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Abstract
Sharing resources on a computer network, especially in heterogeneous 
environments, has many benefits: new applications become possible, and 
use of technology cheaper. This dissertation investigates how resources— 
in particular printing resources—may be shared.

W hile still incom plete, an existing theoretical fram ework for data 
com m unication and resource sharing, the ISO-051 Reference Model, 
provides useful background information and tools for analysis.

A discussion of this framework complements a survey of the principles 
and current state of file and printer servers, and distributed systems. An 
analysis of the design and implementation of a printer server acting as a 
bridge between two networks illustrates problems and results found in 
distributed systems generally.

The dissertation concludes by analyzing the strengths and shortcomings of 
the Reference Model and distributed systems. This and developments in 
technology lead to a proposal of an extended model for printer services, 
and clarification of printer servers' needs and requirements.
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1. Introduction

1.1 Ju s tifica tio n
The 1970s saw the growth of individual computing applications. The 
development and cheap availability of personal computers allowed, for the 
first time, these individual computing applications to be cost effective. 
More and more applications which previously required large mainframes 
became easily accessible to microcomputers.

A second trend  was the development from the mid-sixties of the 
networking of computers (usually minis or mainframes)- By the time 
microcomputers were widely used, networking was a fairly m ature branch 
of computer science.

An advantage that mainframes continued to have over microcomputers 
was that mainframes allowed sophisticated communication between users, 
and the sharing  of peripherals. The latter reason is significant: 
microcomputers have brought down the cost of processing, and the cost of 
all computer hardware has dropped. However, reserving the use of an 
expensive printer for only one personal computer u su a jy  cannot be 
justified. A solution is the use of networking to allow cor-, a mication 
between different computers and the sharing of expensive equipment or 
'resources'.

Networks of small computers have become common, with sophisticated 
sharing of resources and communication between them. In many wotking 
environments, the wide variety of equipment in use complicates this 
communication. It is feasible that an organization could have two (or 
more) networks running in the same environment, Particularly in smaller 
organizations, the need and desirability of communication across different 
networks exists. This dissertation examines issues of resource sharing 
across heterogeneous networks,



1.2 Local-area netw orks
A network is an  interconnected collection of autonomous computers 
[Tanenbaum 1981]. The network allows these computers to communicate 
with each other. There are many different types of networks, using 
different physical m edia to connect the computers, stretching over 
different geographical areas, used for different applications, w ith many 
different types of computers connected to them.

The distinctive features of local-area U tw orks (LANs) fcre (i) they diver a 
small geographical area, a few square kilometres at the most, (ii) the high 
data transfer rate, 0.1-100 Mbps or more and (iii) a low error rate. These 
features allow simplified, fairly '"heap designs and greater flexibility and  
possibility of services [Stallings 1984]. The typical physical connection 
between nodes on a LAN is provided by twisted pair, coaxial cable, or 
optical fibre. ''

1.3 A pplications
Perhaps the greatest application of networking is making computing far 
more accessible and flexible. There are a num ber of applications which 
w hile theoretically possible, only become practical w ith the use of 
networking. Local-area networks are im portant because they are cheap 
and allow easy communication b< t ien local resources. They are also 
im portant because they can b«. "he gatew ay to longer distance 
communication: either with other local area-networks, mainframe 
computers, or computers on the other side of the world.

Desktop publishing is a well known example of a use of networking which 
makes computing accessible, Newspapers or magazines may be p.*. -Jnced 
by fairly cheap technology, the equivalent of which a few years aro  would 
have cost millions of rands, This case is put forward in [Manein1 "-'Sg]. A 
personal observation is that not only the cost of the technology ii -.t • cSxd, 
but because the users of the technology will have experience with the iairly 
user-friendly environments of personal computers, the type o ' •• “ vice 
offered by the technology (hardware and software) will be changed The 
social effects of this can be positive.

In any society, knowledge and the ability ti > communicate ideas is power.
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Desktop publishing allows those who previously could not compete with 
the established media the possibility of being able to start competing. In 
South Africa this is particularly true, and there is evidence of the 
AppleTalk network with Macintoshes and the LaserWriter being popular 
w ith people who have this need [Leah 1987).

Office automation 5s another application of networking. There are various 
claims that office automation will lead to improved productivity, the 
removal of routine work, and greater control of work. However, the issues 
are not dear cut. Hirscheim reviews this area in detail [Hirscheim 1986].

Other applications are electronic mail, banking and financial applications, 
distributed information systems, and computer conferencing, It has even 
been suggested that once the use of networking is more prevalent, that 
computers could be used to enable people to have greater control of their 
own lives by having a direct say in government (participatciy democracy) 
[Mayne 1986].

Unfortunately, like m ost technology, networking can have detrimental 
effects. Privacy is a topic for much concern; the United States which seems 
to have the most safeguards in  this area still has alarming practices 
[Rosenberg 1987]. There are other examples of negative im pact of 
networking, and more areas of concern [BSSRS 1985; Mayne 1986]. This 
issue is not addressed again, not because it is unimportant—all scientists 
have the responsibility for the work they do and its political implications— 
but because the purpose of this dissertation is to examine the technical

1,4 R esources
A resource is a service which is provided by one part of a computer system 
for another. A resource can be hardware (a printer or a modem), or 
software (compiler). Section 1.6 will examine a mechanism for making 
resources available to users on the network.

In a com puter network, there are a num ber of possible resources. 
Secondary memory and I/O  devices are common examples of relatively 
expensive hardware which should be shared by a number of users to make 
their use affordable, For example, a laser printer might cost about R20 000.
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Such a high cost could be shared if a large number r f  personal computers 
and their users could have direct access to the printer [Janson et al. 19831.

The use of some resources can be economically justified in many circum
stances only if they are shared by a number of users. This is not a technical 
limitation, but a practical one — there is no technical reason why each user 
on a network should not have a hard disk and a laser printer. However, 
there are some important applications which need to have shared 
resources {Mitchell and Dion 1982}.

A distributed database is one type of application (e.g. for a booking system 
which has users all over the country, or a hospital information system 
[Jackson et al. 1986]). For this type of application to work, common data 
m ust be shared. Each user on die nehvork needs to see the same common 
data, Even if each user has a personal copy of all the data, there m ust be 
sophisticated communication between the users to keep the data 
consistent, no matter how crudely this is done. The same problems which 
any data base system faces in this regard must be faced by a distributed 
system.

1.5 Aim of th e  research
This dissertation is an exploration of how resources can be shared, with, 
particular emphasis on printing resources. There are three phases to the 
dissertation:

• The more sophisticated sharing of resources across different 
networks is fairly new, and m ost advances have come through 
practical research and experimentation. Nevertheless, there has 
been substantial theoretical work in some areas. This work will be 
discussed because it provides useful background material, and 
tools for analysis.

• The present state of particular types of resource-sharing systems 
will then be surveyed. In the light of this discussion, the design and 
implementation of a system will be presented, highlighting 
important principles and issues from previous discussion.

• The final phase concludes the dissertation by analyzing overall



trends, and  examining w hich issues — both theoretical arid 
practical — need further work. Previous discussion alloy's the 
clarification of some problems.

The rest of this chapter presents background material for fixe rest of the 
dissertation.

1.6 Servers
Servers are processes which provide some service to other parts of a 
system; they are the collection of software and hardware which gives users 
of the system access to particular resources ("a hardware an d /o r software 
resource designed and designated to provide a specific service to a user 
community" [Abrams 1985]). Although it is one logical process, it can take 
m any forms. The software which implements it can be distributed on 
m any machines [Janson et al. 1983]. It m ay be implemented on one 
machine, which may or may not be dedicated to that task. A  num ber of 
copies of the server may be present on several machines, w ith only one 
active at any one time — the others ready to take over if the active one 
fails.

The server's implementation affects its reliability, efficiency and security, 
rather than the way in which a server should be conceptualized. Details of 
reliability and efficiency will be examined more later.

The framework in which servers are designed is the client-server model. A 
'c lien t — some user or process on the system — requests a service from 
the server which provides the service. The motivation for servers are that 
they prom ote fairness, efficiency, sharing and transparency of service 
[Bergiund 1986].

Fairness
By centralizing the access to a service it is possible to ensure that all users 
have fair access to the resource. In this context, the server acts as the 
operating system of the network, and the strategies which an operating 
system uses can be adapted by a server.

Efficiency
While it is true that any system which administers resources uses some of 
the resources in the process of administering them, there are some aspects

5



of servers which prom ote efficiency. In a large system, w ith many 
processors, particular jobs may run more efficiently on some processors 
than others. A server which can allocate processors to jobs according to 
their needs can provide a more efficient service than a hum an user 
explicitly allocating jobs to processors m ay do. This planned use of 
resources leads to more efficient utilization of resources. Using a server 
also allows analysis of a system's behaviour. Over a period of time, tuning 
a system on the basis of information obtained is beneficial.

Sharing and transparency
A server makes a resource easily accessible. The operations which 
manipulate the resource may be intrinsically quite complicated. The detail 
of this manipulation is hidden by the serve/. Sharing also can be promoted 
by the fact that the server will generally define a common representation of 
the resource. All users of the resource will have to understand how this 
representation works and what it means. This standardization increases 
the availability of the resource.

Transparency means that users of a resource access the resource in the 
same way as they would access a local resource. This has im portant 
implications for the design of networks, their im plem entation and 
extensibility.

A final point worth considering is taa t by only allowing one way for a 
resource to be accessed, some control of the use of resources can be 
enforced.

These and other considerations (including user needs and hardw are 
availability) determ ine many design decisions which affect relative 
efficiency and reliability etc. One of the most im portant decisions to be 
made is whether the communication between the client and server should 
by synchronous or asynchronous [Tanenbaum and van Renesse 1985].

With the former paradigm, the communication can be described as a 
remote procedure call. The one communicator issues a procedure call (in 
the same way as any other procedure call) which is executed by the site at 
which the other communicator is resident. Execution at the caller is 
suspended until the callee finishes executing the called procedure. 
Typically, the procedure call would have the effect of providing the

6
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requested services. Any relevant information would usually be sent or 
returned as parameters. The implementation of this can be found in 
(Notion etal. 1987].

The second option — asynchronous communication — can be explained 
by message passing. One communicator sends a message to the other. The 
caller then can continue processing. The callee receives the message and 
processes it in some way. This processing may require that some message 
be passed back to the caller. Synchronization of this communication is 
implementation dependent, and requires careful design.

The explanations in :he above two paragraphs are to some extent 
simplistic. How message passing an d  rem ote procedure calls are 
implemented in a network can be hidden from a user. Aspects of this will 
be discussed in detail at a later stage. The two methods are Illustrated in 
figure 1.1.

Exam ple
A network may have a real-time dock. A user wanting to obtain the time has to request the time Irom 

kwnote procedure call
clk'nt server
issu>s request:
time. _request(time); processes the request
execution halts until the server responds transfers control back to the client

 it server
sends message asking for time gets request
askjorjim e: finds time
continues processing sends message to the dlent

receive time
Figure 1.1 — Synchronous and asynchronous communication



1.7 Hardware/Technological considerations
This section is a list of a few of the technological considerations which 
must be borne in mind.

• The cost of storage on floppy disks is still far more expensive 
than that on a hard  disk. Disk access time is much faster, and 
hard disks are much more reliable than floppy disks.

• Other peripherals — e.g. printers — are still relatively expensive 
and need to be shared.

• Bandwidth is getting cheaper. Optical fibre local-area networks 
are becoming available.

• While secondary memory is becoming far cheaper, there are still 
applications where the amount of secondary memory is limited 
because of cost. There is increasing usage of applications which 
need to share data.

• Balancing the benefits of sharing the costs of some resources is 
the cost of the network equipm ent itself. In  some makes of 
networks, this may be substantial. In  the rest of this dissertation, 
however, it is taken as given that the use of networks does 
reduce the cost of computing, besides allowing the use of 
distributed applications.

1.8 Outline o f dissertation
The purpose of this chapter is to set the context for examining how 
resources can be shared across networks, first of all explaining why it is 
necessary or useful, then w hat resources are and general principles 
involved, and finally to explain technological considerations. The rest 
o f the dissertation is as follows.

Chapter 2 presents existing theoretical aspects of the area. Protocols — 
the rules by which communication takes place — are discussed in the 
context of the In ternational O rganization for S tandardization 
Reference Model on Open Systems Interconnection (ISO-OSI Reference 
Model), and the impact of connecting different networks is examined. 
This context provides the necessary background material for the rest of 
the dissertation. Some of the concepts which are introduced here are 
u se fu l in  a n a ly sis  and  design . W here th is th eo re tica l



w ork is incomplete or inadequate will be pointed out here and in 
subsequent chapters.

On a single computer, the operating system provides the interface between 
a user and the resources of the computer, On a network, where resources 
are distributed, some sort of distributed system software is necessary to 
provide this function. Chapter 3 surveys the current state of distributed 
systems and servers. Links to the theoretical work discussed previously are 
made. This investigation clarifies what issues and principles are imp-, tant 
in n:e design and implementation of resource-sharing systems. This field is 
characterized by the use of experimentation to develop principles and 
ideas; it is through the design, implementation and analysis of real systems 
that the area grows.

Chapters 4 and 5 present nd assess a case study: a printer server which 
provides printing resources on two different networks. This printer server
— which is an example of a fairly unsophisticated resource-sharing system
— is designed to illustrate some of the points made in previous chapters. 
Some of the im portant principles, problems and results of distributed 
systems are dearly shown by this work.

The condusions presented in chapter 6 assess
• the strength, weakness and applicability of the existing theoretical 

models,
•  the needs and requirements of distributed systems in general, and 

printing services in particular,
• the success of general methods for coping with heterogeneity, and
9 what future work needs to be done.



2. Protocols and 
internetworking

While the thrust of much research in resource sharing has been of an 
experimental nature, there has also been theoretical work. The models 
which at present form the basis for communication and resource sharing 
are not complete and are still developing, Nevertheless, there are certain 
areas where more theoretical research has been extensive and influential.

This chapter examines the theoretical models for two reasons. The theory is 
useful background for further discussion and debate. This also makes 
analysis and assessment easier. A second reason why it is included here is 
that later chapters in the dissertation show where the mode! is incomplete 
and needs extension, and where such work would be beneficial in the 
design of real systems.

Protocols are the sets of rules which regulate how communication should 
take place between communicating entities. Just as humans have different 
elaborate sets of rules for communicating in different circumstances, 
computers do too. The chapter discusses computer network protocols and 
their implications. The search for network protocol standards is an 
im portant area of research. The greater the variety of equipm ent and 
applications on a network, the greater the potential for problem s in 
communicating.

Computer network protocols are the operating rules and procedures for 
conducting communication between different network users and devices. 
'Communication' is not one concept: at one level it  m ay mean the 
transmission of bits across a certain type of line, at another level it may be 
the transfer of a high-level construct or concept. As with all computer pro
grams, dealing with different levels of abstraction can be difficult. It is for 
this reason that a layered model of protocols is suggested for computer 
network communication, with different layers being responsible for 
different levels of abstraction



This chapter is divided into three sections. The first describes the ISO-OSI 
Reference Model. The second examines high-level protocols, and the third 
the influence of internetworking on protocols generally.

2.1 ISO-OSI m odel
For any hierarchy of protocols, there should be a num ber of common 
principles. The purpose of the hierarchy is to reduce complexity at each 
level. Bach layer takes some of the services offered by the layer below, 
adds some services to them, and offers these 'value added' services to the 
layer above [Linington 1983]. A process at each layer communicates with a 
process a> its corresponding level This peer communication is virtual 
communication for all layers except the bottom layer. A process at level n 
wanting to communicate with another process at level n gives its data to 
the next layer down, which performs some transformation on the data, and 
sends it  to the next layer down. It is only at the bottom layer that the 
physical communication takes place, At the other computer, the reverse 
process takes place. The data is received at the bottom layer which 
performs the reverse transformation, and passes the data up to the layer 
above. This process is repeated until layer n is reached. A formal definition 
of this can be found in [Lam 1986].

The most common and widely-referenced model for computer network 
protocols is the International Organization for Standardization Reference 
Model for Open Systems Interconnection (ISO-OSI model) [Zimmerman 
1982; Day and Zimmerman 1983], A subcommittee of the ISO started 
working on this model in the late seventies, and by the early eighties had 
published the model. Work is continuing on defining protocols for each of 
the layers of the model, particularly the higher levels.

The ISO-OSI Reference model is examined here as example of a protocol 
hierarchy because it is the best known model. There are a number of other 
models [Mayne 1986]. The dissertation presents a critique of the ISO-OSI 
Reference Model as an example of a standard layered model rather than a 
compaiativr analysis o f  different models and standards.

The ISO-OSI model had a number of specific design principles [ibid.]:

• there must be another layer wherever a different level of abstraction
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is needed
• each layer should perform well defined functions
• the function of each layer m ust facilitate the definition of interna

tionally standardized protocols
• layer boundaries should be chosen to minimize information flow 

across interfaces
• the number of layers should be large enough so that distinct func

tions are in distinct layers, bu t not so large that they bccome 
unmanageable

The aim of the ISOOSI model is to facilitate open systems interconnection: 
this w ould allow different systems to communicate w ith each other 
effectively, as long as they were designed within the parameters of the 
reference model. lit the rest of this dissertation OSI means open systems 
interconnection. There are seven layers in the ISO-OSI model which are 
briefly outlined here.

Physical layer
The physical layer is concerned with transm itting raw  bits over the 
communication line. Protocols at this level are responsible for ensuring 
that if a transmitter sends a T ,  the receiver receives a T .  Decisions like 
what particular voltages represent, and whether the communication is 
broadband or baseband are determined here.

There is also a  choice to be made how the network will be switched — how 
the communicating parties will be connected physically. The two main 
categories are circuit and packet switching, although variations and 
alternatives do exist [Tanenbaum 19813.

Data-link layer
The data-link layer takes the services provided by the physical layer (the 
raw transmission facility), and provides the network layer with an error- 
free line, It breaks the data up into data frames and then transmits them on 
the physical channel. One of its main tasks is to provide a medium access 
protocol [Carlson 1982; Conrad 1982; Kurose et al, 1984].



Network layer
The network layer controls tius operations of the subnet. It takes packets of 
data given to it by the transport layer, and forwards them to the appro
priate node. On a general network, the network layer would be responsible 
for ro''ting.

There are three sublayers here [Mayne 1986].
(1) The subndxvork access layer uses the existing data link layer directly 
to provide an abstract net.
(2) The subnetwork enhancement layer enhances the particular subnet to 
allow data transfer across it to meet required quality of service.
(3) The internetting sublayer is responsible for concatenation of subnets, 
together with global addressing and congestion control.

These latter two sublayers are mainly useful for dealing with internets, and 
will be dealt w ith in more detail later on in this chapter.

Transport layer
The transport layer is responsible for the end-to-end management of data. 
It is responsible for establishing and deleting connections across the 
network. It takes data from the session layer, splits it into smaller units or 
packets and then passes these to the network layer. The network layer is 
responsible for ensuring that the packets get to their destination — they 
might pass through a number of other computers. The transport layer is 
responsible for ensuring that all the packets arrive correctly at the other 
end. The transport layer can provide a datagram or virtual drcuit service 
to the session layer.

Session layer
The session layer [Emmons and Chandler 1983] is the mechanism for 
organizing and structuring interaction between application processes, It is 
the way that the user or application program  sees the network. These 
services can be provided to the presentation layer as either a virtual circuit, 
or a datagram service.

For convenience, in the rest of the dissertation, 'transport functions' refer to 
the functions of the network, transport and session layers (in some local- 
area networks, a protocol may be implemented at only one of these layers).



As will be seen in later chapters, the design and implementation of the 
transport functions make a significant im pact on the perform ance of 
network systems [Watson and Mamrak 1987]. W hile the ISO-OSI model is a 
useful one to use in the design of a system, the implementation should 
take into account that layering in implementation can cause degradation in 
performance. The mechanisms of error detection and recovery, connection 
m anagement, packet length and acknowledgment are im portant factors in 
the performance of the transport functions. Watson and Mamrak examine 
these issues in  more d e tr l .  As com puters' architectures and operating 
systems evolve and adapt for networking applications, the significance of 
the transport functions to overall system performance will increase.

Presentation layer
The general purpose of the presentation layer is to make the application 
processes independent of differences in data representation by performing 
functions tha t require a general solution. It provides any necessary 
transformations on the data.

Application layer
Users' applications reside a t the application layer.

H igh level protocols (presentation and application layer protocols) will be 
examined in  detail in the next section.

2.2  High-level protocols
Protocols in the layers between the physical and session layers provide the 
logical link between the communicating parties. The high level protocols 
— which are defined for the purposes of this dissertation to be those 
protocols in the presentation and application layers — are concerned with 
the sharing of the logical resources across the network and the managing of 
the computing process rather than with data communication itself [Sproull 
and  Cohen 19781. For the entities at this level, the fact that communication 
is taking place across a network or internetwork is irrelevant.

      . 6 -------



Some of the services which jh-level protocols (HLPs) provide are remote 
job entry, file services, mail services, resource sharing, security, text 
com pression and terminal handling [Tanenbaum 1981]. With the 
development of computer networks, the occurrence of heterogeneous 
networks and  internetworks will become more common. It cannot be 
assumed that the computers on the network will have many features in 
common. Thus discussion of HLPs m ust take place in this context; 
meaningful communication tnust take place even though the underlying 
representation is completely different.

Three components of an HLP are:
• The language which describes the functional intent of the protocol, 

including the commands and other control information that the user 
would need to issue or know

• The coding which imposes structure on the stream of bits or bytes 
which tire session layer provides.

•  The transport which provides the communication protocol, The 
transport is implemented by the session and lower layers. Its fut > 
tions will be used by the HL*. to meet the requirements of the ap
plication [Sproull and Cohen 1978].

The ISO-OSI model describes the presentation layer as dealing with the 
representation of user information while between OSI systems, Together 
with the application layer, this layer describes shared information. The 
presentation layer describes the syntax, while the application layer 
describes the semantics [Hollis 1983]. For example, which character set the 
bytes represent is a presentation layer decision, while what they mean to 
the user is an application layer decision. The presentation layer facilities 
deal w ith  connection establishm ent and  term ination, dialogue 
m anagem ent and synchronization, information transfer and context 
definition. In Sproull's and Cohen's terms, all the facilities except the last 
one are transport ones — they are facilities of the session layer which are 
provided by the presentation layer to the application layer.

The context of the presentation layer includes what character set is being 
used or applicable at a particular time, or w hat particular bit patterns 
represent. Text compression, if necessary, would be performed at the 
presentation layer, and the context would define how it was done. Another
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important element is encryption. As the ease of accessing data increases, 
the importance of safeguarding c  rtain information also increases. This is 
an important area for work [Tanenbaum 1981; Voydock and Kent 19853. 
These are examples of the coding element.

The presentation layer offers its services to the application layer whicn 
m ust assign meaning to the data presented to it. The application layer is 
divided into three elements, the user element, the common application 
service element, and the specific application service element [Bartoli 1983; 
Linington 1983], The application layer protocols define the agreement of 
application entity communicators on the semantics of information 
exchange [Bartoli 1983]. The relation between these elements and the 
presentation layer is usefully shown in figure 2.1 [ibid.].

The common application service elements deal, in the main, with the 
transport functions: the establishing, managing and synchronizing of 
connections. One of these service elements allows the definition and 
selection of specific application elements. A service provided a t the higher 
levels, therefore, would be a set of service elements: a particular user 
element, together with selected specific application service elements and 
the common application service elements. Communicating application 
entities would then use the appropriate protocol. For example, a file server 
and its client would both be application layer entities. The server would 
use the protocol to communicate with its client and thereby provide the file



specific application layer service elements

application user elem entlayer

common application layer serv ice elements

presentation
layer

common presentation tayer servfce elements

Figure 2.1 — Application and Presentation Layer

These specific application elements describe the functional intent (the 
language) of the protocol. There are a number of guide-lines for designing 
HLPs. Wherever possible, the protocols should be device independent (not 
rely on the characteristics of any particular hardware), and be independent 
of intervening networks [Lantz and Nowicid 1984]. Simplicity, generality 
and robustness'are also important. When resolving the tension between 
generality and  simplicity, the dictum "a design that provides a special 
feature in a device independent way is worthless if it is never used" should 
be kept in m ind [Sprouli and Cohen 1978].

As there will be a wide variety of equipment and system software on most 
networks, providing for device independence needs careful thought. There 
are two basic approaches to this problem. The first approach is to define a 
v irtu  a] device or representation. There then m ust be a m apping 
mechanism between all real devices and this virtual device. The alternative 
is the parametric approach. The device is controlled by setting various 
parameters. The latter approach has proved to be quite acceptable with 
terminals. However, with the development of OSI, it seems that the virtual 
device approach is more suitable [Day 1980]. Others have qualified this 
[Notkin et al. 1987], pointing out that adopting a single standard may lead 
to unnecessary inefficiency, and have advocated some potential for 
negotiation at bind time.



The rest of this section will illustrate the concept w ith discussion on fne 
transfer protocols. File transfer protocols will also lay a useful basis for 
discussion in future chapters as file servers use file transfer protocols 
extensively.

Virtual Terminal Protocols (VTPs) are another important class of HLPs. 
They are related to printer servers because many of the issues which VTPs 
deal with in reproducing graphics or text m ust be dealt with b r  printer 
servers. Discussion on these m ay be found in other work (Day 1980; Lantz 
and Nowicki 1984; Lowe 1983; Mayne 1986; Tanenbaum  1981]. The 
analysis of a printer protocol in later chapters will use some of this work.

File Transfer, Access and Management Protocols
Conceptually a file is an entity with the following [Linington 1984]:
• naming attributes
• other descriptive attributes
• attributes describing logical structure and dimension
• associated data

All of these need to be represented by the file transfer, access and 
management protocol (FTAM), with mechanisms for managing collections 
of files. The next chapter will discuss the design decisions which have to be 
made in greater detail, and in a more concrete way. The point of this 
section is to describe an abstract model in which this may be done using 
the ISO-OSI model.

The OSI File Service can be described as defining a standard for trans
ferring, accessing and managing information stored in or moved between 
open systems as files [Lewan and Long 1983]. It is the aim of the OSI file 
service to allow otherwise incompatible filing systems to work together. 
These protocols could be used by humans or by applications.

The OSI defines a virtual filestore which Mows differences between local 
representations to be absorbed into local mapping functions, provides 
different services for different users, and allows a variety of different 
systems to be implemented [Linington 1984]. File transformation deals 
v/ith the way in which files are represented. As stated earlier, the session 
layer just recognizes a stream of bytes or bits — it is the HLPs which are



responsible for assigning structure and meaning to these bytes. By 
defining a virtual filestore, a canonical representation of the file is 
developed, i.e. a representation of the file which is meaningful to all users 
of the file is defined.

At the syntactic level this will be dealt w ith at the presentation layer — 
which character sets are used, what control characters mean, and what 
conventions are used to represent digitized images. The protocols which 
do this will be invoked from the application layer.

How the files are stored a t a macro level, and what they mean is the task of 
the application layer protocols.

Consider an application — the user — which wishes to access a file at a 
(remote) site. This file will be stored by a local file system in its own 
format. A local mapping function will be able to map between this and the 
virtual filestore's representation. An application entity at this site will 
communicate with the user's site using the relevant file transfer protocol. 
Users see this communication as the file transfer services, which is 
diagramatically represented in figure 2.2 [Aggarwal et al. 1985]:

The naming and other attributes are used to identify the file, and provide 
descriptive information (date of creation, modification, name of initiator 
etc.). They would also describe the file's access structure, and possibly give 
information like who can have access to the file and the m ode of 
encryption. Work on the standardization of directory systems by ISO is in 
progress [Goodwin and McDonnel 1986].



FTAM services

AP -  VFS

LFSLFS

PM

connection

PM

VFS — virtual filestore 
AP — user application 
PM — protocol m achine 
LFS — local file system s

Figure 2,2 — OSI File Service

The virtual filestore also provides for the structuring of the subunits of the 
file. Abstract operations are defined for manipulating the entire file, and its 
contents.

A session between a user of the file service and the file service goes 
through several distinct phases [Lewan and Long 19831: the file service 
initiation phase, file selection phase, file management phase, file access 
initiation phase, data transfer, file access termination phase, file deselection 
phase, and file service termination phase. The actual services provided 
could be agreed on between two communicators [Aggarwal et al. 1985].

As will be seen later, few real systems delineate the phases described 
above as rigorously as this, There are reasons though why it is useful to 
use a model like this, Firstly, a model is useful when designing and 
conceptualizing a system to help reduce complexity and generally make 
good design choices. This does no t m ean, how ever, tha t the 
implementation of a system needs to correspond exactly to this model. 
Another factor is that each of these phases is responsible for some tasks — 
tasks which are likely to have to be carried out. In analyzing the system, 
the model can be used as a tool to understand and improve w hat the 
system is doing. Device independence may also be promoted by adhering 
to the model closely.

This OSI file service description provides no more than a framework for
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building a real system. Many of the real problems do not appear at first 
sight. The presentation layer services are not necessarily straightforward. If 
a file is being stored at a remote site merely for storage purposes, then it is 
quite acceptable for the file to be transferred bit by b it to that site, and 
recovered in the same way. However, consider the problem of a data file 
which could be run by different computers. The data could include floating 
point numbers or abstract data types — stored on different computers quite 
differently. Two bytes with the same bit pattern m ight mean completely 
different things.

Furthermore, there are decisions about the file service which fall outside 
the scope of the OSI model of file service. In the next chapter, some of these 
decisions will be discussed. The processes which implement these decisions 
are application layer protocols. However, work has not progressed very far 
on standardizing these protocols.

2.3 Internetworking
A natural progression from connecting computers together is connecting 
netw orks together. The same m otivations for netw orking apply  to 
internetw orking. Research into internetw orking aims a t providing a 
uniform  framework for heterogeneous computing where machines and 
networks differ in physical characteristics and geographical location [Boggs 
et al. 1980]. With a well defined model, models for internetworking can 
develop naturally from those for networking, as can be seen in [Lam 1986].

The level of the ISO-OSI model at which interconnection takes place 
depends primarily on the networks involved, and their physical interfaces. 
If interconnection takes place a t level n, then the networks involved m ust 
share common protocols for all levels above level n. Interconnection at 
the physical and data-link layers is straightforward because at that level the 
mapping between two approaches is fairly simple. Interconnection at the 
presentation and application layers with different protocols is difficult, if 
not impossible. This is not because of any of the physical characteristics of 
the networks involved, but because there is increased state information 
about the different protocols, and there being much less probability of a



one-to-orve relationship between these protocols — "success in protocol 
translation seems inversely correlated with the protocol level" [Postel 
1980].

Gateways, which connect different networks, can either be computers 
dedicated to the task of bridging the networks, or simply hosts on more 
than one network which are prepared to pass packets between networks. 
There are two approaches to the tasks of gateways [ibid.]:
• Some gateways take messages from one network, unw rap any 

•'packaging' in that network's format, wrap the packet in the desti
nation network's packaging, and then pass the packets to the des
tination network.

• Others translate the protocol by replacing packets from the source 
network with different packets with the same protocol semantic..

Internetworking does not introduce fundamentally new  problems to 
networking. It certainly com plicate matters, and requires careful thought. 
Most of the work on internetworking has been done a t the network and 
transport layers of the ISO-OSI model. C orresponding to the two 
approaches mentioned in the previous paragraph are CCTLTs [Gien and 
Zimmerman 19793 and ARPA's models [Cerf and Cain 1983]

CCITT's X.75 recommendations which is based, on the X.25 protocol es
tablishes a cascaded virtual circuit between the two communicating en
tities. Each network on the internet provides a virtual circuit for its part of 
the journey. As not all networks provide a virtual circuit service, some 
networks may have to be enhanced — the internetting and subnetwork 
enhancement sublayers of the network layer mentioned earlier would be 
responsible for this.

ARPA's research networks have adopted the approach of providing a 
datagram service as the Internetwork Protocol (IP) at the network layer. 
The Transmission Control Protocol at the transport layer provides end-to- 
end service.

The problems which the above two approaches try to solve are compli
cations of problems of networking. Addressing and routing within the 
internetwork are problems which have not yet been satisfactorily resolved. 
Having fixed routing through an internet is more reliable, but ties down
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resources needti-t vrHik the virtual circuit is up. O n the other hand, 
variable routing leads to sequencing problems whilst perhaps making 
better use of resources. Related to this is the problem of fragmentation. A 
packet going through different networks may have to be fragmented, and 
those fragments fragmented. The reassembly of these packets is not 
straightforward [Gien and Zimmerman 1979; Tanenbaum 1981].

In  assessing the im pact of internetworking on resource sharing it is 
worthwhile noting that problems caused by interconnecting heterogeneous 
networks are th» domain of the lower layers (session layer and below). 
Among others, >se problems are dealing with different physical media 
for communication, and different protocols for routing, fragmentation etc. 
However, a t the presentation and application layers the problem of 
networking heterogeneous networks is reducible to the problem of a 
network w ith heterogeneous application entities, as these layers are 
responsible for resource sharing rather than data communication: the 
added problems of internetworking will be solved by the lower layers.

2 .4  Summary
This chapter introduced a model for networking and resource sharing. The 
ISO-OSI Reference Model was discussed, paying particular attention to 
high-level protocols and file transfer protocols. This was related to 
internetworking and its problems. Some of the possible weaknesses of the 
model were noted, including the problem of excessive layering, the 
inefficiency of a single standard, the incomplete nature of the model, the 
difficulty of protocol conversion at the higher layers and the problem of 
addressing, routing and fragmentation in internetworks,

The next three chapters examine network systems more concretely, and in 
detail, including a case study. TMs leads to an assessment in chapter 6 of 
the usefulness of the theoretical work for real systems.
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3. Servers and Distributed 
System s

3.1 In troduction
This dissertation has so far explained, in a general way, what resources are, 
w hy sharing of resources is important, and has also described a general 
framework for communication. The purpose of this chapter is to explore 
existing systems, and the design and other decisions which need to be 
made, bearing in mind the experimental nature of the field..

There are different philosophies and ways of implementing distributed 
systems. This chapter looks first at the specifics of file and printing services 
before examining distributed systems — networks of computers in which 
resources are shared — more generally. File and printing services can 
stand on their ov/n, as will be seen in the case study analyzed in the next 
two chapters. For those just interested in these aspects of this dissertation, 
it  is unnecessary to look at more general cases More importantly, file and 
p rinting services are an integral part o f distributed services, and 
are therefore a good way of introducing the topic.

Before describing servers and distributed systems, it is useful to place these 
things in the context of the ISO-OSI model examined in chapter 2. Some of 
the decisions which have to be made are related to w hat transport 
functions should be provided (i.e. what services should be provided by 
session layer and lower protocols). The majority of the decisions and and 
protocols discussed are related to the presentation and application layer 
protocols. The standardization of distributed systems as a whole is not 
complete, an aspect which will be covered in more detail in chapter 6.



3 .2  Design princip les for file and p rin te r  
servers

Broadly, file servers have two purposes: to provide users of a system re
liable, long-term storage of files (done for cost and efficiency), and to allow 
files to be shared. 'Sharing' can mean different things. For example, a 
compiler may be shared by all the users of the system. Conceptually 
though, each user could have their own copy of the compiler — it is shared 
because it would be too expensive to provide each user with their own 
copy. Sharing can also be dictated by the needs of a  particular application 
rather than for the sake of reducing costs. If all the users of a file need to 
see the file in the same way as all the others do (if they need to see others' 
modifications of the file, and have others see their modifications), then a 
file has to be shared. Directories ar<_ good examples of files which need to 
be shared in this way.

The previous chapter's discussion of file transfer, access and management 
protocols covered the design considerations for file representation, and 
m apping between different file representations. This section covers, in a 
concrete way, how  file servers provide file service. The file service is 
provided for within the framework of the (X I model; however, how it is 
accomplished is decided by each system.

Exactly w hat design decisions get made depends on what a file server's 
purpose is, and what it v, '1' be used for. File servers can be classified into 
three types: simple, universal and database management support [Janson 
<it al. 1983], depending on their level of service.

A simple file server provides nothing more than remote storage, while a 
file* server providing database support will have all the facilities of a filing 
system. A universal file server falls somewhere in the middle: it gives a 
client process some powerful tools, but does not dictate all the decisions — 
for example, the type of filing system — which the client must make.

The first decision which must be made is w hat service is needed, with 
w hat reliability and performance. With this in mind, some of the other 
issues are:
•  access control
• unit of data access
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• atomic update
• concurrent access

For example, a sophisticated database in a large office should provide 
access at the record (an arbitrary number of bytes) level while guarding 
data from unauthorized access, and would probably need to have a high 
degree of concurrency, while being highly reliable. However, a file server 
for a small school environment is likely to have lesser requirements. Access 
control m ay no t be needed, while whole files would be uploaded or 
downloaded at a time, and there would be no need for concurrent access. 
A low degree of reliability would probably be acceptable.

Access control
All file serve;" collectively play the rdle in a distributed system which a 
filing system does in a centralized operating system. Operating Systems 
are responsible for ensuring that users of the system do not have access to 
files for which they have no authorization. There are two main approaches: 
capability and identity based control. Under capability based control, a 
client of the file server will be allowed access to a file if it can show 
permission (a capability) for the file. In this case, the server takes no 
account of the identity of the client; as long as the client presents a valid 
capability it will get access to the file.

An alternative is for the server to have a list of which clients have what 
access to which files. Thus, the server plays an active rdle in keeping 
control of access to resources — in the capability-based approach it is the 
clients which are responsible for ensuring that capabilities are correctly 
distributed.

Another way of protecting files is to provide no access control at all. Any 
client wanting to store a file on the server encrypts the file. Only clients 
knowing how to decode a file can make sense of it. While this cannot 
prevent malicious destruction of valuable files it can prevent unauthorized 
inspection of the file, and unauthorized modifications (as any modification 
will be easily detectable).

Capability-based and identity-based m ethods have been successfully 
implemented, and seem acceptable methods of imposing access control



[Mitchell and Dion 1982], but there are problems with both [Tanenbaum 
and van Renesse 1985]. While the caj ability-based approach seems easier 
to  implement, especially with multiple file servers on a network, the 
identity-based approach does allow more flexibility in  providing finer 
granularity of access control. It also seems that there may be problems in 
ensuring that capabilities do not fall into the wrong hands, especially when 
a file server is serving a num ber of connected netw orks. The 
encryption/decryption method may not be viable in terms of performance 
where parts of files rather than whole files are units of data access.

Unit of data access
The unit of data access varies between file servers. For those servers — 
perhaps better called disk or storage servers — which play no more a rdle 
than storing files remotely, accessing files as units is acceptable from the 
point of view of the client, and preferable as far as the overall design, 
efficiency and simplicity go. If a typical transaction is for the client to 
download an entire file, make any changes locally, and then send the 
modified file back to the ,'r.r,',ver, then this unit o f data access is preferable, 
as to provide a more sophisticated service w ould be an unnecessary 
complication.

A  file server which provides a paged virtual memory system to its clients 
will need a page rather than the entire file as a unit of data access. This 
method has the advantage that if only a few changes are being made to a 
file, then only the relevant pages need be communicated over the network, 
More than providing a flexible service, page access raises the possibility of 
having intelligent w orkstations w ith no local secondary memory 
[Lazowski e t al. 1986]. Even though the cost o f secondary memory is 
decreasing rapidly, this is still important for two reasons. Even if each 
workstation on a network does have a large hard disk attached to it, it 
would be a major constraint if this disk were not accessible from other 
workstations (a user m ay then be tied to one machine), Further, there are 
still applications where the cost of secondary memory will continue to be 
significant in relation the overall cost of the system. An example of this will 
be discussed later.

Networks which connect more than one type of computer may have to



deal with more than one size of page.

A more generalized version of page access is to allow clients access to any 
sequence 01 bytes, and this allows the greatest flexibility [Svobodova 1984].

Atomic update
The issues of atomic update and concurrent access affect the complexity of 
design, They are related to the unit of data access, as the smaller the unit of 
data access, the greater the flexibility that can be offered. To examine these 
issues, the concept of a transaction has been developed. A transaction is a 
set of events which is atomic, i.e. the events as a whole are indivisible; 
either all of them happen, or none of them happen, and the data which it 
accesses will not be accessed by any other process while the transaction is 
being processed. These concepts are called atom ic u p d a te  and 
serializability respectively [Tanenbaum and van Renesse 1985]. In this 
section, atomic update is examined, in the next serializability.

The first question is mainly one of reliability: how safe should the system 
be against hardware and /o r  software failures? What is being assessed here 
is how the system should react if there is a failure of some sort while a 
client is accessing data. The rule is that files must always be in  a consistent 
state So, if a client updates a file and the operation completes then the 
new, updated version of the file must be stored by the server. If there is a 
failure, the server must still try save the new version. If this is not possible 
though, the old version of the file must c-e stored. Another factor to 
consider is that a catastrophic event might permanently destroy a version 
of the file.

One way to implement reliability in this context is to use stable storage 
[Mitchell and Dion 1982]. Two copies of all data are kept. W hen data are 
modified, two physical modifications have to be made; the update to the 
second copy is only made once the update to the first copy has been made 
successfully. If there is a crash, the server can restore itself to a consistent 
state by examining both copies of the file it was accessing.

An alternative is to keep only a second copy of the data being modified 
[Dion 1984], When a page is being updated, the server writes to a shadow 
page, and keeps track of its intentions. If the server crashes, it is abl to



recover to a consistent state by using the shadow pages and  lists of 
intentions. A full description of this mechanism can be found in [Dion 
1984; Walker and Popek, undated], and a comparison between the two in 
[Mitchell and Dion 1982]. There are a number of other mechanisms. For 
example, the server can write changes to a log. Once the user is satisfied 
with the changes, the server can update the file from the log. Even if the 
server crashes a number of times, a consistent state can be reached. A 
description of this and other techniques can be found in [Svobodova 1984].

Concurrent access
Concurrent access by several clients to the same file can also affect the 
consistency of a file. If client A is modifying a file while client B is reading 
it, it is quite possible for B to see an inconsistent version of the file. For this 
reason, the server has the task of ensuring that no concurrent access of a 
file leads to inconsistency.

The easiest w ay to prevent these unwelcome effects is to prevent any 
concurrent access of files. In many cases this is practical, and does not lead 
to  degradation of service. Assuming this makes im plem entation of 
concurrent access comparatively simple.

Making such a simplification is not possible, however, in  m any cases. A 
distributed database might be unworkable if m ost data accesses were to 
one very large file. There is no need for whole files to be protected from 
other users if the changes being made are restricted to a small region of the 
file and the other users w ant access to unrelated parts of the file. 
Furthermore, there is no reason not to allow concurrent access to any 
num ber of clients who are only reading from a file. The un it of 
concurrency control (the portion of the file for which there m ust be 
concurrency control) is determined by the unit of data access oiily to the 
extent that the unit of concurrency control must be larger than the unit of 
data access.

The most common unit of concurrency control is the file [ibid.], but file 
servers which have page or dynamically variable size units also exist. 
Within the unit of concurrency control, there are several approaches: the 
single client (either writer or reader) within the unit of concurrency 
control; single writer or multiple readers within the unit of concurrency



control; and  single writer and multiple readers w ithin the unit o f 
concurrency control. The last type is the most interesting. The writer 
updates a separate copy of the file, while the readers have access to the 
original. When the changes to the file are committed, the readers have the 
options of using the new or old version of the file.

Another approach is needed in the case of systems like the Locus dis
tributed file system where several, replicated copies of the file may be 
present in a system on different servers {Walker and Popek, undated]. 
When a client wants to use a file it gets access to the one which it is most 
efficient for it  to have. One of the servers which has a copy of the file acts 
as a synchronization site, and is responsible for ensuring that the 
appropriate restrictions on concurrent access are kept. The server which 
has the copy of file being used is responsible for ensuring that the file 
remains in a consistent state. If any changes are made to the file, this server 
m ust inform the other servers which have copies of this file that changes 
have been made. These servers in turn are responsible for ensuring that 
they update their versions of the files. A high level of transparency was 
found to help in implementing transactions [Weinstein et al. 1985].

Not only does the scope of an atomic transaction in a file have to be de
fined, bu t how  many files can be involved in a transaction, and if more 
than one file can be involved in a transaction whether they can be on more 
than one server. By allowing more than one file on multiple servers to be 
included in a transaction, the efficiency of the filing system can be 
improved at fhe cost of increased complexity and the introduction of 
problems like deadlock.

As networks get more sophisticated, bigger and interconnected with other 
networks, the importance of distributed file systems (i.e. where a number 
of file servers together are responsible for the system) will grow. This is 
especially so for distributed file systems which are transparent — where 
the clients cannot tell where files are physically stored. ■



Reliability and Robustness
A discussion of how reliable storage can be implemented by a file server 
has already taken place. This is one aspect of reliability. Errors on the 
network and physical faults are other aspects. File transfer protocols must 
be correct. The discussion of how reliable a system should be will take 
place in a subsequent section in the context of distributed systems in 
general.

Of course, file servers also need to cope with possible crashes of the client 
machines, or faulty communication on the network. Being robust—able to 
tolerate errors—is another important property.

This has been a very brief overview of file servers. The design areas 
outlined have been concurrency control (unit of concurrency control, scope 
of concurrent transaction), unit of data access, reliability and access 
control). Figure 3.1 is a summary of the decisions and choices which can be

access  capability/identity based, encryption
unit of data access  fite/page/arbitrary range ot bytes
atomic update stable storage/intentions lisl/logging
concurrent access unit for locking; number ot readers and writers allowed

___________________________ Figure_3.1___________________________

Printer servers
The printer service defines a virtual printer which its clients see. The 
actual service is divided into two parts; spooling, and the control of the 
printing device [Janson et a$. 1983]. These parts of the service may be 
implemented on one machine or on two machines, and can be considered 
separately for conceptual purposes. The spooler part is a simple extension 
of a file server. A file to be printed is sent to the spooler which then saves 
the f.le and does any queuing necessary.



A n alternative approach would be for the client to send the spooler the 
name of the file to be printed. The spooler would then not save a copy of 
the file, b u t transfer it  to ' the printing device when appropriate 
[Tanenbaum and van Renesse 1985]. This approach, however, demands 
some level of sophistication and multitasking from the client.

Usually, a client is relieved of any further tasks associated with printing as 
the server takes responsibility. The print device controller transfers the files 
from the spooler to the printing device.

During the operation of this service, protocol translation on the file can 
take place at three places.
• The client can do protocol conversion before sending it,
• the spooler can do protocol conversion before saving it, and
• the device controller can do protocol conversion before printing it.

The advantages and disadvantages of these different approaches will be 
seen in the particular case of the printer server described in chapters 4 and 
5. In general, which is the best approach depends on the nature of the 
system and the typical p rint jobs which are run. For example, the spooler 
doing all the protocol conversion would relieve the clients from doing it. 
However, if there was much protocol conversion to be done, the printer 
server would become a bottle-neck in the system.

In general, the protocol conversion takes place twice. The client translates 
the file into the standard device-independent protocol, and the server 
translates from the standard protocol into the device dependent protocol 
for the specific printer.

It is also important for a printer server to report back to a user on the status 
of a print job. This could take place once the job had been spooled safely, 
when the job has completed, and when problems occur. The level of 
sophistication of the service, and the reliability of the system would 
determine where this happened.

In the next chapters, the design and implementation of a printer server is 
presented. In chapter 6, a set of requirements for printer servers will be 
proposed, paying attention to the question of where protocol conversion 
should be done, and the rdie of the spooler — this will include a proposed



extension to the model of Janson et al.

3 .3  Survey o f ex isting  servers
This section will briefly examine some of the file servers, describing the 
design decisions which were made in their implementation.

Simple file servers
The Acorn File Server [Dellar 1983] is a file server designed to provide file 
storage on cheap networks, typically in a school environment, where the 
cost of disk drives for all the machines on the network cannot be justified.

The services which it provides are unsophisticated and simple. Although 
files can be accessed at the file or byte level, the file manipulation 
operations are only provided at a low level. No provision for concurrent 
access is made; users wanting to have concurrent access have to provide it 
themselves. The file server uses a version of stable storage to provide 
reliable storage of directory maps. No provision seems to be made for the 
reliable storage of any other data, and if the server crashes, all active data 
about its clients are lost. Access control is performed by the file server 
using a simple password system and capability-like handles.

A major constraint on the design of the system was the lack of features of 
the client machines — no secondary memory, and not much memory at all, 
emphasizing, in the context of a low-cost environment, the need for all 
protocols to be simple. This was accomplished by using a connection-less 
protocol, and relying on the idempotent nature of most of the operations. 
The system shows that reasonable performance can be achieved with little

A similar approach was adopted in the construction of a Simple File Server 
(SFS) at the National University of Singapore [Srinivasan and Ananda
1986]. Like the Acorn File Server, concurrent access must be implemented 
by clients. Files are the units of data access. A checkpoint/recovery 
protocol (similar to the logging system) is used to provide reliable storage.
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Universal file servers
One of the best known file servers is the Cambridge File Server [Dion 1984; 
Mitchell and Dion 1982; Svobodova 1984], which falls into the category of 
universal file servers.1 Access to the file server is controlled using a 
capability based approach Clients can access arbitrary subranges of bytes, 
and concurrent access is supported to the extent that each file can have a 
single writer or multiple readers within it. Reliability of data is guaranteed 
by using a combination of shadow pages and an intentions log: alt changes 
are written to shadow pages, and a record of which blocks should be 
allocated or deallocated is also made. Using this record, the file server can 
reach a consistent state after a crash. The state of the disk is recorded by 
redundantly storing an object m ap (where objects are stored), and a. 
cylinder map (what objects are stored on each cylinder). If either of these 
maps gets corrupted, it can be reconstructed from the other.

One of the reasons the Cambridge File Server is a good example of a 
universal file server is that two different file systems have been im
plemented on it, including the Tripos Filing System [Richardson and 
Needham 1983], which provides a filing system for diskless machines 
connected on a  Cambridge ring. The secondary storage is provided by a 
Cambridge File Server, with a dedicated machine known as the Tripos 
Filing Machine giving clients of the Tripos filing system access to the file 
server. The advantage of dedicating a computer for this task is that it 
relieves the load on client machines, as well as allowing efficient use of 
caching, and the implementation of a better security mechanism than the 
Cambridge File Server itself has, While theoretically the Tripos Filing 
Machine could be implemented on the same machine as the file server, 
with the type of hardware available to the implementors of the system, it 
was necessary to use a different computer. By fine tuning the various 
protocols for the type of service the file system was giving, significrnt 
gains in service could be made by using caching and by reducing fi . cost 
of synchronization.

The Area File Server [Muir et al. 1985] and the Amoeba File Server

IRecail that universal file servers are designed 
bu ilt on top  of them , and c o e x is t!_ -

icstion o7icrvices to^heir climto tM n sin



[Mullender and Tanenbaum 1985] are other examples of file servers which 
support different filing systems.

FUing system/database management
The Xerox Distributed File System was intended as the basis for database 
research [Mitchell and Dion 19821. Access control is imposed using an 
identity-based approach. Data and directories are stored reliably using 
stable storage. A high degree of concurrency (single writer and multiple 
readers within a transaction) with byte level locking on m ultiple files 
within the same transaction is supported, As with more sophisticated 
systems, it  is the server which is responsible for managing the 
concurrency, relieving clients of this task.

Printer servers
The printer server in the Cambridge Distributed System only accepts one 
file at a  time [Needham and, Herbert 1982]. Spooling has to be provided by 
a client. So, in the same way the Tripos Filing Machine was built on top of 
the Cambridge File Server, a printing service can be placed on top of the 
printer server, This concept will be expanded in chapter 6.

The MacServe printer .^rver for the AppleTalk system [Infosphere 1986], 
allows all nodes on the network to send it files for printing on Apple's 
Imagewriter. Spooling is allowed depending on how much disk space has 
been allocated for the spooling function of MacServe.
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3 .4  D istribu ted  sy stem s princip les
File servers are a useful introduction to distributed systems because the 
principles used in their implementation are also applicable to other areas. 
Access control, concurrency control and reliability are equally important 
for many shared resources, and distributed systems in general [Notkin et 
al. 19871.

The coherence of a distributed system depends on what extent the dis
tributed system was planned or grafted on afterwards, and on the level of 
uniformity in the system. Clearly, heterogeneity is unavoidable, but the 
level of heterogeneity in the system Is important in its design. It must be 
accepted that at the hardw are level, heterogeneity m ust be catered for. A 
more open question is whether higher-level functions like operating 
systems should be homogeneous or not.

There are two basic divisions of distributed systems, distributed operating 
system s,  and network operating systems [Fortier 1986; Tanenbaum and 
van Renesse 1985; Tripathi et al. 1987]. A network operating system is a 
distributed system w here each of the computers on the system uses its 
own operating system. In addition to the local operating system, there is 
additional hardware r;nd/or software which allows resources to be shared.

A  distributed operating system, on the other hand, is not built on to ex
isting software or operating system. It is a system-wide operating system. 
Each computer on the network has the same operating system (the 
hardware can be different, but the operating system m ust be the same). To 
sum up the difference: in a network operating system, resources are locally 
owned and managed, and are available on request to other users; in a 
distributed operating system, all resources are globally owned, managed 
and shared.

The design principles of distributed systems are not much different from 
those used when designing an operating system, Besides those principles 
mentioned above, performance, flexibility and extensibilty should also be 
considered. The shrring of resources is complicated by the fact there is no 
shared memory between all the parts of the system, and no global system 
state available as there is in a centralized operating system.
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Transparency
Transparency — the ability of a network or internetwork to hide machine 
boundaries from users — is one of the most im portant principles. A 
completely transparent system would allow a user to access the same 
application from a variety of machines. N ot only would this mean that 
resources could be effectively shared, but this could lead to optimal use of 
resources; files could be stored on the best (however that is measured) 
place for them to be stored, the actual processing could be done on 
whichever processor(s) in the system would provide the best service. All of 
this could be hidden from the user.

Full transparency means common or compatible high-level protocols 
(HLPs). This is not an inherent problem with internetworks, as HLPs do 
not have to deal with hardware considerations. As a practical problem 
though, HLPs on different netw orks are incom patible, m aking 
transformation between the two almost impossible. This means that a 
common HLP must be available on all the networks connected to the 
internet. (Of course, these protocols could be available in addition to 
others.) The difficulty of protocol translation at the high-levels was pointed 
ou t in chapter 2.

It is worth mentioning here that the transparency of a system is an in
dicator of whether it  is a distributed or network operating system. A com
pletely transparent system is a distributed operating system, while a non
transparent system is a network operating system. It is also true that tlxis 
distinction can become blurred [Tanenbaum and van Eenessc 1985]. A 
filing system may be completely transparent w hile the process 
management is not transparent at all.

One problem of a practical nature is that different networks have different 
performances. If an internetwork is completely transparent, this would not 
be immediately obvious to a user. Anomalies in service, or degradation of 
service are possible. So, for example, a user might see that a laser printer is 
available on the system, and decide to print a long file n  it. If the laser 
printer is on another network which is only accessible through a 1200 bps 
line, the performance the user experiences may not be acceptable, and this 
may also tie down other resources of the network. Although tixis is a 
problem, it need not be insurm ountable, and the advantages of



transparency far outweigh this disadvantage.

Naming
Naming is one of the more important factors in transparency. The name of 
a resource that a user sees should not imply its addr-iss. The system should 
resolve an entity's address given its name. Other issues are how names are 
acquired, and whether there should be a global name space [Nothin e t al.
1987]. Work on the standardization of naming is in progress [Goodwin and 
McDonnei 1986).

Reliability
Users of a distributed system m ust be able to rely on it. Experience 
[Lampson 1983] shows that reliability is difficult to pu t onto a system after 
it has been implemented. This means that reliability must be an essential 
part of the design of a successful system. However, reliability must be kept 
in context, as there is often a  tension between reliability on the one hand, 
and  speed and simplicity on the other. And if a system crash is not 
disastrous, then the maxim "one crash a week is a small price to pay for 
20% better performance" [ibid.] may well be true. This point will be well 
illustrated in the implementation of a printer server which is discussed in 
subsequent chapters.

O ne way of handling errors is to have an exception server to deal with 
problems. Tanenbaum and van Renesse point out that many systems tend 
to favour performance over reliability [Tanenbaum and van Renesse 1985].

General
As distributed operating systems develop, global network management of 
all the processors in the system will become more important. Scheduling 
and protection against deadlock are more difficult in a distributed 
operating system than a centralized operating system because there is little 
global information, Distributed deadlock detection and prevention 
algorithms can be used [Peterson and Silberschatz 1985].

Remote procedure calls are a fairly common way .of doing interprocess 
communication; asynchronous communication can make programming 
messy [Tanenbaum and van Renesse 1985]. Language and system support 
for the automatic generation of stubs for remote procedure calls is useful 
[Notkin et al, 1987].



Whether transport functions should be assumed reliable of not is an open 
question. It has been argued [Watson and Mamrak 1987] that as higher 
level functions need to cater for errors w hether or nor the transport 
functions are reliable, making transport protocols reliable is unnecessary 
and expensive. Related to this is whether the ISO-OSI model is useful in 
distributed systems. Transport functions will be treated in more depth

3 .5  Survey of ex isting  d istribu ted  sys tem s
Illustrative examples of some of the distributed systems principles are the 
the Locus system, the V-system, and the Grapevine system.

The Locus system [Walker and Popek, undated; Walker et al. 1983] initially 
linked VAX ll/7 5 0 s  over an ethernet, bu t has also been implemented on a 
variety of computers connected, by different networks, and an Internet 
Locus [Sheltzei: and Popek 1986] also exists. The primary aims of Locus 
w ere to provide a fully transparent system with high reliability, flexible 
replication of storage, and high performance. The file system is a superset 
of the Unix system. Both the file system and processes are fully 
transparent: a user does not know where a file which is being used i% 
stored, nor where processes are being run. This allows a great deal of 
flexibility, and can greatly im prove system performance as process 
migration can drastically reduce data transfer across tire network.

A lot of effort went into providing error recovery, reliability and avail
ability. Highly replicated data structures, particularly file directories, are 
one of the chief factors promoting reliability, availability and efficiency. 
(The Eden system [Black 1985] also found that replicating structures like 
directories improved performance.)

M uch thought had to go into synchronization and reconciliation 
mechanisms to keep different copies of the same data consistent. For 
example, if there is a physical break in the network, different replicas of a 
file may be on different partitions of the network. The question which a 
system has to address is whether users should have access to these replicas 
while the network is divided. Locus does allow access. Its rationale is that



most shared files are shared in read-only mode, and that other shared files 
are system files like directories for w hich autom atic reconciliation 
algorithms exist.

Dynamic reconfiguration of the system is allowed, so high is the degree of 
transparency. Transparency was also important for the implementations of 
transactions on the Locus system [Weinstein et al. 19851-

The Locus system has successfully provided a transparent system, even in 
the internet case. Sensitivity to the slow speed of internetwork links was 
diminished by using three design principles, The use of a semantics based 
protocol to raise tlie level -  • • ssages sent across the network substantially 
reduced network traffic, exploiting locality (as in  any operating 
system), and doing appropriate job migration to minimize data movement 
were also helpful.

Stanford's V-system [Berglund 1986; Lantz and Nowicki 19841 is also a 
distributed system which allows transparent access to files, and trans
parent execution of programs, One of the underlying design prir. iples of 
the V-system Is that communication between different processes can be 
done using synchronous message nassing, the calling process being 
suspended until it receives a response from tite c&llee. This communication 
between processes is transparent to a user. The V-system is implemented 
on the Stanford University Network which is connected with a number of 
networks, including 10 Mbps ethemets, and has a num ber of different 
hosts including diskless workstation.*, and timesharing computers, There 
are a number of dedicated servers on the network.

Like the Locus system, the V-system provides network-transparent exe
cution of processes. V also allows processes to migrate while executing 
[Theimer et al. 1985]. This gives the advantage that a user can use spare 
processing power (the processors of workstations which are not being used 
heavily), but allow these spare processors to be reclaimed by their local 
applications or users. Migrating a process in mid-job may mean that a few 
megabytes of data must be transferred from one computer to another. To 
suspend a job for the time that this will take may be prohibitive. Tlie 
solution used in the V-system is explained in figure 3.2. By adopting this 
approach, process migration becomes possible.



By allowing communication with, and control over groups of processes, 
the V kernel supports distributed server groups, distributed Job control, 
and distributed parallel programs [Cheriton and Zwaenepoel 1985). 
Processes may be grouped togther, and operations such as sending 
messages to the group or suspending the group may be performed easily 
and efficiently.

Some of the; interesting results obtained from observing the behaviour of 
the V-system [Lam* et ai. 1984] have heer, found in  other systems, 
including Locus, to r  fcr.'smpiv, Internet Lixus found if im portant to raise 
the level of the ^cmmuivxjttiDn witMn the With; the Vvsystem,
improving the -i protocols has far more effect on improving .
performance than Lie w u W y ln g  ctizpjjvunicaticin mechanism.
Related to this, the study ot : .u relative significance of different factors on 
performance j£a?fcz;/et fj. 'IV?' ‘ showiidt that in o.itier, the factors V /hich  

perfomv&nce h  ir©sti>etisVvve :.o  a t e .  ■: |i^

•  performance o f  f3?.ev,o2'sstittiori,',.. j!  i!  ■■

• performance of Wjatqii l\05t it any, - !i ( ,
• level of couvnubti’-AiiV. i: ,
•  choice anti ic^A raenU tk^  "-v transport pro'oC.ois, and lastly . -
•  bandwidth! 1 ' :.v-" - . ' ' V '



1. A user al computer A decides to migrate 
a  job to machine B. The data  representing 
this process (Including code) is transferred

2. After a  while som eone else decides to use 
B. As a local process h as priority, A's 
process is preempted, and the  system 
decides to move it to C. First the  data Is 
moved to C.

Figure 3.2

3, Once the  data  has  been  moved, the 
system checks to s e e  whether many of the 
nages transferred have been changed. If 
so, they are updated. This p rocess is 
repeated u r 'f  the number of pages that 
have been changed since the last copy is

4. If the number of pages changed is small, 
or the number of changes is not 
decreasing on each  iteration of step 3, the 
job is suspended on B, and all the 
remaining data transferred to C. The job 
now starts running on C.

Migration in  the V-system.



Grapevine [Birreii et al. 1982] is a distributed syster with the primary 
function of providing a message service in a large internet- Besides de
livering messages, it also has facilities for naming, access control and 
authentication, and resource location. These are very general functions 
which are needed by most services in any sort of operating system. Users 
of Grapevine do use these other facilities for services other than an 
electronic mail system. The design goals of the system were to have a 
replicated, distributed and reliable system with decentralized admin
istration and reasonable performance. The physical system comprises 
ethemets (linked to each other directly by a gateway, or via telephone 
lines) which network personal computers and other dedicated servers. 
This is a large system supporting thousands of users.

One of the simplifications which Grapevine makes means that the system 
adopts a looser definition of consistency than does Locus, for example. In 
the Locus system, two users cannot modify different replicas of the same 
data except under unusual conditions (a physical partition in the network). 
However, for Grapevine's applications, it is acceptable for different users 
to access different versions of the same data. For example, if a user changes 
the location of its mailbox sites, not all Grapevine servers may be aware of 
the change immediately. If a server knowing the user's old address sends a 
message to it, then the message will be forwarded to the user a t its new 
location, and the server's information will be updated. Thus, Grapevine 
takes the attitude that inconsistencies between replicated copies of the 
same data are acceptable because the copies will converge quite quickly, 
and that inconsistencies can be recovered from quite cheaply, and without 
any long-term ill-effect.

3 .6  Analysis
Although a relatively new field, there are a number of sophisticated 
systems available. Reliable and efficient file servers with a  wide variation 
of sophistication of service exist. Although their design can be complex, 
many of the lessons and principles of:operating systems can be applied in 
the design of file servers — as with any distributed systems. Implementing 
reliability and concurrency prop, ,iy ar4 the areas which cause the most 
problems.
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The range of sophistication shows the differences in philosophy of designers 
and the needs of users. Systems like the Simple File Server are examples of 
system s which allow sharing of resources through loose coupling. One 
particular service is shared; for the other services, the individual computers 
are responsible. The emphasis is on cheap sharing of resources.

On the other extreme, systems like the V-system and  the Locus system are 
comparable in sophistication to an  operating system on a large computer. It 
is important to note the advance of these systems over earlier systems, 
particularly as far as transparency is concerned. The Newcastle Connection 
[Brownbridge et al. 1982] is also a distributed UNIX-like system. However, the 
m achine boundaries are not hidden. The name space is hierarchically 
organized, w ith the each component's file system appearing to the users as a 
directory of the global system. Furthermore, a user m ust negotiate rights 
with the administrator of each sub-system. Contrast this to the Locus system 
where the name space and access control are globally-managed. Directories 
are logically-organized — each directory can contain files which are on 
different machines.

Another interesting result has been the successful use of remote procedure 
calls or synchronous message passing in Locus and the V-system. With the 
a p p ro p ria te  system  env ironm en t, rem ote p ro ced u re  calls m ake 
development easier, The developers of the Eden system found in earlier 
versions of their system, that without proper support remote procedure calls 
were not appropriate [Black 1985], The implementation discussed in the next 
two chapters shows the need for language and system support.

One of the more promising findings so far is that the performance of dis
tributed systems can easily be improved by better hardware — doubling of 
the speed of the processor may double the performance. The apparent per
formance of a workstation is dependent on other things. Larger primary and 
secondary memory will allow more effective use of strategies like caching 
and buffering and thereby also improve the performance of the workstation 
[Lampson 1983].

As the cost/performance ratio of processors drops, and disk space becomes 
cheaper, many of the constraints which applied to some of the early



systems will no longer apply. Replication of data improves both 
availability, performance and reliability although significant effort is 
required to ensure that the different copies of the data stay within certain 
limits of consistency.

Expansion and proliferation of network services will emphasize the need 
for transparency. Dynamic reconfiguration of networks and services on 
them is needed both to cope with growth and moving, and to allow greater 
availability (if one file server crashes, users should be able to access their 
data from other file servers).

Printer services have not received that much attention [Tanenbaumand 
van Renesse 1985}. In  the implementation discussed in  the following 
chapters, the im portance of printer protocols will be seen. The 
spooler/device controller model will be discussed in chapter 6, using the 
experience gained in. the implementation, and  an  extension to the model 
will be proposed.

The next two chapters examine a case study of a small distributed system. 
This is a printer server which acts as a bridge between two different 
computers. After that, distributed systems will be examined in the context 
of resource sharing and communication generally.



4. A case study—MAT
This dissertation has surveyed both the theoretical and practical aspects of 
resource sharing and distributed systems. In this chapter, the design and 
implementation of a printer server are presented and discussed. This is an 
experimental system which highlights issues and shortcomings of 
distributed systems. In  the next chapter, an assessment of the server is 
made both as a system and as an example of a distributed system. Some of 
the aspects of distributed systems which these two chapters examine are 
performance, concurrency, the need for language and system support, 
design of printer protocols and requirements for printer servers.

4.1 Problem  descrip tion
In  an  environment with relatively varied equipment, and a fairly small 
number of instances of each type of equipment, expensive resources such 
as a printer can be underutilized. Where there are several networks in an 
organization, an expensive printer on one network should be available 
from the others to make full use of the machine. A good example of this 
situation is show n in th e  Department of C om puter Science a t the 
University of ihe Witwatersrand, which has:
• An AppleTalk network, with Apple Macintoshes and an Apple 

LaserWriter aitadied to it
• An IBM PC-network, with four IBM ATs and one IBM XT attached to 

it. An IBM Proprinter is attached to one of the IBM machines
• A Macbridge—a card inserted into a slot on an IBM XT or AT. This 

makes one of the machines on the IBM PC-net a node on the Ap
pleTalk network. Using appropriate software, this machine can print 
files directly to the Apple LaserWriter, and files can be transferred 
between this IBM machine, and any of the Apple Macintoshes. Note 
that none of the other machines on the IBM PC-net can use any of the 
facilities of Macbridge.

Two possibiii’ •. . oar almost immediately. Ideally, a printer on either 
network s'.uuld be available from anywhere on the combined networks,
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Secondly, a  printer spooler would be useful, Before discussing a proposed 
solution, a technical introduction to the equipm ent is given to set the 
context

PC-netwark

The IBM PC-network [IBM 1984] is a broadband bus local-area network 
running at 2 Mbps. Although the network is logically a bus, its physical 
configuration is that of a star network. A net ,/ork adapter q y d  iti installed 
in each machine connected to the network. This adapter card implements 
protocols up to the session layer. Session layer facilities are offered to the 
user application by NETBIOS. NETBIOS is the interface between the 
computer and the network card. More detail on NETBIOS can be found in 
appendix A; the basic facilities it offers are session'  ' -name support,
datagram support and monitoring functions.

Briefly, a program executes a NETBIOS command by  *uv.. . ̂ in g  a  block in 
memory — called a network control block — with appropriate data, 
depending on the function to be invoked. The program  then raises an 
interrupt which has the effect of passing the address of this block to the 
network card, and transferring control to the card. The card then performs 
the appropriate function. There are three modes of operation:
• the NETBIOS card can block the calling program until the function is 

completed,
•  the NETBIOS card can perform some initial checks before returning 

control back to the calling program, after which it processes the 
command asynchronous!/. The calling program m ust then check an 
appropriate variable to find out when the operation has been 
performed, and

• the NETBIOS card can perform some initial checks before.returning 
control back to the calling program, after which it processes the 
command asynchronous!/. When the NETBIOS command completes, 
the NETBIOS card raises an. interrupt which transfers control to a 
routine specified in the network control block by the calling program.

The advantage of using PC-network is that NETBIOS removes many of the 
detail problems which would otherwise have to be solved, as all protocols 
up to the session layer have already been implemented. Even though the 
IBM PC-network has not been very successful [Data Communications
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1986], IBM are using the same NETBIOS for its token ring network. The 
University of Pretoria are implementing a  NETBIOS interface for their 
Novell network. Therefore, the work described here does not rely on the 
physical characteristics of the network.

AppleTalk network

The AppleTalk network [Apple undated] is a baseband local-area network, 
running at approximately 230Kbps. A hierarchy of protocols has been 
im plem ented hy Apple, broadly im plem ented w ithin the ISO-OSI 
framework. The protocols of interest are the Link Access Protocol (ALAP) 
which is implemented at the Data-link layer, the Datagram Delivery 
protocol (DDF) at the network layer, the AppleTalk Transaction Protocol 
(ATP) at the transport layer, the Name Binding Protocol (NBF) at the 
session layer, and the Printer Access Prate 2ol (PAP) at the presentation 
layer. Appendix B gives a more detailed account of AppleTalk protocols. 
N etw ork commands are issued on the Macintoshes using standard 
operating system calls.

Apple LaserWriter

The Apple LaserWriter [Apple 1984) is  an intelligent printer which is an 
independent node on the AppleTalk network. The LaserWriter used in this 
implementation has a Motorola 68000 chip, and is controlled using the 
Printer Access Protocol [Sidhu and Oppenheimer 1985]. The LaserWriter is 
a powerful compute,- in its own right: it has O.SMbytes of ROM and 
l.SMbytes of RAM; several fonts are built in to the ROM as well as an 
interpreter for the PostScript language. The Printer Access Protocols make 
the LaserWriter a  server on the network. PostScript files [Adobe 1985a, 
Adobe 1985b] are accepted from clients and then executed. The PostScript 
language is a high-level device-independent language f ir  page description. 
It is one of the purposes of the implementation to evaluate Postscript as an 
application layer protocol. Appendix r  gives an introduction to PostScript. 
The LaserWriter itself is a monochrome printer giving a resolution of 300 
dots per inch.

Macbridge

Macbridge [Tangent 1987) has been developed by Tangent Technologies, 
and consists of a card which is placed into an IBM compatible machine.



and software. This card is connected to the AppleTalk network. Its manner 
of operation is very similar to that of the NETBIOS: a program using the 
Macbridge sets up a block in memory with appropriate data, and then 
raises an interrupt which passes the address of the block to the AppleTalk 
card, The card then executes the appropriate command. There are two 
modes of operation: the card can block the calling program , or can allow 
the calling program to continue — a part of the block can be examined to 
check when the command completes. In addition, the program can pass 
the card the address of a routine to be executed once the card has finished 
processing the command. This is done by the card raising an interrupt 
when it completes. An interrupt handler of the card then calls the program 
defined procedure. A more detailed account of Macbridge can be found in 
Appendix B. ,

Throughout the next two chapters, card  or adapter card is  used as a 
genetic description for the NETBIOS and Macbridge cards.

4.2 The MAT — R equirem ents
The possibilities can be fulfilled by a printer server which acts as a bridge 
between the two networks. The printer server is called the MAT, (This 
stands for Main AT, or MAin XT.) This is an AT or XT which is a node on 
the PC-net, and contains the link (Macbridge card) to the AppleTalk 
network. The server consists of two parts, a simple file server which 
accepts files from clients of either network, and saves them, and a printer 
controller which is responsible for any protocol translation and control of 
the actual printing device. Figure 4.1 shows the configuration of the 
system.

The service offered to the clients allows them to print files to any printer on 
the network; in the actual configuration, there are only two printers on the 
network, the IBM Proprinter and the LaserWriter. The Proprinter is 
attached directly to the MAT3.

3This does no t lim it the generality of the work, The device controller p a rt of the printer
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A p p leT a lk  n e tw o rk

LaserWriter

/  PRO )  
\  Printer J

.Mac

MAT

Figure 4.1 — Configuration of the MAT

While reliability is a desirable feature for the MAT, bearing in m ind the 
advice on reliability stated in the previous chapter [Lampson 1983], the 
system will not have to be completely reliable, Fov the server to be reliable, 
it would have the following properties:

server m ust be intelligent. In  the cnse of the LaserWriter, the  printer can control Itself, In 
the case of the Proprintor, the MAT itself acts as the device controller — another node on 
the PC-nctwo:k could have been scl up to do this,
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(a) if a file is sent to it, the file must be safely stored on disk,
(b) once a file is saved on disk, it must be printed (ey1 if the MAT 

crashes, particularly if it crashes due to some external factor),
(c) if a file is printed, it  should be deleted from the disk, or if the file 

cannot be printed the user should be informed and the file deleted 
from the disk and

(d) a file should only be printed once. (This restriction does not reduce 
the generality of the MAT as will be seen.)

The extent of reliability is determined by w hat is possible in the 
environment, and a trade-off between reliability on the one hand, and 
simplicity of design and performance on the other. Of course, if a system is 
very unreliable then its performance ipso facto degrades. It is unlikely that 
a server which fails to perform its function regularly will' satisfy the 
requirements of a user.

It is acceptable not to make a requirement that the server be completely 
reliable bscause printers, at least in the environment described, do not deal 
w ith irreplaceable data: users can just reprint files if they do not appear. 
Note that if confidential documents were being printed it would be 
undesirable for files to be lo st' and then reappear a few hours later. There 
are also practical advantages of not having a completely reliable system 
which make this decision expedient. These will be seen later,;

It is a requirement that the MAT be robust. The MAT should be safe 
against dient crashes or misbehaviour. The M A Ts crashing (for example, 
if the power fails) should not cause incorrect behaviour when it is 
restarted.

A final requirement is that the MAT should be useful and efficient. Client 
code's size and data requirement must be relatively small. To define 
'usefulness' in objective terms is difficult. At the very least, considering the 
MAT acts as a spooler, using the MAT to print a file on any printer should 
require significantly less processing time on the client than printing a file to 
a local printer. The MAT should be designed so that when it is not 
performing useful work the processor should be availably for any other 
tasks running on the machine.
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The MAT is not an end in itself. It is also designed to explore more general 
issues of distributed systems. The requirements stated here will allow the 
discussion of the design and implementation to highlight issues of perfor
mance, concurrency, the need for language and system support, and design 
of printer protocols. It will also be possible to state requirements for printer 
servers w ith  greater clarity and  precision after th e  design and 
implementation of this server have been discussed and assessed.

4 .3  General design considerations
Flexibility
The intention that the research described here could be generalized, rather 
than an actual need to make extensions later, guided the decision to make 
the MAT flexible and extendible. The extent to which this intention was 
achieved will be examined in the next chapter.

Multitasking

Allowing multitasking is important for a num ber of different reasons. A 
system .like the MAT has different tasks to deal with concurrently — there 
are m ultiple threads of control within the program. Recognizing and 
supporim : * i itask ing  simplifies design and  im plem entation of 
distributed systems [Black 1985].

From a performance point of view, multitasking is vital: if it is not done, a 
situation could arise where a processor is idle while servicing one task, and 
another task which needs service is not getting service. SurH a situation 
would also be undesirable from a client's perspective. It is undesirable for a 
client which needs a few seconds of service to wait two minutes for the 
MAT to perform some other task,

The above reasons guided the decision to exploit concurrency 
wherever possible (by using interrupts), even though the environment 
of the MAT does not support multitasking,

File server decisions

The previous chapter discussed file servers in detail, and pointed out some 
of the sophisticated facilities that servers can provide, and  +he



correspondingly difficult design decision which have to be made (also see 
[Svobodova 1984]). For the MAT, the decisions are quite easy, as the file 
server part of the MAT has relatively few and unsoplusticated tasks.

Conceptually, to the MAT and its clients, a file consists of a request block 
(see Figure 4.2) and a packed array of ASCII characters. Clients are 
responsible for ensuring that the request block is presented to the MAT in 
the correct format. How and where the MAT stores t>.e file is irrelevant to 
the clients, and vice-versa. This conforms to the OSI File Service discussed 
in chapter 2: the differences between local representations is absorbed into 
a local mapping function.

fmtblk ■ packed array[l..6 

= -"prinC_f ile;

print_file - packed record 
Znaiae : string[29];

: byte;
next ; tofiles;
Ingth : integer; 
ptr ; integer;
£«6fc : fmtblk;
prtn : AddrBlk; 
filler: byte;

: net t

(length of file; 
(pointer to the data} 
(format information} 
(name of printer}

(variant for AppleTalk)
addr : AddrBlk; 
sparea: packed arraytl..12] of byte;); 
(origin : names;
); (variant for PC-net)

Figure 4.2 — Definition of request block

There is limited concurrent access by different clients to the same data 
structures. The limited present needs do not require the support of 
concurrent access. Possible concurrent access in the future would be to 
allow a client to cancel a job before it finishes printing.

Remote storage of entire files is the file server's only real task. Thus, it is 
reasonable that the unit of data access is the file.

How reliability and robustness are implemented will be discussed in the 
next section.



4 .4  Design and im plem enta tion
The MAT is written in Turbo Pascal under DOS 3.10. There is no provision 
for multitasking with DOS, so the machine will run  as a dedicated server. 
However, the limitations of DOS (something which other have found 
[Morris et al. 19861), forced this, and not the inherent needs of the MAT or 
printer servers in general. One of the purposes of the implementation will 
be to examine whether it is necessary for the MAT to be a dedicated 
machine. Personal experience w ith other non-dedicated servers" (viz. "an 
Apple Macintosh running as a MacServe [Infosphere 1986} server) has 
shown that there can h e  noticeable degradation in service experienced by a 
user of a server machine, and by users of dients of the server machine 
when the server machine is not dedicated. There are a number of factors 
which could lead to this, and these factors together with the experiences of 
the MAT will be presented in the next chapter.

The advantage of using Turbo Pascal is that most (99%) of the program is 
written in a high level language. Turbo Pascal allows machine code to be 
embedded within the program, or for assembler routines to be called as 
subroutines. There are restrictions on the size of the Turbo program; 
however, this is not a problem in the case of the MAT. A greater 
disadvantage is that there are no mutual exdusion routines (e.g. wait) to 
allow separate threads of control to be present, and that modularity is 
limited (no facilities for separate compilation).

Logically, the code in figure 4.3 represents the design of the MAT code. 
Implementation limitations necessitated changes to this outline.

The MATs code can be divided into three sections: initialization code, the 
main body, and dean-up code. .

The initialization code is responsible for initializing the N £ '!Y 0 3  and 
AppleTalk cards, and registering the name of the MAT on both networks. 
The Jean-up code is responsible for undoing this, and ensuring that any 
pending network commands are canceled.
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coroutine AppleTalk;

repeat forever
wait for request; 
if can service request then 

transfer file into memory
place file on linked list in memory for saving 

refuse request

coroutine PC-net
repeat forever

wait for request) 
if can service reui'test then 

transfer file ir.'io memory 
place file on linkyd list in memory for s

refuse request

coroutine main_loop

repeat forever
if files in linked list in memory then 

for all files in list
perform protocol con*srsion 
save file on disk 
update list of saved files on disk 

print first file in linked list on disk 
delete file printed

Figure 4.3 — Outline of MAT Code

The rest of the code is designed to be interrupt-driven wherever possible. 
By this means, the MAT need only be doing work when requested to by 
the network cards, and thereby partial concurrency is implemented.

The main event loop of the program has two main tasks. It checks to see 
whether the MAT has had any files sent to it, and if it has, saves these files 
to disk, if necessary doing protocol conversion. Its second task is to print 
any files which have been saved. While it is doing this, it m ay be 
interrupted, and the MAT'S interrupt handlers2 will perform service for a

2 In fact, when one of the netw ork cards completes a command, and issues an interrupt, an 
Interrup t handler defined by the netw ork card gets called. This routine then calls the 
M A T's routine. There are  m inor differences, in the way the two netw ork cards manage
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client on one of the networks.

When a request from a client arrives, an interrupt is generated — this may 
occur while the computer is printing another file, or performing protocol 
conversion. The interrupt is serviced to examine the request. If the file is 
smaller than the buffer available on the MAT, it is received from the client 
immediately. The content'd of the file is kept in memory, and the MAT 
returns to its previous task. Once that job is finished, the file is transferred 
from memory to disk.

If the file is bigger than the buffer available for it on the MAT, the client is 
told that the MAT is busy. It must then retransmit its request.

Performing service for a PC-net client
Communication with MAT clients on the PC-net is done using the PC- 
network card via NETBIOS. The MAT establishes its name on the card. 
Two interrupt handlers are then used to handle requests from PC-clients. 
Before they can send requests to the MAT, clients must find its identity and 
address. To do this, a packet is broadcast on the network, asking for the 
MAT'S address. The MAT has issued an asynchronous command which 
can receive this type of broadcast datagram. When the card receives the 
datagram, the command completes, and control is transferred to the MAT- 
defined interrupt handler which sends back a response packet to the client. 
Control is then returned to the place the MAT was executing when it was 
interrupted. There need be no further communication between the MAT 
and the client: the client could have been a utility searching for devices on 
the network.

Once a client has the server's address, if it wishes to print a  file, it sends a 
datagram to the MAT with details of the service wanted (e.g. file name, 
length, printer wanted) — this is the request block shown in Figure 4.2. 
Again, the MAT has a pending command ready to receive this datagram. It 
completes when the datagram arrives, invoking another interrupt handler. 
This examines the request to see whether it  can provide the service 
requested. If it cannot, the client is so informed, and the communication is 
broken off. A typical reason for this happening is that the MAT's buffer is
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client on one of the networks.

When, a request from a client arrives, an interrupt is generated — this may 
occur while the computer is printing another file, or performing protocol 
conversion. The interrupt is serviced to examine the request. If the file is 
smaller than the buffer available on the MAT, it is received from the client 
immediately. The contents of the file is kept in memory, and the MAT 
returns to its previous task. Once that job is finished, the file is transferred 
from memory to disk.

If the file is bigger than the buffer available for it on the MAT, the client is 
told that the MAT is busy. It must then retransmit its request.

Performing service for a PC-net client
Communication with MAT clients on the PC-net is done using the PC- 
network card via NETBIOS. The MAT establishes its name on the card. 
Two interrupt handlers are then used to handle requests from PC-clients. 
Before they can send requests to the MAT, clients must find its identity and 
address. To do this, a  packet is broadcast on the network, asking for the 
MAT'S address. The MAT has issued an asynchronous command which 
can receive this type of broadcast datagram. When the card receives the 
datagram, the command completes, and control is transferred to the MAT- 
defined interrupt handler which sends back a response packet to the client. 
Control is then returned to the place the MAT was executing when it was 
interrupted. There need be no further communication between the MAT 
and the client: the client could have been a utility searching for devices on 
the network.

Once a client has the server's address, if it vnshes to print a file, it sends a 
datagram to the MAT with details of the service wanted (e.g. file name, 
length, printer wanted) — this is the request block shown in Figure 4.2. 
Again, the MAT has a pending command ready to receive this datagram. It 
completes when the datagram arrives, invoking another interrupt handler. 
This examines the request to see whether it can provide the service 
requested. If it cannot, the client is so informed, and the communication is 
broken off. A typical reason for this happening is that the MAT'S buffer is
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full.

There are two approaches to fulfilling a die,;.ifs requests in these cir
cumstances. The one is to keep a record of the request, and when the 
MAT's resources are available, meet the request. The MAT — for reasons 
of simplidty — just informs the client why the request cannot be met. The 
client could then dedde for itself whether transmitting the request again in 
a few seconds might be fruitful. Note that this could happen at the client 
code layer, and the use? need only notice a few seconds of delay before the 
service requested is provided.

O n the other h a n d /if  the MAT can honour the request, a session is 
immediately opened, and the file is transferred across the network directly 
into memory. The request is placed in a linked list of files which have been 
received. This linked list is ordered on a first come-first serve basis, but a 
priority scheme could easily be implemented here, The file cannot be saved 
immediately because all of this is done within an interrupt handler, and so 
no I /O  is allowed3. The interrupt handler then completes by dosing the 
session, and issuing another asynchronous command to receive future 
request datagrams.

Performing service on the AppleTalk
The major difference between the routines to handle the dients on the 
AppleTalk, and the routines already discussed is that interrupt handlers 
can only be used in a limited way. As already noted, the M ATs 'interrupt 
t r  ller' is not called directly when the AppleTalk card issues an interrupt, 
but is called from an interrupt handler defined by the AppleTalk card. This 
interrupt handler uses its own stack which it places adjacent to the heap. 
Thus, the M A Ts ‘interrupt handler' routine cannot call any procedure 
because then the stack would run into the heap. With the limits of the 
development environment, this meant that interrupt driven mechanism 
could not be used to the same extent as with the NETBIOS card. This and 
other problems of the development environment are discussed in greater 
detail in chapter 5.

The use of interrupts is simulated in the following way. A state variable

3A limitation of DOS.
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keeps track of what state the MAT is in in relation to receiving a file on the 
AppleTalk network. On each iteration of the main event loop, the 
condition of the state variable is tested, and appropriate actions taken. 
Figure 4.4 illustrates how it is used, States inside the main event loop are 
checked there explicitly because interrupts cannot be used to test the state 
implicitly. (One of the implications of this strategy is that the MAT cannot 
service an AppleTalk request while it is performing another service such as 
printing another tie,)

listeningstarting request

[ | performed In the main event loop

P H I  performed outside the main 
Notes •“ •""“ I’

starting: prepares Macbridge card to receive request

listening: MAT polls for request.

responding; MAT checks to see whether it can meet request.

getting: the file Is transferred In packets to the MAT. When the 
command to receive the last packet Is Issued, the MAT goes to 
the 'looping' state.

looping: MAT waits for the last packet to be transferred

Figure 4.4 — Servicing the AppleTalk clients
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Rationale for decisions for botk n<?tv»'orks
The assumptions behind these decisions are:

(1) The usual cycle of operation is idle-receive-print-idle-receive-print...

(2) The server is able to deal with most requests that it receives while 
printing a  tile. Tt does not seem unreasonable to reserve up to 1Q8K of 
memory on a 1M machine for ‘his purpose. Most files will be smaller than 
this, and the MAT should be able to hold a couple of fiks while printing. 
In this implementation, the MAT reserves a 32K buffer for this purpose. 
Extending this to a larger size, within the limi' of 64K which Turbo Pascal 
places on the data segment, is straightforward.

(3) To provide the best service on average, a client should not be made 
to wait for a long time. On average, most files will be small, and therefore 
can be placed in memory immediately.

(4) Interrupt service providers cannot do any I/O . This is a limitation of 
the BIOS (Basic Input Output System). Thus, interrupts must either defer 
performing service to a routine not within the scope of the interrupt 
handler, or not perform any I/O , keeping data in memory. There seems to 
be no easy way to get around this.

(5) All files will be handled on a FIFO basis. However, it should not be 
difficult to extend this to print files on a priority basis — priorities could 
either be explicit or implicit

(6) To simulate multitasking by providing a quantum of time for tiach 
task which m ust be performed is not desirable. In effect, this would be 
performing functions (scheduling and dispatching) which shotild be 
provided by the operating system. Unless it is done properly (including 
programming at a very low level), there is little to suggest that this W o u ld  

lead to good performance. It would lead to messy programming. This 
consideration outweighs the fact that in the present solution, the CPlll.cnay 
be idle some of the time when work needs to be done.

(7) To reduce network contention, and make better use o. • i,
data transfers should be done as quickly as possible. This meaiu : no
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Rationale for decisions for both networks
The assumptions behind these decisions are:

(1) The usual cycle of operation is idle-receive-print-idle-receive-print...

(2) The server is able to deal with most requests that it receives while 
printing a file. It does not seem unreasonable to reserve up to 128K of 
memory on a 1M machine for this purpose. Most files will be smaller than 
this, and the MAT should be able to hold a couple of files while printing. 
In  this implementation, the MAT reserves a 32K buffer for this purpose. 
Extending this to a larger size, within the limit of 64K which Turbo Pascal 
places on the data segment, is straightforward.

(3) To provide the best service on average, a client should not be made 
to wait for a long time. On average, most files will be small, and therefore 
can be placed in memory immediately.

(4) Interrupt service providers cannot do any I/O . This is a limitation of 
the BIOS (Basic Input Output System). Thus, interrupts must either defer 
performing service to a routine not within the scope of the interrupt 
handler, or not perform any I/O , keeping data in memory. There seems to 
be no easy way to get around this.

(5) All files will be handled on a FIFO basis. However, it should not be 
difficult to extend this to print files on a priority bas> — priorities could 
either be explicit or implicit

(6) To simulate multitasking by providing a quantum of time for each 
task which must be performed is not desirable. In effect, this would be 
performing functions (scheduling and dispatching) whidh should be 
provided by the operating system. Unless it is done properly "(including 
programming at a very low level), there is little to suggest that this would 
lead to good performance. It would lead to messy programming. This 
consideration outweighs the fact that in the present solution, the CPU may 
be idle some of the time when work needs to be done.

(7) To reduce network contention, and make better use of CPU time, 
data transfers should be done as quickly as possible. This means that no



protocol conversion should be done on the fly. The procedure must be: do 
any necessary conversion on the whole file in the client and then do data 
transfer, or do the data transfer and then perform protocol conversion on 
whole file on the server.

(8) The system should be flexible so that eithekof the above approaches 
can be done. The file m ust be accompanied by state information like the 
format the file is in, and what printer it is going into.'This means that files 
can either be stored in the universal format (Postscript), or the format of 
the printer it is going to. This will mean that no unnecessary translation 
needs be done. |

To summarize, figure 4.5 shows a typical transaction between a client on 
the PC-network and th t ivtAT. j

A-hey will be printed, 
dcbl conversion if it is

An important decision to be made is whether protocol conversion should 
take place on the MAT or on the client. The advantage of it happening on 
the MAT is that the client is relieved of this, reducing the complexity of the 
client and the resources nee r )  to use the MAT, and increasing flexibility. 
It does mean that the MAT . -U become more complex, but this is a small 
price to pay as the resources and complexity only need to be dealt with 
once — on the MAT — instead of every possible client. A more serious 
disadvantage is that the protocol conversion requires relatively more 
processing than other parts of the MAT'S operation4. Althtvngh, w ith the 
use of interrupts, other types of processing can be overj-.ppud with the 
protocol conversion, the MAT'S throughput will degrade- uc heavy — or 
even modest — loads; the MAT'S ability to operate a s . i .  -m-iledicated 
machine will also be impacted.

Protocol conversion
The MAT is designed to store files in the form 
or in PostScript format. A file undergoes . _ ^
received in the format in which it will be printed.

4See chapter 5, figure 5.1



MAT
3

1. A request arrives on the 
network, generating an Interrupt. 
The current job on the MAT Is 
blocked until the interrupt has 
been serviced H the MAT cannot 
service the request, a  message 
refusing service is sent.

2, If the MAT can honour the 
request, s  session Is opened with 
the client, and the file Is 
transferred Into memory. AH this Is 
done within the Interrupt. When 
the transfer Is complete, the 
interrupt handler Is exited.

3. When the MAT completes 
printing the current job, any tiles 
in memory are saved on disk. A 
tile containing a list of all flies 
currently on the disk Is also

4, The files on disk are printed In 
FIFO order. Once the Hie has 
been printed, It Is erased from

A typ ical in terac tion  w ith a  clien t on th e  PO netw ork .

Figure 4.5

The two approaches are not mutually exclusive. The overhead of just 
having the extra-code on the MAT is unlikely to be significant. Thus,

K
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clients which can afford to have the appropriate protocol converters 
should be encouraged to do so; if they do not wish to use them (either 
because of their need to improve performance or because of shortage of 
disk space), the MAT can provide the facility, which if not used often will 
not degrade performance.

The current version of the MAT only does protocol conversion from an 
ASCII file with carriage return and line feed characters to PostScript. 
Integrating new protocol converters is easy. Stubs have been written, and 
the extensions are easily integrated.

The ASCII to PostScript converter produces a PostScript prog/am. The 
converter keeps the text lines as the user enters them. No justification is 
done. The algorithm is:

Move to the top of the page 
while not end of file 

print the next line 
move to the next line
if end of page, print page s go to top of new page

Chapter 5 presents alternative strategies for protocol conversion. These 
decisions influence where processing takes place (on the LaserWriter or on 
the MAT), and flexibility available to a client.

The above discussion refers to application layer protocol conversion. 
However, there was also a presentation layer protocol conversion problem 
encountered. The different byte-ordering approaches used by the different 
processors causes the problem. The MC68000 stores integers (two bytes) in 
the high byte-low byte format. The Intel 8086 family stores integers (two 
bytes) in the low byte-high byte format. The request block which is sent to 
the MAT from both the AppleTalk clients and the PC-net clients includes 
an integer field stating the length of the file to be printed.

The solution adopted uses the M ATs definition of the request block as the 
definitive one: the virtual file description, Thus, clients must send the MAT 
the request block in the byte order which the MAT expects. This was fairly 
straightforward to implement in the case of the MAT. Any byte swapping 
is done on the clients, and the MAT is not even aware of the problem. The 
solution seems satisfactory and could be applied to new clients—for this



reason, the issue is not discussed again.

Reliability and Robustness
There are four factors for the MAT to be reliable, (These were first 
mentioned in section4.2).

(a) I f  a file is sent to it, the file  m ust he safely stored on disk: A client 
cannot be gu aranteed that once a file has been transferred to the MAT that 
either the file will be printed, or the client informed that it could not print 
the file. N o provision is made for reliability before the file is saved. If the 
MAT crashes before the file is saved, all record of the file is lost. The main 
reason for this is that I/O  cannot be performed in an interrupt handler. No 
provision is made for problems like the disk being damaged, or a file being 
corrupted.

(b) Once a f ile  is saved on disk, it m ust be printed: Once the file has 
been saved, the MAT will print it, even if the MAT crashes. A list of files to 
be printed is kept on disk. When starting (or restarting), the MAT checks 
this file to see if there are any files to be printed.

In due course, the file will be printed if the printing protocols work 
and  the printers are on-line- Clients are not informed if the file fails to

(c) I f  a file  is printed, if should be deleted from  the disk: A file is 
deleted when it has completed printing. If, for some reason, the MAT 
always crashes once the file has printed, bu t before it is deleted from the 
disk, on restarting the MAT will start printing the file again.

(d) A file should only be printed once: If the event described in  (c) 
occurs, then the file will be printed more than once. This is what was 
m eant by the requirements of (b), (c) and (d) being in conflict: a file may be 
printed more than once — violating (c) and (d) — to ensure that it  has 
printed.

There is only limited feedback to the client. When the client first requests 
service, it is informed whether the service can be met or not. If it can be, it 
transfers the file across to the MAT. If this transfer is successful, this is the 
last communication between the client and the MAT. The main



justification of this is ease of implementation. In addition, the MAT cannot 
be sure that the user who sent the file will still be there after this time.

Robustness is accomplished by using time-out values, and instead of using 
synchronous commands, using asynchronous commands w ith a loop 
immediately after the command waiting for it to complete. This allows 
increased flexibility.

Another issue is ensuring that the MAT and its clients are synchronized. 
For example, a client sending the MAT a datagram when the MAT had not 
issued a command to receive a datagram could lead to problems — the 
client could mistake this for the situation where the MAT was dead. A 
typical situa tion  w here this happens is w here one side of the 
communicating parties first requests some service from a user, and then 
must issue another command to receive the request, as in

issue send datagram asking for data

issue receive datagram command for data

issue receive datagram to wait for request 
while request is pending do (nothing); 
send datagram with data

The correctness of the above depends on the implementation of the receive 
and send datagram commands. For example, a send datagram command 
may faO if a receive datagram command has not been issued by the other 
communicating party, or the send datagram may be queued at the 
receiving end until a receive command is issued.

The approach the MAT takes is to issue a receive datagram command for 
the data requested before sending the datagram requesting the data, as in:-



justification of this is ease of implementation. In addition, the MAT cannot 
be sure that the user who sent the file will still be there after this time.

Robustness is accomplished by using time-out values, and instead of using 
synchronous commands, using asynchronous commands with a loop 
immediately after the command waiting for it to complete. This allows 
increased flexibili

Another issue is ensuring that the MAT and its clients are synchronized. 
For example, a  client sending £he MAT a datagram when.' the MAT had not 
issued a command to receive a datagram could lead to problems — the 
client could mistake this for the situation where the MAT was dead. A 
typical situation w hete this happens is w here one side of the 
communicating parties first requests some service from a user, and then 
m ust issue another command to receive the request, as in

issue send datagram asking for data

issae receive datagram command for data

issue receive datagram to wait for request 
while request is pending do {nothing}; -
send datagram with data

The correctness of theabov:-. < ‘j»ends on the implementation of the receive 
and send datagram commands. For example, a send datagram command 
may fail if a receive datagram command has not been issued uy the other 
communicating party, or the send datagram m ay be queued at the 
receiving end until a receive command is issued.

The approach the MAT takes is to issue a receive datagram Command for 
the data requested before sending the datagram requesting the data, as in:-
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issue receive datagram command for data 
issue send datagram asking for the data

Another mechanism used to avoid timing problems is to prepare all 
communication beforehand wherever possible. The clients of the MAT, for 
example, read the file that they want co send to the MAT from disk into 
memory before asking for service. This also has the advantage that the 
total time spent by the MAT communicating with a client is shortened. 
This is even more important if the client is doing protocol conversion.

4 .5 Sum m ary
To summarize, the MAT is a node on two networks, the AppleTalk 
network and the IBM PC-net. It has the capability to print files sent to it to 
two printers, a dot-matrix printer which is attached directly to it (a printer 
on the PC-network), and to an Apple LaserWriter which it communicates 
with via the AppleTalk network.

This chapter describes the hardware components of the system, and its 
requirements. It then looks at issues which arose in  the design and 
implementation phase. The main focus of the chapter is on the discussion 
of the MAT as a printer server. However a number of problems arose in 
the design and implementation. Several of these problems reflect problems 
or issues in distributed systems or printer servers more generally, 
including
• problems w ith the language and system
• attem pts to im prove performance: protocol conversion and

exploiting concurrency
• what level of reliability and robustness to aim for and how to

achieve it.
•  the rdle of the printer server
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5. Assessment
This chapter assesses the MAT in three ways. It assesses the MAT as a 
printer server fan end in itself), as an example of a distributed system (as a 
tool to explore distributed systems), and thirdly in the light of the above, it 
examines what changes and extensions can be made to the MAT both as a 
printer server and as a tool for examining distributed systems.

5.1  A ssessm ent o f design decisions

Development Environment
The choice of hardware, operating system and language must be assessed. 
As far as the hardware is concerned, the AT or XT with the Macbridge card 
had to play a central rdle. l . .e  MAT could have been an Apple Macintosh, 
with the XT or AT acting as a bridge, merely transferring files between the 
two networks, but the more logical choice was for the AT or XT which was 
the bridge to play this role.

The choice of operating system and language for the MAT was an 
important one. It was a decision which had major ramifications for the 
design, implementation, reliability and performance of the system. Other 
research in distributed systems has also found the system environment to 
be important in this regard [Brown 2985; Fry 1987; Morris et al. 1986].

There was not much freedom when choosing DOS as the operating system 
with which to implement the system — it was the only operating system 
available in the department at the time. Immediately obvious was DOS's 
ia.ck of multiprocessing facilities. This means that without considerable 
effort, including writing low level routines to interact with DOS and over
come some of its problems, the MAT would have to be a dedicated server. 
This makes direct measurement of the effect of the operation of the MAT 
on other tasks impossible. N ot being able to do I/O  within an interrupt 
handler was also a major limitation,

After initial experimentation within assembler, Turbo Pascal was chosen 
for the reasons explained in chapter 4. There were serious drawbacks to



using Turbo Pascal besides the ones mentioned earlier. The use of inline 
machine code is limited when Turbo Pascal runs under DOS.

Individually, all these problems may not seem so serious. Together with 
some of the quirks of the network card, they make a formidable obstacle to 
clean programming, simple design and, in some cases, implementation of 
desired features.

One aspect of this is mentioned in detail as an example to show that some 
of the limitations of the MAT are caused by  a poor environment, and not 
by the design. Nor are the limitations inherent limitations of printer 
servers.

When a program defined interrupt occurs, and control gets transferred to a 
program-defined interrupt handler, the DS register no longer necessarily 
points to the global variables. This can be overcome, if slightly messiiy. The 
interrupt handler can then call other routines. Unfortunately, this does not 
work with interrupts caused by the AppleTalk card, because of the way 
the AppleTalk card manages its stack1. Given the other limitations, this 
makes a design decision to use interrupts as much as possible difficult to 
implement.

In the light of this, if fixe MAT were to be reimplemented, languages which 
support synchronization or concurrency and have better support for low- 
level access such as Modula-2, Ada or C should be considered. The use of 
another operating system (like UNIX) would also be an improvement.

Limitation of file size
The MAT limited the size of files to be printed to IfiK- This is an 
unsatisfactory limit as many documents exceed this size. The limit was 
placed at an early stage of the program development for a technical reason 
for simplicity. However, allowing files to be longer would be a straight
forward development. For this reason, fixe restriction on the size of the file 
does not impinge on the generality of the MAT.

1See chapter 4  for a detailed explanation
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5.2  S ynchronization  and  in terprocess 
com m unication

There are two issues of concern here: the implementation of concurrency 
within a program, and communication between the MAT program and its 
clients. The mutual exclusion and synchronization problems are related, 
and so are discussed together.

The approach of using interrupt handlers to do much of the work of the 
MAT means that there is partial concurrency within the program. For 
example, if the MAT is saving a file from memory to disk while doing 
some protocol conversion, and a client requests service, an interrupt 
handler could bring the file into memory at a critical time when both the 
interrupt handler and the routine being interrupted are accessing the same 
data structures, Without proper synchronization primitives (lil.e wait and 
signal), supporting mutual exclusion, either the solution adopted will be 
incorrect, or a client may be refused service when the MAT is, in fact, able 
to provide service.

In assessing whether allowing this partial concurrency is worthwhile, it is 
necessary to remember that the greatest motivation for the use of the 
interrupt handlers was efficiency both in terms of throughput, and ap
parent execution time for users. The breakdown of execution time is 
presented in figures 5.1 and 5.2.

The time which the client experiences is the time for the file transfer— less 
than one second in the case of PC-net clients, and about 20s in the case of 
AppleTalk clients. From the user point of view, the decision to use 
interrupts to provide partial concurrency is well-justified. For clients on the 
PC-net, it would be extremely undesirable to have to wait for other jobs to 
complete before getting service, as the MAT spends at most 2.5% of the 
time taken to process a job on the file transfer. Even in the case of 
AppleTalk clients, the proportion of time spent (±20%) on the file transfer 
phase w ould well justify the interrupt-driven approach if this were 
possible. At present, a client might have to wait for a printing job to 
complete (which for an 11K file takes about 80s to do).



Printing to the LaserWriter2

A ctiv ity P C -ne t c lien t A p p le T a lk  c lien t
File transfer to MAT <0,8* 19 *
Saving to disk 1,64 1.64
Protocol translation 5.6
MAT transfer to LaserWriter 85* 85 *
W ait for acknowledgement

10'S
a  *

119 ♦

LaserWriter busy for 95s*
Note: These figures represen t average tim es p rin ting  of i 
LaserWriter in Times-Roman 12pt. All figures in  seconds.

F ig u re  5.1

P r in t in g  to  th e  P r o p r in t e r

an U K  file to the Apple

A ctiv ity PC -ne t c lien t A p p le T a lk  c lien t
File transfer to MAT <0.8* 19 '
Saving to disk 1.64 164
MAT transfer to Proprinter Z8_! z a _ :

Propriiiter busy for 140s * 140s *
Note These figures represent average times printing of an U K  file to the IBM Proprinter. 
All figures in seconds.

figure 5.2

Performance is likely to be improved in other ways by the approach. By 
servicing jobs immediately a request for service is made, the MAT is likely 
to reduce the average time spent servicing each request. For example, in 
the case of AppleTalk clients which request service from the MAT while it 
is busy with some other task like printing, the client keeps polling the 
MAT until the MAT is free. This increases the load on the network and 
may also reduce throughput in that there may be a gap between the MAT 
becoming free and the client discovering the MAT is free.

From the point of view of simplicity of design, the use of the interrupt 
mechanism is much better than using a polling mechanism. The technical 
limitations of DOS and Turbo do make the implementation of interrupts

2In this and all other results shown, the following applies. The times marked * were timed 
w ith a stop-watch, all other times were timed by the internal clock of the MAT, The same 
file is used in  all measurements unless otherwise stated. All files contain only printable 
ASCII characters and  the carriage return and line-feed characters, All measurements were 
taken when the MAT and its client were the only entities on the  networks.
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slightly tricky. H o w ew  J-he use of the s la te  variable for the 
communication on the Apple' "k showed that interrupts are better to use 
because once they are working, i r i s  far earner to  understand the logic of the 
program. Programming and maintaining are easier. The MICROLAN 
System [Fry 19871, operating with similar system limitations (CP/M) as the 
MAT, also used an interrupt driven approach.

The general problem of synchronizing distributed processes is known as a 
difficult one. The communication between the MAT and its clients does not 
need a high degree of synchronization. The method outlined in the 
previous chapter seems generally satisfactory. However, the protocol has 
not been rigorously tested. With proper language support, this would be

5 .3  PostS crip t
The type of Postscript file generated by the protocol converter is 
significant. In sending a text-only file to the printer, there are different 
strategies which can be adopted for protocol conversion. Different 
strategies give PostScript files of different sizes which take different times 
to run. Appendix D considers three strategies — called B, C and P  — in 
detail.

The main difference between these strategies is the division of work 
between the MAT and the LaserWriter. For example, in strategy B, the 
MAT would produce PostScript code which consists of a line of code 
printing a line of text, followed by a line of code instructing the printer 
where the next line is to be printed. This is repeated for each line of text.

Under strategy C — the strategy adopted by the MAT — the code pro
duced consists of: the definition of a procedure which when executed 
calculates where the next line of text should be printed; and for each line of 
text a line of code which prints the line of text and invokes the procedure 
to calculate where the next line should go.

Strategy P produces a PostScript program which has the text imbedded in 
it as data.

For any file which has more than 250 characters, method C will be more
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efficient in terms of disk space used, and amount of network traffic than 
method B. For files larger than 3K, the saving will be between 18 and 20%. 
These figures are also conservative figures; they relate to pages which are 
full of text, Where there is more white space, the savings will be greater, as 
the ratio of overhead to text will increase.

As far as space is concerned, strategy P  only betters the efficiency of B for 
files which are larger than 12K, although the larger the file gets, the greater 
the saving over B and C.

The advantage of off-Ioadii.^ work to the LaserWriter is that for large files 
there is saving in space. Unless a proper PostScript implementation is done 
on the MAT, the MAT is not going to be able to offer the full range of 
facilities which users will need. For example, justification and kerning^ cm  
only be done properly using PostScript features. On the other hand there is 
a price to be paid in performance. Section 5.5 examines the effect of 
different strategies on performance.

For the task of the MAT, PostScript proved powerful and versatile. Its use 
of escape sequences is annoying (some characters can not be referenced 
directly, but have to be referenced using their octal code), but this is not a 
serious flaw. Comparing the time taken by the LaserWriter (a PostScript 
implementation) and the Proprinter (a dot-matrix printer) presented in 
figures 5.1 and 5,2 shows that PostScript implementations can be slow. In 
this case, the PostScript implementation is approximately as fast as the dot
matrix printer (in fact, the Proprinter needs 78s before the MAT can 
continue processing, and the LaserWriter 85s).

The experience of the MAT is not sufficient to make a judgement on 
PostScript’s use as a general page description language. PostScript is 
general and powerful: w hat needs to be assessed are questions of 
performance, and ease of use (by hum ans and applications), and 
translation between PostScript and other printer protocols.

3In many fonts, the space between characters is not constant, but depends on the char
acters concerned. Kerning Is the process by which the con, inter-character space is left 
between letters.



5.4  Reliabilit and Robustness
There are several aspec'j to reliability and robustness in  the MAT which 
will be assessed separately. The MAT is not completely reliable, some of the 
problems being inherent in the design of the MAT, and others i’.i the im
plementation.

Errors in the network
All communication between the MAT and its clients is highly reliable, that 
is, if the data reaches its destination, it lias not been corrupted. Some of the 
communication is done using even more reliable protocols. The inherent 
reliability of local-area networks makes transient errors in the network ex
tremely unlikely. Should packets of data be lost, the MAT would interpret 
this as a client crashing.

Failure o f a client
If a client fails, then for the MAT to operate reliably and robustly, it must 
ensure that the failure of the client will not cause the effective loss of some 
resource (like memory or disk space). The current implementation of the 
MAT is robust and reliable in this case. Depending on the circumstance, the 
MAT will either deal cleanly with ehe problem, or print a junk file: space is 
reserved for the data from the client, even if the client fails, the printing 
procedure still prints out the contents of this reserved buffer.

The problem of printing a junk file is to some extent caused by the short
coming of the Macbridge card (having to simulate interrupts). Neverthe
less, an algorithm to ensure that it does not happen could be implemented 
w ith  some cost to the understandability of the program . Par more 
important is whether the MAT is robust: the MAT should not fail because 
a client fails. Experience with the MAT shows that it is robust. Figure 4.4 
shows a state diagram for the M ATs interaction with its AppleTalk clients, 
and figure 5.3 shows a similar diagram for the interactions between the 
MAT and its clients on the PC-net. These charts illustrate how  the MAT is 
safe against its clients crashing. A more rigorous analysis would be 
necessary to prove that the MAT is robust, Furthermore, the experience of 
using the MAT has been gained in an experimental environment where it 
is difficult to duplicate 'typical' user use of the MAT.



Transition diagram  for servicing req u e st on 
PC-network

main event bop

request Sw
fmm nilflnt *

open falls

complete opened

Figure 5.3 — state diagram for MAT

An inherent lack of reliability is caused by the design decision to use an 
interrupt handler as the process which transfers a  file from the network 
into memory. If the machine should crash (say the power was switched 
off) before the file is saved to disk, the file would be lost, and there would 
also be no way of informing a client that this had happened. Given the 
constraints of the environment, this is acceptable. More importantly, the 
time in which the MAT is vulnerable to this sort of failure is relatively 
small. The type of use that the MAT is subject to would not w arrant the 
complete change in design which would be necessary to obviate this risk.

Once the MAT has saved a file to disk, then the file will be printed, even if 
the MAT crashes, A list of files still to be printed is saved on disk. On 
starting, the MAT checks this list to see whether any files are still to be 
printed. This feature also allows the MAT to be brought down cleanly — a 
user on the MAT machine could stop the MAT program, and then use the
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MAT machine for some other purpose. When the MAT program is 
restarted, files previously enqueued for printing will be printed. A 
corollary of this is that all files enqueued will be erased eventually, 
meeting another requirement for reliability.

Failure o f a printer
A printer not working also causes unreliability, as printers often do not 
inform their users if something goes wrong. The MAT does not introduce 
this problem; it is there already (an IBM PC will report that it has printed a 
file, even if no printer is attached to it). Therefore, this does not affect the 
MAT'S measure as a reliable system. One aspect where the MAT is 
occasionally unreliable is that it sometimes fails to print a file destined for 
the LaserWriter. The probable cause of this is that the Printer Access 
Protocols are not being used properly by the MAT. As there is no 
documentation for the use of these protocols with the Apple LaserWriter, 
this is to be expected. The MAT is however robust in these circumstances, 
and times out after a suitable interval

5 .5  Perform ance
Some of the discussion in this chapter has already had a relationship to the 
question of performance. A highly reliable system may lose some perfor
mance to attain a high level of reliability. In this section these factors will 
be examined again. There are a num ber of criteria for assessing a 
distributed system's performance. The ones which are discussed here are:
• network performance
• response time
• throughput
• use of resources

In chapter 3, the factors which network performance is most sensitive to 
were stated as: speed of the host and remote machine, level of high-level 
protocols, choice of transport layer protocols, and finaTy speed of the 
network [Lantz et al. 1985].

The load on the network is important for several reasons. Under heavy
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loads, the use of the network will become a bottleneck (colltoivu-sense 
multiple access protocols on buses are known not to be the most suitable 
ones at high-Ioad [Stallings 1984]). For the type of network traffic which 
MAT-transactions generate, the number of bytes transferred is only 
affected significantly by the format of the file — other protocol information 
is a small proportion of total data sent (less than 100 bytes). The previous 
discussion of PostScript has shown how sensitive the length of a file to its 
format can be. (Note that even before this stage an important decision has 
been, made — the characters are transferred to the printer rather than their 
bit-map representation. How information like this is transmitted is very 
important [Lantz and Nowicki 1984].)

W hat are the trade-offs as far as performance is concerned? To a large 
extent, this will depend on what a typical MAT transaction is.

If the LaserWriter becomes a  bottleneck, then increasing the load on the 
LaserWriter by offloading processing to it may become counterproductive. 
The time saved on protocol conversion on the MAT, and any savings in 
network traffic will be lost by the MAT'S throughput dropping, and 
increased network traffic caused by other clients having to retransmit 
requests. On the other hand, if there are a few, big filed being sent to the 
LaserWriter, then the MAT may do well to offload all processing to the 
LaserWriter.

The MAT's strategy is a compromise one — network traffic and disk specs 
is saved at the cost of the LaserWriter being forced to do more processing.

There are two times relevant to users. The time that the client program 
takes to send the file to the MAT, and the time that a job takes to print. 
Sending a file across the network takes a few seconds. The time that a user 
experiences could be significantly increased if the client instead of the 
MAT was to perform protocol conversion.

One of the important potential bottlenecks affecting the performance of a 
computer is the I/O  speed. The MAT performs I /O  when it saves files to 
disk after performing protocol conversion, and when it retrieves files for 
printing. I /O  speed is very sensitive to the size of the I /O  buffer. Figure 5.4 
shows the effect of changing the size of the I/O  buffer on time taken for 
I/O . Reserving 4K for this buffer to improve performance by almost an
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order of magnitude is dearly worthwhile.

Figure 5.4 — Saving 11K to disk on an IBM AT.

Buffer size_____1 bvte 255bvte 4K
Saving file (s) 13’ 2.25* 1.64

Performance does not just depend on raw  processor speed, but other 
factors such as memory available, and intelligent use of strategies like 
caching and buffering [Lampson 19831. One example of this can.bs seen in 
the effect of caching on the LaserWriter. Some of the font faces on the 
LaserWriter are permanently stored in ROM (for example Times-Roman 
12pt). Other fonts are only defined in one point size, and the LaserWriter 
has to calculate the other sizes. A further factor in the operation of the 
LaserWriter is that the LaserWriter caches the description of letters as it 
prints them.

When the LaserWriter, after having been switched on, first prints an  11K 
file in Times-Roman 12pt it takts about 112s to print, dropping to 95s the 
second and subsequent times the same file gets printed. The corresponding 
figures for Times-Roman l l p t  are 138s and 101s4. As an l l p t  document 
requires, less work to print as it is smaller than a 12pt document, the use 
here of caching shows that significant improvements can be made with this 
strategy.

The choice of transport protocols is illuminating. Different protocols are 
used for communicating across the different networks. While this means 
that a different design has to be used for the routines responsible for the 
file transfer in the MAT, it does have the advantage of increased flexibility, 
allowing each network to use the most appropriate protocols, and allowing 
changes to occur where necessary. The use of different protocols also 
shows how important the performance of transport protocols can be (see 
also {Waison and Mamrak 1987]).

Two transport protocols are used on the PC-net. Datagrams are used to 
find the identity of the MAT, and to request service from the MAT. When 
the MAT accepts a request, a  session is set up between the MAT and the

^Thesc figures represent the tim e it takes for the file to print, rather than the time that the 
MAT wafts for the LaserWriter to inform it that it  can start with another job.
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client. This session allows any number of send and receive commands to 
be issued between the MAT and client. Each send and receive command 
can transfer up to 64K of data. The experience of the MAT has shown that 
these are the appropriate protocols to use.

The AppleTalk Name Binding Protocol is used to find the identity of the 
MAT. It is much slower chan using the broadcast mechanism that is used 
on the PC-net. For the request and the data transfer, the AppleTalk 
Transaction Protocol is used. Bach transaction is capable of transferring 
about 4K of data. There seems to be a fixed overhead of approximately 6s 
for each transaction, w ith a slight variation depending on the lengui of the 
file. For the type of traffic which the MAT is used, these protocols are 
inefficient because of the length of time it takes to set up a transaction. A 
future implementation of the MAT should investigate defining an 
'AppleMat' protocol built on lower-level AppleTalk protocols.

While the file transfer phase of the MAT takes much longer for clients on 
the AppleTalk than clients on the PC-net, the networks' bandwidths do not 
seem significant in this. The AppleTalk is a slow network for a local-area 
network, running at approximately 230Kbits.s'1. But even this means that a 
file of U K  could be transferred in under a half a second using maximum 
network bandwidth. In practice a file transfer of a 4K file takes longer than 
6s.

Figure 5.1 shows that for the PC-net clients, file transfer and saving to disk 
takes about 2,2s. The file transfer program supplied with the Macbridge 
performs the transfer of an UK file between an IBM AT and the Apple 
Macintosh in approximately 35s (including the time for disk access). This 
compares well with the 2.2s needed for the MAT's PC-clients. Using 
exactly the sar'C hardware, about 20s is needed to transfer a n llK  file from 
one of the M ATs AppleTalk clients. This substantiates other research that 
bandwidth, although a factor, is not as important as other factors like level 
of communication and choice of transport protocols.

The results quoted in figures 5.1 and 5.2 underlie the small proportion of 
time spend on the data transfer phase. Of the time spent in the data 
transfer phase, only a small proportion of this time is spent transferring the 
data across the network. Improving the level of communication — for
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example, the transport protocol — will be more valuable than improving 
the bandw idth of the network. Improving the speed of the processors (the 
MAT, the computer which does protocol conversion, and the LaserWriter) 
is also more important than improving network speed.

One of the goals of the MAT was to investigate whether such a printer 
server needs to be dedicated, The size of the MAT code is about 31K, and 
approximately 40K is reserved for data. From this point of view, the MAT 
does not have to be running on a dedicated machine. The processing 
requirements are more difficult to estimate. The only really processor 
intensive part o f the MAT operation is the protocol conversion. Most of the 
rest of the time, the MAT is waiting for the printer to complete. In a true 
multitasking system, this time would be available to other tasks. Whether 
enough processing time is available for other tasks needs further research.

5 .6  The layering o f pro tocols
One of the aims of the ISO-OSI Reference Model is to hide lower level 
problems from users of higher-level protocols. It has been pointed out that 
implementing the full ISO-OSI Reference Model can cause performance to 
degrade (Tanenbaum and van Renesse 1985). The experience of P'e MAT 
w ith the different transport protocols shows the positive value of 
abstraction and layering.

The NETBIOS session protocols, which were used to transfer files for PC- 
clients, allow data of up to 64K in size to be transferred with one send or 
receive command. The user designates the buffer where the data is or is to 
be placed by passing a pointer to this buffer in the network control block.

The AppleTalk Transaction Protocol place a limit of 4K on the amount of 
data which may be sent in one transaction. This in itself is a substantial 
limitation of the use of the protocol: it is reasonable to assume in the MAT 
environm ent that files will be smaller than 64K; it is unreasonable to 
assume that files will be smaller than 4K. Watson and Mamrak [1987] 
advocate that an arbitrary limitation on the size of transport packets 
should not be made: the transport protocols should take full responsibility 
for breaking the packet down into smaller packets for the network layer 
protocols.



However, what is woise is that the AppleTalk Transaction Protocol does 
not hide the underlying Datagram Delivery Protocol from users of the 
AppleTalk Transaction Protocol. A full AppleTalk Transaction Protocol 
packet comprises eight Datagram Delivery Protocol packets. To use the 
AppleTalk Transaction Protocol, a user m ust set up each sub-packet 
explicitly, and pass a pointer to each with the network control block. The 
data structures for this is shown in figure B1 in appendix B.

The AppleTalk Transaction Protocol, besides being slow, is unsuitable 
therefore because the service it offers is not adequate (the limitation on 
packet size), and is difficult to use as it violates the layering principles. 
However, it  is unfair to write off the AppleTalk Transaction Protocol 
completely w ithout knowing what its designers and implementors thought 
it  would be used for.

5 .7  Extensions, C riticism s and Changes
Obviously, the MAT has many flaws — some caused by the design, others 
by its implementation. Some are unavoidable because of hardware and/or 
software limits. These have been discussed already. In this section, what 
changes should and could be made to the MAT, and how they could be 
m ade will be discussed. This is useful for examining how flexible a system 
the MAT is.

The fundamental limitations of the MAT as a tool to assess distributed 
systems and printer servers generally are:
• the MAT is not typical of general distributed systems because it 
does work of a very specific type,
•  PostScript was used for a only limited range of documents.

O n the positive side, the heterogeneity of the environment and the 
flexibility of the MAT (to change the way protocol conversion is done, to 
use different transport protocols, to use different caching and buffering 
strategies) contribute to the MAT'S utility as a tool to explore distributed 
systems.

An important pai t of any system is the user interface. However, this is not 
discussed in depth as it is largely a separate issue. For clients, the MAT 
should operate transparently: the usual print facility should be used.



which couiu b t intercepted by MAT softwa. s. Work needs to be done on 
the user interface, particularly on the Macintosh where the prompt driven 
approach is very clumsy. However, this Is a user interface question: the 
MAT provides the basic underlying facilities. Figure 5.5 shows the 
dialogue between a user and the PC-net client code.

Entered the printing facility (MAT2.0)

Enter file nam e: client.pas

Enter file type:
ASCII,S c re e n , Pro: i.

Enter font:
Times, Helvetica, Sym bol, Courier: T

____________ Enter font size: 12______________________________
The text in Roman (plain) font is produced by the client program, the text 
in italics is typed in by the user

Figure 5.5 — Dialogue between user and client code__________________

One of the requirements catered for in the design, but not implemented, 
was informing the user if a file could not be printed. Problems could occur 
at three phases:
• when the file is transferred into memory
• when the file is saved to disk
• when the file is printed or an attempt is made to print it.
A t present, the client gets a reply (printed or can't print) at the first stage. 
Are the alternatives better?

In order to receive any message from the MAT, software has to be active 
within the client to receive the message. In the present environment, this 
would mean that the client would not be able to do anything else until the 
file had been printed. For this reason, a  reasonable compromise would be 
to inform the client if anything goes wrong in the file transfer phase (as is 
done now), and also allow the client the option of waiting for a confirming 
message once the file had been printed, or failed to print. As the identity of 
the client is kept with the file's request block, this could be done without



major change to the design of the program. Care m ust be taken that 
suitable time-out values are chosiin so that the client does not time-out 
before the MAT responds, yet does not wait excessively if the MAT dies.

Other work to improve reliability should be done, with a rigorous ex
amination of the protocols involved.

The functionality of the MAT could be improved. Useful features would be 
to allow a user to query the print queue, and cancel print jobs. These 
features could be integrated into the present system easily. The print 
request block has a number of fields which are not used in the present 
implementation. At present, the MAT assumes that all requests are for 
p rin t jobs. This could be changed by the MAT examining a field in the 
print request block. If the request was to cancel a job this could be done 
reasonably easily if that particular file was not printing. By using a global 
variable to indicate that a print job should be canceled, the print routines 
could all be changed so that they poll this variable to see whether the 
present print job should be canceled. For a request to examine the print 
queue, the names of the files or other information could be sent back to the 
client. This feature is available in other systems, for example the printer 
spooler on MacServe [Infosphere 1986].

Other issues are are:
• Protocol conversion routines should be written, and replace the 
stubs already there. With more protocols being supported, some files 
would undergo more that one protocol conversion: a file in format X to be 
printed in format Y, would be translated into PostScript before being saved 
on disk. In this case, thought would have to be given to where protocol 
conversion should take place. Doing the second protocol conversion on the 
fly when printing the file  might be an efficient way to overlap processing 
and I /O  time, especially as the printer is the bottleneck, not the MAT or 
the network.
• A limitation of printing one copy of a file was made. This is an 
unnecessary restriction. The print request block could easily cany the extra 
information required, and changing the print routines to print more than 
one copy would also be straightforward,

There are also major changes in design which could be considered. The
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AppleTalk network allows the definition of a user-defined protocol. Nodes 
on the network (Macintoshes, and the Macbridge AppleTalk card) support 
this with the use of socket listeners. Socket listeners are low-level routines 
(written in assembler) which examine packets received on the network to 
see whether any packets need to be serviced by any process on that 
machine. If service is required, they are examined further, and the 
necessary routine is called to do this. All of this is done transparently to 
any process or program active on the machine at the time. While this still 
does not allow complete concurrency, such an approach would remedy the 
problems encountered with the Macbridge card.

If the MAT program were written in a language which properly supported 
concurrency, redesigning the MAT might lead to a cleaner design which 
was more maintainable and flexible.

Despite the problems experienced with the Macbridge card, the feasability 
of linking different networks to the MAT was shown. Although the 
routines which serve the different networks do manipulate common data 
structures, with sufficient forethought, this does not create problems. The 
design of the MAT allows integration of other networks into the system.

5 .8  Sum m ary
This chapter has examined the MAT as a printer server, and as a tool to 
examine resource sharing systems. Changes and extensions to the MAT 
were also proposed

Particular problems encountered with the MAT were the limitations 
caused by the implementation environment, and the lack of proper 
synchronization and mutual exclusion primitives. Nevertheless, the use of 
interrupts has allowed a certain concurrency,

At present, the protocol conversion routines are limited, and more need to 
be written. They can be integrated into the present implementation easily. 
Although PostScript has not been tested in depth by the MAT, it is an 
acceptable method of page description, as far as its has been used,

The MAT is reasonably robust, although it is not completely reliable. For 
the type of work that the MAT is doing, the level of reliability is acceptable.
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The performance of the MAT is good, and it meets its requirements in this 
respect. The memory requirements are small. Printing a file using the MAT 
takes less time than printing directly to a printer. This is true both for the 
time which the client machine is busy, and the actual time the document 
takes to print5. There is no other system which the MAT can be compared 
to directly. On the Macintosh, printing a file to a dot-matrix printer is faster 
using the MAT th?n MacServe because MacServe expects the client 
machine to do protocol generation. The Macintosh, spoolers for the 
LaserWriter are relatively unreliable — a factor which militates against 
their use. The PC-net's printer spooling program (the software supplied 
with the NETBIOS card) has a performance similar to that of the MAT 
program. However, the server program has code about 60K in size, and 
has memory requirements of about 250K while running.

The impact of PostScript and other protocol conversion needs fuller 
assessment. Transport protocols on the AppleTalk are not suitable for the 
type of work the MAT is doing, and performance should improve with the 
use of appropriate protocols. The results of the MAT have substantiated 
other work in relation to factors influencing performance.

Overall, the MATs design has proven good. The current implementation 
has some flaws, but these could be remedied without major change to the 
design. Performance is good, and the MAT — even in its present 
implementation — can perform  a  useful task. The MAT meets its 
requirements of usefulness. The versatility of the design would allow 
greater functionality, but, for major changes, a change in development 
environment is recommended.

5Printing the 11K file directly to the LaserW riter from  an A pple M acintosh using 
MacWrite takes 155s for the Macintosh to complete and 200s for the LaserWriter to finish 
printing the document.
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6. Conclusion
Resource sharing across networks and internetworks is feasible, and has 
many benefits. This dissertation has been an investigation of how 
resources can be shared and an examination of important factors affecting 
distributed systems' design and implementaliion.

This chapter concludes the dissertation by analysing:
• The implications of the ISO-OSI Reference M odel on data 

communication and resource sharing,
• Factors affecting the performance and design of distributed systems
• The management of printer resources, and a model for printing 

services
• The needs and requirements of a printing service.

This contributes to an understanding of important issues in distributed 
systems and mechanisms for the provision of printing resources.

6.1. The ISO-OSI R eference Model
The ISO-OSI Reference Model has had a profound effect on the design of 
protocols for data communication. The principles of layering and abstrac
tion are very useful in the design and implementation of protocols, while 
standardization increases the possibility of achieving communication. 
Implementing the full model may be costly as each of the different layers 
may require processing [Tanenbaum and van Renesse 1985], while 
enforcing one standard may also lead to inefficiency in some circumstances 
[Notkin etal. 1987].

Nevertheless, it is im portant to recognize the benefits of layering and 
standardization [Popescu-Zeletin 1984], The experience of transport pro
tocols with the MAT presented in chapter 5 shows this. Also, the model 
may be used for design, and not necessarily implementation [Watson and 
Mamrak 1987]. Another factor in this is the performance of operating 
systems and the support given by the system.



For internetworking (where the underlying physical media of the networks 
are different), techniques defined by the ISO-OSI Model can be used to 
promote the interconnection of different equipment, There have been a 
number of successful internetworks [Quaterman and Hoskins 19861.

However, at the higher levels of the model — where higher-level 
information is interchanged — it is not the physical difference between the 
underlying communication media which is the cause of the differences in 
the system. The focus moves from internetworking to heterogeneity [Cole 
1987]. There are a number of different styles of heterogeneity [Notkin et al 
1987]. There is a loose coupling typified by network operating systems 
and systems like the MAT. Here, a few services are shared by servers. The 
resources shared are still owned and managed by local systems. New 
systems can be integrated fairly cheaply.

On the other hand, there are systems like Locus and the V-system which 
are tightly  coupled. A high degree of transparency imposes a 
homogeneous interface between applications and the system.

It is at this level that the ISO-OSI Reference Model is not complete. 
Standards for network and resource management and distributed systems 
generally are now under development [Aschenberger 1986; Hutton 1987; 
Roos 1987]. Individual protocols such as file transfer and virtual terminal 
protocols have been developed, and progress has been made with 
directory systems' standardization [Goodwin and McDonnel 1986]. 
However, it is the standardization of distributed systems as a whole which 
is necessary, As will be seen in the discussion on printing services, the 
definition of specific protocols is not sufficient1 for resource sharing.

Standardization of distributed systems is Important for integrating existing 
systems. Successful systems like the V-system and Locus cannot be 
integrated easily.

The present state of the ISO-OSI Reference Model does not seem to provide 
a useful guide for designers of distributed systems, The substructure of the 
application layer [Bartoli 1983] viz. user element, specific application 
service element and common application service element, is not used by 
designers of distributed systems. A recent text book on the subject [Fortier 
1986] only mentions the ISO-OSI model once. Work reported in the



literature only mentions the ISO-OSI model in connection with transport 
and lower functions.

6.2. Distributed Systems
In chapter 3, a general assessment of distributed systems was made. This 
section examines some of the issues in the light of the experience of the 
MAT.

D istributed systems have proved that adequate perform ance can be 
obtained, even in a network and internetwork environment. Experience of 
distributed systems — experience which the MAT confirms — is that the 
most important factors in the performance of distributed systems are:
• performance of local and remote computers
• high-level protocols
• transport protocols
• bandwidth

The performance of computers does no t'ju st depend on raw  processor 
speed, bu t also an I /O  speed, availability of memory and secondary 
memory, and the intelligent application of strair_ -s such as buffering and 
caching. Performance of the operating system and device drivers has a 
great impact on other factors. For example, up to 80% of the time spent on 
inter-process communication can be taken up by the operating system and 
other system work [Watson and Mamrak 1987]. For this reason alone, 
operating systems need to be developed to adapt to a networking and 
internetworking environment.

Transport protocols affect the performance of systems. It is not just the 
perform ance of transport protocols w hich is im portan t b u t their 
functionality. The problem  which the MAT experienced w ith the 
AppleTalk Transaction Protocol is a more general problem. It has been 
argued that transaction protocols should hide implementation details of 
lower-level protocols from session and higher-layer clients. In particular, 
the size of network layer packets should be hidden; arbitrary limits on the 
size of transport-layer packets should not be made [ibid.], Full error control 
and recovery may not be necessary as higher-level protocols will still have 
to cater for errors.
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The functionality of transport protocols is also determined by what the 
operating system can provide. When a particular system attempts to have 
different transport connections at the same time, some sort of concurrency 
is necessary: "A transport protocol can provide no more service than the 
level of process management allows" [Cole 1987]. This was seen with the 
MAT. On the one hand, the network cards allowed different transaction 
connections to be open, on the other the system did hot support the use of 
this properly. This could be particularly seen by the limitations which were 
imposed on the MAT when it serviced AppleTalk clients.

It is not the intention of this dissertation to say that lower-level protocols 
and bandwidth are unimportant. Clearly, they are important. Especially 
under high loads, protocols such as medium access protocols and 
bandw idth are important. As applications which need high bandwidth 
(including those using video signals) grow so will the need for high 
bandwidth. What this research has shown is that high bandwidth is only 
one part of the performance of a distributed system. If the other factors 
have poor performance, then increasing the bandwidth is not going to be a 
solution.

Another factor in the design and implementation of distributed systems is 
that system and language support are necessary. This was seen in the MAT 
and the results of others (Black 1985; Fry 1987; Morris et al. 1986]. 
Supporting concurrency within a system is especially important. The 
importance of this from a performance point of view has already been 
pointed out. The experience of the MAT and others also shows that the 
need exists for language support to promote simplicity and correctness in 
program design and implementation. One aspect which this dissertation 
has not examined at all is  languages for specification of distributed 
systems. Examples of such languages are Estelle, Lotos and SDL [Saracco 
and Tilanus 1987; Specs Consortium and Bmijning 1987].
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6.3. P rin ting  Services
For the purposes of the MAT, PostScript proved a general and powerful 
printer protocol, although more assessment would be needed in a more 
general environment. However, even with the specific types of print jobs 
with which the MAT was dealing, a number of strategies for protocol 
translation exist.

In  a more general system where there are a num ber of servers, and a 
greater number of printers on the network, greater printing management 
needs to take place. PostScript is good a t describing in a device 
independent w ay what a document looks like. However, by itself, it does 
not provide information which manages the printing resources generally. 
The Adobe s tructuring  convention [Adobd985a;Adobe 1987] 
supplements PostScript by structuring a PostScript file in such a way that 
the resources which a print job needs are explicitly available to other 
programs such as printer spoolers1. A description of the Adobe structuring 
convention can be found in appendix C. Certain 'higher-level' information 
such as which fonts a document needs, what resolution the author of the 
document expects, w hat colour paper etc. either need to be known or 
assumed by the server which takes responsibility fo~ the job.

The MAT accomplishes this by including some information in the request 
block. However for sophisticated documents, this type of strategy will not 
by itself be adequate, as in the general case, the meta-information may be 
quite substantial. The server executing a job should be able to extract the 
meta-information from the document quickly and flexibly — something 
which use of the structuring convention allows.

Once the server has this information, it should decide which printer the job 
should be assigned to: this may be explicitly stated by the user, or decided 
by the server on the basis of the resources needed by the job, and the 
resources available to the system. For example, a particular network may 
have two laser printers, one of which has fonts permanently defined that 
the other does not. A server would be able to send jobs which only need

Tin a PostScript p rogram  some of the requirements of the resources which a  print job 
needs &re implicitly stated in  the code (for example which fonts are needed). However, 
this information Is not readily available. Furthermore, there are some requirements which 
the server needs to know  which are not sta^zd in the code.



the common fonts to either printer. Jobs which needed the fonts only 
available on the one printer would have lo be sent to that printer. (Or, in 
the case of PostScript printers, if that printer happened to be very busy, it 
m ight be possible to embed the definition of the needed font in the print 
job, and send the job to the other printer).

This leads on to the question of the division of responsibility for the work 
that a print job needs. This discussion ties together some of the discussion 
of previous chapters.
• At the end of section 3.2, the trade-off between a client and the 
server performing protocol translation was stated. The printer server 
performing this improves the performance of the client, reduces client 
complexity and allows greater flexibility. However, under heavy loads the 
server may become a bottle-neck.
• In section 5.5, the trade-off between the MAT performing protocol 
translation and the LaserWriter performing protocol translation was 
stated. Unless a full implementation of PostScript is available on the MAT, 
the LaserWriter will always provide a more flexible service. Generally, the 
approach of the LaserWriter performing the protocol translation would 
also save disk space and network traffic. However, at present, PostScript 
engines are relatively slow. The performance of the LaserWriter is poor 
relative to that of the MAT. The optimal solution would depend on the mix 
c 'jobs in the system.

The experience of the MAT leads one to believe that the spooler-device 
controller model [Janson et al. 1983] is not always appropriate, in the 
MAT'S system, the MAT acted as spooler and device controller in the case 
of the dot-matrix printer, and in the case of the LaserWriter as a spooler 
only. The LaserWriter acted as device controller. However, it should be 
recognized that the LaserWriter is itself a server. The LaserWriter in the 
system was somewhat limited in memory and processor speed, but the 
Printer Access Protocols which it uses make the LaserWriter a server: it 
takes one job at a time and prints it.

As PostScript becomes more popular and memory and processor 
performance/cost ratios increase device controllers are likely to become 
more intelligent. Each device controller may, as in the case of the 
LaserW riter, become a p rin ter server with which clients could



communicate directly. This increases the heterogeneity of the system,

A proposed solution is the printing machine model. This printing machine 
would act as a client of all the printer servers on the network and act as 
device controller for all non-intelligent printers. Clients would interact 
directly with the printing machine which would coordinate jvbs among 
servers and printers. The relationship between clients of a printing service, 
the printing service and the printer servers is shown in Figure 6.1

Printing

Clients can access the printers through the printing 
machine. In this example, there are two printing machines 
(l.e. two different printer services). Printing machine 1 can 
give Its clients service from server 1, and can also directly 
print a file to a  printer attached to it (the MAT looks like 
printing machine 1). Printing machine 2 Implements an 
independent printing service, and uses  servers 1-3 to do 
tfiis. In both case s  the printing machine could be 
distributed.

Figure 6.1 — The Printing Machine

System wide management of printing resources would be performed by 
the printing machine. The burden of complexity would fall on the printing 
machine, although for performance or other reasons, either clients or the 
various servers may be encouraged to perform some of the protocol 
translation.



The advantage of the printing machine approach is that increased 
flexibility and performance can be provided to clients, while at the same 
time providing the clients a common interface to the printing service. One 
of the reasons for this would be im proved utilization of printing 
equipment system-wide. Another is the use of buffering and caching. By 
taking cognizance of the tact that printers ate becoming more intelligent, 
the printing machine would promote fle:dbility. Reliability would be 
promoted by the printing machine being able to switch jtibs to spare 
printers should some prin ter fail. P rinting services could grow 
dynamically. The printing machine could be a distributed machine — 
operating on a number of computers at the same time.

The printing machine/printer server concept is analogous to the filing 
machine/file server concept of the Tripos filing machine [Richardson and 
Needham 1983], Another system where different filing systems cam be 
implemented on top of the file servers on the network is the Amoeba Fiie 
System [Mullender and Tanenbaum 1985].

Requirements for printing services
This discussion attempts to specify the requirements and needs for printer 
services. The printing machine concept is not assumed for any of these 
requirements, but it is submitted that because the printing machine 
concept takes into account the distributed nature of the printing service, it 
suits these requirements and needs better than the spooler-device 
controller concept.

• Printing systems need much of the same system and language 
support that distributed systems generally need. In particular, 
buffering and caching needs to be supported, as well as fast I/O .

• Printer protocols must be general, powerful and efficient. Device
independence in these protocols is extremely important.

• For system-wide management of printing resources, information 
about printing jobs needs to be readily available. Preferably, a 
higher-level protocol like the Adobe structuring convention should
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be used.

The semantics of error reporting and the limits of reliability in a 
system need to be clearly defined and understood by the users of 
the system. An example of the complexity of the problem is as 
follows. A user sends a job to the printing machina, and the printing 
machine sends the job to a printer server. Even once the server has 
accepted a job, something can go wrong. For reliability, the printing 
machine should keep a record of the job until it is informed by the 
server that it has completed2, before informing a user that a job has 
printed.

Reporting back to a user is also difficult as when a print job 
completes, the service provider cannot be sure that the same human 
user is still at the client machine. In a reliable environment, 
reporting back may b*> an unnecessary complication. Far better 
would be to allow a user to query the service provider to find the 
status of their job.

In the case where ultra,-high reliability is demanded, there may be 
no alternative bv tor a printer to be attached directly to a computer.

Where security is demanded, the operation of the printer service 
must be strongly idempotent: an eavesdropper should not be able to 
copy the data being transferred across the network, and at a later 
stage be able to produce copy by sending this data to the printer. It 
is likely in such an environment that cost will not be a factor. But, 
providing security is still a general problem3. Users should be 
allowed privacy.

2Note that this complication is not introduced by the printing machine concept. A  similar

Eroblem can be observed by printing to a dot-matrix printer with a buffer. At some stage 
efore the job completes, the printer informs the computer that the job has safely printed. 

If the pow er were to fail im mediately after this, the fob would not finish printing. Some 
printer drivers quite happily 'p rin t' a  file and Inform a  user that the file has 'p rinted ' even 
if there Is no printer attached!
3Consider the MAT's environment. The LaserWriter is used to print exam papers. How 
long will it be  before students use netw ork monitors to get exam questions? This is 
technically possible.
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6.4. Sum m ary
This dissertation has examined how resources may be shared across 
heterogeneous networks. The first chapter introduced preliminary 
concepts, and justified the area of research, In the second chapter, a 
framework for data communication and resource sharing was described, 
as well as the impact of internetworking on protocols. The survey of file 
servers, printer servers and distributed systems in chapter 3 showed that 
the area of research is a fruitful one, but that there are many problems and 
areas which need to be explored further.

The design and implementation of the MAT — a printer server connecting 
two different networks — were described and assessed in chapters 4 and 5. 
Many of the general results of distributed systems applied to the MAT.

This chapter has discussed some of the concepts raised in the dissertation 
in the context of the MAT, other work and the theoretical framework, It 
has clarified important issues for distributed systems, and has proposed an 
extension to the model for printing services.



Appendix A. NETBIOS
The IBM Network Basic Input-Output System (NETBIOS) [IBM, 1984] is 
the interface between an IBM computer (PC, XT or AT), and a network 
adapter which is inserted into one of the computer's slots. The network 
adapter is the connection to a. network—either a PC-net, or IBM token ring 
network.

In the case of the PC-network adapter, the adapter is a card which contains 
an  Intel 80188 m icroprocessor, a com m unications controller, 
approximately 300K of ROM, 128K of RAM, and other controllers. The 
card is capable of direct memory access to the host computer's memory. 
The card's ROM performs the functions of protocols of the first five layers 
of the ISO-OSI Reference Model.

The NETBIOS commands are session layer protocol commands. A host 
computer performs NETBIOS commands using network control blocks 
(NCBs). An NCB is a block (logically, a record) in memory. An NCB can be 
described as

ncb_block * record 
command : byte,-
retcode : byte;(return code)
Isn : byte; (session number)
num ; byte; (number of name)
buffer : double word; {pointer to memory)
length : word;(length of buffer)
callname : packed array [3.. .16) of byte; (address on network)
name : packed array U..16) of byte;
sto,ato : byte; ireceive and send tiroe-outa)
post : double word; (pointer to a procedure)
lana_num : byte; (number of adapter)
cmd_cplt : bytei
reserved : packed artay[l,.14] of byte;

The command  field contains a number indicating the command which 
should be executed. The retcode field returns a number indicating whether 
the command succeeded, and if not, an error code. The Jsn field is used 
when a session, or a virtual circuit, is set up between two communicating 
parties; it contains the local session number, a unique number given to 
each open session to identify the session,
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A particular application or user can register a name on the card to identify 
itself. When this is done, its name is given a number. In any command 
where the application's name is needed, the num  fie1 d is given the relevant 
name number.

The buffer field contains the address of the place in memory where the 
data to be transferred are placed, or the area in memory where data are to 
be transferred from, length contains the length of the buffer,

The name of the application ov user being addressed on the network 
(usually one on another machine, although the network commands could 
theoretically be used by two users on the same machine to communicate 
w ith each other) is placed in the c a llm m e  field. The name of the 
application issuing the command is placed in the name field. The rto and 
sto fields indicate the time-out values (in £00 ms intervals) for receive and 
send commands respectively. The post field is a pointer to a procedure. Its 
use will be explained later.

More than one adapter can be placed in a machine: the lana_num  field 
specifies which adapter card should be used.

The c m d sp lt field Indicates the status of a command being executed. This 
allow s the m onitoring of the status of com m ands executed 
asynchronousiy. The reserve field is not used by a user application.

A l .  Commands
A command is executed by setting up an NCB in  memory with 
appropriate values, and placing the necessary data in a buffer. The address 
of the NCB is placed in the ES:BX register pair, and the Ihe interrupt 5Cig 
is generated. Control is thereby passed to the adapter card.

Commands may be issued synchronously or asynchronousiy. If they are 
issued synchronously, the calling procedure is blocked until the command 
completes. The completion code is placed in relcode.

If the command is issued asynchronousiy, the computer may continue 
processing. A code is placed by the adapter card in the relcode field which 
gives the immediate return code. If this is good, it means that the
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command is being processed. Once the command completes, the final 
return code is placed in the retcade field. The cm d_cplt field may be 
monitored to see whether the command has completed. If it  contains FFie, 
the command has not yet completed, if it contains any other value then it 
has completed. If the post field is given the address of some procedure, 
then when the command completes, the host computer is interrupted, and 
control is passed to this completion procedure. The procedure must 
perform a return from interrupt instruction when it finishes.

There are four categories of commands.

General
The general commands are reset, cancel, adapter status, and unlink.

The cancel command allows a previously issued command to be 
cancelled. The reset command resets a specified adapter card. This clears 
all name and other tables from the card, and allows the setting of certain 
parameters—for example there is a trade-off between the number of names 
and sessions which a card can support.

The adapter status command interrogates a specified adapter card for its 
status. Included in the information received is the identification of 'he 
card1, results of its last self-check, traffic and error statistics, resources 
available on the card, the number of names registered in the local name 
table, and the local name table.

The unlink command is a specialized one used when a computer is linked 
via adapter cards to another computer at boot up time.

Name support
The name support commands allow the computer to be known by a v ne 
on the network. Names can be group names (this allows a group of 
computers to receive the same messages), or individual names. Besides the 
permanent name on the card, each card can have another 15 names.

The add name command allows a name to be added to one of the local

'E ach  rard is given a unique name—the 16 byte name which can be used in the name or 
callname b'tlris.



adapters. The add group name command allows a group name to be 
added to one of the local adapters, The same group name can be used on 
different adapters, other names m ust be unique. The delete name and 
delete group name commands delete names from a card.

Session support
The session support commands allow a logical connection or session to be 
set up between two communicating entities, identified by names. Starting a 
session also allows tire cc- • -.unicating parties to set certain parameters for 
the session. Once a sess..... started, the parties can transmit and receive 
data. This data transfer is reliable—exactly-once transmission is supported.

A session is started by one entity issuing a listen command. It can specify 
who it wants to start a session with, or that it is prepared to start a session 
with anyone. The other entity must then issue a call command, specifying 
the first entity in the callname field, The various time out values are stated 
in the listen and call commands. If the session is started, each entity is 
given its session number in the Isn field2.

Once the session is started, the receive, send, and chain send commands 
can be used to send and receive data. Each send and receive command can 
transfer up to 64K of data. The receive any command can be used by a 
computer to receive data from any other entity which it has a session open

The hang up command is used by both sides to close the session. The 
session status command can be used to find the status of all sessions active 
on an adapter.

Datagram support
Datagrams allow unacknowledged messages to be sent between two 
names. Messages are limited in size to 512 bytes, and this together with 
their unreliability makes the use of datagrams more tricky than sessions.

The send datagram and receive datagram commands are used to send and 
receive datagrams. 'Broadcast datagrams'—datagrams which can be read 
by all nodes on the network—can be sent and received by the

2The two numbers need not be the same, as they are only used locally.
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send broadcast datagram and receive broadcast datagram commands.

A.2. R em ote program  Load
The PC-network allows a (Computer in boot from another computer at start
up  time. To use this, some hardware settings need to be changed,and the 
adapter cards m ust be se t

The fadlity allows the introdtjctidh of dishless machines, -?s users will be 
able to worf off some ifntrai fit* server



Appendix B.
AppleTalk protocols & 
MacBridge.

The purpose of this appendix is to give an outline of the technical details of 
some of the AppleTalk protocols, and the use of the Macbridge card. More 
detailed information can be found in (Apple undated; Apple 1985; Sidhu 
and Oppenheimer 1985; Tangent Technologies 1987}.

3 .1. AppleTalk protocols
The protocols implemented for the AppleTalk fall roughly within the 150- 
051 Reference model. On the Macintosh, various protocols can be used by 
application programmers directly. Programmers may also define their own 
protocols which use some of the lower level protocols. The description of 
the use of the AppleTalk protocols here uses Lightspeed Pascal functions 
which can be used by Macintosh programmers. All languages for the 
Apple Macintosh should support equivalent functions.

Link Access Protocol
The link access protocol (ALAP) is implemented at the physical and data- 
link layers. Its purposes include to provide excess control, provide a node 
addressing mechanism and ensure packet integrity. ALAP uses collision- 
sense-multiple-access with collision avoidance as a medlum-access 
protocol. Each device on the network is given a.node number. Each ALAP 
packet contains 600 bytes of data, together with bytes which contain 
header and trailer information

The ALAP protocol can be manipulated w ith the LAP Write and LAPRead 
procedures. There are also calls which allow the use of user-defined 
protocols—the ALAP procedures examine APLXP packets received to see 
which higher-level protocols should handle the a  r.tents of the packet.



Datagram Delivery Protocol
The Datagram Delivery Protocol (DDP) is a network . -el-protocol. DDF 
sends packets between sockets—sockets are logical entities defined on 
nodes. AppleTalk addresses are uniquely determined, by a node, socket 
pair. With each socket, a socket listener is defined. This is code which 
examines incoming DDPs, and performs necessary operations on packets 
destined that socket. This is the way that higher-level protocols are 
implemented- The AppleTalk Transaction Protocol, for example, is a 
higher-level protocol which is defined by means of a socket listener.

Procedures to im plem ent DDP include D D P O p e n S o c k e t ,  and 
DDPCloseSocket which allow clients of the DDP to open and dose sockets. 
D D PRead  and D D P W rite  allow clients to read from and ivrite to the 
network DDP packets.

AppleTalk Transaction Protocol
The AppleTalk Transaction Protocol (ATP) provides a reliable (at least 
once), loss free transport service. Optionally, ATP messages can be of the 

'exactly-once variety. The DDP protocol is used by the ATP to do 
acknowledgements—the way this is done is not the concern of the ATP 
clients. Each transaction is given a unique fcrans* Hoi! identifier.

ATP uses the request-response paradigm. One network entity sends a 
request to another which responds to the request. The responding end 
opens,*n AppleTalk socket using the  AtpOpenSocket call, and then issues 
an ATPG elRequest call to wait for a request from some other node. The 
requesting node issues an ATPSndRequest specifying the address of the 
responding node. This request sends a data packet to the responder which 
can be interpreted by the responder. When this packet arrives at the 
responding end, the A TP G etR equest ccinpletes1, and the responder 
examines the request. The ATP SndR sp  command can be used to send a 
response to the requesting end. The maximum amount of data which can 
be transferred by one transaction is about 4K.

^As w ith other calls, Shis call may iss’iev synchronously or asynchronously. If it is issued 
synchronously, the caller is blocked until .ne call completes. If It is issued asynchronously, 
the program m ust monitor the comm ( • - tau a  tV see w hen it completes

.  BUS ,



One of the parameters for the ATPSndRsp  call is a pointer to an array of up 
to eight buffers. Each of these corresponds to a buffer used by the 
underlying DDF calls which are used to implement the ATP. See Figure 
Bl.

There are other calls which allow the managing of transactions, and calls 
which are functionally identical to those described above, but use different 
memory management techniques.

Name Binding Protocol
The Name Binding Protocol (NBP) allows users of the AppleTalk protocols 
to associate a name with a node, socket pair. A name consists of three 
fields, an object field, a type field and a zone field. Users of the NBP are 
free to associate any strings with less than 32 characters in the object and 
type field. The object field is used to give a name to some object on the 
network, while the type field indicates what type of device the object is. 
For example, a LaserWriter would have type 'LaserWriter', and a user of 
MacServe would have type 'MacUscr'. The zone field is used when 
multiple AppleTalks are connected to each other, A zone is an arbitrary 
subset of the AppleTalks. The symbol means this network, and in the 
case where there is only one AppleTalk network, this can be used 
exclusively.

The NBPRegister procedure allows an NBP client to register an name on a 
socket, while the N B P R em ove  call deletes a name. The N B PLookU p  
command examines all the names on the network, and places all the names 
which match in some way a specified name into a buffer. The NBPExtract 
command, which is not strictly a network command, can extract useful 
information from this buffer.

Printer Access Protocol2
The Printer Access Protocol (PAP) is a protocol which is designed to allow 
users on the network to communicate with an intelligent printer such as 
the Apple LaserWriter. This printer acts as a printer server in the sense that 
it takes one job at a time from clients on the network, and prints them.

2The PAP protocol calls are not documented for the Apple Macintosh. They are defined in 
Sidhu and Oppenheimer 1985, and can be called from tile Macbridge card.



There are PAP protocol calls for both the the server (the printer) and the 
clients. The PAPRegName, PAPRem Nam e, SLIn it, GetNextJob calls allow 
the server to register and remove its name, to perform initialization 
routines, and to get the next job.

The PAPOpen and PAPClose calls allows sessions to be opened between a 
server and its client, while the PAPRead and PAPW rite  calls allows PAP 
packets to be read from and written to the network.

The documentation for the way in which the PAP protocols are used by 
the LaserWriter are poor. The PSD um p program [Oppenheimer 1985] can 
be examined to see how it is used.

B.2. Macbridge
Whilst on the Macintosh the protocols can be manipulated using pre
defined procedures, users of the Macbridge adapter card which connects 
an IBM computer to the AppleTalk network m ust use a lower-level 
approach.3 '

The approach is much the same as using NETBIOS. An area of memory is 
set up with certain parameters. The DS:BX register pair is given the 
address of this area, and an interrupt (60i6) is issued, and the command is 
executed. The data structure is much more complicated than that for the 
NETBIOS commands because several protocols are supported. Each 
protocol uses a variant of a general record for the data that it needs. The 
data structure for ATP calls is as follows:

3A similar approach is also used on the Macintoshes when assembly language programs 
a re  used to manipulate the AppleTalk protocols.



ATPParams - record
atd_command integer
atd_status integer
atd_compfun memory address/
atp_addc AddrBlk (AppleTalk network address)
atp_socket (local socket#}

(filler)
atp_buffptr memory address; (request buffer ptr)
atp_bu£f3ize integer ; (size of this buffer)
atp_interval (retry interval)
atp_retcy (number of retrys)
atp .flags (control info)
atp_seqbifc (sequence number)
aep_tcanid (transaction id)
atp_userbytes packed array[l. .4] o£'char;
atp_bdabuf£a (number of buffers for response)
atp_bdsresps (number of buffers filled)
atp_bdsptr memory address (pointer to buffers)

Here, the use of the fields common to all protocols is summarized.

The atd.command  field is a word long. A code representing a command is 
placed in it. The status of the command can be found in atd^status,

As with NETBIOS, commands can be issued synchronously or asyn- 
chronously. If the command is issued synchronously, the calling program 
is blocked. If the asynchronous option is used, the atd_statu$ field can be 
checked to see when the command completes—it contains T  until it does 
complete. For both the synchronous and asynchronous modes, the address 
of a procedure can be placed in atd_com pfun. This procedure will be 
executed when the command completes. In this case the currently 
executing program will be interrupted, and control passed to an interrupt 
handler on the Macbridge. This handler will then set up a small stack next 
to the heap, and call the procedure referenced to by atd_compfun.



ATPParams = record
atd_eommand Integer;

Integer;
atd_ccmpf urt taeraary address;
atp_addr AddrBlk; [AppleTalk Network address}
atp_socket (local socket#)
atp £111 (filler)
atpjsuffptr memory address; [request buffer ptr)
atp_buffsize Integer; (size of this buffer}
atp_interval (retry interval}
atp_cetry (number of retrys)
atp_£lag3 (control info}
atp_aeqblt (sequP-.se number}
atp_tranid (transaction id}
atp_Mserbyte8 packed rrayll..4] of char;
atp_bdabu££s (number of buffers for response}
atp_bdscesps (number of buffers filled}
atp_bdspfcr memory address [pointer to buffers}

Here, the use of the fields common to all proioco !:ed.

The Atd_comntand field is a word long, A code repres.— j - i  command is
placed in it. The status of the command can be found in atd_$tatu$.

As w ith NETBIOS, commands car he issued synchronously or asyn- 
chronously. If the command is issued synchronously, the calling program 
is blocked. If the asynchronous option is used, the atd_status field can be 
checked to see when the command completes—it contains T  until it does 
complete. For both the synchronous and asynchrono'ismod^, the address 
of a procedure can be placed in a td j:o m p fu n .  This procedure will be 
executed w hen the command completes. In this case the currently- 
executing program will be interrupted, and control passed to an interrupt 
handler on the Macbridge. This handler will then set up a small stack ne) ;t 
to the heap, and call the procedure referenced to by aldj:ompfun.
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AppleTalk T ransaction  Protocol 
Data structure for ATPSendRequest

A T PParam s block

from other entity

from other entity

Buffer containing data which Is 
sent with the request to the 
other entity.atp_buffptr

atp_buffslzo

.compf un

Figure S I

For the ATP calls, the other fields are used in  the following way. 
atp_addrblk  is the network address of the entity being communicated 
w ith, a tp .s o c k e t  is the local socket num ber being used for the 
communication. The atp_buffptr and dp_buffsizs fields describe the buffer 
with the request information in it, The atp_bdsptr points to the response 
BDSElement array. (This is an array of up to eight records each of which 
has a pointer to a buffer for the data which will be received, and a field 
showing the size of the buffer). This is shown in figure B1 which describes 
the data structure for the ATPSndR equestC iill. The a lp j la g s  contains 
control information, including whether the transaction is at least once or 
exactly once, and whether the final packet cf the transaction is being 
transmitted.
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Appendix C. PostScript
This appendix introduces PostScript programming, and describes the 
Adobe convention for the structuring of PostScript files.

C .l .  PostScript
Pull details of PostScript can be found in Adobe 1985a and 1985b. 
Machanick presents a useful tutorial series [Machanick 1987a-h],

PostScript is a page description language. It has facilities for drawing text, 
images (for example, scanned photographs), and geometric figures (lines, 
arcs etc.) on a page (collectively called objects). In order to place an object 
on the page, the object must be defined, and then placed at an appropriate

A PostScript 'virtual' page is of infinite size, with a Cartesian coordinate 
system used to refer to particular points on the page. The origin of the page 
is typically at the bottom left hand point of the physical page which will be 
produced from the virtual page. The origin may be translated on the page, 
and the coordinate system may also be otherwise transformed and rotated. 
The units of the coordinate system are of point size (approximately 1 /72 of 
an inch) when a program starts to run. Each pixel on the page can be of 
any colour and any intensity. Obviously, most PostScript supporting 
printers do not support all of these features. An Apple LaserWriter for 
example is a monochrome printer with a two-level intensity for each d o t -  
on or off. A high resolution (300 dots per inch) allows a simulation of a 
grey .scare, as PostScript's virtual resolution is 722 pixels per square inch.

The PostScript language itself is a stack based one, with post-fix notation 
being used. H ere follows a brief introduction to some of the PostScript 
operators.

General
The following series of programs give an idea of how PostScript works The 
line numbers are placed here for notational convenience. They do not exist
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in a PostScript program.

1 2 3 5  add sub
2 3 mul
3 345,6
4 5 2 roll
5 pop

In line 1, Lhe numbers 2, 3 and 5 are placed on top of the stack. The 
operator add takes two elements from the top of the stack (in this case, 
they would be 3 and 5). It then adds the numbers together, and places the 
result on top of the stack. After executing line 2, there would be two items 
on the stack—2 and 8 , with 8  being on top. Line 2 pushes the number 3 on 
the stack (so, 3 is on top of the stack, with 2 and 8  underneath). The mul 
operator takes the top two elements, multiplies them together and pushes 
the result on the stack. After line 2, the stack (from bottom to top) has the 
following two elements: 2, 24. In line 3, the numbers 3, 4, 5 and 6  are 
pushed on top of the stack—the stack now has the following (from bottom 
to  top): 2,24 ,3 ,4 ,5 ,6 .

The roll operator in line 4 takes two elements off the top <m the stack, and 
performs a circular shift on the elements on the stack underneath. The 
second element it takes off the stack tells it how many elements must be 
moved, and the first element it takes off indicates how many positions they 
must be moved. So in line 4, 5 elements on the stack will be moved two 
positions up (a positive number indicates up, a negative one down). The 
stack would then look like (from bottom to top): 2, 5. 6 . 24. 3, 4 (the 
un 'erlined numbers are the ones which were moved).

Tn Un* 5, pry  takes top element (4) off the stack.

In the rest of this discussion, the operator's arguments refer to the elements 
that an operator takes off the stack. The firs; argument will be the 
argument which is lowest on the stack, the last argument will be the 
argument which is highest on the stack. The way in which operators work 
is as follows. All the arguments are popped off the stack. The operator then 
performs its functions, which may include pushing or popping elements 
onto or off the stack, and then pushes any results on the stack (there may 
be no results). The currenlpoint refers to the place on the page where the
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next object will be drawn.

PostScript allows the definition of procedures (which may mal t  recursive 
calls), and has a number of powerful iteration and comparison operators. 
PostScript has a general set of arithmetical, trigonometric, and string 
handling functions.

Drawing figures
To start drawing on a page, the newpath operator is executed. This causes 
the current point to become undefined. The setlinewidth operator can be 
used to set the thickness of the lines to be drawn, while the setgrzzyoperator 
sets the greyness of the lines. The following PostScript program draws a 
black line from the point (50,50) to (70,70).

1 . newpath
2 . 50 50 moveto
3. 70 70 lineto
4. 2  setlinewidth
5. 1 setgray
6 .
7. showpage

Line 1 initializes the page. In line 2 the m oveto  operator takes two 
arguments off the top of the stack (the 50s), and moves the current point to 
the the position indicated by these two numbers. In line 3, th |: the Uneto 
operator takes two arguments off the stop of the stack, and draws z line to 
that position indicated. The stroke operator in line 6 , draws all lines etc. 
which have been defined since the last stroke operator. The thickness and 
darkness of the lines drawn depend on values set within the program. In 
this program, in line 4, the line width was set to two points, and in line 5, 
the darkness was set to most dark. If line 3 was replaced wHh 

3. | 20 20 riineto

the same effect would be achieved. The riineto procedure does a relative 
Uneto, that is , it uses the two elements it takes oft the top of the stack as an 
offset from the current position, m oveto  has the same relation to moveto 
that riineto has to lineto.
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PostScript also allows the drawing of curves. The curveto procedure takes 
6  arguments—three pairs of points (xi, yi), (xg, y?), (x& 73).

PostScript then adds a Bizier cube between the current point and the point 
(X3,y3), using the points (xv yi) and (xg, y%) as the control points.

When an enclosed object is drawn, its inside can be filled with a colour (or 
on a monochrome printer, a shade) using the fill operator.

Text
PostScript does not have just one stack, it has four. The stack referred to so 
far is called the operand stack—it is the stack which most operators use for 
operands, and results of operations. The dictionary stack is used by the 
PostScript to keep hack of the definition of objects, including procedures. 
Font definitions are kept in the dictionary stack. To p rin t a string in 12 
point Times Roman at position (100, 100) on the page, the following 
program fragment can be used;

1 /Times-Roman findfont
2  12  scalefont
3 setfont
4 100 lOP-Aveto
5 (This .  . fring) show

In line 1, the dictionary stack is searched using the findfont operator for the 
definition of the Times-Roman font. In the next line, the 12 point size is 
chosen, and in line 3, it is set as the current font. Line 4 moves the current 
point to the point (100,100), and in line 5, the string "This is the string" is 
placed on the page by the show operator.

PostScript allows the definition of fonts within programs—so a document 
need not use only the fonts directly supported by the particular printer.

There are a number of other operators which allow the manipulation of 
text, including kshow  (which supports, among other things, kerning), 
widthshow  (wliich can be used to perform calculations on text). Text and 
other graphics can be intermixed on the page.
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Summary
This very brief outline of PostScript shows some its features. How the 
other stacks can be manipulated and used is beyond the scope of this 
appendix, as is how bit images can be used and manipulated. How the 
coordinate system can be used has also been neglected.

Together with PostScript's general purpose operators, the graphics 
operators provide a powerful framework for page description.

For completeness, a list of most PostScript operators follows.

O perand stack m anipulation
pop exch 
roll clear 
counttomark

.2 deartomark

A rithmetic operators 
add div

round truncate 
sin exp 
Brand rtand

r log
E;

Array operators

put getinterval 
copy forall

putinterval g 8t

Dictionary operators 
diet length

known where 
systemdict userdict

maxlength

currentdict

S*

countdictstack
enordict 
diets tack

String operators 
string length 
putinterval copy fo1 11 anchorsearch

getinterval

Relational, boolean and bitw ise operators 
cq ne . ge 
It and not 
true false bitshift

8*

Control operators

loop exit 
quit shut

IS" for
stopped cottntexecstack

Graphics operators
gsave grestore grestoreali 
currentlinewidth setlinecap currentllnecap 
setmfteriimit currcntmiterlimitsetdssh 
currentflat set gray currentgray 
setrbgcolour cmrentrgbcolour setscreen

initgraphics
setlinejoin
currentdash
sethsbcolour
settransfer

setlinewidth
currcntlinejoin

currenthspcolor
currenttransfer



Coordinate system at.J matrix operators
initmatrix identmatrix default matrix durrentmatru

setmatrlx translate
concatmatrix transform diransform 1 transform idtransform
invertmatrix

P a th  construction operators
newpath currentpoint movcto rmoveto
riiruiio curveto
rcurveto ciosepath fiattenpath ravers path strokepath
charpath dippath pathbox pathforall initdip

cHp

Painting
eraser-age
imr.gemask

Character and fon t operators
deflnefont findfont scaiefbnt raakefont
currentfont widthshow awidthshow

stringwidth FbntDirectory StandardEn coding

Omitted from this list are type attribute and conversion operators, file 
operators, device setup and output operators, font cache operators, as well 
as some miscellaneous operators.

C.2. Adobe structu ring  convention
PostScript was designed by Adobe Systems Inc, which implements all 
PostScript engines. Adobe has set up a convention [Adobe 1985a; Adobe 
1987] for the structuring of PostScript files. Files which conform to this 
convention are called conforming.

The purpose of the convention is to allow .••'.tem-wide management of 
resources. By structuring the file in a certair. a ay, other programs—such as 
document managers and printer servers—are able to meet user requests 
flexibly and efficiently. Information about the PostScript program and the 
resources it needs are easily accessible. For example, if the fonts which are 
to be used are known before a job is printed, a printer server would be 
better able to choose a printer, and if the choice of the printer was fixed the 
sen  er would be able to prepare the resources needed, and so be able to use 
the printer more efficiently. If each of the pages was independent of the



ethers, then the pages could be reordered by the server, Tn some cases user 
requests (such as colour or quality of paper) m ay need human 
intervention, and this type of information may also be needed.

The information in this appendix is intended to give an indication of how 
the convention works, and is not a substitute for the convention 
specification [Adobe 1987], The convention works by organizing PostScript 
programs in a certain way, and using comments, which are easily 
recognizable to a document manager'1.

Ordinary documents are divided into two parts, a  prologue which contains 
only definitions, and a script which contains only executable code.

The following comments can be embedded into PostScript programs.

The first line of each PostScript program should start with % ! ps-A dobe- 
X. x, where the X. X is the current version number of the convention.

Other comments are

%%T i t .  1 e : This is followed by ASCII text with the title of the document.

% % Creator: Followed by the name of the creator

% % C reationD ate: Followed by text with the date the document was

%%For: Followed by text naming who the document is for.

%%Routing: Followed by text explaining where the document should be

%%Pages : Followed by a number indicating how many pages there are in 
the document, and optionally followed by a number indicating in which 
order the pages should be printed, If no page order is specified, then pages 
may be ordered in any order. This raises the possibility of pages being 
printed in parallel—different pages of the same document being printed 
on different printers at the same time.

iT his is post-processing of a file



%%Requirements : Followed by a list of requirements, which include 
whether the document should be stapled or punched, and whethei it 
should be printed on one side of the page or both.

%%DocumentFonts i Followed by a list of all the fonts which will be used 
by the document. There are also comment's which state which fonts the 
document defines for itself, and which fonts m ust be provided by the 
system—these fonts m ust either be built into the printer, or defined by the 
printer server when the file is downloaded to the winter.

% % DocumentNeededFiles : Followed by a list of files which must be 
inserted into the document. This allows other PostScript documents to be 
embedded within the document.

% %Document P a p e r  s i z e  s : Followed by a list of paper sizes or types 
which the document needs.

%%EndProlog This comment ends the header comments in a file, and 
marks the beginning of the script.

W ithin the body of the script, several comments can appear. One of the 
important decisions which a PostScript generator m ust make is whether 
the pages in the text wilt be independent of each other. If they are to be, 
then within the processing for each page, no system parameters must b e ' 
changed: each page can depend on the definitions in the prologue, but may 
not depend on any processing done on other pages.

If pages are independent of each other, then each page should be preceded 
by some comments. Some are:

%%Paye: This is followed by a label which may be printed on the page, 
and the logical page number which the page is.

%%PageFonts : Followed by a list of fonts which will be used on that 
page. Using this allows the server to determine whether the page can be 
printed on a certain printer. In a complex document this may also be 
useful, as if many fonts are being used, this allows the server to determine 
which fonts will not be used in the processing for the page.

There are m any other comments and rules which can be used for



and the logical page number which the page is.

S IP a g e F o n ts  : Followed by a list of fonts which will be used on that 
page. Using this allows the server to determine whether the page can 
be printed on a certain printer. In a complex document this may also be 
useful, as if many fonts are being used, this allows the server to 
determine which fonts will not be used in the processing for the page.

There are many other comments and rules wh!eh can be used for 
structuring: files. Adobe recommend that a comment never b e  used if 
the information may be wrong, and secondly that as many comments 
as possible should be used.



Appendix D, PostScript protocol 
conversion

This appendix describes the three protocol conversion strategies 
mentioned in section 5.3.

Notation and assumptions

Let: P  be the prologue of tiie file1 

D be the data to be printed
Di be the ith line of the data, where there are n lines in total

The length of the file is A=length(D), or £  length(Df)

Define the space ratio of a protocol conversion strategy S given its output 
file Fs to be

Assume that there are, on average, 66  characters to a line, and 60 lines to a 
page.

Analysis

The first strategy—the brute force strategy, B—is after setting up the 
prologue, to take each line, and enclose it in brackets, with the show  
operator after it to print the line. This is followed by a command to move 
to the next line. When a page becomes full, tire showpage instruction is 
issued to prin t the current page. An extract from an output file would 
then look something like this:

^The prologue of a file contains bo th  comments, and definition of procedures, 
constants etc.



(Di) show 
30 900 moveto 
IDj+i) show 
30 888 moveto 
<Dj+2) show 
30 866 moveto

Here, the Pascal program keeps track of where the current point being 
drawn on the page is. This strategy implies that there is an overhead of 22 
characters for every line. Hie length of the file would be 

A+22n§+lmgth(P)+9A div (60*66)1, 
and the space ratio of this strategy would be 

1  ̂ 22n + length(P)*9 A div (60*66)

Substituting 66n for A, gives us
o(B) = 1.33 + length(P)/4 f u n d in g  to two Csdittal places)

The next strategy—call it C—offloads fC,.ne of the wor>' to the I-aserWriter. 
One of the main problems with B was .that there is a big fixed overhead for 
each line, for the show  and m ovelu  procedures. C defines a Postscript 
procedure to do this. It is given the name gl—short, cryptic names do have 
their place somewhere. Now, the LaserWriter has the responsibility of 
keeping track of the currentpoint, and calculate when to move to a new 
line where necessary. An extract from the output file w ould look 
something like:*

(oi+i) gi 
(i>l+2) g l

The overhead per line is now four characters, although the converter now 
must imbed a procedure with 52 characters in the prologue The length of 
the file is now equal to

A+Jength(P)+ 4h I + 9A/(60*66)t, and the space ratio 
A+length(P)+4A/66+0.0025A

d c ) =

1.07 + length(P)/A

t  B and C, the following is obtained: 
§ Overhead for printing a line and moving to a new line 
t  Overhead for going to new page



q(B)-c(C)
o(B)

0.26-52/A
0(B)

This shows that for any file which has more than 250 characters, method C 
wtil be more e/ficient in  terms of disk space used, and amount of network 
traffic. For files larger than 3K, the saving will be between 18 and 20%. 
These figures are also conservative figures; they relate to pages which are 
full of text. Where there '$ more white space, the savings will be greater.

A third strategy would be to offload all the work to the LaserWriter. The 
prologue would be a Postscript program, which would use the data file as 
input. The MAT'S converter would not manipulate the data file at all. This 
would all be done by the LaserWriter. The space ratio depends on how 
sophisticated the algorithm is. There is a fixed overhead which is the same 
for all files (the length of the program), and there is no other overhead 
depending on the length of line or page etc. An example program which 
take a file of characters and produces Postscript output for them can be 
found in [Adobe 1985b, ppl78-181]. This program is 770 characters long. 
Calling this strategy P  gives a space ratio of

As far as space is concerned, this only betters the efficiency of B for files 
which are larger than 12K, although for files on infinite length, the space 
ratio tends io 1 (no overhead ai all!).
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