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ABSTRACT

"Tha following problem is =2xamined: for a given system of

reactions with given kinetics, find all the possible vutlet
conditions that c¢an be achieved by wusing any system of
steady-flow chemical reactors. The outlet conditiomns or v-riables

that are cornsidered include concentrations, residence time and

temperature. This set: of all possible outlet conditions for a

given feed was called the Attainable Region by Horn (1964). The

boundary of the attainable region is of particular interest as,

" provided the objective function has open contours over the space

of the attainable region, the optimum of a system of steady flow
reactors ~ will 1lie in the boundary of the region. More
importantly, the optimal reactor structure can be determined from
the reactors that form the boundary of the 'attainable region.

The  prroerties of reaction and mixing are interpreted
geometxicaliy and from this a set of necessary conditions for the
attainable regicn 1s derived. In particular the region must be
convex with mnon-zero reaction wvectors on the boundary either
pointing into or tangent to the region. A limited; but powertul,
gsufficiency condition is also derived.

The attainable region 1is constucted for both two and three
dimensional examples. It 1is also shown how the region can be
constructed when constraints, such as a specified sequence of
reactors, are imposed.

The properties of a reactor that lies in the boundary of the
attainable region in n-dimensional space are discussed, and in
principle the attainable rsegion can be constructed in any number

of dimensions.
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The most important and novel result found is that the method
generates the structure of the reactor network that makes up the
boundary of the attainable region and hence for many problems the
optimal reactor network.  This is in contrast to all previous
methods where on= guessed a network and then optimized it for

various parameter values.

It was also found that the optimszl reactor configuration would in

almost also all cases be a series-parallel arrangement of

<C.S.T.Rf's, plug flow reactors and bypasses.

Furthermore, the geometry of the boundary of the attainable
region gives rise to analytical conditions for optimum reactors
structures. that are otherwise not readily available.

Other interesting results were:

GLIAG Ly Lo 8 55

properties depending on whether the dimension of the space is

even or odd, suggesting that the optirization of systems of

reactors in even and odd dimensional space could yield rather
different results.

- the geometric optimization -of interstage cooling and coldshot
reactors firstly  gives insight into the known analytical
conditions, but furthermore applies under conditions where the
simple analvtical uvptimization breaks down.

- the well known properties of plug flow reactors with first
order kinetics <can be easily explained by the geometric
properties of the attainable region.
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7

R9

R10

R1l1

n-D

R12

R13
n-D

R1l4

The recycle reactor is a plug flow reactor with
a feed at an average between the exit point and
the given feed point.

The attainable region which satisfies the
necessary condition (see Section 2.7.1) camnot
be extended by the processes of mixing, a plug
flow reactor, a recycle reactor or a C.S.T.R.

If a recycle reactor forms part of the boundary
of the attainable region, we can always achieve
the boundary points by a plug flow reactor
starting inside the region.

Any differential process invelving reaction and
mixing cannot extend a region that satisfies the
necessary condition.

Any series-parallel arrangement of the idealized
reactors, or any simple reactor that involves
the processs of differantinl reaction and
mixing, carnot extend =z region that satisfies
the necessiaiy condition.

The main branch of a recycle reactor, with feed
point 1inside a region that satisfies conditions
(a) and (b) of the necessary condition, cannot
leave the region.

If a recycle reactor cannpt exhibit more
branches than the C.S5.T.R., condition (c) of the
necessary condition is not needed.

If the necessary condition covered the steady
states of a particular type of reactor, it
would also cover all series-parallel

combinations of the reactor as well.
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n-D

T2.1
n-D

c2.1
n-D

It 1is only vhere multiple solutions are
exhibited that the necessary condition is
deficient. '

The Maximum Mixedness Reactor Model can only
exhibit multiple steady states for systeins where
the residence time distributior tends to
infinity.

The multiplicity in a Maximum Mixedness Reactor

must eitbh © arise <£from the initial point or
beca-se .concentration varies periodically
with vany ‘0 remaining life, ie does not tend

to a Limit

If the multiplicity in a Maximum Mixedness
Reactor arises from the initial point, this
point must satisfy the C.5.T.R. equation.

Reactors that can be described by the General
Mixing * Model will either: (i) exhibit periodic
behaviour, or (ii) 1lie inside a region that
satisfies conditions (a), (b) and (d) of the
necessary condition.

Given a region that satisfies conditions (a) and
(b) of the mnecessary condition; a locus of a
recycle reactor with fixed recycle ratio R
that starts inside the region, and that is
continuous in residence time r, cannot leave the
region.

It is not generally possible for a recycle
reactor to have branches that do not either tend
to the C.S.T.R. 1limit or that are not connected
to branches that tend to the C.S.T.R. limit.
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c2.2
n-D

R20

R21
2-D

R22
2-D

R23
n-D

R24
n-D

No main branch of any reactor structure can move
outside of a region that satisifes conditions
(a), (b) and (d) of the anecessary condition, if
the feed point to the reactor lies inside the
region.

A region in two dimensional space, that includes
all the branches of the C.S.T.R. 1loci that
start inside the region, cannot have a branch of
a recycle reactor locus that lies outside the
region 1if the feed point to the recycle reactor
lies inside the region.

The point on a plug flow trajectory in two
dimensional space where the convex independance
of the curve breaks down, is such that the
derivative of the slope of the reaction vector
with respect to the variable on the x-axis must
be zero.

The boundary of the attainable region in two
dimensional space will consist of:

(i) neighbouring points where the reaction
vector is either tangential or points inwards.
(ii) 1lines from an end point (C° to another
point G, such that the reaction vector at C
and the vector {C-C°) are collinear.

(iii) lines between end points.

(iv) lines between two points C; and G,,
such that the reaction vectors at Cy and Cy
and the vector (gz-gl) are collinear.

A convex function is one in which all the points
of the function are extremal points.

A function 1is strictly convex if at most n
points of the function, where n is the dimension
of the space, 1lie in a (n-1l) dimensional
hyperplane.
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R25
3-D

R26
3-D

R27
3-D

R28
n-D

R29

R30

R31
n-D

The convex hull of a curve in three dimensional
space will not be a faa structure if:

(1) the curve and an end point lie in the plane
locally;

(ii) an end point and two non-neighbouring
points and the associated reaction vectors lie
in a plaﬁe;

(iii) an end point, a point on the curve and the
associated reaction vectors lie in a plane.

A necessary condition in three dimensional space
for the hull of a plug fiow trajectory not to be
a fan hull is for equation (4.1) to hold,

A necessary condition in three dimensional space
for the hull of any reactor curve not to be a
fan hull is for cquation (4.3) to hold.

A C.S.T.R. locus in the boundary of the
attainable region will always have plug flow
trajectéries that leave it and extend the
region, ie the C.S.T.R. locus will again form
bridging points.

A differential reactor locus in the boundary of
the attainable region will form bridging points
rrom which plug flow trajectories will start and
extend the region.

A differential reactor with only back mixing
requires at most one mixing point at any point
along the reactor. This point must lie in the
already achieved convex hull of the reactor.

The optimal mixing point for a differential
reactor must lie in the boundary of the hull.
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Result

R32
n-D

R33
n-D

R34
3-D

R35
3-D

R36

3-D

R37
3-D

‘to the

Only points that are neighbouring points of the
differential reactor locus (ie directly joined
locus) neecl be considered as potential
mixing peints.

The mixing point of a differential reactor must
be a finite distance from the reaction point.

If the mixing point 6f a differential reactor
locus g* is achieved by some other reactor, then
the tangent to the
(")

curve at the mixing point

must lie in the plane of R(C) and

(Q-g*) along the whole diffarential reactor

locus.

If the mixing point g* of the differential
reactor varies smoothly 'ind continuously with
position, the mixing pointfkould have to vary so
that the taugent to the curve through the mixing
i{C*), the
differential

on the
(C-C*)

point reaction vector
reactor locus R(C) and

was coplanar for every C.

If the mixing point of the differential reactor
locus is an end point, there is no constraint on
either the reaction vector or the tangent vector
to any curve at the mixing point.

A differential reactor that lies in the boundary
of the .ittainable region, will in general form a
and the
reactor locus. At the locus, the reaction vector

fan hull between the mixing point

will be tangential to the fan structure and plug
the fan
surface

flow reactors will leave
Along the

structure

tangentially. of the fan

structure, the reaction vectors will point into
the hull.
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! Result " Page
R38 | There will only be a finite number of
n-D  differential reactors that lie in the boundary -
of the attainable region. 112 - Lo
R39 In' order for a differential reactor to lie in
i 3-D the boundary of the region, ¥V, R, RVR and
5 ngk must be  coplanar along the entire reactor
I -
i locus. , 121
E R40  No reaction vector along a reactor locus that
E n-D  1ies in the boundary of the attainable region
? can point into the region. 122 y
% R4l " The reaction vectors along any reactor locus -
n-D that lies in the boundary of the attainable

region must be tangential to the hull, so that
plug flow trajectories 1lie in the boundary of
; the hull in the neighbourhood of the curve. 122

R42 The reaction vector at the mixing point g(g*)

3-D of a differential reactor locus that lies in the
boundary of the attainable regi n must lie in
the plane cf (C-C*) and R(C). 124

R43 The points where a family of C.S.T.R.’'s touched

3-D the boundary of the attainable region would be

such that R, V, VVR =n RVR all were

;% ‘soplanar, where V is the vector along the fan
‘ structure. 165

R&4 The boundary of the attainable region that |

fa
'
o

containsd the curve vwhere the family of ?“;;
C.5.T.R.'s tcuched the boundary, would be planar
1 and would contain the feed points of the
C.S.T.R.’s as welyL the wectors R, V, VVR arnl
C RVR along the curve. 165
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R&5
3-D

R46
n-D

R47

R48
n-D

R49
n-D

R50
n-D

Ke

Any curve where a differential reactor lay in
the boundary of the attainable region could be
reached by a family of C.5.T.R.’s as well. .

The structure of the attainable region is
different in even and odd ¢imensioned spaces.

In even dimensions, the hull of a strictly
convex curve will be a structure between n/2
non-neighbouring pairs of points on the curve,

" such that the points and the reaction vectors at

the points defined the support hyperplane.

In odd dimensional space, the hull of a strictly
convex curve will be a structure between (n-1)/2
non-neighbouring points and an end pecint; such
that the reaction vectors and the points defined
the support hyperplane.

Along any reactor curve, excluding the plug flow
trajectory, that 1lies in the boundary of the
attainable region, it is requirei that all
ViVR (i=1,...,n-1) 1lie in the surface of the
region as well, where V; is a vector defining
the support hyperplane at a point along the
trajectory.

In order for the support hyperplane to a
differential reactor, that lies in the bouridary
of the attainable region in even dimensional
space, to be tangent to the family of plug flow
trajectories leaving the reactor, there are at
least (2n-1) constraints on the (n-1)

dimensional hyperplane.
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Result

R51
n-D

R52
n-D

. R53

‘ : ) n-D

RS54
n-D

| RS5

R56
n-D

C.5.T.R.'s

In order for the support hyperplane ﬁb a
differential reactor that lies in the bouﬁﬁary
of the attainable region in n dimensional spacs,
where n is odd, to be tangent to the family of
plug flow trajectories

(2n-1)

leaving the reactor,

there are constraints on the (n-1)

dimensiorial hyperpiane.

A differeritial reactor that lies in the boundary
of the attainable region in n dimensional space
will be confined tc move in a hyperplane of

dimansion (n-2) or lower.

The curve that is
that 1lies

formed by a differential
of the
attainable region can be reached by a fawmily of

reactoxr in the boundary

starting on the of tne

that the

edge
hyperplane differantial reactor is
confined to.
In general it cain be speculated that only plug
flow reactors and C.S.T.R.’'s lie in the boundéry
of the

where another type

attainable region. The only situation
of reactor may lie in the
boundary of the reactor is
exhibits

covered by the necessary condition.

if the reactor

multiple steady states that are not

In even dimensional :space, at most one point
along the C.S.T.R. locus can lie in the boundary
of the

degeneracy in the reaction vector.

attainable region if there 1is no

In odd dimensional space it is possible for a

C.S.T.R. to 1lie in the bLoundary of the
attainable region along the entire locus.
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LIST OF DEFINITIONS AND ABREVIATIONS

Definitions

Basis Temperature - temperature of stream when it consists of
-]
pure feed material, -sually designated Tp

; : Base Trajectory - plug flow trajectory C(r) from usually the

; feed condition ie r=r°; g(r’)—gé. Any other plug flow
: trajectury C(8) obeys the relationship that at 4 = (r46°),
C(8)=C(r)

Convex Function - a function in which all the points of the
i function are extremal pointss and wertices of the convex huil of
the function.

Convex Hull - the region that can be achieved by mixing every

point or combination of points with every other point or :
combination of points taken arbitrarily from a given set of

points. See the definition in Chapter One.

Differential Reactor - a reactor in which differential reaction
and mixing occur. Specific examples are Zwietering’'s Maxi-tum
Mixedness Reactor and the General Mixing Model Reactor

o Fan Hull - when cthe boundary of the convex hull of a curve is
made up a lines from a fixed point to all the other points along

R

the curve, this type of structure is called a fan hull. This

type of hull can be seen in Figure 4.6.

Strictly Convex Function - 1is a convex function with the
further restriction that at most n points along the function in

i
i
i
! !
i
I
{
|
i
¢
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Abbreviations

C.S.T.R. completely stirred fank reactor
. MMR ‘maximum mixedness i- actor
GMM general mixing model
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NOMENCIATURE

Roman Letters

A

25

region in space, usually denctes attainable

region

A

A,B,C,D,E

I

['3

[

I 0 oI W o

C

9]

o]

Q>0 1O

rd

Q>

[ 3N

exn

~
3

°

s

[T

D mean

the rate matrix for first order kinetics

de iotes chemical species, A; ete refers to cnemical
species i

ventor defined in equation (4.353)

ratio of kg c,°/k1, as defined in equsrzicen (3.4)
ratio of k2/k1, as defired in eguaton (3.4)

rate constant used in varicus rats expressions

a region in space, vuually based on [Q;)
binormal vector, see equaticu (&.la)

rate constant used in equatisu (3.10)

ani extremal point of the sec¢ (X}

y8y,7,0);

C: refers to specific

characteristic vector idy,dg, e
: ps

{C) refers to the set of

condition 1. Whern refering to a trajectory, the
subscript refers to the ovrder of the points along the
trajectory.

used to dunote characterisziiec wvector at exit of
reactor in situztions where confusion could arise
concentration ¢ achieved by or wused for mixing;
gi* refers to a specifis concentration that is
achieved by or used for mixing

end point; (C°) set sf =nd points; in general
g% is a feed point and Q; is an equilibrium
point

the value of C at space time r° in the reactor

ith element of C

heat capacity at «onstant pressure per unit mass;
6p° refers to the wvaiu. -of Ep at the reference
conditions, usuaily the feed ~>nditiomns

mean value of the heat cpacity at constant
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¢

e

=

£(x)

(g

fa ol e o 1 1]

o E)ﬁ)

e

2 & AR

4 B i1z 8

L5+

rxn 1

concentration vector in n space with elements ci;

c® reference concentration of ¢, usually the fezad
concentration
concentration of species i; ¢;° is the reference
concentration of species i, usuaily the feed
concentration

composition variable of species i, defined by
equation (2.2); di* refers to a compostion variable

d; that is achieved by or used for mixing: d;
refers to d; at the raference co.adition

function of =x wused in equation (3.5); £'(x) is the
derivative of f£(x) with respect to x

vector function defined in equation (Al.2), £; is
the i th component of £,

a resultant vector

the convex hull of the set (C}

the Hamiltonian

specific enthalpy per unit mass; ﬁi specific
enthalpy per unit mass of stream i; §° reference
enthalpy

specific enthalpy of formation per wunit mass at
reference conditions of species i

specific enthalpy of mixing

specific enthalpy of rewction i

the identity matrix

curvature in direction of normal to plane of R and
V; defined in equation (4.12)

rate constant used in equation (3.10)

limit used in equation (Al.3c)

rate constant for reaction i

Mass flow of material; M; mass flow rate of stream
i; M* mass flow rate of stream designated *, usually
stream used for or achieved by mixing

molecular mass of species i

notmél vector to surface S, ie N=VS

number of concentration variables

dimension of space

parameter defined in equation (4.1) used to check
local break down of the fan structure.

supporting hyperplane to a convex set (X}

number of poiiits in linear convex combination
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¥

o m

1o

Tad

-3

in

3
o

t
U
v

volumeric flow rate through diffesrential reactor,
equal to M/p°, Q(v) is the volumatric flow rate at
volume v of the reactor; Q, is the volumetric
flow rate at a specific point

amourit of side stream added in differential reactor,
see equation (4.3)

an attainable set on base U

recycle ratio

reactioﬁ vector in n+2 space, as a function of C;
sometimas denoted R(C). R(€y) denotes reaction
vector at C;, sometimes denoted Ry

the derivative of the reaction vector with respect
to 7 or the parameter of the curve, ie R’=~ dR/dr

ith eleuent of R

real space, dimension n

number of reactions

reactidn vector in n+2 space, as a function of
c and T

rate of formatis' vector in n space, components
ry, also refered to as the rate vector

rate ¢f formation; r; 1is the rate of formation of

i
species 1

an attainable set on base U

surface in which V¥V, R and VVR are coplanar,
defined in equation (4.14)

arc length of curve, defined in equation (4.9)
Tangent vector to a curve, thus for a curve G(r),
T is the change in (C with respect to T;I(g*) is
the tangent vector at Q*

temperature; T° refers to reference temperature,
usually the feed temperature; T* refers to
temperature that is achieved by or used for mixing
adiabatic
(3.17)

inlet temperature defined by equation (3.15c¢)

temperature rise, dafined: by equation

basis temperature, defined by equation (3.17)
residence time, defined by equation (2.5b)

base of attainable sets R and S

mixing vector, equal to (g*-g); V; 1is a vector
defining a support hyperplane in higher dimensions;
V; ith component of ¥
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v volume of reactor; wvj volume of reactor associated

with stream or system i;v* volume of reactor system
associated or used for mixing.

mass fraction of species 1i; w;s; mass fraction of

wi ij
species i in stream j

Xy element of set {¥), in the space R®

X a linear convex combination of p points Xj

X,¥,2,w normalized concentration of species, Xo: Yoo
zZ,,W, are values of X, y ,z and w at the reference
conditions

Z the adjoint vector

Greek Letters

. a,fB mixing ratios

ﬁ ay ratio’s used in equation (4.33¢)

% | X a convex set of points

| ? A the boundary of A )
; ; A differential element %
if & curve in boundary of attainable region that

i ; corresponds to points where family of C.S.T.R.'s
o touch the boundary

| i ] positive scalar quantity with units of time; ¢f is a
specific value of ¢
v scalar quantity defined in equation (4.27a)
B coefficients wused in linear convex combination of

points, OSuisl.

-~ P density; p° refers to density at the reference *
H % conditions
§ ] temperature-like variable, defined by equation (2.4};

% 6* denotes § of stream achieved by or used for mixing

;i
i
I
i
M

T space time defined by equation (2.3); r* denotes 7 of
stream produced by or used for mixing, r; refers to

|
~{ ‘ space time of stream or system i; r° refers to space
:

time of feed to reactor. 5

‘; (ﬁ ‘ v stoichiometric coefficient; ¥ij is stoichiometric '05“
g § coefficient of species i in reaction j
Lo . : .
\‘ i 'Y scalar quantity defined in equation (4.35)
AN
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:Superscripts

o denotes initial or reference cor:ition of a material

* denotes value of variable uszed for or achieved by
mixing

+, - denotes 1limit in the direction of increasing or
decreasing variable

Subscripts

i refers to species i

1,2 refers to stream 1 or 2

in refars to inlet conditions

out refers to outlet conditions

system refers to property of system

Brackets

{C}

refers to set of C, with elements Ci

Mathematical Notation

AVB

matrix with element ij equal to dRi/de
with

icterpreted as

vector element i equal to {Aj(aBi/BCj)};

can be the change in A in the

direction of [E; (AVB); 1is the
vector AVB

equal to (asz/aCiECj)

equal to dR/dr

dot or scalar product of wvectors A and B

i th component cf

cross or vector product of vectors A and B,

(AxB); is th'a i th component of vector (AxB)

PAGE XXX |

iy




e e ]

U e S

¢

D HILDEBRANDT THESIS
NOTE TO THE READER

In writing this thesis, I was faced with trying to do two rather
different things: firstly to introduce the concept of the
attainable region, explain its usefulness and consequences and to
give an overview of the results; and secondly, to try and be
rigorous and to prove the results in the standard mathematical
way. Tt is the classic case of trying to see both the forest as
well as the trees that make-up the forest. If I tried to show
development of thie concept of the attainable region with the
resulting new geometric interpretation of reaction and mixing and
the many results and ideas that flow from this, I could be
accused of not being rigorous and machematical in my approach.
If, on the other hand, I tried to be precise and mathematical, I
found that I tended to get dragged down with hundreds of lemmas
and theorem and proofs, making it extremely difficult for the
reader to understand the magnitude, breadth and consequences of
the concept of the attainable region. I felt that this approach
generally obscured the usefulness and the far reaching results of
the attainable region.

I decided to rather take the first option with the reasoning that
the I would 1like the reader to easily gain a good idea of the
magnitude and the results of this work, ie to see the forest.
However, while wandevring through the forest, 1 wanted to point
out the trees as we passed them. The compromise I made, was to
mark a result, that is a lemma or theorem, by a note in the right
hand margin, for example Result 1, and, if it did not detract
frem the discussion, I proved it in the main body of the text
where the result was stated. Other results, where the proof was
more involved, I stated in the text and marked it in the right
hand margin, and the proof is either giVen in an appendix or at
the end of the chapter, depending on the length of the proof.

I, realize that this is not the way things are done in
méthematical ‘texts, but I hope that ' the way I have tried to
pfesent my work, will at least make it easier for the general
reader tc reéd“and follow. I also hope that it will be seen that
rigour is not lost and that the more specialized reader will find
all the results and proofs easily.
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INTRODUCTION AND LITERATUERE SURVEY

1.1  Introduction

An interesting and fundamental problem of chemical reactor

engineering is: given a system of homogeneous reactions and the |
associated kinetics, what 1is the best system of steady flow
reactors to |wuse, The answer to this problem is comprised o
essentially of three components. Each of these components must

be satisfied in order for tlie solution to exist.

T (i) the concentrations must be achievablie.
‘ (ii) a system of steady flow reactors must be able to produce
the material.
(iii) the resulting product from this system of steady flow
reactors must be optimal for all possible achievable outlet
cuncentrations and reactor systems. Optimal would be defined in

terms of some objective function.

,A% There are material and thermodynamic constraints which both place
; bounds on the achievable compositions. These bounds are however
upper bounds on the compostions as not all the compositions are
achievable due to the kinetic constraints of the reaction system
[ itself. At present the only method of determining which
) concentrations are achievable in general is a trial and error
S approach. In this type of approach, a system of reactors, such
‘ as racycle reactors or dispersion reactors in series, are
RS proposed and the parameters such as recycle ratio or dispersion
coefficients are wvaried. The optimal operating conditivas for

5
T e L i b e i

this system of reactors is then determined, but there is no way
of determining whether this optimum is indeed global.
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The difficulty in solving this problem arises thus due to the
inseparability at this stage between achievable concentrations
and the reactor system. This occurs because the type and sequence
of mixing in a reactor system detérmines the resulting achievable
concentrations.

Horn (1964) defined the attainable region as the region in the
stoichiometric subspace which could be reached by any possible
reactor system. He showed that if one could determine this
region, the problem of optimization was essentially solved. A
full definition of the attainable region as used by Horn is given
in Section 1.3.3, This definition has been expanded for the
purposes of this thesis and is given in Section 2.4.

In this thesis, the problem of finding the attainable region will
be addressed . Using a geometric approach, the properties of
mixing and reaction will be examined. From these propertics, some
of the characteristics of the attainable region can be
determined. It will als» be shown how the attainable region can
be constructed for two and three dimensional examples, and how
the approach can be generalized to any n-dinensional problem. An
interesting feature is that the reactor structure can be
determined directly from the construction of the attainable
region. Thus by tackling the problem of finding the best steady
flow reactors for given kinetics via determing the attainable
region for the reaction kinetics, all three components of the
optimization problem can simultaneously be satisfied.

1.2 Introduction <o the Literature Survey

The topic of modelling and optimizing chemical reactors is of
great importance to chemical engineers, and consequently there
has been much research in these fields. A detailed survey of all
the literature pertaining to the modelling and optimization of
chemical reaitors would be nearly impossible, and thus the
development. of the ideas and concepts that are relevant o this
research will be outlined. In particular, the developments that

CHAPTER 1 PAGE 2
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are important and which have direct bearing on the subsequent
research will be highlighted.

The modelling and optimization of reactors seems to have been
tackled in two distinct approaches. Firstly, a general modelling
approach has been used to describe mixing and reaction. This
approach has lead to the development of the concept of residence
time distributions, micro-mixing and macru-mixing, degree of
segregation and general mixing models. An off shoot of these
ideas was the idea of defining .1l the possible concentrations
one could achieve wusing any reactor structure - the attainable
region. This 1lead to the development of the concept of the
thermodynamically attainable region and the stoichiometrically
attainable region, but these regions were just upper bounds on
the kinetically attainable region.

The second approach to optimizing chemical reactors was by
considering kinetics and then proposing a reactor structure and
optimizing the wvariables such as flowrate, residence times etc.
There was no way of deciding if the reactor structure chosen was
optimal; and thus many papers pertaining to a given system of
reaction kinetics can be found with modifications to the reactor
structure being proposed and shown to be better than the previous
result. The literature in this field is immense, but has never
produced any general results with regards to apriori rules for
optimal reactor structures.

Each of these approaches will be discussed separately. A further
area that will be discussed is the mathematical concepts that
will be used in this thesis.

1.3 Reactor Modelling and Optimization by Considering Mixing
and Reaction in General.

A review of residence time distribution and micro-mixing is given
by Nauman (1981). Shinnaf (1986) reviews the use of residence
time distributions in the design of reactors. These reviews are
comprehensive and discuss the limitations of the use of residence
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time distributions and micro-mixing in predicting reactor
performance. Thus only a broad outline of the develope.ents in
the modelling of mixing in reactors will be given, and eonly those
concepts that are central to this thesis will be outlined and

diszussed in detail.

The concepts of residence time distribution, or macro-mixiﬁg,
seemc tc¢ have first been clearly laid out and analysed by
Danckweris {1953). Danckwerts realized that the residence time
distribution ' was  sufficient  information to calculate the
conversion of a reactuvr for first order kinetics, but not for
other kinetics where the conversion would depend on the
point-to-point variation in concentration which was not described
by the residence time distribution. Danckwerts (1958) later
addressed this problem by analysing thes concept of mixing on a
molecular scale, or micro-mixing a& we now call it, In this
paper he developed the idea of degree of segregation and defined
it. The upper limit of this was a completely segregated system
while the lower limit depended on the residence time distribution

of the system.

Zwietering (1959) looked further into this lower limit and
defined a condition of maximum mixedness compatible with the
residence time distribution. The two limits were shown to be
related to when the mixing occurred - the earlier the mixing
occurred the 1less the degree of segregation and the higher the
degree of mixedness, whereas conversely, the later the mixing
occurred the higher the degree of segregation and the lower the
degree of mixedness. There was at this stage a mistaken belief
that the limit of conversion for any arbitrary reactor system lay
between that defined by the segregated model and the maximum

mixedness  model. Zwietering also  determined the flow

¢ configurations for the reactor systems which were compatible with §
i,

the segregated model and the maximum mixedness model. The i
;g ( latter, the maximum mixedness reactor, will be referred to later “

in the thesis, and will sometimes be abbreviated as the MMR.

Chauharn et al (1972) considered a single homogeneous, isothermal,

constant density reaction. They showed that for any arbitrary ?/\

residence time distribution, the optimum micro-mixing depended on

the convexity property of the rate vector. If the rate bt
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expression (r) plotted versus reactant concentration (c) was
concave down (ie dzr(c)/dcz>0), the naximum mixedness reactor
maximized conversion. Conversely, 1if. the rate of reaction was
concave up (ie dzr(c)/d¢2<0) the cbnversion was maximized by
not allowing any micro-mixing ie keeﬁing the fluid segregated.
They had found an important result, in that the convexity of the
rate <vector determines the type of mixing, but the importance of
this result did not seem to be appreciated. This possibly
occurred as the vresult was 1solated and did not fit ints any
extensive theory. As shall later be shown, this result comes
directly out of the properties of the attainable region.

In a slightly different wvein, Denbigh (1961) introduced the
concepts of instantaneous and overall reaction yields. From this
simple rules were developed in order to predict the flow
configurations that would enhance or suppress consecutive or side
reactions. These rules however were not sufficient to predict
optimal flow configurations with complex reaction schemes such as
the Van de Vusse kinetics (1964).

1.3.1 Mixing Models

A more recent approach that was taken in the modelling of
reactors, was to try to develop a general model that could
incorporate both the macro- and micro-mixing aspects of a
reactor. . The earlier approaches tried to model the mixing based
on physical reality ie trying to incorporate diffusivities,
viscosities, models of turbulence etc. Other models rather
postulated some mixing mechanism, that had no physical reality,
and tried to ascertain the effect of the mixing (for example
Zwietering (1984)). This type of approach did not really succeed
in describing the mixing characteristics of any arbitrary
reactoxr, but has proved useful in describing non-ideal situations

in certain ¢ircumstances.

Glasser and Jaékson (1984) and Jackson and Glasser (1986)
formulated a generalized mixing model which could describe the

macro- and micro-mixing patterns for any aibitrary reactor. This
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was based on the generalization of a simple system of splitting
and mixing points with pldg flow sactions between them. The model
could successfully describe all maximum mixedness reactors, the
axfal mixing reactor, networks of plug flow reactors and
C.S.T.R.’s and in fact networks of reactors which are the limit
of discrete mixing processes. This model will be calied the
General Mixing Model, and will be sometimes be abreviatad as GMM.
The model has as yet not been of use for optimization of reactors
as it has proved difficult to use for obtaining bounds on
couversions and sele?tivities.

A useful result from the Gerieral Mixing Model is understanding
how maximum mixedness reactors can exhibit multiple steady
states. It was not shown in Zwietering’s original model how this
was possible. Using the General Mixing Model (Glasser =t al
(1986) ; it can be shown that when a maximum mixedness reactor
has an urbounded residence time distribution it may exhibit
multiple steady states. The argument is as follows: firstly
arrange all the material in the reactor in order with respect to
remaining 1life. One can determine the concentration of the
material and thus determine how concentration of the material in
the reactor varies with respect to vremaining 1life. The
surprising result 1is that when there is material in the reactor
with infinite remaining 1life (or equivalently when the reactor
has a residence time distribution that tends to infinity), the
concentration need not tend to a limit as the remaining life
tends to infinity. In this case the reactor may exhibit multiple
steady states and the concentrations will vary periodically with
respect to remaining 1life. This had not been realized by
Zwietering and it was erromneously assumed chat the concentration
must tend to a limit in the derivations. This behaviour, that is
the periodic variation with respect to remaining life, will be
shown to cause a problem when trying to determine a sufficient
condition for the attainable region,

In general, this approach has noc heen fruitful in determining
optimum levels of micrzo- and macro-mixing in order to maximize
selectivities or conversions in a reaction scheme.
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1.3.2 Optixul Reactor Structures

" In this approach the answexr to the following question was
attempted: given some reaction scheme, what 1is the reactor
structure that would optimize a given function of concentration.
The 1literature in this field is reviewed by Chitra and Govind
(1985a and b), the first paper covering isothermal reactors snd
the second non-isothermal reactor systems.

The usual approach is to assume some network of reactors, the
indiridual reactors being of the type that can approach wither a
plug flew reactor or completely stirred tank reactor, abbreviated
C.8.T.R., as limiting behaviour. Horn and Parish (1967) for
example, used the dispersion model, tanks in series model and the
Taylor model. Hornm and Tsai (1967) studied the effect of global
and local mixing, with the emphasis on global mixing. The
effects of various types of global mixing could be estimated. In
particular it could be predizted whethey reactor performance
could be improved by the mixing. However it did not help to
predict the actual, :ztimal reactor structure. -

Jackson (1968) wused a system of plug flow reactors with mixing
points called source and sink points, in many ways foreshadowiny
“he later work by Jackson and Glasser on the GMM. An interesting
racult was obtained in that the plug flow reactst in which all
reactants are fed in at the feed point is optimal whe.. the
adjoint vector of each comnonznt takes on its largest value at
the reactor inlet. If this is not so, bypassing of reactants is
a better reactor strategy. Ravimohan (1971} extended the model
of Jackson by allowing local mixing in the network ie
incorporating C.S.T.R.’s, plug fluws, splitting and sink points.

Paynter and Haskin (1970) assumed that any reactor type could be
modelled as an axial dispersion model. The problem was then

e

formulated as an optimal control problem. Chitra and Govind
(1985a) wused a series of recycle reactors to find the optimal
. flow configuration that would optimize the yield for warious
| examples. Achenie and Biegler (1536b) generalized this type of

b approach  using a non-liaear programming formulation to optimize i
= the reactor mnetwork. The network was extended to include
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-

non-ideal reactors and could include heat removal or addition for

non-isothermal cazes.

Paruiekar et al (1983) considered the cyclical operation of
variable volume batch reactors. They allowed the operatiomns of
quick filling, slow filling, reaction and complete or partial
discharge. - Within ithe framework of optimal control strategies,

they

identified candidate optimal control thzories. The control

strategies could also be interpreted im terms of serial

arrangements of steady flow reactors. These control strategies

1]
where then applied to various reaction systems.

A common problem that arices from all these models is that there
is no proof that the rsactors that are used and the structures

that are used are optimal. Thus it is not shown that the results

cannot be [mproved by some cti:er reactir structure. There is, as

a consequence, no cystemat.c approach to determining the best

flow

configuration. The basic problem with this type of approach

is that the mixing in the reactor system, and thus the types of
rezctor and the structure of the reactor network, determines the

conversiomn. There 1is the inabilitv in all these approachss to

separate mixing and the optimal comversion. Thus if an optimal

conversion 1is determined for a particular reactor structure,

there

is no way of showing that the conversion would not be

improved by wusing another reactosr structure. This lead to the

next developmernt.

1.3.3

Hoxrn
“The

L of

from

]
E was

The Attainable Region

(1964) postulated the existence of the attainable region le:
attainable region courresponds to the totality of physically

possible ryeactor:i®. Thus for a specified feed and specified
system of reactions with kinetics, one would consider the output
every possible type of reactor and all possible combinations
| of these reactors. The set of all the pecssible output materials

these reacturs would be the attainable region. Furthermore,

the region would be such that if a peint in the attainable region
|

used as a feed point to another system of reactors, the

output from this system of reactors would alsc :lie in the
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attainable region. Horn postulated that if the boundary of this
region could be found, the optimum reactor corresponding to any
constraints could be found by simple geometric consideration. No
general method of finding this attainable region was developed.

Feinberg (1980 and 1987) discussed the concept of the
stoichiometric subspace ie the subspace of concentration space
that lay within the bounds of the mass balance. An interesting
geometric result that arises from this work is that the
stoichiometric subspace is a hyperplane in the full concentration
space. By full concentration space, we include the concentration
of all reactants and products (including any intermediates that
are formed during reactions and that affect the rate of reaction)
that occur in the reaction scheme. Thus as the attainable region
is constrained to 1lie in the stoichiometric subspace, the
attainable region 1is as a consequence also confined to lie in a
hyperplane in the full comncentration space. This result has been

used in this thesis.

Shinnar (1983 and 1988) and Shinnar and Feng (1985) discussed the
thermodynamically attainable vregion ie the region that could in
principle be achieved within the bDounds of the second law of
thermodynamics. This was found to be a far less severe constraint
than that imposed by the kinetics; in other words the kinetically
attainable region would 1lie within the boundary of the
thermodynamically attainable regionm. Furthermore, the
thermodynamically attainable region would usually lie within, or
correspond to the boundary of the stoichiometric subspace. Thus
these regions are upner bounds on the kinetically attainable
region as defined by Horn. They'do not help us in findinyg the
physically achievable region in space.

1.4 Reactor Optimization Using Specific Kinetics

The rules set up by Denbign (1961), and generalized by Levenspiel
(1962), work for the optimization of simpie series or parallel.
kinetics. However these rules do not cover more complex reaction
systems and there has been much research into such schemes. The
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research is extensive and only the results that are referred to
later in this thesis will be highlighted.

1.4,1 Van de Vusse Kinetics

Van de Vusse (1964) suggested a reaction scheme that could not be
optimized by simple rules. The kinetics are as follows:

#~+B~+C (first order reactions) (1.1a)

A+A~D (second order reaction) (1.10)

If the objective 1is to maximize B, then it can be seen that a
plug flow reactor would maximize the amount of B formed for the
series of reactions described in (}.la), but a C.S5.T.R. would
minimize the amount of A used in the side reaction (1.1b). Thus
it is not clear what type of reactor would produce the most B.
Gillespie and Carberry (1966) showed that a recycle reactor could
produce more B than either a plug flow reactor or C.S.T.R. for
certain ranges of the rate constants., De Vera and Varma (1979)
classified the entire kinetic parameter space on the basis cf
maximum yield of B, and thus showed under which conditions the
C.S5.T.R., plug fl.w reactor and the recycle reactor are optimal.
Lee (1977) extended this analysis and showed that a recycle
reactor with the recy-le from some intermediate point along the
plug flow section could improve the vield of B. Chitra and
Govind (1981) optimized this type of recycle reactor over the
kinetic parameter space. They - ;und that this reactor structure
either gave a plug flow reactor (ie no recycle) or a series
combination of a C.S.T.R. and plug flow reactor (ie an infinite
recycle from some intermediate point along the reactor) as
optimal, depending on the rate constants. Chitra and Govind
(1985a) redid the optimization using twe standard recycle
reactors in series instead. They again found that an
intermediate value of the recycle ratio was not optimal and that
a serial combination of a G.S.T.R. followed by a plug flow
reaccor was optimal for the given parameters.
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Achenie and Biegler (1986a) postulated a reactor structure, and
the optimization then yielded a plug flow reactor for one of the
cases, In the other case, the optimal process was found to be
two plug flow reactors ir series, with all B removed from the
stream leaving the first reactor.

Note that it has not yet been proved what the optimal reactor
structure is, Presumably, the type of optimization outlined
above could be continued indefinitely, with an infinite variety
of reactor structures being postulated and then optimized.

1.4.2 Trambouze Kinetics

Another interesting kinetic scheme was suggested by Trambouze and
Piret (1959). The reaction scheme is as follows:

A-+23B (zero order reaction) (1.2a)
A~C (first order reaction) (1.2b)
A-+D (second order reaction) (1.2¢)

The reactor structure that will optimize the yield or selectivity
of C 1is again not obvious. Trambouze et al considered various
reactors, such as a plug flow reactor, a single C.S.T.R., a
serial combination of a C.S.T.R. and plug flow reactor, and two
C.5.T.R.’s 1in series. They found that the serial combination of
a C.5.T.R. and plug flow reactor gave th: highest conversion to C
as well as the highest yield (0.495). Paynter and Haskins (1970)
assumed that any reactor can be described by an axial dispersion
model by allowing the dispersion coafficient to wvary
appropriately. They then optimized the axial dispersion reactor
for the above kinetics, and also found a serial combination of a
C.S.T.R. and plug flow reactor to be optimum, with the same
selectivity of 0.495 as found by Trambouze et al. Achenie and
Biegler (1986a and b) also postulate a dispersion reactor, with
varying udispersion cocfficient, and found tte optimal
configuration to be the same as th. : found by Trambouze et al,
but found the optimal selectivity to be 0.4999

CHAPTER 1 PAGE 11
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1.4.3 First Order Kinetics

It was known to Danckwerts (1953), that for linear (that is first
order), isothermal kinetics, the conversion of any reactor with
known residence time distribution could be calculated as the
weighted average of Dbatch reactors, the weighting being
proportional to the residence time distribution. Shinnar et al
(1973), wusing an argument based on probability theory, showed
that the plug flow reactor is always optimal when the objective
function is some convex function of concentration. The proof
holds for both non-isothermal and isothermal operation. Glasser
et al (1980) examined the properties of the rate matrix, and from
these properties were able to show rigorously, among other
things, that the plug flow reactor was always better than any
cascade of C.S.T.R.’'s. By better, we refer to an optimization
function that is a linear combination of cor tentrations leaving
the reactor system. The implications of the paper to the design
of cascades of C.S.T.R.’s were explained by Glasser and Horn
(1980).

1.4.4 Denbigh Kinetics

The Denbigh reaction is as follows:

2 1
A-+B~+D
41 42
¢ E

Denbigh (1958) actually assumed all the reactions to be linear,
and considered the optimization of the non-isothermal systenm of
reactions. The probleir was simplified by considering cws
C.S.T.R.’'s in series rather than a plug flow reactor or any other
general reactor structure.. The optimal residence time and
temperature of each C.S5.1.% was then determined for specified

constants.

Chitra and Govind (1985a) modified the reaction slightly, in that

they assumed the reaction was isothermal, and that the reactions
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were of different ovrders. The number next to the arrow indicates
the - orders of reaction that they assumed. Chitra and Govind
specified a maximum conversion of 95% to D, and proposed a
reactor structure of two recycle reactors in series. This
structure was optimized by varying the recycle ratio and the
residence times of each reactor. They found a serial combination
of plug flow reactor and C.S.T.R. to be optimal.

1.4.5 Westerterp Kinetics

The Westerterp kinetics are:

| A+B~-C (1.3a)
| A+A-=D (1.3b)

. ; Kramers and Westerterp (1963) considered various cases for an
T equimolar feed of A and B, and specified a final degree of
, conversion of A of 0.95. They found that the plug flow reactor
3 had the smallest volume and the lowest &ield of C of all the
o reactors considered. The C.:.7.R. was next fullowed by a series
of C.S.T.R.'s with distributed feed and a series of plug flow
reactcrs with distributed feed. The best reactor structure was
the cross-flow reactor with a feed cf B and the A fed in as the
side streams. This reactor had the best yield of C but the

largest wolume of reactur as well.

4 It is interesting to note at this stage that for all cases when a
?” reactor structure was proposed, such as recycle or axial !
. g»_Q dispersion reactors in series, the optimization yielded either

?:‘{ C.8.T.R.'’s or plug flow reactors or a serial combination of
L these.  Thus it would wusually appear that only the idealized
reactors, such as plug flow reactors or C.S.T.R.'s, are found to

ba optimum. In the examples whare this is found, one would then

expect: C.5.T.R's- znd plug flow reactors to form either the -
boundary or at least part: of t¢he boundary of the attainable
region.

”‘.y | ' CHAPTER 1 "AGE 13
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1.5 Reactor Structure Optimization

The reactor structuras that have probably been most studied and
optimize& are those of cold shot cooled and interstage cooled
reactors. These reactors are practically significant, as many
industrially important reactions axs highly exothermic, and both
cold shot cooled and interstage cooled reactors are practical,
easily constructed reactors. Thus the optimization of these two
reactor structures will be considered in more detail. As before,
a detailed survey of all the literature in this field will not be
given, and only the papers that have a direct bearing on this
thesis will be discussed.

The interstage cooling reactor consists of a number of adiabatic
plug flow ieactors in series, with heat exchangers to control the
temperature of the feed to each subsequent reactor. The
optimization thus must determine the optimal sizes of each
reactor and the feed temperature to each reactor for & given feed
and reaction. Usually the number of stages and the degree of
conversion is also specified.

1957) and Horm (1961 developed algebraic expressions for
Caha et al (1973) deve = 'a
e ~2al technique to solve the equations to determi. - )

zerstage cooled reactor.

optimal configuration of a three stage reactor with intersia,e.
cooling. )

The cold shot cooling reactor again consists of a number of plug
flow reactors in series. In. this reactor however, only the feed
to the first reactor is heated, and the temperature control of
the feeds to the other plug flow reactors are controlled by
bypassing ccld feed. This type of reactor 1is perhaps
industrially more important than the interstage cooled reactor,
as it is much cheaper to coustruct as only one heat exchanger is

‘required.

Konoki (1960) drerived the equations to minimize the reactor
volume of a cold shot cooling rezctor. It was assumed that the
specific heat or enthalpies o¢f reaction are not functions of

temperature. Malengé and Vincent (1972) developed the
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generalized equations to maximize the profit of the reactor. The
profit was considered to be a function of heat supplied to the
reactor system and the amount of catalyst in the system (or
equivalently, the volume of the reactor system). The authors
also showed how to use the azriteria to numerically find the
optimal configuration of a three stage cold shot cooling reactor.
Again the equations where developed for a system where the
enthalpy of reaction was not a function of temperature. Burghardt
and Patzek (1978) developed the equations to optimize a cold shot
cocling reactor when the upper permissible temperature is
o spaecified.

; 1.6 Mathematical Results

i Convex huils and convex functions are a very active field of

resesrch at present. Apart from the use of convex hulls in

optimization problems, they have found uses in other fields such ;

as robot vision, linear programming and pattern recognition. This .
field will be shown to be central to determining the attainable -
region. The concept of a convex hull, and the properties and

construction of the ccnvex hull will be discussed in more detail.

However, much of the theory that was necessary for the

application of convex hulls to attainable regions had not been

developed and thus was developed for this thesis.

N 1.6.1 Definition of a Convex Hull aad other Mathematical
;.1 Concepts
( 3

There are vasious equivalent deiinitions of a convex figure. Some
| of these will be stated below. These definitions come from L
; Yaglom and Boltyanskii (1961).

e Bt e A s o

f't Definition A figure 1is called Copnvex if 1is wholly contains
! t*e line segment that joins any two poincs cf the figure.

B
1
i
o]
o
i
-t
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¢

Defianition A bounded figure is called convex I1f every line
passing ‘chrough an arbitrary interior point of this figure cuts
the boundary in two points.

Alsc useful is the concept of a support hyperplane.

Deffnition A Thyperplane that contains at least one boundary
point of a figure and is such that the entire figure lies on one
side of the plane, 1is called a Support Hyperplane of that
figure. The support hyperplane thus contains cnly boundary points

and no interior points of the figure.
This concepts leads to a further definition of convex figures.

Definition A bounded figure is called convex if through each of

its boundary points there passes at least one support hyperplane.

It turns out to be more useful to think of the attainable region
as a set of points rather than as a figure. Definitions that are
commonly used when working with sets of points are given below.
These definitions are ' taken from Linear Programming by M.
Simonnard, translated by W.S. Jewel (1966).

Suppcse we have a set of points (X}, with elements X;, in the
space R,

Definition A Linear GConvex Combination of p points X5,
called €, is defined by:

Definition A Convex Set x of points 1is such that for any

two points Xy and Xy € x,

n Xl + (1-p) X2 € X where O=spp=x1

CHAPTER 1 PAGE 16
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An equivalent definition of a Convex Set is:

Definition A set x is convex if, and only if, for some p:

where z By = 1

i=1

Definition A Convex Hull H of the set (X} is the intersection

’ ?

+P

P
} > Z piXi € X
i=1

of all the convex sets containing (X) or

X, ¢ X}

} > z pixi e H

all i

Definition A set of points (X} is Convexly Independent if

Xj’xi e {X} for all i, ixj

By > 0 for all i, ixj
where z By = 1
all i
i

In other words, a set is convexly independent if tne elements of

the set

other elements in the set.

T T e T g e T T e T

} = Xj » Z #ixi

all 1
inj

cannot be written as a linear convex combination of the
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Definition An Extremal Point ¢ of a set (X} is any point
which <cannot be represented as a linear convex combination with

non-zero coefficients of two distinct points of (X}; i.e. it is
impossible to find two points X; and X; of (X} satisfying:

¢ = p Xq + (1-p) Xy, 0<p<1

Notice that only the points of {X} that lie on the boundary oz
the convex hull of (X} could be extremal points. ' .nsequently, if
the set {X) is convexly independent, then all tli. elements of (X}
are extremal points and will be the vertices of the convex hull
of (X} (as no more than n points lie on a hyperplane).

Also mnotice that from our definition of a Support Hyperplane, we
can say: A Support Hyperplane P, to a convex set {X} is a
hyperplane whieh contains at least one point of {X) and is such
that the points of (£} are on one side of P,.

Definition The convex hull of the set (X} is thus the
intersection of of all the support hyperplanes to the convex set.

The ideas above must be extended to the situation where the set
{X} 1is the solution to a continuous function eg the plug flow
trajectory. The number of elements of (X} is now uncountably
infinite, but this does not affect the basic ideas and properties
contained in the above definitions.

Numerical techniques for constructing a convex hull.

This too is a very active field of research at present. Most of
the research has been into developing very fast, efficient convex
hull routines Ffor planar sets of points. These tschniques were
not used in this thesis, as it was found quicker to do the
examples on a spread sheec, with an interactive approach.
Basically, the set of points (such as the plug flow trajectory)

was generated on the spreadsheet. This was then plotted and the
convex hull determined by looking at the graph. No general, all
purpose program was written to construct either a convex hull or

attainable region in two dimensions.
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In three or higher dimensions this simple approach is zlearly not
possible. A program based on that given by Johansen and Gram
(1983) «as written to determine the convex hull of a set of
points in three dimensions. All of the numerical calculation was
Aone on an IBM compatible PC, with a 8087 co-processer. The
plots were directly generated and plotted on a Roland DG DXY 880
plotter, that was connected to the computer via the parallel
port.

In higher dimensions, tnere are not that many algorithms to find
the convex hull of a set of points, and that outlined by Swart
(1985), which 1is similar in concept to the one used in three
dimensions, could be used.

1.5.2 Mathematical Structure

Basically it would seem that the problem of finding the
attainable region <cuuld be rephrased as the following
mathematically problem: Given some n-dimensional space, such that
at every point in the space there is an associated vector R, and
given some initial point in the space, determine all the points
in the space that can be reached using two simple rules. These
two rules are related to reaction (ie at any point one can move
in the direction of the vector R) and mixing (that is if we can
reach two points in the space, we can also achieve all the points
on the 1line between the two points). These rules or processcs
will be fully stated and discussed in the next chapter, and so
will not be considered in any more detail now.

This mathematical problem has not as yet been treated, although
there are a class of related problems that are an active area of
research at present. One of the related pruslems is that of
stochastic pursuit evasion games, in which two players are given,
for example, specified speeds and turning rates, and a strategy
of pursuit and evasion mus%t be developed. There is no general
solution t¢ this problem, and at present che solution is tackled
numerically.
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Similarly, it was found that the the attainable regi@ﬁ could nox
be found by some apriori approach, that is we could not take some
point in the space, and then decide whether or rot it could be
achieved using the rules of the system. Instead a stepwise,
construction approach had to be used to determine the attal: sbls
region.

1.6.3 Stereo Viewing :

In order to show the geometric propertiés of the attainable
region in three dimensional space, the construcuion steps and the
final hull are shown in stereo. A stereo viewer is provided in
the _back pocket of the thesis. A simple projection, base? =u «
pinhole camera, was used to plot the uic_ us VieW§1 The “teaps

projected ontc a plane in front of ths *=zs-ra' ve vievd
The viewing point 1is shifted tc
object. The two images are then vi:wssd _.» .nsi, te
dimensional image. An example iz g. .. 'r Flgure

o

-z Srtferent

A rube

with a spiral inside the cuha and three cicels. - acked abeove the

cube is shown. One should sec that thi stonh £ froles as both

above and behind the cube; in fac™ th; cizcls oL celiivred on
i :

the green axis. This is howevey 1zrier Aiffi.esl’ iu interpret

from the sterec views. Instructlonp fix L:ing the v.ewer are

given on the viewer. It may take a 3 bﬁﬁoré the

s2
.erpreting them

brain is fooled into accepting the f:ge
as three dlmensional objects.
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Figure 1.1 A practice example for stereo viewing

1.7 Outline of the Approach used to Determine the Attainable
Region

In the n2x. chapter, the rules that described the processes
occuring in a chemical reactor, that is mixing and reaction, are
sutlined and discussed. From these many of the piroperties of the
attainable regiou eax be deduced. Among these arz the necessary

condition for the actainable region.

in Chapter Three, these conditions will be applied to two
dimensional examples. The attainable region will also be
constructed for & variety of examples that can be handled in twu
dinensions, such as the Van de Vusse kinetics, cold shot cooling

reactors and interstage cooled reactors.
The approach will be extended to three dimensional examples in

Chapter Four, and in particular, the property of convexity, which
is obvious in two dimensional space, will be extznded to three
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dimensions. Examplas will also be done where the attainable
region is constructed. The property that the plug flow reactor
is always best for linear kinetics when the objective fuiction is
a convex combination of councentration, will be proved using
geometrical arguments that follow from the properties of the
attainable region.

In the final chapter, some of the pioperties of the attainable
region in any n-dimeunsional space, and the reactors that would
form the boundary of the region, are deduced.
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dimensions. Examples will also be done where the attainable
region is constructed. The property that the plug flow reactor
is always best for linear kinetics when the objective function is
a convex combination of concentration, will be proved using
geometrical arguments ¢ .- follow from the properties of the
attainable region.

In the <£final chapter, some of the properties of the attainable
region in any n-dimensional space, and the reactors that wculd
form the boundary of the region, are deduced.

1
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CHAPTER 2

THE ATTAINABLE REGION : DEFINITION, YNECESSARY ANy SUFFICIENT
CONDITION

2.1 Introduction

The attainable region was first defined by Horm (1964) as the
region (of outputs) that corresponds to the totality of
physically possible reactors. The variables to be incorporated in
the region were mnot defined - but could typically have included
concentrati.ns and residence time. The variables that will be
included in the definition of the attainable region will firstly
be discussed, and thereafter the attainable region will be mora
precisely defined. By considering the processes of reaction and
mixing, it will be shown how the ideal reactors may be
geometrically interpreted. From this, the necessary conditions
for the region will be derived. As yet, there is not a
sufficient condition, but it is known what results are needed in
order to derive a sufficiency condition. This will also be
discussed.

Many of these results have already appeared (Glasser, Hildebrandt
and Crowe (1987) and Hildebrandt, Glasser and Crowe (accepted for
publication) ).

It will be assumed that the kinetics do not allow sustained
oscillations and that the system is at constant pressure.
Non-isothermal, variable density systems are included and the
only processes that are allowed are reaction and mixing.
Separation processes are thus not included.
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2.2 Variables Included in the Definition of the Attainable
Region ‘

Suppose we have a system of n species Aj...A, with a
specified set of r reactions:

v A = 0 j = 1...r (2.1}

where the rate of formation of species A; is given by ry, which
depends on the concentrations of the species c¢; and the
texperature T. 1In order to simplify the notation we will write
these arrays of quantities as vectors, thus:

iR

- (rl,rz, ..... ,T)

He]

- (cl, c2, ..... ,¢)

In particular
r - zr(.,D

Now let us suppose we are given a specified mass-flow M of
material with reference coucentration c¢°, enthalpy per mass
ﬁ‘, density p° and temperature T° (for instarice a feed
condition). It is from this initial material that we wish to
determine what final conditions:.(for example concentration,
temperatve and residence time) we can achieve in arbitrary
systems of reactors using only the processes of reaction and
mixing.

We will find it convenient to define variables with units
corresponding to concentration, time and temperature
respectively. The quantities are defined so that they all obey
liniear mixing laws and so that chaages in them due to reaction
may be described by a rate equation. The variables, in fact,
simplify to concentration and temperature in certain
circumstances. This point will be clarified later.
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Let the mass fraction of species i in a mixture be w; and its

molecular mass m;. We define v as the total volume of the

i
reactor system. Then:
wip°
- - =1
di - 1 1 n (2.2)
i
and 7 = Xﬁ— the space time (2.3)
and § = = (2.4)
C o
P

A
where Cp° is heat c¢apacity at constant pressure per unit mass

at the reference conditions. If the density of the mixture does
not change with reaction and mixing, then p = p° and d; and 7
become the true concentrations and icean residence time of the

system respectively.

The enthalpy of a mixture at constant pressure is a function of

the temperaturse T and composition and can be written as:

~ T A dimi ~ A
c°8 = ¢_d4dr + s H_..° + AH 2.4a
P TJ P ) P fi m ( )
where Hg;® 1s the specific enthalpy (per wunit mass) of

formation of species i at the reference conditions and AH is

the specific enthalpy of mixing.

If the heat capacity of the mixture does mnot change with
then C_.° =C

reaction, mizing and  temperature P P and the
above equation becomes:
A A
P dimi Hfi° AHm
g = (T -T°) + —7—— + -=% (2.4b)
C o Q C Q (r
p ? P

In this case the quantity # is thus linearl- dependent on the
change in temperature of a system of constant compusition. | >
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The usual variables which appear in the rate of formation
expression rj and reactor equations are concentration, residence
time and temperature and are related to these new variables as

follows:
- £ f { -
¢y 2 d’i ] i=1...n (2.5a)
t - % r - residence ‘ti‘zme (2.5b)
c.° z dimi Hfi‘ AHm
T-T" = x §y - T - (2.5¢)
C p° c_
P mean P mean p mean
where Ep mean -5 the mean value of the specific heat capacity

of the mixture, defined as:

J' C_dr
. Te P
C - ——— 2.54
P mean (T-T°) ( );
and p = p (c,T) (2.5e)

Let us now join all of the quantities into a single array which
we call the characteristic vector ¢ which is a vector with

(n+2) elements ie

€ = (4.dy, ... ,d,7,8) (2.6)

We note that the rate of formation vector can be expanded to give
us what we can call a reaction vector r such that:

r (e, T) = (r (D, r,(c,T), ... ,r (c,T), 1, O) (2.7)
or R(C) = (R(Q), Ry(Q) , ... , R (D), 1, 0) (2.7a)
where r; = R; for a given state of the system. Note however

that rj and R; are different functions as they have different
independent variables. Thus we will usually refer to rj; if we
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refer to the value of the rate of formation of i at specified
conditions but be more precise and specify either r; or Ry in
situations where the functional form is important, such as when
integrating or differentiating the rate expression. Note also
that the rate expression above implies that reaction is
adiabatic.

The reason for wusing these particular variables C 1is that
firstly, they each obey a linear mixing rule (discussed later in
section 2.3.2) and secondly, the change in the quantity due to
reaction can be written in terms of a rate of reaction. We may
include any other variables that obey the linear mixing law and
where changes in the variable, due to reaction, may be written in
terms of a rate nf reaction. Thus prassure, for example, cannot
be included as a wvariable, unless somehow it is combined with
other wvariables such that the new variable obeys both
constraints. Thus all systems considered in this thesis are
constant pressure systems.

We have now set up the basis for the system we wish to discuss.

We note that if we have an isothermal system we merely decreaze
the size of our characteristic vector by leaving out the final
element § as the system will then be a function of composition
(d;) and space time (r) oanly. Furthermore notice that by lzaving
the element § out, we are no longer constraining the reaction
process to be adiabatic. Thus if the process is isothermal, for
example, the rates of formation and density must be calculated at
the temperature of the system so that the modified reaction
vector will describe an isothermal reaction preccess.

An adiabatic system with a single feed lLas a fixed enthalpy. The
attainable region for this adiabatic system will cbhébquently be
in a subspace of the total space, even though the téﬁperatu:e of
the system may vary. The smallest dimension of the space that we
can work in, is in this case reduced by one.

Furthermore, we will always incliude fewer concentration variables
in our characteristic vector than found in the stoichiometric
space. As discussed by Feinberg (1980), the mass balance
constraints confine us to¢ the stoichicmetri: subspace of the full

CHAPTER 2 PAGE 27

P e A Ao o

25x§r

"\'Nv-‘h“f? L N U e W——



D HILDEBRANDT THESIS

concentration space. This subspace is a linear subspace of the
full space. The convexity properties that will be shown to be
important in our later work depend on points being independent,
which is clearly not the case if one is working in either the
full concentration space or the stoichiometric subspace. Thus
the usual approach that has been adopted in doing examples is to
only include the variables that are necessary, ie the ones that
appear in the reaction vector as well as those that appear in the

objective function of an optimization probiem.

2.3 The Geometry of Reaction and Mixing

As stated earlier, the only processes we will consider are
reaction and rixing. We will not consider reaction systems where
other proce.. s are occurring, such as mass transfer, heat
transfer or separation processes. None the less, a wery wide
range of reactor systems can be described by the processes of
reaction and mixing only. The consequences and geometric
interpretation of these two processes will be discussed in more
detail below.

2.3.1 Reaction

We can assign to every point § a reaction vector R{C). This
vector will have a direction and it is this property of the
reaction vector which will prove to be very important. An example
showing the the directions of the reaction wvector in a two
dimensional subspace is shown in Figure 2.1,

If we allow a mixture with properties described by the
characteristic vector ¢ to react, the change 1in the
charecteristic vector dC will be described by:

d¢ = R{C) dp (2.8;

F
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Figure 2.1: The Reaction Vector and Mixing in Concentration
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where ¢ 1is a positive scalar quantity with units of time. For
simplicity we will wusually take the scalar quantity to be the

space time r,

Geometrically the reaction wvector indicates the direction of
change of the characteristic vecior due to reaction alone.
Notice how the last two components ¥ rezstion vector, that
is the time and enthalpy variables, ~ to constants. This

will lead to some interesting consec

2.3.2 Mixing

The elements of the characteristic vector all obey the mixing
rule, that is, if we have two streaws with mass flow rate M; and
M, and characteristic vector €] and G, respectively and mix

them, then after mixing we have g* where:
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a g \1-a) EZ 0<a (2.9)

!

M+ M

and M; is the mass flow rate of stream 1 flowing out of a

where «o (2.9a)

reactor of volume vy

In particular this is true as:

M, r.+ M, T
i el (2.90)
1t
M, H + M. H
and §° = =L 22 (2.9¢)
M, + M) C*®
My + M) G
M w,. +M, w. °
and dF = | LAl 2 32 p° (2.9d)
i Ml + M2 mi _

Geometrically, this means that if we mix material described by
characteristic vector Gy with material described Dby
characteristic vector 92, the characteristic vector of the
resulting mixture will lie on the straigh® line joinimg G, and
Cs (ie inside a convex hull containing €7 and ;).
Alternatively, the change in concentration of material described
by characteristic vector Ci when mixed with material described
by characteristic wector Gy 1s in the direction of wvector

(Cp-C1).

As discussed, we limit ourselves to two processes which can alter
our characteristic vector C; these are mixing and reaction. i

Mixing €, with G, 1is characterized »y a vector given by

equation (2.9) and is in the direction of (Cp-Cy) while
reaction of G is characterized by the wvector R(Cy) as 1in
equation (2.3). Provided there are no discontinuities, our
characteristic vector (; must change locally in a direction
given by the resultant vector:

P CHAPTER 2 PAGE 30

i
C TS

S
e
e

5 f = - it
P9l et e B kS )

SR SO S PO WL L




D HILDEBRANDT THESIS

*

A

g = ARG + (1-A(G-C)  0=g=1  (2.10)
The important conclusion from this 1is that locally no combination
of mixing and reactiorn. can take us in a direction that does not
lie between the mixing and reaction wvector (ie in the smaller

‘angle between R(Cq) and (G9-Gy) ). Furthermore, thic

change must lie in the plane defined by the reaction and mixing
vector. Figure 2.1 illustrates this idea with an example in two
dimensional space. If the reaction and mixing wvectors are
collinear, then any combination of reaction and mixing will
result in a change in concentration along the line defined by
equation (2.10).

2.4 Definition of the Attainable Region

We define the attainable region as the region in the space of tha
characteristic vector C which can be reached by any possible
(vhysically realisable) reactor system from a given feed. The
feed need mnot be a single point in the space but could be
represented by any r.amoer of characteristic vectors, for example
the feed material could have i whole range of inlet temperatures,
Generally a single feed point will be denotzd g;, whereas a
range of feed points will be denoted by the set {Cg}.

Now the equilibrium point(s) is never strictly attained as it is
only reached as a 1limit as 7 tends to infinity. 1In order to
overcome this difficulty we will expand the above definition to
include ail the limit points (that is boundaries) as well. This
makes the attainable region a closed set and does away with some
of the difficulties in handling the existence of open sets. Thus
we include the limit of 7 as 7 tends teo infinity in the set as

well as the equilibrium concentrations and enthalpy.

Furthermore if we mix any finite point in the space with a
sequence of points which tend to the equilibrium point(s), we
obtain a line which tends to a "vertical®™ (ie parallel to the
time axis) line. This "vertical" line is strictly not attainable

but again- we allow it as a 1limiting process. If
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these "vertical™ lines form part of the boundsry then we have
points on the boundary which repriasent the same concentratious
with different times which is clearly not possfble, but we will
still accept these "vertical"® lines as the Joundary of the
region, thus closing the set.

2.4.1 Tha Constrained Attainable Region

An interesting and useful offspring of the attainable region is
the constrained attainable region, defined as the region in the
space of the characterirtic vector that can be reached by using
only a specified number and type of reactors - for example, three
plug flow reactors. It is interesting to note that the ideas
developed for the attainable region can be applied to the
constrained attainable region. It turns out for many exzamples,
the constrained attainable region is equivalent to a geometric
optimization relative to a given reactor structure and that
results can be found in cases where traditional optimization
techniques can not or have not been used. Examples will be done
in Chapters 3 and 4 to show the usefulness of this concept.

2.5 The Existence and Uniqueness of the Attainable Region

Define the base of the attainable region as the closure of
convex hull of the feed point(s) and the equilibrium point(s).
We note that as a result of our closure of th: sec these points
are all attainable. (We reiterate that we do not allow sustained
oscillations). The result is that the base is attainable and as
it is non-empty and attainable, the existence of the attainable
region is assured.

Once the difficulty of the limit point(s) has been cleared up,
the proof of the uniquen;ss follows fairly easily. This is
because infinities exist only in the time domain while the
concentration and enthalpy space are bounded.
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Furthermore, as its name implies, this base must always be the
foundation on which any attainable region rests (for arbitrary
kinetics). = Suppose for the given kinetics we find two distinct
attainable sets R and S on this buse U, then using mixing
the convex hull of the union of R and S is attainable. This

process can be repe.:tsd for any finite sequence of such sets.

FPor an infinite coilaction of such sets we can perform the same
sequence of operatiodas and, as either the space is bounded (as
for concentrations) or as we have included the limit as r =+ =,
such processes wust have limits. Then, provided we allow the
limit points to e part of the region, hy the process of taking
convex hulls of unicns of sets we will arrive at a single
non-empty set.” We have thus  proved the existence and the
uniquensss of the attainable region. We may further note that
because ot the construction method of taking the convex hull of
the unions of sets the attainakle region must be a compact,
simply connected region and im particular must be convex.

2.6 Tha Gaometry of Some Idealized Reactors

Assume that the reference conditions are the feed conditions.

2.6.1 The Plug Flow Reactor

The plug flow reactor has as its defining equation:

46
= - RO c(r*) = 2 | (2.11)

The plug flow curve is thus a trajectory in the space such that
the reaction vector is tangent to the curwe at each point. These
trajectorizs are uniquely determined by their initial points omn
the boundary of the region and cannot cross each other. We cau
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envisage the space to be completely filled by these curves. In
particular, because 7 does not occur explicitly in the vector
field R(C), the trajectories starting from different initial
times but with the other initial values the same, are just the
same curves but shifted up or down the time axis.

2.6.2 The Continuously Sti:red Tank Reactor or the C.S.T.R.

The C.S.T.R. has the defining equation:

€ - G2 = R(C )(r-r®) c(r*) = G2 (2.12)

The C.S;T.R. has the property that, for each (r-r°), the vector
defined as the difference between the feed and exit
concentrations C 1is collinear with the reaction vector at the
exit comditions. A diagram of the locus of all such points, with
(r-r°) as a parameter; in a two dimensional space 1s shown in
Figure 2.2,

Figure 2.2: The Plug Flow, C.S.T.R. and Recycle Reactors
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Note that all points along DE are possible feed points to a
C.5.T.R. with
although it may not always be single valued,

exit concentration E. However the locus,

is unique to a
C.S.T.R. with feed concentration D.

2.6.3 The Recycle Reactor

The recycie reactor is a plug fluw reactor but some of the exit

material is recycled to the inlet. It 1is defined by the

following equations:

i R(CO) Clp=0) = ¥
= - ex (2.13a)
dp  (R+D) Slp = 1-7°) = G
ex o
* RE + gf
€ = TE+1- (2.13%)

where R is the recycle ratio, that is the mass flow rate ratio
of the recycle flow rate to the feed rate; C®* is the exit
concentration of the recycle reactor and therefore the plug flow
reactor and {r-r°) corresponds to the space time of the recycle
reactor. The recycle reactor is a plug flow reactor with a feed
at a weighted average between the exit concentration C®¥and the
given feed g%. The variable ¢ 1is an independent, scalar
quantity related to the space time of the material in the plug
flow section of the reactor. The geometric interpretation is
shown for a two dimensional example ir Figure 2.2. It can be
seen that when the recycle ratio tends to zero, we tend to a plug
flow and when the recycle ratioc tends to infinity, we tend to a
C.S.T.R. The recycle ratio can be geometrically interpreted as

the ratio of distance BC to AB.

Notice that by varying the recycle ratio R , any point on BC
could be a with

The locus shown is for a fixed recycle ratio

feed point to a recycle reactor exit
concentration A.

and feed concentration.
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2.7 Necessary Condition for the Attainable .legion

The necessary condition will first be stated and proved.
Thereafter, all the results that arise from this condition will
be discussed. The question of which other conditions are needed
in order to complete the sufficiency condition will be discussed
and it will be shown that the main deficiency in the condition is
related to incomplete information concerning multiplicity of
solutions in reactors.

2.7.1 = The Necessary Condition

We can write the following necessary condition for the attainable
region.

It is necessary that the attainable region A on its base with
L]
feed concentration {gf} is such that:

(a) it is convex.

(b) no react’on vector in the boundary of A (3A) points
outward from A; that is all reaction vectors in dA point
inwards, are tangent to JA or are zero.

‘(¢) there is no plug flow trajectory in the complement of
A (within the suoichiometric subspace) which has two points
such that the line joining the later point to the earlier point
can be extended to intersect 3A (and he-ce A).

(d) no negative of .a reaction vector in the complement of A

(within the stoichiometric subspace), when extended can intersect
a point of A (and hence A).
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2.7.2 Proof of tlie Necessary Condition

Each of the conditions correspond to operations a:sociated with
mixing or to vune of the reactors we have examined iu the previous
section. We wiil prove the coﬁditionf by contradiction. Assume
A is the attainable region and let us examine each of the cases
in turn:

(a’) Suppose A is not convex. By using the operation of mixing
we may attain any point in the contvex hull of A. Some of these
points will be strictly in the complement of A. But this
contradicts our assumption that A was the attainable region.
Thus because of mixing, A must be convex.

(b’) Suppose a non-zero reaction vector on 3A points outuards
‘at some point P then we could by using the appropriate plug flow

trajectory starting at P attain the complement of A.
Thus (b) must be satisfied.

One can note that if there is a continuous section on the
boundary where the reaction vector is tangent to the boundary,
this will be part of a plug flow trajectory. Obviously if the
reaction vector is zero on the boundary we are talking about an
equilibrium point.

(c’) Suppose (c) is false then a recycle reactor could be used to
extend A. The fresh feed point would be a point in A (or on
dA) which 1is intersected by the extended 1line. The mixed
composition would correspond to the earlier point and the outlet
composition would be the later point on the plug flow trajectory.
Thus (c) must be true.

(d') If (d) is false, then starting from a point in A (or
dA) a C.S.T.R. could be used to reach thz point in the
complement of A where the negative of the reaction vector
originates. This proves {(d) which it should be noted is the
limit of condition (c) as the two points on the plug fiow
trajectory approach each other,.
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2.7.3 Further Properties of the Attainable Regior

f

At present there is only a necessary condition fu¢ wiiy
region. 1a order to complete the analysis Ly

=

sufficiency condition or show that a region . :#i«%. ivy the
necessary condition is unique.

When we do examples, in order to ensure that we do not obtain
regions which satisfy the necessary conditions but are not
attainable, we will construct the region using only points we
know are attainable., In this way, even though we do not ensure
that we have the full attainable region itself, the region we
obtain, that satisfies the r1iecessary condition, will be
attainable.

It is clear that an attainable region which we ha~ constructed
that satisfies the necessary condition cannot be ¢ aded by the
processes of mixing, a plug flow reactor, a recycle reactor or a
C.5.T.R. This follows from the following reasoning. RESULT 8
Suppose A is an attainable region based on {Q%) and which
satisfies the necessary condition. Let B be a region based on
{g;) constructed only using the processes of mixing, the plug
flow reactor, the recycle reactor and the C.S.T.R., but B = A
and is not compietely contained in A. Let us loock at that
piece of B that does not contain the intersection of A and
B (that 1is ANB). Now points in A are attainable, A is
convex and  includes the  Dbase. However, points in

"’\ B/A (=B-ANB) are attainable from A since they are

attainable from the base which is in ANB. Thus there must be
at least one plug flow reactor, one recycle reactor or one
C.S.T.R. with a feed point in A and a product point in B/A.
But the boundary surface separating ANB and B/A consists
of points in 3A. Thus one of the ‘conditions (b) (e¢) or (d) is
violated on that portion of JA. Hence 1if (a), (b),‘
(c)'and (d) are true A cannot be extended using the four
processes.
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Furthermore if a recycle reactor forms part of the boundary we
can always achieve those boundary points by a plug flow reactor
starting from inside the attainable region. This can be shown
as follows.

Let us now look at recycle reactors. Suppose we have a region
which obeys the necessary conditions and suppose that the outlet
concentration of a recycle reactor lay on the boundary of the
region. There are four possibilities for the final plug flow
section:

(i) the plug flow at the end of the recycle reactor points out of
the region. This contradicts (b) of the necessary condition.

(ii) the plug flow at the end of the recycle reactor points into
the region. In order for the feed point of this plug flow
reactor to be inside the region, the plug flow trajectory must
have left the region at another point again contradicting (b) of
the necessary condition.

(iii) The plug flow at the end of the recycle reactor is entirely
in the boundary of the region. The convexity requirements
of (a) ensures the feed point of the recycle reactor is external
to the regiom.

(iv) The plug flow at the end of the recycle reacter is in the
boundary but comes from inside the region. (It cannot start
outside the region and move into the boundary as the feed point
would need to be external to the region). 1In this case a valid
feed point from inside the region would result in a boundary
point which is the exit point of a recycle reactor. However as
the plug flow reactor starts inside the attainable region we can
always achieve this boundary point from a feed point inside the
region using a plug flow alone.

This proves our assertion.
This 1limited sufficiency result 1leaves open the question of
whether we could expand the attainable region by any other

processes. It is easy to see that any differential process
involving reaction and mixing cannot be used as the result
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expressed in equation (2.10) precludes this. Similarly any
series-parallel arrangement of the idealized reactors or indeed
anv simple reactor that involves processes of differential mixing
and reaction cannot extend the region. This can be shown as
follows: If the individual reactors start in the attainable
region, they cannot move out of the attainable region. Reactors

"in series ‘cannot therefore extend the region. A parallel

arrangement of reactors is equivalent to mixing the outlet
material from the individual reactors. This is described by the
mixing rule, and the characteristic vector of the resulting
material must, due to the convexity property of the region, also
lie in the attainable region. Any series-parallel arrangem:nt of
reactors, by the same argument, can also not extend the region.

This however does not exclude other more complex reactors whare a
concentration jump can occur. Such cases could be the axial
mixing reacter or a series of simple reactors with complex
recycles. In all of these reactors there are Jjumps in
concentration, such as occur in the recycle reactor and the
C.S.T.R., and '7e are not sure whether such a reactor can extend
the region we have constructed using the conditions (a), (b),
(¢) and (d). The jump condition that causes the difficulty is
that relating to multiple steady states where a new solution may
appear in a different part of the space as one follows the locus
of the reactor.

This will be explained by means of an example - the recycle
reactor, The family of main branches of the loci will be smooth
curves starting at the feed point (ie in the limit as r-0 the
outlet concentration will tend to the feed concentration for all
values of the recycle reactor). Bach curve will correspond to a
different recycle ratio. In the case where the recycle reactor

-Ldoe;s not exhibhit multiple steady states, these curves will move

from the feed point to the equilibrium point(s) and, as the
recycle ratio increases, the curves will move away from the plug
flow trajectory towards the locus of the C.5.T.R. In the limit,
as the recycle ratio tends to infinity, the curve will coincide
with that of the C.S.T.R. locus. An interesting result is that
the main branch of the recycle reactor, with a feed point inside
a region that satisfies necessary conditions (a) and (b) cannot
leave the region. The main branch refers to the locus which
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starts at the feed point and which continues smoothly to the
equilibrium point. The proof of this is discussed in Theorem 2.1
in Section 2.10. Condition (c¢) is thus not needed for these cases
and the attainable region could very well have been constructed
using only conditions (a), (b) and (d).

Consider the case where the recycle reactor does exhibit multiple
steady states. Branches of the  recycle reactor locus that
approach a C.S.T.R. solution as the recycle ratio tends to
infinity would have been included in the coustruction of the
attainable region. ~Branches that might not have been included in
the construction of the attainable region when using only
conditions (a), (b) and (d) are those that arise and which do not
map into the C.S.T.R. locus as the recycle ratio is changed.
These would be branchus of the solution that exist for only
certain values of the recycle ratio and which are not connected
to other branches that approach the C.S.T.R. limit. In other
words, the following question arises: can the solution of recycle
reactor exhibit more branches than the C.S.T.R.? The answer to
this question does not seem to be known. From the geometric
interpretation of the recycle reactor, it would seem that one
would need fairly pathological kinetics for this to happen (see
Section 2.10). However, the important conclusion 1is that
condition (c) is only needed to cover this possibility. Thus if
the recycle reactor cannot exhibit more branches than the
C.S.T.R., condition (c¢) of the necessary condition is not needed.

Another interesting result ‘is that a system consisting of a
series-parallel arrangement of recycle reactors, although it has
more solutions than than a single recycle reactor, does not
introduce =ew solutions that must be covered by a necessary
condition in that all solutions must be combinations of the
steady states of a single recycle reactor. Thus all the multiple
steady states of any series-parallel combinations of éi simple
reactor are just convex combinations of the steady statesﬁof that
simple reactor. The Tnecessary cgndition would therefore,
provided the steady states of the s’mple reactor were kovered,
also cover the series-parallel combinations of thef simple

reactor.
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A complexity is introduced if one however allows bhack mixing ie
allows a recycle over more than one reactor. We kunow in che
limit as the residence time tends to zero the solution uust
approach (ze feed point. As the residence time increases there
must be a locus from the feed point and this would lie inside the
attainabie region. (In order that the locus cross the boundary of
the attainable region, at some point one must have a raaction
vector moving out of the attainable region, which is clearly not
possible. The argument is analogous to that for the recycle
and is discussed in Section 2.10). Thus only branches
that started outside the attainable region have not been included

in our condition.

reactor,

Thus it is only where multiple solutions are
exhibited that the sufficiency condition is deficient.

This result pointed to the importance of multiplicities of
reactors, and although we have not been able to prove any results
that could provide further necessary conditions or a sufficiency
condition, other interesting results have been found.

2.7.4 Multiple Steady States

The full proofs of the following results are given in Appendix 1.
A summary of the resuits and a discussion of the importance of
these results is given below.

The Maximum Mixedness Reactor Mcdel (MMR) can only exhibit
multiple steady states for systems where the residence time
distribution tends to infinity.

This arises because multiplicity cannot be introduced by:

- sections of reactor where the side material is introduced in
a smooth continuous manner

- any points where a finite amount of material is added in the
side stream as mixing does not introduce any muitiplicities.

- the initial point if a finite amount of material is added. If
the beginning of the reactor has this configuration, the reactor
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will have a finite wupper bound on the vresidence time

distribution.

The multiplicity must either arise from the initial point ox
because the concentration along the reactor with respect to
remaining life does mot tend to a limit (for example, the
concentration may vary periodically). Behaviour of this type was
discussed by Glasser et al (1986). If the multiplicity arises
from the initial point, this point must satisfy the C.J.T.R.
equation. Thus geometrically the reactor with feed g; car e
interpreted as follows: the MMR would start at some poimic on the
C.S.T.R locus, say C, which corresponds to a scliution of the
C.5.T.R. having feed point g;. The trajectery would then move
in the directiocn between the reaction vector and the mixing
vector (g%-g) and this section of the reactor would be a
smooth curve if the side <ctream 1is added smoothly and
continuously. At points wheze a finite amount of feed was added,
the curve of the MMR would have a discontinuity in that it would
move a finite distance aloung the mixing vector. Neither of these
processes would introduce multiplicities, and thus this type of
reactor would lie inside the attainable region as defined by
necessary conditions (a), (b) and (d4).

Unfurtunately the same cannot be said as yet for reactors that do
uot tend to a limit. An approach that might lead to something
fruitful is the following: A recycle reactor exhibits
periodicity. the periodicity depending on the residence time and
the recycle ratio. We might be able to show that the sum of
recycle reactors could approximate the periodic behaviour of any
other MMR ie use ideas similar to Fourier series. Whether this
could approximate any periodic variation in concentration is not
known, but it might be a useful suggestion.

Reactors that can be described by the General Mixing
Model (GMM) <f Jacksor and Glasser (1984) will either:

- exhibit branches that arise because the concentration along
the reactor with respect to remaining life does not tend to a
limit. k

- lie inside the region satisfied by necessary conditions (a),
(b} and (d). ‘
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The mixing that occurs in the GMM does mnot in general cause
nultiple solutions. The only multiplicities that may arise are
by elements of fluid behaving as C.S.T.R.’s or because the
concentration with respect to remaining life along the reactor
does not tend to a limit. If the multiplicities arise from the
first cause, these reactors will satisfy the necessary
conditions (a), (b) and (d), ie they will 71  inside the region
satisfying these conditions as explained above.

Further work is required to understand reactors where the
-concentrztion along the reactor with respect to remaining life
does not tend to a limit. An example of this typs of behavicur
is the recycle reactor, where the concentration varies
periodically with respect to remaining life.

Thus in summary, the multiple solutions which are not covered by
the necessary condition are those resulting when the
concentration with respect to remaining life does not tend to a
iimit.  When the nature of this behaviour is better understood,
the necessary condition could be expanded to include these.

2.8 The Sufficiency Condition

It would seem that the only deficiency in *he sufficiency
condition relates to the number of multupiicities of colutions
for reactors. In particular, the reactors whiere the concentration
with respact to remaining life does not teand to a iimit, whaun one
regerds them in terms of the MMR or GMM, may not be covered by
the necessary condition. The important question t¢hat must be
answered is this: are there reactors which have solutions which
eitiher do not map into those of the C.5.T.R. or recycle reactor
via differential processes or which are not convex combinatious
of the solutions of the C.S.T.R. or recycle reactor. If this is
, ;notﬁﬁossible then the above necessary condition would appear to
be sufficient. Another  interesting result is that
condition (¢) is not needed if all braanches of the recycle
reactor map into the C.S.T.R. The necessary condition, as given
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b

in Section 2.7.1, covers a very large class of reactors. - These
include all single and parallel-series arxangements of plug flow
reactors, C.S.T.R.'s, recycle reactors, any other reactor in
which differential mixing and reaction occurs and finally any
steady flow reactor whichk has a bounded residence time
distributisu. The missing results regarding the behaviour of the
multiple;,Solutions of reactors certainly opens an interesting
area of research.

2.9 The Construction of the Attainable Region

In order to find the attainable region, we must find a region
that both satisfies the necessary condition .and that is indeed
attainable. We therefore use a construction method, in which we
stact with thz feed point(s) and use the processes of reaction
and mixing, to find an attainable region that satisfies the
necessary condition. As discussed above, we may be able to
extend the region wsing complex reactors that exhibit multipie
steady states, but the region which we find by the construction
method is at least attainable. Tha construction method will vary
depending on the exact xnature of the problem and the imposed
constraints, but it w1l always more or less follow the following
sequence: '

- construct the plug flow trajectory(s) from the feed point(s).
Find the convex hull of the trajectory(s), which is equivalent to
finding all the points that are achievable by mixing all the
possible outlet materials of the plug flow reactor(s) in all
combinations.

- check whether any reaction wvectors point outwards on the
boundary of the hull.

- if reaction vectors point cutwards, then find the best feed
point and, if unconstrained, type of reactor that will extend the
vegion the most. Be sure to include all possible branches of the
reactor curve if applicable. Find the new coavex hull and repeat
step 2.

CHAPTER 2 PAGE 453

o e g

A T e T

|
{
8
H
|
i
i
{
i
i

35 §




Ty o=

oy

a

s o e S s s e

o

D HITDEBRANDT THESIS

- ¥ no reaction vacters point outwards,
neceuvtary conditiors (c¢) and (&; are met.
extend the region uring the

check whether
If they are ust aet,
appropriate reactsr which is
exhibiting the multiple steady states, find the new convex hull
and repeat from step 2.

- 1if the necesrcary condition is met, we have a ragion that

satisfies all the conditions ard which is achfevable, This region

is then a czudidate for the attainable regiom.

Thus by following this method, we can construct an attainable

region for any set of reacticns. The construction methed is

particularly easy to apply in two dimensions but the ideas can be
used to find the attainable region in any number of dimensions.

2.10 Discussion «¢f Chapter 2

THEOREM 2.1

i Giem a region A that satisfies the following
conditions:

- it is convex;

ooy

- no reaction wvectors on the boundary of A point cutwards from

A, ie zil reaction vectors ares tangencial, point inwards or are
zero;

a locus of a reaoycle plug flow reactor with fixed recycle ratio R

that starts inside the region A, and that is continuous in

residence time 7, zannot leave A. By continuous in residence
small change in residence time results in a

change in concentration. (This excludes
branches of the recvcle reactor.)

time, we mean thia® 3

small unique other

PROOF: Consider a recycle reactor for a fixed recycle ratio

that leaves the 1:zion A at 92 as shown in Figure 2.3. The
L]

starting concentrati. of the locus (g, represents the feed to

the recycle reactor. r-ch point on the locus, for example Gy,

CHAPTER 2 PAGE 46




L

D HILDEBRANDT THESIS

Figure 2.3: Figure for Proof that Hecycle Reactor Locus Cannot
Extend a Region that Satisfies Condi ‘ions of Theorem 2.1

Boundary of Attainable Region A
— — — Recycle Reactor Locus

Plug Tlow Trajectory

represents the exit concentration of the recycle reactor at some
residence time r; and with the given recycle ratic R. Thus
there is a plug flow reactor with some feed 91* and a residence
time rq/(R+l) that has an exit concentration (;. The feed
cgncentration -C—l* must lie on the straight line between G, and
G and the exact position will b¢ determined by the value of
the recycle ratio. The feed concentration must always lie inside
the region as both Gy and g% lie inside the region and the
region is convex.

Now consider the plug flow reactor that gives rise to the exit
concentration G, on the boundary of A. The recycle reactor will
have some residence time r,; and the feed to the plug flow
reactor section, 92*' must again lie on the line joining ), and
GCf and must lie inside A as A is convex.

If we were to increase the residence time of the reactor by dr,

then the exit conceatration will also change by a differenti
amount. However, the new coucentration cammot lie outside the

CHAPTER 2 PAGE 47

B il - 100 cor | AP i 253 e gl T A T Ty e
SE e ARG g i j“f‘, i :"%» kg : N
AR S SO R jens

e




S R e R e

r

C

D HIIDEBRANDT THESIS

region A as this would mean some plug flow reactor (in the
neighbourhood of the plug flow reactor with feed gz*) starting
inside the region had crossed the boundary of A which is not
possible if the reaction vectors on the boundary do riot point
outwards.

CONJECTURE 2.1 : It is not generally possible for the recycle
reactor to have branches that do not either tend to the C.S.T.R.
limit or that are not connected to branches that tend to the
C.5.T.R. limit,

DISCUSSION: Consider a branch of a recycle reactor that has
feed point Q; and that ends by not approaching the limit of a
C.S.T.R., or in other words, it exists for only certain values of
the recycle ratio. Consider how chis branch begins and ends. It
could “ther be an open or a closed curve.

Consider the first option: an open curve. This would require
that somewhera the recycle reactor locus‘suddenly begins; and
that along this locus we have a family of plug flow trajectories
that satisfy necessary condition (ec). Thus if we start at the
first point on the locus, and the associated plug flow
trajectory, we find that when we move to a neighbouring point on
the locus, we also move to a neighbouring plug flow trajectory
that also satisfies necessary condition (c). Moving along the
locus is equivalent to changing the residence time of the recycle
reactor. The intersection points of the line from the feed point
with the plug flow trajectories will also vary smoothly as one
moves to neighbouring curves, ie changes the residence time (see
Figure 2.4a). If the resulting locus comes to a sudden end, as in
the case of a open curve, this would mean either that, as the
residence time was increased, one could not find a neighbouring
trajectory that satisfied necessary condition (c), or that one
had reached an equilibrium point. Wz know that the space must be
filled with plug flow trajectories and that the trajectories will
vary smoothly and continuously in any direction and will not ever
intersect. Thus if we have condition (c¢) that can be satisfied
at & point but not by any neighbouring point, as at the begining
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Figure 2.4: Figure for Conjecture that Recycle Reactor Locus
Cannot Have More Branches than the C.S.T.R.

Recycle Reactor Loci
Piug Flow Trajectories
o Closure point

{(a} Case 1: The Recycle reactor curves are open curves.

A

.’

(b) Case 2.1: The Recycle reactor curves are closed curves;
the same plug flow trajectory forms both branches.

2 intersections

/é:EL_;.no intersections

'Y

L4
(c) GCase 2.2: The Recycle reactor curves are closed curves:
different plug flow trajectories form the branches. ‘

/

/é:;—no intersection

-
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and end of the branch (if it does not end at an equilibrium
point), this would require fairly odd kinetics. But the case when
this occurs must be even more peculiar. The branch exists for a
range of recycle ratics, and thus there must be a family of end
points where necessary. condition (c¢) can not be satisfied by any
neighbouring point. Furthermore, the two limit curves, ie the
branches with, the smailzgt and largest recycle vatio’s, are also
such that the ceondition (c) cannot be met if one changes the
recycle ratio slightly. Thus it is suspected that the kinetics
that cause the plug flow trajectories to exhibit this odd
behaviour, would have to be rather pathological.

Consider the case of a closed curve, that is the second optioa.
At the point where the curve closed, it would require a plug flow
trajectory to behave in such a manner that condition (c) was met.
As one changed the parameters slightly, for example the residence
time, the exit concentrations would change slightly along the
curve and away from the closure point. There are two ways in
which this might happen:

(i) The same plug flow trajectory may be intersected by two
different lines from the feed poinc _C;- ie be intersected four
times. Hcwever, as one approaches the closure point, it would
require that two of the intersections approached closer and
closer and eventually disappeared, leaving only two
intersections. This wbuld require that, as the two intersection
points apnroached each other, the lines would become collinear
and thus that reaction vector to be tangential (see Figure
2.4 b). Thus this would in turn imply that there was a G.S.T.R.
limit point in the vicinity. Thus this case would not satisfy
the assertion.

(ii} Altermatively the branches could be formed by different piug
flow trajectories, ie every plug flow trajectory that makes up a
branch is only intersected twice by a line from the feed point
_c; (see Figure 2.4 c). Presumably, if the behaviour of the
trajectories is similar, then again fairly odd kinetics would be
required as, within a very small neighbourhood, one could find
two, one (at the closure point) and then no plug f£flow
trajectories that can be intersected by the straight line through
the feed point g;. If one again considers the further
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requirement that this behaviour is required for a range of
recycle ratios, and that the closure point for each recycle ratio
would presumably vary smoothly with varying recycle ratio's, this
too would require extremely odd kinetics.

QUESTION: Can a branch of a recycle reactor go to another
equilibrium point that the main branch(s) cannot reach, or that
is not bounded by the plug flow or C.S.T.R. equilibrium point(s)?

CONJECTURE 2,2: No main branch of any reactor structure can
move outside a reglon 4 that satisfies mnecessary conditions
(a), (b) and (d), if the feed point to the reactor lies inside
the region.

DISCUSSION: It has been shown that:

« plug flow, C.S.T.R. and recycle reactors cannot extend (ie
move out of) a region, such as region A, that satisfies th=
necessary condition.

- no process of differential mixing and reaction can extend
region A /{see Result 10).

- no series-parallel arrangement of ideal reactors or reactors
wich differential mixing and reaction, cau extend region A.

- ro forward mixing, such as occurs in the MMR or the GMM, can
extend the region, if no periodic variation of concentration with
remaining life occurs.

Thus the reactors that are not covered by the above results, are
those that have complex recycles and those that exhibit a jump
conditien in concentration, for example the MMR and GMM reactors
which cxhibit periodic behaviour.

let us consider the behaviour of the mein branches of such
reactors. For very small residence times, the exit concentration
must approach that of the feed concentration, which by definition
lies inside, or on the boundary of, the region. In fact, the
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concentration at all points in the reactor must be very close to
that of the feed concentration ard, in the 1limit, approach that
of the feed point as the residence time approaches zero. There
must always be at least one section of the reactor where reaction
occurs, be it. in the form K of differential reaction, or
differential reaction and mixing or reaction and mixing as in the
C.S.T.R. For small residence times, this section must move us
away from the feed point very slightly.

As the residerice time is increased, 30 the exit concentrations
from the reaction section(s) will change smoothly and
continuously. An alternative way of thinking of this process is
as follows: We consider all the concentrations that are found in
e the reactor and take the convex hull of all these peints. This,
: for simplicity, we shall call the convex hull of the Reactor.
We find that points that form the vertices of the convex hull of
I the reactor can only be reached with some reaction (ie not mixing
5 only). As the residencz time of the reactor is changed, so the
boundaries of the convex hull of the reactor must change smoothly 3

and continuously. Eventually as the residence time is increased,
i a point(s) on the boundary of the convex hull of the reactor will
lie on the boundary of the region defined above. This point, or
at least one of the points, must be a vertex of the convex hull
; of the reactor. If the residence time of the reactor is
! increased further, this point that lies on the boundary of the
region defined above will move a small amount. However the
movement cannot be across the boundary of the region defined
above, as necessary conditions (a), (b) and (c) preclude this.
Thus the main branch of any reactor is confined to stay inside

-~ the region defined above.

|

In the following chapter, two dimensional examples will be
considered and the general results that arise  from the L,
construction of the attainable region in two dimensions will be ?
discussed. 1In Chapter &, three dimensional examples will be
examined and the general results that apply to three dimensional
space will be discussed. Some of the results will be generalised
to any n-dimensional space in Chapter 5.
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CHAPTER 3

TWO DIMENSIONAL EXAMPLES

3.1 Introduction

% In this chapter, examples that can be done in two dimensional
space will be discussed. These are cases where the reaction
vector and the optimization functions depend on two ox less
independent variables. Most of the examples given in this
chapter have been already described by Glasser et al (1987) and 4;2
Hildebrandt et al (to be published).

It will shown, how by using the idea of the attainable region,
one can construct a region tnat satisfies the necessary condition
and that represents a candidate for all possible outlet
conditions for the given kinetics. It will further be showa how
this region can be wused for solving optimization problems.
Examples to find the constrained attainable region, that is all
possible outlet conditions that can be achieved when using a
number of specified reactors, will be done. This approach has

_—\ .
; ( been very successful at finding optimal cold shot cooling and
| !
b | interstage cooled reactors. The method can furthermore be used
§ Lf§ when the standard optimization results no longer hold.
o
Lo
fLo 3.1.1 The Necessary Condition
: !
N
m ;
v The following result only applies in two dimensions.
* ?;
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A two dimersional region A; that satisfies necessary condition

(a),(b) and (d); cannot have a branch of a recycle reactor locus

that lies outside of A 1f the feed point to the reactcr lay

inside A. RESULT 20
Alternatively, in two dimensions, necessary condition (c) is

already covered by necessary condition (d).

PROOF: Suppose a branch of a recycle reactor locus with feed

concentravion C®, which 1lies inside A, lay outside of A as b
showvm in Figure 3.1. Note that region A satisfies necessary

condition (a), (b) and (4).

Consider point (; on the recycle reactor locus. There is a
plug flow reactor trajectory from some point on line (€*,¢y),
say g*, that passes through C;.

| The reaction vectors along the plug flow trajectory are tangent

to the curve. The slope of these reaction vectors will vary
continuously along the curve (or in the case of the plug flow

Figure 3.1: Figure for Proof of Result 20

Boundary of the Attainable Region

Branch of Recycle Reactor Locus

Plug Flow Trajectory

v
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trajectory lying on line (C°,C;), be equal to the slope of
the 1line). The slope of the reaction vectur will vary from
greater to less than that of line (C°®,Cy).

When the reaction vectors are projected backwards towards region
A, a set of lines with different slopes are produced. By the
Mean Value Theorem there will always be at least cne reaction
vector that when extended back will pass through C°. This
reaction wvector will also be a solution of a C.S.T.R. with feed
in A and thus our condition of all the C.S.T.R. loci lying in
A is not met.

Thus in two dimensional space, the solution of a recycle reactor
ﬁ can only have branches that terminate in a C.S.T.R. )
3.2 Examples In Concentratlon Space

3.2.1 Example 1: Van de vusse Kinetics

The example we begin with is that usually called the van de Vusse
example. The previous work that has been done on these kinetics
was discussed in section 1.4.1. The van de Vusse reaction
network is:

A-+B=+C (3.1a)

28 + D (3.1b)

The kinetics of both reactions in <(3.1a) are first-order
irreversible while that for (3.1b) is second-orde: irreversible.
Thus the rate of formation of A is given by:

i
. 2
Kx r‘!’ ; . rA - kch - kBCA (3.2)
!
|

! and the rate of formation of B is: K f

oo r, = ke, - k,e : ' (3.3) i
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¢

Suppose that we are interested in an objective function which is el
a function of the concentrations of A and B only, for instance
the maximization of the concentration of B. Using these kinetics

and this objective function we can see that we need only work in
two dimensi&hs and effectively we have only two independent

s . l . .
dimensionless) constants which we can define as:

k3c kZ ‘
L m T == 3.4
8 T Tk and 3 7k (3.4)
1 1
Wl f ' This 1is true since in concentration space only the relative

values of the rate constants matter and not the absclute values.
It is only if we were Iinterested in time as well, that the
individual values of the rate constants would be important. Let
us choose a value of aj = a, = 1. Now starting a: our feed

concentration of:

[¢]
[¢]

E% =x=1 and E% =y =20
A A

we can draw the plug flow trajectory on the x-y axes. This
trajectory 1is a convex curve as shown iun Figure 3.2. Now let us
take the region bounded by this plug fiow trajectory and the axis
12x=0; y=20, /211 points on the axis are attainable by
i mixing feed with the final product and this is our base). ™
is a convex region with rate vectors tangent to the curve cm [*-
plug flow trajectory while on the line y = 0 between x = 0 and
x = 1 the rate vectors all point inwards i.e r = (-x—alxz,x).
It can readily be seen that no plug flow trajectories in the

complement of this region can be made to violate condition (c)

ey and that the GC.S.T.R. locus lies entirely within t" 2 region.
f E Thus this region satisfies the necessary condition for the
; ; attainable region. Using this region the maximum pessible
E C’% concentration of B is attained using a plug flow reactor to the

}
; point where dy/dx = 0 and gives a value of y = 0.278. Ko better
f result is possible using mixing, plug flow reactors C.S.T.R.'s or

recycle reactors or any series/parallel combination of these but

!

| » we have not as previously discussed, conclusively shown that this
el is the best.

! ;

H

|
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Figura 3.2: Van de Vusse Example with aj = aj; = 1

¢.S.T.R., ——————— Plug Flow
0.3 NG —1
Y .
J // .
‘ l/ . - . \
0.271 / - ~
‘ / N0
[, Q.
/ Y
) AN

/
0.1"‘[" / AN
[

>

Let us now look at the case where a; > ap and in particular use

values aj = 20 and ap, =~ 2. As before we draw the feed plug N
flow trajectory as shown in Figure 3.3. Now we can see that the S
area enclosed between this curve and the x-axis is not convex.

If we draw the line from the origin that is tangent to the plug

flow trajectory (AB) we obviously make the convex hull of this

region. 1f we now look at rate vectors on the straight line AB

we find that there is a section over which they point outwards so

that we do not as yet have the attainable region.

Now 1let us look at the point B. At this point the vector AD

between :the origin A and this point B is collinear with the rate
) vector at D (this is just the necessary and sufficient condition
Aﬁi for AB being tangeut to the plug flow trajectory). Thus point B
! satisfies the conditions for a C.S.T.R. with feed x = 1, y = 0,
S Thus the locus of C.S.T.R.’'s will pass through point B. This
% % locus might also be tangent to the rate vector at this point but
: this 1is extremely uniikely. Thus we would expect the locus to be
i E aither passing into the convex region or leaving it at this :
‘ f roint. Either way this implies that except in the unlikely event Z
(1§ cf the double tangency condition, the C.S.T.R. 1locus will in %
part lie outside the  co.vex hull of the plug flow trajectory. :
Let us now draw the G.5.T.R. locus, which does indeed pass g
through the plug flow trajectory at B. o
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Figure 3.3: Van de Vusse Example with aj = 20, ap; = 2

—— — —— (C.S.T.R. from feed point A

————— - Plug Flow with feed point A ~
—_——_——_——-— Plug Flow with feed point C

Tangenut lines from feed point A to plug

flows at B and C

.08 *
Y
.04+
0 3
The C.S.T.R. locus is itself not convex. Let us thus draw the
. ‘ straight 1line from the feed point that is tangent to the
: C.S.T.R. locus i.e. 1line AC. At point C there will be a plug
s i flow trajectory which will start tangent tc ..e C.S.T.R. locus
- as at point C we know the rate vector is collinear with AC.
This plug flow trajectory starts above the previous plug flow
o trajectory and as we know they cannot cross, it must always stay
; A\W above.
I
i é
ol Let us lock at the rate vector along the line AC. T point A its
| slope 1is obviously less than AC while at poiwmt ¢ it is equal to § T
5 w i
I AC. If it took on the value equal to AC between points A and C a
f a ~ part of the C.S.T.R. lccus would cross the line AC. Thus
' because the rate vector 1is continuous we know that the rate
{:C;g vector does uct point outwards szlonig the whole of AC. This

i

i , :
% ; result will of course always be true for a straight line Forming

' the convex hull of the C.8.T.R. lo~us in two dimensions. %
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Let us now excmine thz region bounded by the line AC,‘the plug
flow trajectory from C to (0,0} and the axis from (0,0) to (1,0).
This is a coenvex region and if we look at the rate vectors on the
boundary they all point inwards, are tangent or are zero. Agsain ‘ -
\if" we <~xamine the complement of this region conditions (c) and
T (d) are true so that this region sacisfies the mneceisary
conditions for the attainable region. If our zim is again to
, ‘ maximize y, then based on this region we can achieve this by a
l C.S.T.R. from A to C follcwed by a plug flow until we have the
e rate vector horizontal giving a wvalue of y = 0.071. The
o configuration of a C.S.T.R. followed by%a plug flow was also
found to be optimal by Chitra and Govind (1985a) for the case
where aj > ag.

3.2.2 Example 2: Tramborize Kinetics

We now look at the Trambouze example. The reaction i a parallel, D ?
= irreversible decompositiun of A to form B (zero order reaction K o]
 !¢ : , with rate constant 0.025 mol/l min), C (first order reacticn e
SR with rate constant 0.2 /min) and D (second order reacti~ -:ith . i
rate constant 0.4 1/mol min). We wish to optimize the ” ‘F
selectivity of A to C. Previous work on this problem has been g 5
discussed in section 1.3.2, Using these kinetics and objective y
function we need only work in two dimensions; namely
concentration of A and concentration of €. We normalize ouy
variables such that: '

[T

where c; is the concentration pure A and is taken as 1 mol/1.
We draw the plug flow trajectory from the fred point x = 1 and
y = 0 as shown in Figure 3.4. The curve, as can be seen from the
figure, is not convex.
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Figure 3.4: Trambouze Example

C.S.T.R. from feed point A
Plug Flow with feed point A
Plug Flow with feed point B
Tangent line from feed point A to plug

flow at B
L
8.5 . "
— ’.\‘
Y NG
/ O\ AN
~
/ X
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Using the same reasoning as in the previous example, we draw the

C.S.T.R. locus from the feed point.

This locus is itself not
convex

so we draw the straight 1line from the origin that is
tangent to the C.S.T.R. locus i.e.

peints inwards
line.

line AB. The rate vector
along line AB and at point B is collinear to the
The plug flow trajectory that starts from point B extends
our region as shown in the figure. The region bounded by line AB,

the plug flow trajectory from B (BC), the y-axis between the plug
flow equilibrium (C)

and (0,0) and the x-axis is convex. The
rate

vectors on the boundary either point inward, are tangential
or are of zero magnitude. Conditions (c) and (d) ar- also met so

this region satisfies the necessary conditions for the attainable
region.

Suppose we now wish to maximize the seluctivity defined as

y/(1l-x). The objective Ffunction is a straight line waich

‘The maximum selectivity would
the line with e most negative slope that still

rotates around ©point A,
correspond to
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lies in or on the boundary of the attainable region. Thus from
the figure it is clear that we could rotate a line around A
until it lay on AB. The points on AB are all solutions of our
objective function and correspond to a selectivity of 0.5.
These points could be achieved by a C.S.T.PR. operating at point
B with varying amounts of bypass. Paynter and Haskins (1977), in

_comparison, reported an optimal configuration of a C.S.” .. in

series with a plug flow rezactor with selectivity of 0. '5 while
Achenie and Biegler (1986a) found an optimal configuration of
two C.S.T.R.’s 1in serjes with selectivity of 0.4999. It would
seem from these results that there was not only numerical error
but shortcomings as well in the methods as the multiple
solutions of the objective function were not found.

3.2.3 Example 3: Modified Non-Constant Density Trambouze
Kinetics.

We again look at the Trambouze kinetics, but now modified to
allow for the effect of density changes on the construction of
the attainable region. The reaction is again a parallel
irreversible decomposition of A to form B (zero order reaction
with rate constant 0.025 mol/l min) , ¢ (first order reaction
with rate constant 0.2 /min based on rate of reaction of A) and
D (second order reaction with rate constant 0.4 l1/mol min). The
reaction rates are based on the following scheme :

A+B ,A-2C, A-D

We have modified the reaction forming C so that the number of
moles is tro longer conserved. We will assume the the reaction
occurs at constant temparature and pressure in the gas phase and
that the reacticn mixture behaves ideally. We wish to optimize
the selectivity of A to C. Using these kinetics and objentive
function we need only work in two dimensions namely dy and dg.
We will normalize our variables such that x = dj/d,°® and
y = d5/(2d,°) where d,° refers to pure A and is taken as
1 mol/1. The construction of the attainable region is essentially
the same as that of the constant densit& example of section

3.2.2, and is shown in Figure 3.5.
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Figure 3.5: Trambouze Example Modified for Non-Constant
Density System.

Plug Flow from feed point A
— e —— C.S.T.R. with feed point A
————— - Plug Flow with feed point B

Tangent lines

The region bounded by the straight 1line AB; the plug flow
trajectory from B: (BC); the y-axis between the plug flow
equilibrium {(C) and (0,0); and the x-awis satisfies the
conditions for the attainable region.

If we define selectivity as dg/(dy°-d,), which by comparison
is equal to 2 y/(1-x), we f£find that we maximize selectivity
along line AB and all points on this line could be achieved by a

C.S.T.R from the feed wiih l'ypass. The maximum selectivity in
this case is 2.05.

o

| x f
¥ 3 E ‘
H 4 .
: ;
i i
b i
1 ! L
EE 3.2.4 Example 4: Modified Van de Vusse Kinetics. i
, | :
b A ) i
oo
L O
T We can now examine a more coumplicated exawple which has the same |

o e :
i i T reactinrn mnetwork as the van de Vusse example, but has more
J g

i - involved kinetics.
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We can construct examples with possibly unrealistic kinetics but
with a few concavities in the plug flow trajectory in the
following way. Let as before y = cp/cp® and x = cp/cp”.
Then for the plug flow trajectory let:

X yO
y = £(x) {1n b + E?;_7 (3.5
c (o)

Then it can be shown that:

dy _£(x)  £'(x) ,
dx x T f(x) y (3.6)

where f'’'(x) is the derivative of f(x) with respect to x.
Thus we have the ratio of the rates of formation given by:

fl f(x)2 + x£? (x)y

r. = xf(x) (3.7

Now by choosing
£(x) = 6x0 - 6x7 + 9.4 - 16x3 + 9x? 2% (3.8)

we obtain the plug flow curve shown in Figure 3.6. Nute that we
have presented the general solution in equatior (3.5) as we wish
to be able to draw plug flow trajectories starcting with any feed.
Note also that for equation (3.5) with:

o . X - - .
£(x) = 1+ ax (3.9

we have the plug flow equation for the van de Vusse kinetics with

'd.z"l.
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Figure 3.6: Van de Vusse Reaction with Complicuted Kinetics

"C.S.T.R. from feed point

Plug Flow from feed point

Plug Flow witﬁ feed point C

C.S.T.R. from A

Plug Flow from feed point B

Tangent 1line £rom plug flow A to C.S.T.R.

at B
: T 045 o
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The plug flow trajectory starting from x = 1 and ¥ = 0 has two
concavities, one at the beginning and another in the middle. Let
us again craw the C.S.T.R. locus from the origin which must pass
through the poin® on the plug flow trajectory which is tangent to
the straight 1line from the origin. The initial pair* of the
enlarged and shown in the upper right hand corner of
As before part of the C.S.T.R. now lies outside the
convex huil of the plug flow wrajecuory but it is itself concave

at the

diagram is
Figure 3.6.
beginning. Pe draw the line from the origin which is
tangent to the C.S5.T.R. locus and from this point draw a new p ug
flow trajectory. This new plug flow trajectory still has a

concavity in the mIddle and so we know that if we form the convex

hull, the C.S.T.R. with feed at the tangent peint with the lower
value of x, will pass through the tangent point with the higher

value of =x. If we draw this C.S.T.R., we find it still has a

concavity.
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However what we really wish to find is the point A on the plug
flow trajectory from which when a tangent is drawn to the
C.S.T.R. 1locus at point B (witua A regarded as the fee&) is also
tangent at A to the plug flow trajectory. From B we now draw the
new plug flow trajectory and find that the region we have now
drawn obeys our necessary conditions. Thus our maximum value of
¥ we can obtain is 0.68 which is achieved by a C.5.T.R. followed
by a plug flow followed by another C.S.T.R. followed by a final
plug flow.

As before it is ‘clear when we fill in the concavities on the
C.S.T.R. loci with the appropriate straigl.t lines that the
reaction vectors cannot point outwards along these straight
lines.

3.2.5 Example 5: Iso-Thermal Kinetics with Multiple
Steady-States.

Let us 1look at an example whera we can find a region wnich
satisfies coaditfons (a) and (b) but not (c) and (d). We will
use the same: ‘tion network as before but with rates of
formations given

2.2
r, - - kl[x + -—1—’11—-2«» ax} (3.10)
1 + Kxy
bx2y? ,
£ = klx+—-—-—l—2] (3.11)
y 1 + Rxy

with given feed x = 1; y = 0 and a = 100, b = i+ (00 and K = 40.
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Figure 3.7: Example with Multiple Solutions for the C.S.T.R.

—_— = C.5.T.R. from feed point‘A‘ N
- - ~ Plug Flow from feed point A

—_——_—— - - Plug Flow from tangent to
C.S5.T.R. locus
Tangent line from feed A to C.S.T.R. locus

.02

Now here the C.S.T.R. louvws i: given by two separate curves as
shown in TFigure 3.7 where in particular the one branch is an -
isola. It 1is posasible using the techniques described in the
; previous examples to¢ find the region given by ABC and the two
axes which satisfies the first two of the necessary conditions
for the attainable region but is not that region. Once we
recognize the othar branch of the C.S.T.R. curve we see that we

= 3 can mix concentrations from our initial region with those in the
; “ﬁ isola to obtain the enlarged region ADE and the two axes which
i (aé now satisfies the full necessary conditions. In this case we i
oo needed to establish for the initial region that there were no ;
E ; rate veciors outside the region which could be extrapolated back ?
i i into the region. If this were indeed the case, then obviously ;
} ? no C.S5.TF.R. with feed in the initial region could take us é
E (,§ outside the initial region. éW
e
1
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3.2.6 Example 6: Adiabatic Example with Multiple Steady
States ol

In Example 5 above, we considered a fairly artificial example
where - the C.S.T.R. locus had multiple branches. This type of
situation arises fairly often in non-isothermal reactor zvsiems
even with simple kinetics. We now consider an adiabatic reavtor
system with the following kinetics:

ky ky

A-B and A~ C

£, =~k c2 -k, ¢ (3.12)

A 1 A 2 A ‘
2

and ry = kl ) (3.13)

where ry is the rate of formation of species i, c; is the
concantration of species i and k; and k, are rate constants.
For this example we will construct the attainable region in
concentration space which will allow us to determine all feasible
coricentrations of A and B.

We can write that:

Iy -kch -(kl/kz) Cy -a

rA kch + k2 (kl/kZ)cA + 1 a+l

(3.14)

We will refer to (cp/cp®) as x and (eg/ep’) as y. The plug
flow equation can be written, with the temperature dependence
included, as follows:

g;\:, -a . (3.15)
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where
a = (kjcp®/ko)x = exp (11.5 - SOOO[T) X (3.15b)
T = Ty, + (540-100)y + 100(1-x) (3.15¢)
Tin = inlet temperature, ie at x=1 and y=0. (3.154)

Equation (3.15¢c), is the constant pressure energy balance where
Cp, the specific heat of the mixture, and
reaction are constants.

the enthalpy of

The inlet concentration corresponds to x = 1 and y = 0 and we
will wuse an inlet temperature of 290. If the attainable region
is constructed in concentration-space in the manner discussed in

the previous examples, we find that the plug flow trajectory AF

Figure 3.8: Adiabatic Example with Multiple Solutions for the
C.S.T.R.

4= — — (C.85.T.R. from feed point A

Curve AF: plug flow from feed A
Curve BC: plug flow from feed B
Curve DE: plug flow from Feed D
Line 4B: tangent line tov C.S.T.R. at B
Line AD: tangent line to C.S5.T.R. at D

0.1 ‘
C B

OFIL'. "“g ~~~~~~~~~~~ - : A
0 0.2 0.4 06y 08 1
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from the feed concentration A lies close to the x-axis as can be
seen in the bottom part of Figure 3.8. The C.S.T.R. locus from
the feed point has three branches. If only the oue branch is
considered, one can find a region ABC which lies -=leose t» ihe
x-axis, . that satisfies parts (a) and (b) of the necuiyery
¢conditions. One however finds that conditions (¢) and (d) ure
not met. !
The  ‘other two branches of the C.S.T.R. locus enlarge the
at ..nable region quite considerably and form a region given by
the x-axis, straight 1line AD, the plug flow trajectory from D
(DE) and the y-axis from the origin to point E. It is found that
the reaction vector points inwards along line AD and the x-axis
and 1is zero along the y-axis. Necessary conditions {(c¢) and (4)
are also satisfied by this enlarged region.

It can be seen that the multiple branches of the C.S.7T.R. arise
even with simple kinetics for mnon-isothermal systems. These
branches must be included in the attainable region and they may
enlarge the attainable region quite considerably when compared
with the region constructed using only one branch of the
C.5.T.R. lccus.

3.2.7 Two Dimensional Qptimization in Concentration Space

Tiie method by which we have satisfied the necessary conditions in
these two  dimensional examples is by the procedure of
alternately drawing a plug flow trajectory, caecking if the
region 1t encloses is convex, and if not, drawing the C.5.T.R.
which effectively bridges the gap caused by the concavity. We
repeat this procedure starting from the origin and as each
C.S.T.R. bridges a finite gap the process must terminate in a
finite number of stages.

We then checlt that conditions {¢) and (d) are satisfied and il
they ara not we extend the region appropriately. It has been
showt: that a recycle reactor need never be considered as part of
the boundary and therefore it is clear from our construction
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that for a two dimensicaal system, except for the base, the
toundary of the attainable region must bz achieved by a
sequential process and must consist of alternate straight lines
and plug flow trajectories. The straight lines are of course
the bridges built by the C.5.T.R.’s. Thus we may achieve any
point on the buundary, excluding the base, either by a series of
C.5.T.R.’s or plug flow’s with a possibility of some bypass of
the last reactor if it is a C.S.T.R. (This will enable one to
actain intermediate points along the straight line).

Now in ovrder to .perform the optimization we must have an
objective function which depends only on x and y. If the curves
of constant ol:jestive function plotted in the x-y plane have wno
closed contours ir the attainable region then the optimum must
lie on the boundary of tle domain and we can calculate its best
value and the associated values of x and y by drawing the
appropriate contours. For the csse of maximizing y the contours
are horizontal straight lines.

If the objective functicn has closed contours in the demain then
we must check the optimum point in the domain relative to the
best boundary point. If the optimum does lie on the interior of
the domain there will be infinitely wany ways of achieving it but
because of the convexity of the domain one can always achieve it
by mixing between boundary points which is equivalent to a
series-parallel arrangement of reactors.

3.3 Examples in Concentration-Time Space

3.3.1 Example 7: The Unconstrained and Constrained Attainable
Rugion for Adiabatic Reaction,

In this example, for a single constant density reaction system
and o> n adiabatic system of reactors, we examine the following
three cases:

(a) construct the attainable region in concentration-time
space.
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(b) find the .= = .7'" . vaogion when using only plug flow
reactors.

() find the sattaiiwhi: rexion when using only <.S.T.R.'s.
In the last tws rases we have specified the type of reactor to
be wused. #iwz-  problems will be refered to 2s constrained
attainable r=gions (see secticn 2.4.1).

We will define the rate of formation as:

-r = 3E5 exp(-4000/T) c - 5E8 exp(-80C0/T)*(l-c) (3.16)

'where ¢ is concentration. The temperature for an adiabatic
_constant pressure process with constzat specific heat and heat of
‘reaction is given by:

T -'TB + T .(1l-¢) ‘ (3.17)
fewt g eatvation of 1, temperature Tg of 300 and

L]
‘ine Ty as the basis temperature of a
stream, {e¢ <tha towssiature of am stream when it consists of
rrrve  fazc waterial o sltervatively when ¢ = 7., Thus, for this
1]

. 2% P DT P — YT be o
¢ e, the boails tenpevacure is Tp.

4% Lovmbrwpthol: of the attednal-le region

dtarting at the Zfeed copeev.ration of 1 and a cime of 0 we
esii Axew the plug flow trajectos  AGBC on the concentration-time
axee. ' ¢h4is trajectory is a comcave curve for part of its
traqutgzyi~as shown: in Migure 3.9, #e are not able to draw the
glugx flew reactor a’l e wa - to the equilibrium point but have
stoeppz=d at'swme‘arbitﬁatml, C4rge time. We £ill in.the‘concavity
of the plug flow tx: jector by :'i-iug feed (given as point A on
Figure 3.9) and matirial at concentration B whers the straight
line QB is tangent?tc he curve AGBC}@L point B

| b ‘

The ' reasticn -weztsr is in this éuge (r,1) and is a function
of concentrsciin only. The slope of the plug flow trajectory is
equal to that of the reactior. vector an. as drawn in Figure 3.9,

'
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Figure 3.9: Attainable Region for Adiabatic System with no

Constraints
— i —— e C.S.T.R. frum feed point A
Curve AGBC: Plug Flow from feed A
Curve EHC: Plug Flow from feed E
Lipe AB: tangent to plug flow AGBC
Lin. AE: tangent to C.S.T.R.

0.1

(&)
{

is simply the inverse of the rate of formation of C or in other
words (l/x). We can therefore see directly from the nluy Flow
trajectory AGBC by a sim:le downwards translation of the cu.ve
(because it 1is a function of C only) how the reaction vector
varies along line AB. It can be seen that there is a sectior of
the line over which the reaction wvector points outwards. We

therefore have not yet found the lower boundary of the attainable
region.

- At points B and D the slope of the reaction vector is equal
to that of 1line AB and these points are therefore solutioms to
the equation of the C.S.T.R with feed A. If we draw ir the
G.S.T.R locus ADEF from point A, it passes through points R and D
and 1lies beneath line AB betwzen B and D. The C.S.T.R locus is
itself mnot convex. We can draw a straight line between points A

and E which fills in the concavity and represents uixing betwecn
these two points.
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- From the slope of the plug flow trajectory we can see that
the reaction vector points inwards along line AE and is
collinear at point E. Along the boundary EF formed by the
C.3.T.R locus the reaction vectors point outwards. We therefore
draw in the plug flow traiectory EHC from point E. As the
reaction vector is a funmct. of concentration only, the slope
of the plug f{low trajectcr+y is the same for all times at the
same concentration, and thus the trajectory of the second plug
flow is the same as that of the first plug flow but shifted
downwards so that point G cu vesponds to point E.

The lower boundary of the region is now given by AEHGC. (Note that
in the 1limit the concentration tends to zero and t + =), The
other boundary line is the vertical from A, formed by mixing feed
with the equilibrium material. No reaction vectors point
outwards along this boundary and the boundary is convex. No
reaction vectors in the region below this boundary, when extended
backwards, intersect the boundary. A plug flow trajectory iu the
region below this boundary can also not be intersected twice by a
line from the bouniary. We thus have satisfied our necessary
conditions for the attainable vegion.

If we wish, for instance, to find the minimum residence time for
a given outlet concentration , the answer would lie on curve
AEHC. Any point above this boundary can be reached as well. For
examrle, if we wished toc operate our system at point I, we could
use a plug flow reactor operating at p. ‘=t B with bypass so as to
give us an outlet condition corresponding to point I. It is
interesting to see how in this case the residence time of the
system with this outlet concentration is less than that of the
plug flow reactor alone. -

(b) Attainable Region using only Plug Flow Reactors.

We accept that bypassing is a plug flow reactor of zero space
time in parallel with another reactor.
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We will now use only plug flew reactors and we will look at
constructi- ; the attainable region. We can use this attainable
region to find the reactor configuration to minimize the total
residence time for az given output concentration.

- The plug flow trajectory from the feed point is-given in
Figure 3.10 by curve AXBC and corresponds to curve AGBC in Figure
3.9. Notice that the time refers to the residence time of the
system, which in this case is a plug flow reactor. By allowing
bypassing and mixing from any point along the plug flow
trajectory with any other point along the trajectory we obtain
the attainable region for a single plug flow trajectory with
bypass, the boundary of which is given by ADBC and a vertical
line from A. Line AB of the boundary f£ills in the concavity of
the plug £flow trajectory and BC is part of the plug flow
trajectory. The time still refers to the residence time of the
system, which can now consist of a plug flow reactor with some
bypass. For example, we can mix fluid from the plug flow reactor
with residence time B with feed material given by point A in such
a ratio so as to produce material of concemntration and residence ,
time represented by point D . J

- We now wish to choose the second plug Ilow reactor such that
the boundary of the attainable region 1is lowered as much as
possible.

There are <¢wo points to consider when choosing the second
reactor. Firstly the plug flow trajectory for an adiabatic
reactor is of fixed shape as the initial conditionms are unique
(see Result 5, Section 2.6.1). Thus the plug flow trajectory
from feed point D, for example, is just the original trajectory
AXBGC shifted down until point X on curve AXBC touches point D. We
will vrefer to the trajectory AXBC as the base trajectory.
Furthermore, as temperature depends only on concentration in this
adiabatic system, the temperature at point D must be the same as
point X. Thus when shifting the base trajectory as described we
always automatically fulfil  the adiabatic relatioﬁship.
Consequently, as the plug flow trajectories cannot cross each
other and there is only one base trajectory, the required second
trajectory must be the one that when moved downwards is the
lowest for all poszible feeds to the second reactor or
alternatively extends the region tts most.
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Figure 3.10: Attainable Region for Adiabatic System using only
Plug Flow Reactors

Curve AXBC: Plug Flow from Feed A

Curve DJKC: Plug Flow from Feed D

Curve IMNC: Plug Flow from Feed L

Curve EHC: Plug Flow from Feed E

Line AB: tangent to plug flow AJIBC

Line AJ: tangent to plug flow DJKC

— — — tangents to plug flow trajectories

If we do this we find the best feed point is point D on line AB
where -the slope of AB equals that of the plug flow trajectory
(and therefore the slope of the reaction vector or simply

(1/x) ).

This. result occurs because the plug flow trajectory cannot move

out of the one reactor attainable region betwezn A and D as the

reaction vectors point inwards along AD. Point D is the first

point at which the plug flow trajectory may move outside the

attainable region as che gradient of the reaction vector is equal

to the slope of line AB. This trajectory must also be the lowest {'
as plug flow trajectories cannot' cross and consaquently ‘
trajectories with feeds between DB must lie higher than the one

from D. The trajectory of the second plug flow reactor is given j
by curve DJKC. ?gé
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We can again mix every point that can be reached by the system of
reactors with every other point and so obtain the two reactor
attainable region, the boundary of which is given by ALJKC and a
vertical 1line from A. The boundary ALJKC represents the
relationship between the minimum residence time for all possible
outiet concentrations for a two stage adiabatic plug flow reactor
system.

- The same considerations that held for the second plug flow
reactor would again hold when choosing the third stage. We would
thereby find the feed to the third stage to be point L where the
slope of line AJ would again be ejual to tha. of the (base) plug
flow trajectory. The third plug flow reactor would operate along
curve LMNC and the boundary of the attainable region for a three
stage reactor system would be given by line AM and the plug flow
trajectory MNK.

Iz is 1interesting to see that the change in the boundary of the
attainable region between two and three stages is much smaller
than that between one and two stages and how the tangency point
moves towards the left. Each additional stage would give a
smaller and smaller change in the boundary of this limited
attainable region wuntil, in the limit, we would reach the lower
boundary of the whole attainable region - AEHC. At point E, the
slope of the base plug flow trajectory, and consequently line AE,
is a minimum. Curve EHC is the trajectory of the plug flow
reactor with a feed point at E. It would take an infinite number
of plug flow reactor stages to reach point E. The boundary AEHC
of this attainable regiun fulfils all the necessary conditions
and is therefore the attainable region that one could reach using
any possible rea. ..on and mixing processes and must correspond to
the boundary found in the previous example. Point E by
definition fulfils the equation describing the operation of a
C.S.T.R and this is the same result as found in the previous
example.

Notice how the concept of finding the reactor that will exterd
the attainable region the most 1is equivalent to the standard
analytical optimization of finding the reactor that minimizes the
residence time. By using geometrical arguments, we have found the
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optimal adiabatic plug flow reactor system and in particular its
structure. The reasons for the analytical conditions can also be
clearly visualized.

(c) Construction of the Attainable Region using only
C.S.T.R.'s.

We accept that bypassing is a C.5.T.R. of zero space time in
parallel with another reactor.

Wa will now only use C.S.T.R.’s and we will look at optimizing
the reactor configuration to minimize residence time. The
construction for C.S5.T.R.’s is different from that of plug flow
reactors as there is no longer a unique, base locus although the
reaction vector is still a function of concentration only. The
shape of the locus will depend on e feed concentration only
and a family of C.S.T.R. 1loci is given in Figure 3.11. All the
loci obey the adiabatic relationship and so each feed-point has
a related feed temperature which will vary depending only on the
feed concentration.

Figure 3.11: Familf of Iso-Enthalpic C.S.T.R. Loci from

Various Feed Concentrations. -
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In oxder to construct the one reactor attainable region we draw
the GC.S.T.R. 1locus for feed point A, giving curve AEF in Figure

3.12. We can form the one reactor attainable region for one
C.S.T.R. by mixing every point on the locus with every other
“point. The lower boundary of the one reactor attainable region

is given by the 1line AE which fills in the concavity on the
C.S.T.R. F of the C.S.T.R.
order to determine the best seceﬁ& reactor, we again draw the
C.S.T.R. locus from every feed point and find the lowest curve.
The C.S.T.R.
must lie lower than the equivalent curve starting from the higher

locus and the section locus. In

loci along the boundary of the attainable region
residence times. The lowest curve must therefore oriu’nate from
feed points on the boundary of the one reactor attainabile region.
All the reaction vectors along AE point into the one reactor
Any C.S.T.R. locus from these points must
attainable region in order to satisfy the

‘the C.S.T.R. Point E
operating equation of all C.S.T.R. loci with feed points along AE

attainable reginn.
then move into the
satisfies the

operating equation of

and all the 1loci must pass through point E tangentially as the

Figure 3.12: Attainable Region for Adiabatic System using only

C.S.T.R.'s.

Curve AEF: C.S5.T.R. from feed A

Curve ED: C.S.T.R. from feed E
Curve EN: 1limit to infinite number of C.S.T.R.’s in series
Line AE: tangent to C.S.T.R. with feed A
g.3 F
t
.27

H
0.171— 0

E
0 | ! | ‘ A
8] 0.2 0.4 0.6 0.8 1
) C

CHAPTER 3 PAGE 78




D HILDEBRANDT THESIS

slope of the reaction vector is a minimum at at this point. Thus
o C.S.T.R. locus can take us below line AE. From point E the
loci must lie further down than curve EF in order to satisfy the
relationship between the slope of the reaction vector and the
line joining the feed and locus points. From the geometry of the
situation one can see that the C.S.T.R. locus from feed point E
will have the lowest possible residence time for all the second
stages. The lowor boundary of the two rea:ctor attainabla region
is AEO. We can repeat the construction for the third stage and
we will find that the best reactor is the one with feed point
just past E and this stage will extend the boundary of the two
reactor attainable region a littie way along curve EH. It will
require an infinite number of G.S.T.R. reactors in series to
produce the whole of the attainable regior (line AE and curve EH)
which is again a plug flow trajectory with feed E, or
equivalently, an infinite number of C.S.T.R.’s in series.

3.3.2 Example 8: Interstage Cooling

We will now look at the problem of finding the attainable region
for an interstage caoling reactor system as shown in Figure 3.13.
In this reactor system we are allowed to heat the feed up to any
temperature and follow this by a specified number of plug flow
reactors in series with heat exchangers between each stage.

Figure 3.13: Non-adiabatic Example: Interstage Cooling
Reactor.
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These effectively allow us to adjust the feed te&perature to

each stage. The reactor stages are all adiabatic in this
‘situation but now each reactor stage can have a different basis
temperature.

We will use the same rate expression and adiabatic relation as in
Example 7. The previous work that has been dove on optimizing
this reactor is discussed in section 1.5.

i
i

Figure 3.14: Family of Adiabatic Plug Flow Reactors

Plug Flow trajectories for different
basis temperatures

— —— - Curve XYZ* ‘oundary of the attainable region
for a one stage adiabatic plug flow reactor system

Basis temperatures are written on the plug flow curves.
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- The adiabatic plug flow trajectories for different basis
temperatures (ie different values of T; of equation (3.17)) are
shown in Figure 3.14. Notice that the slope of these cucves is
#qual to the slope of the reaction vector. We can find the
convex hull of the trajectories and the boundary of the hull is
given by the dotted line XYZ and z vexrtical line from (1,0).

- We will first consider the question of the %best inlet
temperature for 2 single stage reactor system. If we examine the
plug flow trajectories with basis temperatures of 320, 325 and
330, we can see that the plug flow trajectory with basis
temperature of 325 lies in the boundary for exit conditions
between A and B. For concentrations lower than A, the plug flow
trajectory with a basis temperature of 320 has a lower residence
time than the plug flow trajectory with a basis temperature of
325. Similarly for concentrations higher than B, the plug flow
traiactory with a basis temperature of 330 has a lower residence
time than the plug flow trajectory of basis temperature 325.
Thus, in the 1limit, the portion of a plug flow trajectory (of
given feed temperature) that lies in the boundary is the point
where the neighbouring curve, that is the curve with a infinitely
small increase in the basis temperature but the same feed
concentration, intersects it, ie:

ex ex

ar g ° ¢ 1 &R 4T
~-_[ I dc}---[-—z-ﬁﬁ--—ac =0 (3.18)

ar, 8T, L. R el RO 4T

Jr=

This equation is general and gives the outl. ration C®%
that a reactor of specified basis temperature .d operate at
in order to lie in the boundary of the attainable region, or in

other words, describes the minimum residence time versus

concentration relationship. When the specific heats are constant

I

and the temperature-concentration relationship simplifies to
equation (3.17), (3T/3T,) is unity.  Furthermore, if the
density of the system is constant as well, equation (3.18) agrees ‘
with the results obtained by conventional optimization techniques |
(Horn, 1961 and Konoki,b 1957). For c¢ne reactor systems, the

€

attainable region boundary is given by the envelope of the

extrema of the plug flow curves with different initial
temperatures, that is the dotted line XYZ of Figure 3.14. !
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- Let wus now consider the best basis temperature for the next
stage. ‘We know that the outlet concentration of the first
stage, which is also the inlet concentration to the second
stage, must 1lie on the envelope shown in Figure 3.14. We must
find the inlet temperature (or equivalently find the basis
temperature) to the second stage reactor such that the
trajectory of the reactor will extend the boundary of the
attainable region as much as possible.

The condition to determine the boundary 15 iore easily seen if we
view the problem in a different way. We will rather specify the
final basis temperature, and therefore the related plug flow
reactor trajectory, that fulfils the adiabatic condition for the
second stage. As an example, we specify the second plug flow
trajectory given by curve ABC on Figure 3.15. The envelope of
the attainable region from the first stage is shown as envelope

XYZ. We must find the feed concentration to the plug flow
trajectory ABC that will extend the attainable region the most.
This 1is equivalent to finding the feed point that will move the )

trajectory of the second stage reactor as low as possible.

We do this by moving curve ABC up and down along envelope XYZ
and ip thi: manner find that this is the point on the envelope
where the slope of the envelope (and therefore the slope of the
piug flow trajectory that makes up that part of the envelope)
equals that of the specified plug flow trajectory. Hence, this
point occurs where the reaction vector at the outlet of the
first plug flow stage equals that at the inlet to the second
plug flow stage as at point D for trajectory ABC. This result

)\\ must again hold for all reactor stages and agrees with the
Q conventional mathematical optimization results (Horn,1961 and
% & Konoki, 1957).
£

We can repeat the process for all possible basis tasmperatures and
again find the envelope formed by the intersection of

| - ‘houring curves shown by envelope JKL. Envelope JKL

LMLE » . i¢csents the boundary of the attainable region for a two stage

¥ intarcooled reactor system. It also represents the minimum

| ; residence time versus outlet concentration for all two stage
A

interstage cooled reactors of the type shown in Figure 3.13. We
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have again used geometric arguments for determining the

attainable region and wused this to perform the optimization.

Again the reasons behind the optimization relationships can be

clearly visualized. This construction can be repeated for three
- gné._glgater number of stages and the optimal performance curves
i found for that number of stages.

Figure 3.15: Example of Interstage Cooling Reactor

Curve XY¥Z: «—— -— -— Boundary of the attainable region
for a one stage adiabatic plug flow reactor system

Curve JKL: — — — Boundary of the attainable region
for a two stage adiabatic plug flow reacter system

Curve ABC: fecond stage plug flow trajectory

Curve AD: Best first stage reactor for second stage reactor ABC

0.3
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3.3.3 Example 9: Cold Shot Cooling

We will now 1look at finding the attainable region using cold

shot cooling alone and hence the optimal reactor configuration

to minimize the residence time for a given exit concentratior

using cold shot cooling. In tais system we may heat up the feed
to the the first plug flow reactor stage and add feed at its
basis temperature between subsequent reactor stages as shown in
Figure 3.16. We can thus vary the feed temperature to the first
reacior, the residence time of the various reactor stages as well
as the amount of bypass at each stage. We will use the same rate
expression as in Example 7 and the same adiabatic relation

although the method we use will hold for casces where the relation
is more complex.

Previous work on this problem is discussed in section 1.3. The
plug flow reactor trajectories for different enthalpies (ie
different basis temperatures) are given in Figure 3.14.

+ The first stage of the construction will be identical to that

of the previous example and as explained above, the dotted line
XYZ of Figure 3.14 is the boundary of the attainable region.

Figure 3.16: Non-Adiabatic Example - Cold Shot Cooling Reactor.
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- In order to fiud the boundary of the attainable region for
the second reactcr stags we will again consider the problem of
which is the best feed point for a second plug flow reactor with
specified basis temperature. The probiem and comnstruction is
now different from the previous two examples as tir: whole
process 1is mnot truly adiabatic. This 1is so because. #e have
heated up the feed .o tke {irst reactor and thus different
amounts of bypass give us diiferent energy balance equations and
hence different basis teumperatures.

We will consider, for examp.e, a second reactor stage with
constint enthalpy such that the ouclet stream has a basis
temperature of 300 K. ¥Yor each first reactor stage shown in
Figure 3.14 we mix all possible outlet concentrations with the
bypass (unheated feed which is assumed to be at 250 K in this
example) in just the correct proportions to give the
is>-enthalpic 1lines corresponding to a basis temperature of 300
K. These iso-enthalpic lines represent possible feed points for
the second reactor stage and are sliown in Figure 3.17 as curves
DEF, GHI and JKL. For the simple iso-enthalpic relation used in
this example, equation (3.17), the feed 1lines are simply a
congtaunt ratio of the 1length of the line between the outlet
point and the feed point A. For each feed line we <zn move the
plug flow trajectory ABC, which has a basis temperature of 300K,
up and down until we find the feed point which gives the lowest
possible second trajectory, or in other words, the trajectory
that extends the attainable region the most.

This feed point is always the point where the plug flow
trajectory ABC 1s tangent to the feed locus and it can be shown
that it must therefore also be tangent to the first plug flow
trajectory. This condition implies that the reaction vector at
the outlet of the first plug flow reactor mus? be equal to that
at the inlet of the second plug flow reactor which agrees with
the mathematically obtained result (Konoki,1960: Malengé and
Vincent,1972). Wa still however have mnot completed the
construction. The best first stage for the given second reactor
trajectory must still be chosen. We must therefore look at which
first reactor stage gives the lowest second trajectory (as these
translatzd trajectories  ABC cannot cross each other) and this
will be the best feed reactor for the givea trajectory. In this
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Figure 3.17: Exampla of Cold Shot Cooling Reactor
Curve XYZ: ~— ~— == - locus of optimal operating
points for a one stage adaibatic reactor system
Curve ABC: second stage plug flow trajectory
Curves DEF, GHI, JKL: — - = - iso-enthalpic feed lines
—— —— ~—— trajectories of the first stage plug flow
reactors
lowest second stage plug flow trajectories from
the iso-enthalpic feed lines
0.3
J
0.
Ull]‘
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case the feed locus GHI gave the lowest second stage plug flow
reactor and thus the related plug flow trajectory must be the
optimal first stage reactor. T.is can be done for all possible
second reactor base temperatures and we will again find the
envelope of the attainable region and hence the optimal operating
points for - two stage reactor systen.

We can repeat this construction ﬁor as many stages as required.
The construction is fairly simﬁle and only requires that one
integrate each plug flow trajectorjionce. The calculation for the
iso-enthalpic £2ed lines is especially easy in this example, but
the construction method will hol4d for more complex energy balance
expressions as well.

3.4 General Results in Two Dimensional Space

One needs to discuss in particular the results that foreshadow
those that will be found in higher dimensions. These results
arise from the answers to the following questions:

(a) when will the plug flow reactor be best?

(b) what can: be said about the boundary of the attainable
region?

(¢) why bhave only plug flow reactors and C.S5.T.R.‘s been found
to define the boundary of the attainable region?

It 1is interesting that the attainable region can be constructed
by wusing only plug flow reactors or only C.S.T.R's, as can be
seen from the construction of the constrained attainable vegion
in example 7, but an infinite number of construction steps are
needed to construct the full boundary. By using both ¢.$.T.R’s
and plug flow reactors, the boundary of the attainable region
can be constructed in a finite number of steps.

The answers to each of the following questions will be discussed
separately below.
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3.4.1 When will the Plug Flow Reactor ba best?

The obvious answer to this is: when the trajectory is either

.only convex or only concave; ie if the second derivative of the

variable of the y-axis with respect to the variable of the
x-axis 1is all of the same sign along the plug flow trajectory.
This is an easy way of thinking in two dimensions but does not
help us to gain a feeling of what the answer will be in higher
dimensions when the ‘property of concavity or convexity cannot be
so simply defined.

It 1is more helpful to think in the following way. Consider how
the convex hull of the trajectory is made up. The property that
we actually are interested in is whether all the points on the
plug flow trajectory are convexly independent or not. We
consider what this property means locally. If we are
constructing the hull at some pcint along the trajectory, we
find that we must join the point to each of its neighbouriug
points (by a straight 1line) . If these two lines coincide ie
have the same slope, this means that the pcint is no% convexly
independent with 'respect to its two neighbouring points. Thus
the plug flow trajectory may not be convex. The reaction vector
is, in the 1imit, equal to the slope of the line joining two
neighbouring points on the plug flow trajectory. Thus in terms
of the reaction vactor, at the point on the trajectory where the
convex independence breaks down, the derivative of the slope of
the reaction vector with respect to tile variable of the x-axis
must be zero.

Thus - in higher dimeusions the property of ‘convexity’ will also
be related to.the idea that the points on a convex hull must be
convexly iudependent. The property o +he seécond derivative
being equal to zero is only applicable in zwo dimensional space.
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3.4.2 The Properties of the Boundary of the Attainable
Region? :

The boundary of the attainable regior will be made of sections
with the following properties:

(1) neighbouring points where the reaction vectors are either
tangential or point inwards on the boundary of this section of
the region. ! -

(ii} lines from a feed or equilibrium point C°® to another point
€ a finite distance away. The slope of the reaction vecter at
7 must be the same as that of the line from C° to C.

ﬂii) a line between endpoints, for example between a feed and
an equilibrium peint (ie the base of the attainable region), or
between two feed points.

(iv) lines from a point Cy1 to a point Gy, where these points
are ot feed or equilibrium points. The slopes of the reaction
vectors at C; and Cy must be equal to that of the line
joining C; and G,. One could extend this idea to any number
of points that are collinear with the proviso that the slope of
the reaction vectors must b. equal to that of the line joining
all the points.

As we are assuming that we have a region where all the points
are attainable, the provision that the slope of the reaction
vector must be equal to that of the line follows as if it were
not, a plug flow reactor could extend the boundary of the
region. The straight line sections of the boundary would all
have ti.- reaction vectors pointing either inwards or
tangentially, which would be fairly unusual from the properties
of the C.S.T.R.
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3.4.3 Why have only Plug Flow Reactors and (@ " .,&*"
Found to Define the Boundary of the Atta.:

This question cannot yet be answered completely satiwiicuticwly.
However one might reason as follows. Consider the processes of
reaction and mixing. Any local combination of reaction and
mixing confines one to the plane defined hy the reaction and
mixing vectors (see Result 5). The resultant change in
concentration must lie between the two vectors. However, in two
dimensional examples, one is confined to a plane, and thus any
differential process of mixing and reaction is worse in terms of
extending the region than no mixing and only reaction, ie moving
in the direction of the reaction vector only, or moving such
that the mixing and reaction vectors ate as far apart as
possible ie the C.S.T.R. Thus in two dimensions, cne nuld only
expect that the boundary of the region would be consu. .:ted from
plug flow reactors, C.S.T.R’s and straight lines which fill in
the concavities, Notice how the properties (ii) and (iii) of
the previous section represent solutions to the C.S.T.R.
equation and thus the extreme positions where the mixing and
reaction vectors were 180 degrees apart.

Furthermore, one might conjecture from this discussion that
condition (i) of the previous section should be modified to read
that the reaction vectors would always be tangential, ie that
the sections of the boundary of the attainable region where
neighbouring points made up the boundary would always be
sections of plug flow trajectories. One would not think that one
could find a curved section of boundary made up from attainable,

neighbouring points where all the reaction vectors pointed
inwards.

Notice that in higher dimensions it would be possible to use
reactors that involved differeatial mixing and reaction to
construct the attainable region as these could move us in a
different direction to the plug flow reactor or the C.S.T.R.
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One could postulate that by using only plug flow reactors, or

only 'C.S.T.R.’s or both plug flow reactors and C.5.T.R.’'s, one
could construct the attainable region in- any number of
dimensions, but that an infinite number of stages may be
required. By using 7reactors that allow simultaneous
differential mixing and reaction, one could probably ccnstruct

the region in a finite number of stages.
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CHAPTER &

THREE DIMENSIONAL EXAMFLES

4.1 Introduction

In this chapter, examples that can be done in three dimensional
space wiil be discussed. These are examples where the reaction
vector and the optimization functions depend on three or less
independent variables. The structure of this chapter is different
to that of Chapter 3. The implications of the property of
convexity in three dimensional space and the consequences of
this, which are not as obvious as the results in two dimensions,
are firstly discussed. Furthermore, the properties of the convex
hulls resulting from convex functions are discussed. When a
geometrical structure is discussed in the theory, a reference to
a specific example where this structure exists is given. It is
suggested that 1f the reader has difficulty in visualizing the
structures, the stereo figures of the example should be viewed to
help with the interpretation of the theory.

The importance of Differential Reactors, that is reactors where

differential mixing and reaction occurs, and their role in
constructing the attainable region will be considered. After
these points have been discussed, examples which illustrate the
principles will be constructed.

One should note that the theory of convex sets:cf points is well
developed. The results for discrete sets of points have been
extrapolated and extended to continuous functions. The main
difference 1is that the direction of the curve at a point is also
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now important, ie in our case the reaction vector turns out tc be
important in comstructing the hull. It was only while this thesis

was being written up that a reference on convex functions -

appeared (Avriel 1988), but as the functions were not defined
with respect to a vector field, it was not fouad to be directly
applicible,

The viewing of three dimensional examples is obviously rather
more difficult than in two dimensional examples. In order to
show the geometry of the examples, stereo images have been s:sed.
These are discussed in Section 1.6.3. These stereo images are to
be viewed through the viewer supplied in the back cover of the
thesis. The attainable region is drawn in colour to show the
axis and the reactors defining the boundary of the region. The
construction steps are shown in some of the examples. The
orientation of the axis is the same as in the completed
attainable region so that the reader can orientate and understand
the construction steps.

4.2 Ti.e Property of Convexity in Three Dimensions

4.2.1 Convex Functions

Consider some function that generates a <cuarve in some three
dimensional space, The set of points we will refer to as {C}
and some iundividual point along the curve as C;. The curve
will have two end points ie the first and the last point on the
curve, these we will refer to as (C°. What do we mean by a
convex curve in three dimensions? If the set of points {C) is
convexly independent, then all the C; are extremal points and
will be vertices of the convex hull of {C). Similarly, we will
define a Convex Function as one in which all the points of the
funetion are extremal points and thus vertices of the convex hull
of the function. For a set cf points to be strictly convexly
independent requires furthermore that at most three points lie in
a plane. We will define a function in three dimensional space to
be Strictly Convex if at most three points oil the fun;tion lie
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in a plane. Similarly a function in n-dimensional space will be
said to be strictly convex if a most n points of the funtion lie

in an (n-1) dimensional hyperplane. RESULT 24

4.2.2 Structures Found in Convex Hulls in Three Dimensions

One wonuld expect to find all the structures that were found in
two dimensional convex hulls, ie

(1) neighbouring pairs of points (or, in other words, a part of
the curve wnuld lie in the hull); and

(ii) straight 1lines between points. The straight lines could
join:

- an end point and a point along a curve.

- two end points.

- two points a finite distance apart on sections of a
curve(s)

u

Furthexrmore, in three dimensions one could also expect to find:
{iii) planes between three points.

Theoretically and numerically, the boundary of a convex hull of a
set of points in three dimensions is usually thought of as a set
of planes. Notice that the intersaction of two planes would be a
line and that of two 1lines a point, in other words, a set of
planes can give all the structures found in two dimensions. The
structures found ir two dimensions can give rise to curved
surfaces and curved edges in three dimensional convex hulls.

The properties of these structures will be discussed in detail
later. The properties of the surface of the convex hull of a plug
flow trajectory will be discussed in Section 4.3.2 and the
discussion will be generalized to the properties of the surface
of the attainable region in Section &4.5.
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4.2.3 Types of Reactors thac Cculd be Expected to Form the
Boundary of the Attainable Region.

If we regard the reacticn and mixing occurring in a reactor in
terms of vectors, we have shown that the change inr concentration
is confined to 1lie in the acute angle berween the mixing and L
reaction vectors (from Results 1 and 2). It follows that in
general we could have the following processes forming the

boundary of the attainable region:

(i) xreaction only such that the change in concentration is in
the direction of the reaction wvector only (ie the plug flow
trajectory).

(ii) reaction and mixing such that the vectors are collinear and
; pointing in opposite directions, ie in an extreme position. This
is the C.S.T.R. 1locus.

I i (iii)The above two processes defined the boundary of the
attainable region in two dimensions. In higher dimensions, -
however, it 1is possible that a combination of reaction and \
mixing, such as occurs in a differential reactors, could move us

! in a different direction to the above two processes and thereby

extend the hull of the attainable region.

The properties of the optimal differential reactor and the
situations in which this type of reactor is likely to extend the
hull will be discussed later in Section 4.5,

‘hfwi 4.3 The Comwex Hull of a Plug Flow Trajectory

The plug flow reactor is usually the first reactor that is used
in constructing the attainable region. The properties of this
curve are therefore wvery important and will be considered next.

The discussion will later be extended to include other types of

£

i

|

|
reactors and families of reactors. i o

}

|
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4.3.1 Visualizing the Process of Finding the Convex Hull of
a Curve )

i
I
i

The best way method to visualize the way in w.’ :h the convex hull
of a curve 1is formed, and the properties that are impnrtant in
determining the shape of the hull, is as follows:

-—Take a piece of wire and form it in the shape of the curve one
wishes to consider. Now take one of the end poiuts and place
this on a fiat surface, such as a table. Move the wire until the
neighbouring points 1lie 1in the plane of the surface. Thus the
flatﬂsurface forms the face of the convex hull at that point. The
flat'surface is usually called the support plane. By rolling the
'wire so that the end point always touches the flat surface and
that the other contact point moves along the wire, one can see
how the, surfacz of the hull is formed. When one cannot roll the
wire any more then one starts with the other end of the wire and
again 1rolls the wire to find the other side of the convex hull.
This =clling procedure produces the other side of the convex
hull. If one can roll the wire from one end point to the other,
'this means that the convex hull of this curve will e a type a
fan structure, called a Fan Hull. This type of structure is
illustrated in Section 4.7.2, Figure 4.6. 1f one cannot roll the
wire from end point to the other, then at mist a section of the
face of the convex hull of the wire will biL a fan hull. The rest
of the face will typically be a plane or a surface formed by
rolling the wire with two points on the curve touching *he
surface and eventually meeting at a point. These types‘of
structures can be seen in Section 4.8.1, Figure 4.8c.

Note that ‘rolling’ the cirve is equivalent to moving along the
tangent of the curve, ie in the direction of the reaction
vector. From considering the ‘rolling’ of a curve as described
above, only the three types of structures described have been
found. The properties of the curve that gives rise to each of the
structures are discussed below:

(i) Fan structures. This type of structure exists as long as
the curve lies all on the one side of the flat surface as one is
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“rolling the wire (equivalent to equation (4.1) derived furiher on
in Section 4.3.3), and if the two end points can simultanesusly
touch the flat surface with the curve all on one side of the flat
surface.

(i1i) Planes. This type of structure exists when one may place R
the wire on the flat surface and at least three points touch the
- surface.

(iii) Curved surfaces £formed by lines between two points on the

curve where the reaction vectors at the points and the lines

joining the points are coplanar. This type cf srructure arises

when one can placé the curve on a flat surface such that two

- [ points touch the surface and the curve lizs all on one side of
. ' the surface.

4.3.2 The Mathematical Interpretation of the Conmvex Hull of a
Convex Plug Flow Trajectory

In the previous seétion, we considered the support plane (the
table surface) fixed und moved the c¢urve (the wire). The more
usual mathematical approach, is to regard the curve as fixed and

to moved the support plane. This type of approachkwill now be
used to deduce from a mathematical view the types of stuctures
found in a couvex -hull of a convex plug flow trajectory.

Let the set of points that lie on the trajectory be denoted (C},

and let C; be some point along the trajectory. C° denotes an
end point, ie the feed or equilibrium point, of the trajectory.

H Y As the trajectory is convex, all the C; are extremal points,
. | that 1is, all the points lie in the boundary of the convex hull
3 % and in fact are the vertices of the hull (see Reusult 23).

Consider a supporL plane at point C;. A support plane is a
plane containing C; and positioned such that all the points in

the hull, excluding C;, lie on one side of the plane. Thus the
plug flow trajectory does not pass through the support plane but
is tangent to the plane. Thus the reaction vector at G; must

lie in ths support plane.

|
|
T
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.

We mnow tilt thc plane to find the extreme position(s) of the

ot b

‘P}gub{ , ie the position in which it lies in the boundary of the
convex hull of (C}: To furm part of the boundary of tbes hull,
at least one other point of {C) must lie in the plane and all
the other points of (€} must lie in and/ox on one side of the
plane. We tilt the supbort plane, keeping £; and the reaction
vector in the plane, and consider each of the other poimts in

{C} in turn. The only points that are candidztes are sither:

i} the end points C° ox

(i1) another point in {C} where the reaction vector could also
lie in'the plane. That is the plans would contain two points and
the two veactisn vesctors as well. This is a more unlikely
occurrence than (i}. (This could be extended more than two
points, for example o m-noints and wm-reaction vectors or

m-points, m-reaction vactors and an endpoinc as well.)

The trajectory will not all lie on side of the sauport plane if a
point that does not satisfy these conditions is used.

-Now the mneighbourinz point of C; also lies in the boundary

convex hull, The e¢xtreme position of the support plane through
it must alse 1ie in the boundary of the hull and will also be
defined by either an end point or a point and a reaction wvector.
Thg intersection of <he two support planes ie that through C;
and the neighbour o: C;, will be a line.

The faces of the huli of & convex plug flow trajectory would thus
contain:

- curved facecs formed by lines from an end point to a point
on the <craject: x, ie the ‘fan hull’ described earlier. This is
found to be ths mcwt common type of structure. It is found as a
section of zlmost all hulls.

- wurved faces formed by lines from one point on the
trajectory to another point aloig the trajectory which is not an
endpoint The reaction vectors at each of the points and the
line are all thrs coplanar. These structures, bec.use of the
constraints imposed by “he reaction vectors, are rather uncommon
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4

- planes where the stfucture changes from one type to
another. These will in general be formed by an end point, two
points and the two reaction vectors at the points; or two end
points, a point and the reaction vector at the point; or three

points and the three reaction vectors at the points.

One could include planes formed by n-poirts and n-reaction
vectors or n-points and n-reaction vectors and an end point(s).
However, these are not common by the nature of the kinetics and

¥
are specia' cases of the above.

Thus all the types of structures found by the ‘wire rolling’
i technique have a mathematical interpretation. It is also clear
k that fan hull is the most commonly found *ype of structure as it
i E requires less constraints on the the points lying in the suppport
plane, It is interesting to note that all the these structures
\ ‘ are found in convex functions, and the simple concavity of two
dimensions is obviously rather more complicated in higher
dimensions. The single, most obvious difference is that complex

b - structures are found in the hull even of convex functions.

} 4.3.3 When will the Convex Hull of the Plug Flow Trajectory be
% a Fan Hull?

- ? For the convex hull of a plug flow trajectory to be a fan hull,
‘ the trajectory must obviously be a convex function, ie all the
‘ points along the function must be extremal peints. However, to
??~«\ ; exclude the possibility of the other types of complex structures
' W being possible, the trajectory must have other properties as
{3‘ ! well. If we think in terms of the ‘wire rolling’ process, the
rolling will stop because:

(1) the plane in which the curve lies at some point ~lso contains
an endpont. Thus the curve would not be strictly convex. This

would be a local break-down in the fan structure.

i o
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(ii) the endpoint and two other non-neignbouring points (and of
course associated reaction vectors) lie in a plane. Again the

curve would mnot be strictly convex, and this behaviour would

imply a global break-down in the fan structure.

(iii) endpoint €°, the reaction wvector at the endpoint R(C®),
and some point along the curve C and the reaction vector at that
point R(C) are coplanar. Again the curve is not strictly
convex if this occurs, and there is again a global breuk-down
in the fan structure. RESULT 25

It is thought 1likely that it 1is mnecessary for the local
break-down in the fan structure to occur before there is a global
break-down. In other words, if the curve is everywhere rtrictly
convexly independent locally with respect to endpoints, then it
will be globally strictly convexly independent. This howev .r has
not been proved.

We will now derive the condition for a curve to be locally

strictly convexly independent with respect to an end point.

Consider three mneighbouring points along the trajectory: G; 1,
Civ Cyy1- The face of the hull at these poiats is made up
by lines (€°,C5.1), (g“,gi) and (G°,Ci,1)- If the fan
structure is about to break-down, then §; must lie in the plane
of C°, Ciyp and C; ¢, 1ie the points are not strictly
convexly independent. Thus, in the 1limit, the line (Q“,Qi)
and the reaction vector at G;, R and the change in the
derivative R', where R' is equal to dR/dr, must all be
coplanar:

SN P = [(CC) xR ] 'R =0 (4.1)

The above 1is a necessary condition. RESULT 26

As a sufficient condition one would need to prove that a global i
break-down in the fan structure could only occur when a local ;

break-down occurred,

O , An alternative way of deriving equation (4.1) is as follows:
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The vectors R and R’ are perpendicular to each other. The
cvsculating plane is defined by these two vectors. A strictly
convex curve will always lie on one side of this osculating
plane. Thus: |

E = binormal vector = R xR (4.1a)

The binormal 1is perpendicular to the osculating plane and for
curve to lie on one side of the osculating plane:

P = E . (9“ - C) must be of one sign (4.1b)

Thus if at any point P = 0, then the curve will lie in the
osculating plane and the curve and the endpoint will not be
strictly convexly independent.

fe P=b - (C°-0) = RxR)  (C°-0)

- [(C°-C) x R)] * R =0 (4.1c)
Thus equation (4.1) gives us, in principle, an easy check to see
it the plug flow trajectory is locally‘'strictly convex or not. In

practice the algebra even for the simplest kinetics is generally
very messy and it is easier to solve the equation numerically.

4.4 The Convex Hull of other Reactor Curves

All that has been said about the convex hull of plug flow
trajectories will apply to any other reactor curve if instead of
‘reaction wvector’ one substitutes ‘tangent to the curve’. The
tangent T to the C.S.T.R. is, for example:

dac -1
— =T= [I-rVR] R (4.2)

where I 1is the identity matrix, and VR a matrix with element
ij equal to (dRi/de)'
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Note that the method of visualizing the process of forming the
convex hull of a curve as described in Section 4.3.1 will hold
for any curve. The ‘rolling’ will be in the direction of the
tangent to the curve, and thus the properties of the surface of

hull of a curve can be reformulated in terms of the
tangant rathe than the reaction vector.

the convax

4.4.1 The Check for a Fan Hull for any Reactor Curve

Again it is postulated that the convex hull of any arbitrary

with end points C° and tangent dC/dr, would not

if locally the curve was not strictly convexly
independent with respect to an endpeint.

reactor curve,
be a <fan hull
Again it has not been

proved that a local break-down of the fan structure implies a
global break-down.

Equation (4.1) to check for the local break-down of the fan hull
would become:

dac d dc
P-[(g-g’)x——J-——[—:} =0 (4.3)
dr dr dr

This condition is the generalized resvlt of equation (4.1) and

can be used to check if the convex hull of any reactor curve is a
Fan Hull.

This condition is
GC.S.T.R.

seen how

even messier to solve algebraically for the
than that for the plug flow trajectory, but it can be

in principle the results for the plug flow trajectory
may be extended to any other reactor curve.
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4.4,2 The Role of C.S5.T.R’s and Differential Reactors in
Forming the Boundary of the Hull

Consider if one did find that the convex hull (or sections of the
hull) cf the C.S.T.R. locus was a fan hull. Remembering the
property that the reaction vector is collinear with the mixing
vector (Result #4), it can be seen then that a plug flow reactor
from the C.S.T.R. locus must extend the hull in the direction of
the reaction vector. Thus the C.S.T.R. will again give bridging
points, that is straight lines from a feed point to the C.S.T.R.

-

locus, from which plug flow trajectories will start.

Alternatively, the C.S.T.R. might form part of a plane or
boundary of another type of face of the hull. But the mixing
vector must point back to a point in the hull, and thus as the
mixing vector is collinear with the reaction vector, the reaction
vector must point out of the hull. Thus a plug flow trajectory
will extend the hull and the C.S.T.R. will again form a bridging
point.

One can also see that only a finite number of C.S.T.R.’s can lie
entirely in the boundary of the attainable region. In the

examples, in fact, only one locus usually lay in the boundary

along the entire curve, thus forming bridging points along the
whole locus. Alternatively, one might find a family of C.S.T.R's
touching the hull at one point only (as in Section 4.7.1, Figure
&.4d).

Diffarential reactors, such as a Maximum Mixedness Reactor (MMR),
have the property that the tangent to the curve would lie on the
plane defined by the mixing and reaction vectors (from Result 2).
The mixing must occur with a point that has already been
achieved, and thus the mixing wvector (and thus plane in which the
tangent to the curve lies) must either point back into the hull
or along a surface of the hull. Thus if we examine the sections
of the reactor curve that lie in the boundary of the hull, we
find that the reaction vector must be pointing out of the hull at
these points. (This follows from Result 1 that the tangent to the
curve must lie in the acute angle between the mixing and reaction

vectors).
|
!
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Consequently it <follows that a plug flow reactor starting from
the curve would extend the hull. Thus a reactor with differential
reaction and mixing, would also form bridging points from which
the plug flow trajectories would start and extend the hull.

In both cases, if the bridging line is in the surface of the
attainable region, then the reaction vector along the hull must
point into the hull and become tangential at the vertex of the
line, ie along the reactor curve. This 1is 1likelv to be a
propérty of the optimal reactor.

4.5 Differential Reactors

When discussing a differential reactor, one must clarify how one
defines the residence time along the reactor. For simplicity, we
will consider a constant density systemn. Consider some section
of ‘the reactor of volume Vin:
in- We mix with a side stream of volume v
concentration g* and flow rate M*, as shown in Figure 4.1, The

mixing and reaction occurs in a volume Av. Thus the mass balance

concentration Gin and flow
rate M

and the change in the outlet concentration can be described by:

*

M+ M‘ f Moue (4.4)

* ®
M, Cin*M G+ RO &V =M C (4.4a)
M*
Define q by: i q Av
or in the limit, if the limit exists: q = & ﬁv (4.5)
h A k( + * 4.5
where Vo= Voar T YtV ) (4.5a)

i
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The residence times of the various streams are:

¢ ° ]
Vinf * VP Vout?
T ™ TR Tt (4.6)
M, M s M
in out

The residence time of the system entering the volume element

is:
(v. + v p°
. p
T ovstem -—JEL———ET' -—ar. + (1-a) r* 4.7
7S M, + M)
in
where
M
o - —i0 (4.7a)
M. + M)
in

T'igure 4.1: Definition of Residence Time

— — — — Boundary for system with space time Tin

—- —— Boundary for system with space time Tsystem

Boundary for system with space time 7.,
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The difficulty arises when one utries to define the change in
residence time along the reactor, which could either be defined
as (fgoue-Tin) O as (rout-rsystem)f It seemed to me to
pe more consistent to use the later definition. In the limit, if
the mixing 1is differential ie M* + 0, then the two definitions
are the same. Using the later definition and taking the limit as

Av -+ 0, the equation describing the differential reactor becomes:

Ac *
— = q (C - C) + R(C) (4.8)
dr -

Notice the similarity of this equation to equation (2.10).
Further note <that when R(C) and (g*'g) are collinear and in
opposite directions, then the resultant change in C can only be
along the 1line, ie equivalent to mixing only or reaction only.
If the amount mixed is . in the correct proportions to counteract
the reaction, ie q = -g(g)/(g*-g), for each compenent, then
dC = 0 and concentration in the reactor remains constant or in
other words the reactors behaves as a C.S.T.R. with feed g*.
Consistent with this behaviour, the conlition for q implies that
r is constant in the reactor and that q = l/(r-r*).

4.5.1 The Choice of Mixing Points in the Differential Reactor

The differential reactor structure, modified perhaps so that any
point already achieved may be wused as the mixing point, is a
fairly general reactor structure. Unfortunately, it is difficult
to include mixing with,later points (ie'back mixing) because of
the problems of multiple steady states etc as discussed for the
Generalized Mixing Model (GMM) (see Section 2.7.4).

When choosing a mixing point, we may consider the following
questions: '

- . How many mixing points need one, consider in a gancral
differential reactor of the type described above?

'
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- Which points do you need to consider when choosing a mixing
point from all the points in the hull?

These points will be considered separately, and thereafter
properties of the mixing point willi be discussed.

At any point along the reactor we may add material that we
already have achieved, in any proportions: for example we could
have multiple feed points as shown for a section ¢f a reactor in
Figure 4.2a. However we could rather mix the side streams
entering the section of the reactor first and then add them, as
depicted in Figure 4.2b.

This has two important consequences, namely:
(i) the mixing process gives us gne equivalent mixing point.

(ii) this mixing point must lie in the convex hull of all the
points that we have achieved so far with the reactor.

Figure 4.2: Choosing the Mixing Point

(a) (b)

Many mixing points are equivalent to: 1 mixing point

]

S
71|
b )

I =
| element ! | element

— | —

(c) The effect of changing

the mixing point c ies tilt
g P & varies ti g R
of plane E,;
around R - ¢

(oY
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Thus a differential reactor with only back mixing requires at

most one mizing point at any point along the reactor. This point

must lie in the already achieved convex hull of the reactor. RISULT 20

il

Consider that we already have achieved a point somewhere along ‘j
the reactor, ¢, that lies in the boundary of the hull. The '
reaction wvector at G is R. We must now choose a mixing point
Q* from all the points in the convex hull of the reactor, and
even from all the points that we achieved by any other reactor.
Geometrically, Q* changes the tilt of the plane containing
(g*-g) and R (see Figuve 4.2c), and the local change in
concentration will 1lie in that plane. Thus fiirstly, to extend
the hull as much as possible in the next element of the reactor,
we must choose from the points in the hull thav will tilt the
} plane as much as possible. This implics that the only points we
need to consider must lie in the boundary of the ﬁull - ie must
: be extremal points.

Thus - the optimal mixing points must lie in the boundary of the
hull. RESULT 31

We wish to choecse the mixing point such that the local change in
the plane of R and (g*-g) extends the hull as ruch as
possible. Clearly, we must choose a mixing point such th+. ..cal
changes in the differential reactor lies on the bouncs 4 the
hull. This is only possible if the plane lies in the boundsry of
the hull (or if q = 9O or 1/(r-r*), which we are not considering).
o Thus the only possible mixing points are those extremal points
either directly adjacent to C or 1lying on straight lines or
planes formed by the extremal points connected t. C (ie forming
the surface of the hull around C)

g, Ct
Furthermore, as far as the geometry is concerned, we need only

consider the end points of the straight lines connected to C ;
(and not points along the lines) as both the local ciange and the ;
curvature are determined by the direction of the vector (g*-g) ;
- not its magnitude. This result will be used in the proof below. i

1
If. we. have a plane forming a face at C, we can see that we §
need only consider: ‘ |

Sy (i) firstly, the extremal points of the plane and %
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(ii) secondly, we meed not consider the point that lies between
R and the other extremal points on the plane.

The proof is as follows:

Consider TFigure 4.3. A plane through C, with extreme points
¢1 and Gy, forms part of the boundary of the attainable
region at C. As explained previously, we only need to consider
end points' of the 1lines from C - e pcints along the line
(C1,89). This proves (i) of the above assertionm.

In crder for the reactor locus at C to lie in the boundary hull,
as follows from Result 29, the reaction vector R at C must be
tangential to the surface of the hull. Thus R must lie in the
plane of G, €4 and GC,. The resultant change of
concentration, which is a vector sum of (g*-g) and R, will
also be in the nlane ie will 1lie between (€1-C) and R(Q).
Thus we only need to consider (i as a possible feed point -

which proves {ii) of the above assertion.

Thus the interesting result is that at most we need vnly consider
points that are both extreme points (ie that lie in the boundary
of the hull of the region) and that are also neighbouring points
of C. If there is a plane at C that forms a face of the hull,
we need only consider the point on the plane such that the angle

between R and (O -C) is the largest.

plane

Figufe 4.3: Choice of Mixing Point from all Extremal Points
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We mnow divide all, the extieme, neighbouring points of C that
satisfy Result 32, into two classes - firstly the neighbouring
points of C that are a differential amount away eg previcus
point of differential reactor curve or a point on the plug flow
reactor with feed point C; and secondly, points that are a
finite distance away, eg the feed point, equilibrium point or
some other point already achieved that is important in the hull.

Points that are a differential amount away have a mixing vector
that 1is a differential quantity while the reaction vector is of
finite length. Aﬁy value of q that is not infinite, would imply
only reaction or in other words a plug flow reactor. We
furthermore regard an infinite q as an unacceptable choice.

Thus apart from the restiictions applied on the choice of the

'mixing point by Result 32, we would further require that the

mixing point would have to be a finite distance azway from the
reaction point. This further greatly restricts the choice of
mixing points and there is uscally only one obvious extreme point
that is connected to ¢ that is a candidate.

Further Properties of the Mixing Point

If we regard the properties of the hull the attainable region,
and consider the role of the dilferential reactor and the mixing

point in forming this hull, we can consider the following cases:

(i) The mixing point Q* is a point 1reached by some uv.“ar_reactor
and Z(Q*) is the tangent to the reactor curve at the .ixing
point. The points on the differential reactor locus are denoted
as G. If we make the hull of the differe:icial reactor and mixing
point (remembering that the mixing point is an extreme point of
the hull and that it lies on a reactor curve), the mixing point
must have the property that the tangent g(g*) must also lie in
tte plane of R(C) and (g*-g) along the whole differential
reactor locus. This we¢izld require the differential reactor locus
to lie in a plane, and would also require fairly odd kinetics in
that the constraints on the reaction vecto: weuald be fairly
severe.
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(ii) The mixing point g* varies continuously and smoothly with
position in the differential reactor. This could only happen if
g* lar on some other reactor locus that lay in the boundary of
the attainable region and that was a f:nite distance away from
the locus of the differential reactor (from Results 31 to 33).
The mixing point would need to move along the reactor locus in
such a manneér that the tangen* to the locus at the mixing point,
g(g*), was in the plane of R(C) and (g*-g). {We again
denote € as a point on the locus of the differential reactor).
This wouid be equivalent to forming the face of the hull by
rolling along both curves. This 1is again fairly severe

restrictions on the reaction vector, and this situation can not

arise unless the kinetics are fairly degenerate.

(iii} The mixing point is an end point, ie a feed or equilibrium
poiut, ihis will be the most common situation as there is then
tio censtraint on the direction of the reaction vector at the
mixing point. Tals is the case that will be considered from no«
on, as it is only with rather degenerate kinetics (degenz2rate in
that there must be stronz dependecce 5f The components of the

reaction vector) that the first two cases will arise.
If the best mixing pocint is a feed point, then the optimal
differential reactor 1is a Maximum Mixedness Reactor of the type

considered by Zwietering.

Thus in summary, the mixing point must i /= in the boundary of the

attainable region. In general it wii! not change with position
along the differential reactor but will stay fixed, or at mest,
th: mixing point might only iz uge in discrete, sudden moves
along the reactor. In general the mixing point will be an and
noint.

Th» role of the differential reactor ir forming the boundary c¢.
the attainable region can alsv be inferred from the results given
aliove. As the mixing point must be in the boundary of the hull,
a finite distance away from the locus of the differential reactor
ard directly connected to the réactor locus, we can see the most
likely, if not the only, way of fulfilling all of these
requirements is if the hull of the attainable region is a fan
hull between the migi point and the locus of the differential
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reactor. Thus, at the 1locus, the reaction vector would be
tangential to the fan hull, and, as already shown in Result 29,
plug tlow trajectories from the differential reactor locus would
lie in the boundary of the hull. The reaction vectors along the
lines making up the surface of the fan hull, would point inte the
hull along the lines and become tangential to the surface of the
hull at the reactor locus.

As shown in Result 33, the mixing point of an optimal
differential reactor must 1lie a finite distance away from the
locus of the differential reactor, and furthermore, the mixing
point must be an extremal point directly comnnected to the reactor
locus (Result 32). Thus with these restrictions, it is not
possible to have a whole face of the attainable region made up of
differential reactors, but rather the face will be made up of
lines from the mixing point, which must be a special point in the
hull, to points on the reactor locus. Thus there will only be a
finite number of differential reactors that can make up the hull,
and it is presumably the number of suitable mixing points that
limit the number of reactor loci.

This 1is a similar result to that obtained for C.S.T.R’s. One
might wonder if a family of differential reactors might not each
touch the boundary of the region at a single point, as discussed
for C.S.T.R's. It follows that in order for the point to lie in
the boundary of the attainable region, even at just one point,
the mixing point would need to be an extremal, directly connected
point. (In order for a point of a curve to lie in the boundary of
the attainable region, the tangent to the curve at the point must
lie in the boundary. This tangent is a linear combination of the
reaction and mixing wvectors. The reaction vector must be tangent
to the boundary and thus it follows tha. the mixing vector must
also be tangent to the boundary.) For a family of dif. arential
reactors, this would presumably mean that the reactors would all
have different feed points, and that the mixing point would be
the same for all the reactors. Furthermore the mixing --‘nt
would be connected to the point of the reactor that lay in the
boundary of the attainable region by a fan hull. A similar
structure for C.S.T.R.'s is found in Sectiom 4.7.1, Figure &4.4d.
The curve formed by the family of differential reactors in this
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manner, could alternatively have been followed directly by a
single differential reactor.

Thus all the results derived for a single diffevential reactor in
the boundary of the attainable region would again apply. ‘

4.5.2 The Properties of the Optimal Differential Reactor

To simplify the notation, we will define V as the mixing vector
(g*-g). The equation describing the differential reactor is
then:

The optimal differential resctor will have certain properties
that arise from the geometry of the reactor itself, ie out of the
above equation. Furthermore, as seen in Sections 4.3.2 and 4.4,
the surface of the hull of the attainable region also has
geometric properties that are peculiar to it. Comwbined, these
two sets of geometric properties should give us the properties of
a  diiferential reactor that lies in the boundary of the
attainable region. These results will be crrpared with the
analytical optimization of the differential reactor. Imn all the
following discussions it will be assumed that the mixing point
g* does not change with position along the differential reactor.

Geometric Properties of the Differential Reactor

Geometrically, the best differential reactor is the one which
extends the hull the most. In other words, we wish to chose q so
as to move the curve of the differencial reactor out cf the
current hull as much as possible. Consider the protlem
geometrically. Assume we have achieved a concentration C. We
allow mixing with wvarious amounts of some g* {chosen using

CHAPTER 4 PAGE 113

H aich P 5 3 "')"ﬂTg' S g S e T
AN S PO - R o




R R R S 5 e S L R

y

o

D HILDEBRANDT THESIS

Results 31 to 36). Locally the reactor trajectory must move in
the plane formed by the mixing vector V and the reaction vector

R. Varying q varies the direction of movement in this plane.

What we want is to find the wvalue of q which moves the
differenitial reactor curve furthest out of the plane ie the one
with the largest curvature in the direction perpandicular to the

plane.

Define arc length s of a curve as:

ds dg
— =] = O (4.9)
dar dr

-

The wunit tangsnt T tc the curve of the differential reactor

is then:
dc dc dr i dc
I= — = — x — = = x — (4.10)
ds dr ds [ dg dr
dar

dg dT dr 1 dzg
= e = g = = — .y == (4.11)
ds dr ds 2 d12

ac
| =1
dr

We wish, however, to find the differential reactor curve with the
largest curvature away from the normal to the plane (defined by
the reaction vector R(C) and the mixing vector (g*-g)=y ).,

ie:

maximize: J = (-} © ( Vx R(C) ) (4.12)
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1 a%c
or maximize: J = - [ —~§>] © (V x R(C) Y (4.12a)
i dc ] dr 3
dr k

The above expression simplifies, using the result:

© (AXA)'B - A'(AXB) = 0 to:

(qV + R(G)IVR * (V¥ x R(G) )

J = 3 (4.13)
| % |
where
3B,
(AVB), = = (A, —) (4.150)
b ac,

Rather than continue with the differentiation of equ~tion (4.13),
we shall rather firstly consider the geomstric properties of the

surface of the attainable region. .

The Geometric Properties of the Boundary of the Attainable :
Region ‘

The role of the optimal differential reactour in the structure of
the hull of the attainable region was swmmarized in Result 37. To
recap, g*, the mixing print, is an important point in the hull.
We expect to find lines (ie the mixing vectors) sweeping out 2
surrface from this point to the optimal differential reactor curve S
trajectory. Along the lines we expect to Iind that as we nmove ';f;;

from the mixing point towards the reactsr locusg, the reactic

s

vectors point into the hull and eventuszlly become tangential to
the surface at the reactor lucus. This is smathematcically
equivalent to requiring that the change in the reaction vector in
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the direction of the mixing vector lies in'the plane of R(C)
and V at G, or:

S=VWR - (VxR )=0 (4.14)

Ar alternative way of visualizing the geometrical interpretation
of the above equation is as follows: consider the family of plug
flow reactors in the space of the attainable region. Now
consider in particular the plug £flow trajectories that pass
through - the line of the fan hull between the mixing point g* and
the boundary of the fan hull at C. The plug flow trajectoriss
that intersect the 1line near g* must move into the region and
stay irside the region. 4s the intersection point moves towards
C, so the trajectories must 1lie closer and closer to the
boundary of the attainable region. The trajectory of the plug
flow reactor that just touches C defines the boundary of the
attainable region (from C onwards along its trajectory). Thus in
the neighhourhood of C, the family of plug flow trajectories
must be tangential to the boundary of the attainable region. If
we extend the line beyond ¢, we find that the plug flow
trajectories that intersent the 1line iun this region, always
remain outside the attainable region. The planes of the fan hull
thus define the tangent planes to a family of plug £flow
trajectories -

Equation (4.14) describes a surface on which the three vectuis
are cceplanar. -The optimal differential reactor locus must lie iu
or, in other words, move along this surface. In ordar for the
locus to move along the surface, the .plane in which the reactor
moves locally, that is the plane defined by R(C) and V, must
be ‘tangential to the surface if the resulting motion is to Lie in
the surface. The noimal vector to the surface N, is defined as
vs. Thus the lecus of the optimal differential reactor, in the
surface S, must be defiined by:

»

Nz (VxR) =20 (4.15a)

or equivalently:
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1

'g = 0 and

13-4

‘U =0 - (4.15b)

Equations (4.14) and (4.15a & b) would together define the
differential reactor that lies in the boundary of the attainable
region,

The question ncw arises how does this compare with
equation (4.13), where the optimal reactor was defined in terms
of curvature? If the results of equation (4.14) are used; ie
R(C), ¥V and VVR are all coplanar; cifferentiating equatiou
(4.13) with respect to q and simplifying, gives:

tdg [
[—-z] 5vr.s'<'zx§>]-° (4.16)
‘ dr L

The above result assumes that. we are not at a solution of a
C.S.T.R. ie [dC/dr| = 0.

This 1implies that -~ither:

- RVR lies in the t of R and V, or else that

- q must be chose © *h  that dGC/dr is perpendicular to the
mixing vector V.

The first condition will only hold for kinetics that are very
degenerate in that all four vectors; R, V, RVR and VVR; are
all coplanar along a region of space, This could perhaps happen
if one of the components of the reaction vector was a linear
combination of the other two components, such a: occurs with
terperature as a variable. In this case as the ciange in the
direction in the reaction vector in the directi.. of both R and
V is in the plane or R and V, it would seem tiat not only the
local, but also the glohal motion of the differential reactor
must lis In a plane. This agrees with the results of equatiun
{4#.15), 1in that if all four vectors are coplanar, then J = 0 or
in other words, the curvature is zero and tha curve lies in a
plane.
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The second condition could apply if the angle between the reaction

vector and the mixing wvector was greater than 90°.

To decide which of these two conditions is the correct one, or
indeed whether both conditions are possible, we must see how
these results compare to those derived from the geometric
properties of the attainable region, ie the results of equations
(4.14) and (4.15).

Using the fact that R, V and VVR are coplanar, equation
(4.15) simplifias to:

VN =0=V[ YV (R(IR) ) ] (4.17)
R'N = 0= R[ V'V (Rx(YVR)) + Vx(Vx(Rx(YVR)) ) 1 (4.18)

Solving equation (4.17) results in a three Jdimensional teusor,
and rather than wziting tlie equation in tensor form, we will
revert to the more usual not. -

‘s 82Rk

1 _
N a¢.ac,
i’

Using this notation, and that (VxR), is the k-th component of
the vector (VxR), equation (4.17) becomes:

1]
g (EFVVRS D) xR, =0 (4.19)

Similarly, equation (4.18) simplifies to:

i oy ij Ry .
(14+8) (RR) " (VxR) + (T F RVRI ) (VaR)y = 0 (4.20)

vhere 8 is defined by:

VVR= aV+ 3R (4.20a)
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Using the results. of the geometric properties of the differential
reactor, if R, V and RVR are coplanar; as follows f£from
equation (4.16); then equation (4.20) simplifies to:

ol ij 7 -
£ ( ?21'. ijiRk ) (Yxl})k 0 (4.21)

Notice the similarity between equations (4.19) and (4.21). Thus
regions( in space where wvoth these equations were true, would
presumably be solutions of a differential reactor that lay in the
boundary of the attainable region. This condition may not L= the
only condition when a differential reactor lay in the boundary of
the attainable region, as one could presumably also have that
equations (4.19) and (4.20) together with the other condition of
equation (4.16), ie that V and dC/dr where perpendicular, as

well. Rather than elaborate now on these two results, the
analytical optimization of a differential reactor will first be
discussed, and the similarity between the geometrical and

analytical results examined.

Analytical Optimizotion of a Differential Reactor

Pemembering that we can write the equations describing vreaction
in terms of a scalar variable, which we usually regarded as r, we
will  now return to the notation introduced in equation (2.8) and

write the equations rather in terms of the positive, scalar

quantity ¢, which has units of time.” This is dome so as to to
generalize the analysis given below so that it will hold for all
three dimensional coordinate systems, including those with space
time as a variable.

We are given:

dc * ‘

— =q (C-C) +R(C} = qV +R(C)

dep
where if component i of C is space time, R; is 1. We wish to
find q(9) such that C takes on an extreme value some value Pg-

il o
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.

The Hamiltonian H is defined as:k

t
I
1
& L&

where

=2 (@ +R) =0

Z is the adjoint vector.

(4.22)

can take on its optimal value, thus H=0. Furthermore:

dH dZi dR.

and

Using this result in

Furthermore:
'd dH )
S P
dp \ dq J

Thus equations (4.22)

V or VR 1is 0, or

coplanar. This 1is the

equation

| YR

to (4.24) give us that Z dotted with R,
in

same result

for singular control

(4.22),

other . words,

as we

The value of ¢ is not fixed, but

(4.23)

all three vectors are

geometry of the attainable region, ie equation (4.14).

(4.24)

we find that Z.R

obiained from the

If we differentiate the above equation again, w= fiud that:

a® ¢ am d
5 [ — ] =0 =2 (WR)WR - Z* — (VR )
dp” \ dq dyp
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This equation simplifies to:

-~ —~

N AL o
(1+8) 2° RR - 2 { v,l, ViR (QV+ R)) ] 0 (4.27)

where k“?lih..3, and 8 and the other terms are defined as before.
Remembering that Z 1is perpendicular to both V and R (from the
results of equations (4.23) and (4.24)), the direction of Z is
in the same direction as §2xg), or (BxV). The orientation is
not important, and we may write:

Z =7 (ng) where y is some scalar quantity (4.27a)
and thus

2

. - i -
(1+8) RVR ng) - §:§ [ IRy (qu+Rj) (VxR)k} 0 (4.28)

Notice the similarity in this result and that obtained from
geometric considerations. Thué, if the conditions stated in the
geometric proof are wvalic, ie that the four vectors R, V, RWR
and VVR are coplanar and equationms (4.19) and (4.20) are true;
then above equation will also be true. Which is. the more general
condition is mnot certain, but it is suspected that the above
equaticn does mnot take inin account the properties of the
attainable region, that is, that it is not as general as those
obtained by the geometric arguments,

It would also seem that the second condition, that is

(dC/ds ~V=0), obtained from geometric  arguments is too
restrictive. This condition is not understood and has not been

further examined.
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4.6 Further Properties of the Surface of the Attainable
Region

One must differentiate between the hull of a reactor curve and

that of the complete attainable region. In this section, the C
surface of the attainable region will be considered and the some

of the properties of the surface will be deduced.

- It was shown {Conjecture 2.2 of Section 2.10) that all points
along a reactor locus that lies in the bnundary of the attainable
region must be reached by some reaction, ie the reaction vector
must be a component of the tangent vector to a reactor locus.
This component 1is the only component that can move the reactor
locus out of the existing hull, in that it is responsible for .
moving the 1locus in a direction differert to that of the mixing

\i component, which because of the convexity of the hull, points

into the hull. No reactinn vector along a reactor locus that
: lies in the boundary of the attainable region can point into the
o region. RESULT 40

Thus this has two consequences for a reactor locus (excluding

plug flow trajectories) that 1lies in the boundary of the E
attainable region. Firstly, plug flow reactors off the reactor
curves must always extend the hull, as these trajectories move in
the direction of the reaction vector. Secondly, the reaction

i vectors along the reactor curve can either point out of the hull -
. or be tangential to the hull. It the reaction vectors along the
reacvor curve point out of the hull, the piug flow trajectories
'*Q off the curve will extend the null and the curve will therefore
lie inside the hull, which contradicts our assertion that the
reactor curve lay in the boundary of the region. Thus the only
possibility 1is that for any reactor locus in the boundary of the

Cf\

§ hull, tie reaction vectors along the curve must be tangential
to the 5Lull, so that the plug flow reactors lie in the boundary
of the hull in the neighbourhood of the curve. Thus Resulcs 26 RESULT 41
and 27 can be extended, so that not only the tangent to the curve
is considered, but also the reaction vector. This does not add
any additional constraints to the choice of the differential

| . . . .
'7? reactor, - as this result 1is always true in this case; it could
| however affect the optimization of scme other type of reactor.

CHAPTER 4 PAGE 122

R L= U <




D HILDEBRANDT THESIS

Alternatively, -if one comsiievs tta support planes that fory the
faces of the attainabl: regiorn, the reaction vectors alcng the
reacter curves that £:ra the edges of the hull, must Lie in the

support planes formi _ the surface of the attainable regionm.

Consider furthermore that this reactor <urve that lies in the
boundary of the attainable region, forms the suirface of the
attainable region in such a way that it forms a fan hull with
some&‘point g*. The same argument that was used to derive
equation (4.14) will again hold, and thus the surface along which
any @eactor curve in the boundary of ‘the attainable region
lies,\ and which forms a fan hull with some point Q*, will be
describad by equation (4.14). This condition will also describe
any curve (even if it is formed by a family of trajectories or

reactor curves), lies 1in thy bowndary of the attainable

.ug flows leaving it tangentially and
il oelll soms point Q* in the boundary of the
<ryrsture 2an he seen in Section 4.9.1

e as 4,102,

v s ey . * .
Botlire .33 thnet the (. U.T.R. locus, with feed point C” or in

ovhay - co'p Evom the origin wf the fan, always satisfies equation

(& L&y, PETA e C.S.TQR. weves in th's surface, and the
C.5.T . 1,03 will always have z family of plug flow
Ctreage »rims lewving 1t tangemt!.lly. This arciees with Result

# w4l was aspived from properclis of the reactor itself. Thus

Curedging properties of the 7 .T.R. and the differential

2%3rs  .ve applicable t» any ras or curve (excluding a plug
sluw o trajecaory)  or family wf curves, that lies in the boundary

rf wag attalre’ le region.

Woen, finding the hull cf 1 wea._sr locus that lies in the
boundary' of the attainakl: ..glor, u~t only must one bear the
results ¢f Section 4.4 in wind (ie with regards to the tangent to

o
the curve), but ¢ should also remember that thie shove results
implies cer:ain fewcrictinms »n  the rpictisn vecter along the

curve., = : 4 ) i
i

The likeiihood. that some. pojat other i than an end point (as
discussed in  Sertion 4.5.1) being the ixing point for a

d*liers:ntial reasctor that lies in theffzandéry of the hull is
\ T

i I IR
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also further restricted

that the reactica vactor at the mixirng
point, g(g*), must 1li¢ in “he plane oi the mixing ard reactien
vectors R(G) and (Q*'QT. ' :

At this stage, some examples to illustrate the method of

constructing the attainable region in three dimensions will be .

presented. The conclusinas reached above will be referred zo and
it will be shown how they apm ", ﬁgyrother razults that come from
the example will be noted =ud g ger.eral implications will be

discussed in Section &.12.

&7 ﬁExamples in Three Dimensional Concentration Spacas
4.7.1 Example 10: Van de'Vusse Kinetics

The Van de Vusse kinetics are:

kK
A - B = C

;éﬁf33ﬁf——?pi?a

an, v ’ ~OL L e
i il

Define & = (:concentration A)/ (initial
zoncentration B)/ (initial
7z = (concentration D)/ (initial

v = (ecncentration C)/ {(initial

concentration of A)
=oncentration of A)
concentration of A)

ccneentration of A)

a; = ky/ky * (initial comcentration of A)

32 an kz/kl

CHAPTER & PAGE 124
f

RESYLT 42




?gﬁﬁ e
o

Tl

Srpiat

o - ex - 2 4
Thus rx = -x a;x (4.29a)
ry =x - azy (4.29b)
r =0.5a x2 (4.29c)
z : 1 :
T = ay (4.294)

The previous work done on these kinetics is discussed in Section
1.4.1 and the example was previ( sly done in two dimensional x-y
space (see Section 3.2.1 Example 1). It was found that for
a; = ap =1 the plug flow trajectory was best in x-y space.
When a; = 20, however, the the plug flow trajectory was concave
and the C.S.T.R. extended the hull. In three dimensional space
one finds, using equation (4.1) that the plug flow trajectory is
strictly convex. The third component thus reduces the linear
acpendence exhibited by the plug flow trajectory when ay > a9,
and the behaviour exhibited is now similar (in that the
structures forming the faces of the attainable region are the
same) for all wvalues <f aj. We can consider the behaviour of
the system in eithev X-y-z space or x-y-w space. In one case we
will wuse aj=1 and in the other a;=20 to show how the behaviour
of the plug flow trajectory is affected by this coefficient in
three  dimensional  space. We will consider each example
separately.

The Attainable Region in x-y-z Space; aj=20;a,~=1

The rate vector is only dependent on two of the concentrations,
namely x and y and should therefore show simple behaviour over a
region 1in concentration space. Note that the component of the
rate +vector in the z-direction varies only with value of x and
not y or z.

The completed attainable region is shown in Figure 4.4a, and the
following colours were used:
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The axis are as follows: x = Blue Range 0 to 1
y = Red Range 0 to C.1
z = Green Range 0 to 0.424

Plug flow trajectories are drawn in blue and C.5.T.R.’s in red.
The plaries and lines forming the faces of the attainable rezion
are drawn in black. The construction of the attainable region
will be discussed below. The constructioh steps are shown in
sequence from Figure 4.4b onwards and the orientation of fhe axes
are kept the same as in the completed actainable region so that
one can orient the diagrams.

Step 1:

Draw the plug flow trajectory from the feed point of x=1, y=z=0;
and then form the convex hull of this curve Figure 4.4b shows
the hull. ’

The curve represents the plug flew trajectory and the black lines
the convex hull of the curve (using only discrete peints teo
construct the hull). The plug flow trajectory is strictly
convex, and thus the convex hull is the fan hull disussed
earlier. If the points along the plug flow trajectory are tested
using equation (4.1), it is found that P is indeed only equal to
0 at the feed and equilibrium points. The projection of the
curve onto the =x-y plane 1is concave, as we saw in the
2-dimensional example, but the three dimensional curve is
strictly convex. Solving equation (4.1) proved to be very messy,
and involved very messy algebra and eventually solving a very
complicated transendental equation. Equation (4.1) was thus
solved numerically.

If the rate vector is tested to find where it points out of the
hull, it 1is found that the rate vector points outwards on the
feed fan from the feed point onwards and becomes tangent to the
feed fan along the trajectory. This is not shown as the hull
from this view is too flat. The rate vector points into the hull
over the entire equilibrium fan. :
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Figure 4.4a: The Attainable Region for Van de Vusse Kinetics in

X-y-z space

Figure 4.4b: Hull of the feed plug flow trajectory

)
1
\
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Figure 4.4c; Hull with the feed C.S.T.R. included

Figura 4.4d: Hull with the extra C.S.T.R.’s drawn in
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To test where the rate vectors points outwards one uses:

[R(G) x (C° - ©)] . R (€9 =0 (4.30)
where -
¢F=aC+ (l-a)C° and Osasl

and C is a point on the plug flow trajectory

G° is the feed or equilibrium point,

*
C 1is a point on the fan

Step 2:

As the rate vectors point out from the feed point onwards, it is
most likely that the C.S.T.R. locus from the feed point will
extend the hull. This agrees with our intuition from the two
dimensional example. The C.S.T.R locus from the feed point is
drawn in on on Figure &4.4c and the convex hull of the new
enlarged attainable region is shown. Notice the structure of the
boundary of the attainable region. It consists of :

(a) the fan from the plug flow equilibrium point to the plug
flow trajectory, which is part of the fan structure of the hull
of the plug flow trajectory.

(b) fan structures between both the C.S.T.R. equilibrium and
feed points and the C.S.T.R. locus.

(¢) a plane between the feed point, the C.S.T.R. equilibrium
point and a point on the C.S.T.R. locus.

(d) a curved surface between the plug flow trajectory and the
C.S.T.R. locus.

The direction of the rate vector along the C.S.T.R. locus is
easily visualized over the section of the fan hull from the feed
point, as Dby definition the rate vector is collinear with the
line forming the fan. Thus over this section of the C.S.T.R.
locus the plug flow trajectories will extend the hull. The last
point of the fan, denoted C for ease of reference, has the
interesting property that it defines the extreme position of the
plane between the feed point, the C.5.T.R. equilibrium point and
the C.S.T.R. 1locus. The point C is defined as the point on the
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C.S.T.R.  locus where the tangent T(C), (C-Cf) and
(g«g;) are coplanar. This point does not correspond to

point C of Figure 3.3, and in fact the point G that is found as

described above, would lie on the C.S.T.R. locus aiter point C of
Figure 3.3.

The rate vectors still point outwards ov:r regions of the plane
described in (c¢) above, from the grwén‘ dotted 1line to the
equilibrium point and over the curved surface described in (d4).

Step 3:

More C.S.T.R.’s are drawn in with feeds élong the base of the
plane, ie along the line between the feed point and the C.S.T.R.
equilibrium point. These extend the hull as shown in Figure 4.4d
by a fan structure. The curve through the points marked by the
red dotted line is described as the points where a plane through
the feed point is tangent to the family of C.S.T.R.’s. This curve
does not 1lie 1in the surface described by equation (4.14), and
thus the rate vector is not tangent to the fan structure along
the red dotted line. This can be seen from the geometry of the
situation, as the vector from the point an the C.S.T.R. to the
feed point lies inside the hull. Thus the rate vector must point
out of the region. The edge of the fan structure does not
exactly agree with the dotted line due to numerical error as only
a finite number of points are used to construct the hull.

"he green dotted line represents the curve along which the rate
vectors on the fan structure are tangential. It happens to be
very close to the edge of the fan structure, presumébly as the
fan structure is not too curved.

a

Step 4t

Plug flow trajectories starting on the green dotted line. that is
where the rate wector is tangential to the fan structure, are
drawn in. Plug flows starting on the C.S.T.R. locus are also
added hull of the atrvainable region 1is extended as shown in
Figure 4.4a.
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The plug flow trajectories that stari on the feed C.S5.T.R. locus
extend the hull. However, one of these trajectories extends the
region ths most in the x-y plane, and the plug flow trajectories
after this 1lie inside the hull as shown. The plug flow
trajectory that extends the hull in the x-y plane correspords to
that found in the two dimensional example, and its feed point on
the C.S.T.R. locus corresponds to point C of rigure 3.3. The
plug flow trajectories that start on the fan structure extend the

hull in a different direction as seen in the figure.

R It is interesting to mention here that when the values of
ay= ag = 1 are used, the structure of the hull is very similar,
evcept that the plug flow trajectories off the C.5.T.R. locus lie
inside the feed plug flow trajectory in the projection into x-y

space.

It is worth pointing out the role of the C.S.T.R. leccus in
forming the boundary of the attainabie region. Only the feed
C.S.T.K. lies in the boundary and the plug flow trajectories
leave this locus Langencially. This agrees with Result 28. The - Ty
other C.S.T.R.'s that where used to construct the hull lie inside
the attainable region and do not actually form the boundary.

This bghaviour will be discussed later in Section 4.11.

The Attainable Region in x-y-w Space; aj=ljap-~l

The completed attainable region is shown in Figure 4.5, and the

following colours where used:

Gm%
E The axis are as follows: =x = Blue Range 0 to 1
j y = Red Range 0 to 0.22 ;
*§ w = Green Rangé 0 to 1l %
Cij Plug flow trajectories are drawn in blue and C.5.T.R.’'s in red.
j The planes and lines forming the faces uf the attainable region
b i are drawn in black.
A
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The structure of the hull is wvery similar to that discussed
above, and so will not be discussed in detail again. Only the
completed attainable region is shown and wuct the individual
construction steps. Basically, it is feund that the hull of the
feed plug flow trajectory is a fan hull, with rate vectors
pointing outwards over sections of the feed fan of the hull. The
feed C.S.T.R. 1locus is drawn in and the same structures that are
mentioned in Step 2 of the previous example arec present again
(the C.S.T.R. introduces a mnew equilibrium point again). If
further C.S.T.R.'s with feed points on the Jline between the feed
point and the C.S.T.R. equilibrium point are included they e.tend
the hull in a similar manner to that described previously. The
rate vector still points outwards over the fan structure formed
by the tangent planes to the C.S.T.R.’s. and also over a section
of the fan structure with the C.S.T.R. 1locus from the feed
point. Plug flow traje tories with feed points where the rate
vector is tangent to the surface of the fan structures and from
the feed G.S.T.R. exztend the region and form the boundary of the
attainable region as shown in Figure 4.5.

Figure 4.5: The Attainable Region for Van de Vusse Kinetics in

X-y-w space
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Notice how the projections of the plug flow trajectories in the
®-y plane lie inside that of the feed blug flow trajectory. This
is as one would expect from the results of the two dimensional
examples done in previously in Section 3.2.1.

4,7.2 Example 1l: First Order Kinetics

First order or linear kinetics have been considered in general
before (a discussion on the previous work on this is given in
Section 1.4.3). A specific example to show the geometric
properties of fixst order kinetics will firstly be constructed.
Thereafter it will be shown how many of the previous results
found by traditional optimization method: can be explained and
interpreted much more easily from the geometric properties of the
attainable region.

The following system of first order reactions was considered:

1 1 1
A=+ B == C and B - D
1
The wvalues of the rate constants are shown abe~ e rzaction
arrows. This system of reactions depends on -~ .. trations
of four components. The wass balance con ‘ wWever,
relates one of the concentrations to ¢t. ¢ three

concentrations and thus there are only three independent
varizbles. In this example the concentrations of A, B and D were
chosen as the independent variables.

Define x == (concentration of A)/(Concentration of pure A)
¥y = (concentration of B)/(Concentration of pure A)
w = (concentration cf D)/(Concentration of pure A)

The attainable region for a feed point of pure A, ie x=1l and

w=w=0, was drawn in x-y-w concentration space and is shown in

Figure 4.5.
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The axis are defined as follows: x = Blue Range 0 to 1
Yy = Red Range O to 0.3
w = Green Range 0 to 1

Plug flow trajectories are drawn in blue and the planes of the
hull are drawn in black. C.5.T.R. loci are drawn in red.

The plug flow trajectory from the feed point was drawn and the
convex hull of this was found to be a fan hull, ie the plug flow
trajectory 1is strictly convex. Th;_}ate vectors were fouud to
point inwards on the feed fan and were tangential to the
equilibrium fan. Thus the plug flow trajectory defines the hull

of the attainable region.

The C.S5.T.R. locus from the feed point was found to lie entirely
inside the convex hull of the plug flow reactor as shown in

Figure 4.6,

Figure 4.6: The Attainable Region for Linear Kinetics
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The behaviour of the race vector or the surface of the attainable
region is very interesting. The properties of the rate vector
can best be examined by looking at the behaviour of the family of
plug flow -reactors. On the feed fan of tihe feed plug flow
trajé;tofy; the plug flow trajectories would move into the
attainable region (not shown) as the rate vector points inwards
on this fan. On the equilibrium fan, the plug flow trajectories
which start on the line Letween the feed and equilibrium points,
lie entirely on the fan-shaped surface (as shown) ie the rate
vectors are tangential to this face. The other plug flow
trajectories (those which do not have feed points on the
feed-equilibrium line) never leave the attainable region after

entaring it. This example is thus a geometric interpretation of
; the known result that for linear kine:ics, a plug flow reactor is
} always optimal. A geometric proof of this result is given below.
i
First Order Kinetics in R3
I

Counzider the following general linear kinetics given by:

ac
— =P(C) = AC C(r=0) = C% ‘ (4.3
dr - ‘ - - -

where C is the concentration vector and 4 the rate matrix.

outwards. Each section of the proof is done separately.

Ty The solution of the plug flow trajectory is:

I —

} G C=e Ar s for 720 (4.32)

E*”J P |
E ~ The proof consists of three parts, firstly to show thac the %
Fo pcints on the trajectory are extremal, secondly to show that the |
{; 5 hull is a fan hull and lastly, to show that no rate vectors point P
R &)

4

i

|
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To Prove: The points of the plug flow trajectory are all
extremal points. ¥

Proof: If the points along the plug flow trajectory are all
extremal points, this is equivalent to the points on the
trajectory all being convexly independent,

To show that the points are convexly independent, we wish to show
that:

G(r) # § uy GCr)

p;>0 and § po- 1 (4.33)
all i all

e

In other words, we must prove that:

Ar Ar,
o

1
e Cp= ) mge of (4.34)
all i

where ui> 0and = B 1
all i

The proof was provided by Professor C. M. Crowe and is given in
Appendix 2.

To Prove: That the convex hull of the plug flow trajectory is a
fan hull.

Proof: Rather than use equation (4.1) which was derived for a
local break down of the fan hull, and which has not beenn shown to
be sufficient, we will rather show globally that the fan
structure cannot break down. The conditions under which the fan
structure breaks down is when the function is not strictly
convex, or equivalantly if two points and the two corresponding
rate vectors lie in a plane.
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We wish to show that if:

a.Cy= ¢ y 3.8~ 0

1

then E.Agzﬁ 0 ; 'W %
{
]

where A is the rate matrix, a is & vector , ¢ is a scalar and o J
€1 and Gy lie on the plug flow trajectory. - Lol

Thiz proof was again giver by Professor C.M. Crowe, and the proof

is riven in Appendix 3.
Thus the convex hull of any plug flow trajectory with linear
kinetics will be the fan hull.

To Prove: The rate vector does not point out of the fan hull.

Proof: Let us look firstly at the equilibrium fan described by:

(4.36)

IA
*®

A
-

0 -
Lo B Co+ (L-p) Gy 0
ail 1
satisfies the plug flow <trajectory and g; is the

where Cj

equilibrium point.

The rate vector at some pecint g* on the hull is described by:

R(C) = 4 (8 G + (L-w) G)) (4.37)

The rate vector 'is thus tangent‘ at the point C; and thus is
alwvays tangent to thic-face of the hull. This face of the hull is

i

e R
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made up of the family of plug flow reactors with feed points on
the (g;-gg) line, where g% refers c¢o the feed point.
This' can be shown by considering a plug flow reactor with a feed
point on this line ie:

( Cg+ (1- w) G-

The solution of the plug flow trajectory is given by:

) = e (w2 (1) O (4.38)
Af 0 Ar o
-u e gf + (1-p) e Ee

Using the series expansion for e” the term on the right
hand side becomes:

6(r) = &G + (L-p) &2 (4.38a)

From this it can be seen that the plug flow trajectory from a
feed point on the (g;—g;) line 1is a linear combination of
the original feed trajectory and the equilibrium point.

Now let us look at the face made up by the feed fan ie:

o
%oBCe+ (1) G
all 1 :

The rate vector at some point g* of the face is given by:
R(C™) = AC uG3+ (1-p) G)) | (4.39)
= pACS + (1-p)AC
HAC: HIAC,

The  second term on the, rigﬁt hand side is a vector that is

tangént to the surface-and the first component points into the

‘hull vhen u=l (as it points in the direction of the plug flow

trajectory) and it must thersfore point into the hull fur all g,
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By proving the above, we have shown that fo. linear kinetics, the
plug flow trajectory defines all possible concentrations that can
be reached by mixing and reaction using geometric ideas only.

4.7.3 Example 12: Denbigh Kinetics

The Denbigh reaction is as follows:
2 1
-+ B -+ D
+

1 2

Q + »

E

The numbers next to the arrows indicate the order of reaction.

Wa wish teo find the attainable regicn in terms of concentration
of A, B and D. Previous work on these kinetics is discussed in
Section 1.4.4. The same values of the reaction constants and
feed concentration that were used by Chitra and Govind (1985a)
are used in this example. Chitra and Govind wished to determine
the maximum amount of D that could be produced ac a 95%
conversion of A. They found a cerial combination of plug flow
and C.S.T.R. to be optimal and the maximum concentration of D was
found to be 2.92 mol/l.

Define x = (Concentration A)/(Initial Concentration of A)
y = (Concentration B)/(Initial Concentration of A)
z = (Concentration D)/(Initial Concentration of A)

The rates of reaction are:

£, = 2. 0.1x ' : (4.40a)
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T, = x-01y-01y> (4.43b)

rz = 0.1y (&4.40c)

The complete attainable region is shown in Figure 4.7a, and the
axis are defined as follows:

X = Blue Range: 0 to 1
Yy = Red Range: 0 to 0.5
Zz = Green Range: 0 to 0.65

Plug flow trajectories are drawn in blue and C.S5.T.R. loci in
red. The planes forming the hull are drawn in black. The
following method was used to find the attainable region.

Step 1:

The trajectory of the plug flow reactor from the feed (pure A}
was found numerically and the convex hull of the trajectery
determined. The hull of the plug flow trajectory is the fan hull,
ie the plug flow trajectory is stvictly convex. The rate vector
points outwards on the feed fan, between the dotted line and the
feed voint, and on the equilibrium fan, between the dctted line
and the plug flow trajectory, as shown in Figure 4.7b. The rate
vector is nearly tangential to hoth surfaces in these regious.

Step 2:

As the rate vector was close tc tangential near the plug flow
trajectory, it was thought that C.S.T.R.'s with feed points on
the trajectory would extend the ragion. C.S.T.” 's from various
feed points along the plug flow trajectory were thus included and
the convex hull of these was found. The hull is expanded by the
inclusion of twe equilibrium points:

- the equilibrium point of the C.S.T.R. that produces the most D
and

- the equilibrium point of the C.S.T.R. from the feed point (this
equilibrium point is the origin).

3
i
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Figure 4.,7a: The Attainable Region For Denbigh Kinetics

Figure 4.7b: The Convex Hull of the Plug Flow Trajectory ;

c

Lo
i _ ; B
o !
5
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It is found that no rate vectors point outwards on this hull.

The attainable region is thus found to be made up of the off

the plug flow trajectory from the feed point and a C.S.T.%
series with this. The feed point of the C.S.T.R. must br 1w’
that it gives the highest possible equilibrium concentratio. G
D. (This is the point alung the plug flow trajectory where the
sum of the concentrations of B and D is the largest.) The hull is
made up of two fans - one radiating from the origin to all the
points along the plug flow trajectory and the other radiating
from the‘C.S.T;R. eqﬁilibrium point to the plug flow trajectory.
There is also a plane between the feed point and the two C.S.T.R.
equilibrium points.

Once we have determined the hull we can then find the optimium
reactoxr structure to give the highest concentration of D at a 95
% conversion of A. This can be done by plotting the cont~ur
curves of the attairarle region (as shown in Figure 4.7¢ ) ¢/

determining the optimal structure from the shape of the hull

" directly and then optimizing analytically. These ways will be

discussed separately. -

Contour Plot

The contour plot (Figure 4&4.7c¢) shows slices of the hull for
different wvalues of x. The curvas of the hull are thus made up
of sections of the two fan structures . The'point at the edge of
the two curvé;Jis that of the plug flow trajéctﬁry. The maximum
concentration of D is 3.53 mol/l (shown as point *). This

concentration would be achieved by mixing material from the top

~equilibrium point with feed.
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Figure 4.7c: The Contour Plot of the Attainable Region

Analytical Optimization

The optimal operating point can be seen to be on the face formed
by the fan from the top C.S.T.R. equilibrium point and the plug
flow trajectory ie this can be Iinterpreted as the following

reactor structure:

a (a) (1

1
|

(2)

(1-a)

The concentration at (a) must be such that the equilibrium
concentration of D at (L) is as high as possible ie the point (a)
corresponds to the point on the plug flow trajectory where the
'sum of the concentration of B and D is as hiéh as possible.

The cencentration at (2) and the ratio a must be chosen to give a

conversion of 95% and the highest possible concentration of D.
This optimization can be done using standard techniques.
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The following is found to be optimal: ‘

(a) L (2) (3)
| ‘ Concentration A  0.80432 0 6 0.2
Concentration B 2.53413 0 0 0
Concentration D 1.19273 3.72689 0 3.540522
. Residence time 0,77 s | © 0 w0
All concentrations  are in mol/l. The ratio o is found to be

0.95.

In summary, the optimal reactor structure is a plug flow reactor
; in series with a C.S.T.R. such as to produce the maximum
| concentration of D. Feed must be bypassed and mixed with the

N equilibrium material to give a 95 % conversion of A.

‘ It can be seen that beth the maximum concentration of D is much
1 higher than and that the¢ optimal structure is different from that
@ % found by Chitra and Govind. It is thought that there is and error
o in the results of Chitra and CGovind as we are unable to reproduce {HJ

the® - results for the residence times given.

4.8 Examples in Concentration-Time Spacz

By time, we refer to space time, which is defined in equation
(2.3), and which is proportional to the volume of the reactor.
-ﬁ“\; This will enable one to answer questions such as: how does one
make material of a certain concentration from a specified feed in

- the smallest volume of reactor. An interesting feature of the T

A
. kinetiecs in this space is that the reaction vector is degenerate

as it is constant in time domain. This will lead to some rather

interesting results, specifically, that it is not common for the
plug flok trajectory to be strictly convex, with the result that
the convéx hull of the trajectory has other types of faces and ‘ ; i
¢ not only the fan hull found up to now.

A g R At e i ot W i

CHAPTER 4 PAGE 144

W e ) ;
ST o ;
i




D HILDEBRANDT THESIS

4.8.1 Example 13: Van de Vusse Kinetics

In this exzample the attainable region was constructed in x-y-r

space (where r is space time). The kinetics and vaciables are ‘
defined in Section 4.7.1. Ve constructed the region for a feed ﬁ
of x=l,y=r=0 and kinetics of a1-10 and a2-1. (The hull is
easier to visw with a smaller value of a;, and thus a value of
10 is used.)

The complete attainable region is shown in Figure 4.8a, and the
axis are defined as follows:

x = blue Range 0 to 1

y = red Range 0 to 0.12
{ T = green Range 0 to 150

Plug flow trajectories are drawn in blue and C.S.T.R.’s in red.

The planes and line: forming the faces of the attainable region

are drawn in black. The method of constructing the attainable J
region will be outlined below.

Obviously, the range in space time is from 0 to «, but in drawing | ‘1
the attainable region, we cut off the space time axis at some

suitably 1large r, where the structur: of the region has become

clear.

Step 1:

The plug flow trajectory from the feed point was drawn and the
hull c¢f this trajectory was constructed and is shown in Figure 2
4.8b. .

Notice that the hull is not a fan hull, but alse contaiius a
complex surface between points on the trajectory. This agrees
with the results of equation (4.1) where it is predicted that the

o {
‘ fan structure will break down. Again it is very messy to do B

%) analytically but can be done numerically. In practice, only two %
; points should be joined together and not a few joined to one 3
i CHAPTER 4 PAGE 145
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Figure 4.8a: Attainatle Region for the Van de Vusse Kinetics in

X-y-T Space

trajectory

Figure 4.8b: Convex Hull of the teed plug flow
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point as in the diagram. This is just numerical error, in that
only A discrete number of points are used to construct the hull.
The properties of the two points that are joined are that the

and the 1line joining the points should be
Section 4.3.2). Notice the plane between the feed

‘equilibrium point and a point on the plug flow

reaction vectors
coplanar (see
point, the
trajectory. This
flow

will be characterized by the point where the reaction vector, the

large plane fills in the concavity in the plug
trajectory in the projection in the x-y plane, This point
point, the feed point and the equilibrium point are all coplanar.
Note that the lines to the equilibrium point (ie as r-=) are all
parallel. Thus any plug flow trajectory which starts on the line
between the feed point and the equilibrium point will lie in tha
of the fan

plug flow trajectory.

surface hull between the equilibrium point and the

The reaction vecter was found to point out of the hull from the
feed point to the dotted line. Note that this line runﬁ along
the small section of feed fan and then along the plane (with x
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and y constant and varying r). It is only a numerical problem
that causes the line not to be parallel with the other lines to
infinity.

Step 2:

The next stage in the construction is to add the locus of the .

C.S.T.R. from the feed point and to construct the new hull. This
hull is siwn in Figure 4.8c.

It can be scen irom the figure how the C.S.T.R. locus extends the
region and how it forms part of the boundéry of the region for
part of the locus. The position of the plane has changed and the
plane is now between the C.S.T.R., the feed point and the
equilibriur point. Note that the C.S.T.R. and the plug flow
trajectory both have the same equilibrium point.

The reaction vector was found to point out all over the surface
formed between the plug flow trajectory and the C.S.T.R. locus.

Step 3:

Plug flow trajectories fruom various points along the C.S.T.R.
locus were drawn and the new convex hull constructed. This is
shown in Figure 4.8a. Any plug flow trajectori:s with a I{=ed
point after the plane on the C.S.T.R. locus, lie inside the hull.
The trajectory with a feed point on the vertex of the large plane
formed by the feed point, the e¢gqiilibrium point and a point on
the C.S.T.R. locus exteunded the attainable region the most in
the x-y plane.

The other trajectories do not extend the hull in the x-y plane
but rather extend it in the time axis by forming a curved face
between the plug flow trajectory from the feed point, and the one
discussed .above (ie the one which extznds the hull the furtherest
in the %~y plane). |

As stated previously, the lines to infinity are parallel. Thus a
plug flow starting from any point along the line between the
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point cthat fills in the concavity on the C.S.T.R. locus and che
equilibrium point will be the same trajectory, but displaced
upwards on the time axis. These trajectories all pruject to the
same trajectory in x-y space. Instead of drawing all the
trajectories, only thz first one is shown, and it must be
remembered that ths lines from the trajectory to the equilibrium
point, represent a whole family of trajectories. .

The boundary of the attainable region again only comnsists of plug
flow trajectories and mixing lines. The C.S.T.R. locus which
lies in +the boundary of the attainable region forms bridging
points to the plug flow trajectories. i
When aj=ag=l, the structure of the hull is rather different. In
this case the projection of the plug flow trajectory to to X-y
plane does not exhibit a concavity and thus the convex hull of
the plug fiow trajectory does mot have the plame structure or
section of feed fan, but rather has a fan structure along the
whole plug flowitrajectory. The reaction vector is tangential to
this face. The other surface of the trajectory is similar to
that discussed in the example, in that it is a complex structure
between points on the plug flow trajectory, and no reaction
vectors point out of this face,

4,8.2 Example 14: Westevterp Kinetics
The following kinet .cs are known as the Westerterp kinetics:

A+B-=+C

A+A-+D
Previous work on these kinetics is discussed in Section 1.4.5.
All previous work looked at the problem of producing the most C

in a given time from feed of pure A and pure B. This is
unfortunately a four dimensicnal problem so we cannot lock at it.
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The problem o1 {;oducing the most C without a time constraint is ‘
rather uninteresting as a C.S.T.R. wit. ¢quimciar feeds of A and
B preduces the most C. The attainadble region is in this case a ;
triangular pyramid with vertices atv the origin, the poiats L
corresponding to pure A and pure B and the equiiibrium peoinc of ; i
the C.5.T.R. with equimilar feed.
One could rather try another iuteresting example based on these b q“
- . - |
kinetics: for 4 given volume of veactor, how can ome use up the H
most possibJe A and B. This requires a constructcion in &, B and vﬁ
time space. We will assume both the concentration of pure A and ;¢
B ‘to be equal - and also that the rate constants for the two .- QU
reactions are equal. ff;
- - - ,; f
.' “ ‘}
Define: T ) . i
. ! A
x = (Concentzation of A)/{Concentration of pure A (or B)) ‘Q
¥y = (Concentratiorn ¢ii B)/(Corncentration of pure A (or E)) ﬁ
r = space time Fo
The rates of reaction are: L
IR
2 = R
r = -2x" -2y (4.41a) o
AR
[ i
r_ = -2xy (4.41Db) i
y |
r =1 (4.41c)
{ i
The complete attainable r2gion is shown in Figure 4.9. The axis . 3 ﬁ
- : {
are defined as follows: i -t
% = X = blue Kange = 0 to 1 C
y =y = red Rarge ~ 0 to 1 i %
zZ = r = green Range = 0 to 7 F
.
Plug flow trajectories are drawn in blue. P
; | o
- I
L
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for Westerterp Kinetics in

Plug flow trajectories for various feed concentrations along the
line joining pure A and B were drawn and the convex hull of these
The plug flows lie inside the hull for part of the
trajectofy and then form part of the boundary after the dotted
The hull below the dotted line is a
the fan radiating from :he point ol

—

constructed.

line as shown in Figure 4.9.
fan hull with
pure B. )

representing

The dotted 1line represents the curve where the plug flow
from the
attainable region.

trajectories feed 1line move into the boundary of the
Mathematically this is described by the point
along the plug flow trajectory where the reaction vector R, the
forming the hull (g*-g)

vector alcng this line (g*~g)vg are coplanar.

line and the change in the reaction
This is the
situation discussed in Section 4.6, when the properties of the
boundary of the attainable region were examined, and the dotted
line 1is described by equation (4.14), with the provise that C is
a point on a plug flow trajectory with feed point on the line

joining pure A and pure B, and g* is the point from where the
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? ‘ fan structure originates, that is pure B. No reaction vectors ' \f
| point out of this region of the hull and so we have found the ;-
' attainable region.

Note that there is no region in the space where the four vectors
R,¥, VVR and RVR are coplanar. Thus a differential reactor

; does not lie irn the boundary of the region.

- 4.9 Examples in Concentration-Temperature Space

Temperature is an interesting variable,  in that the rate of
change of temperature ir just a linear combinatiun of the rates
of reaction of the reactants (assuming the enthalpies of reaction f
to be constant). We thus might expect that this type of
degeneracy in the kinetics would make it possible £for the
differentis). reactor to 1lie in the boundary of the attainable

E region. . % will examine what happens in this case by means of an ; =
| example. 5

4,9,1 Example 15: Non-Isothermal Van de Vusse Kinetics

In this example we consider the non-isothermal van de Vusse i
reaction. This example was considered by Chitra and Covind E
(1985b) . : ; |

t
i i
’
i
]
%
é
|
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The reaction scheme is as follows:

T 2
A-+>3B=+C

3
A+A-=+D

The numbers refer to the numbering of the reactions and not the
order of reactiom. Case 1 kinetics were wused. The AH of
reactions used were different from those wused by Chitra and
Govind so as to make the problem three dimensional. The
assumption used is that:

+ AH AH

2 (aH rxn 3

exn 1 (4.32)

xn 2 ) =

The same values of a; and a, were used and zq was modified
accordingly. Because of this assumption, the results of Chitra

and Govind cannot be compared with these.
The variables were dc fined as:
T = Temperature / reference temperature
X = Concentration A / reference concentration

y = Concentration B / reference concentration

The reference concentration is pure A and the reference
temperature is 300 K. The reaction rates are:

2

rx --klx - k3x (4.33a)
ry - klx - kzy (4.33b)
I, = (a1+a2) r. + azry = -0.64 r, - 0.28 ry (4.330)
where:
9 -15 840
kl- 5.4 x 107 exp [ —_— ] (4.33d4)
1.987*300+*T
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| 12 | -23 760
ky= 1.6 x 10°° exp [ — | (4.33e)
- L 1.987%300%T

_ 5 r -7 920
k3- 3.6 x 10 exp[ i ]
L 1.987%300%T

(4.34%)

The reference conéeﬁtrétion was taken as the feed concentration
which was assumed to be pure A. The inlet fced temperature was
varied from 200 to 650 K. This temperature range was used as it
was found that all the interesting features of the hull occurred
in this range. :

Notei that once the feed temperature to a reactor is fixed, the
motion of the reactprAis confined to a plane. Thus a plug flow
trajectory and C.S.T.R. locus from the same feed point (and in
fact' any constant eﬁthalpy reactor) will lie in the same plane,
Furthermore, as the enthalpies of reaction are assumed to be
constant in this example, the planes that the adiabatic reactoxs
are confined to are ail parailel.

The plug flow trajectories and the C.5.T.R. loci had to be

- ~“determined numerically in this example. Thus it is difficult t»

determine th: exact points where tangent planes touch the family
of reactors and where reaction vectors point outwards etc. This
may cause inaccuracies in the construction, but it is thought
that the type of reactor structures that lie in the bouudary of
the region are correct. Thus the final optimization of the
reactor structure, would be done separately as was done in
Section 4.7.3, Example 12 for the Denbigh kinetics.
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The complate attainable <egion is shown in Figure %.10a. The axis
are defined as follows:

x = blue Range = 0 to 1
y = red Range = 0 to 0.8
T = green Range = 200 to 750

Plug flow trajectories are shown in blue and C.S.T.R.’s in red.
The constraction of the attainable region is discussed below.

Step 1:

Plug flow trajecories from varivus points along the feed line
(ie pure A and varying inlet temperature) are shown in Figure
4.10b. The dotted line is described by equation (4.14), with the
proviso that ¢ are solutions to the plug flow trajectories with
feed points on the feed line.

Figure 4.10a: The Attainable Region for Van de Vusse Kinetics
in x-y-Temperature Space
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Figure 4.10b: Convex Hull of the plug flow trajectories

— Figure 4.10c: Convex Hull with the C.S.T.R.’'s included
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The reaction vector points out of the fan hull along the bottom
of the hull, that is along the lines of the fan to the last plug
flow trajectory.

Step 2:

C.S.T.R.’'s from various point along the feed line were then added
and the new convex hull is shown in Figure 4.10c. The C.S.T.R.
loci 1lie inside the plug flow trajectories at the higher
temperatures, but at the lower temperatures they extend the hull.
It 1is interesting to mnote how they extend the hull in this
example. The C.S.T.R.’s with the colder feeds form a plane with
the feed point and a plug flow trajectory with an intermediate
feed temperature. Thus in this case the tangent plane to the
family of C.S.T.R.’s 1lies inside the hull of the regiom. It
would appear that the family of C.S.T.R.’t lies very close to the
surface of thz region.

The dotted 1line 1is where the family of C.S.T.R. loci satisfy
eguation (% 14), Note that this line lies inside the hull at the
higher temperature and eventually touches the surface of the hull
at lower tcmperatures, The dotted line also lies very close to
the surface of the region. Reaction vectors point out of the
curved surface formed by the C.S.T.R. loci. This occurs close to
the dotted line.

Ster 3:

Plug flow trajectories with feed points where the reaction vector
points out of the hull, were included in the hull. This completed
the hull.

Note that at a feed temperature of about 450 K, the C.S.T.R. and
plug flow trajectory touch, and the plug flow trajectory from the
C.S.T.R. locus and that from the feed point corresponds. This is
the point where the curves formed by the plug flow trajectories
satisfying equation (4.14) and that by the C.S.T.R. loci
satisfiwg' the equation, intersect. At higher temperatures the
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C.S.i.R.'s 1lie inside the hull and at lower temperatures, the
C.S.T.R. extend the hull. Notice however, that a differential
reactor does not lie in the boundary of the hull. One might ask
if the feed points to the plug flow trajectories that form the
gurved surface of the hull, could beé achieved by a differential
reactor, such as the maximum mixedness reactor.

In this space, the three vectors R, ¥V and VVR are coplanar
when either:

VT + 0.64 Vx + 0.28 Vy =0 (4.35a)
or r, (Y_Vg)y - ry (Y_Vg)x =0 (4.35b)

where (VVR); 1is the ith component of vector VYVR. ' If the
first equation holds, then the fourth vector RVR is also in the
plane and thus all four vecturs are coplanar which is the
necessary conditiin for a differential reactor to lie in the
boundary of the attainable region. However the first equation

‘also defines the plane to which a constant enthalpy reactor, with

the mixing point as the feed point, is confined to lie. We know
from our examples in two dimensions, that a differential reactor
would neither lie in the boundary or extend the attainable region
in this two dimensional space.

If the second equation holds over é‘region‘in the space, then the
fourth vector RVR would not generally lie in the plane of the
other three vectors and it would depend on the kinetics whether
this were possible or not. The only special condition under

which the four vectors would be coplanar over a region in space

would be 1if the reaction vector and the mixing vector were
collinear along the region (ie a C.§.T.R. solution). This would
again happen only for the C.S.T.R. where the mizing tempeiature
and the feed temperature coincided. As discussed above, in this
case the differential reactor would not extend the region.
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4.10 Examples in Concentration-Time-Temperature Space

This space offers the most degeneracy of all the general three

dimensional spaces. If r, 1is the rate of formation of the

®
species, and T,y 1is the adiabatic temperaturs rise associated
with the reaction, then the reaction vector R, in

Temperature(T)- Concertration(x)-Space Time(r) space, will be:

R = ( Tad T, Ty 1) (4.36)

The three vectors R,¥V and VVR will be coplanar when Vp =
Tag Vg- When this is true, then the fourth vector RVR will
also be coplanar, However, the condition confines the reactor to
lie in the constant enthalpy plane with the feed temperature
equal to the mixing temperature. Again, we know for a region
confined to a two dimensional plane, only plug flow trajectories
or C.5.T.R.'s will form the boundary of the regiom.

The other case when the three vewtors will be coplanar is when:

arx arx
Xy +—2 vy -0 (4.37)
ix * ar T

In general RVR will not be coplanar with the other three
vectors at points where the above equation is satisfied and which
do not satisfy the C.S.T.R. equation. Thus in this extremely
degenerate space, the differential reactor will not, in general,
lie in the "oundary of the attainable region.

Thus, rather than construct the unconstrained attainabl: region,

we will show how a constrained attainable region can be
constructed in three dimensional space.
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4.10.1 Example 16: Cold Shot Cooling

#onsider the problem ¢f cold shot cooling ie a
system of adiabatictplug flow reactors with bypassing of the feed

to cool the outlet stream from one reactor before it enters the

In this example we

next reactor. The optimization of this system of reactors
consists of finding the optimal positioning and quantity of the
cold shot cooling, the space times of the plug flow resctcrs and
the feed temperature to the first reactor (and therefore of the
cold shot) in etrder to get a specified outlet concentration.

This problem was examined previously in two dimensional
concentration-time space in Section 3.3.3. We will be considering
the same kinetics again.

The rate of formation is defined as:

r, = SES exp(-4000/T)*x - SE8 exp(-8000/T)*(l-x) (4.38)

where x 1s concentration and T is temperature. The temperature

for an adiabatic constant pressure process with constant specific

heat and heat of reaction is given by:
T =T + Tyq (1-x) (4.38a)

where T® is the feed (ie at a concentration of 1) temperature and
Tad is -200 .

Notice that the reaction vector is only dependent oh two of the
parameters, mnamely concentration and temperature, and nas a
constant component in the time-axis domain.

The plug flow trajectories are drawn in blue and the faces of the
huli is drawn in black.

" The axis are as follows:

Temperature = blue Range' 250 to 500
Concentratiorn = red ‘Range 0 to 1
Time = green Range 0 to &4
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Thé following construction method was used:
Step 1:

. Plug flow trajectories for a feed concentration of 1, space time
of 0 and inlet temperatures 1° between 250 and 350 were drawn and
the hull constructed.

The convex hull is a complex structure. Again the fan structure
is found and the end points of this structure are defined by
equation (4.14). Thz mixing point corresponds to feed material
at the lowest temperature and the other point of V lies on a
plug flow trajectory. Equilibrium is rapresented by a line at t-w
with varyihg concentrations and temperature. Instead of
considering the trajectories to infinity in this construction, we
- arbitrarily integrated the trajectories to a time of 4 where the
trajectories were mearly vertical lines. The upper surface of the
hull 1is not too important for the optimization problem as onme
would normally be interested in the minimum time required for a l%
spécified concentration. The structure of the hull, if the
equilibrium points are included, can be visualized as all the
faces counnected to the equilibrium points would become vertical.

The hull shown in Figure 4.lla is thus the attainable region for
a family of adiabatic plug flow reactors with bypass. The
optimal operating conditions for an adiabatic plug flow reactor
(optimal in that the time is a minimum for a given outlet
concentration) can not be clearly seen from this view. The
optimal operating point for a specified concencration would be
”“\ the point where a vertical plane at the specified concentration
intersected the hull at the lowest time. The curve formed by the
fan hull and which is clearly shown in this view, represents the )
optimal position to mix the cold shot with. As shown in the ) i
previous discussion in two dimensions, these two curves zre not
the same. However as the cold shot temperature is lowered, the
curves move closer and closer, until for an infinitely low
temperature, which is equivalent to interstage cooling, the two
curves correspond. This 1is easily visualized, as if the mixing
point for the fan is moved further and further to the lef:, the
J fan lines will become more nearly parallel; until they eventnally

O
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Figure 4.lla: Attainable Region for a 1 Stage Cold Shot Cooled
Reactor

Figure 4.11b: Attainable Region for a 2 Stage Cold Shot Cooling
Reactor
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correspond to the line representing the lowest possible time for
a specified .concentration. This again agrees with our previous
results for interstage cooling (Section 3.3.2),

The reaction vector points outwards between tnc dotted line and

the curve described above. Thus a second stage of plug flow

reactors will extend the hull.

Step 2:

We‘vnex: draw the plug flow trajectories with feed points on the
dotted line.

The plug flow trajuctories that start on this line (ie where the
reacticn” ‘vector 1is tangential to che fan face) form the new
boundary of the attainable region for a two stage cold sho%x
cooling reactor. Again the curve that represents the maximum
outlet concentration for the lowest space time for a two stage
process cannot be clearly seen in this view. The curve that the
edges of the second stage reactors make is the optimal operating
points for bypass for the next stage. Comparing this figure to
the previous one shows how the attainable region k-s been
extended.

'The attainable region for an n-stage cold sk+i rvoling reactor

with a range of possible feed temperatures couil. thus essily be
constructed by adding plug flow trajectories and then making the
hull. The relationship between the inte:s‘age cooling and the
cold shot cooling problems is also easily visualized. It can also
be seen  how constrained optimization problems can be handlad in

three dimensional examples.
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4.11 Discussion

It has been shown that the attainable region can be constructed
for three dimensional examples with specified kimnetics for both
unconstrained and constrained reactor  structures. The
construction can be done relatively quick ** and easily, in fact
it can be done on an IBM compatible PC.

From the examples given, it would seem that only plug flow
trajectories and C.5.T.R.'s lie in the boundary of the attaimable
region. Furthermore, it would seem that for an unconstrained
attainable region, wusually only the feed C.S.T.R. lies in the
Other C.S5.T.R.’s at most touch the

boundary at a point. It would also seem that it is mot usual for

boundary of the region.

a family of C.S.T.R.’s to touch the boundary of the regiou. Let
us examine why this is.

Firstly, for a family of C.5.T.R.’'s to lie in the boundary of the
attainable region, the curve & where the family touches the
boundary would be described by equation (4.14) ie:
S = YVR*( VER(C)) = 0 (4.14)
This equation describes the condition under which the family of
plug flow trajectories with feed points on the curve & would be
tangential to the surface formed by the fan structure containing
V. However, for the family of C.S.T.R.’'s to lie in the boundary

of the region along & implies that the fan structure containing
the vector V is tangential to the C.S.T.R.’'s along & as well.

This would occur firstly when the tangent to a G.S5.T.R. at point
C, T(C) also lay in the plane of V and R(Q), andkuecondly
if the change in the tangent, ie the derivatives of the tangent
vector, lay in this plane as well. Thus:

(i) T(C) would ©be in the ©plane of R(C) and V, ie
I(C) = aR+fV;

(1i) VVR would be in the plane of R and V;

(iii) If the derivatives to the tangent T of the C.S.T.R. w-.re
to lie in the plane as well, this would presumably mean that as
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T at the point is in the plane of R and V, that both VVR and

RVR would also lie in the plane of R and V.

Thus it would seem that the stringeiut restriction that V, R,
T, VYR and RVR are all coplanar must be met in order for a
family of C.S5.T.R's to touch the boundary of the attainable

region.

Now in order for the reaction wector to be tangent to the
surface, the mixing vector of the G.S.T.R. would need to lie in
the boundary of the regis+  This could only happen if the feed
point to the C.S.T.R. and the vector V along the fan structure
were coplanar. In other words, the fan structure which contains
V and T must in this case degenerate to a plaze - ie it cannot
be curved. Thus the boundary of the attainable region which
contained the GC.S.T.R.’'s would be planar, and would contain the
feed peoints of all the C.S.T.R's, the mixing point of the

degenerate fan structure as well as the curve &.

These conditions seem very similar to those derived for a
differential reactor that lies in the boundary of the attainable
region. To recap on these conditions, in order for a
differential reactor to 1lie in the boundary of the region, the
four wvectors V, R, VVR and RVR would havz: to be coplanar (from
Result 39). Consider what this implies . The differential
reactor locus is described by:

— =4qV +R (4.8)

The c¢urvature of a differential locus, when all four the wvectors
mentioned above are coplanar, is from equation (4.13) zero;
implying that the differential reactor that lies in the bvoundary
of the region must move in a plane that contains the mixing
point. The reaction vectors must be tangential to this plane and
thus voint backwards along the plaune. The point along the edge
of the plane where the reaction vector, when projected backwards,
intersects would be a feed point for a G.S5.T.R. that could be
used to achieve the point along the differential reactor locus.
Thus it would seem that the differentialireactor need not be
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considered, as any place where it lay in the boundary could be
reached by a family of C.S.T.R.’s as well.

The conditions for a family of C.5.T.R.’s to lie in the boundary
of the attainable region are extremely stringent in that there
are many constraints cn the reaction vector. It is more usual to
find during a construction that the tangent plane to the family
of C.S5.T.R.’s does not lie in the surface described by equation
(4.14). Usually the reaction vectors point outwards along the
curve where the fan structure is tangential to the C.S.T.R.'s.
In this case rthe reaction vector becomes tangent further back oxr
cloger to the mixing point of the fan as happened in Examplae 10
and 15, Furthermore in these cases, the fan structure does not
degenerate to a planar structure but remains a curved surface.

It has been demonstrated that both the constrained and
unconstrained attainable region can be constructed. The question
now arises: how accurate are the constructions of the attainable
region given in the examples? The examples were constructed
using a combination of numerical calculations and analytical
conditions. It is therefore difficult to determine if the regions
are exactlyw;correct. However I am fairly certain that the
reactlon vectors along the proposed attainable regions, if not
exactly tangent, do not point out by too much. This would imply
that 1if the reaction vector does point out over a section of the
region, the addition of reactors will not extend the region by
too much for the given kinetics.

This might be felt not to be all that satisfactory, and perhaps
by writing sophisticated computer programs to solve the tangency
conditions and the various equations that were found to describe
the surface of the region, one could improve the accuracy. This
was mnot done by the author. The author in fact made a policy of
keeping the computer programs as simple as possible so that
firstly, the: programs could be continuously modified to
incorporate new ideas, and secondly, the emphasis was on the
properties of the attainable region and not just the mechanics of
constructing the region. All the programing was interactive, in
that the types of reactors and the feed points to them were
decided by the author at sach stage. All the computations were
done on a basic model IBM compatible BC.
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The reasoning given in this chapter is rather geometrical and has
been discussed in terms of the properties of the different types
of reacters and the surface of the region. In the next section,
the properties of a general n-dimensional attainable region will
be developed rather more rigorously.
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CHAPTER 5

EXTENSIONS TO HIGHER DIMENSIONS AND CONCLUSIONS

5.1 Introduction

Many interesting exemples where there are more than three
independent variables have not as yet been handled. These
j problems would require the construction of the attainable region
in higher dimensions. Many of the properties of the attainable e
region that were previously derived will hold in higher
dimensions. However, as the structures making up the faces of the :
hull iucrease in complexity s the dimension of the hull
increases, this czuld perhaps introduce further results. Routines
i to determine the convex hull of a set of points in any
‘dimensional space do exist, and at present finding more efficient
routines is a fairly active field of reses=ch. Nu reference to
work. on properties of convex hulls in vector fields or even much
that is useful fior this particular application of comvex hulls of
functions has been found. This too appears to still be a very
o new and active field in mathematics.

éfé The prdblem of finding thz attainable region in higher dimensions

has not been solved and there are still many unanswered
guestions. In this chapter tha results that do apply to any

dimensional space will ©be stated and thereafter further i
properties will be speculated upon. In this chapter it will !
always be assumed that we are working in an n-dimensional space

S | and that the variables of this space .are not linearly dependent.
i

ool This implies that we will not be woiking in a (n-1) or lower

dimensional subspace of the n-space. e
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