when a limited number of well-defined 

parameters are to be tuned and sufficient data on test dynamics have been captured, that 

statistical analysis of the precision of the incidence estimator would be most practical and 

likely to add the most value. Even at this late stage, the scope of the optimisation should 

be carefully chosen, balancing sufficient flexibility of test design with practical needs.  
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The	context‐dependence	of	test	performance	

A subtlety when assessing the performance of tests for recent infection, based on the 

precision of the incidence estimator, is the dependence on context. The precision of the 

incidence estimator depends on (i) the size of the incidence surveillance survey, (ii) the 

proportions of HIV-negative, ‘recently’ infected and ‘non-recently’ infected subjects in 

the population, and (iii) the mean duration of recent infection (MDRI) and false-recent 

rate (FRR) and the uncertainties with which these test properties are measured (as well as 

). The population proportions, and FRR, depend on the full epidemiological and 

demographic history of the population, convolved with the complete dynamics of the test 

for recent infection. Therefore, to assess the performance of any given test, hypothetical 

contexts need to be chosen, and should closely resemble the real-world contexts of 

interest. 

Given any hypothetical context, various approaches could then be considered for 

calculating the precision of the incidence estimator. In the extreme case, when given 

complete knowledge of the population history and test dynamics, analytical or 

simulation-based approaches could be used to translate this information into inputs to a 

calculation of the precision of the incidence estimator, which could be performed using 

general methods for estimating uncertainties, such as bootstrap resampling [174]. 

However, such approaches are impractical for a number of reasons – they require 

unrealistic inputs, the calculations are unnecessarily complicated and computer intensive, 

and it is likely that highly uncertain results will be produced (given the uncertainties in 

the inputs). Therefore, various simplifications could be used, guided by what information 

is available and the applicability of analytical approximations in a particular setting. 

For example, in the test performance calculations presented in Section 6.1 above, two 

simplifications were used. Firstly, population histories were summarised into the HIV 

prevalence and HIV incidence of the population at the time of the incidence study, where 

HIV incidence refers to the average incidence measured in the survey. Using the general 

expression for incidence (that leads to the estimator in Equation (6.3)), the population 

proportions were then calculated from the input test properties (and ), HIV incidence 

and HIV prevalence. Secondly, a closed form approximation for the precision of the 

incidence estimator was used, obtained by applying the delta method and assuming 

Gaussian uncertainty in all inputs (see Equation (6.4)).   
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In the calculation of precision, the context-specific (estimated) test properties need to be 

used. While the MDRI should capture only biological dynamics of the test over  after 

infection, and therefore ideally not rely on context, the FRR is expected to change by time 

and region [29, 189]. If a direct measurement of the FRR is not available for the 

population of interest (or one suitably similar), then knowledge about the population and 

test dynamics could be used to inform an FRR input. More specifically, the proportion of 

‘recent’ results produced by a test will vary by subpopulation, as highlighted by the 

results in Section 5.1. Based on views about the prevalence of these subpopulations in the 

long-infected population at the time of the survey, and the probability of ‘recent’ results 

in each subpopulation, an appropriately averaged context-specific FRR can be calculated. 

The stability of the test dynamics will determine how context-dependent the test 

properties are. For example, if test behaviour varies by HIV subtype, then the subtype-

composition of the study population needs to be taken into account. This has the 

consequence that even the MDRI can become context-dependent, and, since the 

distribution of subtypes in a population may change over time, even time-dependent. This 

limitation on transferability of test characteristics undermines key benefits of biomarker-

based cross-sectional surveillance. On the other hand, if a test for recent infection is not 

affected by factors such as subtype, and has a zero FRR in all subpopulations that could 

be considered, then the MDRI and (zero) FRR would be same in any context. Therefore, 

as more robust tests for recent infection are developed, with smaller FRRs, it is 

anticipated that the context-dependence of test properties will be reduced, making test 

performance assessment more straightforward.  

While the context-dependence of the precision of incidence estimation is unavoidable, a 

test for recent infection would be most practical if it performs well across a range of 

epidemiologically relevant contexts. While context will affect the exact value of the 

incidence estimator precision, it is expected that context will only mildly affect 

determination of the optimal design for a test (such as the choice of threshold for 

distinguishing between ‘recent’ and ‘non-recent’ infections). Also, it is important that all 

relevant uncertainties are propagated through the calculation of test performance, to avoid 

misguided over-commitment to very particular test designs – for example, a confidence 

interval for the coefficient of variation of the incidence estimator should be reported. It is 

anticipated that the optimisation procedure will indicate a space of optimal test designs 

(for a range of contexts), rather than advocate exact (context-specific) test designs, given 
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the inevitable uncertainties of and sensitivities to inputs (for example, the precision of the 

incidence estimator is sensitive to the input uncertainties in test properties).  

To demonstrate some of the ideas presented above, potential designs for a test for recent 

infection based on biomarkers measured by the Bio-Plex platform [86, 102] are compared 

in Table 6.1. The platform provides a number of measures of titre and avidity for 

antibodies responding to each of a number of specific HIV proteins. Published estimates 

of test properties (in treatment naïve populations) [102], for thirteen possible test designs 

(Tests 1 to 13), were used to estimate the coefficient of variation (CoV) of the incidence 

estimator in four hypothetical contexts (Contexts A-D in Table 6.1). The contexts capture 

different incidence and prevalence values, incidence study sizes, and uncertainties in test 

properties (and it is assumed that the published test properties can be recycled in these 

contexts). 

The relative ordering of the candidate tests, according to their performances, remains 

similar across the contexts considered. The tests based on multiple biomarkers generally 

perform similarly to one another and outperform the tests based on single biomarkers, 

with the exception of Test 1, which provides relatively high performance yet utilises only 

a single biomarker (measuring the avidity of antibodies responding to the gp160 HIV 

protein). Sometimes, when moving from one test design to another, both test properties 

improve (or worsen), and the decrease (or increase) in the CoV is then useful for 

quantifying the size of the performance gain (or loss), which can be weighed against 

factors such as changes in costs and test complexity. In other cases, the changes in the 

MDRI and FRR counteract each other (they both increase or decrease), and the direction 

of the change in the CoV then indicates which of the two effects is stronger. 

In Context D, which is the only context that accounts for uncertainties in test properties, 

the CoVs for the different test designs become more dispersed, highlighting the 

importance of correctly accounting for test property uncertainties. While a high, but 

known, FRR decreases the precision of the incidence estimator, it is the uncertainty about 

the test property that substantially penalises a test with a high FRR. 
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Biomarkers 
includedi 

Threshold/ 
ruleii 

MDRI 
(days) 

FRR 
(%) 

Coefficient of variation of 
incidence estimator (%),  

by context 

A B C D 

1 160a 25 235 1.1 22 15 15 26

2 120a 20 265 4.5 27 19 18 35

3 41a 35 224 3.4 28 20 19 37

4 66a 10 279 27.8 61 43 38 92

5 160n 5 164 0.3 24 17 17 26

6 120n 7 176 8.4 50 35 32 72

7 
160n, 120n, 66a, 
120a, 160a, 41a 

4/6 228 0.3 20 14 15 22

8 
160n, 66a, 120a, 
160a, 41a 

3/5 257 1.1 21 15 15 24

9 
120n, 66a, 120a, 
160a, 41a 

3/5 264 2.3 23 16 16 28

10 
160n, 120n, 120a, 
160a, 41a 

3/5 239 0.3 20 14 14 21

11 
120n, 120a, 160a, 
41a 

2/4 278 3.1 23 16 16 30

12 
160n, 120a, 160a, 
41a 

2/4 266 1.4 21 15 15 25

13 120a, 160a, 41a 2/3 250 1.4 22 15 15 26
i Lists which biomarkers are included in the test for recent infection, where each biomarker  
  identifier consists of a number that represents the HIV protein used and letter that indicates  
  whether antibody titre (n) or avidity (a) is measured 
ii If a single biomarker is used, this provides the biomarker-specific threshold (below which a 
  measurement indicates ‘recent’ infection); if multiple biomarkers are used, this indicates the   
  minimum number of biomarker measurements that must be below their biomarker-specific    
  thresholds to obtain a ‘recent’ result (out of the total number of biomarkers considered) – for 
  example, for Test 7, ‘4/6’ indicates that at least 4 out of the 6 biomarkers must return  
  measurements below their thresholds to produce a ‘recent’ result 

Table 6.1: Coefficient of variation of the incidence estimator, for thirteen potential 
tests for recent infection based on multiple biomarkers produced by the Bio-Plex 
platform, for different contexts  
The coefficient of variation of the incidence estimator (%) was calculated for each of four 
hypothetical contexts (A-D) using previously published estimates of test properties [102]. 
In Context A, HIV incidence was 1.5% per annum, HIV prevalence was 15%, the 
incidence study contained 5 000 subjects and there was no uncertainty in input test 
properties. Contexts B to D are each obtained by changing specific aspects of Context A. 
In Context B, the sample size was increased to 10 000 subjects. In Context C, HIV 
incidence and prevalence were increased to 2% per annum and 20% respectively. In 
Context D, non-zero uncertainties in test properties were accommodated – assuming a 5% 
coefficient of variation for the MDRI estimator, and that the FRR was measured as a 
binomial proportion in a sample of 500 subjects. The delta method approximation for the 
coefficient of variation of the incidence estimator was used. 
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Given the similarity of many of the CoVs, it is likely to be challenging to distinguish 

between many of these test designs (especially once uncertainties in the CoVs are 

formally accounted for). However, the scope of the optimisation could be vastly 

broadened, by allowing biomarker-specific thresholds to be tuned, considering all 

possible subsets of biomarkers for inclusion in the algorithm, and exploring other rules 

for defining the ‘recent’ region in the multi-dimensional space describing the multiple 

biomarkers. 

Throughout the discussion above, test dynamics were combined with features of 

hypothetical populations and incidence study sizes to produce measures of precision of 

the incidence estimator. It is worthwhile keeping in mind that this relationship could 

instead be used in the opposite direction, by specifying the precision and making any of 

the inputs the subject of the equation to then be solved. For example, sample sizes 

required to produce suitably powered incidence studies could be calculated to inform 

study design. Alternatively, one could solve for the test properties that provide sufficient 

precision of incidence estimation, in chosen contexts, to inform guidelines for test 

development. Similarly, one could explore in which epidemiological contexts this 

surveillance approach is of utility, given currently available tests. The context-

dependence of the performance of recent infection tests recent infection is unavoidable, 

and understanding this analytical subtlety and correctly accounting for it is an important 

aspect of optimising test design and understanding the utility of biomarker-based 

incidence surveillance.  

Other	criteria	for	assessing	recent	infection	tests	

While the variability of incidence estimates provides a sound metric for evaluating tests 

for recent infection for incidence surveillance from a theoretical point of view, this is not 

the only measure that would be considered in practice. A few examples of other criteria 

that are of importance are listed below. 

The deployment of a test for recent infection into surveillance systems should be 

logistically feasible. This is also reflected in the ‘Target Product Profile’ [13, 14, 188], 

which stipulates objectives related to the type of sample and method of sample collection 

that are required, infrastructure and training needs, and test costs. 

A central concept behind biomarker-based incidence surveillance is the transferability of 

test properties. Results should therefore be robust with regard to small variations in 
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procedures that may inevitably occur in practice. Biomarker dynamics should also be 

insensitive to factors such as HIV clade or gender, which would substantially vary across 

populations and in time, and could limit the transferability of even the MDRI. The FRR 

should ideally be close to zero in all possible subpopulations (such as treated subjects and 

elite controllers), as this would limit its variation by context.   

Results from the analysis of the precision of the incidence estimator would need to be 

weighed against practical requirements. For example, the improvement in precision 

obtained by moving from one test design to another would need to be viewed alongside 

any increase in costs or test complexity.  

Also, once a test that produces high precision incidence estimates has been identified, 

other aspects of operations research could be explored. For example, for tests that are 

based on algorithms of multiple biomarkers, where not all biomarker measurements 

always need to be known to unambiguously classify an infection, the order in which the 

biomarkers are applied could be optimised to minimise costs.  

As highlighted by the examples above, while there is now a clear framework for defining 

and estimating test properties of relevance for incidence estimation, and converting these 

into direct metrics of test performance, there are numerous operational issues (mainly 

summarised by cost and robust transferability) which also influence test selection and 

optimisation. Ongoing developments in biomarker discovery and optimisation can 

reasonably be expected to lead to meaningful improvements in availability and 

practicality of recent infection tests for surveillance. 
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Chapter 7 
 

Conclusion		

As HIV epidemics continue to sweep across nations, typically disproportionately 

affecting those most in need, governments and public health organisations continue to 

commit themselves to the fight against the virus. Monitoring the spread of HIV and 

assessing the impact of interventions require reliable and practical methods for measuring 

infection rates. In the real world, new infections occur in a population at various points in 

time through a time-dependent, stochastic process. For the purpose of mathematically 

analysing the spread of the virus, incidence is thus defined in a continuum model world as 

the risk or hazard of infection per unit time per susceptible individual.  

The measurement of this parameter is challenging as incidence is a rate, the 

consequences of which are only observable over time (rather than a state, which has a 

prevalence that can be directly estimated at any point in time). The estimation of 

incidence from single cross-sectional surveys has therefore attracted much interest: by 

application of a test for recent infection, to distinguish between ‘recently’ and ‘non-

recently’ acquired infections, the prevalence of ‘recent’ HIV infection, together with 

estimated properties of the test, may be used to infer (average past) incidence. 

This work presents a number of important theoretical and methodological advances, 

together with some practical applications and related corollaries, and addresses key 

obstacles that have been hampering the widespread use of this surveillance approach.  
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Firstly, a general theoretical framework was derived for inferring incidence from the 

cross-sectional application of a test for recent infection. 

In the derivation of the general incidence estimator, assumptions about test dynamics 

were relaxed. These assumptions were used to develop earlier estimators although they 

are known to be violated in practice. Previously used assumptions of equilibrium 

conditions were also avoided by defining the measured incidence as a particular 

weighting of past incidence, determined by the early post-infection test dynamics and 

variation in the population size over recent times. Any residual biases were explicitly 

summarised into a set of mathematical terms, which an experimenter could examine to 

assess whether a study is in a regime of utility.  

Through  the  introduction  of  a  post-infection  time  cut-off  ,  completely  general 

definitions of the two test properties that are required for incidence inference emerged 

from the analysis. The mean duration of recent infection (MDRI) is the average time alive 

and classified as ‘recently’ infected while infected for less than , and the false-recent 

rate (FRR) is the probability that an individual who is infected for longer than  will 

produce a ‘recent’ result.  

The general framework was compared to that of the competing school of thought, in 

which there is no cut-off  and test dynamics are summarised into a single property, 

namely the MDRI [7, 15, 27]. The primary benefit of introducing  and the FRR is that 

this creates a clear separation between (i) a carefully defined weighting of only recent 

incidence measured in the survey, which is loosely captured by the (stable) MDRI; and 

(ii) the full population history, which is neatly captured by the (context-dependent) FRR 

rather than obscuring the meaning of the incidence that otherwise would be measured. 

Secondly, attention was turned to estimation of a test’s MDRI: new approaches, current 

practices, and some ideas for reducing artefacts in analyses were investigated.  

To address the bottleneck in test development posed by the reliance on longitudinal 

specimens that are collected by following subjects over time, the use of alternative 

specimen sets to obtain preliminary estimates of MDRIs was formalised and 

demonstrated. Only the classification of a subject’s infection (as ‘recent’ or ‘non-recent’) 

at the time of HIV diagnosis is required, together with the time since the last HIV-

negative test. The approach is suited to settings where infection and testing times are 

approximately independent and the times between HIV tests are large. In this work, two 
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previously untapped sources of specimens, namely blood donors and subjects tested as 

part of routine surveillance, were used to perform initial test characterisations. 

Moving beyond preliminary characterisations of tests, accurate and precise MDRI 

estimates are required for use in surveillance studies. Therefore a detailed benchmarking 

of approaches for estimating the MDRI from longitudinal data was performed. Using 

simulated data, the performance of a range of methods that could be used in practice was 

thoroughly assessed in a number of modelled scenarios that capture essential features of 

what could be encountered in reality, including various underlying test dynamics, study 

designs, and subject behaviours. The dangers of neglecting noise in biomarkers or 

choosing inappropriate parametric forms were highlighted; and, while formal methods for 

analysing repeated-measures data most comprehensively captured data structures, simpler 

interpolation and regression approaches were also found to be of practical value. High 

performance of MDRI estimation was achieved across a range of realistic scenarios. 

As highlighted by the results of the benchmarking exercise, the unknown infection times 

of subjects pose a particular challenge to the accurate estimation of the MDRI from 

longitudinal data. An analysis was presented that demonstrates some benefit from 

artificially controlling, by definition, entry into the ‘HIV-positive and recently infected’ 

state, provided that times of entry into this state can be accurately estimated given 

typically available data. Also, a straightforward, general approach was outlined for 

leveraging potentially complex testing history data to obtain the most informative 

possible estimates of infection times. 

Thirdly, an important practical application, entailing the analysis of the characteristics of 

five prominent tests for recent infection, was presented. 

The analysis was performed as a member of the Consortium for the Evaluation and 

Performance of HIV Incidence Assays (CEPHIA). CEPHIA was established in 2010 as an 

independent body, tasked with fostering consensus in the field and providing clear 

guidance to the public. The analysis of the first five tests to undergo a full evaluation by 

CEPHIA represents an important milestone, and captures more than three years of 

collaborations, specimen collection, laboratory testing, and data management and analysis 

by the team – all applying stringent quality control measures which it is hoped will guide 

standards in the field. 
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The results represent the first independent and consistent characterisation of multiple 

candidate tests. The analysis provides the basis for exploring the optimisation of the tests 

(an ongoing exercise by CEPHIA and other groups), as the struggle continues to achieve 

simultaneously, for all five tests, the goals of a large MDRI and small FRR, particularly 

among virally suppressed subjects. 

Lastly, to support the ongoing development of tests for recent infection, a framework for 

measuring and optimising test performance was outlined. 

In principle, any test can be consistently characterised and applied in a surveillance study 

to obtain valid incidence estimates, and therefore a standard metric for assessing the 

utility of tests for this surveillance application was needed. The precision of the incidence 

estimator was presented as a measure for formally and consistently balancing the needs 

for a large MDRI and small FRR. The guidance aimed to counter the use of more familiar 

metrics (sensitivity, specificity and predictive values) that are suited specifically to 

individual diagnostics settings and would lead to spurious evaluations of tests for 

estimating population-level average incidence rates. 

When optimising the design of a test by maximising the precision of incidence 

estimation, a number of practical considerations arise, and some key aspects of these were 

briefly explored. The scope of any optimisation should be carefully defined – while it 

should be broad enough for high performance designs to be discovered, it should be 

suitably restricted so that the analysis remains tractable and tests are not overly 

complicated. Also, test performance is unavoidably dependent on context, and the ideal 

test would perform well across a range of epidemiologically relevant contexts. 

Importantly, the selection and optimisation of a test to be integrated into surveillance 

studies would also be influenced by operational factors, primarily related to cost and 

transferability of the technology. 

Collectively, the contributions made within this work provide essential theoretical and 

methodological foundations for the application, characterisation and optimisation of 

recent infection tests for HIV incidence surveillance. An important aspect of this research 

was the sharing of ideas – in journals, at conferences, through collaborations and at 

meetings of working groups, by providing training, and by developing online resources 

[29-50, 52, 53]. Through these efforts, this research has already had demonstrable impact 

in shaping discussion in the area and building consensus. 
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Focus in the field has now shifted towards the practical application of cross-sectional 

incidence surveillance. In March 2014, the Centers for Disease Control and Prevention 

(CDC) and US President’s Emergency Fund for AIDS Relief (PEPFAR) announced a 

funding opportunity worth 125 million US dollars for improving the monitoring of HIV 

and assessment of interventions [221]. One of the funding goals is the complete 

integration of cross-sectional HIV incidence estimation, using tests for recent infection, 

into general population-based surveillance systems in a number of resource-limited 

countries. 

Ongoing endeavours to develop and optimise candidate tests for recent infection should 

continue to be supported, as well as efforts to meticulously characterise and deploy 

chosen tests. There have been increasing funding opportunities for test developers over 

recent years [188, 218], and CEPHIA is currently supporting the work of a number of 

biomarker discovery groups. Also, more general and sophisticated analysis tools will 

need to be developed and made available, and individuals trained in their use. The tools 

should support a range of analyses that may be required, from the characterisation of 

recent infection tests to sophisticated power calculations for detecting incidence trends by 

repeating incidence studies over time. 

Tests for recent infection find application in a number of closely related areas of work, 

which are beyond the scope of this thesis. In some countries, incidence is estimated by 

applying recent infection tests to subjects who are diagnosed with HIV in health-care 

settings (rather than to HIV-positive subjects identified in a survey), using inputs about 

testing behaviours and at-risk population sizes [134-138]. Also, an area that is currently 

largely undeveloped, but is starting to attract interest, is the estimation of incidence from 

multiple sources of data – that is, by combining measurements of the prevalence of 

‘recent’ HIV infection with, for example, sentinel surveillance data and national 

household survey data. Countries have also begun using tests for recent infection in 

clinical settings, to provide individual feedback on the likely time since infection at the 

time of diagnosis [139-141]. While approaches for interpreting and reporting results still 

require much refinement, this clinical application is important as staging information 

could be used effectively to support contact-tracing and the tailoring of counselling and 

treatment plans. As all of these applications of recent infection tests, including cross-

sectional incidence surveillance, are further developed and their uptake increases, tests 

will become more marketable. Perceived profitability would be an important driver of the 

required product development.  
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This thesis has focused on estimating HIV incidence using tests for recent HIV infection. 

As a closing remark, it is possible that transient early stages of other conditions could be 

defined and their prevalence measured in surveys to infer incidence. The nuances and 

limitations of each application would need to be carefully investigated, and it will be 

interesting to explore how other conditions’ biomarkers for recent infection fit into the 

framework for application and characterisation that has been established for HIV. A 

practical challenge will be the development of suitable tests for recent infection in this 

wider context. Even for HIV, high-performance and practical recent infection tests 

continue to be sought, despite HIV being the focus over the last two decades. The 

community needs to continue to translate knowledge into practice, so that the impact of 

the presented advances in incidence surveillance can be fully realised.  
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Appendix	A	

Statistical	Expressions	
Underlying	Online	Tools	

A suite of analysis tools, called Assay-Based Incidence Estimation (ABIE) v2.0, has been 

made available online to support application of the theoretical and methodological 

frameworks presented in this work (www.incidence-estimation.com) [48].The toolset 

consists of a number of ‘calculators’, each designed to perform a particular analysis 

related to the application of tests for recent infection for incidence surveillance. The 

calculation of outputs from users’ inputs is described in this appendix. Uncertainties and 

distributions of estimators appearing in the tools are approximated using the delta 

method and other large-sample results, which are summarised in Section A1. 

Each of the remaining sections, A2 to A7, outlines the objective, inputs and 

outputs of a single calculator in the tool suite.  

The calculators in this version of the ABIE toolset are in the form of Microsoft Excel 

spreadsheets, and were designed to be particularly uncomplicated by utilising closed-form 

approximations (if not exact analytical expressions) for all calculations and the most 

straightforward test statistics (differences and ratios of incidences estimates), as discussed 

in Section 2.3. 

All inputs that are measurements of time, namely the post-infection time cut-off  and the 

mean duration of recent infection (MDRI), are in units of years. The incidence rate is 

expressed as the hazard of infection per person year. A sample count is in units of 

subjects. The false-recent rate (FRR), prevalence, and the risk of infection over a 

specified period, are all dimensionless and bounded by 0 and 1. Any coefficient of 

variation (CoV) is also dimensionless.  
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A1	 Uncertainties	and	Distributions	
of	Estimators	

The approximations for the uncertainties and distributions of statistics used in the 

calculators rely on results obtained from Taylor polynomial approximations, the delta 

method and maximum likelihood theory. The main results used are summarised below. 

Three statistics appear in the calculators: the incidence estimator, the difference between 

two incidence estimators, and the ratio of two incidence estimators. Each of these 

statistics can be expressed in terms of (i) random variables contained in the vector 

, , … , which capture sampling variability, and (ii) fixed parameters which 

capture properties of the study population(s), test for recent infection and study design. 

The stochastic nature of the scalar statistic can therefore be fully captured by its 

representation as . 

In all cases considered in the calculators,  captures variability in sample counts (of 

uninfected, ‘recently’ infected and ‘non-recently’ infected subjects) and variability in 

estimated test characteristics (the MDRI and FRR). By construct (by using conditional 

distributions), the  are always independent. In particular, the  are defined to be 

(identically and independently distributed) standard normal random variables, and this is 

expected to provide a reasonable distributional approximation, in most regimes, when 

sample sizes for the incidence study and test characterisation studies are large. It is 

recognised that a Gaussian distribution for the estimated FRR may have limited 

applicability as improved tests for recent infection are developed and FRRs become very 

small. 

To begin, the properties of the statistic can be explored by approximating the statistic by a 

first-order Taylor polynomial in . A multivariate Taylor series expansion of  

around  is given by 

 ∙  

1
2!

∙ ∙ ⋯, (A1) 

where  is the gradient of  evaluated at , 
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, , … , , (A2) 

and  is the Hessian matrix of  evaluated at , 

H
,

. (A3) 

Retaining only the first two terms of the Taylor series expansion yields the following 

approximation for : 

∙ D . (A4) 

Applying the mean and variance operator on both sides of Equation (A4), in turn, 

produces the following expressions for the moments of the statistic: 

(A5)

D ∙ ∙ D . (A6) 

The approximations captured by Equations (A4) to (A6) will improve as  is 

increasingly linear in  near . By introducing distributional properties for , the 

distributional properties of  can be explored. For normally distributed , it follows 

that  is also (approximately) normally distributed. 

Formally, the delta method (for example, see [148]) shows that functions of 

asymptotically multivariate-normally distributed random variables are often themselves 

asymptotically normally distributed. More specifically, if 

√ ∙ → 0, Σ  as some sample size → ∞, (A7) 

then, for  that has a non-zero differential at ,  

√ ∙ → 0, D ∙ Σ ∙ D as → ∞. (A8) 

Leaning on the results above, since  is defined to have a 0,  distribution where  is 

an  by  identity matrix (based on the anticipated limiting distribution of  as all 

relevant sample sizes tend to infinity), the large-sample distribution of the statistic  

is 

~
.

0 , . (A9)
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The large-sample approximate normality of the statistic also follows from maximum 

likelihood theory (for example, see [222]), namely from the results that (i) maximum 

likelihood estimators are asymptotically normally distributed (subject to regularity 

conditions), and (ii) functions of maximum likelihood estimators are themselves 

maximum likelihood estimators (the ‘invariance property’). The incidence estimator 

(based on Equations (2.23) and (2.25)) can be expressed as 

, , , Ω ,
∙ Ω

, (A10)

where ,  and  are estimators for ,  and , which are the proportions of 

individuals in the population who are susceptible (HIV-negative), infected and ‘recently’ 

infected respectively ( 1 , and Ω  and  are estimators for Ω  and , which 

are the test MDRI and FRR respectively for a time cut-off . If the required inputs ( , 

, , Ω  and ) are obtained using a maximum likelihood approach (as would 

typically be the case), it follows that the incidence estimator is a maximum likelihood 

estimator, and is therefore asymptotically normally distributed. 

In the calculators, the expression provided in Equation (A9) is used to approximate the 

distribution and moments of the incidence estimator, incidence difference estimator, and 

incidence ratio estimator. In the descriptions of the calculators in the sections below, to 

obtain compact equations, uncertainty for an estimator is expressed as either a CoV (ratio 

of standard deviation to mean) or standard deviation (or the square thereof). The CoV or 

standard deviation depends on (typically) unknown parameters (population proportions, 

test characteristics, and uncertainties of test characteristic estimates) that appear in , 

and, in all applications, the estimated (or assumed) values of these parameters are used as 

proxies of the true values so that uncertainties can be assessed. 

A2	 Incidence	Prevalence	Calculator	

Objective 

This calculator estimates HIV incidence and prevalence from the input sample counts 

observed in the cross-sectional survey and test characteristics. 
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Inputs 

 Post-infection time cut-off 

 Estimated (or assumed) test characteristics

o Estimated MDRI Ω

o Estimated FRR 

o Estimated CoV of MDRI estimator ̂

o Estimated CoV of FRR estimator ̂

 Observed sample counts in the survey of  subjects

o Number of HIV-negative subjects  versus HIV-positive subjects ,

where 

o Number of ‘recently’ infected subjects  versus ‘non-recently’ infected

subjects , where 

HIV prevalence,  

The point estimate for HIV prevalence is 

. (A11)

The limits of the 95% confidence interval for HIV prevalence, , , , , are equal to 

,

0 if 0

, ∙ , , , , 2

, , ∙ , , , , 2
if 0

(A12)

,
	

, ∙ , , , , 1 2

, , ∙ , , , , 1 2
if 	

1 if

, (A13)

where , ,  is the lower th percentile of an  distribution with  and  degrees 

of  freedom,  0.05,  , 2 ∙ ,  , 2 ∙ 1 ,  , 2 ∙ 1   and 

, 2 ∙ .  This  Clopper-Pearson  ‘exact’  binomial  proportion  confidence 

interval provides a conservative coverage of least 95% [210]. 
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HIV incidence rate,  

The point estimate for the incidence rate is 

∙ Ω
. (A14)

While the true incidence in the study population is non-negative, the incidence estimator 

can take on any real value as a result of variability in input counts and estimated test 

characteristics, as well as potential biases in inputs (for example, that may occur if test 

characteristics are estimated in populations that are not representative of the study 

population). 

The limits of the 95% confidence interval for incidence, , , , , are given by 

, / ∙ ̂ ∙ (A15)

, / ∙ ̂ ∙ , (A16)

where  Φ   is  the  lower  th  percentile  of  a  standard  normal  distribution, 

0.05, and ̂  is the estimated CoV of the incidence estimator. The CoV of the 

incidence estimator, , is approximated (see Section A.1) by 

̂  
1

∙
1

 

	 ∙
1

Ω

	 ∙
Ω

Ω
, (A17)

where 

1 (A18)

(A19)

(A20)

(A21)

are the estimated proportions of susceptible, infected, ‘recently’ infected and ‘non-

recently’ infected individuals in the population. 
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The result for the uncertainty of the incidence estimator was obtained by expressing 

sample counts and estimated test characteristics in terms of independently distributed 

standard normal random variables  ( 1,2,3,4) as follows (outlined in Section 2.2.2, 

but reproduced here for completeness): 

 (A22)

, ,  (A23)

, ,  (A24)

Ω Ω α Ω (A25)

, (A26)

where ,  and  are the proportions of susceptible, ‘recently’ infected and ‘non-

recently’ infected individuals in the population respectively;  and  are the standard 

deviations of the (unbiased) estimators for Ω  and  respectively; and  

∙ 1  (A27)

(A28)

(A29)

, . (A30)

The resulting approximation for the CoV of the incidence estimator is 

 
1

∙
1

	 ∙
1

Ω

	 ∙
Ω

Ω
. (A31)

In Equations (A15) to (A17), the estimated CoV, ̂ , is negative if the point estimate for 

incidence (used as a proxy for the mean estimate) is negative. 
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Annual risk of HIV infection,   

The annual risk of infection is the probability that a susceptible individual will get 

infected over the period of a year. The point estimate for this annual risk is  

1 exp , (A32)

based on a constant hazard of infection of  over the year.  

The limits of the 95% confidence interval for the annual risk of infection, , , , , are 

obtained by applying an equivalent transformation to the confidence interval limits for the 

incidence rate:  

, 1 exp ,    (A33)

, 1 exp , . (A34)

A3	 Sample	Size	Calculator	

Objective 

This tool calculates the sample size required to achieve a desired precision of incidence 

estimation in a surveillance survey from the input test characteristics, epidemiological 

context, and desired precision of the incidence estimator. 

Inputs 

 Post-infection time cut-off 

 Estimated (or assumed) test characteristics

o Estimated MDRI Ω

o Estimated FRR 

o Estimated CoV of MDRI estimator ̂

o Estimated CoV of FRR estimator ̂

 Assumed epidemiological context

o HIV incidence 

o HIV prevalence 

 Desired CoV of the incidence estimator 
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Sample size,   

The (estimated) sample size, required to achieve the desired CoV for the incidence 

estimator, is  

 
1
∙

1
 

∙
1

Ω
∙

Ω

Ω
(A35)

where 

1  (A36)

 (A37)

∙ 1 Ω  (A38)

 (A39)

are the proportions of susceptible, infected, ‘recently’ infected and ‘non-recently’ infected 

individuals in the population for the input context (based on input test characteristic 

estimates). This result is obtained by solving for  in the CoV of the incidence estimator 

given in Equation (A31). 

A4	 Incidence	Ratio	Calculator	

Objective  

This calculator estimates the ratio between the incidence values in two study populations, 

from input sample counts observed in the cross-sectional survey performed in each of the 

two study populations and test characteristics. Test characteristics are assumed to be the 

same in both populations. 

Inputs 

 Estimated (or assumed) test characteristics

o Estimated FRR 

o Estimated CoV of FRR estimator ̂

 Observed sample counts in the survey of  subjects in study population 

( 1,2)
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o Number of HIV-negative subjects ,  versus HIV-positive subjects , ,

where , ,

o Number of ‘recently’ infected subjects ,  versus ‘non-recently’

infected subjects , , where , , ,

No knowledge of the time cut-off  or MDRI is required, as the term containing  and 

the MDRI appearing in the incidence estimator cancels out in the ratio of two incidence 

estimators (assuming equal values of  and test characteristics in the populations). 

Incidence ratio,   

The incidence ratio, the ratio of the incidence in study population 2 to the incidence in 

study population 1, is equal to 

 
, ,

, ∙ Ω
, ,

, ∙ Ω
 

, ,

, ,
∙ ,

,
, (A40)

where ,  and ,  are the numbers of susceptible (or uninfected) and infected 

individuals respectively, in study population  ( 1,2) of total size , , , 

and ,  is the number of ‘recently’ infected individuals in the population. 

The point estimate for this parameter is 

, ,

, ,
∙ ,

,
. (A41) 

The limits of the 95% confidence interval for the incidence ratio, , , are given by 

/ ∙ ̂ ∙  (A42)

/ ∙ ̂ ∙ , (A43)

where  Φ   is  the  lower th  percentile  of  a  standard  normal  distribution, 

0.05 and ̂  is the estimated CoV of the incidence ratio estimator.  
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The CoV of the incidence ratio estimator, , is estimated (see Section A.1) by: 

̂  
1

,
∙

1

,

, ,

, ,

 

	
1

,
∙

1

,

, ,

, ,

	 ∙ ,

, ,

,

, ,
, (A44)

where 

,
,

(A45)

,
, (A46)

,
, (A47)

,
, (A48)

are the estimated proportions of susceptible, infected, ‘recently’ infected and ‘non-

recently’ infected individuals in study population . 

The CoV approximation was obtained by expressing the sample counts and estimated test 

characteristics as functions of independently distributed standard normal random 

variables  ( 1,2, … 5) as follows: 

, , , ,  (A49)

, , , , , , ,  (A50)

, , , , , , ,  (A51)

, , , ,  (A52)

, , , , , , ,  (A53)

, , , , , , ,  (A54)

, (A55)
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where ,  , , ,  are the proportions of susceptible, ‘recently’ infected and ‘non-

recently’ infected individuals in population  respectively, , , , 1;  

is the standard deviation of the (unbiased) estimator for ; and 

, , ∙ 1 ,  (A56)

,
,

, ,
,  (A57)

,
,

, ,
,  (A58)

, ,

, , , ,

, ,
.

(A59)

The approximation for the CoV of the incidence ratio estimator that is produced is 

 
1

,
∙

1

,

, ,

, ,

 

	
1

,
∙

1

,

, ,

, ,

	 ∙ ,

, ,

,

, ,
. (A60)

In Equations (A42) to (A44), the estimated CoV, ̂ , is negative if the point estimate for 

the incidence ratio (used as a proxy for the mean estimate) is negative. 

A5	 P‐value	for	Difference	Calculator	

Objective 

This tool calculates a p-value (probability of obtaining a result as extreme as that 

observed) for the difference between incidence estimates for two study populations, under 

a hypothesis of equal HIV incidence, from input sample counts observed in the cross-

sectional survey performed in each study population and test characteristics. Test 

characteristics are the same in the two populations, and equal HIV prevalence is also 

assumed. 
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Inputs 

 Estimated (or assumed) test characteristics

o Estimated FRR 

 Observed sample counts in the survey of  subjects in study population 

( 1,2)

o Number of HIV-negative subjects ,  versus HIV-positive subjects , ,

where , ,

o Number of ‘recently’ infected subjects ,  versus ‘non-recently’

infected subjects , , where , , ,

No knowledge of the time cut-off  , MDRI, or uncertainty in test characteristics is 

required, as these parameters appear in common factors in the incidence difference or fall 

away given the particular approximations used. 

P-value for difference between incidence estimates,  

The parameter about which inference is of interest is the incidence difference, , which 

is given by 

  

, ,

, ∙ Ω
, ,

, ∙ Ω
,

(A61) 

where ,  and ,  are the numbers of susceptible (or uninfected) and infected 

individuals respectively, in study population  ( 1,2) of size , , , and 

,  is the number of ‘recently’ infected individuals in the population. This parameter is 

estimated by 

 
, ,

, ∙ Ω
, ,

, ∙ Ω

1

Ω
∙ , ,

,

, ,

,
. (A62) 

For ~ , , the two sided p-value is 

2 ∙ 1 Φ
,

, (A63)
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where Φ .  is the cumulative distribution function of a standard normal random variable, 

and 		and ,  are the expected value and variance of  under the null hypothesis.

Here, the null hypothesis is that HIV incidence is the same in the two populations, and 

therefore 0. Assuming equal HIV prevalence and tests characteristics, under the 

null hypothesis the proportions of susceptible, infected, ‘recently’ infected and ‘non-

recently’ infected individuals, , , , , ,  and , , respectively, are the same in the 

two populations. The variance of the incidence difference under the null hypothesis, 

, , is estimated (see Section A.1) by: 

, 	
, ,

, ∙ Ω

1

,
∙

1

,

, ,

, ,

1 1
, (A64)

where 

,
, ,

(A65)

is  the  estimated  proportion  of  individuals  in  state  ,  ∈ , , , .  Substituting 

0  and Equation (A64) into their corresponding terms in Equation (A63), the 

reported p-value is  

2 ∙ 1 Φ
,

. (A66)

The variance for the incidence difference was obtained by expressing sample counts and 

estimated test characteristics as functions of independently distributed standard normal 

random variables  ( 	 1,2… ,6) as follows: 

, , , ,  (A67)

, , , , , , ,  (A68)

, , , , , , ,  (A69)

, , , ,  (A70)

, , , , , , ,  (A71)

, , , , , , ,  (A72)

(A73)

Ω Ω Ω , (A74)
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where ,  , , ,  are the proportions of susceptible, ‘recently’ infected and ‘non-

recently’ infected individuals in population  respectively, , , , 1;  

and  are the standard deviations of the (unbiased) estimators for  and Ω  

respectively; and 

, , ∙ 1 ,  (A75)

,
,

, ,
,  (A76)

,
,

, ,
,  (A77)

, ,

, , , ,

, ,
.

(A78)

The delta method then provides the following approximation for the variance of :  

 
, ,

, ∙ Ω
1

,
∙

1

,

, ,

, ,

 

, ,

, ∙ Ω
1

,
∙

1

,

, ,

, ,

 

	 ∙
1

Ω
, ,

,

, ,

,

	 ∙
1

Ω
, Ω ,

,

, Ω ,

,
. (A79)

This tool aims to provide a simple interpretation of an observed difference between two 

incidence estimates. However, the statistic used to test for a difference in incidence 

should be optimised. Under the assumption of equal HIV prevalence and test 

characteristics, fluctuations in observed HIV prevalence or the estimated test 

characteristics create unnecessary variability in the incidence difference, and the 

difference between the proportions of ‘recently’ infected individuals among those 

individuals who are infected, which directly captures differences in only incidence, could 

instead be considered.  
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A6	 Power	to	Detect	Difference	
Calculator	

Objective 

This tool calculates the ‘power’ to correctly reject the null hypothesis of equal incidence 

in two study populations, when considering the difference between two incidence 

estimates, from input test characteristics, epidemiological context, sample sizes for the 

incidence surveys that would be performed in the study populations, and the significance 

level used for testing for a difference in incidence. Test characteristics are the same in the 

two populations, and equal HIV prevalence is also assumed. 

Inputs 

 Post-infection time cut-off 

 Estimated (or assumed) test characteristics45

o Estimated MDRI Ω

o Estimated FRR 

o Estimated CoV of MDRI estimator ̂

o Estimated CoV of FRR estimator ̂

 Assumed epidemiological context

o HIV incidence I  in study population 	 1,2), where 

o HIV prevalence  (the same in both populations)

 The survey size  in study population 	 1,2)

 Significance level 

‘Power’ to reject null hypothesis of equal incidence,  

This calculator is closely related to the P-value for Difference Calculator described in 

Section A5. The parameter about which inference is of interest is again the incidence 

difference, provided in Equation (A61), and the estimator for the parameter and its 

uncertainty are provided in Equations (A62) and (A79) respectively. While a p-value 

___________________________ 

45The current version of the calculator assumes ̂ 0 and ̂ 0, but these uncertainties are

explicitly accounted for here, for completeness.  
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(probability of obtaining a difference as extreme as that observed, under a null hypothesis 

of equal incidence) was previously calculated, here an inferential ‘power’ (probability of 

obtaining a small p-value in an assumed context where the null hypothesis is in fact false) 

is provided. This tool aims to calculate the probability of correct inference, or, more 

specifically, the probability of both 

(i) rejecting the null hypothesis of equal incidence in a two-tailed hypothesis test 

based on the incidence difference (that is, observing a two-sided p-value 

below the specified significance level); and  

(ii) observing an incidence difference in the correct direction (that is, obtaining a 

higher incidence estimate for population 1 than for population 2).  

The ‘power’ defined here would be smaller than the power conventionally calculated in 

statistics, which captures the probability of (i) above alone. The decrease in ‘power’ is 

expected to be negligible, unless the difference between incidence values in the two study 

populations is particularly small. 

For ~ , , the ‘power’ is given by: 

 
,

/ ~ , ,

Φ
/ ,

,
, (A80)

where Φ .  is the cumulative distribution function of a standard normal random variable, 

Φ  is the lower th percentile of the standard normal distribution, 0 and 

,  are the (presumed) expected value and variance of the incidence difference

estimator under the null hypothesis of equal incidence, and  and ,  are the expected

value and variance of the incidence difference estimator in reality. 

For the input epidemiological context, in reality, the proportions of uninfected, infected, 

‘recently’ infected and ‘non-recently’ infected individuals in population  ( 1,2) are 

, 1  (A81)

,  (A82)

, ∙ 1 Ω  (A83)

, , . (A84)
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The variance of the incidence difference estimator in reality, , , is therefore estimated 

by 

,  , ,

, ∙ Ω

1

,
∙

1

,

, ,

, ,

 

	 , ,

, ∙ Ω

1

,
∙

1

,

, ,

, ,

 

	 ∙
1

Ω
, ,

,

, ,

,
	

	 ∙
1

Ω
, Ω ,

,

, Ω ,

,
. (A85)

By substituting Equations (A81) to (A84) into Equation (A85), the variance could instead 

be written directly in terms of input parameters:  

,  
1 1 ∙ 1

Ω 1
 

1
1

 

1 2

Ω 1
 

∙
1

Ω

∙
Ω

. (A86)

Under the null hypothesis of equal HIV incidence, assuming equal HIV prevalence and 

test characteristics, the proportions of susceptible and infected individuals, ,  and , , 

and ‘recently’ and ‘non-recently’ infected individuals, ,  and , , would be the same 

in the two populations. Therefore, the ‘expected’ estimate of ,  is 

, 	
, ,

, ∙ Ω

1

,
∙

1

,

, ,

, ,

1 1
, (A87)

where  
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,
, , (A88)

is the expected estimate of , , which is understood to equal both ,  and ,  under the 

null hypothesis, for each state , ∈ , , , . 

Substituting 0 , , and Equations (A85) and (A87) into their 

corresponding terms in Equation (A80), the reported ‘power’ is therefore 

Φ
/ ,

,
. (A89)

While this tool aims to provide straightforward guidance on the interpretation of a 

difference between two incidence estimates, further refinement of the analysis tool should 

include the optimisation of the statistic used to test for a difference between two 

incidence values. 

A7	 Test	Performance	Calculator	

Objective 

This tool calculates the performance of a test for recent infection, from input test 

characteristics, epidemiological context and the incidence survey size. The reported 

metric of performance is the CoV of the incidence estimator. 

Inputs 

 Post-infection time cut-off 

 Assumed test characteristics

o MDRI Ω

o FRR 

o CoV of MDRI estimator 

o CoV of FRR estimator 

 Assumed epidemiological context

o HIV incidence 

o HIV prevalence 

 The survey size 
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Coefficient of variation of the incidence estimator,  

The CoV of the incidence estimator is reported as  

̃  
1

∙
1

 

	 ∙
1

Ω

	 ∙
Ω

Ω
, 

(A90) 

where  

1  (A91)

 (A92)

∙ 1 Ω  (A93)

 (A94)

are the proportions of susceptible, infected, ‘recently’ infected and ‘non-recently’ infected 

individuals in the population for the input context (using input test characteristics). This 

result is based on Equation (A31). 

It is recognised that there are some regimes in which the above closed-form 

approximation for the CoV would be poor. For example, for tests with particularly small 

FRRs, the FRR estimator’s distribution is likely to deviate substantially from the assumed 

normal distribution, even when sample sizes are large for FRR estimation. Later versions 

of the tool could therefore utilise more general methods for estimating the CoV of the 

incidence estimator, such as bootstrap resampling [174]. Also, the current version of the 

calculator treats all inputs as known, hypothetical parameter values, and therefore does 

not report any uncertainty around the calculated CoV. In practice, when assessing the 

performance of an available test in a real-world population of interest, the inputs to the 

CoV calculation would be uncertain, and all such uncertainties should be propagated 

through the calculation (for example, to produce confidence intervals for the CoV of the 

incidence estimator). Approaches that could be used to account for the variability include 

those summarised in Section A1 (if using closed-form approximations for the CoV) or 

general, computationally-demanding approaches (such as bootstrap resampling). 
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Appendix	B	

Selected	Matlab	Code	

Code blocks to reproduce some of the analyses presented in the main body of text are 

provided below. Programming was performed in Matlab (R2013b, 8.2.0.701, 64-bit), and 

the Statistic and Optimisation toolboxes were utilised. 

The code provided in Section B1 explores bias in incidence estimation for modelled 

scenarios, and was used to produce Figure 2.2 in Section 2.2.1. 

Code to assess the accuracy of the delta method approximation for the coefficient of 

variation of the incidence estimator, arising from variability in realised sample counts, 

is provided in Section B2. This code produces analysis outputs that support the 

discussion in Section 2.2.2. 

In Section B3, a function for estimating the MDRI from longitudinal data is provided, 

and was used in the benchmarking exercise described in Section 4.1. In particular, code 

for Methods 1 and 2 (‘Interp_Linear_SE’ and ‘Interp_Linear_ME’) of Figure 4.1 is 

presented, together with example input data and outputs. 
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B1	 Bias	of	the	Incidence	Estimator	

The function fn_biascalc calculates the true (weighting of recent) incidence that one aims 

to measure, the expected value of the incidence estimator, and the error terms ,  and 

, in specified scenarios. The script figure2p2, which calls the function, produces 

Figure 2.2 (see Section 2.2.1 for more details of the analysis). 

Function	‘fn_biascalc.m’	

function [I_T_true, I_T_hat, gamma1, gamma2, gamma3] = ... 
    fn_biascalc (T,... 
    H0, r_vec,... 
    scenario_inc, I_vec, I_ref, ... 
    musurv_vec, covsurv, ... 
    T0, T1, frr_constant) 

% 
% Calculates (i) true incidence, (ii) expected value of the 
%   incidence estimator, (iii) gamma 1, gamma 2 and gamma 3 error terms, 
%   as a function of (a) population growth rate, (b) value to which  
%   incidence increases or from which it decreases, (c) mean survival time 
% 
% Inputs  
%   T: post- infection time cut-off in definition of incidence estimator 
%   H0: susceptible population size at time t = 0 (time of survey) 
%   r_vec: historical annual growth rate of population (a) 
%   scenario_inc: 1 for increasing incidence / 2 for decreasing incidence 
%   I_vec: incidence at t = 0 / incidence up until t = -T (b)  
%   I_ref: incidence up until t = -T / incidence at t = 0 
%   musurv_vec: mean survival time (c) (Weibull distribution) 
%   covsurv: coefficient of variation of survival time (extreme values create instabilities) 
%   T0: probability of being ‘recent’|alive remains at 1 until time T0 after infection... 
%   T1: ...then linearly decreases until time T1... 
%   frr_constant: ...to a constant value of frr_constant, for all times larger than T1 
% Inputs (a),(b),(c) are vectors (to capture multiple input values), 
%   other inputs are scalars, time is in years 
% 
% Outputs 
%   I_T_true: the true (weighted) incidence to be measured 
%   I_T_hat: the expected value of the incidence estimator 
%   gamma1, gamma2, gamma3: the first three (typically largest) error terms 
% Outputs are three dimensional, dimension 1 captures (the different values 
%   in) r_vec, 2 captures I_vec, and 3 captures musurv_vec 
% 

% Measure input dimensions 

n_r = length(r_vec); 
n_I = length(I_vec);  
n_musurv = length(musurv_vec); 

% Solve for shape and scale parameters of Weibull survival function 
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Solve_b = @(b) covsurv^2 - (gamma(1+2/b)-(gamma(1+1/b))^2)/(gamma(1+1/b))^2; 
[b_est,~,~] = fzero(Solve_b, 4); 
a_estvec = musurv_vec/gamma(1+1/b_est); 

% Initialise results variables 

gamma1 = NaN(n_r,n_I,n_musurv); % gamma 1 varies with all dimensions 
gamma2 = NaN(n_r,n_I,n_musurv); % gamma 2 varies with dimension 1 
gamma3 = NaN(n_r,n_I,n_musurv); % gamma 3 varies with dimension 3 
Omega_T = NaN(n_r,n_I,n_musurv); % MDRI varies with dimension 3 
beta_T = NaN(n_r,n_I,n_musurv);        % FRR varies with all dimensions  

% (in principle, although in this contrived example it is constant) 
I_T_true = NaN(n_r,n_I,n_musurv);        % true weighted incidence varies with all dimensions 
P_R = NaN(n_r,n_I,n_musurv);              % proportion of population 'recently' infected at t = 0  

% varies with all dimensions 
P_NR = NaN(n_r,n_I,n_musurv);            % proportion of population 'non-recently' infected at t = 0 

% varies with all dimensions 

% Perform calculations, looping over dimension 1, then 3, then 2 

PRonA_ = @(x) 1-((x>T0)&(x<T1)).*(x-T0)*(1-frr_constant)/(T1-T0)-(x>=T1)*(1-frr_constant); 
    % probability 'recent'|alive function 
for d1 = 1:n_r 
    r = r_vec(d1); 
    NS_ = @(x) H0*(1+r).^x; % susceptible population size function  
    delta_NS_ = @(x) NS_(x)/NS_(0)-1; % susceptible population size deviation function 
    gamma2(d1,:,:) = integral(@(x) delta_NS_(x),-T,0)/T; % gamma 2 value 
    for d3 = 1:n_musurv  
        a_est = a_estvec(d3); 
        PA_ = @(x) 1-wblcdf(x,a_est,b_est); % probability of being alive function 
        PRA_ = @(x) PRonA_(x).*PA_(x); % probability of being 'recently' infected and alive function 
        delta_PA_ = @(x) PA_(x)-1; % probability of being alive deviation function 
        if d1==1 

gamma3(:,:,d3) = integral(@(x) delta_PA_(-x),-T,0)/T ; % gamma 3 value 
Omega_T(:,:,d3) = integral(@(x) PRA_(-x),-T,0); % MDRI value 

        end 
        max_surv = ceil(wblinv(0.99999,a_est,b_est));  
        for d2 = 1:n_I 
            if scenario_inc == 1 
                I0 = I_ref; I1 = I_vec(d2); 
            elseif scenario_inc == 2 
                I0 = I_vec(d2); I1 = I_ref; 
            end 
            Inc_ = @(x) I0+((x<0)&(x>-T)).*(x+T)/T*(I1-I0)+(x>=0)*(I1-I0); % incidence function 
            I_T_true(d1,d2,d3) = ... 
                integral(@(x) Inc_(x).*NS_(x).*PRA_(-x),-T,0)/... 
                integral(@(x) NS_(x).*PRA_(-x),-T,0); % true incidence value 
            delta_I_ = @(x) Inc_(x)/I_T_true(d1, d2, d3)-1; % incidence deviation function 
            gamma1(d1,d2,d3)  = integral(@(x) delta_I_(x),-T,0)/T; % gamma 1 value 
            beta_T(d1,d2,d3) = ... 
                integral(@(x) Inc_(x).*NS_(x).*PRA_(-x),-max_surv,-T) /... 
                integral(@(x) Inc_(x).*NS_(x).*PA_(-x),-max_surv,-T); % FRR value 
            N_R  = integral(@(x) Inc_(x).*NS_(x).*PRA_(-x),-max_surv,0); % Number 'recent' at t = 0 
            N_NR = integral(@(x) Inc_(x).*NS_(x).*PA_(-x),-max_surv,0)-N_R;  % Number 'non-recent' at t = 0 
            N_S = NS_(0); % Number susceptible at t = 0 
            N = N_R+N_NR+N_S; 
            P_R(d1,d2,d3) = N_R/N; % Proportion 'recent' at t = 0 
            P_NR(d1,d2,d3) = N_NR/N; % Proportion 'non-recent' at t = 0  
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        end       
    end   
end 
I_T_hat = (P_R-beta_T.*(P_NR+P_R))./((Omega_T-T*beta_T).*(1-P_NR-P_R)); 
    % Expected value of incidence estimator 

end 

Script	‘figure2p2.m’	

%  
% Script to produce Figure 2.2, 
%   calls on function fn_biascalc 
% 

% Inputs common to scenarios 1A, 1B, 2A, 2B 

T = 1;                 
H0 = 1e6;
r_vec = -0.1:0.01:0.1;
I_vec = [0.01:0.0025:0.05];   
I_ref = 0.01;       
musurv_vec = 8;
covsurv = 0.5;    
T0 = 0.25;          
T1 = 0.75;          

% Create figure window and plot relative bias for each scenario in turn 

scrsz = get(0,'ScreenSize'); 
figure('OuterPosition',[1 1 scrsz(3)/2 scrsz(4)]) 

% Scenario 1A 

subplot(2,2,1) 
scenario_inc = 1;
frr_constant = 0.01;
[I_T_true,I_T_hat,~,~,~] = ... 
    fn_biascalc(T,H0,r_vec,scenario_inc,I_vec,I_ref,musurv_vec,covsurv,T0,T1,frr_constant); 
[C,h] = contour(100*(I_vec-I_ref)./I_ref,100*r_vec,100*(I_T_hat./I_T_true-1),100*(-0.1:0.005:0.1)); 
set(h,'LineWidth',3) 
title(['Scenario 1A: Increasing incidence, {\it\beta_T}=' num2str(100*frr_constant) '%']) 
ylabel('Annual growth of population size (%)') 
clabel(C,h,'LabelSpacing',72*3) 
set(gca,'FontName','Times','FontSize', 12) 
set(gca,'YTick',-10:5:10) 

% Scenario 1B 

subplot(2,2,2) 
scenario_inc = 1;
frr_constant = 0.05;
[I_T_true,I_T_hat,~,~,~] = ... 
    fn_biascalc(T,H0,r_vec,scenario_inc,I_vec,I_ref,musurv_vec,covsurv,T0,T1,frr_constant); 
[C,h] = contour(100*(I_vec-I_ref)./I_ref,100*r_vec,100*(I_T_hat./I_T_true-1),100*(-0.1:0.005:0.1)); 
set(h,'LineWidth',3) 
title(['Scenario 1B: Increasing incidence, {\it\beta_T} =' num2str(100*frr_constant) '%']) 
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clabel(C,h,'LabelSpacing',72*3) 
set(gca,'FontName','Times','FontSize', 12) 
set(gca,'YTick',-10:5:10) 
text(-50, -13, {['Percentage increase in incidence over the last {\itT} = ' num2str(T) ' year period,'];... 
     ['from an equilibrium of ' num2str(I_ref*100) '% per annum']}, 'HorizontalAlignment','center') 

 % Scenario 2A 

subplot(2,2,3) 
scenario_inc = 2; 
frr_constant = 0.01; 
[I_T_true,I_T_hat,~,~,~] = ... 
    fn_biascalc(T,H0,r_vec,scenario_inc,I_vec,I_ref,musurv_vec,covsurv,T0,T1,frr_constant);  
[C,h] = contour(-100*(I_ref-I_vec)./I_vec,100*r_vec,100*(I_T_hat./I_T_true-1),100*(-0.1:0.005:0.1)); 
set(h,'LineWidth',3) 
title(['Scenario 2A: Decreasing incidence, {\it\beta_T} =' num2str(100*frr_constant) '%']) 
ylabel('Annual growth of population size (%)') 
clabel(C,h,'LabelSpacing',72*3) 
set(gca,'FontName','Times','FontSize', 12) 
set(gca,'YTick',-10:5:10) 

% Scenario 2B 

subplot(2,2,4) 
scenario_inc = 2;
frr_constant = 0.05;
[I_T_true,I_T_hat,~,~,~] = ... 
    fn_biascalc(T,H0,r_vec,scenario_inc,I_vec,I_ref,musurv_vec,covsurv,T0,T1,frr_constant);  
[C,h] = contour(-100*(I_ref-I_vec)./I_vec,100*r_vec,100*(I_T_hat./I_T_true-1),100*(-0.1:0.005:0.1)); 
set(h,'LineWidth',3) 
title(['Scenario 2B: Decreasing incidence, {\it\beta_T} =' num2str(100*frr_constant) '%']) 
clabel(C,h,'LabelSpacing',72*3) 
set(gca,'FontName','Times','FontSize', 12) 
set(gca,'YTick',-10:5:10) 
text(-10, -13, {['Percentage decrease in incidence over the last {\itT} = ' num2str(T) ' year period,'];... 
     ['from an equilibrium to ' num2str(I_ref*100) '% per annum']},'HorizontalAlignment','center')   

c = findall(gcf,'Type','text'); 
set(c, 'FontName', 'Times', 'Fontsize', 12) 

B2	 Accuracy	of	the	Delta	Method	
Uncertainty	for	the	Incidence	
Estimator	

The function fn_cov calculates the coefficient of variation (CoV) of the incidence 

estimator, arising from variability in realised sample counts of HIV-negative, ‘recently’ 

infected and ‘non-recently’ infected subjects in an incidence survey. The CoV is 

calculated (i) using the delta method approximation (based on Gaussian uncertainty of 

counts), and (ii) by directly enumerating all possible counts (based on a trinomial 
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distribution). The script comparecov_section2p2p2 compares the two output CoVs for a 

selection of scenarios (see Section 2.2.2). 

Function	‘fn_cov.m’	

function [CoVDelta, CoVTrinomial] = ... 
    fn_cov (T, Inc_vec, PrevInc_vec, MDRI_vec, FRR_vec, N) 

%  
% Calculates the CoV of the incidence estimator, 
%   resulting from uncertainty in sample counts 
%   (i) using the delta method, 
%   (ii) by directly enumerating all possible trinomial counts 
%   as a function of (a) incidence, (b) prevalence to incidence ratio, 
%   (c) MDRI, (d) FRR  
% 
% Inputs 
%   T: post-infection time cut-off in definition of incidence estimator 
%   Inc_vec: Incidence value (a) 
%   PrevInc_vec: Prevalence to incidence ratio (b) 
%   MDRI_vec: mean duration of recent infection (c) 
%   FRR_vec: false-recent rate (d) 
%   N: cross-sectional incidence survey size 
% Inputs (a)-(d) are vectors (to capture multiple input values), 
%   other inputs are scalars, time is in years  
%  
% Outputs 
%   CoVDelta: CoV of incidence estimator, approximated using the delta method 
%   CoVTrinomial: CoV of incidence estimator, enumerating all possible 
%       trinomial draws 
% Outputs are four-dimensional, dimension 1 captures (the different values 
%   in) Inc_vec, 2 captures PrevInc_vec, 3 captures MDRI_vec, and  
%   4 captures FRR_vec 
% 

% Measure input dimensions 

n_Inc = length(Inc_vec); 
n_PrevInc = length(PrevInc_vec); 
n_MDRI = length(MDRI_vec); 
n_FRR = length(FRR_vec); 
n_total = n_Inc*n_PrevInc*n_MDRI*n_FRR; 

% Initialise results variables 

CoVDelta = NaN(n_Inc,n_PrevInc,n_MDRI,n_FRR); 
CoVTrinomial = NaN(n_Inc,n_PrevInc,n_MDRI,n_FRR); 

% Perform calculations, looping over dimensions 4 to 1 

count = 0; 
for d4 = 1:n_FRR 
    FRR = FRR_vec(d4); 
    for d3 = 1:n_MDRI 
        MDRI = MDRI_vec(d3); 
        for d2 = 1:n_PrevInc 
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            PrevInc = PrevInc_vec(d2); 
            for d1 = 1:n_Inc  
                Inc = Inc_vec(d1); 
                Prev = Inc*PrevInc; 
                P_S = 1-Prev; % proportion of population susceptible 
                P_R = Inc*(1-Prev)*(MDRI-FRR*T)+FRR*Prev; % proportion of population 'recently' infected 
                P_NR = Prev-P_R; % proportion of population 'non-recently' infected 
                [N_S, N_R] = meshgrid(1:N,0:N); % exclude 0 susceptible counts (improbable) 
                N_S = N_S(:); N_R = N_R(:); 
                inclIndex = N_S+N_R<=N; N_S = N_S(inclIndex); N_R = N_R(inclIndex); N_NR = N-N_S-N_R; 
                prob_sample = mnpdf([N_S N_R N_NR],[P_S P_R P_NR]); % probability of each draw of counts 
                inc_sample = (N_R-FRR*(N_R+N_NR))./N_S./(MDRI-FRR*T);  

% incidence estimate for each draw of counts 
                mean_inc_sample = sum(inc_sample.*prob_sample); % mean incidence estimate 
                mean_inc_sample2 = sum((inc_sample.^2).*prob_sample); % mean squared incidence estimate  
                CoVTrinomial(d1,d2,d3,d4) =  ... 

(mean_inc_sample2-mean_inc_sample^2)^0.5/mean_inc_sample; % true CoV   
                CoVDelta(d1,d2,d3,d4) =  ... 

(1/N*1/(P_R+P_NR)*(1/P_S+P_R*P_NR/(P_R-FRR*(P_R+P_NR))^2))^0.5; % delta method CoV 
                count = count+1; 
                if mod(count,500)==0, disp(['Loop ' num2str(count) ' of '  num2str(n_total) ' complete']), end 
            end 
        end 
    end 
end 
disp('Complete') 

end 

Script	‘deltacov_section2p2p2.m’	

% 
% Compares the delta method CoV of the incidence estimator 
%   to the true CoV, 
%   not accounting for uncertainty in test characteristics 
% 

% Inputs 

T = 1; 
Inc_vec = (0.1:0.1:3)/100; 
PrevInc_vec = 2:1:10; 
MDRI_vec = (100:50:300)/365.25; 
FRR_vec = 0:0.025:0.15; 
N = 100; 

% Perform calculations (function call) 

[CoVDelta, CoVTrinomial] = ... 
    fn_cov(T,Inc_vec,PrevInc_vec,MDRI_vec,FRR_vec,N); 

% Summarise outputs by limits of differences 

[min(CoVDelta(:)-CoVTrinomial(:)),... 
    max(CoVDelta(:)-CoVTrinomial(:))] 
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B3	 MDRI	Estimation	by	Linear	
Interpolation	

The function fn_mdri_linearint estimates the MDRI by linearly interpolating between 

data points (see Section 4.1.2 for more details). By setting the input ‘se’ to 1, single 

continuous sojourns in the ‘recent’ infection state are enforced (corresponding to 

Method 1, ‘Interp_Linear_SE’), and by setting ‘se’ to 0, multiple transitions between the 

‘recent’ and ‘non-recent’ infection states are allowed (corresponding to Method 2, 

‘Interp_Linear_ME’). The script eg_mdri_linearint presents an example application of 

the function. The outputs produced by the script are also summarised. 

Function	‘fn_mdri_linearint.m’	

function [mdrihat, lowerci, upperci, covmdrihat, stopmsg] = ... 
    fn_mdri_linearint (datatimes, datavals, dataints, ... 
    thresholds, T, ... 
    fig_ind, n_intervals,... 
    starting_value, se, ... 
    ci_ind, alphaci, n_bootstrap) 

% 
% Estimates MDRI for a biomarker for recent infection, 
%   by linear interpolating between data points 
%   as a function of (a) threshold (below which a measurement  
%   indicates ‘recent’ infection) 
% 
% Inputs 
%   datatimes: matrix of (increasing) visits times, one row per subject, 
%       time of first HIV-positive visit is reference time 0 per subject, 
%       NaNs for missing values / where data is absent 
%   datavals: matrix of corresponding biomarker readings 
%   dataints: vector capturing the interval from last HIV-negative visit 
%       to first HIV-positive visit per subject 
%   thresholds: readings below the threshold indicate 'recent' infections (a) 
%       (multiple values can be provided in vector) 
%   T: post-infection time cut-off contained in definition of MDRI 
%   alphaci: confidence interval (CI) should provide (1- alphaci)*100% coverage 
%       (multiple values can be provided in vector) 
%   ci_ind: 1 to produce CIs (by bootstrap resampling, percentile CIs) 
%   n_bootstrap: number of bootstrap samples for CI calculation 
%   fig_ind: 1 to show estimated P_R(t) as a function of t 
%   n_intervals: number of intervals into which [0,T] is divided when 
%       integrating estimated P_R(t) using the (composite) trapezoidal rule 
%   starting_value: assumed biomarker value at infection time (unless 
%       a value is already provided in the data) 
%   se: 1 for enforcing single (earliest) exits out of the 'recent' state 
% 
% Outputs 
%   mdrihat: estimated MDRI, entry (i) for thresholds(i) 
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%   lowerci: lower CI limit (NaN if ci_ind is not 1), 
%       entry (i,j) relates to thresholds(i) and alphaci(j) 
%   upperci: upper CI limit (NaN if ci_ind is not 1), 
%       entry (i,j) relates to thresholds(i) and alphaci(j) 
%   covmdrihat: coefficient of variation of bootstrap MDRI estimate replicates 
%       (NaN if ci_ind is not 1), entry (i) for thresholds(i) 
%   stopmsg: 1 if data is insufficient (mdrihat, lowerci, upperci, covmdrihat then 
%       contain NaN), 0 otherwise 
% 

% Data cleaning (remove empty panels and panels with missing HIV-negative to -positive visit gaps) 

dataints = dataints(:); 
inclindex = (sum(not(isnan(datavals)|isnan(datatimes)),2)>0)&not(isnan(dataints));  
datatimes = datatimes(inclindex,:); datavals = datavals(inclindex,:); dataints = dataints(inclindex); 

% Reshape and manipulate inputs, and measure their dimensions 

alphaci = alphaci(:)';                  
n_alpha = length(alphaci); 
n_times = n_intervals + 1; 
time_boundaries = linspace(0,T,n_times); % times at which to evaluate P_R(t) (*) 
thresholds = thresholds(:);              
n_thresholds = length(thresholds); 
thresholdmatrix = repmat(thresholds,1,n_times); 
n_subjects = size(datatimes,1);  
n_obs = size(datatimes,2); 
datatimes_mp = datatimes + repmat(dataints/2,1,n_obs); % midpoints used as infection times 

% For each threshold, time point in (*), and subject,  
%   store whether the biomarker reading produces a 'recent' result (1) 
%   or 'non-recent' result (0), or is unknown (NaN) 

threshold_time_subject_class = NaN(n_thresholds, n_times, n_subjects); 
for subjectcount = 1:n_subjects  
    datatimes_ind = datatimes_mp(subjectcount,:); datavals_ind = datavals(subjectcount,:); 
    inclindex = not(isnan(datatimes_ind)|isnan(datavals_ind)); 
    n_incl = sum(inclindex); 
    datatimes_ind = datatimes_ind(inclindex); datavals_ind = datavals_ind(inclindex); 
    if datatimes_ind(1) ~= 0 
        datatimes_ind = [0 datatimes_ind]; datavals_ind = [starting_value datavals_ind]; 
        n_incl = n_incl + 1; 
    end 
    if n_incl > 1 
        f = @(t) interp1q(datatimes_ind', datavals_ind', t')'; 
        threshold_time_subject_class(:,:,subjectcount) = ... 
            repmat(f(time_boundaries),n_thresholds,1) <= thresholdmatrix;  
        threshold_time_subject_class(:,isnan(f(time_boundaries)),subjectcount) = NaN; 
    end 
end  

% If single exits, all classifications after each subject's first 'non-recent' result become 'non-recent'  

if se == 1 
    afternr = cumsum(threshold_time_subject_class==0,2)>0; 
    threshold_time_subject_class(afternr) = 0; 
end 
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% Measure the proportion of 'recently' infected subjects, among subjects not yet lost to follow-up, 
%   at each time point in (*) and each threshold 

n_recent = sum(threshold_time_subject_class==1,3); 
n_total = sum(threshold_time_subject_class>=0,3);  
P_recent = n_recent./n_total; 

% Check that at least one subject provides data until T after (estimated) infection 

if n_total(1,end) == 0       % Exit function due to insufficient data 

    stopmsg = 1; 
    mdrihat = NaN(n_thresholds,1); 
    lowerci = NaN(n_thresholds,n_alpha); 
    upperci = NaN(n_thresholds,n_alpha);  
    covmdrihat = NaN(n_thresholds,1); 

else % Continue with estimation 

    stopmsg = 0; 

    % Estimate MDRI using the composite trapezoidal rule 

    mdrihat = (2*sum(P_recent,2)-P_recent(:,1)-P_recent(:,end))/2*(T/n_intervals); 

    % Plot estimated P_R(t) 

    if fig_ind == 1 
        figure 
        plot(time_boundaries', P_recent','LineWidth',2) 
        legend(num2str(thresholds), 'location', 'eastoutside') 
        xlabel('Time since infection','FontName','Times','FontSize',11) 
        ylabel('Probability of testing ''recent''','FontName','Times','FontSize',11) 
        grid on 
        set(gca,'FontName','Times','FontSize',11) 
        set(gca,'YLim',[0 1]) 
        set(gca,'XLim',[0 T*1.05]) 
        hold on, plot([T T],[0 1],'k--','LineWidth',2), hold off 
    end 

    % Obtain confidence interval limits from percentiles of bootstrap MDRI estimate replicates    

    if ci_ind == 1 
        bootstrapmdri = NaN(n_thresholds,n_bootstrap); 
        for bootstrapcount = 1:n_bootstrap 
            bootstrapindex = randsample(1:n_subjects,n_subjects,true); 
            bootstrap_class = threshold_time_subject_class(:,:,bootstrapindex); 
            n_recent = sum(bootstrap_class==1,3); 
            n_total = sum(bootstrap_class>=0,3);  
            P_recent = n_recent./n_total; 
            if n_total(1,end) ~= 0  
                bootstrapmdri(:,bootstrapcount) = … 

   (2*sum(P_recent,2)-P_recent(:,1)-P_recent(:,end))/2*(T/n_intervals); 
            end 
        end 
        if n_thresholds > 1 
            bootstrapmdri = bootstrapmdri(:,not(isnan(bootstrapmdri(1,:)))); 
        else 
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            bootstrapmdri = bootstrapmdri(not(isnan(bootstrapmdri))); 
        end 
        lowerci = prctile(bootstrapmdri,alphaci/2*100,2); 
        upperci = prctile(bootstrapmdri,100-alphaci/2*100,2); 
        covmdrihat = std(bootstrapmdri,[],2)./mean(bootstrapmdri,2); 
    else 
        lowerci = NaN(n_thresholds,n_alpha); 
        upperci = NaN(n_thresholds,n_alpha);  
        covmdrihat = NaN(n_thresholds,1); 
    end 

end 

end 

Script	‘eg_mdri_linearint.m’	

% 
% Demonstrates application of fn_mdri_linearint 
% 

 % Dataset 

datatimes = [  

0.2675 0.4277 0.6396 0.9542 NaN NaN NaN NaN NaN 

0.4241 0.615 0.8653 1.0678 1.4144 1.6966 1.976 NaN NaN 

0.2171 0.447 0.7267 NaN NaN NaN NaN NaN NaN 

0.3031 0.529 0.756 1.0553 1.31 1.5768 1.806 NaN NaN 

0.1826 0.4799 0.6827 0.9863 1.2467 1.4974 1.7532 2.0181 NaN 

0.3068 0.5752 0.8277 0.9795 1.25 1.5843 NaN NaN NaN 

0.2287 0.4841 0.7531 0.9521 1.2125 NaN NaN NaN NaN 

0.1636 0.4299 NaN NaN NaN NaN NaN NaN NaN 

0.2174 0.457 0.7753 1.0156 1.2352 1.4146 1.6271 1.8641 2.1053 

0.2427 0.4439 0.7162 1.007 1.2991 NaN NaN NaN NaN 

0.2185 0.4832 0.7504 0.967 1.2367 1.4919 1.8043 NaN NaN 

0.3116 0.5438 0.7895 1.07 1.4269 1.6547 1.8606 NaN NaN 

0.313 0.5456 0.8284 1.054 1.3397 1.5123 1.7787 NaN NaN 

0.2878 0.5382 0.7905 1.1004 1.3466 NaN NaN NaN NaN 

0.2257 0.4099 0.6935 0.9032 1.1561 1.9865 2.1556 NaN NaN 
   ]; 
datavals = [ 

10.6283 0.0125 20.0914 63.7114 NaN NaN NaN NaN NaN 

0.9405 12.4182 45.4135 62.6159 77.891 68.1201 79.9291 NaN NaN 

1.8642 42.5928 55.0881 NaN NaN NaN NaN NaN NaN 

3.0956 13.0108 37.8741 48.0773 63.1614 70.7904 77.8083 NaN NaN 

0.9861 NaN 39.5436 63.925 68.7903 62.3159 70.5174 78.6165 NaN 

4.8589 21.5184 44.7078 32.5498 50.5489 70.3637 NaN NaN NaN 

2.1248 13.7792 50.1477 73.6649 69.6588 NaN NaN NaN NaN 

0.8965 0.5121 NaN NaN NaN NaN NaN NaN NaN 

1.5689 3.2719 20.1856 44.3737 35.2546 61.3277 63.072 81.7462 77.4984 

0.2678 0.7413 25.6545 41.1602 75.0971 NaN NaN NaN NaN 
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4.818 18.2466 36.031 53.9034 57.0645 63.6801 69.9678 NaN NaN 

9.7489 32.7693 52.5553 68.2775 72.4863 73.3452 70.2274 NaN NaN 

2.5468 25.4565 10.6181 48.1057 69.4896 34.548 70.9096 NaN NaN 

5.9428 20.1445 51.351 70.5699 89.5246 NaN NaN NaN NaN 

2.0306 26.8103 65.1453 80.0954 72.5498 NaN NaN NaN NaN 
   ]; 
dataints = [ 

0.1756 

0.2004 

0.2458 

0.1986 

0.1255 

0.2259 

0.2175 

0.2158 

0.163 

0.1872 

0.1438 

0.2203 

0.2211 

NaN 

0.2221 
   ]; 

% Inputs for fn_mdri_linearint 

thresholds = 30:10:50; 
T = 1.5; 
figind = 1; 
n_intervals = 20000; 
starting_value = 0; 
ci_ind = 1; 
alphaci = [0.05 0.2]; 
n_bootstrap = 10000; 

% Single-exit estimation 

se = 1; 
[mdrihat,lowerci,upperci,covmdrihat,stopmsg] = ... 
    fn_mdri_linearint(datatimes,datavals,dataints, ... 
    thresholds,T, ... 
    figind,n_intervals,... 
    starting_value,se,... 
    ci_ind,alphaci,n_bootstrap);  
[ [mdrihat lowerci(:,1) upperci(:,1) lowerci(:,2) upperci(:,2)]*365.25 covmdrihat*100] % Results 

% Multiple-transition estimation 

se = 0; 
[mdrihat,lowerci,upperci,covmdrihat,stopmsg] = ... 
    fn_mdri_linearint (datatimes,datavals,dataints, ... 
    thresholds,T, ... 
    figind,n_intervals,... 
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    starting_value,se,... 
    ci_ind,alphaci,n_bootstrap); 
[ [mdrihat lowerci(:,1) upperci(:,1) lowerci(:,2) upperci(:,2)]*365.25 covmdrihat*100] % Results 

Outputs	from	‘eg_mdri_linearint.m’	

Outputs produced by the script file eg_mdri_linearint.m are summarised below. The 

results obtained when enforcing a single continuous sojourn in the ‘recent’ state are 

provided in Figure B1 and Table B1, and those obtained when allowing multiple 

transitions between states are provided in Figure B2 and Table B2. 

Figure B1: Example of a fitted probability of being ‘recently’ infected over time 
since infection, by threshold, using linear interpolation and enforcing single exits 
from the ‘recent’ state  
The fitted probability of testing ‘recently’ infected is shown as a function of time since 
infection, and was obtained by applying the function fn_mdri_linearint to an example 
dataset, as outlined in the script eg_mdri_linearint. The probability is shown for a 
threshold of 30, 40 and 50 in turn (a biomarker reading below the threshold indicates 
‘recent’ infection). Biomarker readings are linearly interpolated, and single exits from the 
‘recent’ state are enforced. 
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Threshold 
Estimated 

MDRI (days) 
95% CI for 

MDRI (days) 
80% CI for 

MDRI (days) 
CoV of MDRI 
estimator (%) 

30 277 246-308 257-298 5.7

40 314 281-346 293-336 5.3

50 374 331-419 346-403 6.0

Table B1: Example of MDRI estimation outputs, by threshold, using linear 
interpolation and enforcing single exits from the ‘recent’ state  
Estimates of the MDRI (days) are shown, and were obtained by applying the function 
fn_mdri_linearint to an example dataset, as captured in the script eg_mdri_linearint. 
Confidence intervals (CIs) for the MDRI (days) and estimated coefficients of variation 
(CoVs) of the MDRI estimator (%) are also provided. The MDRI was estimated for a 
threshold of 30, 40 and 50 in turn (a biomarker reading below the threshold indicates 
‘recent’ infection), and 1.5 years. Biomarker readings were linearly interpolated, and 
single exits from the ‘recent’ state were enforced. 

Figure B2: Example of a fitted probability of being ‘recently’ infected over time 
since infection, by threshold, using linear interpolation and allowing multiple 
transitions between ‘recent’ and ‘non-recent’ states  
The fitted probability of testing ‘recently’ infected is shown as a function of time since 
infection, and was obtained by applying the function fn_mdri_linearint to an example 
dataset, as outlined in the script file eg_mdri_linearint. The probability is shown for a 
threshold of 30, 40 and 50 in turn (a biomarker reading below the threshold indicates 
‘recent’ infection). Biomarker readings are linearly interpolated, and multiple transitions 
between the ‘recent’ and ‘non-recent’ states are allowed. 

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

Time since infection (years)

Fi
tte

d 
po

ba
bi

lit
y 

of
 te

st
in

g 
‘r

ec
en

tly
’ 

in
fe

ct
ed

 

40 50

30



Selected Matlab Code  231 

Threshold 
Estimated 

MDRI (days) 
95% CI for 

MDRI (days) 
80% CI for 

MDRI (days) 
CoV of MDRI 
estimator (%) 

30 278 247-308 258-298 5.6

40 328 290-365 303-353 5.9

50 385 338-429 353-414 6.1

Table B2: Example of MDRI estimation outputs, by threshold, using linear 
interpolation and allowing multiple transitions between states 
Estimates of the MDRI (days) are shown, and were obtained by applying the function 
fn_mdri_linearint to an example dataset, as captured in the script eg_mdri_linearint. 
Confidence intervals (CIs) for the MDRI (days) and estimated coefficients of variation 
(CoVs) of the MDRI estimator (%) are also provided. The MDRI was estimated for a 
threshold of 30, 40 and 50 in turn (a biomarker reading below the threshold indicates 
‘recent’ infection), and 1.5 years. Biomarker readings were linearly interpolated, and 
multiple transitions between the ‘recent’ and ‘non-recent’ states were allowed. 
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