
f %

V;

D E V E L O P M E N T O F A M I L - S T D - 1 5 r 3 B

T I M E D I V I S I O N D A T A B U S

T E R M I N A L

Geoffrey A nthony Holt

A project report submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg, in partial
fulfilment of the requirements for the degree of Master of
Science in Engineering.

Johannesburg, 1985

DECLARATION

I declare that this project report is m y own
work. It is being submitted for the Degree of
Science in Enginaeiing in the University
Witwatersrand, Johannesburg. It has not been
before for any degree or examination in
University.

<&}jer&L

day o f .ber.er'N/Cur' «:> 198 51

, unaided
Master of

submitted
any other

A B STR A CT

A flexible, general purpose MIL-STD-1553B network terminal
As developed to enable evaluation and possible later use
of this standard in distributed processing applications.
The terminal is capable of operating in any of the defined
m o d 98 and supports all optional features of the standard.

k survey of components available for interfacing to MIL-
STD-1553B is presented. This leads to a choice of the
Marconi range of components as being best suited for use
in this terminal.

A specification for the terminal is formulated. The
terminal hardware is designed and a general approach to
software for the terminal is discussed. An Intel 80186
microprocessor is us.td to interface a pair of 1553B busses
to Multibus, via a dual port memory which provides message
buffering.

A prototype version of the terminal has been constructed,
and lessons learned in the testing and debugging of this
hardware are discussed.

ACKNOW LEDGEM ENTS

The author wishes to acknowledge the following assistance
in the execution of this project.

o Mr. G.T. Gray of the Department of Electrical
Engineering, University of the Witwatersrand, for
supervision of the project.

o Mr. H. Roos of Teklogic, for advice and constructive
criticism.

o Tony Kempe, for his advice, help with Forth, and the
use of his software utilities.

o Teklogic (Pty) Limited, for the sponsoring of all the
components used in the project.

o The Counoil for Scientific and Industrial Research
for personal financial assistance.

<

/
C O N TEN TS

3
4

1 INTRODUCTION 1.1

1.1 Problem Statement 1.2
1.2 Background to Problem 1.3
1.2.1 Network Requirements of Distributed Systems 1.3
1.2.2 MIL-STD-1553B Overview 1.6
1.2.3 Existing 1553B Systems 1.13
1.3 Relevance of Project 1.15
1.4 Scope of the Project 1.16
1.5 Report Layout 1.16

2 SURVEY AND SELECTION OF MIL-STD-155:iB BUS 2.1
INTERFACE COMPONENTS

2.2
2.2
2.3
2.3
2.6
2.7

2.1 Introduction
2.2 Selection Criteria
2.3 Parts of the Bus Interface
2.4 Survey of Components
2.5 Validation of 1553B Interface Components
2.6 Component selection

DECLARATION
ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
LIST OF FIGURES
LIST OF TABLES
NOMENCLATURE

f

*/
*

3 TERMINAL SPECIFICATION

3.1 Influencing Factors
3.2 Functional specification
3.2.1 MIL-STD-1553B Interface
3.2.2 Multibus Interface
3.2.3 Generalised Input/Output Interface

Embedding of the Terminal in the Subsystem
3.2.5 System Configurations
3.3 Electrical Specification
3.4 Mechanical Specification
3.5 Compliance with Specification
3.5.1 Hardware Design
3.5.2 Prototype
3.5.3 Final Version

4 TERMINAL DESIGN OVERVIEW

4.1 Hardware Design Overview
4.1.1 The Local Processor

Local Memory
4.1.3 Dual Redundant MIL-STD-1553B interface
4.1.4 Generalised I/O Interface
4.1.5 Multibus Interface
4.1.6 Dual Port Memory
4.1.7 Local Peripherals
4.2 Software Design Overview
4.2.1 Range of Complexity of Terminal Software
4.2.2 Proposed Software Structure 4.11
4.2.3 Implementation of Software Scheme 4.16

PROTOTYPING A ND TESTING

5.3.;
5.4
5.4.

Prototype Construction
Prototype/Design Differences
Generalised I/O Interface
Multibus Master Interface
Bus Interface Busy Latch
Dual Port RAM
Interrupt Juk/er Matrix
Debugging and Testing Methods
Initial Debugging
U se of Forth as a Development Tool
Design Testing and Results
Dual Port Memory
1553B Bus Interface

RECOMMENDATIONS & CONCLUSIONS

Design Review
Possible Design Improvements
Future Work on Terminal
Conclusions

A.l
A . 2
A . 3

A . 5
A . 6

MIL-STD-1553B BUS INTERFACE COMPONENTS
STC Range
Marconi/CTI Range
Grumman/SMC Bus Interface Unit
Harris Range
ILC Data Device Corporation Hybrid Set
Rockwell-Collins 1553 Interface Device

Page

5.1

5.2
5.3
5.3
5.4
5.4
5.4
5.5
5.5
5.5
5.6
5.8

6.2
6.3
6.4
6.5

/

CONTENTS Page

B MRTU 53045-SUBSYSTEM INTERFACE AN D OPERATION
B.l Remote Terminal Operation
B.2 Bu b Controller Operation
B.3 Bus Monitor Operation

C HARDWARE DESIGN
C.l Local Processor
C.2 Local Memory
C.3 MIL- STD-1553B Bus Interface
C.4 Generalised I/O Interface
C.5 Multibus Interface

Dual Port Memory
C.7 Local Peripherals
C.8 Processor Address Space Allocation

D HARDWARE SCHEMATICS A ND CONFIGURATION TABLES
D.l Pin to Pin Schematics
D.2 Component List
D.3 prototype Board Layout
D.4 Jumper Configuration

B PAL DESIGN AND PROGRAMMING
B.l Design Procedure
E.2 Bus Interface PALS
E.3 Dual Port Arbitration and control PALS

F TEST SOFTWARE LISTINGS
F.l Assembler Hybrid Test
F.2 Forth Primitives
F. 3 Dual Port Memory Lock Test
F.4 Forth Bus Interface Drivers
F.5 Command Interrupt Service Routine

REFERENCES

LIST OF FIGURES

3.1(A) Line Replaceable Unit
3.1(B) Partially On Board subsystem
3.1(c) Fully On Board Subsystem
3.1(D) Stand Alone

4.1 Hardware Block Diagram
4.2(A) Dual Port Memory Map
4.2(B) Buffer Structure

C.l The Local 186 Processor
C. 2 (A) Template for Bus Interface Schematic
C.2(B) MIL-STD-1553B Bus Interface
C.3 SBX Address Maps
C.4 Multibus Master Interface
C.5 Dual Port Memory
C.6 Interrupt Jumper Matrix

Dl-14 Pin-to-Pin Schematics
D15 Prototype Board Layout

E.l Handshaking and DMA Request Linea
E.2 RTSYNC* Line
E.3 ENS2QBUS Lines
E.4 RX/INCMDINT Line
E.5 DBC/RTOINT Line
E.6 PAL x Version 0
E.7 PAL 2 Version 2
E.6 DMCS* Line
E.9 ARBIP Line
E.10 Control Logic
E.11 PAL 3 Version 1
E.12 PAL 4 Version 1

E.15
E.16

LIST OF TABLES

2.1 Comparison of Components
Page
2.4

3.1 Built In Test Word Bit Assignments 3.5

C.l Programmable Chip Selects and Wait states

D.l Component List
D.2 ROM Jumpers
D.3 RAM Jumpers
D,4 SBX Jumpers
D.5 Multibus Slave Decoding Jumper

B.l LBEK* JWD HBBN
E.2 LBSTJ* A ND HBSTB*
B.3 Arbitration Truth Table

!

NOM ENCLATURE

The following conventions have been adopted for the name
of signal lines:

All signal lines are written in upper case (eg. CLK0U1').
If the signal is active low, the name is followed by an
asterisk (eg. IUSTB).

Abreviations used in the text h ave the following meanings:

1553B MIL-STD-1553B
BC Bus Controller
BIT Built-in-Test (word)
EM Bus Monitor
CMOS Complimentary Metal Oxide Semiconductor (logic)
CPU Central Processing Unit
DMA Direct Memory Access
EPROM Erasible Programmable Read Only Memory
FIFO First In First out
IEEE Institute of Electrical and Electronic Engineers

(standardising body)
I/O Input/Output
LED Light Emitting Diode
LRU Line Replacable unit
LSTTL Low power Schottky Transistor-Transistor Logic
MSI Medium Scale Integration
PAL Programmable Array Logic
PIC Programmable Interrupt Logic
PIT Programmable Interval Timer
RAM Random Access Memory
ROM Read Only Memory
RT Remoter Terminal
RX Receive(r)

NOMENCLATURE

SBX iSBX I/O bu:> (IEEE P959 I/O bus)
SSI Small Scale Integration
T TL Transistor Transistor Logic
TX Transmit(ter)
USART Universal Synchronous Asynchronous Receiver

Transmitter

!

CH APTER 1

INTRODUCTION

The problem that is addressed by this project is stated.
This is followed by the relevant background material to
the problem leading to a justification of the project. The
scope of the project w ork is defined and finally there is
a guide to the layout of this report.

INTRODUCTION Problem Statement

1.1 PROBLEM STA TEM EN T

Teklogic has a need for a fast, reliable and robust
network to be used in distributed processing, and remote
sensing and actuation applications.

These applications may include avionics, "fly-by-wire” ,
and armament functions in aircraft, and similar operations
in other vehicles such as tanks, armoured cars and small
naval vessels.

Such a net m r k could also find application in the
industrial field of process control where again
reliability and robustness (but not so much speed) are of
prime importance.

A potentially suitable network is defined by MIL-STD-
1553B. The function of this project is to provide a
flexible, general purpose MIL-STD-1553B data bus terminal
for the evaluation and possible later uce of this network
in distributed processing applications.

The terminal is required to make use of one of the
standard components available for interfacing to the bus,
rather than attempting a "from scratch" design, while
still maintaining flexibility and generality. It must
interface to Multibus and if possible not occupy more than
one board. A further requirement is that Intel
microprocessor products be used where necessary, as
support for these is available.

INTRODUCTION Background

1.2 BACKGROUND T O PROBLEM

1.2.1 N etw ork requirem ents o f D istributed S y stem s

The required characteristics of the communication channel
used by a distributed computer system are influenced by
the application of the system.

Typical applications in this case are aircraft systems
such as:

Instrumentation
Navigation
Flight safety
Remote control or "fly-by-wire"
Weapons control
Flight recording

These systems may also be used in other types of vehicles,
both military and civil.

A second class of application to be considered is
industrial process control.

1.2.1.1 Speed

The speed requirements vary from high speed in data
processing (becau k of the large amounts of data typically
involved) to relatively low speeds in the case of process
control if the plant time constants involved are long. The
speed in any system also obviously depends on the number
of units that are connected to the network.

The aircraft or vehicle type application lies between the
two. A relatively high speed is required as the time

INTRODUCTION Background

constants are fairly short (in the case of remote control)
and a system may need to respond rapidly to an event
(in the case of flight safety and weapons control). On the
other hand there are usually few units in the system.

1.2.1.2 Extent

For use in a vehicle, the network need only extend a few
tens of metres and support a few u n i t s . For use in process
control on the other hand, in a large system the extent
m ay be a few kilometres and the number of units a few
h u n dred.

1.2 .1 .3 Integrity

Both classes of application demand secure .. .ation.
This is particularly true when messages (. example
triggered by events) may occur only once and must not be

This may of course be ensured at a level above the
communication medium at the price of incurring an
overhead. It is, however, more desirable that the network
have a low error rate, and some method of error detection
b u ilt into it.

Considering that the electrical environment is potentially
noisy, the network should have good noise immunity in
order to have a low error rate.

1.2 .1 .4 R obustness

In both classes, the environment in which the network has

INTRODUCTION Background

to operate is potentially harsh from an electrical,
mechanical and temperature viewpoints. Further, in a
military application there is the possibility of ballistic
damage.

The network hardware must thus be hardened for use in such
an environment to ensure a reasonable robustness. The
effect of ballistic damage can be red- ed by the inclusion
of redundancy at the network level, specifically,
redundancy of the actual communication madiua (cabling).

1 .2 .1 .5 F ault Tolerance

In all distributed applications, it is a general
requirement that a failure of one unit connected to the
network does not cause the failure of the entire network.

Such a failure must thus neither render the communication
medium unueeable nor leave the system without overall
control.

1.2.1.6 Protocol

The type of protocol required arises partly from the above
points.The protocol must support any error detection and
redundancy that is available. It must also have a suitable
mechanism for fault recovery.

Further, the network should be deterministic, that is; the
maximum delay in the delivery of a message to its
destination must be calculable. This is again important
w he n critical messages are to be passed.

INTRODUCTION Background

1 .2 .2 M IL -ST D -1553B Overview

The U.S. Department, of Defence sets standards to be used
and applied by the military services and their
contractors. A military standard is a document that
establishes engineering and technical requirements for
procedures, practices, and methods that have been adopted
as standard. One of these is MIL-STD-1553B "Aircraft
Internal Time Division Command/Response Multiplex Data
Bus" [3].

1.2.2.1 Origins

The steadily increasing complexity of military systems,
particularly in avionics, has made it no longer practical
t o use independent and self-sufficient units to meet all
requirements [5], Thus integration of such systems has
b een taking place to share information among the units in
the system with the following advantages:

Elimination of unnecessary duplication of
information sensing and display.
Performance gains.
Reliability gains.
Cost reduction.
Space saving.

This integration was however initially carried out with
little thought to the interconnection between units;
wiring was generally dedicated point-to-point. As the
above approach was refined, this wiring method became
impractical [4] as:

The weight and space taken up by the wires was
becoming excessive.

INTRODUCTION Background

Modifications to the system were difficult.
Access to all parts of the system for test
purposes was difficult.

The solution was to turn to data bus techniques which were
also beginning to emerge in commercial applications.

The U.S. military realised the need for data bus
techniques and their standardisation as far bac k as 1968
[5). At that time other methods failed to m eet the high
integrity, reliability and flexibility requirements
necessary in the military environment. It was therefore
necessary to review the characteristics of a data bus. The
following factors were considered!

Modulation and coding techniques.
Signalling methods and signal detection
techniques.
Transmission media considerations.

Eventually MIL-STD-1553(USAF) was published in August 1973
and found its first full application in the P-16 aircraft.
A fter input from the Army, Navy, and industry, MIL-STD-
1553A was released for use b y all the armed forces in
1975. As this was applied to more vehicles and systems,
certain difficulties were recognised [5]. The standard was
revised with more input from suppliers and users, and MIL-
STD-1553U was released on 21 September 1978. This final
version has now also been adopted in the United Kingdom as
DBF.STAN.00-18 Part 2 and by NATO as STANAG 3838.

J..2.2.2 Scope of S tandard

The standard establishes requirements for information
transfer formats and electrical interface characteristics.

INTRODUCTION Background

It can be considered as defining a standard for
information transfer formats or protocol, while laying
down a specification for electrical interface
characteristics.

1.2.2.3 General Architecture

MIL-STD-1553B defines a serial, time division multiplexed
data bus operating at one Mbit/sec data rate. The
communication medium is a shielded twisted pair. Provision
is made for the use of more than one such cable for
redundancy purposes. The length of the bus is limited to
about 100m by the propagation delay of the cable and the
response times required by the standard.

A command/response or "speak only w-ien spoken to" type of
protocol is used under which all transfers are initiated
and controlled by a single bus controller, up to 31
individually addressable remote terminals can be connected
to the bus, each of which can interface with up to 30
subsystems if necessary. Further non-transmitting bus
monitors can be connected to the bus to "...receive bus
traffic and extract selected information to be used at a
later t i me". These are the three possible modes of
terminal operation.

Provision is made to allow terminals to change their mode
of operation and for the bus controller to broadcast
messages to all remote terminals. Bus controllership can
be offered to and accepted by a remote terminal by means
of a mode command. The protocol thus has a bus token
passing type mechanism built into it.

INTRODUCTION Background

1.2 .2 .4 Inform ation T » i- f tr Form ats

Also referred, to as "message formats" In 1553B, these
define the protocol that is used. The exchange of messages
is precisely described and there are only ten allowable
formats.

T hey can be divided into two g r oups:

Data Transfers. These are essentially used to "...extract
data from and feed data to a functional subsystem...".
They m ay transfer up to 32 data words at a time.

M ode Commands.These are essentially reserved "...to
communicate with the multiplex bus related hardware, and
to assist in the management of information flow...". There
is provision for 32 mode commands, 15 of these are
defined, the rest being reserved. The use of any or all
defined mode commands is optional.

1.2.2.5 M odulation and Coding T echnique

The technique used is ba seband Manchester II biphase
encoding at 1 Mbit/second. This method defines bits by a
transition from one voltage level during the first half
b it time to the opposite level for the second half bit
time. The average voltage is thus zero.

1 .2 .2 .6 W ord Form ats

Bach word consists of 16 bits preceded by sync and
followed by parity. The sync is three bit-times long, and
consists of one and a half bit-times at one level and one
and a half bit-times at the other level. The parity (one

INTRODUCTION Background

bit) is odd. Thus a word is 20 bit-times long, that is 20
microseconds.

MIL-STD-1F53B defines three types of w o r d s :

Command W o r d . This has a positive followed by a negative
sync, it is transmitted only by a bus controller terminal.
It initiates transmission and defines the data transfer
format that is to be used and contains the address of the
remote terminal that is to respond.

Status W o r d . This word also has a positive followed by a
negative sync. It ih transmitted by remote terminals at
the beginning of their response to a command. The status
w ord identifies the remote terminal and passes certain
status information back to the bus controller.

Data W o r d . This word has a negative followed by a positive
sync. It is always transmitted contiguously with a command
word, status word, or other data words.

1.2.2.7 Electrical C haracteristics

This section of the standard specifies the characteristics
of the cable (its impedance, shielding, attenuation and
termination), terminal input and output characteristics
(waveform rise times, noise, common mode rejection, and
impedance) and cable stubs.

Terminals m ay be connected anywhere on the bus in one of
two ways: Direct coupled stub connections which should not
be longer than one foot (300 m m) , and Transformer coupled
stubs which m ay be up to 20 feet (6m)

INTRODUCTION Background

1 .2 .2 .8 Error Rate and Error D etection

The maximum word error rate that a terminal may exhibit
under specified test conditions is one part in 10**7.
Theoretical and experimental results indicate that an
undetected bit error rate of 10**-12 can be expected from
a practical system using the built-in mechanisms (parity,
Manchester, and sync validation).

1.2.2.9 O ptions in th e S tandard

There are many parts of the standard which are optional.
T hese are summarised below:

M ode of terminal operation. Terminals m ay or m ay nr*
support more than one of the three modes of operation.

Subaddresses. Remote terminals may have provision for any
number of subaddresses, between one and thirty, within
their subsystems.

Embedding of subsystems. A remote terminal m ay be embedded
in, or separate from but communicating with, the
subsystem(s) that it serves.

B roadcast. Terminals may or may not support the use of
broadcast commands.

Mode commands. These are all optional as to whether or not
they are supported by a terminal. Non-implemented mode
commands should simply be ignored.

Built-in-test w o r d . One of the mode commands is for a
remote terminal to transmit a built-in-test word. This

INTRODUCTION Background

word is intended to supplenont the available bits in the
status wor d when a terminal is sufficiently complex to
warrant its use. There is no specification defining what
t he bits will be used for, except that they shall not be
used to transfer subsystem information, and their
definition is left up to the designer.

Stub coupling. The terminal may use a transformer coupled
stub or direct coupled stub or haT,e provision for both.

Redundant busses. The terminal may support extra bus
cables to be used as redundant standbys.

MIL-STD-1553B has not been related to the OSI reference
model in any of the references used in this project. This
is probably due to the fact that 1553B was defined before
the work on the reference model was completed. This is a
brief attempt to show what parts of the model are defined
b y 1553B.

physical, mechanical, functional and procedural
characteristics required to connect, maintain, and
disconnect the physical circuits between equipments [9].
This layer is defined by the MIL-STD-1553B standard with
the exception of the mechanical characteristics as no
specific connector configuration is laid down.

interchange of data connected by level 1 facilities and
includes address differentiation, message identification,
error detection and response, and flow control. All these
features are built into the standard, but since some of

1.2.2.10 M IL -ST D -1553B and th e O S I/R M

Contro:Control Level comprises the

Level ia concerned with reliable

- 1.12 -

INTRODUCTION Background

t hem are partially optional (built-in-test word and vector
word), they will vary from terminal to terminal.

Levels. 3 upward are concerned with more complex networking
operations and support transmission across more than one
network. MIL-STD-1553B does not extend to any of these

1.2.2.11 Signal Suitability

Th e appendix to the MIL-STD-1553B document, which gives
some design guidelines suggests, that signals of bandwidth
400 Hz or less are the most suitable for inclusion an the
bus, while signals in the range 400 Hz to 3 kHz m a y be
accommodated if thQ loading on the bus is low enough. High
bandwidth signals (eg. video) must obviously be excluded
[3],

Signals that have a low rate but possess a high urgency
(event type messages) are also considered to be generally
unsuitable because of bus latency.

1 .2 .3 Existing 1553B S ystem s

The existing applications of the standard are mainly in
avionics. This is mainly because all n ew U.S. military
aircraft requiring a data bus are obliged to use 1553B.
The specific application examples found in the references
are all aircraft systems, but mention is made of ground
and naval systems that are operating, as well as Jti on
the space shuttle [5], Although the suitability of the bus
to industrial applications is often mentioned [11,17,4],
there is no reference to specific cases of such systems.

INTRODUCTION Background

F rom the examples it is clear that in the past at least, a
15538 terminal was seldom designed in isolation. Generally
an entire multiplex system was designed and then the
terminals were designed to meet specific requirements in
the system. This would often resulted in several
different types of terminals in the system, each
possessing differing capabilities.

Finally there are some variations of the standard that
have been suggested and in some cases are in prototype

Transmission meth o d . Fibre optic [5] and current mode
transmission [17]. Although non-standard, these could be
useful in certain applications and could form the basis of
new standards with only the relevant sections altered.

Bus length. This could be extended by increasing the no
response time out [11]. This does not violate the
standard, as only a minimum no response time out is
specified, but the minimum is invariably used in aircraft
applications.

Bus speed. There As a design supporting a 2.5 MHz bit rate
[17]. This is obviously non-standard.

and reserved bits in the status word could be used to
convey application specific subsystem information, thus
increasing efficiency [15]. Again this is in obvious
violation of the standard.

INTRODUCTION Relevance of Project

1.3 RELEVANCE OF PR O JECT

From the background study, it is clear that MIL-STD-1553B
is potentially well suited for the type of distributed
processing applications outlined in section 1.2.1. In
order to evaluate, and possibly later use the standard in
such applications, a 15533 terminal design is required.

In contrast to the usual approach, in which the system is
designed around 1553B and the function of each terminal is
fixed, the specific requirements of this terminal will
change from one application to the next, or from one
function within an application to the next.

In the case that the standard is pu t into use in a system,
it will save considerable design time to have a
configurable terminal that can be used in every connection
to the bus. It will also make the system far more
maintainable, particularly if the terminal can be made to
be an easily replaceable module (hence the requirement
that it occupy only one board).

The terminal must thus be as flexible and general as
possible. All optional portions of the standard should be
implemented and where there is a choice, both
possibilities should be accommodated. If the terminal
could support some of the non-standard variations this
might be an advantage, but such variations would have to
bra used with great discretion. If the terminal could use
the status bits and mode codes that are currently reserved
it would be able to support possible future versions of
the standard which might define functions for the these
status bits and mode codes.

The requirements that the terminal use Intel products and
interface to Multibus are limiting but practical in terms

INTRODUCTION Relevance of Project

iy
of the support which is available, and equipment which is
in general use by Teklogic.

Finally this project is intended to add to the local
knowledge and expertise in MIL-STD-1553B.

1.4 SC O PE OF TH E PR O JEC T

The scope of this project is the specification, hardware
design and verification of a suitable HIL-STD-1553B data
bus terminal to meet the stated requirements of the
problem.

This also involves a survey of commercially available
1553B bus interface components (since a "from scratch" bus
interface design has been ruled out) , formulation of an
overall approach to the design of the terminal (including
a software scheme), and the construction of a prototype
terminal with which to verify the design.

1.5 REPOR T LAYOUT A

The remainder of this report is arranged as follows:

The available bus interface components are surveyed in
chapter 2. With this information it is possible to draw up
the functional specification in chapter 3. The overall
design of the terminal is presented down to block diagram
level in chapter 4. Chapter 5 deals with the prototype
hardware construction and testing. Finally chapter €
contains conclusions and suggestions for further work.

Appendix A is survey of 1553B bus interface components. s.
The interface to, and operation of, the components that
were selected is summarised in appendix B. Appendix C

INTRODUCTION Report Layout

describes the detailed implementation of the hardware
blocks defined in chapter 4. Appendix D contains the full
circuit schematic diagrams, component list, configuration
information and board layout of the prototype. The method,
and details, of the design of the PAL components used is
in appendix E, and listings of software used to test the
prototype are in appendix P.

i

/

CH APTER 2

SURVEY AND SELECTION
OF M IL -ST D -1553B BUS INTERFACE CO M PO N EN TS

The criteria for the choice of bus interface components
are discussed. The components that are available are then
surveyed. A selection of bus interface components is then
made and justified.

B INTERFACE COMPONENTS Introduction

2.1 INTRODUCTION

Before a realistic functional specification for the MIL-
STD-1553B terminal can be defined, it is necessary to
review the capabilities of the various components that are
available to interface to 1553B. The level to which the
standard is implemented, the options that are supported,
and the restrictions that are imposed by the components
that are finally selected, will affect what the terminal
is functionally capable of doing. The selection is thus
made before the functional specification is presented.

2.2 SELECTION CRITERIA

The criteria on which a selection is made are as follows:

Minimisation of external hardware and software required to
complete the full protocol. The more that is done in this
regard by the bus interface components themselves, the
less the burden on hardware external to the components
(thus saving board space) and software (thus freeing
processor time for other functions).

Do the components have an 6 or 16 bit bus? Are commands
specified by a pattern of input lines or simply by writing
to a control block in memory? Is there a DMA type
interface or must transfers be handled externally? Again
the more simple this interface, the less board space will
be occupied.

components must allow the support (either directly or with
external hardware and software) of as many of the options
in the standard as possible. Of most importance is that

bus control and bus monitor modes are possible besides the
usual remote terminal mode.

Will the
conponents allow the use of the reserved mode codes and
status bits or not?

Small siz e . Again, a board space consideration.

The components to be chosen must thus be the ones which
best fulfil the requirements of "generalness" and size,
while not being so elementary that it will be necessary to
design a great deal of hardware and incur a large software
overhead to implement the full protocol.

2.3 PA R T S OF TH E BUS INTERFACE

The bus interface can be separated into three main parts:

The isolation/coupling transformers.
The analog driver/receiver section.
The digital section.

It is to the last of these that most of the above criteria
apply* Hence the following survey covers mainly the
components for the digital section.

2.4 SURVEY OF CO M PO N EN TS

The components surveyed fall roughly ?nto two g r oups:

form of a chip set or hybrid. They tend to implement the
whole standard, and nothing but the standard.

1553B INTERFACE COMPONENTS Survey

s. These are generally single chips
performing some of the low level operations necessary in a
1553B terminal (eg. Manchester encoding/decoding and
recognition of sync type, address, broadcast and mode
code) but not enforcing any particular response or action
by the terminal.

Appendix A is a detailed survey of features of components
from the main MIL-STD-1553B manufacturers, of these the
most common appear to be the first four namely Marconi,
STC (Smith), Harris, and Grumman/SMC [11,15]. The features
of the main components of these manufacturers are
summarised in table 2 .1

|Subsystem |16 bit |serial |16 bit |8 bit

I Data
|transfer

|DMA async |sync [sync
[handshake j |

DMA sync

I control
[Use of lyes Jyes
|reserved
|features
I allowed
[Buffering of [double (none
|data | |

[one
[message
|length

double

MXXSL

1553B INTERFACE COMPONENTS Survey

|Error checks Manchester ManchesterjManchester|Manchester j
1 parity parity |parity [parity |
1 word count sync jsync |sync I
1 response |bit count I bit count |
1 sync (word count(word count |
1
i
1
1
1
1
I.

>16 bits 1
1
1
1
1
1
1 _ ...

I loop test |
|RT address |
|parity |
[no response|
|tx timeout |
}subsystem j

I provision for 2,5 Mb/sec 1 no [no |
}other bit 1 1 1
1 rates 1 1 1
!Bus yes, not (no [yes 1
|controller directly 1 1 1
land monitor available 1 1 1

} I 1
I Redundancy lyes, with lyes, in |
|capability
1
1

|addition
|of second

|hybrid or |
w ith secondj

|Packaging 40 pin 40 pin I 3 chip set 14 chip set {
1 chip chip |48, 40 and 140, 40, 48 |
1 153 pins or|and 40 pins|
1...
(Mode coden 7 only none I all all |
|handled 1 1
1 directly i 1

|Remote |s/w loaded[must be |hardwired jhardwired |
(terminal |can be |externally|with |with |
|address [read back |implemen- |parity bit|parity bit |
i_______________ 1_____________ L£ed_________ J_____________|______________ I

ITechnalogy |NMOS |Junction |CHOS |Iso-CMOS |
| | |isolated j J I
I_______________ J____________ I CMOS________ |_____________ |_______________|

2.5 VALIDATION OF 1553B INTERFACE CO M PO N EN TS

All MIL-STD-1553B components to be used by the U.S. armed
forces have to pass a validation test at the A ir Force's
Systems Engineering Avionics Facility (SBAFAC) [1]. The
tests cover six basic areat,:

Misinterpretations and deviations from the
standard.
Hu., configuration.
Test conditions at manufacturer's facility.
Basic design flaws.
Periodic and non-periodic error conditions.
Terminal response to induced errors.

This gives rise to an argument against the use of software
to implement the full 1553B protocol. It is argued that
during slight software modifications to suit a particular
application, the 1553B protocol m ay be corrupted, thus
requiring re-approval by SEAFAC for every implementation.

This problem, which is not an important consideration in
this design, could partly explain the fact that the two
British designs from Marconi and Smith Industries have

1553B INTERFACE COMPONENTS Validation of Components

secured a large portion of the mainly American market
[11] .

2.6 CO M PO N EN T SELECTION

The interface components chosen are:

Marconi MR'TV 53045 Remote Terminal Bus control
Thick Film Hybrid.
Two Marconi MCT 3231 Driver/Receivers.
Two Pascall P1264 coupling transformers for nse
with MCT 3231s.

The reasons for the choice of the MRTU 53045 are as
follows:

The MRTU 53045 is a very compact version of the
Marconi chip set.
It supports bus controller and bus monitor modes

well as the usual remote terminal mode.
The full 1553B protocol is implemented and no
external hardware or software is required for
this purpose.
The subsystem interface is relatively simple.
For bus control in particular it is very easy to
use. Almost all internal conditions can be
monitored or used to interrupt the subsystem.
The no response time out can be stretched.
The device has been used before in South Africa
and thus there is some local experience of the
device.
The design has been tried and proven overseas.
(This applies to the chip set as such, the
hybrid implementation did prove to have some
flaws.)

1553B INTERFACE COMPONENTS Component Selection

The documentation is fairJy complete, but a
little difficult to read due to awkward layout.
The component was readily available.

The main disadvantanges of this component are:

Inflexibility from the point of vie w of reserved
features of the standard.
Built-in-test word is predefined and fixed.
It is very expensive.

The choice of the M CT 3231 analog section and the P1264
transformer is dus purely to the fact that they are
directly compatible, both with the MRTU 53045 and with
each other.

CH APTER 3

TERMINAL SPECIFICATION

The factors influencing the specification are reviewer!.
The detailed specification is then presented. Finally the
level to which the design, prototype, and final versions
are expected to comply with the specification are
discussed.

3.1 INFLUENCING FACTORS

The main factors determining and influencing the
specification have been covered in the previouo two
chapters and are reviewed here.

They are:

T he requirements and
the constraints as given in the original problem
statement.
The capabilities of the bus interface components
that have been chosen

The requirements a r e :

The terminal must implement the . iIL-STD-l553B
data bus standard.
It must be general, supporting a? many of the
optional portions of the standard as possible.
It must be flexible, alliwing its use in a
variety of applications.
It must be able to interface to Multibus so as
to enable its use with existing equipment.

The terminal must make use of existing
components to interface to the bus and not
attempt a "from scratch" design.
The terminal should not occupy more than one
Multibus card.
Microprocessor products to be used are
restricted to the Intel range.

The bus Interface components selected influenced the final
concise specification of the terminal. This does not imply
that the components were selected without regard for the
specification and then the specification built around the
components. Rather the selection was the result of some
iterations of terminal specification and reveiw of
component capablities. Parts of the final specification
however, came about directly as a result of the components
ultimately chosen. For this reason the selection of the
components is covered before the specification is
presented.

The features of the components that affect the
specification are:

- The MRTU 53045 supports the full protocol with
all mode codes in remote terminal mode.
The MRTU 53045 m ay easily be configured for bus
control and bus monitor modes.
The MRTU 53045 does not allow the use of
reserved features of the standard.
The contents of built-in-test word is defined
and fixed.
The MRTU 53045 supports dual redundant busses.
The Pascall P1264 transformer will support both
direct and transformer coupled stubs.

3.2 FUNCTIONAL SPECIFICATION

The terminal may be viewed as a 'black box' which has, as
means of communicating with the outside world, a dual
redundant MII-STD-1553B bus interface, a Multibus
interface, and a generalised I/O interface.

TERMINAL SPECIFICATION Functional Specification

3.2.1 M IL -ST D -1553B Interface

The MIL-STD-1553B interface is dual redundant, that is
connections are possible to two busses which are regarded
as a dual redundant pair as defined in the standard.

The terminal is capable of operating in all three defined
nodes namely; remote terminal (RT) m o d e , bus controller
(BC) mode and bus monitor (BM) mode. It is capable of
changing from one mode to another during operation as
allowed by the standard. It m ay also change modes in
special circumstances (such as failure of the bus
controller to initiate any communication for longer than a
certain time) not normally allowed by MIL-STD-1553B. It
is capable of powering up into any one of these m o d e s .

In all three modes the terminal operates in full
accordance with the entire standard. In addition all
optional features of the standard are implemented. This
means that in bus monitor mode, all defined information
transfer formats may be intiated and that any command may
be sent. In remote terminal mode this means that all mode
codes are implemented, and that the terminal may respond
to broadcast commands if desired.

Whe n the mode command to transmit built-in-test (BIT) word
is received by the terminal in RT mode, the terminal will
respond with its status followed by a BIT word where the
bits have the significance as given in table 3.1. The full
explanation as to the meaning and use of the various bits
is given in the MEDL 15S3 LSI Chip Set - Remote terminal

[18].

1 BIT MO. 1 ASSIGNMENT i
Isb | Transmitter timeout flag |

| Subsystem handshake failure |
(Loop test failure /
| Mode T/R bit wrong |

! 4 | Illegal mode command j
(Word count low |

| 6 | Word count high |
1 7 | Broadcast transmit data received |
1 8 | Bus 0 shutdown |

| Bus 1 shutdown |
| Bus 2 shutdown |
| Bus 3 shutdown |
| Transmitter timeout on bus 0 |
| Transmitter timeout on bus 1 |
| Transmitter timeout on bus 2 j
1 Transmitter timeout on bus 3 1

3 .2 .2 M ultibus interface

The terminal has an interface functionally conforming to
the IEEE 796 bus or Multibus specification [24J. The
interface has two p a rts; a slave interface and a master
interface.

The slave interface appears as c block in the Multibus
memory address space. The size of this block is
sufficient to queue messages to and from the network in
the event of the maximum of 30 subaddresses being used in
a remote terminal subsystem. The memory is dual ported and
may be transparently accessed by the terminal internally.
Both Multibus and the terminal are able to "lock" a series
of transactions to this memory to prevent the other

gaining access. The base address of this memory in the
Multibus address space is hardware configurable.

The master interface allows the terminal access to the
Multibus in the same way as any other master. The block in
the memory address space occupied by the slave interface
specified above is not necessarily accessible to the
terminal via its master interface.

3.2.3 Generalised In p u t/O u tp u t Interface

This interface is functionally compatible with the IEEE
P959 o- Intel iSBX I/O bus [24]. It is provided to enable
the terminal to communicate with a variety of Input/Output
(I/O) devices having this interface, without the need to
use Multibus. For prototyping, this interface will be
useful to monitor the internal state of the terminal.

3.2.4 Em bedding of th e term inal in the su bsystem

The terminal has the capability of supporting the software
for a small subsystem or part of a larger subsystem on
board. Any I/O required by this subsystem could be
accessible either via the Multibus interface or the
generalised I/O interface. Such a configuration is
equivalent to the subsystem with embedded remote terminal
as defined in MIL-STD-15S3B.

3.2.5 S y stem Configurations

In this context the system refers to the combination of
terminal and subsystem. The network will have several such
systems connected to it.

The system may thus ee configured in four mai n ways (some
other combinations are obviously possible) as illustrated
in figure 3.1 . The position of the terminal/subsystem
functional interface is shown in each case.

SUBSYSTEM/

SLAVE(S)
. (I/O, MEMORY)

MASTER(S)

(SLAVE)

FIGURE 3.1(A) LINK REPLACEABLE UNIT
SUBSYSTEM/TERMINAL

IKTERfACE

‘{MASTER S' SLAVE)

MULTIBUS MASTER(S)

MULTIBUS SLAVE(S)
(I/O, MEMORY)

SUBSYSTEM/TERMINAL

J553B TERMINAL
(MASTER)

MULTIBUS SLAVE(S)
(I/O, MEMORY)

FIGURE 3.1 SUBSYSTEM

In Figure 3.1(A) the termin'1 can be regarded as a line
replaceable unit (LRU) which can be replaced by an "off
the shelf" unit in the event of a failure, without regard
for the specific subsystem it must serve. It is

anticipated that the terminal will be used mainly in this
configuration.

The configuration in figure 3.1(B) could be used in medium
sized systems where one external processor on Multibus is
just insufficient for the application. A small amount of
the load could be shifted to the terminal's local
processor.

The figure 3.1(C) and (D) configurations will be useful in
the case of a small subsystem load. The stand alone modn
also hae the advantage that it frees the terminal from
Multibus.

3.3 ELECTRICAL SPECIFICATION

The Multibus and SBX interfaces conform electrically with
the relevent sections of the respective standards.

The MIL-STD-1553B interfaces conform to the specification
in all respects for both direct and stub coupling.

The components all conform to the military temperature
ratings or are directly replaceable with components which
do.

The terminal requires power supplies at +5 volts +12 volts
and -12 volts.

3.4 MECHANICAL SPECIFICATION

The terminal occupies a single Multibus board.

The Multibus and SBX interfaces once again conform fully

IINAL SPECIFICATION

with the mechanical portions of their specifications.

There is no specific portion in MIL-STD-1553B determining
how the twisted pair stubs are to be connected, except
that the connection must be as close as possible to the
coupling transformer. This is adhered to and suitable
connectors are used. Separate pins are provided for the
direct and transformer coupled stub options on each of the
two buss e s .

3.5 COMPLIANCE W ITH SPECIFICATION

3.5.1 Hardware Design

The hardware design of the terminal presented in the
following chapters complies fully with the functional and
electrical specifications presented above, as far a& is
possible in the hardware design phase.

Some aspects of the functional specification which relate
to software, such as the ability of the onboard processor
to be able to support an application as well as control
the bus interface components during time critical
operations, could not be guaranteed at the time of this
design. It was also not possible to predict with certainty
that the hardware would fit onto the single Multibus card.

3.5.2 P ro to type

The prototype, seeks to verify the the moot important
aspects of the hardware design and test its abilty to
implement the functional specification.

TERMINAL SPECIFICATION Compliance

T he prototype adheres tc the constraint of board space
imposed by the single Multibus card. In so,me cases
availability and cost of components were limitations. For
these reasons, -ome parts of the hardware (that in any
case are fairly standard designs) were not implemented in
the prototype, and certain sections were substituted by
other simplified or less general designs.

3.5.3 Final Version

The experience of the prototype shows how mucii of the
original hardware design can be implemented on a single
card with all the design flaws eliminated. It also shows
what parts of the functional specification cannot be met.

The final product of t,‘ ! s design, if it were to be
carried through to that stage, would thus best be a result
of at letst another iteration of functional specification
and prototype (using a printed circuit board this t i me).

CH APTER 4

T E R M IN A L D E S IG N O V E R V IE W

An over "lew of tho design to meet the functional and
electrical specifjjationa is presented. It is divided into
hardware and software aspect^ of the design. The hardware
is present.>i as a block diagram design. The functions and
rec;xicements of each block are discussed. The proposed
eoiX'jare Assign is then overviewed.

TERMINAL DESIGN OVERVIEW Hardware

4.1 HARDWARE DESIGN OVERVIEW

The hardware required to meet the design specifications
can be broken down into 7 main blocks as shown in figure

The three interfaces required by the functional
specification:

Dual redundant MIL-STn-l553B interface.
Multibus interface.
Generalised I/O interface.

The medium for message buffering and communication between
the terminal and Multibus:

Dual port memory.

these resources:

Local processor.
Local memo r y .
Local peripherals.

Figure 4.1 also shows the principal parts internal to each
b l ock and the interconnections between each block.

The following paragraphs cover the purpose, requirements
and functional design of each b l o c k . The actual
implementation of each block in hardware is covered in the
appendix C while pin-to-pin connection diagrams and
configuration information are given in appendix D.

TERMINAL DESIGN OVERVIEW H a rdware

Direct Memory Access
Interrupt Controller Interrupt Jumper Matrix
Counter'Typers Generator

Buffering
Demultiplex

Interrupt
Flip-flops

FIGURE 4.1 HARDWARE BLOCK DIAGRAM

This will be responsible for controlling the MRTU 53045
chip set hybrid, as well as possibly forming part of the
subsystem. The response time demanded by the hybrid in
certain cases is fairly short. The processor should be
able to respond to an interrupt and run the necessary code
in time to satisfy this requirement (see section 4.2.3).
The processor chosen must therefore be suitably powerful
both in terms of speed and instruction set.

Since the data quantities handled by 1553B are
intrinsically 16 bit, it makes sense to use at least a 16
bit processor.

A watchdog circuit is provided to restart the processor in
the event of it "hanging". This may be either a hardware
watchdog, which will only detect that the processor has
stopped running, or a software watchdog that, together
wit h suitably written software, will also detect that the
processor is hung in a software loop.

4.1 .2 Local M emory

The processor will require some ROM for initialisation
after power up and to implement the terminal function. If
it is required to implement a part or all of the subsystem
as well, considerably more program memory may be required
(see section 4.2). The ROM memory must thus be expandable
up to at least 32k. EPROMS are used at this stage.

Some local RAM is provided, It is anticipated that this
will be used simply as scratch pad memory since all the
data bo be handled by the terminal will be stored in the
dual port memory. However in some situations, notably in

7,'fiRMINAIi DESIGN OVERVIEW Hardware

prototyping, this memory could be useful as program
storage for code which has been downloaded. Since it is
necessary for all components that are used to be available
in M IL versions, dynamic RA M cannot be used. At least 16k
of static R AM is therefore required.

4.1 .3 Dual R edundant M IL-ST D -1553B Interface

This block represents the major portion of the work in the
design, particularly as very few guide lines were
available. Some simple examples are given in the Subsystem

This provides the interface as specified to two 1553B
busses (allowing both direct and transformer coupling on
each) on one side, and clean interface to the local
microprocessor system on the other.

It consists of thia Marconi bus interface components and
the required circuitry to interface these to the local
bus, and to provide suitable signals for interrupting the
local processor. The interface to, and operation of, the
Marconi 53045 chip set hybrid is summarised in Appendix B.

The 8 bit hybrid data bus must be interfaced to the 16 bit
processor data bus with a suitable buffering to ease the
response times required of the processor. Handshaking must
be supplied for these data transfers. A method of writing
to and latching the control input lines is required, as
well as a means of reading the status output lines. Those
output lines which indicate events (rather than states),
must either be latched to provide status information, or
modified (if necessary) to provide interrupts.

s, [20 pp 28-
30]

TERMINAL DESIGN OVERVIEW Hardware

Since the terminal has to be flexible and the exact
function of some of the lines on the MRTU 53045 is not
clear, the interface is more complex than is strictly
necessary. For instance, several output lines have been
made suitable for both monitoring as status, and causing
interrupts as it is not known at this stage which will be
more usef u l . After the prototype has been fully tested in
all modes it may be possible to simplify the supporting
circuitry.

The hybrid has, by means of the current word count (CWC)
status lines and certain strobe lines, the ability to
implement a DMA type interface. While this could be
useful for a simple application, it is not a viable method
of transforing data in this case for the following reason:

The use of this feature of the hybrid will necessitate
either the use of a triple port memory (since both
Multibus and the local processor also need access to the
d a ta), or the design of handshaking and isolation to
enable the hybrid to gain control of the local bus. The
first method is obviously impracticable, while the second
will be expensive on board area and will tie up the local
bus for approximatly two microseconds for each transfer.
Transfer of data can be achieved more efficiently by using
a normal DMA channel.

4 .1 .4 Generalised ? /0 Interface

T his interfaces the local bus to the SBX I/O bus. In order
to support all possible modules that may be attached, two
interrupt lines and one DMA channel are required. It is
hardware configurable for different modules.

TERMINAL DESIGN OVERVIEW Hardware

4.1.5 M ultibus Interface

This consists of a master and a slave interface. The
master interface allows the local processor access to the
Multibus while the siave interface allows Multibus access
to the dual port memory.

These could be totally independent of each other, however
it is convenient (from a space point of view) to combine
certain lines which are common to both. In particular this
could be done with the data and address busses. The local
busses could be interf^cyd to the Multibus busses v ia the
dual port busoeo. i duplication of bus isolation
and byte swap compcr

The slave interface also provides hardware selection and
decoding of the Multibus dual port address.

The Multibus interrupt lines are available for use either
to or from the terminal, the master interface does not
support b us vectored interrupts.

4 .1 .6 Dual P o rt M emory

This block is composed of three sections? the memory
itself, interrupt flip-flops, and the arbitration logic
and bus buffering. Those are linked by the dual port data,
address, and control busses.

The memory has to be large enough to queue messages to
and from the network in the event that the full house of
30 subaddresses are used in a remote terminal (see section
4.2). The memvry must thus be expandable to 32k. The
memory must be static RAM for the same reason as the local
memory.

The interrupt flip-flops are provided as a means for the
local processor to generate interrupt for another
processor on Multibus. These flip-flops are necessary
because Multibus does not allow the use of edge triggered
interrupts. They are used to cause an interrupting
condition which must be reset by the service routine of
the interrupted processor. The latches are set and cleared
from within the dual port address space.

The arbitration logic manages the bus buffer and RAM
control lines to effectively couple either the local
processor bus, or Multibus, to the RAM, based on which has
asserted e select line. The arbitration logic also allows
each bus to lock itself to the memory by means of a lock
line. The arbitration logic further provides for the
coupling of the local data and/or address busses and the
corresponding Multibus busses via the dual port address
bus when the local processor is accessing Multibus, if the
scheme outined in 4.1.5 above is implemented.

4 .1 .7 Local Peripherals

Based on the above discussion, certain peripheral devices
are required.

One direct memory access channel in needed to service the
1553B bus interface and another for the SBX interface.

At least one interrupt controller device is required to
service the 1553B interface, the SBX interface and
Multibus interrupts. Not all of the possible sources of
interrupt will be required for a given application.
Particularly this is true of the 1553B interface, where
m any signals have been designated as intei rupt sources in

the prototype design, in case they are needed. A second
interrupt controller however ma y be required if the
minimum number of lines that may need service in any
application exceeds the number provided by one controller.

An interrupt jumper matrix is provided to enable selective
strapping of optional interrupts to the controller(s).

An event counter is useful in the case of a terminal which
is to be used in bus monitor inode. Conditions occuring on
the bus (such as parity errors) can be counted by
connecting the parity error interrupt line to the event
counter. Thus the input to this device must also go to the
above interrupt jumper matrix.

An interval timer is required to provide a regular
interrupt (tick) to the processor if a multitasking
executive is to be used (see section 4.2).

Sundry clock signals are generated for use by various
devices.

4.2 SOFTW ARE DESIGN OVERVIEW

The software design presented here is not implemented in
this project. The scope of the project covers only test
software to verify the operation of the prototype
hardware, and to check the ablility of the local processor
to respond to the. network within the time constraints
imposed by the protocol.

This section is provided to show the motivation for some
of the features that have been included in the hardware,
and to suggest; an approach for software for the terminal
to be written at a later date. This approach will

TERMINAL DESIGN OVERVIEW________________________________Software

accommodate both simple and complex applications in its
structure.

The various strategies for program control of the hardware
itself (mainly the MRTU 53045 hybrid) are covered in the
appendix c under the 1 ardware design as, in some sections,
the hardware design is a result of hardware/software
interface considerations.

4.2.1 Range of Complexity of Term inal Softw are

The terminal software could range in complexity from a
very simple remote terminal application to a bus
controller/remote terminal which supports the full
protocol and many subaddresses.

A n example of a simple application Is a remote terminal
that interfaces an instrument on a plant to a 1553B
network. If the output of the instrument is a single 16
bit value, then only a single type of message transfer
format needs to be accommodated, namely a transmit command
to transmit a single word. The bus controller should not
send any other type of command to the RT. In this case the
transmit/receive bit, eubaddress ana word count may be
ignored by the RT. It does not need to respond to
broadcasts or support the subsystem busy bit, the service
reguest bit, the transmit vector word mode command, or the
synchronise mode command. All that is required of the
terminal software, in this case is, that it continuously
reads the output of the instrument, check the MRTU 5304%
hybrid for a word request and if true, supplies the value.
Note that this is an example of the subsystem residing
locally on the terminal board.

An example of a complex application is the case of a

TERMINAL DESIGN OVERVIEW Software

remote terminal which supports the use the full 30
subaddresses and is capable of accepting bus
oontrollership. All information transfer formats, all
status bits, and all mode commands are supported in both
RT and BC mode. In RT mode, messages to and from the
network must be buffered and queued. In addition part or
all of the subsystem software resides locally.

Both extremes of application are accommodated in the
following proposed software structure.

4 .2 .2 P roposed Softw are S truc tu re

The software is separated into tasks. The b us interface or
terminal software is considered as one task, while the
subsystem is considered as consisting of at least one task
but possibly several tasks (corresponding to different
subaddraeses). The bus interface task communicates with
the subsystem tasks via a suitable data structure in the
dual port memory.

The bus interface task always runs on the terminal's local
processor, while the subsystem tasks m ay run locally or on
other processors on Multibus. If one or more tasks besides
the bus interface task reside locally, some form 01?
multitasking executive must be provided.

4.2.2.1 Dual P o rt M emory D ata S truc tu re

Each of 30 potential subsystem tasks (one for each
subaddress) is allocated a pair of buffers in the dual
p ort memory, one for input from and the other for output
to the network.

The base of the dual port memory contains a table of
pointers (offsets relative to the base of the dual port
memory) to the input and output buffers to be used for
each subaddress. This allows more than one subaddress to
be assigned to the same task by placing the same buffer
addresses in the pointers for each subaddress.

Figure 4 . 2 (a) is a diagram of the dual port memory using
this scheme.

The buffers are managed as queues of optional size and
also provide for the passing of control information.
Figure 4.2(b) is a diagram of a possible buffer structure.
The max queue size indicates the size of the queue area.
The following th.ee locations manage the queue. The next
12 locations could be used for passing control information
(such as subsystem busy, subsystem status, service request
synchronising word and vector word) or semaphores
indJcut-'ng the validity of data.

A dual port memory of 32k will allow an application to use
a full house of subaddresses each having separate input
and jutput buffers capable of holding seven full length
(32 word) messages as follows:

Buffer pointers: 2 x 30 = 60 words
Each buffer: 3 2 + 7 x 3 2 - 256 words
Total size of data structure: 60 + 30 x 2 x 256

=* 15420 words
= 30840 bytes

Dual port memory of 32k - 2**15 ■= 32768 bytes

CONTROL
INFORMATION

BUFFER

BUFFER
MANAGEMENT

POINTERS
Offset + '0-.

FIGURE 4.2(B)

TERMINAL DESIGN OVERVIEW Software

4.2.2.2 B us Interface T ask

This task may be composed of up to three routines
corresponding to the three possible modes ? remote
terminal, bus controller, and bus monitor. Control is
passed from one routine to another (if present) when the
terminal changes mode under the conditions specified in
the standard.

The RT routine is applicatio»« '-dependent. It is
responsible for:

Setting up DMA transfers of the correct length
to and from the correct location in the dual
port memory in response to transmit and receive
commands.
Monitoring the service request subsystem status
and busy bits of each subaddress and providing
the logical OR of these bits to the hybrid.
Providing the vector word in response to a
transmit vector word mode command.
Synchronising the subsystem in response to a
synchronise mode command with or without an
associated data word.
Correctly setting the dynamic bus control
acceptance bit and passing control to the BC
routine if r. dynamic bus control mode command is
received a. , the terminal is able to assume
bus control.

The BC routine will be application dependent. No specific
functions are required of a terminal in BC mode by the
standard. This routine may pass control to either the RT
or BM routines after successfully passing bus control to
another terminal on the network.

TERMINAL DESIGN OVERVIEW Software

I

!
The BM routine is also application independent. No
specific functions are required of a terminal in BM mode,
but the terminal is restricted in that it cannot transmit
and in that all information gathered is for off line use.
The BM routine may pass control to the BC routine in the
event that the bus has been sensed to be silent for longer
than a specified period.

4.2,2.3 T he Su b sy stem T asks

These are obviously application dependent. They have
access to the data structure in the dual port memory.
Suitable primitives could be provided to allow these tasks
to enqueue and dequeue messages, and to set and read
control information from the buffers.

4.2.2.4 T he M ultitasking Executive

The requirements of this executive need further
consideration, but a fairly simple scheme would probably
suffice. Provision is made for a tick or regular
interrupt in hardware on which to run the executive.

Since Intel components are being used, a possible choice
for an executive could have been the RM X operating system.
However, besides being far too complicated, this executive
is unsuitable due to the length of time that it disables
all interrupts.

A further point about interrupts is that there are certain
conditions which will require immediate response from the
local p r o c e s s o r s u c h as the receipt of a command by the
hybrid when in RT mode. These interrupts must be made high
priority and must never be disabled. It will not be

TERMINAL DESIGN OVERVIEW Software

necessary for the service routines of these interrupts to
modify the state of any of the tasks, so they will not
affect the operation of the executive if they occur while
it is rescheduling tasks.

4.2.3 Im plem entation of Softw are Schem e

Certain aspects of this software design will have to be
tested on the prototype board in order check the viability
of the scheme.

In particular the amount of processing that can be done
between an interrupt indicating the reception of a command
in RT mode and the hybrid requiring a DMA transfer, is
important. During this time the processor must determine
what type of command it is and, if it is a transmit or
receive command, initialise a DMA channel. The DMA
initialization involves using the subaddress and
transmit/receive bit to get the buffer pointer from ts
table in the base of the dual port RAM, and using this
pointer to obtain a queue input or output pointer
(depending on the command received) which is the address
to or from which ‘che DMA must be programmed to o c cur. The
w or d count must also be programmed into the DMA channel.

If the processor proves unable to handle this manipulation
in time, a higher level of protocol could be used to
implement it. For example, a receive command could be sent
to the remote terminal routine to tell it what type of
command it will receive next, and to what subaddress it
will refer, so that the routine can prepare the DMA
channel.

The ability of the processor to handle extra tasks besides
the bus interface task must also be tested.

CHAPTER 5

PROTO TYPING AND TESTIN G

The methods used in the construction and debugging of the
prototype, and the differences between the hardware design
and the actual prototype terminal are discussed and
justified. The methods employed during debugging are
covered. Finally, the testing of certain aspects of the
design, and the results of these tests are discussed.

5.1 PR O TO TY PE CONSTRUCTION

A small amount of initial prototyping was done on
breadboard during the design phase, mainly of the dual
port arbitration logic.

The ia?in prototype, at the end of the design phase, was
constructed using an incremental build-and-debug
technique. This has the advantage that any error that
occurs can be pin-pointed within the section that is
currently being tested (providing that previous sections
have themselves been fully debugged). It also builds
confidence in the design and prevents repeated errors
before construction.

Wire-wrap was used for the following reasons:

It is well suited to the above build-and-debug
technique.
Wire-wrap is easy to modify. The complex nature
of the 1553B bus interface in particular, and
the doubt as to the exact behaviour of some of
the pins on the Marconi components, made it
likely that a fair number of changes would have
to made in this area.
Xt was felt that better board density could be
achieved using wire-wrap than a double-sided
p.c. board.

Power supply decoupling was included as follows;

Two 22 uF capacitors across 5 and 0 volt
supplies at their input connections to board.
One 0.1 uF capacitor across the supply of each
major component (processor, memories, PPIs,
hybrids etc) , for each supply voltage.

PROTOTYPING AMD TESTING construction

One 0,1 uF capacitor across the 5 and 0 volt
supplies of every two SSI and MSI TTL chips.

All wiring was continuity checked prior to the insertion
of components. In the case of expensive devices
(particularly the Marconi hybrids), all surrounding
components were inserted, and the relevant socket was
checked for ovtput-to-cutput connections and correct power
supplies.

5.2 PR O TO TY PE / DESIGN DIFFERENCES

Due to the board space constraint and the expense and
unavailability of certain components, some omissions, and
simplifications were made to the full design as presented
in the last chapter. The design principles of all the
important areas of the terminal are, however, still
represented and testable in the prototype. The changes are
detailed below.

5.2.1 Generalised I /O Interface

An S3X I/O module having a standard serial interface was
required for debugging and testing purposes in the
prototype. Such a module was considered too expensive to
justify its purchase for this limited use and none v'vtud
be obtained on loan.

Secondly the motherboard side of the connector required by
SBX was unobtainable.

For these reasons, a serial interface was substituted for
the SBX interface design. The design of this interface is
straightforward. An 8251A USART with standard line drivers

and receivers is used. It is enabled by PCfi2*, the same
chip select line that the SBX interface used. The transmit
and receive baud rate clock is provided by the 186
internal timer 0 .

T he detailed pin-to-pin diagrams fc>r both the SBX
interface and the serial interface are included in
ai^endix B, as it was only when construction of this block
w as about to begin that the change had to be made.

5.2.2 M ultibus M aste r Interface

The master interface has been omitted for lack of space.
Since the interface is of very standard design, and it is
expected that most applications will not make use of it,
this does not downgrade the prototype substantially.

There is thus no detailed pin-to-pin schematic for this
p art of the design in appendix D.

5.2.3 Bus Interface Busy Latch

The 16 bit busy latch has been replaced with an 8 bit
latch, and a correspondingly smaller data selector is
used, to save space. The principle o£ operation is
identical. Few applications will require the use of more
than 8 subaddresses.

5 .2 .4 Dual P o rt RAM

O nly one pair of sockets is supplie.. in the dual
port memory. This allows a maximum si. 16k which will
be sufficient in many applications.

5.2.5 In terrupt Jum per M atrix

The interrupt lines from the SBX interface are obviously
not present, while the Transmitter and Receiver Ready
lines from the USART are. These could be used as
interrupts, or be connected to the unused DMA request line
DRQ1 which is routed to the matrix in the absence of SBX.

5.3 DEBUGGING AND TESTIN G M ETHODS

The term debugging as used in this chapter refers to
the identification and elimination of errors introduced at
the schematic drawing, or construction stage, but tfces not
refer to fundamental design errors. Testing refers to the
verification of the design itself and its ability to meet
the specifications.

A Nicolett Logic Analysis system was extensively used at
all stages during construction and testing. This provides
both a 16 channel timing analyser -;nd a 48 channel state
analyser, both with complex trie • modes which may be
coupled together to give a common trigger.

5.3.1 Initial Debugging

The 186 processor together with RO M was the £irs‘4 part of
the design to be constructed and debugged. No emulation
facilities were available for the 186 processor. The
method used to get the processor going, was to place a
simple assembler program into EPROM, and than to examine
the hardware with the logic analyser.

When the above section was working, it was possible to
drive subsequent sections under software. Once the serial
interface was added, some control was possible, and a
certain amount of observation of the hardware could be
done without the use of the logic analyser.

At this stage the method of putting every test program
into EPROM was still employed. Assembler was being used
rather than PASCAL or C (both of which were available),
for its ease in driving the hardware directly. This method
soon became cumbersome with longer programs, due to both
the problems f debugging the test software itself
(usually using the Nicolett's stat analyser), and the
turn around time of changing tl c'tware. A RO M based
monitor was therefore required nable downloading and
running of software, setting of breakpoints, and
examination of internal states, etcetera, via the serial
port.

5.3.2 Use of Fortl a Development Tool

The above requirements were fulfilled with many additional
advantages by the use of Forth.

A version of 8086 fig-Forth was used. Tuis had to be
configured, and a custom initialisation r - tuine had to be
provided, for the particular hardware. Thi-t version copies
the Forth system from ROM into RAM where v can run, and
then passes control to it. The Forth ;r - em requires
approximately 6k in both ROM and RAM. Hotw.v. r , in order to
make any real use of it, at least twice t imount of RAM
is needed.

The decision to use Forth was made after its use was
demonstrated in a similar application, although its real

power was not appreciated until after some use. Forth, a
threaded interpretive language, is both an operating
system of sorts, and a language which has high level
constructs but allows low level manipulation. It's main
advantage however, is it's extensiblity. Extra words to
perform a desired function can be added to the system
using previously defined words. If the function cannot be
achieved using previously defined words, or the function
is time critical, a new primitive word written in
assembler may be added to the system.

The construction of the required monitor functions is thus
a straight-forward matter. The real power of Forth as a
development tool is realised when these basic monitor
functions are used to build more complex diagnostic
features. Very little time is required to learn to use
Forth effectively for this type of application, and having
done so, such extended features can be created very
rapidly.

The version of Forth used, had already had most of the
required assembler primitives already built in. A few
extra primitives were added to drive the 1553B bus
interface in time critical situations. A Forth utility had
also been written to download machine code in Intel hex
format.

The use of Forth thus made the debugging during the final
stages of the prototype construction, and the testing of
the design, far quicker and less laborious than would
have been possible with a simple monitor, or even an
emulator.

5.4 DESIGN TESTIN G AND RESULTS

Only the testing of those areas of the design which are
n o vel, is included in this section. These are the MIL-STD-
1553B bus interface and the dual port memory. The SBX
interface would also have been covered, had this been
included in the prototype. However, this is a fairly
simple circuit and is unlikely to contain any major
errors.

5.4.1 Dual P o rt Memory

This was debugged and tested with the aid of a single
board computer on Multibus.

One of the PALs had a design error in that the data
transceiver on the local port was being enabled on all 186
bus cycles, not only those to the dual port memory. While
this made no difference to a write cycle, bus contention
would occur during a read. No testing was necessary to
detect this fault, since as soon as the transceivers were
inserted, the processor failed to run. The solution was to
qualify the transceiver enable signal by the 186 dual port
select line, which could fortunately be achieved
temporarily, using external components, without having to
reprogram the PAL before testing could continue.

With this problem solved, access to the dual port memory
from both individual ports was tested in the same w ay that
any memory test would be done? by writing to the memory
and then checking that what is read back is correct. The
same test was then done across the memory from one port to
the other.

Apart from exposing any wiring bugs on the data and
address busses, this checked that the arbitration logic
was allowing both ports read and write access to the
memory. Two bugs were found in the other PAL at this
stage. These were also temporarily correctable by
inverting two inputs, with these corrections the control
logic could be assumed to be correct.

In order to test the arbitration logic fully, both
processors were then net to perform continuous reads and
write on the memo r y . This test was still running after a
long period of time with neither processor hanging. The
arbitration logic waveforms, as observed by the Nicolett
timing analyser, also indica.sd that all was correct.

Finally, to test the locking feature designed into the
arbitration, both processors were made to execute a simple
routine which performed locked exchange transfers on a
semaphore flag in the dual port memory (see Forth code in
appendix F) . With this test, both processors would hang
every few minutes, indicating that each thought that the
other h ad set the semaphore. The timing analyser showed
all waveforms to be exactly as expected, and no fault
could be found until the analyser was set to trigger on
two access requests occurring very close together. If a
Multibus request in one period of the 18 MHz arbitration
clock was followed by a local request in the next, a race
around condition would occur in which the arbitration
logic oscillated between the ports (irrespective of the
lock line settings), until one port removed its request
(up to 150 microseconds later!).

The fault was due to the fact that two latches were used
in the logic, ore to synchronise and present a stable
input to the other which latches the result of the
arbitration cycle. The one clcjk period delay in the

signal fed back (via some combinational logic) from the
second latch, was causing the condition to occur. The
second latch was replaced by a Schmitt trigger to ensure
that the arbitration output would assume one or the othur
state even if the setup and hold times on the remaining
latch were violated.

With all errors found, the PAL<r were correctly
reprogrammed.

5.4 .2 1553B Bus Interface

After the circuitry surrounding the MRTU 53045 hybrid was
debugged and working as designed, the hybrid was inserted,
and bus interface tested as a whole.

Since only one prototype terminal had thus far been
produced, these tests involved driving the hybrid in bus
controller node. Only bus control options 1 and 2, and
(partially) option 0 could be tested at this stage. The
hybrid performed as expected except that:

When a receive command was initiated using
option 0 , the command would be transmitted
correctly, but the hybrid would not assert its
Data Transfer Reguest line or attempt to strobe
in data from the TX latches. After carefully
checking the signal timing against that given in
the MRTU literature, it was concluded that this
was a bug in the hybrid. Suggested solutions
such as toggling the RT/BC* line a few times
during initialisation made no difference, and
this problem remained unresolved at this stage.

As soon as the hybrid was powered up, it would
begin to send pulses from its RESET line. These
would prevent the processor from ever getting
through the initialisation code. If this line
was disconnected, however, and the processor was
allowed to complete the initialisation code, the
pulses would disappear. This is obviously
another bug in the hybrid. The problem was
resolved by masking off the RESET line and
enabling it after initialisation.

Testing was done at this stage using assembler, an example
of which is included in appendix F.

Since the problems at this stage were due to the hybrid
rather that the design -,f its surrounding circuitry, and
since an option 0 transmit command can be simulated
(rather more tediously) by using option 1 and 2 commands,
a second prototype was constructed in order to enable the
testing of the terminal in remote terminal mode. The
second prototype only includes those parts of the design
necessary to implement the 1553B bus interface and run
Forth. The dual port memory, Multibus slave interface, and
external PIC are not included (but could be added).

The same two bugs were present in the second hybrid,
however the first problem was solved as soon as the two
prototypes were connected up together on a bus. It turned
out that, tor rwiaa reason, as soon as a hybrid had
received a transmission from another terminal, it would
w ork correctly.

It was thus possible to test the bus interface in remote
terminal mode. Not every possible command combination was
tried, but a representative selection was tried and all
were found to work. Testing at this stage was done with

Design Tastii

Forth using assembler primitives which were added to the
end of the dictionary in ROM to drive the hybrid during
time critical periods. These primitives and the Forth
source used are included in appendix F.

A design error waa found with the DMA request line. This
was due to the speed with which the DMA channel, once
programmed, is able ro service requests even when
programmed with the destination synchronisation option
(where the bus is automatically relinquished and must be
regained after every transfer). On requests for a word to
be transmitted, the DMA request line DMARQ was not negated
until the Data Transfer Request line was negated, during
which time the DMA would transfer two or sometimes three
words to the TX latch. The hybrid would only transmit the
last of these on the network. The problem 'jived when
the request was modified to be removed imt a word
was written to the TX latch.

With the 1553B bus interface design thus verified to be
functionally correct, some tests were done on the ability
of the processor to service, in the required time, an
interrupt indicating a command had been received.
Servicing of this interrupt is described in section

A simplified service routine was written first, to extract
the required information from the MRTU 53045 and use it to
determine the command type and, if necessary, fully
program the DMA channel. No use of indirect access into a
buffer structure, as proposed, was attempted initially.
Several versions of the routine were tried using whatever
features and tricks with the assembly language as could be
found. An example of the assembler interrupt service
routine is included in appendix F.

Forth using assembler primitives which were added to the
end of the dictionary in ROM to drive the hybrid during
time critical periods. These primitives and the Forth
source used are included in appendix F.

A design error was found with the DMA request line. This
wa s due to the speed with which t h * DMA channel, once
programmed, is able to service requests even when
programmed with the destination synchronisation option
(where the bus is automatically relinquished and must be
regained after every transfer). On requests for a word to
b e transmitted, the DMA request line DMARQ was not negated
until the Data Transfer Request line was negated, during
which time the DMA would transfer two or sometimes three
words to the TX latch. The hybrid would only transmit the
last of these on the network. The problem was solved when
the request was modified to be removed immediately a word
was written to the TX latch.

With the 1553B bus interface design thus verified to be
functionally correct, some tests were done on the ability
of the processor to service, in the required time, an
interrupt indicating a command had been received.
Servicing of this interrupt is described in section

A simplified service routine was written first, to extract
the required information from the MRTU 53045 and use it to
determine the command type and, if necessary, fully
program the DMA channel. No use of indirect access into a
buffer structure, as proposed, was attempted initially.
Several versions of the routine were tried using whatever
features and tricks with the assembly language as could be
found. An example of the assembler interrupt service
routine is included in appendix F.

With the hardware arrangement, the first word for a
transmit command must be written to the TX latch within
20,4 microseconds of the INCMD interrupt line being
asserted, and for a receive command, the first word must
be fetched from the RX latch within 38,5 microseconds. The
latter time could be achieved for the simplified scheme,
but even with the most compact service routine was unable
to meet the time for the transmit command on every
occurrence (interrupt service latency played a part h e r e) .
The situation is eased slightly by the use of the NBGT*
line instead of INCMD* as a source of the interrupt, as it
occurs approximately 1,5 microseconds earlier, but this
does not solve the problem.

The results of these tests therefore show that the
processor, driving the current hardware arrangement, is
nowhere near fast enough to implement the software scheme
outlined in the design overview without the addition of a
higher level of protocol. Possible solutions to this
problem are discussed in the conclusion.

CHAPTER 6

RECOM M ENDATIONS AND CONCLUSIONS

The terminal design is critically reviewed. Possible
alterations, additions and exclusions to improve the
terminal design are discussed and a prediction is made as
to the final form of the terminal. Suggestions are made
for further work on the terminal. Finally, the main points
arising from the design are summarised.

6.1 DESIGN REVIEW

The design provides a usable, and compact, general purpose
MIL-STD-1553B data bus terminal that meets almost every
aspect of the specification. However, in the light of the
experience with the prototype, the terminal design falls
short of that required of it in some respects. This may
partly be ascribed to a specification which can now be
seen to be unrealistic in terms of the constraints imposed
on the terminal.

The main criticism of the terminal design and
specification may be levelled at the following aspects:

Complexity of the proposed software scheme, in particular,
the complexity of the dual port memory data structure. The
overhead in getting data in ancl out of the buffer queues
is substantial, thus making it impossible to transfer to
or from the structure directly, in response to an
interrupt from the network.

B u s i n t e r f a c e software overhead. Because of the need to
conserve space, some operations that could have been done
in hardware were left to software. Examples of this are;
the use of only one pair of latches, for passing words
between hybrid and subsystem, and the use of an external
DMA channel rather than the hybrid's DMA type lines.
Reasons for these decisions were given in the design. It
should also be noted, that the interface between the 1553B
bus and the subsystem must, of necessity, be a software
one (otherwise the terminal hardware would be specific to
a particular subsystem).

configurations in which the terminal can operate, as
given in the functional specification, necessitates the

RECOMMENDATIONS f ... CONCLUSIONS Design Review

inclusion of box • the Multibus master and slave
interfaces, as well fta the generalised I/O interface.
Considering the space limitations, this is unrealistic.

C o a t . Although this was never stated as a restriction, it
should be noted that the terminal designed will be very
expensive to produce.

Wit h the exception of the cost, the above problems are
probably due to two factors; underestimation of the space
constraint, and failure to recognise the limitations of
the 186 processor or to relate the hardware more closely
to its capabilities.

6.1.1 Possible Design Im provem ents

As mentioned in the specification chapter, the naxt
prototype, if one is built, will first require a revised
specification taking into consideration the above points.
Possible hardware improvements that could be implemented
in a second prototype are:

Either the Multibus master interface, or generalised I/O
interface should be omitted. They have a similar function,
namely to allow on-board subaddress tasks to communicate
with I/O devices. The Multibus interface the is more
flexible of the two as it allows access to bigger address
space, and a wider range of I/O devices.

If the Multibus interface is retained, the address bus
could also Ire routed via the corresponding dual port bus,
as has been done with the data bus. This would require
t hat the address buffers on the Multibus port be
substituted by transceivers, and that the appropriate
controls be generated by the dual port abitration and

control logic.

If the generalised I/O interface in the form of SBX is
retained, most of the circuitry involved could be
implemented in a PAL.

The layout of the input lines on the bus interface PPIs
could be improved upon. The difficulty in manipulating
words read-in using the current arrangement, can be seen
from the interrupt service routine in appendix F. A better
layout would reduce the time taken to program the DMA
channel.

Finally some extra LEDs (besides the four used to indicate
w hat mode the terminal is i n), could be added to indicate
such things as error conditions in the terminal.

6.2 FUTURE W ORK ON TERMINAL

Before the construction of a second prototype, or
modification uf the first one, the proposed terminal
software design should be implemented and tested.

A method of overcoming the problem of access to the dual
port memory data structure would have to be devised.

One possibility is the use of a higher level of protocol.
This was mentioned under the software design overview. It
involves building one transfer out of two. The first
transfer is always a receive command of specified length
and format, containing the information required to access
the relevant table and set, up the DMA channel in
preparation for the next transfer. This has a major
disadvantage in that special p r ovis. >n would have to be
made in order to use this terminal in any network in which

this protocol is not no^.'sally implemented.

There is a second possibile hardware method of solving
this problem. That is by using separate DMA channels for
transmitting and receiving. This would mean that both
channels could be kept partially set-up for their
respective operations, and the time to program them would
be reduced. When PAL 2 on the bus interface was
reprogrammed for the last time to eliminate some errors,
an extra line. TXDMARQ was added on an unused output to
enable this to be done. (For an RX DMA request, simply use
the RXINT line.)

Another point that should be investigated, is the writing
of software that makes use of the software watchdog.

The results of these investigations will indicate ar*y
other hardware alterations thi*t should be made, besides
those suggested in the previous section. A final version
of the software (probably more simple than the one
proposed) could be designed, and implemented taking into
consideration any hardware changes that were made.

6.3 CONCLUSIONS

Several conclusions and observations arise from the work
done on this project.

There is a fair range of MXL-STD-1553B components
available from British and American manufacturers, and the
indications are that the standard is beginning to find
industrial applications. Of the components surveyed, none
was found that would have both completely implemented the
15538 protocol, and given access to the reserved pLrts of
the standard.

The Marconi 1553B chip set. in particular the hybrid
version thereof, provides a full implementation of the
1553B protocol, with all command servicing that does not
involve the oubsystem done internally. It is compact and
has a reasonably straight-forward hardware interface. It
proved therefore, to be almost ideal for the requirements
o f this terminal. It is not completely bug free, but those
bugs that were found could be easily solved.

The Intel 80186 processor is a very useful device. It is a
fully 8086 compatible microprocessor, while having the
mos t common peripheral devices on-board. Considering the
equivalent individual components, it is very reasonably
priced. It is highly suited to medium complexity
microprocessor systems, the development time of which
should be significantly reduced. It was also ideally
suited to the hardware requirements of this project.

Th e use of PALe allows the replacement of a large number
of small T TL chips by a single component. Larger PALs than
those used in this project will shortly be available and a
further prototype may be able to achieve an even more
compact implementation by using them. The PAL design
method employed in this design, however, proved laborious
and error prone. If any major use of PALs is planned, a
design aid is essential.

Finally, a MIL-STD-1553B data bus terminal has been
designed that should, with some further work on software
aspects, satisfactorily meet the requirements of the
problem statement. It is hoped that the oomponent survey,
design, and test results presented in this report, will
form a useful contribution to the local knowledge of MXL-
STD-1553B and the major components used.

APPENDIX A

APPENDIX A

M IL -ST D -1553B BUS INTERFACE COM PON ENTS

A .l ST C RANGE

These components are based on a chip set designed by Smith
Industries and MCE.

A.1.1 FC15532 Rem ote Term inal Unit

This is a full protocol unit in a single hybrid package.
It has a built in analog section and a dual redundant
facility. The data bus is 16 bits wide and is bufferd by a
FIFO memory large enough to hold an entire message. There
are fourteen control and status lines to interface to the
subsystem but all routine bus protocol (mode codes etc.)
are handled internally. There is, however, no way of
initializing transmission on the bus, thus the unit cannot
be used as a bus controller.

A .1.2 FC15531 Rem ote Term inal Unit

As above, but with only one bus interface.

A.1.3 FC15533 Txrx E ncoder/D ecoder Module

This device is also housed in a single package.

On the receiver side, it performs the functions of
receiving words from the bus (while checking Manchester,

parity and sync), indicating type of sync, RT address
matching and broadcast detection.

On the transmitter side, it adds the required sync and
parity to each word to be transmitted. Finally it has a
transmission time out facility. Like the 15532, it has a
built in analog section but only interfaces to one bus.

The device implements or enforces no protocol. It could be
used in a bus controller since transmission of any word
m ay be initiated. It has a 16 bit data bus wit.1, a single
w-,rd buffer.

A .1.4 FC15535 Bus Driver/Receiver

Single driver/receiver with a transmission time out
facility.

A.1.5 FC1553TI Transform er

Isolation transfromer with a turns ratio of 1,41:1
conforming to 1553B requirements.

A.2 M ARCONI/CTI RANGE

A wide range of products is available based on an Iso-CMOS
LSI chip set designed by MEDL (Marconi Electronics Devices
Limited). CTI is a Marconi U.S. subsidiary.

MIL-STD-1553B COMPONENTS Marconl/CTI Range

A.2.1 CT1088 Chip Set

This set allows use as a passive monitor, remote terminal,
and bus controller. It implements the digital part of the
bus interface only and separate analog and transformer
sections have to be added. The minimal configuration is
four chips: an internal control logic unit, an interface
unit, an encoder and a decoder. This interfaces to a
single bus. Further decoder chips can be added, up to a
maximum of four, to interface to extra busses.

These chips implement the full protocol and only the
protocol. In addition the no response time-out and
contents of the BIT (built-in-test) word are defined and
fixed. All routine (mode code) processing is performed
internally to the chip set. An extensive self-test and
transmitter time-out are also included. The data bus is
only 8 bits wide and is bufferd to the level of a single
data word.

A .2.2 0 * 1 0 8 9 Chip Set

This is the same as the above but can be used only for
remote terminals.

A.2.3 Hybrid Versions

Both manufacturers have produced some hybrid versions of
these chip sets. MEDL have the MBTU 53045, MRTU 53040,
M RTU 53055 and MRTU 53050, while CTI sell the CT1602 and
CT1610. Some of these incorporate some extra features such
as: on board oscillator, bus select logic, TTL buffering
of control and data lines and an extra decoder chip.

A .2 ,4 C T 1 5 5 5 D a ta T erm in a l B it P ro c e s s o r

This device does not implement the 1553B protocol. It
could be used for both bus monitor and bus controller in
addition to the remote terminal mode.

On the receive side it performs address, broadcast, sync
and made code recognition, as well as Manchester and
parity validation. All command, status, and data words are
received. For transmission, no restriction is placed on
the word type. The desired sync and correct parity will
simply be added to any word to be transmitted.

All words are passed to and from the subsystem via an 8 or
16 bit bus with one level of word buffering. Self test and
transmitter time-out are included.

A.2.5 Analog Sections And T ransform ers

A very large range of hybrid driver/receiver sections is
manufactured. These are compatible with the chip sets but
could be used with other digital sections. Suitable
transformers allowing both direct and transformer coupled
stubs are available.

A.3 GRUM M AN /SM C BUS INTERFACE UNIT

This is a single chip design by Grumman Aerospace and
Standard Microsystems Corporations which form the digital
section of an interface to a single bus.

The Bus Interface Unit (BIU) can be viewed as an I/O
processor. Commands for the processor are written into the

correct place in memory by a host processor. A line is
then strobed and the I/O processor will request the local
parallel bus, fetch the command, and process it. The BIU
thus operates exclusively through 16 bit word DMA
transfers at the parallel interface and all communication
with the host processor is via RAM.

The BIU can be used as a bus controller or remote
terminal. The initial status and remote terminal address
oust be loaded from memory. Operating as a remote
terminal, internal decoding and control is provided for
only five mode codes. Reserved mode codes and status bits
may be used and the contents of the BIT word is definable.
The usual validity checks are performed. In bus controller
mode there is an extra check done automatically that the
remote terminal that replies to a command, is the one to
which the command was addressed.

A.4 HARRIS RANGE

The Harris HD-6408 is a Manchester encoder/decoder which
could form the nucleus of a bus interface. It recognises
and indicates the type of sync, checks for Manchester and
parity errors, and passes the word to external circuitry
in serial form. In the case of transmission, data to be
transmitted is input in serial form and the desired type
of sync is added before transmission. No analog circuitry
is included.

The HD-6408 has commercial temperature ratings. If
military ratings are required, the HD-15530-8 is the
functionally equivalent device. If a higher data rate is
required, the HD-15531B will operate up to 2,5 Mbits/sec.

MIL-STD-1553B COMPONENTS Grunman/SMC BIU

correct plac*-- in memory by a host processor. A line is
then strobed and the I/O processor will request the local
parallel bus, fetch the command, and process it. The BIU
thus operates exclusively through 16 bit word DMA
transfers at the parallel interface and all communication
with the hotit processor is via RAM.

The BIU can be used as a bus controller or remote
t erminal. The initial status and remote terminal address
must be loaded from memory. Operating as a remote
t erminal, internal decoding and control is provided for
only five mode codes. Reser-. v-d mode codes and status bits
may be used and the contents of the BIT word is definable.
The usual validity checks are performed. In bus controller
mode there is an extra check done automatically that the
remote terminal that replies to a command, is the one to
which the command was addressed.

A.4 HARRIS RANGE

The Harris HD-6408 is a Manchester encoder/decoder which
could form the nucleus of a bus interface. It recognises
and indicates the type of sync, checks for Manchester and
parity errors, and passes the word to external circuitry
in serial form. In the case of transmission, data to be
transmitted is input in serial form and the desired type
of sync is added before transmission. No analog circuitry
is included.

The HD-6408 has commercial temperature ratings. If
military ratings are required, the HD-15530-8 is the
functionally equivalent device. If a higher data rate is
required, the HD-1553IB will operate up to 2,5 Mbits/sec.

MIL-STD-1553B COMPONENTS Harris Range

These components are thus useful for building up simple
terminals with limited functions.

A.5 ILC DATA DEVICE CORPORATION HYBRID SET

This is a group of several hybrids and major chips which
together form the BUS-65500 bus interface unit. This unit
interfaces to a Motorola 68000 VMS Bus and can be obtained
on a VMS Double-sized Eurocard. The individual components
however could be used to implement a terminal at a desired
l evel, ranging from a simple serial Manchester to parallel
data encoder/decoder (with some extra features), to the
full terminal without being 68000 VMS specific.

The components are:

A.5.1 BU S-25679 Isolation transform ers

These allow both direct stub coupling and trar former stub
coupling.

A.5.2 BUS-65101 Dum b Interface Hybrid

This is built up from the Harris HD-15530 (see above) and
two DDC custom chips. This performs the basic Manchester
encoding and decoding, word validation, broadcast
recognition, address recognition, mode code recognition
(but not decoding) and transmitter time out. There is an
on board clock generator and the data I/O is 8 or 16 bit
tri-state parallel or serial.

A.5.3 B U S-66101 Protocol 1 Hybrid

This is used if dual 1553B busses are required. It
multiplexes two BUS-65101 hybrids. Both channels are
monitored for valid command words containing the correct
remote terminal address and the active channel is flagged.

A .5.4 BU S-66102 Protocol 2 Hybrid

T his hybrid along with an external state sequencer
implements the remote terminal function. It has the
various status, command and last command registers, and
buffers as well as a word counter which is automatically
incremented with every word. It also offers a full set of
handshake lines that can be used for direct data
transfers. The protocol 2 hybrid responds to eleven of the
fifteen defined MIL-STD-1553B mode codes.

A.5.U BU S-66106 Protocol 3 Hybrid

This hybrid along with its own state sequencer performs
the bus controller function. It will send out a command
wor d with or without data as instructed in a special
control word sent to it by an external processor. The
returning status word is monitored and validated for
response time, continuous message format, incorrect remote
terminal address, and bits set in the status word. If an
error is found, an interrupt is caused.

A .5.6 B U S-66103 DMA Controller Hybrid

This interfaces any of the three protocol hybrids that may
be present with a 4K by 16 bit dual port RAM which must

MIIy-STD— 1553B COMPONENTS ILC DDC Hybrid Set

be provided, Memory is allocated in blocks sufficient for
storing two full length messages. Each block is managed as
double buffered message location. The allocation of blocks
is flexible and is set up by an external CPU.

A .5.7 BU S-66107 VME Program m ed I/O Interface Hybrid

Interfaces the three protocol hybrids and the dual port
memory with the VMS bus signals.

A .6 ROCKWELL-COLLINS 1553 INTERFACE DEVICE

This design breaks a MIL-STD-1553B into 4 blocks two of
which are application independant and are implemented by
components designed by Rockwell-Collins (namely Analog
Transmit/Receive and Digital Transmit/Receive), and two
of which are application dependant and are left up to the
designer (Subsystem Interface and Interface Controller).

These application dependant sections must provide the
following:

controller access to the subsystem and tailor the
controller's response to bus commands which change on an
application to application basis (eg. legal/illegal
command detection).

message validation and data routing to and from the
subsystem via the subsystem interface.

This must allow the interface

The interface controller performs

y
The components implement a full protocol dual redundant
remote terminal. No bus control capability is available.
The two components are:

A .6.1 Analog T ransm it/R eceive

This performs the usual analog driver/receiver function
with the addition of the feature that the transmitter
circuit reclocks the data and control signals. This allows
the digital section to be located same distance away, and
still avoid problems of data pulse width and timing skew.

A.6.2 Digital T ransm it/R eceive

This contains completely redundant Manchester encoders,
buffered input registers, buffered status register,
buffered transmit register and serial Manchester encoder.
It is LSTTL compatable and interfaces to both 8 and 16 bit
processors. It is implemented in a 48 pin CMOS device.

APPENDIX B

MRTU 53045 - SU BSY STEM INTERFACE AND OPERATION

The followiny summary of the operation of the MRTU 53045
hybrid is condensed from the two main descriptive
references on the Marconi 1553B Chip Set [19,20],

B .l REMOTE TERMINAL OPERATION

B.1.1 Receive D ata Operation

All valid data words associated with a valid receive data
command word for -ne RT are passed to the subsystem. The
RT examines all command words from the bus and will
respond to valid (ie. correct Manchester, parity coding
etc.) commands which have the correct RT address (or
b m d c a s t address if the RT broadcast option is enabled).
When the data words are received, they are decoded and
checked by the RT and, if valid, passed to the subsystem
on a word by word basis at 20 microsecond intervals. This
applies to receive data words in both Bus Controller to
RT, and RT to RT messages.

When the RT detects that the message has finished, it
checks that the correct number of words have been received
and if the message is fully valid, then a Good. Block
Received signal is sent to the subsystem, which must be
used by the subsystem as permission to use the data just
received. If a block of data is not validated, then Good
Block Received will not be generated. This may be caused
by any sort of message error or by a new valid command for
the RT being received on another bus to which the RT must

switch. If no GBR* signal is generated, then an error has
been detected by the r t and the entire data block is
invalid and no data words in it may be used.

B.1.2 T ransm it D ata Operation

If the RT receives a valid transmit data command addressed
to the RT, then the RT will request the data words from
the subsystem for transmission on a word by word basis.
To allow maximum time for the subsystem to collect each
data word, the ne: : word is requested by the RT as soon as
the transmission of the current word has commenced.

It is essential that the subsystem should provide all the
data words requested by the KT once a transmit sequence
has been accepted. Failure to do so will be classed by
the RT as a subsystem failure and reported as such to the
Bus Controller.

B.1.3 Control of D ata T ransfers

This section describes the detailed operation of the data
transfer mechanism between RT and subsystems. it covers
the operations of the signals DTRQ*, DTAK*, IUSTB, H/L*,
GBR*, NBGT*, TX/RX* during receive date and transmit data
transfers.

B .1.3.1 Receive D ata T ransfers

When the RT has fully checked the command word, NBGT* is
pulsed low, which can be used by the subsystem as an
initialisation signal. TX/RX* will be set low indicating
a receive command. When the first data word has been

M RTU 53045 Remote Terminal Operation

fully validated, DTRQ* is set low. The subsystem must
then reply within approximately 1.5 microseconds by
setting DTAK* low. This indicates to the RT that the
subsystem is ready to accept data The data word is then
passed to the subsystem on the internal highway IH08-IH715
in two bytes using XUSTB as a strobe signal and H/L* as
the byte indicator (high byte first followed by low byte).
Data is valid about both edges of IUSTB.

If the RT is receiving data in an P.T to RT transfer, the
data handshaking signals will operate in an identical
fashion but there will be a delay of approximately 70
microseconds between NBGT* going low and DTRQ* first going

B .1.3.2 T ransm it D ata T ransfers

A s with the receive command discussed previously, NBGT* is
pulsed low it the command is valid and for the RT. TX/RX*
will be set high indicating a transmit data command.
While eh-i i'.V is transmitting its statu* word, it requests
the first data word from the subsystem by setting DTRQ*
low. The subsystem must then reply within approximately
13.5 microseconds by setting DTAK* low. By setting DTAK*
low, the subsystem is indicating that it has the data word
ready to pass to the RT. Once DTAK* is set low by the
■subsystem, DTRQ* should be used together with H/L* and
TX/RX* to enable first the high byte and then the low byte
of the data word onto the internal highway IH08-IH715.
The RT will latch the data bytes during IUSTB, and will
then return DTRQ* high. Data for each byte must remain
stable until IUSTB has returned low.

For both receive and transmit command processing, if the
subsystem does not declare itself busy, then it must

MRTU 53045____________________________Remote Terminal Operation

respond to DTRQ* going low. Failure to do so will be
classed by the RT as a subsystem failure and reported as
such to the Bus Controller.

B.1.4 Additional D ata Information Signals

A t the same time as data transfers take place, a number of
information signals are made available to the subsystem.
These are IMCMD, the subaddress lines SAO-4, the word
count lines WC0-4 and current word count lines CWCO-4.
Use of these signals is optional.

IMCMD* will go active low while the RT is servicing a
valid command for the RT. The subaddress,
transmit/receive bit, and word count from the command word
are all made available to the subsystem as SAO-4, TX/RX*
and WCO-4 respectively. They may be sampled when TNCMD
goes low and will remain valid while INCMD is low.

The subaddress is intended to be used by the subsystem as
an address pointer for the data b l ock. Subaddress 0 and
31 are mode c o m a n d s , and there can be no receive or
transmit data blocks associated with these. (Any data
w ord associated with a mode command uses different
ha’ dshaking operations.)

The word count tells the subsystem the number of words to
expact to receive or transmit in a message, up to 32
words. A word count of all Os indicates a count of 32
words.

The iuzrent word count is set to 0 at the beginning of a
-i •• seage and is incremented following each data word
trb.,-.i:er across the RT-subsystem interfact. (It is
clocked on Lhe falling edge of the second IUSTB pulse in

MRTU 53045 Remote Terminal Qparation

each word transfer). It should be noted that there is no
need for the subsystem to compare the word count and
current wori count to validate the number of words in a
message. This is done by the RT.

B .1.5 Su b sy stem Use of S ta tu s B its and Mode Com m ands

Use of the status bits and the mode commands is one of the
most confusing aspects of MIL-STD-1553B. This is because
much of their use is optional and also because some
involve only the RT while others involve both the RT and
the subsystem. The MRTU 53045 allows full use to be made
of all the status bits, and also implement' r M the mode
commands. The subsystem is given the op?-^ * :iity to make
use of status bits, and is only involved in node commands
which have a direct impact on the subsystem.

The mode commands in which the subsystem may be involved
are Synchronise, Synchronise with data word, Transmit
Vector Word, Reset and Dynamic Bus Control Allocation.
The status bits to which the subsystem has access are
Service Request, Busy, subsystem Flag and Dynamic Bus
Control Acceptance. The subsystem designer should note
that all other mode commands and status bits are serviced
internally by tha RT, and the subsystem has no access to
them. in particular, the terminal flag and message error
status bits and BIT word contents are all controlled
internally by the RT.

B .l.5 .1 Synchronise Mode Com mands

Once the RT has validated the command word and checked for
the correct address, the SYNC* line is set low. The
signal WC4 will be set low for a Synchronise mode command

and high for a Synchronise with data word mode command.
In a Synchronise with data word mode command, SYNC*
remains low during the time that the data word is
received. once the data word has been validated, it is
passed to the subsystem on the internal highway IH08-IH715
in two bytes using IUSTB as a strobe signal and H/L* as
the byte indicator (high byte first followed by low byfc.e).
SYNC* being low should be used on the enable to allow
IUSTB to clock synchronise mode data to the subsystem.

If the subsystem does not need to implement either of
these mode commando, the SYNC* signal can be ignored,
since the RT requires no response from the subsystem.

B .l.5 .2 T ransm it V ector W ord Mode Com mand

The RT requests data by setting VECTEN* low. The
subsystem should use H/L* to enable first the high byte
and then ths low byte of the vector word onto the internal
highway IH0B-IH715.

It should be noted that the RT expects the Vector word
contents to be already prepared in a latch ready for
enabling onto the internal highway when VECTEN* goes low.
If the subsystem has not been designed to handle the
Vector word mode command, it will be the fault of th-a Bus
Controller if the RT receives such a command. Since the
subsystem is not required to acknowledge the node command,
the RT will not be affected in any way by Vector word
circuitry not being implemented in the subsystem. It will
however transmit a data word as the Vector word, but this
w ord will have no meaning.

MRTU 53-Q4 5 Remote Terminal Operation

B .l.5 .3 Reset M ode Com mand

Once the command word has been fully validated and
serviced, the RESET* signal is pulsed low. This signal
may be used as a reset function for subsystem interface
circuitry.

B .l.5 .4 Dynamic Bus Allocation

This mode command is intended for use with a terminal
which has the capability of configuring itself into a bus
controller on command from the bus. The line DBCREQ*
cannot go true unless the DBCACC* line was true at the
time of the valid command, ie. tied low.

B .l.5 .5 Use of th e Busy S ta tu s Bit

The Busy Bit is used by the subsystem to indicate that it
is not ready to handle data transfers either to or from

The 3T sets the bit to logic one if the BUSY* line from
the subsystem is active low at the time of the second
falling edge of INCLK after 1NCMD* goes low. Once the
Busy Bit is set, the R1' will stop all receive and transmit
data word transfers to and from the subsystem. The data
transfers in the Synchronise with data word and Transmit
Vector word mode commands are not affected by the Busy Bit
and will take place even if it has been set.

It should be noted that a minimum of 0.5 microseconds
subaddress decoding time is given to the subsystem before
setting of status bits. This allows the subsystem to
selectively set the Busy Bit if for instance one

M RTP 53045 Remote Terminal Operation

subaddress is busy but others are ready. This option will
prove useful when an RT is interfacing with multiple
subaddresses.

B .1.5.6 Use of the Service R equest S ta tu s Bit

The Service Request bit is used by the subsystem to
indicate to the Bus Controller that an asynchronous
service is requested. The timing of the setting of this
bit is the same as the Busy Bit. Use of SBRVREQ* has no
effect on the RT apart from setting the Service Request
bit.

It should be noted that certain mode commands require that
the last status word be transmitted by the RT instead of
the current one, and therefore a currently set status bit
will not be seen b y the Bus Controller. Therefore the
user is advised to hold SBRVREQ* low until the requested
service takes place.

B .l.5 .7 Use of th e S ubsystem S ta tu s Bit

This status bit is used by the RT to indicate a subsystem
fault condition. If the subsystem sets SSERR* low at any
time, the subsystem fault condition in the RT will be set,
and the Subsystem Flag status ' it will subsequently be
set. The fault condition will also be set if a
handshaking failure takes place during a data transfer to
or from the subsystem. The fault condition is cleared on
power-up or by a Reset mode command.

KRTU 53045 Remote Terminal Operation

B .l.5 .8 Dynamic Bus Control A cceptance S ta tu s Bit

DBCACC*, when set true, enables an RT to configure itself
into a Bus Controller, if the subsystem has the
capability, by allowing DBCRBQ* to pulse true and BIT TIME
18 to be set in the status response. DBCACC* tied high
inhibits DBCREQ* and cleares BIT TIME 18 in the status
response.

B.2 BUS CONTROLLER OPERATION

To enable its use in a bus controller each chip in the
hybrid has additional logic within it. This logic can be
enabled by pulling the pin labelled RT/BC* low. Once the
hybrid is in bus control mode, all data transfers must be
initiated by the bus control processor correctly
commanding the hybrid via the subsystem interface, in bus
control mode six inputs are activated which in RT mode are
inoperative and four signals with dual functions exercise
the second function (the fire - being for the RT
operation).

To use the MRTU 53045 as a 1553B bus control interface,
the bus control processor must be able to carry out four
basic bus-related functions. Two inputs, BCOPA and BCOPB
allow these four options to be selected. The option is
then initiated by sending a negative-going strobe on the
BCOPSTB* input. BCOPSTB* must only be strobed low when
NDRQ* is high. This is particularly important when two
options are required during a single transfer.

With these options all message types and lengths can be
handled. Normal BC/RT* exchanges are carried out in the
hybrid option zero. This is selected b y setting BCOPA and
BCOPB to a zero and strobing BCOPSTB*. On receipt of the

W RT U 53045 Bus Controller Operation

strobe, the hybrid loads the command word from an external
latch using CWEN and H/L*. The command word is transmitted
down the bus. The TX/RX* bit is- however, considered by
the hybrid as being its inverse and so if a transmit
command is sent to an RT, the hybrid in BC mode believes
it has been given a receive command. As the RT returns
the requested number of data words plus its status, the BC
hybrid carries out a full validation check and passes the
data into the subsystem using DTRQ*, DTAK*, H/l*, IUSTB
i.nd CMC as in RT operation. It also supplies GBR at the
end of a valid transmission. Conversely, a receive
command sent down the bus is interpreted by the BC hybrid
as a transmit command, and so the requisite data words are
added to the command word.

For mode commands, where a single command word is
required, option one is selected by strobing BCOPSTB* when
BCOt’A is high and BCOFB is low. On receiving the strobe,
the command word is loaded from the external latch using
CWEN and H/L*, the correct sync and parity bits are added
and the word transmitted. Mode commands followed by a
data word requires option two. option two, selected by
strobing BCOPSTB* while BCOPA is low and BCOPB is high,
loads a data word vi a DWEN* ani H/L*, adds sync and parity
and transmits them to the bus. If the mode code
transmitted required the RT to return a data word, then
selecting option three by strobing BCOPSTB* when BCOPA and
BCOPB are both high will identify that data word and if
validated, output it to the subsystem interface using
RMDSTB and H/L*. This allows data words resulting from
R ode codes to be identified differently from ordinary data
words and routed accordingly. All received status words
are output to the subsystem interface using STATSTB and
H/L*.

RT to RT transfers require the transmission of two command
words, A receive command to one RT is contiguously
followed by a transmit command to the other RT. This can
be achieved by selecting option one followed by option
zero for the second command. The strobe (BCOPSTB*) for
option zero must be delayed until NDRQ* has gone low and
returned high following the strobe for option one. The RT
transmissions ave checked and transferred in the subsystem
interface to the bus control processor.

B.3 BUS M ONITOR OPERATION

In BC option three, if the signal PASMOK* is active, then
all data appearing on the selected bus is output to the
subsystem using STATSTB for command and status words or
RMDST3 for data words.

APPENDIX C y
APPENDIX C

HARDWARE DESIGN

The implementation of each of the blocks that was defined
in the hardware design overview is now discussed. The
design thus presented represents the latest version after
the correction of all design errors discovered during
prototyping. Where appropriate, the software approach to
driving the hardware is explained.

C l LOCAL PROCESSOR

Considering the speed requirements, the fact that a 16 bit
processor is desirable, and the restriction that Intel
components must be used, a member of the 8086
microprocessor family is the obvious choice for the local
processor. The 80186 has a slightly enhanced 8086
instruction set and is available in an 8 MHz version. (In
fact 10 MHz versions are now available from second
sources.)

The main reason for the choice of this processor, however,
is the fact that it has, on board, peripherals which
fulfill almost all the requirements of the design. It has
two independent DMA channels, a programmable interrupt
controller, three programmable interval timers, clock
generator, and programmable chip select and ready
generation logic. The operation of these on board
peripherals is very similar to that of the equivalent
Intel peripheral chips. For a useful description of the
entire device, including information not found in the data
sheet, the application note AP-186 [27] may be consulted.

HARDWARE DESIGN Local Processor

Considerable space saving is thus achieved by the use of
this m i c r o 1. Apart from that saved on the large devices
(DMA, interrupt controller, interval timers), the
programmable chip select and ready generation logic saves
the use of a vast number of SSI and MSI T TL chips.

This logic also allows for a great deal of flexibility.
The memory and I/O maps of the local processor system, and
the speed of devices in it, can be configured under
software control. This is particularly convenient where
provision for more than one size or speed of device has
b een made, as in the case of the local memory (see section
C.2) .

Figure c.l is a diagram of the 186 and surrounding
circuitry.

t i v '

f

FIGURE C.l THE LOCAL PROCESSOR A ND ASSOCIATED CIRCUITRY

Elements of the surrounding circuitry are:

C.1.1 A ddress Latches and D ata Bus Transceivers

These serve the dual purpose of demultiplexing and
buffering the multiplexed data/address bus to form the
local data and address busses. These busses serve the
local memory, the 1553B bus interface, and the SBX
interface.

Only the lower 1G address lines are latched since all
decoding of the top 4 lines is done by the programmable
chip select logic. The data transceivers are enabled by
the chip select signal of any device which is on the local
busses-

C.1.2 Reset Circuit

Thla consists of an RC power-up reset circuit having a
nlme. constant of 220 milliseconds with a reset switch.
‘Znis and other lines capable of resetting the processor
from the 1553B bus interface, multibus interface, and
watc’.dog are combined, Schmitt triggered and connected to
the processor RES* input.

C .l.'J W atchdog

Thu ..niyUt of a retriggerable one shot is use! to either
cnusti d non-maskable interrupt (and a reauy in case the
processor has "hung" in an access to non-existant memory),
or reset the processor (jumper selectable option) if it is
not triggered at least once every 100 milliseconds. The
one shot output is used directly in the case of the eti.

HARDWARE, DESIGN Local Processor

triggered non-maskable interrupt, while a shift register
is used to produce a pulse off the output for the reset
option.

The one shot is triggered either by the processor's
Address Latch Enable line, for a hardware watchdog, or by
one of the programmable chip select lines (PCSF*) if a
software watchdog is required. (Also jumper selectable).

C.1.4 O dd/E ven Byte Selection

Pairs of byte wide memories and peripherals are arranged
with one device on the upper and one on the lower data
bus. The address inputs use address lines A1 upwards, and
both share the same chip select line. The device on the
lower data bus thus occupies a group of consecutive odd
byte addresses, and the other occupies the corresponding
consecutive even addresses.

The processor is able to access either a byte or a word at
a time. Whether a transfer is to word, odd byte, or even
byte is indicated by the combination of the AO address
line and the BHE* line. These two lines are decoded and
combined with the WR* line to produce separate write lines
LWR* and UWR* for the lower and upper data busses
respectively. The same RD* line, however, goes to all
devices. Distinction between odd and even bytes is thus
made only on write transfers.

C.1.5 Ready Input

The Ready lines of all devices in the local processor
system which need to be able to vary the number of wait
states that are inserted in an access to them, are ORed

Local Processor

t^jether, and the resulting line connected to the
Asynchronous Ready input (AJRDY).

C.2 LOCAL MEMORY

C .2.1 ROM

The local ROM it. selected by the Upper Memory Chip select
(UCS*) line. This places it at the very top of the one
Mbyte address range which includes the restart location.
Several EPROMs types can be used. They are the 2732A (4k),
2764 (8k), 2712.3 (16k), and 27256 (32k). Devices with
excess time of 250 nanoseconds or faster may be used
without the need to insert wait states. The pair of
sockets is jumper configured for the type to be used (see
figure in appendix D) .

The ROM requires a Ready input to the processor. The UCS*
line is simply used for this purpose thus giving no wait
states. This is done because, after a reset, when the
processor first begins fetching instructions, no automatic
ready generation is in force on the UCS* line. This only
becomes effective after it is specifically programmed into
the control register for this chip select line.

C.2.2 RAM

T he local RAM is selected by tle Lower Memory Chip Select
(LOS*) line. It is therefore always positioned at the base
of memory. The devices that may be used in these sockets
are the 6116 (2Y), and 6264 (6k) static RAMs. The sockets
must be configured for the correct device by installing
jumpers (nee figure in appendix D) .

HARDWARE. DESIGN Local Memory

The local R AM does not need to provide a Ready line.

C.3 M IL -ST D -1553B BUS INTERFACE

The dual redundant MIL-STD-1553B bus interface it; shown in
figure 0.2(b) which folds out at the end of section C.3.
It can be broken down into the following sub-blocks:

The MRTU 53045.
Data bus buffer/latches and enable/strobe logic.
Data transfer handshaking and DMA request.
Interrupt lines.
Processor reset.
Status lines.
Command lines.
Programmable peripheral interfaces.
Busy latch and decoding.
RT address switches.
Analog section and isolation transformers.

Due to the large amount of cox&inational logic in this
block, portions of it were implemented in PALs to save
space (see appendix E) .

Every line in the bus interface has been checked for
current 3aading of the output by the inputs connected to
it.

Figure c.2(a) indicates which areas of the diagram in
figure 0.2(b) correspond to these sub-blocks.

C.3.1 T he MRTU 53045

This is the main component in the interface. Its

HARDWARE DESIGN MIL-STD-1553B Bus Interface

requirements dictate the form that the rest of the
interface takes. Appendix B summarises the interface to
and operation of this device.

C.3.2 D ata Bus B uffer/Latches and E nable/S trobe Logic

The 16 bit 186 processor data bus is isolated from, and
interfaced to, the 8 bit MRTU 53045 data highway by means
of four edge-triggered, byte wide, tri-state latches? two
for received data, and two for data to be transmitted.
These also provide a one word buffer in each direction.

These four latches are mapped to a single word location in
the local processor I/O address space, that can be both
written to and read from (though the same data will not be
read b a ck). The location is enabled by the line MRTUSEL*.

This arrangement has the disadvantage that all types of
words that are passed between the local processor and bus
interface must be passed via these latches. This differs
from the application example in reference 20 pp 31 which
suggests that a separate pair of latches should be used
for each different type of word that is passed, which is
logical, since each type will be handled in a different,
way by the processor, and the transfer of each type is
controlled by different lines on the MRTU 53045. That
method is however very uneconomical on board space,
particularly in this case where BC and BM modes are
required and command and status word types must also be
considered. The single location method employed in this
design is very much more compact, but must pay the price
of a higher processor software overhead, and more
complicated decoding of the MRTU output lines.

HARDWARE DESIGN MIL-BTD-1553B Bus Interface

C.3.2.1 T ransm it Latch

The two transmit (TX) latches take their data inputs from
the 16 bit local processor data bus, one from the high
byte and one from the low byte. The data outputs of both
latches are connected to the same 8 bit MRTU data highway.

The latches are always written together, as a word, by the
local processor using a strobe derived from the WR* and
MRTUSEL* lines.

The latches are read individually by the MRTU 53045,
times when a word is required, by using two separa-.
output enable lines? Low, and High Byte Enable {LBEN* and
RBEN*)c These lines are derived from various MRTU outputs,
and enable the latches according to the truth table in
appendix B. They are implemented in a PAL.

C.3.2.2 Receive Latch

The two receive (RX) latches are connected in exactly the
opposite sense to the transmit latchess The inputs to the
MRTU data highway, the outputs to the upper and lower
bytes of the 186 data bus.

The latches are read together by the processor. The output
enables are both driven by a line derived from the
MRTUSEL* and processor RD* lines.

The latches are written individually using two strobes;
Low and High Byte Strobe (LBSTB* and HBSTB*). These
strobes clock the latches according to the truth table in
appendix B. They are also implemented as PAL circuits.

C.3.3 D ata T ransfer Handshaking and DMA Requests

This section of the circuit is concerned with satisfying
the requirements of the MRTU asynchronous data transfer
handshake, and the provision of a line that can be used as
q DMA request. As by-products, it also provides lines that
indicate the status of the transmit and receive latches,
and could be used as interrupts.

The status of each latoh, that is, if data has been
written to it but not yet read on the other side, is
indicated • outputs of positive edge sensitive RS
flip-flop. ad to be synthesised).

These outputs enable a simple circuit (see figure in
appendix E) to be designed and implemented in a PAL,
,» M c h returns a Oata Transfer Acknowledge only under the
following conditions;

It there is new data n"t previously read in the
TX latch, in the case of a request for data to
be transmitted, or
if no word will be over-written in the RX latch,
in the case of a request to pass received data
to the subsystem.

A problem with this method arises when a word in the TX
latch becomes invalid due to a change in circumstances, An
example of this is the case of vector word handling as
follows: because the MRTU 53045 (in RT mode) expects a
"ector word to be present in the TX latch for immediate
access if a mode command to transmit the vector word is
received, the processor must ensure that this word is
present in the latches between command servicing. If a
transmit command then occurs, the MRTU w il’. take the
vector word as the first word to be transmitted.

To avoid this problem, a further D type flip-flop has to
be used, the output of which is only allowed to go true
during a TX Data Transfer Request. The output of this
flip-flop is used as the latch status for the purposes of
providing a DTAK*, while the original RS flip-flop is
still retained to indicate the true TX latch status.

A similar problem occurs with the RX latch, but it is
easily solved under software, simply by the processor
reading and discarding the value in the latch.

K DMA request is aimply generated any time there is a
valid word in the RX latch or there is a TX Data Transfer
Request, a DMA transfer will obviously only take place if
the channel is enabled.

C .3.4 In terrupt lines

There are a large nujnbcr of signals which may be required
to cause interrupts in possible applications. Most signals
are in the correct form to be used as interrupts directly.
A n exception is the SYNC* line, this is validated by a
simple circuit to give VALTDSYNC (for use in RT mode), as
suggested in reference 18 pp. 43, part of which is
implemented in a PAL (see appendix B) .

Because of the large number of lines, interrupts have been
combined, where possible bo that one line can be used for
two interrupts.

For example, one interrupt may occur, or have meaning only
in RT mode, while another only occurs or has meaning in BC
mode. Both can be qualified by the hybrid being in the
correct mode and then ORed onto orw line. Lines that have

been combined thus are INCMD* in RT mode with RTO* in BC
mode, and DBCRBQ* in RT mode with RXINT* (derived from the
RX latch status line above) in BC mode.

All other interrupt lines may be used in all modes if
required.

C.3.5 Processor Reset

The MRTU's RESET* line pulse low for approximately 300
nanoseconds on receipt of a valid Reset mode command. This
unfortunately is not long enough to guarantee the
processor resetting properly. The pulse is therefore
stretched using a shift register.

C.3.6 S ta tu s Lines

Apart from the usual MRTU status lines, that is outputs
whose level indicates a state of the hybrid, two extra
status lines have been synthesised from lines which carry
pulses (which indicate events), using simple RS flip-
flops. They are:

LASTRXOK*. This is set by GBR* and reset by NBGT*. It
indicates that the last message transmission received
passed all validation tests.

i a s t c w /DW*. in BC or BM modes this indicates whether the
word in the RX Ip.tch is a command or data word.

C.3.7 Control lines

Most ot che control input lines on the MRTU 53045 require
to be driven to a desired level at all times. Three of
these also drive LEDs to indicate in what node the
terminal is operating in (RT/BC* and PASMON*), and if it
will accept bus control in the event of it being offered
(DBCACC*).

There are three cases where some extra circuitry for a
control line is required.

C.3.7.1 BC OPSTB* Input

The BCOPSTB* input is not a true strobe input. Control
over this input, which is normally inactive, is required
in two ways [19]s

be set active until the milV replies with NORQ* active.
BCOPSTB* must not go active while NDRQ* is asserted. This
is achieved by using a JK flip-flop which asserts
BCOPSTB* when clocked (by simply writing to a location in
the 186 I/o address space with dummy d a ta), and is cleared
by NDRQ* active.

It must be possible to set the input active for a perici
of time, in order to use bus control option three. Two
methods have been designed to do this as it is not obvious
from the documentation what the NDRQ* line will be doing
in option three. One method is to provide another location
in the 186 address space which clears the flip-flop when
written to. The other method is to drive it active as with
any other control input.

C.3.7.2 BUSREQ Lines

The BUSREQA and BUSREQB lines are the only lines on the
hybrid, besides the data highway, that are bidirectional.
They are inputs in BC mode and outputs in RT mode. They
are driven, in BC mode, by open collector gates which are
floated high in RT mode. As a further precaution (as it is
not kncvn if there is a delay between changing the hybrid
to BC mode and these lines being floated by the hybrid, or
if they become outputs when the PASMON* line is asserted),
another control line, ENREQ, is provided which must be
specifically asserted in order to control the open
collector gates.

The circuit which drives the open collector gates (sea
diagram in appendix B) has been "PALed".

C.3.7.3 SSERR* Line

This line is set active either oy a watchdog timeout, or
manually b y a control line.

C.3.8 Program m able Peripheral Interfaces

Two 8255A-5 PPIb are usee to read status linns, and to
write to and latich control lines on the MRTU 53045. They
are arranged together as a single word wide device in tho
processor's I/O address space, but are individually
addressable, and are enabled by the PCSO* line.

Connecting these to the 186 processor pose" one problem in
that the data hold time after a write, required by the
n255A-5, is not guaranteed by the 186. This was solved by

HARDWARE DESIGN MIL-STP-1553B Bus Interface

adding two wait states to accesses on PCSO* with the
programmable wait state generator, and using a shift
register delay and the WR* line to produce a Shortened
Write line (SWR*) that gives the necessary hold time.

All three 8 bit output ports on each device are used in
mode 0. Ports A and B are input, while c is output.
Considering the two devices together, these may be
regarded as 16 bit ports. The output bits in port C may be
read back to the processor, and also individually accessed
using a bit set/reset function.

The grouping and arrangement of the lines on the input and
output ports has been done with a view to reducing the
number of port accesses and amount of manipulation that
has to be done in software as follows:

Port A inputs all the lines at once that need to be read
in order to set up the DMA controller after receipt of a
transmit or receive command in RT mode. The lower byte
contains the combination of the TX/RX* and SA lines,
starting from bit one, which will be used as the address
in the dual port memory buffer pointer table (INCMD*, on
bit zero, will always read low dnriny command servicing).
The upper byte reads in the number of words to be
transferred in the message.

Port B inputs all the remaining status lines, tha ones
that are expected to be most used are on the lower byte.

Port C 2.itches and drives all control lines. The ones that
are expected to be frequently altered are placed on the
lower byte, while those that will simply be set up and
left are on the upper byte.

HARDWARE DESIGN MIL-5TD-1553B Bus Interface

C.3.9 B usy Latch and Decoding

When a non-mode command is received by the terminal in RT
mode, the terminal must indicate whether or not the
particular subaddress referred to in the lommand is able
to process the command, by means of setting the BUSY* line
to the appropriate v a lue. Only 500 nanoseconds are allowed
to decode the sub-address and set the busy line. This
operation could, therefore, be done in hardware as
follows:

The subaddress is used to select or multiplex a particular
line from a 30 bit latch onto the BUSY* input. The latch
is written to by the processor at regular intervals, and
contains the busy settings of the individual subiddressas.

the actual scheme employed uses only a sixteen bit latch
and multiplexer to sitvc- space. In most cases, provision
for sixteen subaddrei$ses will be sufficient. In
applications where more are required, some bits in the
latch will have to represent the logical OR of the busy
settings of two subaddresses.

C.3.10 RT Address Sw itches

Six DIP switches are provided to set up the address to be
used by the terminal when operating in remote terminal
mode. Five of the switches yet the address itself, while
the last is set for odd parity on the address.

If the address is set such that there is a parity error,
an LED will be lit by the RTADPAR line.

i
/

C.3.11 Analog Section and Isolation T ransform ers

This section was not designed, but simply connected as
indicated in the data sheet for the MCT 3231

driver/receiver, with the exception that transmitter
inhibit decoding need not be provided as this is done by
the hybtid. No external threshold setting resistors are
used on the receivers.

C.3.12 Bus Interface Chip Selects

The bus interface is selected by the processor by using
two peripheral chip Select lines.

PCSO* selects the two PPIs as detailed above.

PC54* enables the decoding of address lines AD2, AD3 and
AD4 to give 8 select lines, only 4 of which are used (the
others were provided in case they were needed in the
prototype). The four are:

MRTUSEL* which enables the TX and R X latches.
BDSYSEL* which enables the busy latch.
BCOPPULSESEL* which enables the strobe to set
the BCOPSTB* flip-flop.
BCOPRSTSEL* which enables the clearing of this
flip-f

They are each qualified by either RD* or WR* to produce
the desired signal.

C.3.13 Bus Interface Softw are

The methods devised, during the above bus interface

HARDWARE DESIGN MIL-STD-1553B Bus Interface

hardware design, for driving the bus interface may now be
discussed.

C.3.13.1 Rem ote Terminal Mode

In RT mode, the bus interface is not so much driven as
serviced. The scheme described here is approximately what
is expected to be used in the RT routine and associated
interrupt servers, described in the software design
overview.

The scheme is composed of interrupt service routines and a
main routine which runs continuously while the terminal is
in RT mode.

Interrupt service routines. There are four interrupts in
RT mode that, if used, must be the highest priority in the
interrupt structure and must never be disabled. They will
run in any context, and will not interfere with the
multitasking executive if they occur while it is
rescheduling tasks. They are:

VALIDSSfNC interrupt. This is required only if
the terminal is required to support the two
synchronise mode commands. If present it must be
the highest priority interrupt on the terminal
in order to obtain accurate synchronisation, it
indicates the reception of a valid Synchronise
Mode Command. The routine should perform the
following:

Read WC4 line via PPI to determine whether
or not there is an associated data word,
if not, perform synchronisation and return
from interrupt.
If there is an associated data word, poll

HARDWARE DESIGN MIL-STD—1553B Bus Interface

RXWORDWAITING line until data word is
received, read it from the RX latch, use it
to perform synchronisation, and return from
interrupt.

The exact mechanism of performing
synchronisation is not specified.

DBCREQ interrupt. This occurs in response to a
dynamic bus control mode command and is required
only if this mode command must be supported by
the terminal. It should also be highest
priority, but because they will never occur
simultaneously, it way be made one level lower
priority than VALIDSYNC. The routine simply sets
a flag (DBJflag) and returns from interrupt.

1NCMD interrupt. This occurs whenever any
command is received by the terminal. It is
required in all but the simplest RT application
(where polling can be used). It is one lev of
priority below the previous two cases, and Must
keep the higher priority interrupts enabled
since they will always occur during this service
routine. It bust perform the following:

PPI port A must be read.
From this the value of the SA lines iiust be
determined.
If this value indicates a mode command then
return from interrupt.
If not, program the DMA channel as
described in sections 4.2.3 and C.3.8.
Enable the DMA channel and return from
interrupt.

End of DMA interrupt. The DMA channel can be
made to cause an interrupt after the last

transfer in a message. This service routine

Test the LASTRXOK* line to determine if the
message contained an error.
If it did, take appropriate action, (such
as setting a flag or altering the queue
pointers), and return from interrupt.

A particular application may require the use of some other
interrupts, to indicate the occurrence of an error for
instance.

It should be noted that interrupt service latency affects
the processing time it takes to begin an interrupt service
routine. Interrupts are only serviced between
instructions. If a.n instruction such as a multiply or
divide is being executed, the interrupt may not be
serviced for several microseconds.

The RT routine. On entering RT mode the routine must
perform the following initialization:

The DBCACC*, BCSTENO, and BCSTBN1 lines must be
set to the desired values for the duration of
operation in RT mode.
The vector word and busy latch must set be to
initial values, as must the SSBRR* and SERVBRBQ*

The interrupt controller must be set up to
enable the above interrupts and give them the
correct priority. Since two of the above
interrupt lines are used for different
interrupts in BC mode, the pointers in the table
at the base of the processor memory must be set
to point to the correct routines.

The hybrid must be placed in RT mode by setting
the RT/BC* line high.

After initialisation, if the hybrid's DBCACC* line is set
active, the routine must repeat the following operations
until the DBCflag is set, at which time it must pass
control to the BC routine. If the DBCACC* line was not set
active during initialisation, these steps must simply be
repeated indefinitely. The steps are:

Test the error flags of each subaddress and
place the logical OR on the SSBRR* line.
Test the service request flags of each
subaddress and place the logical OR on the
SERVREQ* line.
Place the vector word of the highest priority
subaddress requesting service in the RX latches,
in case a transmit vector word mode command
should be received (as described in section
C.3.3).
T°st the busy flags of each subaddress, combine
to form a word and write this to the busy latch.

Only the steps which support functions which are required
in a particular application need be included.

C.3.13.2 Bus Controller Mode

No definite scheme is given as the standard requires no
specific functions of a terminal in BC mode.

The interrupts that will probably be required in this mode
(among others) are:

HARDWARE DESIGN MIL-STD-1553B Bus Interface

RXINT, which indicates that a word has been
placed in the RX latches by the hybrid. The
LASTCW/DW* line can be read to determine what
type of sync the word had.
RTOINT, which indicates that the time f<
reply to be received from a remote terminal i
been exceeded (approximately 14,5 microsecc.^s
after transmission of the command ended). If it
is desired to streach the no-reponse timeout,
this intK ~upt may, instead of taking some error
recovery s.-tion, simply start a timer. This
timer will run for a prescjhed time, and then
will itself cause an interrupt on which the
error recovery action can be w k e n .

These two interrupts occur on the same lines as, and
replace, the INCMD and DBCREQ interrupts, which are not
available in BC mode. Care must be taken, as mentioned
above for RT mode, to point the interrupts to the correct
routines.

On entering the BC _ routine. and after suitable
initialization, the hybrid must be changed to BC mode by
setting the RT/BC* input low, and the BUSREQ lines must be
enabled by setting the ENRJQ line high.

On leaving BC mode these lines must be toggled, but in the
reverse order.

Within the BC routine, commands are initiated as described
in appendix B, by setting up the appropriate lines and
strobing the chip set by writing to the location in the
I/O space, as described in section C.3.7.1. The DMA
channel obviously may be used to achieve data transfers as
in RT mode.

C.3.13.3 Bus M onitor Mode

Again no specific scheme is presented. It is expected that
in bus monitor mode, a fair amount of information about
what is happening on vhe bus will be collected by means of
interrupt service routines which increment counters on the
occurrence of certain events. In order to aid the counting
of events, two of the 186 internal counter/timers can be
used. If the terminal is required to monitor the bus for
activity, and take over control of the 1553B bus in the
event that none is detected for longer than a given time,
then one of these two timers can be used to measure the
time since the last activity on the bus.

The hybrid is placed in BC mode by setting the RT/BC* line
low, initiating an option three BC command, then setting
the PASMON* input active (see appendix B) .

w>! *x‘i m

I " I

skocs maw

— ®A_3

HARDWARE DESIGN Generalised I/O Interface

C.4 GENERALISED I/O INTERFACE

The generalised I/O Interface is required to connect the
processor bus to the SBX I/O bus [24]. Figure 0.3(A) in
appendix D is the detailed diagram of the interface.

Most lines in the interface are straight-forward
connections from one bus to the other. There are certain
lines which require some explanation.

C.4.1 IOW RT* Line

As wit h the 8255A-5 PPIs in the 1553B bus interface, there
is a violation of the SBX data hold time after write by
the normal 186 cycle. The Shortened Write line (SWR)
devised for the PPIs is used again here to drive the
IOWRT* line. All access to the SBX interface must thus
have a minimum of two added wait states.

C.4.2 Chip Select Lines

The whole interface is enabled by the PCS2* line from
which three sub chip selects must be provided:

The MDACK* line which is used during DMA
transfers.
The MCSO* and MCS1* lines which enable either 8
word, or 8 byte locations each. This is done
according to two schemes described in the SBX
standard. This design allows for both by using
jumpers (see diagram in appendix D) .

Figure C.4 shows the two possible address maps that ma y be
obtained for the interface depending on which scheme is

HARDWARE DESIGN G e teralised I/O Interface

Repeated
1

Repeated
i

MDACK MDACK

h c sT Repeated

16

M C W MCS0 HcsT
o

Using A4 Using A0 and BHE

FIGURE G.3 SBX ADDRESS MAPS

C.4.3 TDM A Line

This is used to signify the end of a DMA transfer. It may
be either an input or an output depending on the I/O
module that is being used. Jumper selection is employed to
select connection tj either:

a programmable chip select line, PCS3*, if the
line must be an input, or
an interrupt line if it must be an output.

HARDWARE DESIGN Generalised I/O Interface

C.4.4 RESET Line

This cannot aimply be directly connected to the RESET
output of the 186 processor as, although the power up
reset of 50 milliseconds is sufficient for SBX, the in
operation reset that may originate from the 1553B bus
interface is less than one microsecond which is too short
for SBX. A one shot, triggered by the 186 RESET line, is
thus used to provide the required 50 microsecond SBX reset

0 .4 .5 SBXREAOY* line

Since the number of wait bates required by an access to
the SBX interface (that is required by the I/O module
connected to it) may be more than three, the programmable
wait state logic may not be usable. The SBX MWAIT* line
qualified by the chip select is thus connected to the
processors ready logic. The programmable wait state logic
must still be used to ensure that at least two wait states
are added as specified in C.4.1.

C.5 MULTIBUS INTERFACE

The design of both the master and slave interfaces were
aided by the use of the SBC 86/12A board as an example
[21,22].

C.5.1 Slave Interface

This is so closely coupled to the dual port memory
arbitration logic and buffering that it is covered under

that section.

C.5.2 M aster Interface

The Multibus master interface in figure c.5 is of a fairly
standard design. It is based on the application example in
the 186 data sheet [39].

The arbitration lines are interfaces to by an 8289 bus
arbiter, while the command lines are driven by an 8288 bus
controller. A Multibus transaction is requested whenever a
bus c " d e occurs that does not cause one of the
Programmable Chip select lines to go active.

The processor multiplexed data and address lines are
isolated from the corresponding Multibus lines via
transceivers and latches respectively. These are
controlled by the bus controller and arbiter. However,
many components could be saved if these lines could be
combined with those on the slave interface via the dual
port memory. This is usual on Multibus single board
computers. In this design this has been done with the data
bus, and is covered along with the slave interface under
the dual port memory in the next section.

ARBITRATION >

CONTROL

I/FDEN (TO DUAL POR’')

ADDRESS BUS ~>WJX DATA/ADDRESS

C.6 DUAL PO RT MEMORY

Figure C.6 is a diagram of the dual port memory. It can be
treated in the following parts:

The RAM itself.
The Interrupt flip-flops.
Dual port address decoding.
Bus buffering.
Multibus address decoding.
Arbitration and control logic.

Next to the 1553B bus interface, most design effort was
put into this block, particularly into the arbitration and
control logic.

C.6.1 RAM

Up to three pairs of sockets, connected &e dual port
busses, are provided for static RAMs. Bach pair is
identical to the design of the local RAM. Each pair may
take either 6116s (2k) or 6264s (8k) as selected by
jumpers, according to the diagram in appendix D.

The maximum size of the memory is thus 48k. The amount,
required by the design overview, namely 32k, can be
achieved using only two pairs.

C.6.2 Interrupt Flip-flops

Two lines, to be used to generate interrupts on the
Multibus INT* lines, are driven by flip-flops. They may
be set and reset by accessing four consecutive word
locations in the dual port address space.

HARDWARE DESIGN Dual Port Memory /

<C HULTISUS

FIGURE C.S DUAL PORT MEMORY

HARDWARE DESIGN Dual Port Memory

C.6.3 Dual P o rt Address Decoding

The dual port address space is decoded into four 16k
blocks each with an enable line. One pair of RAMs is
always connected to the lowest block, while two optional
RAM pairs and the interrupt flip-flops may be connected on
any of the other lines by means of jumpers.

The decoding logic is itself enabled by DPCS* whenever a
dual port access occurs.

C.6.4 Bus Buffering

At the local p ort, the 186 multiplexed data address bus is
demultiplexed by using transceivers and latches, in very
much the same manner as is used to produce the local data
and address busses. They are enabled onto the
corresponding dual port during local accesses.

At the Multibus p ort, the address bus is buffered and
inverted. The data bus is passed through three
transceivers which implement the "byte swap" function that
is required when Multibus is interfaced to a 16 bit
device. These transceivers also invert the data lines.
Both buffers and transceivers are enabled during a
Multibus access to the dual port.

C.6.5 M ultibus A ddress Decoding

This circuit decodes the Multibus address lines ADRF*
through ADR13*, to produce a select line to the dual port
memory (MBSEL*). This is done according to jumpers which
determine the base address, and size, of the dual port
memory in the Multibus memory address space (see figure

HARDWARE DESIGN Dual Port Memory

and table in appendix D) . The top four address lines are
not decoded.

C.6,6 A rbitration and Control Logic

A single component dual port memory controller is
available for use with dynamic RAMs, but due to the
requirement that only static RAM be used, this design
could not take advantage of it to save space. However,
even if it had been possible to use this device, it would
almost certainly have been necessary to include some extra
circuitry to suit the particular application.

A controller therefore had to be designed, which did have
the advantage that it could be customised to the
application. This controller, with the exception of two
external latches, is entirely implemented in two 20 pin
PALs making it very compact indeed. The PAL implementation
is detailed in appendix E.

The design of this section went through several versions,
to try and make it more compact, and efficient. The final
one presented here was arrived at after a race around
condition was found in the prototype terminal (see next
chapter). The design was done by considering the logic
itself, rather than using the more mechanical Asynchronous
State Machine (ASM) techniques which would probably have
arrived at a more correct design, but at the expense of
complexity.

The logic is shown in appendix E. It is best described in
its two parts.

HARDWARE-DESI5N Dual Port Memory

C.6.6.1 Arbitration

The arbitration logic has as inputs the select and lock
lines from each port, in the case of the Multibus select
MBSBL*, qualification by one of the two memory operation
command lines is necessary. In the case of the local port,
the MCSO* line has to be delayed until the rising edge of
the processor clock occurs, otherwise consecutive access
to the memory may not be resolved by the logic which is
clocked at 18 MHz.

The internal request lines LOCREQ and MBKEQ are asserted
if, either there is a select from a particular port, or
the port asserts its lock line while the LOC/MB* line
indicates that that port has the memory. In this way a
port may retain the memory between access without
maintaining a select.

By considering these internal request lines and the
current internal state, the dual port memory is assigned
to one or the other port. This is done such th&t the local
port always has priority in the event of both ports
requesting access simultaneously. If both ports request
consecutive access, and neither asserts its lock line,
alternate accesses will be granted. When neither port is
requesting access, the memory will be assigned to the
local port, so that no delay is experienced by the 186
processor if it does require access. This schnme is
summarised b y the truth table in appendix B and leads to a
Boolean equation which describes the logic.

The result of the arbitration is indicated on two outputs
to the control logic, one which signifies which port has
the memory (LOC/MB*), and another which disables the
subsequent logic while a change over is taking place
(CYCBN).

C.6.6.2 Control

The control logic decodes these two outputs into
LOCALCYCLE and MBCYCLE. These are used to effectively
couple the controls of the RAMs to those of the
appropriate port, enable the correct buffers, and send a
ready signal back to the requesting processor.

After careful analysis of the timing requirements of both
ports and the RAMs, it was found unnecessary to provide
any relative timing between the various signals. This is
mainly thanks to the speed of the RAMs.

Finally, this part of the circuit is also responsible for
connecting the local data bus to the Multibus data bus
during access by the local processor to Multibus via the
master interface. Such an access is indicated by the line
IFDEN* generated by the 8268 bus controller. All other
controls for the buffers (byte swap controls etc.), are
picked up from the respective port controls. Note that no
arbitration for the dual port bus is required for this
situation, since both ports ara known to be occupied with
transactions not involving the dual port memory. For this
reason, the local processor is not allowed to try and
access the dual port memory via Multibus.

>

C.7 LOCAL PERIPHERALS

C.7.1 186 On board Peripherals

As mentioned previously, nearly all the local peripheral
requirements are fulfilled by devices integrated into the
186 processor itself. They are allocated as follows:

Local Peripherals

<

i
DMA channel 0 serves the MIL-STD-1553B bus
interface.
DMA channel 1 serves the SBX interface.
Timers 0 and 1 are available for counting events
on the 1553B busses, or timing bus idle
conditions when the terminal is in EM mode.
Timer 2, to which there is no external access,
can be used to provide a tick for a multitasking
executive.
The programmable interrupt controller is
operated in non-RMX mode. This provides four
external interrupt lines, which is insufficient.
Two of these lines are thus operated in cascade
mode, so that an external interrupt controller
can be used as detailed below.

C.7.2 Program m able In terrupt Controller

An external programmable interrupt controller (PIC) is
used to provide an extra eight interrupt lines. It is
connected to the lower data bus and is enabled by PCSl*.

A point to note here is that the Interrupt Acknowledge
line, INTAO* must be directed back to the processor ready
logic since it is not catered for by the programmable wait
state generators. This line must be pulled up since it is
not an output after reset, but must be programmed to be an
output during the 186 internal PIC initialisation routine.

C .7.3 Interrupt Jum per M atrix

This is not a peripheral as such, but it is best covered
with the PICs. Figure C.8 summarises the lines into and

- c.37 -

HARDWARE DESIGN

out of the matrix.

Local Peripherals /

GATE,

FIGURE C .6 INTERRUPT JUMPER MATRIX

The lines arriving at the matrix have been conditioned to
be in the correct sense to cause an interrupt. Lines which
carry pulses will have to be sensed by the PIC in edge
triggered mode. In order to do this they must be active
low. Lines on which a level must cause an interrupt must
be active high and can be sensed by the PPI in either edge
or level triggered node as desired.

Three inverters and a three input N M D gate are available
to combine interrupts from the 1553B bus interface. It may
be convenient, for instance, to combine the HSFAIL*,
LTFAIL*, and TXTO* interrupts, to give one interrupt that
will indicate a catastrophic failure of the bus interface
hardware.

The Multibus interrupt lines can each be either an input
to, or output from, the matrix, only level triggered
interrupts should use these lines.

C.7.4 Clock Generation

A 16 MHz crystal is provided for the 186 internal clock
generator. The processor in turn provides its 8 MHz clock
on the CLKOUT pin. The other frequencies that are required
by certain components in the terminal are supplied by an
8284A clock generator with some extra circuitry.

Using an 18 MHz crystal, this device produces the
following clock signals:

18 MHz for the dual port arbitration logic.
9 MHz, for Multibus master and SBX interfaces,
produced by halving the 18 MHz signal with a
flip-flop.
6 MHz, for the MRTU 53045 bus interface hybrid.
3 MHz, used for clocking sundry shift registers
(and by the USART in the prototype).

C.8 PROCESSOR ADDRESS SPACE ALLOCATION

Because cf the flexibility of the positioning of the
Programmable Chip select lines, no definite map of the

memory or I/O address spaces can be given. Table C.l
summarises the allocation of the chip select lines and the
programming of their associated programmable wait state
generators.

M H E

UCS* Local ROM

LCS* Local RAM

MCSO* Dual port memory

(top of memory) 0

(base of memory) 0

(mid-range memory) o

peso* Bus interface ppis
PCSl* External PIC (I/O or memory) 2
PC32* SBX Interface chip selects
PCS3* SBX TOMA* line

PCS4* Bus interface RX/TX, busy, strobes
PCS5* Watchdog refresh (I/O or memory) 0

Ignored

Ignored

The ready grouping PCS0*-PCS3* uses the ready input for
the benefit of the SBX interface chip selects. The other
three chip select lines must simply be routed back to the
processor ready logic to provide an immed.i-ia ready.

The 186 internal control block must be placed somewhere in
either memory or I/O space.

All address space that is not in the range of one of the
Programmable Chip Select lines, maps to the Multibus
master interface. Note that a problem may arise with
Multibus being requested when an access to the internal
control block is made. Although the processor ignores all
usual inputs during such an access, the outputs indicate a
normal bus cycle.

APPENDIX D

APPENDIX D

HARDWARE SCHEM ATICS AND
CONFIGURATION TABLES

D .l P IN -T O -PIN SCHEMATICS

The following schematics show the full pin-to-pin
connections of the terminal hardware design as implemented
in the prototypes

Figure D.3(A) shows the SBX interface as it would have
been implemented had this been possible, while figure
D.3 (B) shows the standard serial interface design that was
used instead.

The convention adopted for indicating lines between
figures is as follows:

The arrow on a line between figures Indicates the
direction of the signal. The letter(s) within the arrow
specify a corresponding arrow on the figure indicated by
the number after the slash. The combination of arrow
direction, figure number and letter(s) specify a unique
connection. For example: B/12> on figure D.l would
indicate connection to the line marked <B/1 on figure D.12.

TC-4:

BIS

#1
'-tksKi

1 "

■aas-H6,it£-4 ot ..i*r ^=-i&: 61163-4 ca- 6264.-

ti
I

z ^s z a ,̂

R H % 3 K 2 % B fe 1

2-5$2.A, a%4l , 3.X23

M K g g g B S ' K IS

mi: 2S a CwM-e.)

s Z S E z S y

/ ng 6/ j W Zl

T S S S W S w

XC.AO: PActtfei-Q x c4u Fmiitt-S

H i: Me.ru ‘ S-aA4S- ,6, 1.0F 3)

Z M m i % ; : e : m g a r m r

x c a g ; eacs-A -ff-.

12 Is fc s

'££ * * * * * * * *

ic.5s : eaSTt-A-s* •

D.8

Ht:-M«TU (̂ tjvflcr'z.wŝ

■ i n

10 LOftv COWBCLTCR

HI: KP.TU 5-30^.T (.DtWr 3

/

i i

I 20

ISIS

t c -s s : ifet-6

7 Z

- ri e 2 o yjqcfj £|
If l a a a-a a as' m , -
ZC-srz,: MLS.24.5-•; ;

l) ;

l i a a a i a a s s ie
tc.v&: M<S145-
% @ * 9 4 3 J 9 e

zc_«4: »4<-S 3T-3

$ 1 2 ®

TAtTEBBVPT- 3ut-«Pea. HATea r̂-

8 3
\A A A A A A 7 v

ic.61: Sa-51 ?• A.

GE
ZI
Z>

\ i

S I S

Hh

41-r i r

H h

Hh.

I f

ll
Hill III

I
I

h %
a ii

1 iSsSsiKISmiKm;

i t . H ' -

ffiijipiiiifcii isi { ^ K = = =
7 id a ^ icc3 ;!{a i :3 9 8 :j? S b M sL esrc& L SiM SojB SE

i S l l k j i A 6 i i i n I

ii

it

* K W w w w w % : : 8 ti_
.. . w,2er(aa33Sa5&5a;&C***::KS;3;
t * a*NWGHdXatK%*sWax*KkMd:XM^

D.3 PROTO TYPE BOARD LAYOUT

The following two drawings are the layout of the prototype
wire wrap board. They are to scale. The the right hand
edge of the second figure joins onto the left hand edge of
the first.

j j i j .

/

• i
i

!
!
!

J

D.4 JUM PER CONFIGURATION

The required connections of jumpers is obvious in many
cases. Those that require further information are detailed

D.4.1 ROMs

The jumpers for configuring the pair of ROM sockets for
various devices are on figure D.2.

nSVICES, 22A 521

N.C. VCC/A13 - VCC
2764 , PGM*/A14 - VCC
27128 PGMW/A14 - VCC VCC/A13 - A14
27156 PGM*/A14 - A15 VCC/A13 - A14

D .4.2 RAMs

Both the local RAM sockets in figure D.2 and the dual port
RAM sockets in figure D.9 are configured in the same way.
Note that both sockets in a pair must have the same
configuration.

DEVICES

6116
6264

amaEEB

WE*/A11 - WR* (UWR* or LWR*)
WE*/A11 - A12

0 .4 .3 S 0 X Address

As »entioi.~J in section C.4.2, there are two possible
addree'iing aohemes for the SBX interface. They are
obtained as follows.

SCHEME J M 525

Byte Addressing A4 A4*
Word Addressing AO SHE*

D .4.4 M ultibus Slave Ad.lress Decoding

".he following table shows how to connect the jumpers on
figure D.ll to obtain a desired base address and size for
the dual port memory :-s seen from Multibus.

J15A:
Top 512k use ADR13*
Bottome 512k use ADR13*

JlSDi (128k pa/ye within the 512)
0 - 126k Y3*
128 - 256K Y2*
512 - 384K Yl*
384 - 512K YO*

J15J: (Select s
64K size

32K size

mb-page size)

(64K sub-page within
0 - 64k 73*
64 - 128K tl*

(32K sub-page within
0 - 32K Y3*
32 - 64K Y2*
64 - 96K YZ*
96 - 128K YO*

APPENDIX 3

APPENDIX E

PAL DESIGN AND PROGRAMMING

E .l DESIGN PROCEDURE

No logic development aids were available to aid the
implementation of circuits using PALs. The Stag programmer
which was used, om.y accepted programming information in
the form of the fuse map for the particular PAL. This
meant that every logic function that was to be built into
the PAL had to be translated from either circuit diagram,
or truth table form, to a fuse map.

The procedure to put a circuit onto PAL is as follows:

Each combinational logic function in the circuit
is isolated and its inputs identified.

The Boolean equation describing each function is
derived, in the case of a circuit diagram fchis
is done directly. In the case of a truth table,
it may be done directly in the case of simple
function, vr a Karnaugh map may be used.

The PAL or PALs are now chosen according to the
number of inputs and outputs, and the required
output function (ie. registered outputs or tri-
statable I/O lines etc). This must be done
taking into consideration the number of product
terms required by the logic functions.

If more than one PAL is required to provide
sufficient input and output lines, a table of

a AND PROGRAMMING______________________ IVtflltm Method

each output and its required inputs is drawn up,
and outputs having common inputs are grouped
together. By this means the most compact
grouping of functions is found. Pin assignments
are then made, and the lines in the programmable
matrix are labled.

Very often it is convenient to choose a PAL
which automatically inverts its outputs, if the
functions to be implemented are active low. If
this is the case, the Boolean equations of each
function to be incorporated in the PAL, must be
inverted.

Boolean equations are now minimised and
converted to s m of products form. This may be
done with the aid of a Karnaugh map.

If desired, outputs may be checked for possible
glitching which may arise during transitions of
the input lines. If necessary, extra redundant
terms may be added to the Boolean equation to
avoid these conditions.

The fuse map of the PAL is then marked showing
which fuses aus't be left intact to implement the
the equation of each output function. All unused
product terms must have all fuses intact to
ensure that they are always low. Where it is
required that a product term is always high
(often to permanently enable a tri-state
output), all fuses should be blown.

Finally the fuse map is fed into the programmer
and the PAL is programmed.

PAL DESIGN AND PROGRAMMING Design Method

This procedure is both laborious and error prone. This is
particularly true of the equation minimisation stage, the
conversion to sum product form, and the plotting of fuse
maps. Any serious use of PALs definitly requires a design

The following sections contain all the essential
information about the PALs used in the two separate areas
of this design. The intermediate design steps are not
shown in most cases. Where more than one version of the
PAL was made, due to design or programming errors, only
the final version is shown.

The following conventions are used:

All signal names are in capital letters. Those that are
active low have an asterisk (*) after the name. For the
sake of clarity, signal names such as RT/BC* are not used
in truth tables. Boolean equations or fuse maps, instead,
RT represents this signal "high" and RT* represents it
"low". The same is applied to TX/RX* (use TX or TX*) ,
LOC/MB* (use LOG and LOG*), DT/R* (use DT and DT*), and
H/L* (use H or H *) , etc.

In truth tables the entry (x) indicates a "dont care"
condition. Usually output are given "dont care" entries
for combinations of inputs which should never occur.

E.2 BUS INTERFACE PALS

Two AMD 16L8 PALs were used. These have inverting outputs,
thus all equations must be inverted. All I/O lines are
either permanently input or permanently output. The
product terms controlling the output tri-state buffers
must thus be programmed accordingly, to be either

permanently high or permanently low.

The PALs are PAL 1 and PAL 2 in the board layout. Three
versions of PAL 2 were made after design errors, and bugs
in minimisation and transfering to the fuse maps were
found. The most recent fuse maps are shown at the end of
section E.2

The functions that have been put into these PALs are:

E.2.1 TX Latch Enable Lines

Outputs: LBEN* and HBEN*
Inputs: RT/BC*, TX/RX*, H/L, DTRQ*, DWEN*/VBCTBN*, CWBN*

LBEN* and HBEN* are asserted under identical combinations
of the inputs, except that LBEN* requires that H/L* is
low, while HBEN* requires that it is high. The following
truth table describing the lines thus omits H/L*.

The RX latches must be enabled in RT mode when:

fetching a data word to be transmitted, or
reading the vector word,

and in BC mode when:

fetching a data word to be transmitted,
loading a command word, or
loading a single data word.

Using a Karnaugh map, the minimal inverted Boolean
expressions with no output, glitches are:

LBEN ■ H * .VfiCTEN/DWEN +
H * .DTRQ.TX +
S*.RT*.CWBN

HBEN - H .VBCTEK/OWEN +
H.DTRQ.TX +
H.RT*.CWEN

E.2.2 F S trobes

Outputs: .nd HBSTB*
Inputs: ici/BC*, R/L*, TX/RX*, DTRQ*, STATSTB, RMDSTB*,

IUSTB, SYNC

Igain, LBSTB* and HBSTB* are asserted under identical
combinations nf the inputs, except that LBSTB* requires
that H/L* is low, while HBSTB* '-eguires that it is high.
The following t-uth table describing the lines thus omits
H/L*.

The RX latches must be strobed in RT mode when:

a data word is passed to subsystem, or
a sync data word is received,

and in BC mode when:

a data word is passed to subsystem,
a status word is received, or
a single data word is received.

For RT mode (ie. RT = 1)

TABLE E.2 (Continued)

TX DTRQ* STATSTB RMDSTB IUSTB

PAL DESIGN AND PROGRAMMING Bus Interface PALs

Using Karnaugh Maps, the minimise'-' inverted glitch free
Boolean expressions are:

LBSTB = H * .R T .SYNC.XUSTB +
H * .T X*.XUSTF.DTRQ +
H * .R T * .STATSTB +
H * .R T * .RMDSTB

HBSTB » H ,R T .SYNC.IUSTB +
H .T X * .I trS T B .D T R Q +

H.RT*.STATSTB +
H.RT*.RMDSTB

E.2.3 Data Transfer Hm r/ and DMA Requests

Outputs: DMARQ, TXDMAK", iXDTRQ, DTAK*
inputs: RXINT, DTRQ*, TX/RX*, TXDTAK

The following circuit was designed and is now used to
obtain Boolean crepressions.

PAL-DESIGN A ND PROGRAMMING Bus Interface PALs /

TX/RX

FIGURE E.l HANDSHAKING AND DMA REQUEST LINES

The minimised glitch free inverted expressions are:

TXDTRQ* « TX* + DTRQ*

TXDMARQ* » DTRQ* + TX* +TXDTAK*

DMARQ* R X INT*. DTRQ* +
RXINT*.TX* +
RXINT* .TXDTAK

DTAK - TXDTAK r RXINT.DTRQ.TX*

E .2 .4 S y n c In te r ru p t S tro b e

output: RTSYNC*
Inputs: SYNC*, RT/BC*

The following circuit is implemented:

FIGURE B.2 RTSYNC* LINE

Inverted Boolean expression is:

RTSYNC = SYNC.RT

E.2.5 B us R equest Logic

Outputs: ENREQBUSA*, BNRBQBUSB*
Inputs: REQBUSAOUT, REQBUSBOUT, ENREQ, RT/BC*

The following circuit drives the open collector gates
the hybrid:

PAL DESIGN AND PROGRAMMING Bus Interface PALs

REOBUSAONT

RT/BC

The inverted Boolean expressions are:

ENREQBUSA = REQBDSAODT + RT + BNREQ’1'

EKRBQBfSB - REQBUSBOOT + RT + ENREQ*

E.2.6 RXINT and INCM DINT Com bination

Output: RX/INCMDINT
Inputs: RXINT, INCMD*, RT/BC*

The two interrupt lines are combined as shown:

FIGL-k -; S.4 R>'/TKCMDINT LINE

Inverted glitch free Boolean equation is;

RX/INCMDINT* » RXINT*.INCMD* +
RXINT*.RT* +
INCMD*.RT

E.2.7 DBCINT and RTOINT Com bination

Output! DBC/RTOINT
I n puts: DBRSQ*, RTO*, RT/BC*

These two interrupts are combined by
circuits

following

/
RX/TX

DBC/RTOINT

The inverted glitch free Boolean expression is:

DBC/RTOINT - RTO.RT* +
DBREQ.RT +
DBRBQ.RTO

E.2.8 Extra PAL Lines

Output: INVOUT
input: XHVXN

After assignment of functions to the PALa, two lines were
left over on one of the PALs. These are simply made into
an inverter for general use.

After inversion :

INVOUT = INVIN

LOGIC DIAGRAM AinPAUSlB/AmPAUCUA

TX/RX.

3 3 - 1
TX5TRQ

U/L

LOGIC DIAGRAM AmPAUGLa/A. ,r’aL16UA

TXDTAK,.

DMARQ

REQBUSBOUT

REQBUSAOUT

E.3 DUAL PORT ARBITRATION AND CONTROL PALS

Two AMD 16L8 PALs were also used for this circuit.
Although the arbitration logic uses two latches, a PAL
with registered output could not be used as the latches
have to be independently dockable, once again each
Boolean expression has to be inverted because of the PAL
inverting outputs.

The PALs are PAL 3, which is mainly the arbitration logic,
and PAL 4, which contains most of the control logic. Two
versions of each were made. The fuse maps of the latest
versions are shown at the end of this section E.3.

The arbitration and control logic is illustrated in the
hardware design. The individual combinational functions
are implemented as follows:

E.3.1 Delayed Memory Chip Select

Output: DMCS*
Inputs: Mcso*, CLKOUi*

The circuit is:

This circuit is different from those encountered
previously in that it is not truly combinational. It
implements an RS flip-flop (with some gating in front of
i t). To do thi s , the output has to be fed back into the
circuit. It is also necessary to feed the input back as it
is an input t> the next function (ARBXP). This is acheived
easily in the PAL using an I/O line. The inverted Boolean
expression is:

DMCS = MCSO.DMCS +
M C S O .CLKOUT

PAL DESIGH AND PROt.JAMMIMG Dual Por_t__PALs

E.3.2 Arbitration Latch Input

Output: ARBIP
Inputs: DMCS*, LOCALLOCK, MBSBL*, MWRC*, MRDC*, MBLOCK*,

LOC/MB*

The logic diagram was derived from the following truth
table which describes the arbitration srheme outlined in

PAL DESIGN AND PROGRAMMING Dual Port PALs

MBREQ

FIGURE E.S ARBIP LINE

This line is also required by another function (LATCHCLR
see next section?. It is therefore also fed back into the
PAL {but not bacf to itself). This circuit was minimised
and checked for . . it glitches by means of a Karnaugh map
to give:

ARBIP* » DMCS*.L O CAL O C K * .MRDC.MBSEL +
D H CS*.LOCALLOCX*.M W R C .MBSBL +
m e * . MRDC.MBSEL +
LOG * .M RWC.MBSEL +
MBLOCK,LOG*

E.3.3 Cycle Enable Latch Clear Line

Output: LATCHCLR*
Inputs: ARBIP, LOC/MB*

The output is simply the logical XNOR of the two inputs.
Inverting, this becomes a logical XOR (:+:) as follows:

LATCHCLR - ARBIP :+: LOG

Expanding the XOR function, the Boolean expression to be
programmed into the PAL is:

LATCHCLR - ARBIP.LOC* +
A R P " VOC

E.3.4 Control logic

Outputs: DPCS*, DPRD*, OPUWR*, DPLWR*, LOCKRBADY*, XACX*,
LOCADREN*, MBADREH*, LOCDEN*, WORD*, SWAP*,
MBDIR*

puts: LOC/MB*, CYCEN*, DMCS*, LOCRD*, LOCUWR*, LOCLWR*,
DT/R*, 1S6DEN*, MRDC*, MWRC*, BHEN*, APRO*,
I/PDBN*

The control logic is shown in the figure E.10. It is
simply one large combin.itional circuit.

PAL DESIGN A ND PROGRAMMING

There is only one "Mne requiring special explanation?
XACK*. This output directly drives the Multibus XACK*
line, 63 it must be tri-stated. It is implemented simply
hy setting the output always active low (by blowing all
the fuses in one of the product terms)• The Boolean
expression, which consists of one product term is then
programmed onto the tri-state enable line. The Boolean
expression ia thus:

XACK* t H - s t a t e enable - CYCEN.LOC*

The inverted glitch free minimised Boolean expressions for
all the other lines are;

DPRD - M RDC. ZiOC*. CYCEN +

LOCRD.LOG.CYCEN +
M RDC.LOCRD.CYCEN

DPUWR * CYCEN.LOG.LOCUWR +
CYCEN.LOG*.BHEN.MWRG +
CYCEN.LOC*.ADRO.MWRC
CYCEN.MWRC.LOCUWR.ADRO
CYCEN.MWRC.LOCUWR.BHEN

DPIiWR - IiOC*.CYCEN.MWRC.ADRO* 4-
LOC.CYCEN.LOCLWR +
ADRO *.CYCEN.LOCLWR.MWRC

LOCDEN - I/FDEN +
LOC*.CYCEN.166DEN.DMCS

MBDXR - MWRC.I/FDEN* +
DT * .IFDEN

WORD = BHEN.CYCEN.LOG* +
BHEN.I/FDEN +
ADRO*.I/FDEN +
ADRO*,CVCEN.LOG*

SWAP - BHEN*.ADRO.CYCEN.LOG* +
BHEN*.ADRO.I/FDEN

MBADRBN = LOG*.CYCEN

LOCADREN “ LOC.CYCEN

LOCRBADY » DMCS.LOC.CYCEN

DPCS - DMCS.LOC.CYCSN +
LOC*.:YCEN

PAL DESIGN AND PROGRAMMING Dual Port PALs /

i
i

logic Diagram AmPAtiOLa/AmP.
KWRC

DPUWR

LOCDEN

LOCUWR

LOCLWR

1/POEM

LOC/MB

APPENDIX F

APPENDIX F

TE ST SOFTW ARE LISTINGS

Tha following software was written during the testing of
the dual port memory and 1553B bus interface. It is
representative of that which was written, both in
assembler and Forth, for testing and debugging other parts
of the design. No strict software design techniques were
used when writing these routines, rather they are the
result of adding necessary features as testing progressed.
They should, however, illustrate how the 1553B bus
interface hardware is driven and give some indication of
the power of the Forth language.

F .l ASSEMBLER HYB -T

This is a self contained assembler program, which
initialises the system and allows a choice of operations
on the bus interface to be performed.

The initialisation code used in this program is an example
of how the full prototype terminal system could be
initialised. It is almost identical to that which
precedes the jump into the Forth system. Note in
particular that the MRTU 53045 hybrid is initialised to a
known state as soon as possible after powering up.

I TESTHRTU - IN I1 M L TESTS Oh M ST U 53045 H YBRIl) C H IP SET

EQU
£ 9 U

m u m

1CB.ADD m SfFOOH

UKCS.fSBD m r e s a m m / i
LH CS.AD D m IC B A D B t lA S l
P ACS.A DD EQl) IC B A M tO A 4H
m C S .A D D E titi IC B A D M A iH
W C S .A D D t a u ICB.A DD fO ABH

iC H IP SELECT R EG IS TER EQUATES
U KCS.V AL e m

LMCS.VAL m

P A C S .V A t E6U m m

N PCS.V AL m 013DH

PBA ,

ORE 0 P F F F I0 0 0 H

iIN I T I A L I S E LMCS R E G IS T E f f O I 8K RDM
A X .lf lC S .V A L
M ,U M C S M B
DX.AX

iJH P TO BOTTDM C f ROM
F jtf i PTR IN I T

iIN I T I A L I Z E B I I P SELECT R EG IS TER S
0 F E S 3 H 0 0 H

W I T MOV A X ,L « S W L
MOV D X .U tC S .A D D
OUT DX,A X
MOV A X .P A CS.V A L
r o v D X ,P A C S.A 1B
OUT DX.AX
M !V AX; » C S .V M .
HOV D X .W C S ADD
OUT DX,A X

i P P I EQUATES
P C S i l .& t e £ EfflJ P B A + t
P P I .P IS T A .E V E N E * PCSO BASE+0
P P I .P O R T A ODD m P C S1 B A S E tl
P P I .P U R T B EVEN E tiU PCSD BA SE*2
P P I PORTB ODD £8 U P C S# BASE+3
m p o r k m u m P C M . M K W
P P I PQRTC ODD m PCSO BA i + 5
P P I G # G B m PCSS BASE+6
P P I .C W T ODD •BU PCSO BASE+7

iIN T H N A L CONTROL BLOCK

;8 K m S IZ E
, 1 U M T S , m i IGNORED
; « UPPER U H I T
| 0 W A IT S , ARDY IGKURED

j t W A IT , M B Y IG NU REI
■ ,m * L IN E S 2K EACH
;A 1 ,A 2 PROVIDED
jP C B * L IN E S IN I / O SPA CE
j l W I T , ARDY IGNORED

m .H O D E .U O M m jt iO RC TO I N IT IA L I Z E BOTH A P IS AT ONCE:
iP O R TS A - NODE 0 I / P
I PORTS B - NODE 0 I / P
jP O R TS C - MODE 0 D /P y

B X ,P P I.C D N T .E V L N
A X ,P R IJ D D E .IIO R B
DX.A X

;S E T C H IP S E T TO N ININ A L STATE
M RT U .N U L L JO R D EdU

jE tS E Q FALSE
jS E S V tR E fl* F A L SE
iPASMOW* FAL SE

[DBCACC* FALSE
jB C S T E N I FALSE
iK S T E N O FAL SE

iB CO PREQ * FAL SE
. S S E R E I T e E A S E
iR T /B C * SET T O R T
iR ESBUSBOVT E A S E
iR M BO SA O UT FALSE
iBCOPB FALSE
)BC0PA FALSE

A X ,N R T U .» IL L .M R D
D X J P I .P O R T C .E V E U
DX.AX

i i m m z i STACR P O W E R
A X ,8
S S ,A X
S R J F F F H

J TIM ER EQUATES
HAXCOUNTAO ADD E8U IC B A B D +I52H
HAXCDUNTBO ADD EGU IC B ADD+154H
CONTO.ADD ECU I C E J 3 D + 5 5 6 H

NAXCOUNTAB UAL t f e i 6
M AXCSJNTB8 UAL m
CONTO.V AL E M I 0C 083H

iC IV E S “ i e t B A I8 AT
i ! 6 X FACTOR
I NO W I T a t ; NAX COUNT
jALTERNATE MAX COUNT
i INTERNAL CLOCK
;N 0 PRESCALER
jN O E T R I 6 K R
jIN TE R R U P T D ISABLED
ito A B L E C to T L P

RATE T Iw -‘R
AX,HAXCOUNTAO J A L
DX.NAXCOUNTAD ABB
D X.A X
A X,MAXCOUNTBO.VAL
DXJA XCO U NTBO.A V D

OUT BX.AX
MOV A X .C O T .V A L
MOV D X.CONTO.ADD '

DX.AX

iUMRT EQUATES
PCS2 BASE m
USART.BATA ED'
USAH.SlftTUi Effil
USARTJOKTROL E6U

hUDE.VAL m

COMMAND UAL E6U
TX.MY MASK Effll
RX.RDY.hASK & f ‘

j INITIALIZE USART
MOV

OUT
CALL
MOV

iLATCH EQUATES
PCS4.BASE £@J
tATCH.ABD m
BUS? ADD E«1
K f M U E m Etiil
BCOPNT.ABD m

;B1SPLAT HEW
INII.ESB OP MOV

CALL

HEKO.LOffl1 CALL
CUP

COHP.C W

SET.BC MODE E8U
BE!_ENKQJ8U£ EflU

PBA+OHOH
PCS2.BASE
PC52 BASE+2
USABT.5TA1US

11D01S1DB ;2 STOP BITS
[PARITY DISABLE
|CM LENGTH 7 BITS
[BAUD RATE FACTOR UX

C000DI01B ;EKABLE RX A® TX

AL,8
BX.IBART CONTROL
BX,AL ;ENSUSE CCStKAND REti
D E u s r j i s m i s t i o

DELAY
DX.AL
DELAY

DX.AL ;RESET USMT

AL.WK.VAL
BX.AL
DELAY
AL,COMMAND VAl
DX.AL
DELAY

PBWmON
PCS4 BASE4-0
PCS4 BAK+4
ftof.MSEtS
PCS4 BASk+12

SI.OFF̂ T INIT.HESSteE

RX.CHAR
AL.I'B' (POLL FOR OPTION AND JUMP TO
BUS CONT iSELECTED ROUTINE
AL,4'T'
TRANS COM
AL.t'H'
COHP.C
MODE DATA COM

MENU LOOP
DWT.TR6NS.C0H

0000IDSBB jRESET FORT C BIT 4
OOiinOlB ;SET PORT C BIT fc

jCQHFIGURE AS BUS CONTROLLER
BUS.COKT CM.L TX.CHAR

I TRANSMIT A COMMAND WORD

DX.BKTOT ADD
SX.AX ,ENSUXE THAT THERE IS NO BCQRSTB*
DX,PP1 CONT.EVEN
AL.SET BC MODE
DX.AL
DX.PPI CONT.ODD
AL,SET.ENRE8.TRUE
DX.ti. iENABLE BUSRE8 LINES
SI.OFFSET BUS CONT HESS
MESSOP
INiT.MESS.OP

CHEOt.BC
INIT.MESS.OP
SI,OFFSET ORF.HESS

RX ClttR
AL.t'O' ;INPUT COMMAND TYRE TO BE SENT
OPT.ZERO

OPT ONE
AL.1'2'
OPT TWO
AL.t'3'
OPT.THREE
AL.P'G'
a
GET OPT
AH.moooir
AH.OMOOBiiB

a:.,1060001 OB
OPT.SET
AH,0000801 IB
TX.CHAR
DX.PPI PBRTC.EEN
AL,$X
AL,nil0«80B
AL.AH
DX,AL ;SET BCDP AND BUSRE8 LINES AS REBUIRED
OPT MESS OP
000010800010001 IB ;RT ADDRESS4

jRECEZVE
;SUBADDRESS-!
jWDRO C0IWT*3

AX,COMMANO_WOR5
BX,LATCH.AB8
DX,AX ;WRITE COMMAND WORD TO BE TRANSMITTED TO TX LATCHES
DX,8C0PPVLSE.A0D
SX,AX |SET BCOPSTB
CX,3 [INITIALIZE COUNTER FOR 3 WORDS
WAIT TXWOKDREfl
AX,CX [SEND WORD COUNTER AS DATA
DX,LATCH.ADD
DX,AX
WORD LOOP [UNTIL REQUIRED NO, OF WORDS HAVE BEEN SENT
SI,OFFSET TRANS COM.MESS
MESS OP
INIT.MESS.OP

[TRANSMIT A COMMAND WORD FOLLOWED BY A DATA WORD

HODE.MTA.COil CALL CHECK BE
JZ MODE WORD OP
JM? 1NIT MESS 9?

HUGE WORD Effl S0000CS6000IE1I11I
MODE V OP MOV AX,MODE WORD

MW DX,LATCH.ADB
OUT GXjAX ;WRITE COMMAND liOKD TO BE TRANSMITTED TCI TX LAKES
NO, DX.PPI P08TC EVEN
IN AL,BX
e m A L . i n i o e o i n
OR ALfieC000eiB jBLi DO, 0 Ol'TlQN 1
OUT DX,AL ;SET BCUP AND BUtiREQ LINES AS lEtlUIRED
HOV BX.BCOPPULSE ABB
OUT DX,AX ;SET BCOPSTB

SATit m o £80 :»ui8:e!fi»:5ito
MOV AX,BATA tiORD
m DX,LATCH ADD

i CALL WAIT TM1REQ
OUT BX,AX ;URITE COMMAND WORD TO BE TRANSMITTED TO TX LATCHES
I# DX,PP1.P0kTC.E«N
W flL.BX
A M A L , I H 1 8 1 0 I B
OR AL.IOOOOlieB ;BUB NO, 0 OPTION 2

} CALL WAIT NDRt
OUT DX.flL [SET BMP AND BUSREQ LINES AS REflUlRED
Vm DXjBCOPPULSE ADD
OUT BX.AX ;SLT BCOPSTB
MOV SI,OFFSET KOBE DATA MESS
CALL HESS OP
JWP INIT.HESS.OP

;TBAJfSSlT A COtoAS WffiBS CONTINUOUSLY jTHlS ROUTINE ALLOWS THE WAVEFORM
COMT TRANS COH CM1 DEC* BC ;T0 E DISPLAYED Of' AN OSCULISCOPE

JZ CTC MESS: OP
IMP INIT HESS OP

CTC.MESS1.0P MOV SI,OFFSET CTC.MESS 1

)

}UBSB C0l«Ts32
HX,COIWlND„tiOR$_l
BX,LATCH.AD9
sx.itx jwrrE cm# m o ro re m m n m w tx i m m
D X .P P I .P O R T C .E V E N
W.,DX
AL,111161011)
AL,0000II80B |BUS NO, 1 OPTION i
DX|Al ;SET BCUP AND BUSREQ LINES AS HEQUIRED
BX.BCFPULSE ADD
DX,AX [XT BCOPSTB
RX CHARJEST)8EE IF A CHARACTER HAS BEEN RECEIVED
SB ENB | IF SO END TRANSMISSION
CXjOOOFH
WAIT [BELAY BEFORE RSTIE NJRQ*
W A IT.N BRa
CTC LOOP [THEN BEBIN TRANSMISSION AGAIN
S!,irFSET CTC.KSSJ
MESS OP
INIT.hESS.ff

jKRiTINE TO CHECK THAT CHIP SET IS IN BC MODE
CHECK.BC PUSH DX

DX.PPI PDR PC EVEN
AX.BX
ffl.,0ll0ia80CB (CHECK nrtu is in bus cont NODE
BC.OK
SI,OFFSET K ERKffli MESS
ESS.OP
AL,00S00001B
CHECK DC m

sc.ox M j i m m s (CHECK m i s LIES ENABLED
EMREB K
SI,OFFSET ENREW ERR MESS
m s OP
AL,666860018
CHECK.BC.E1®

EN8E8 OK AL,00660663B
(HCX.BC.EM AX

HAITTXREfi.LOUP IN
DX.PPI PORTS EVEN
AL,DX
AL,6100610«B
WAITTXREO.LOOP

I ROUTINE TO WAIT FOR TIE NDRdk LINE TO BECOME Fffl.SE
WAIT NBRQ PUSH AX

PUSH BX
W BX,P«yt!RTB EVEN

WAITNORQ.LOOP IN AL.DX
AND AL,0SO10600B
JZ WAITNDR8.LOOP
POP BX
POP AX

i MESSAGE OUTPUT ROUTINE
NESS OP PUSH AX
HESS’OP LOOP LCDS CSiBTTE PT8 ESSAGES

AL.CNTLZ jO/P CHARS TO USA),?
RETURN (UNTIL CONTROL Z IS
TX CHAR (ENCOUNTERED
NESS OP LOOP
AX

I TRANSMIT CHARACTER ROUTINE
TX CHAR PUSH BX (SAVE REGS

PUSH AX
MOV DX.USART STATUS

TX LOOP IN (WAIT FOR TX TO BE READY
AND AL,TX.RDY_NABK
JZ TX.LOOP
MOV BX ""ART.DATA
PUP AX (RESTORE C*R
OUT DX.AL (TRANSMIT
PUP DX

i

i RECEIVE UKMACTEE ROUTINE
RX.CHAR PUSH DX
RX.tOOP CALL RX O M TEST jHAIT FOR CHAR TU AURIVE

$X*LOBP'
DX.liSART DATA
AL,DX jRECEIVE CHAR
DX

iTEST m m KECEIVE6 P̂ .̂FEDUKE
RX.m.TEST

DX.USART STATUS
AL,DX
ALiHX.RDY.im
IX

i M U ' t PRKEEDURE
DELAY NEAR

HESSAGES $
INIT.flLiiSAGE CS.LF.LF.'̂ SIHSIl) - TEST m m U S RV8RI1 CHI? SET',CR,LF,LF,

'CHOH FROM i',C6,LF
-CDFIGURE AS BUS CONTROLLER - B',CR,LF
•TRAtoMITACOfWDITO- T’.a.LF
'TRANSMIT A HUDE COMMANI AND A DMA UCJRD - H',CR,LF
'COHTItRJOUS COmAKB IMRD TRANSMISSION - C',R,LF,CNTLZ

BUS.CtoT MESS CR,LF,'BUS CONTROL MODE - BUSHES LINES ENABLED',CR,LF,CNTLZ
BC.ERROR.MBS CR,If,'ERROR - NTRU NOT IN BUS CONTROL HODE' ,CR,LF,CN7U
ENRE5.ERR.iESS C8,LF,'ERROR - BUSKED LINES NOT ENABL̂ ',CR,LF,CNILZ
QPT.IESS CR,lF,'mUIREB BUS CONTROL OPTIIW [(1,1,2 OR 3) OR G TO EXECUTE ; ' ,CNTLZ
i s m c m m s £«,LF,'SINGLE C C m ® HMD TRANSMITTED',CK,L;,EmLZ
hOBE.DMA HESS CR,tF,'«0DE COMMAND AND DATA WORD TRAHSKITTED',Cfl,U-,CHTlZ
CTC.MESS.l CR.LF.'TBWiSIHTTiNG - HIT ANY KEY TO STOP',CR,LF,Ci!TU
CIC.HESS.2 M,LF,'TRANSMISSION TERMINATE)',CR,LF,mU

F.2 FORTH PRIMITIVES

The following non-standard primitive assembler words had
been added to the version of Forth used, specifically to
test 8086 systems:

01 (word offset —) Stores a byte in the location
calculated by using the contents
of the variable SEGMENT as a
segment ban a and adding the
offset to it.

OCl (byte offset —) As above except a byte is stored.

0@ (offset — word) Fetches a word from the location
calculated, by the method above.

0C6 (offset — byte) As above except a byte is
fetched,

EXCHANGE (word offset — word) A locked exchange is
performed with the word on the
stack being swapped for the one
in the location calculated by the
same method as used above.

P! (word portadr —) The word is stored at the I/O
port address.

PCI (byte portadr —) Tho byte is stored at the port
address.

P@ (portadr — word) The word at the I/O port address
is fetched.

tc§ (portadr -- byte) The byte at tho port address is

]

fetched.

The following primitives were added specifically tr drive
the bus interface. They effect the transfer of single data
words in either direction between a bus controller and
remote terminal. Polling of lines rather than interrupts
are used. These operations cannot be done directly in
Forth because a fast response is required.

BCRX (adr —) The hybrid (assumed in BC mode)
is strobed to initiate command
word trf/vsmission (the command
word is assumed to be a receive
command already in the TX latch).
The word in the location
specified by the address is
supplied as a data word when the
command word has been taken.

BCTX (adr —) Hybrid BC transmission of a
transmit command is initiated as
above. When a data word ic
received in the RX latch, it is
stored in the location specified
by the address.

RTSERVE (adr —) The hybrid is assumed to be in RT
mode. It is polled until a
command is received. If it is a
transmit command, the word in
the address is supplied to the TX
latche"-- If it is a receive
command, when a word arrives in
the RX latch, it is written to
the location given by the

y
address + 2.

The assembler code for these Forth primitives is appended
at the end of the usual Forth dictionary. The code is
given below:

i The FOUOlilHfi PRIHATIVES DRIVE THE HRTU 53045 CHIP SET y
i latch t m m
PCS4 BASE ESti
LATCH ADD
BUSY ADD
BCOPPULS AID EtiU
BCQPtST AM

ESI)
EQU

PBA+028SH
PCS4 BASE+8
PCS4 0ASE+4
PCM BAKtS
KCS4 BASE+12

e c e x MkTU RECEIVE COHAN!) IN BC MODE

HEAOEfi 08<H,LASr.ST».LAK:t,ffl,K:<t,X
BCRX CFACOIE

AX

BX.AX
DX,BCDFPULSE.AIIU

1 ' X
: K,m P m EVEN
[BCRX1 AL,DX

AL,C880llll8ti
BC8X1
AX.tBXl
DX.LAlto ADD
BX.AX

;

f : MTU TRANSMIT COMAND IN BC MODE

0e4H1m,R2,BCl,X
2 CFItCODE
1 AX

TX.AX
i x . K x m L S E . i u i y

DX.P P1 p o m EVEN
AL.DX
A i . i i o m e i B
BCTXl
DX,UTCH.A1D
M,n
8X,PPI PCffiTB EVEN
AL.DX

BCTX2
DX.UTCH.ADB
AX.BX

1 EBX),AX

RVtX SERVICE IN M » /
087H,H2,LAST.LABEL,R1SERV,E

AX

BX.AX
n , m _ M k EVEN
AL,DX
AL.COOOOiSlB
itrsavEi
AL,BX
AL,M00miB
RTSERVE2
AX.IBXl
BX,LATCH AM

IX,AX
RTSERVE3
DX.PH M m EVEN
AL.IX
AL,600l)188tlB
6TSERVEA
DX,LATCH.ADD
AX,ax
SX

XENBHCr NOP
UR6TH.FDRTH E* VXfORTH

F.3 DUAL PO RT MEMORY LOCK TEST

The semaphore scheme implemented in Forth to test the lock
feature of the dual port memory is given:

i OISP C EMIT I WAIT KGIN Ck S EMIT 1 W I T (DiSfLftT FIST IWH fifcW lO M T H N e ?
1 M ; K I M 4 1 LOOP ? m m UNTIL i (M O * StGHtNT BASt)

: SET-SEH < UFFSbT —)

! GET-Syi (OFFSET —)

m 0 SWAP EXMANGE

! COIS-E'lE

II GEHEH

S SE7-SEA
ITERHWAl

TES j.1 s o f t w a r e LISTINGS_________ Forth Bus Interface Drivers

F.4 FORTH BUS INTERFACE DRIVERS

The following words were used to drive the 1553B bus
Interface:

(W K IO U S CH JV £ £] H U T ER K ftC E A C C E S S E S)

i PRHUXH 6 !
! P P Z -P U R T -H 2 ;
! P F l - R O R H - E V E N 4 |
i P f l-R D R T -C -U C D b ;
! P P I - P M T - C 4 i
; P P I-C U K T -tV E N 6)
I P P1 -C U N T -O D S 7 i

y

! USEFUL MINITIONS)

' HRTU RtSET ENAHIED”

I WBRESET
66008110 PP1-CONT-ODD PC!

CD HR fU RESET DISABLED'

i ENABLE MRTU RESET)
(SET PORT C BIT 11) i

i CHECK-BC (CHECK THAT CHIP SET IS IN BC HUDE)
PPI-PORH-EVEN PCS 00010066 AND ROT (TEST r'Kt LINE !

PPI-PORK-OM PCS 01600600 M (If BC THEN TEST ENREtl LINE)

THEN |

FALSE Ct BUS H m S T LINES NOT ENABLED1

NOT IN BC MODE'

! SET BCOPSm LINE)

! BATA MJSNOHBEi OPTION -)
(SET OP COMMAND HISD FOR TRANSMISSION)

(MASK OPTION)
SWAP 00600611 AND I HEX) 4 I BINARY 3 *

PPi-PORH-EVEN PCS 11116000 AND
OR HPI-PORI-C-EVEN PC!

COHETUP BCOPSET ;

I DECIMAL 1 2048 I BINARY 1 *
0800010001100001
OR 6 6 CtFSOT
CHECK-BC

(MASK BUSNUKBES AND SHIFT 2 BITS LEFT)
(COMBINE THEM)
I READ IN PORT VAL AND CLEAR LOWER 4 BITS)
(COMBINE IIITH NEW LOWER 4 BITS AND WRITE OUT)

(KITE DATA TO TX LATCH 1

{ LOAD.ADR WEIW ABBR --)
(ISSUE SINGLE RX COMMAND)

{ SHIFT RT ADDRESS TO BIT 11D)
(RX , SUB AIR 1 , UORD.COUNT 1)
f ALWAYS m 8 OPTION 8)

BCRX

i TXCOM (LOAD ADR NETW ADM -)
(ISSUE SINGLE TX COM'#)

i DECIMAL 3 2048 £ BINARY 3 * (SHiFT RT ADDRESS TO BIT HD)
8000016006100061 I TX , SUB.AIR 1 , WGRD.COUNT 1)
ON 6 6 COM-SETUP (ALWAYS BUS O OPTION 0 I
CHECK-BC
IF

T EST SOFTWARE LISTINGS Command Interrupt Service Routine

F.5 COMMAND INTERRUPT SERVICE ROUTINE

The following assembler routine is invoked when an
interrupt is caused by the INCMD* line going active. The
code is the result of much experimentation to find the
quickest way to program the DMA channel, particularly in
the case of a transmit command. The method ultimately used
by this routine, is to leave the DMA channel permanently
programmed tor a transmit command. If a receive command
occurs, the channel is reprogrammed, and then at the end
of the receive command returned to original state.

INCKD1NT - HEflOTE TERMINAL INCH!) INTERRUPT SERVICE ROUTINE f
iPPI EQUATES
PCSOJASE
PPI.PURTA EVEN PCSS toSE+C
PPI.POSTA ODD EQU PCSO BASE+i
PPI PURT8 EVEN EQU PCSO BASE+2
PFI.POm ODD E3U PCSO BANEt]
PPI PURTC n o EQU PCSO.BASE+4
PPI.PM1C ODD EflU PCSS.BASE+S
PPI.CQNT.EVOI EQU PCSO BASEtfc
PPI.CON1.OBD EQU PCS: BASE*?

i LATCH EWES
PCS4J3A8E PBA+OZOOH
LATOi ABB PCS4.BASE+0
BUSY ADD EflU PCS4 BASt+4
BCUPPHS AM EflU PCS4 MSEtB
BKWRST ADD EQU PCS4 BASE+12

ICB.Mt EW 0FF00H i INTERNAL CONTftCt BLOCK

m . c m m m j m u m i
m TC EflU id AOlltOCSH
DMA BP EKJ ICB MIH0C4H
m j ? EQU ICB.AUB̂ COH

DPN.MSt m I

E0I.6E6 EflU ICB_ADH22H

|USMT EQUATES
PCS2 RASE EQU PW0160H
USAR? DATA EQU PCS2.KA8E
US'AST STATUS EflU P C B . B W M
USARF CONTRft. EQU USMT.STATUS
rX.RBf MASK EflU 01H
RX.RDY.MASK Etol

(tSe 06I16100H

AL.IPPUORTA.OUDI [READ IN WORD COUNI
AH,til

DX,DMA.TC (WRITE TO DMA TERMINAL COUNT
DX.AX
AL.IPPl POFiTA EVEN] ;KEAD SUBSAUDREBS AND TX/M* LINE

AL,AL
AX,I ;SHIFT TO USE AS BLOCK ADDRESS
AX,1

jTEST TX/m LINE
RECEIVE

DX.DMA.SP iPROCRAM DMA SOURCE POINTER
DX.ftX
DX.DHA CONT
AX.OOOIOHilOlOmill)
DX.AX

;ENABLE DMA CHANNEL
DX.DMA.a1
AX,DX [FETCH SUBADDRESS ABAIN
AH.SOOillllB
MODE.CHD.T
AH,08BI1111B iSEE IF COMMAND WAS A MODE COMMAND
HDDE.CMB.T

/

HUV SI,OFFSET TRANSIT MESS
CALL ESS.OP

JMf ENDROUTINE

RECEM «OV BX.DIM DP
m IX,AX ,NDRW DMA BESTINATIW POINTER

m AK,ooonmB
n MUK m R jSEE IF COIWAto WAS A MOE COHHANB
XOR AH,OOOimiB
JZ MODE CNB.R

MOV DXjSMA m 2) INITIALISE. OTHER ilHA REGISTERS
MOV AX.DPIi.MSE
OUT DX,AX
MOV eX.DMA.SP
MOV AX,LATCH ADD
OUT 'X,f,X
MOV jX.DKA.Sto
« AX,AX
OUT DX.AX
MOV DX,EMA_CONT
MOV AX.lfllSCOHlPlODIIIB

i OUT 1)X,AX ;QiAllli DMA CHANEL

WAIT DMA MOV BX.DMA.CONT
IN AX.DX
AND AX.02H
JNZ WAIT.DMA jWAIT UNTIL DMA IS COMPLETE

MOV DX,DMA.SPt2 ‘, M m m OTHER DMA REGISTERS FOR
MOV AX,DPM.BASE jTRAMSKH COMMAND
OUT DX,AX
MOV DX,DM.DP
HOV AX,LATCH.ADD
OUT DX,AX
MOV DX,NW.IM
XOff AX,AX

i
DX,EDI REG
AX.BODOK ; » NON-SPECIFIC EDI COMMAND 1 0 PIC
M ,A X

DX.DhA COM
AX,AX
DX.flX ;M S A H l£ DMA CWNKtL

S I,O FFSE T MDDE.CHV.MESS

ENDROliTINE

f itS S .D P
MESS.OP.LOQP CSiBYTE PT8 R cS S A K S

M-.CNTLZ iO /P CHARS TO MSAST
RETIRM iie iT IL CONTROL , IS
TX.CHAR iENCOUNTERED
MESS OP LOOP
AX

i TRANSKIT CHARACTER ROUTINE
TX.W AR PUSH DX ;SAVE REGS

MOV DX.USART STATUS
TX.LOOP IN AL,6X jWAlT F ® TX TO BE READY

AM) AL,TX.*Dr_MASK
11 TX .U XP
MOV DX.USART DATA
POP AX jREBTORE WAR
OUT D X .ti . iTKWSMIT

MESSAGES
TRANSM1T.MESS DB C R ,L F ,'+ + H TRANSMIT COMMAND w + ',C R ,L F ,C N T L Z
RECEIVE.MESS IB C R , L f , '+ # + RECIVE COIWlliD + + + + ',C% ,IF ,CNTLZ
H flD E C H B IC S S D8 C R , L F , ' t m M GE COMMtoD m ‘ ',C R ,L F ,C N T L Z

REFERENCES

The citations are listed alphabetically under the sections
to which they relate.

M IL-STD-1553B

1 HALEY A.L. "MIL-STD-1553 Validation test results"

2 JOHNSON B.W. and JULIC.; P.M. "Fault tolerant computer
system for the A129 helicopter1', IEEE Transaction on
Aerospace c,nd Electronic Systems. Vol. AES-21, No.2,
March 1985, pp. 220-229.

Command/Response Multiplex nata Bus. Washington D.C.:
U.S. Department of defense MXL-STD-1553B, 21
September 1978.

Electronic Devices Limited, Lincoln, England, March

Systems, Ih o ., Huntsville, Alabama.

SEABRIDGE A.G. and LANCASTER P.A. "The 'dual
redundant1 remote terminal in high integrity 1553B
based systems". Electronic Engineering. January 1982,
pp. 29-34.

7 SHAHSAVARI M.M., CALHOUN M .D., INGELS F.M., BENEDICK
F . , CUMMINGHAM P. and CONNELL C. "Error protection
for hierarchical MIL-STD-1553B data bus structures1',
IEE Southeastcon. 1982, pp 37-40.

8 SUNDSTROM D.E. and EDWARDS J.A. "Inside MIL-STD-1553:
Efficient embedded protocols", IEEE National

pp. 318-329.

NETWORKING

9 DESJARDINS R. and WHITE G. "Ansi Reference Model For
Distributed Syste- c '

1553B BUS INTERFACE COM PONENTS

10 CT 1555 Data Terminal Bit Processor. Circuit
Technology incorporated, Farmingdale, N.Y.

11 DANCE M. "Mil 1553B data conms - a British niche",

controller/remote terminal hybrid set", IEEE National

December 1982, pp. 11-15.

12 FRIEDMAN "MIL-STD-1553 dynamic bus

1983,
pp. 639-644.

13 LEDAMUN D. and GOODWIN M. "Exploring the
possibilities of the 1553B data bus". Electronic
Engineering, March 1983, pp. 147-152.

15536 Components

D.H. and PARR D.R. "A MIL-STD-1553 flexible
interface device and applications", IEEE National

pp. 618-624.

15 SCHAIRB S. and CAVIN J. "Single chip bus interface
unit eases MIL-STD-1553B remote terminal/bus
controller designs", IEEE Rational Aerospace and

1, 1982, pp. 864-871.

STC Components,
Great Yarmouth, Norfolk.

17 WILLIAMS D.G. "Local Networks: industrial controller
joins the MIL-STD-1553 bus",
October 14, 1982 pp. 205-211.

MARCONI CHIP SET

Specification. Marconi Electronic Devices Limited,
Lincoln, England.

Marconi Electronic Devices Limited, Lincoln, England.

Terminals. Marconi Electronic Devices Limited,
Lincoln, England.

REFERENCES Multibus

MULTIBUS

21 GARROW R., JOHNSON J . , and SOLTESZ L. "16-bit single-
board computer maintains 8-bit family ties",
Electronics. October 12, 1978, pp. 105-110.

Manual. Intel Corporation, Santa Clara.

iSBC Applications Manual. Intel Corporation, Santa
Clara, 1980.

Intel Corporation, Santa Clara,

25 NADIR j. and MoCORMICK B. "Bus arbiter streamlines
multiprocessor design", Computer Design. June 1980,
pp. 103-109.

26 WILSON D. "Multibus: Evolving to meet new system
demands". Digital Design. February 1983, pp. 76-104.

80186/8086

27 "AP-186 application note",
Peripheral Handbook. Volume 1, Intel Corporation,
Santa Clara, 1984.

28 HBMBNWAY J. and TEJA B. "Increase 8086 throughput by
using interrupts", E M * May 20, 1979, pp. 179-183.

Reference. Intel Corporation, Santa C - r a , 1983.

REFERENCES Forth

FORTH

BRODIE L.
Prentice-Hall, 2981.

1st ed. California:

COM PONENT DATA

s, Circuit Technology
Incorporated, Farmingdale, N.Y.

33 I.e. Memories Hitachi.

34 Logic Data Book (TTL), National Semiconductor
Corporation, 1981.

Issue 2, Marconi Electronic Devices Limited, Lincoln,
England, March 1984.

fc, Marconi
Electronic Devices Limited, Lincoln, England.

Sheet. Issue 2, Marconi Electronic Devices Limited,
Lincoln, England, March 1984.

38 Meffigjvj
Clare 1983.

%, Intel Corporation, Santa

Corporation, Santa Clara, 1983.

Component Data

j£, 3rd ed. Monolithic Memories Inc. Santa
Clara, 1983.

Advanced Micro
Devices, Inc. Sunnyvale, 1983.

y

Textool/3M, Irving.

- REF.6 -

I

Author Holt Geoffrey Anthony
Name of thesis Development Of A Mil-std-1553b Time Division Data Bus Terminal. 1985

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y of t he W i t w a t e r s r an d , Johannesbu r g L i b r a r y website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University o f the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

