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ABSTRACT

The problem, as presented, was to provide a simple device for 

dissipating pressure in mine underground high pressure water 

reticulation systems, required feature of the device being operation 

without cavitation. An orifice  place was selected and the object of 

the study was to evaluate various orifice  diameter ratios (0 ,2 0 6  to 

’\ 4 '« 4 ) ,  for a rar.ge of urscream pressures (2000 kPa to 7000 kP a ) ,  for 

their incipient cavitation points and flow/pressure drop data.

Selected literature was reviewed to establish factors affecting the 

phenomena of cavitation (eg . air content of watar, pressure levels of 

occurrence, effect of suspended solids, e t c . ) ,  and cavitation 

prediction methods that were available for use.

Experimental work was conducted in two parts, low pressure and high 

pressure; the low pressure part being carried out at the University of 

the Wltwatersrand, and used to investigate the validity  of an existing 

cavitation prediction equation, and to provide visual observations of 

cavitating flow. This also involved the formulation and application 

of a method to determine the incipient cavitation point. The gathered 

experimental results being lnconslstant with predicted values. The 

high pressure part of the work was carried out at East Driefonteln 

Cold Mine, the experiments again yielding data that was inconsistent 

with predicted values.

From analysis of the incipient cavitation results It  is concluded that 

upstream pressure affected the pressure drop required for incipient 

cavitation, for the same orifice  size ; and that the orifice  ratio 

affected the pressure drop required for incipient cavitation, for the 

same upstream pressure. These effects are explained by reference to 

flow turbulence. The flowrate/pressure drop relationships for the 

orifices were also found to be Inconsistent with theory; however, this 

is explained by reference to the etror analysis and to possible 

external factors that could not be controlled during the experiments.

For the gathered incipient cavitation data a prediction equation was 

derived, its range of use being 2000 kPa to 7000 kPa, for orifice  

diameter ratios of 0 ,206  to 0 ,4 4 4 ;  this is also presented in graphical 

form.
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INTRODUCTION

In the South African gold mining industry there exists a need for a 

relacively simple device to dissipate high pressure fluid  he^ds (above 

3000 kPa). It was suggested by the late Dr A Whillier of the Chamber 

of Mines Research Laboratories that a square-edged orifice plate would 

be an appropriate device; and to the best of the author's knowledge 

orifice places ere not used on mines to dissipate high pressure heads.

Typically, such an orifice  would be used to allow water to flow freely 

from a high pressure supply system into associated low pressure 

reticulation systems; also , such an orifice  could be used in a turbine 

by-pass circuit when either the required flow is outside turbine 

operating U n i t s ,  or when turbine maintenance work is being carried out.

However, the operating characteristics of an orifice  with its 

associated high pressure drops do not appear to ha re teen examined in 

any depth. In particular, such devices are 1' to -tnerate

considerable cavitation. The investigation ribed here into

the use of orifice plates was therefore to s.

( i )  The use of orifice  plate pressure dissipators in high 

pressure water lines ,

AND

( i i )  The flow associated cavitation effects

The thesis is divided into eight chapters. The first outlines the 

Problem. The second chapter contains a review of selected literature 

on cavitation, the purpose of which is two-fold: one, to explain the 

phenomena of cavitation, and two, to highlight areas where insufficient 

literature is available to throw light on the problem posed in Chapter

1. This chapter is split up into five sections, each covering a 

specific area of cavitation literature. The first  section deals with



bubble growth : this outlines two mechanisms whereby cavitation bubbles 

are formed. The second section looks at factors affecting cavitation 

inception : this highlights various areas where generalised cavitation 

data or prediction equations may have certain inherent inaccuracies. A 

third section deals with bubble collapse : this looks at the prediction 

of the forces that bubbles exert on a solid boundary, and the l i fe  

cycle of a cavitation bubble. The fourth section examines prediction 

methods, commenting on their usefulness when applied to a high pressure 

situation. The finel section of this chapter then deals with various 

procedures that are available for determining useful cavitation data, 

and how suitable they are for applicati n to high pressure conditions.

The third chapter examines the background to the use of an orifice  

plate at! a flow measuring and pressure dissipating device , and 

describes flow through such a orifice .

A a check on the available ca/itation  prediction equations and on 

associated cavitation data, and to enable further cavitation data to be 

gathered, both a low pressure and a high pressure fa c il ity  for 

cavitation tests were set up; these are described in the fourth 

chapter, the specific use and operation of each experimental facility  

being explained in detail .

In the fifth  chapter, results from the low and the high pressure test 

facilities  are discussed and analysed. A semi-empirical equation Is 

advanced for predicting Incipient cavitation, and to explain physically 

the phenomenon of orifice cavitation and any scale effects arising 

therefrom. The sixth chapter is specifically  a discussion of the 

analysed results In the context of the mining problem referred to in 

the first  chapter.

The seventh chapter presents conclusions arising from the results and 

their application, while the eighth chapter makes recommendations 

concerning cavitation in actual low and high pressure water systems.



PROBLEM

Gold mine water reticulation systems can be classified  as low 

pressure, or as high pressure in character. Both systems fulful 

the same function, that is ,  to supply water to mine workings, 

including equipment such as spray chambers and air-to-water heat 

exchangers.

Typically, the low pressure systems operate at pressures below 

3000 kPa and the pipework configuration in the shafts and on the 

mining levels is such that the pressure head created by the 

vertical distances between levels i3 broken at regular inter

vals. One such system is  shown in Figure 1 .1 ,  where pressure 

reducing valves and dams are used to break the accumulating 

pressure head.

With high pressure systems, the shaft pipework configuration is 

essentially that of a long unrestricted pipe. *nd the pressure at 

the base of the pipe is that due to the total height of the 

water column (typically 7000 kPa to 15 000 kPa or 700 to 1500 m 

HgO). Water is drawn from the shaft column and passes through 

pressure reducing valves before entering low pressure pipework 

systems on the various levels. An example of such a system is  

sbowr in Figure 1 .2 .

IXie to the South African jjold mines having become progressively 

deeper, the use of Pelton turbine energy recovery systems has 

become an accepted practice during recent years. These systems 

consist primarily of e curbine coupled to * pump, or to a 

generator. Tht pump is used to pump water out of the mine, and 

the generator is used to produce electricity  which is fed b*ck 

into the mine electrical system. Generally, the turbines are 

situated close to the shaft , so that high pressure water from the 

shaft water column ran be fed directly to the turbines.

Pressures at the turbine inlet typically range trom 7000 kPa to 

15 000 kPa (700 to 1500 m Ha0 ) ,  which obviously depends on the 

mine and the level at which the turbine is  to be situated. A 

secondary function of the turbine is that it also acts as a 

pressure reducing valve, water entering at a high pressure and 

leaving at a lower pressure.

■A*®*.



FIGURE 1.1 MINE LOW PRESSURE WATER RETICULATION SYSTEM
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A feature of the above-mentioned sytems (low pressure, high pressure, 

and turbines) ip that valves of one fora or another are required to 

enable the sys;. *-o operate correctly. There are , however, certain 

inadequacies asso< > J ’ tth these systems. With both the low and the 

high pressure retl>t 1 ation systems, the pressure reducing valves have a 

characteristic operating range and for their correct operation they 

require an appropriate back pressure (especially at their lower 

operating limit - under conditions of low flow ). Further, in the event 

of a pipe bursting downstream of the valve, th*i system w ill  empty in a 

short period of time. Currently;, there appears to be no simple device 

in use which caters for these requirements, the result being certain 

operational d iffic u lt ies . Therefore, it a simple cost-effective device 

could be installed , which would provide a back pressure for the valve, 

and restrict water flow in the event of a pipe burst, j  definite  design 

improvement to the system w ill  have been made.

With the Pelton turbine there is a characteristic operating flow 

range. Above and below this range, water has to be by-passed around 

the turbine, thereby necessitating the use of a device to dissipate 

relatively larj?e pressure heads. At the present time, this requirement 

appears to be met by either the use of costly and sophisticated valves, 

or long orifice assemblies which, due to their intermittent operation, 

appear to have been designed without cavitation being fully taken into 

consideration. The installation of a simple cost-effective pressure 

dissipating device, of which the cavitation characteristics are known, 

will  again result In a definite system improvement having been made.

Such a simple pressure dissipating device Is the orifice  plate and it 

18 generally true that the pressure dissipated is proportional to the 

square root of the pressure difference across i t .  However, it should 

also be realised that It Is s t ili  possible for cavitation to occur, but 

to the best of the author's knowledge, tinimal information is available 

cn cavitation limits for orifice plates operating In high pressure head 

situations.

A*
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Informatic i s ,  however, available for low pressure head situations 

from the work of Tullis  J .P .  and Ball J .W .  ( 1 9 7 4 ) ,  Sweeney C .E. (1974) 

and Ball J .W . et al (1975) - all  at the Colorado State University - and 

is given in Section 2 .4 .

Therefore, considering the potential applications for the orifice  

(though stopping short of saying that it  can or should replace all  

valves), the purpose of this investigation was to examine the use of 

orifice plates in high pressue head situations, and in particular, to 

provide information on the behaviour of an orifice  when it  is  called 

upon to dissipate xarge pressure heads under cavitation conditions.
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2. CAVITATION

The aim of this chapter is to provide some general information 

relating to the v omena of cavitation, and to highlight some of 

the factors that a-iect cavitation - thus indicating variables 

for consideration when '•ttempting to predict its occurrence.

Whilst conducting the Hterature  survey for this chapter it was 

found that much of the extant literature related to erosion of 

solid boundaries rather than to prediction of r.he occurrence of 

cavitation; and since erosion is recognised as being a major 

problem area, it is this aspect which has been best documented. 

The aspects of prediction and the factors affecting the 

occurreuce of cavitation appear to be nrich less well documented, 

yet they are of equal Importance as they lead up to the 

occurrence of erosion, and a knowledge of them would allow a 

fuller understanding of cavitation phenomena. This chapter i s ,  

therefore, directed towards providing that knowledge by means of 

reference to selected literature.

In all  cases, whether fluid flow occurs in a closed or in an open 

system, cavitation is characterised by a two-phase flow 

(gas/vapour and l iq u id ) ,  the cavitation bubbles forming in high 

velocity, low pressure areas, and collapsing in low velocity high 

pressure areas : the formation of bubbles generally being 

associated with surface irregularities or flow restrictions.

Cavitation research - as with other fields of research - has 

experienced fashionable periods where both money and intensive 

effort have been focussed on solving particular problems. The 

first investigation into cavitation appears to have been carried 

out in the latter half of the nineteenth century. At that time 

screw propellor propulsion was in its infincy and problems were 

being encountered with the erosion of propellers. During the sea 

trials of VMS Daring in 1893 (Pearsall I .S .  1972) it was noted 

that the maximum speed attained was far less than expected; this 

was finally  attributed to vapour bubbles forming on the propellor 

blades. Similar problems were also experienced in later years 

with the Turbinia (Parsons C .A . 1911). These problems appear to 

have stayed with the ship building Industry for a number of
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years, since Parsons C .A . and Cook S .S .  (1919) mention that deep 

pitting occurred on the propellors of both the Mauritania and the 

Lusitania, wr.ile the destroyer Swift had had 24 propellors made 

for i t .

At a later date water became extensively used as a major energy 

source for the production of electricity  in hydroelectric power 

schemes, the method of energy conversion being for the water to 

drive turbines coupled to generator sets. Here problems were 

experienced wlr’. the erosion of turbines, valves and water 

conduits under conditions of high velocity and low pressure.

This led to the use and development of geometrically similar 

models to establish working designs, thus reduciug the need for 

l*»ter re-design or repair on an ad hoc basis.

An example of such a model was the design of a sudden enlargement 

pressure disslpator for the Mica Dam (Russell S .O .  and Bail J .W .

1967); the purpose of the study was to design a special pressure 

disslpator to reduce pressure on the outlet control gates of the 

water conduits. The most recent application of cavitation 

research has been in the use of liquid metals, cryogenic and 

organic liquids as heat transfer media end as working fluids in 

thermodynamic cycles in space and nuclear applications - where a 

failure in any particular application could possibly lead to a 

major disaster.

For flow systems, four levels of cavitation have been defined by 

Tullis J .P .  and Govindarajan R. (1973 ) .  These are - incipient, 

critical , incipient damage and choking, and are described as 

follows

Incipient cavitation This represents the onset of

cavitation, the noiae produced is 

light and Intermittent, and 

vibration is negligible.
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