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CHAPTER 1

INTRODUCTION

1.1 MOTTVATTONAL BAGKGROUND

At the beginning of 1977, under the leadership of Professor Costa J. [
Rallis, the Stirling engine research program at the University of the
Witwatersrand was entering a dynamic growth phase, Urieli was

completing his landmark doctoral thesis on the numerical simulation of :
Stirling cyele machines (Ur77) while Berchowitz was preparing an

experimental test rig for validating a modified version of the Uriell b

simulation model (Be7’8). As an impressionable graduate student, the -
auther joined this effort by commencing a research project on ligquid- i, .~
piston Stirling engines which later became the subject of a master’s

dissertation (Go79).

As Berchowitz’s research matured, many quescions wi ralsed about the

philosophy underpifining the Urieli simulation model. Predominantly,
these queries related to the importance of a mathemarically rigourous

description of Stirling machine Fluid dynamlcs as well as to the

signficance of momentum in the variable volume spaces. At the X
termination of his research, Berchowitz demonstrated via his

experimental data that these queries remained largely unresolved.

During the course of the liguid-piston engine research, a novel
liquid-piston, Free-displacer Stirling engine (LPFDSE) was developed
and tested (Go?9, GR79). The LPFNSE was designed using a numerical

simulation of the displacer and piston dynamics coupled to simplified




adiabatic snd/or isothermsl descriptions of the working fluid
thermodynamles. The dynamic/thermodynamic coupling emerged as the
primary factor enabling a successful simulation to be developed. A&
comparison of the simulated and expevimental performance data later
showed significant discrepancies betwsen the simulated and measured
operating frequencies. This was ascribed to a lack of physical
correspondence between the experimental and simulated
dynamic/thermodynamic coupling mechunisms which were radically

different from each other,

Hence the need for an accurate coupled dynamic/thermodynamic design
analysis For free-plston Stirling machines clearly became apparent.
To be useful for innovative or non-standard free-piston designs (such
as that of the LPFDSE), such an analysis must be self-contained,
avolding the necessity of stipulating displacer and piston motions.
Very often, such dynamic motions may not be precisely predetermined,
This is true fer the LPFDSE in particular, owing to the discontinuous,
non-linear motion of its displacer. Berchowitz and Wyatt-Mair (BW79)
explored the coupled dynamic/thermodynamic analysis issue by applying
c¢lassical control theory to a standard beta-configuration, free-piston
Stirling englne. Thelr approach, however, requires the specification

of predefined harmonic piston and displacer motions.

The queriss raised by the oxperimental evaluation of the Urield
simulation model and the deflcienciecs of the LPFDSE design methodolegy
originally motivated the rescarch described in thiz thesis. These
issues were later recognised by the Stirling research community at
large, substantiating the relevance of and the need for the research

undertaken, This research spans a period of eight years, from 1979 to




1987. During its evelucion, the research has benefitted from an
interasction with several diverse Stirling machine projects. These
prajects have ranged from the design of a linear alternater
dynamometer control system for the Oak Ridge National Laboratory
(GLB3), to the development of a two-dimensional fluid dynamics
component simulation of the 3pace Power Demonstrator Engine for NASA
{the United States National Aeronautics and Space Administration)
{GoB7.1). As such, thls thesis provides an evolutionary link between
the original simulation and analysis work of Urieli and Berchowitz and
the recent advent of two-dimensiunal Stirling machine simulation

models.

1.2 AN HISTORICAL PERSPEGTIVE

The ideal Stirling cycle devised by either James ur Robert Stirling im

1816 (Ko72) ‘. depleted in Ffiguve 1.1.

Pressure
Temperaiure

. 4 INTERNAL
HEAT
TRANSFER
\ VIA A
. REGENERATOR
1
Volume Entrepy

Figure 1.1 The ideal Stirling eycle




The cycle consists of four ldeal processes executed in clockwise

. oand 1 compressfon of the working £luid occurs

during process -4, Thersafter, in process 2-3, the working fluid is
transferred isochorically from the compression ko the expansion '
spaces. This is followed by an isothermal expansion phase 3-4 during
which work is extracted Erom the expanslon space. The working fluid !
is then transferred isochorically back to the compression space, L
i

clnsing the cycle. Heat is absorbed from the working £luid by a i
regeneracor during process 4-1 and returned to the fluid during !
process 2-3. Therefore, providing that the regenerator is perfect

(that Ls, all the heat absorbed s later released), the ideal Stirling
cycls conforms externally to the Carmot cycle and is thus capable of R

yielding che maximum theoretical (or Carnot) efficieney for a heat

engine.

The evelutlon of the ideal Stirling cycle, its thurmodynamie analysis i
and its application to practical energy conversion machinery have been

thoroughly documented in the literature, perhaps most notably by

Walker (Wa73). The relatively recent acceptance of the Stirling i
machine as a viable thermal energy conversion device is reflected by

the inclusion »£ the Stirling cycle as a discrete topis in several s
standard thermodynamics texts (such as that authored by Wark (Wa77)).

The reader is referred to these texts (or any of several others) to

obtain background information on the fundawentals of Stirling cyele

machine hardware and analysis,

The development of the Stirling machine fluid dynamic simulation may H

be broadly traced wich reference to figure 1.2.
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Fiw elstein (FL60, Fi7%)

Urielil 1Ty

[ [ I ]
Organ (0r82} Berchowitz (Be78) Schock (S¢78) Cadaon (Ge86.1)

‘
Taylor (TaBk) Rix (Ri83)
Figire 1.2 Stirling machine fluid dynamic simulation development

In a series of papars published between 1960 (Fi60) and 1975 (Fi75),
Finkelstein described a computerised procedure for solving the mass
and energy conservation equations for Stirling machine working space
boundary conditions. No momentum balance is explicitly included in
Finkelstein's approach (Be78) so that working fluld inertia is

ignored. In these circumstances, the mass fluxes at the expansion and

compression space gnrts are computed via a pressure drop correlation.

A further consequence oX Finkelstein's method is that the kimetic

energy of the working fluid is not included in the energy conservation

equations.

Uriell advanced Finkelstein's simulation methodology by applying R E
momentum, mass and enargy conservation balances to the working space ‘1
of a simplified, alpha (o% in-line) Stirling emgine with horizontally i
opposed expansion and compression gpace cylinders (Ur77),

Differencial formulations of the conservation equations are applied

using a one-dimensional, nodal, spatial discrerisation scheme. These P

discretised equations are integrated temporally over a cycle via an

expliclt numexical algorithm, The integration process is repeated for

several cycles uncil eyelic steady-state equilibrium is achieved.




Bevchowitz refined the analytic derivation of Uriell's simulation

madel and applied it to an experimental test rig (Be78). A comparison
between the experimental and slmulated data yielded a mean discrepancy
of approximately 20% for the indicated works and external heat
transfers. In addition, the experimentally observed relative phase

angles between the expansion and compression space pressure profiles

did not corraspond with those simulated, This discrepancy was
attributed to the exclusion of momentum in the variable velume spaces

in the Urieli model.

Schock (Se78) applied a variant of the Urieli simulation methodology
ro a beta-configuration, free-piston Stirling engine. A& principal [
difference between the Schock and Uriell models is Schock's use of !
welghted-average velocities to determine advective enchalpy and H
momentum transport between nodes., In contrast, Urieli lnvokes a

scaggered grid discretisation of the momentum equation coupled with an

‘upwind differencing’ schems (Ro82) to determine inter-nodal advective

transport,

Organ critieised the nodal simulation approach spawned by Uriell .
(0r82) for introducing arbitraiy discontinulties into the flow field .
and not including the effects of {nformatlon propagation. As a

solution to these deficiencies, Organ propesed a ‘method of

characteristics’ simulation methodology commonly applied to

compressible gas acrodynamic flows (Sh54). He demonstrated the method

for a particular alpha-conflpguratfon Stirling machine with the B
restriction of an assumed Lsothermal working space. Taylor pursued L
this approach and attempted to overcome the isothermal limitation by

using the method of characteristics to solve a full set of mass, i
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womentun and energy conservation equations for Stirling machine
working space boundary conditions (Ta84). Rix (Ri83), in an alternate

development of Organ’s simulation philosophy, applied = Lagrangian

spatial discretisatisn approach to medelling Stir ing machine fiuid

dynamics. However, the method is demonstrated only for a
geometrically simple case in which transient momentum effects are [

ignored,

The method of characteristics approach to Stirling machine simulation ;
eliminates arbitrary f'uid discontinuities and models information i
propagation phenomena. The Lagrangian discretisation method per se

also eliminates arbitrary discontinuities, but evidently does not

describe jinform. on propagation effscts. However, to the author's .
knowledge, neither simulation approach has been successfully spplied

to a complete and unabridged fluid dynamic analysis of a geometrically

complex, non-laboratory Stirling machine.

Several other wariations of the Urieli simulation model have been

proposed over the years. A recent notable addition has been made by

Gedeon (GeB6.1), Using a global, temporally implicit integration x
scheme, Gedeon manages to converge his simulation model rapidly

towards the cyclic steady-state. However, this scheme reportedly

mandates an excremely coarse temporal resolution (typically le: than

ten increments per cycle). As such, Gedeon's approach does not seem

to specifically address the issucs raised either by Berchowitz or by

orgar,




The historical record of the development of coupled
dynamic/thexmodynamic free-piston Stirling engine analyses does mot
readily lend itself to an hierarchical interpretation. A pioneering
effort in this area may be ascribed to Berchowitz and Wyatt-Mair
(BV79) who based their approach (as moted in section 1.1) on applying
a classical comtral theory anaiysis to a particular free-piston
machine. Their analysis relies upon the stipulation of harmonic
kinematic motions, a concept which had been advosated previously by
Rauch (Ra75). Several ather researchers hav: expanded upon the
defined harmonic motion control theory analysis, notably Chen and

Griffen (CG84, CGBE) and Cichy end Carlindi (CC84).

An alternative to the control theory approach is the phasor diagram
methodology reported by Fokker and van Eekelen (EV78). The phasor
diagram method has been adapted to various engine configurations
including a liquid-piston machine (We83). However, all these control
theory and phasor diagram mechods are still reliant upon the

specification of defined engine kinematics.

This abbreviated historiecal perspective is amplified where appropriate
in later chapters, Nevertheless, limitations and qualifications have
been noted in both the areas of fluld dynamic simulation and coupled
dynamic/thermodynsmic analysis. %hese limitations and qualifications
Gemonstrate the validity of and the need for the Stirling cycle

machine research wiich is the subject of this thesis.




1.3 THE TI STATEMENTS AND OBJECTIVES

The limitations of the coupled dynamic/thermodynamic analyses of free-
piston Stirling cycle machines sre addressed by an spplication of
modern control theory in the guise of a state space analysis. This
approach 1s postulated to yield a closed-form solution to the relevant
differential equations without the necessity of stipulating defined
kinematic motions. The closed-form solution is achieved via the
derivation of a single equation inter-linking all the machine design
parameters. This equation defines what is termed a ‘hypersurface’ in
the parameter sp::s (explained in section 2.2). Such a hypersurface
equation permits individual parameters to be manipulate : i» a systems
context allowing an assessment of the feasibility of the dgsign to be
made. Furthermore, a single equation representation enables
optimisacion studies to be carried out effectiv~ly because the
synergistic effects of varying individual parameters are automatically
accounted for. Lastly, a design parameter set satisfying the
hypersurface equation enables closed-form solutions for the piston and
displacer motions to be obtained as dependent functions of the design

parameters themselves.

Hence, the formal thesls for the coupled dynamic/thermodynamic

Stirling machine analysis research may be expressed as follows:

Flrst Thesis Statement
A parameter space stabillty boundary hypersurface is a sufficient
and unique characterisacion of the coupled dynamics and

thermodynamics of a Free-piston Stirling cycle machine.
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A physically rigourous approach is adopted to address the limitations
in existing Stirling machine fluid dynamic simulations. The
fundamental postulate 1s that the fluid dynamic processes occurring
within a Stirling machine may be represented adequately by a continuum

mechanics description of the working fluid. Coupling this descripticn

with the golld body conservarion laws for mass, womentum and energy,
enables the relevant fluid conservation balances to be derived without
recourse to the less genevalised Naviaer-Stokes approach. These
balances are cast in total temporal devivative form within an i

incegral, volume-averaped structure. {

After time-averaging, the integral balances are reduced to a format
amenable to numerical solucien by the application of a turbulence
model. A spatial discrectisation scheme is defined enabling the
reduced Integral balansas ta be applied naturally ta z multbi-
dimensional space without empirical manipulation. Finally,
information propagation hypotheses are presented in terms of an
implicit numerical integration scheme. Only at this juncture is the
reseliant simslation model applied rigourously to a particular

Stirllng machine descripcion,

This overall simulation approach may be summavised by a formal thesis

statement as follows:

Second Thesis Stacement
The volume- and time-averaged cyclic equilibrium working fluid
behaviour of a Stirling cycle machine may be determined along &

spatial integration path in & continmuum.

P3




The primary objective of the thesis research Ls to substantiate the

first and second thesls statements, Secondary objectives include:

- the development of a practical and accurate free-piston Stirling
wachine design procedure which enables an effective design
optimisation to be performed rapidly

- the creation of a simulation model which may be implemented on a
mlcrocomputer without any loss of detail or accuracy., In other
words, the mlcrocomputer implementation should be
indistinguishable from a mainframe computer implementation in all

respects, except possibly that of execution speed.

1.4 LIMITATIONS AND CRITERIA

A&n experimental data validation criterion is used to demonstrate
substantiation of the thesis statemerits, This criterion mandates the
selection of appropriate Stirlirg machines for which adequate
experime ital results are availsble, These machines preferentially
must be real (as opposed to hypothetical or genmeric) devices
representative of useful Stirling hardware and not speclalised
laboratory configuration prototypes. In selecting such machines, no
actempt was made to screen out candlidates which possess working space
geometries not readily amenable to numerical description, The field
of qualified candidate machines for which well-founded, published
experimental data are available is somewhat restricted, Nevertheless,
two such Stirling machines have been identified, namely, the Sunpower
RE-1000 free-piston and General Motors GPU3 disciplined piston

engines. These engines have been extensively tested by NASA and the

11
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test results are available in the public domain. The RE-1000 and GPU3
englne test results are used as the validation criteria lor

substantiating the First and second thesis statements respectively.

No particular constraints are imposed upon the substantiacion of the
first thesis statement. However, the fluid dynamic simulation
development is restricted as follows:

1, Only the time-averaged working fluid properties ars simulated;
predictions of turbulent fluetuating properties are not produced
by the simulation model,

2, The focus of the simulation model is directed towards the
prediction of cyclic steamdy-state or equilibrium behaviour
direccly, In particular, the information propagatiun hypotheses
developed ace not direetly suitable for predicting transient
extra-cyclic (as opposed to transient intra-cyeclic) phenomena.

3. A strietly one-dimensiona) spatial discretisation is used to

apply the simulation model.

These limitations are established primcipally for pragmatic reasons,
The prediccion of transisat, fluctuating werking fluid properties
under oseillating turbulent flow conditions presents a difficult
problem within the context ¢f Stirling r hine geometrical boundary
conditions, This class of problem is usually addressed by very large
scale, state-of-the-art research computer programmes, although
typically on & singls component basis only. As such, from a systems
perspective, thess programmos are apparently not readily capable of
tackling the inter-related complexities of a Stirling machine working
space, at least in the sense of producing the required transient

property fluctuations. Furthermore, these simulation programmes are

12
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commonly implemented on supercomputers, a resource not available for
conducting the thesis research. Hence, the exclusion of turbulent
fluetuating property predictions from the simulation model is a

practical necessity,

Focusslng the simulation model on the direct prediction of cyclle
steady-state behaviour is rather less of a limitaticn than an
advantage, All the expecimental validation data are measured under
eyelic steady-atate conditions only. Ia addition, as most Stirling
machines generally operate under steady-state ot quasi-steady-state
condivions, there is little practical need for extra-cyclic transient
simulationn. This must clearly be distinguished from the simulation of
intra-eyclic kransient effects at the cyelic steady state. A further
advaicage of the cyclic steady-state rastriction is a considerable
saving in computation. This facilitates the use of numerical

simulation for practical Stirling machine analysis purposes.

Probably the most contentious Limitation is the one-dimensional
application of the simulation model. ALl the simulation models
reviewed in section 1.2 have also been applied in one-dimension only,
either because of the restrictions imposed by their analytic
formulatiuns, or simply bacause two-dimensional simulation was
considered impractical. A two-dimensional gpatial implementation of a
method of characteristics simulation con become quite complex, if not
intractable, when applied to geomerrical boundary conditians typifying

real Stirling hardware.




However, no anglveic vestrictions apply to the simulation model
proposed in this thesis since the model is developed within a multi-
dimensional framework, Thus the cholce of a one-dimensional
application is motivated by a desire to maintain continuity with
previous Stirling machine simulation research., This predicates an
evelutionary approach in which it !s necessary to first substantiate
the second thesis statement in one dimension before <onsidering a ewo-
dimensional substantiation. In ¢ pragmatic context, two- or three-
dimensional Stirling machine simulations require larger computer
resources thon are commonly available, This tends to make the use of
such simulations economically unattractive for practical design and
analysis purposes. Although the restriction of the thesis research to
a one-dimensional context is therefore somewhat arbitrary, it enables
the validation process to suggest whether and where multi-dimensiorsl
effects are significant in the simulation of Stirling cycle machine

fluid dynamics,

As alluded to in section 1.1, the simulacion model has been
successfully applied in two dimensions. This application incorporates
a two-dimensional heater in an otherwise one-dimensional
discretisation of the NASA Space Powaer Demonstrator Engine (Go87.1).
This research has been performed as part of another project and is not

inecluded in this thesis.

1.5 PHILOSOPHICAL CONSTDERATIONS

In perfoming any research, the philosophy of the reseaxcher becomes

woven into the Fabric of the work., Of particular note in this regard
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is the choice of an integral conservation halance formulation rather
than the more frequently adopted differential formulation approach.
This cholce scems from a conviction that, In realiry, differencial
conservation balances are physically meaningful only on a volume-
averaged basis. The concept of intonsive working fluld properties
which literally exist at a point is a mathematical abstraction
appropriate to a continuum only. This abstraction appears to be at
odds with the observed probabiliutic particulate nature of matter, In
the latter model, intensive properties such as density and temperature
only have physical meaning for a reglon of space. Within a given
spatial reglion, Intensive f£luid properties are the statistically
averaged manifestation of the behaviour of the enclosed particles.
Hence a physically appropriate application of differential
conservation balanves suggests that thoy be volume-averaged prior to
numerical discretisation, This volume-averaging produces a set of
equations which emulate tho characteristics of integral balances but

are not as gemeralised or as convenlent to implement numerically.

integral balances directly produce volume-aversged working fluid
properties that are readily and unambiguously interpreted in a
numerically discrese spatial context. This avolds some of the
difficulties associated with diffavential analyses such as the
assumption of fluid property interpolation profiles between distinct
points. Finally, simulacion models based on integral analyses may be
more readily scaled geomotrically than their differential

counterparts,
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For all these reagons, the slhaulatlon model is based upon directly
derived integral conservation balances. Neverthelegs, it ig
acknowledged that rhis cholce is more of a persomel bilas than a
rigourous continuum mechanics necessity, as demenstrated by the many
successful differential equation based simulations reported in the

literature (Ro82).

Significant importance in developing the simulation model has been
placed on its ability to be executed on a standard sixteen bit
microcomputer (stated as a secondary thesis objective), particularly
in terms of the cue-dimensional application structure used, This
stems from an obszervation that the practical utility of computer based
analytical techniques s {n inverse proportion to the cost of the
hardware required to implement them. In advocating a microcomputer
baged simulation implementation, no reductiop in the accurasy,
corpleteness or capaciry of the simulation model 1s tolerated. The
capabilities of the model should be independent of tha computer
hardware used for Lts Lmplementation. Hence a reduction in execution
gpeed 15 the only penalty in a microcomputer implementation compared
with a conventional mainframe or minicomputer implementation,

However, the simulation model mugt st{ll be capable of practiral usage
on a microcomputer notwithstanding the execution speed limitarion,
This predicates an efflclent and well-structured numerfcal integration
algorithm which minimises the arithmetic computation reguirements,
Thesa implementation objectives have guided che development of the

simulation model to a slgnificant (alttough not predominant) extent.




1.6 THESIS QRGANISATION

The thesis is organised into nine chapters and seven appendices in
three velumes. Tho first five chapters sre grouped together in volume
I while volume II contains the remaining chapters amd the first
sppendix. The balance of the appendice; together with the list of

references form the contents of volume III,

Chapter 2 and Lts assoclated appendices A and B are devoted to the
coupled dynamic/thermodynamic analysis of free-piston Stirling engines
and substantiation of the first thesis statement. The development of
tha fluid dynamic simulation model and the substantiation of the

second thesis statement comprise the remainder of the thesis.

A continuum mechanics derivacion of the conservation balances forms
cthe subjact of chapter 3 and appendix C. Chapter 4 and appendix D
describe the reductlon of the conservation balances via the inclusion
of a turbulence model. Thereafter, a staggered spatial mesh
discretisation scheme is developed for applylng the reduced
conservation balances to Stirling machine working spaces. Chapter 5
coutains a rigourous application of the reduced and discretised
conservation balance: to a one-dimensional Stirling chine system
model, The information propagation hypothases ave presented uud the

rasulting numerical algorithm is developed.

Empirical comsiderations influencing the simulation model are
deseribed in chapter / and the validation protocol mandated thereby is
diseusssd. Chapcer / and appendix E are devoted to the apnlication of

the simulation model to the General Motors GPUJ engine within the
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framework of the validation proktocol. Appendices F and G contain
listings of the slmulatlon programmes, flowcharts describing the
algorithms used as well as additional graphics and cabular output

vesults supporting the discussion in chapter 7.

. brier synoptic description of some additional validation of the

simulation model ~erformed using the NASA Space Power Demonstrator [P

Engine is dese: .d in chapter 8. Finally, a summar; amd conclusions
are given in chapter 9. |
1.7 CONVENTIONS USED

1.7.1 Operators s
“ne hierarchy of operators tmplemen.sd consilstemtly throughout the

thesis is shown in table 1.1. Some examples of the use of operator

hierarchy are:

a + besd tne’ = a 4 {(bxe)/[dxiIn(e®))] ‘

a-¥.b = a4 {F(-b)}

It {s important to note that:
a

a/b + ¢ = (a/d) + ¢ f
btc

but:




a
a/(h+e) - —
+C

Table 1.1 Hierarchy of operators
Priority : Operatol 1 Comment
1 (top) { Brackets: () i Nesting order is:
i 0 ' |
; SR
i [ S0
! 4
S
| 4 Parentheses of the same
i nesting order are
H | evaluated simultaneously.
2 i ingmentiation ¢ Examples: a’ ; & %'%%;
| 20,5
3 ausg scalsr negation Exarple: -a ; -a

.athesarical and caleulus

functy as

Examples: sin a ; ln a ;

fal 5 va ; da

Inpliee multiplication

No operator symbol used

Examples: ab ; (ath)(c+d)

Vector and tenser operations

Examples: a-b ; A:B

Multiplivation and division

Operator symbols: X ; /

8 (Bottom)

Addition subtraccion

Operator symbols: + ; -

Note:

The

solidus (/

inmediately proceeding siay e variable.

sign, then they operate on the group as a whole.

i7 used to denote divisionm.

Differential operators {d, dr, D, DDr) have a priority of & (ealeulus
and mathematical functic:s have the same priority) and opevate on the
1f these operators are

followed by & group of terms in parentheses or behind an integral

For example:




abbc/de = (ax(Db)xc) / (dxe}

but:

aD(b+c) (d+e) = ax(D(b+s)Ix(d+e)

Also: e
dde '[ (atb)da = dde ( J’ (atb)da )

(The variables a, b, ¢, 4, e, a, b, &, and B have no significance here

in terms of the notation presented and are used as examples only.)

1.7.2 References

The Rallis system of reference designation is used. Each publication

is designated by four characters: two Roman letters followed by two

nur ¢erals, The numerals denate the year of publication of the
reference which, 1f prior to 1900, is denoted by four numerals.

Single authors are denoted by the first two letters of the author’s
surname with the first and second letters being in upper and lower
case respactively. If there are two or more authors, then the letters
denote the surname initlals of the first two authors, both being in
upper case. If the name of the author is unknown, three lettevs
denoting the name of the journal are used instead. In cases where two it

or mnte references have the identival four charvacter designations,

o

they are distinguished by a numeral preceeded by a period, for example
7b86.1 and Ab86.2. The references are listed in alphabetical sequence

according to the name or names of the authors,




1.7.3 Flowcharts

The conventions shown in table 1.2 are used in all the compucex

programme flowcharts presented.

Table 1.2 Computer programme Elc -chart conventions

Description Symbol Conventilon

control statement i

execution statement !

decision statement

yes ro EN

algorithm £low line breuk location ®

entrance from location A A e

exit to location & ____..®

subsidiary algorithm Llock demarcator P . i

entry to subsidiary algorithm block [ S —

exit from subsidiary algorithm block Bt %




CBAPTER 2

A__STATE SPACE ANALYSIS OF EFEREE-PYSTON

STIRLING CYCLE WMACHINES

2.1 INIRODUCTION

When designing Stirling cycle wachines in general, and free-piston
configurations in parcicular, a critical issue in achieving a working
piece of hardware and optimising its performance is the interaction
between the dynamics and fluid dynamics of the machine. In the case
of kinematic or jisciplined pistor machinmes, the dynamics of the
engine {piston displacements and relative phase angles) are generally
precisely decerminable frem purely geometrical considerations,
Rowever, if not externally controlled, the operating frequency of
kinematic machines is dependent upon the kinetia / fluid dynamic
interaction. Free-piston or Beale machines. in cantrast, are typified
by coupled Fluid and piston dynamics mandating cognisance of their
interaction to achieve a successful deaign. This is even more
pertinent when designing and developing novel Stirling machine
configurations, as demonctrated during the development of a prototype

liquid-piston, free-displacer Stirling cngine (LPEDSE) (Go79, GR79).

The LPFDSE was designed and analysed using a coupled
dynamic/thermodynamic computer simulation programme linking the
dynamics of the liquid piston and free displacer to the thermodynamics
of the working fluid. Several working space configurations were
evaluated using the Schmidt (S¢l871) and ideal pseudo-Stirling

analyses (Be78, WK65). Specifically, permutations of adisbatic (ideal
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pseuda-Scirling) and isothermal (Schmidt) expansion and compression
spaces were separated by an isothermal heater, regenerator and cooler
assembly of variable geometry. In comparing the ‘mental and
simulated operating frequencies for all the permutations evaluated,
the simulation consistently over-predicted the operating frequency by
an average of 69%. Furthermore, the convergence of the numerical
solution to a closed steady-state cycle was critically dependent on
the bounded interval chosen for the seed convergence parameters. Thus
the solution would converge only if the initisl estimate of the
convergence parameters {liquid column velocity and acceleration) fell
within the empirically determined ‘correct’ range. It was coucluded
that the frequency prediction snomaly could be ascribed to a lack of
correspondence between the simulated and experimental configurations
as well as to an inadequate numerical representation of the liquid
column dynamics. The initial condition sensitivicy emphasized the
importance of matching the impedance of the liquid column dynamics to
those of the working fluid dynamics, an effect noted by West for the
Fluidyne engine (Ge76, We7l). Thus, from both design and experimental
perspectives, the issue critical te the successful operation of LPFDSE

was shewn to he the dynamic / fluid dynamic interaction.

These observations, although specific to the LPFDSE, are representive
of the issues that fave the free-piston Stirling machine designer in
general. The essentlal issue devolves to developing = methodology for
choosing a set of englne pavameters which will produce a performance
optimised design. Much effort has been expended on developing fluid
dynamic and thermodynamic analyses (Ur83) for design purposes. In the
case of free-piston machines though, these analyses usually require

the stipulation of the machine kinematics (piston and displace:
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motions) as boundary conditions. Thus the Lssues of dynamic / fluid
dynamic coupling are avoided or dealt with indlrectly by treating the
dynamics and £luid dynamics separately, Since this approach can be
both tedious and expensive, it may impede the creativity of the design

process,

In this context, several workers have developed methodolegies for
analysing the combined dynomics/rhermodynamics of fres-piston Stirling
engines in particular. Notably, Berchowitz and Wyatt-Majr (BW7§) used
classical control thecty to solve the combined dynamic and isothermal
thermodynamic (Schmide analysis) equations in eclosed form by assuming
that the piston and displacer motions can be described by complex
sinuseidal functions. A similar harmonic motion assumption was
imvokec by Rauch (Ra?5) te estimate the frequency response and dynamic
performance of a free-piston engine. Howaver, in this case, the
compenent dynamicg and thermodynamics were decoupled by treating the
working gas as a lineer spring, Cichy and Carlinl (CG84) have used
essentially the same methedology te perfsrm a ’fregquency dynamic'
analysis by casting the epgine dynamica in state space form. The
chermodynamics are deccupled from the dynamics by assuming a
sinugoidal working space ; ressure variation. Rauch (Ra80) alsc has
uged a decoupled appreach to obtailn a move precise estimste of
working fluid behaviour (including, for exesple, regeneratox pressuxe
drops) by assuming harmonically varying thevmodynamic parameters.

West (We83) adapted the phesor diagrem spprusch to tlegantly represeot
the combined dynamics and thermedynamics of rhe liquid-plston Fluldyne
engine, although once again, it was apparently necessary to assume
sinuaoidal plston moticns. Phasot diagrams also have been applied to

solid piston Stirling engines by Fokker and van Eekeleen (¥V78),
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All of these methodologics shave the same difffculty, namely the a

priori assunption of given piston and displacer moticns or

thermodynamic parameter variations. This mitigates against an
independent assessment of the stability of the engilne operation, which !
can be critivai in the case of free-piston engines subject to variable

loading. Under such conditinms, the operating eavelope c¢an be quite

narrowly bounded by the tendency of the piston and/or displacer to

knock against the enpii. casing under light loading and stall under :
heavy loading. these defined parsmeter methodologies do i
not provide any «. <5 of assessing the validity of the N
analytical assumptlions made. These assumptions ara particularly ‘
important when they result in the cxclusion of £luid dynamic
irreversibilities which can materially affect the predicted :

performance. The significance of these irreversibilities has been

shown by fhen et al ((CB4) using extriusic second law or entropy e
caleulations, although the analysls follows the aforementioned

precedents by assuming harmonie pisten and displacer motions.

An investigatio. into an alterpate approach aimed at oadressing some

of these igsues was undertaken by the author in 1979, This approach

is based on the state space analysis concepts of medern control theory

and, in particular, ou the stabllity theorems of Lyapunov (Ha63}, The H
methcuology enables the combined dynamics and thermodynamies to be .
described as a unitary system. Closed form solutions defining the

engipe operation may be obtained without recoi rse to any assumed —
thermodynamic parameter profiles or kinewaric motions, The analysis

was First presented by way of a case study in 1980 (GoBO) while the oo

theoretical foundations of the methodology were presented in 1983




(Go83), The tuilowing degeription elucidates the completed
development of the state space analysis and includes refinements of
and extensions to the already presented methodology, particularly with

regard to an asseosament cf fluld dynamic irreversibilities,

2.2 STATE SPACE ANALYSIS FUNDANENTALS

The state of a dynamic system such as a free-platon Scirling machine
(FPSM) may be defined by paraphrasing Cgata (0g67) as:
'... the smallest collection of numbers which must be specified

at time £=f  in order to be able to predict uniquely the

behaviour of the system for any time t = L ay
Thus supposs that there ace m variables ¥; necessary to dascribe the
state of the system. The set of m state varlables then can be
considered as *he m components of a state vector y. Thereby, the

stare space is defined as an m-dimensional space in which the ¥; are

ecoordinates, Any point in the state space at time ¢ is known as a

representarive point (0gs7) such that the locus of the representative i f

point over a time inter-al 8¢ [5 rermed a rrajectory. ’ :Q\

In order to apply the statv apace concopt to an FPSM, a definition of

stability For a systom which {s inhercntly oseillatory must be

developod, Let the svsten of oquations describing FPSM operation he

grven in terms of the state column voctor y such that; : '
4

¥y - £y, 0) z.n



This equation is quite general as Lt is alvays possible to represent
mehy oxder temporal deyivatives by a threaded series of flrst order

temporal derivatives. Hence for a particular variable ¥, if: i

Boo oo

vy = atpsart i

i

KRR

(2.2,1)

(2.2.2) !

The equilibrium state of the svstem y_ 15 defined by:

eq

f(ypq.t) « 0 for all ¢ (2,3)

yeq is a stable equilibrium if For each number £ > O there exists a 1“~ .

real number a = al¢,t ) so that: i

oy o vgq Ha L FCiygr)eyg, Il s e (2.4)

This may be {llustrared (n teows of Eigure 2.1 for a partieular second : .

ordey state spaco,
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Figure Z.1 Stable equilibrium condition

Equation (2.4) signifias that an equilibrium is stable if no
trajectory F(r;y:,r‘:z originacing from Yy exceeds a given displacement
¢ with respeet to the cquilibrium ynq‘ Further, the magnitude of ¢ is

such that it constrains ¥, to be within a given displacement o from

W N
Yeq
The equilibrium state y,, of cquatien (2.3) is asymptotically stable o
L£ equation (2.4) holds and:

Il Fleiyge) <y 1o s 0w (2,5

Ag {llugtrated by tigare 2.2, thls equation indicates that an
cquiltbrium {s asymptotically grable 1f all rrajectories beginning

within a displacemont o Lyrom y = tend vowards the equilibuvium as cime R

g

progresses.
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- ~trajectery F(£3y,,8,)

Figure 2.2 Asympeotically stable equilibrium condition

Asymptotic stability is a requirement for FPSM operation, N
Specifically, this means thac an equilibrium condition yeq must be =
reached about which the state vector ogcillates wirh eonstant
amplitude. In general, y,o need not be unique since a parciculax ) “
engine may shift Lrs equilibrium statz in response to changing

boundary conditlons (such as piston loading). This suggests that the

operating stability condition for an FPSM oscillatin, with constant

amplitude about ins equilibrium state may be defined by stipulating
that for each ¢ » #§ there exist real numbers o = u(l:,t‘n) and § = i N

Blz,£,) 8o that as ¢ » m i
vy < ygqll 5o o v sy, o) =yl = lIFemifz o 2.6

As shown by Fipgure 2.3, cquation (2,6) denotos that a system
exhlbiting asymptotle stability w1 achlove stabla oscillatory
behaviour in the temperal limit irvespoective of tho ovigin of the AN

trajectory. ;
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Figure 2.3 Operating stability vondition :

Hence, at the operating stability point, a FPSM will oseillate without i
apparent damping so that tha energy dissipated by all forms of loading
is exactly cqual to the net thermal energy supplied to che working i

fluid.

The immediaste objective of the state srace analysis is the .

determination of the conditions under which an arbitrary FPSM may i

achieve operating stability,

i
For convenlence, the analysis is simplified by transforming the origin [
IS

of the system to the point of cquilibriwa by dofining:

1
=Y Yoy 2.7 -
Subseituting inte equatlon (2,1): . *

o,
!
2 = 9(z,0) (2.8) !




Expanding in a Taylor series (TH72):

2 = E + Bz + 6(z)z

where E is & non-vanishing comstant at the origin and B is the

Jacobian matrix given by:

B, - {af./az,} (2.10)
B { R P I YR

The reduced equation, or first approximation of equation (2.9), is

given by ignoring the non-linear higher order terms G(z)z so that:
z~E+ Bz (2.11)

This equation may be solved by Laplace rransfarmsticn as shown in

appendix A, yielding the solucion:

3

z = £ M (AI-B) *11z(0)+B 'E) - B'E (2.12) .

vhere z(0) denotes the initial conditions at time & = 0. The

characteristic equation for equation (2.12) is given by:

det(AI-B) =~ O (2.13)

The utility of the state space analysis is dependent on the conditions »
under which the linearised approximation represented by equation

(2.11) is a valid substitute for equation (2.8). In turn, this

determines whether the solution given by equation (2.12) is adequate
for approximating the thermodynamic performance of a given FPSM and
thereby constructing useful design ortimisation indices, The question
of linearisation adequacy is also relevant to the harmonic and/or
assumad kinematic motion analyses reported in rhe literature, since

all these approaches seemingly assume that the linearised




approximation is valid,

Lyapunov’'s theorem on stability in the first approximation (Ha63)
provides & means of assessing the validity of the linearised equation.
The theorem may be stated as follows:

‘1f the stabilicy behaviour of the diffevsatial equation of the

then

fizst approximacion (or reduced equation) is &'gmific
the equilibrium of the complete differential equation has :ie
same stability behaviour as the equilibrium of the reduced

equation. ’

A determination of whether the stability behaviour of the reduced
equation is significant may be made by examining the eigenvalues A, of
the characteristic equation (2.13). The stability behaviour is
significant Lf the characteristic equation is non-singular and the

real parts of all the eigenvalues are negative, or:
significant behaviour = det(AI-B) # 0 and Real().i) <0 (2.1%)

If, however, smy simple eigenvalue or the real part of any complex
eigenvalue is zero, then the stability behavicur depends on the higher

order terms G(z)z. This is termed the crit case (Hab3).

Equation (2.14) allows a physical interpretation of the validity of
equation (2.11) as an approximation for equation (2.8). Compliance
with the significant behaviour restriction ensures that the
approvimated equations have th. same qualitative behaviour as the Full
equations but not necessarily the same quantitative behaviour. Hence
an FPSM described by a set of linearised equations satisfying equation

(2.14) has the same operational behaviour as an FPSM described using
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the full equations, although the quantitative performance (work
output) of the machines may be different, The linearised equations,
therefore, may be used to determine whethsr a particular machine will
‘work’ or not as well as how well it will work on & relative basis,

although the numerical accuracy of the predictions is undefined. From

the results »f the linear harmonic anslysis described by Chen and
Griffin (CG8t), it is evidenct that the prediction accuracy of the

state space avalysis depends primerily on the number of state

variables chosen rather than on whether or not the higher order terms T

G(z)z in equation (2.9) are neglected,

Supposing that equation (2.11) exhibits significant stability N

behaviour, the conditions for achieving the operational stability
represented by equation (2.6) can be developed. These conditicns may i
be represented conveniently by considering the stability domain in the i
paramecer space. The parameter space is defined as the smallest

collection of numbexs describing a particular FPSM such that every set '
of parameters is associated with a unique trajectory in the state
space. If there are m such parameters, then the set of m parameters .
may be considered as the m components cf a parameter vector b. Thus

the parameter space is defined as a m-dimensional space in which the "

p of b are coordinates. Typical FPSM parameters include
lengths, diameters and regenerator matrix porosities as well as
working fluid temperatures and charge pressures. The distinetion as
to whether a given quantity is treated as a parameter or a state
variable depends on the nature of £ in equation (2.8). If, for i
example, the expansion space is assumed to be isothermal, then the

expansion space temperature is considered a parameter. Conversely, if !

the expansion space is treated as being adiabatic, then its i N
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temperature is a state variable.

If the system behaviour is continuously dependent on b, then equation

(2.8) uay be modified so that:

2 = £(z,b,0) (2.15)

Since the differential equations of the first approximation for anm

FBSM are either (explivitly i of ) or periodic,

equation (2.11) becomes:
z=E= B(b,t)z (2.16)

Those parameter values for which equation (2.15) has significant
behaviour form the stability domain in the parameter space (Ha63).

The stability domain is bounded by & hypersurface called the stability
boundary which is characterised by equation (2.16) having critical
behaviour. Physically this means that any FPSM with a parameter
vector b which falls on the stability boundary hypersurface will be
neutrally stable at its state space equilibrium Zeqt Hence in order
to achieve stable ~ngine operation, it is necessa.y to exceed the
stability boundscy so that the resulting amplitude of oscillation is
bounded by 8 as defined for equation (2.6). If b lies on the
stabillty boundar:, let b + c be a neighbouring point outside the

boundary. Equation (2.15) then becomes:
% = E(z,b,t) + £ (z,b,c,£) (2.17)

where £' = 0 for ¢ = 0.
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Under these conditions, the Eollowing theorem proved by Hahn (Ha63)
applies:

‘1f the equilibrium {of equation (2.17)} is asymptotically stable

for b lecated on the stebility boundary f{that is, Zoqy for
equation (2.15) Ls asymptotically stable], then the maximum
deviation of the motion from the equilibrium caused by crossing
the boundary can be kept arbitrarily small only if the discance

[e| from the boundary is kept sufficiently small.’

After the stabilicy boundary is crossed, the system may be forced into
stable oscillation by a swmall perturbation ¢ since, by the sbove
theorem, the smallness of the oscillation depends continuously en the
magnitude of ¢, This assertion wus validated experimentally for the
liguid-piston Srirling engine (Go79) when c is taken to represent the
bounce space charge pressure ot the heater wall temperature. Similar
effeccs have been demonstrated for a wide variety of solid free-piston

Stirling engines,

“he analytical Evamework presented provides a modus operandi for using
the state space analysis as a means of achieving a closed form
solution for the operational behaviour of an FPSH. The procedure may
be summarised by the following sequence:

1. Select a state space vecto) to describe a given FPSM and express
the governing differential equations in the state space form of
equation (2.8).

2, Determine the constant vector E and the Jacobian B (using

equation (2.10)) in the reduced equation (2.11).
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Develop the determinant det(AX-B) and determine whether ic is
singular. Depending on the nature of the singularity (that is,
exactly how many and which eigenvalues are zero), a judgement on
the validity of the reduced equation may be made. In particular,
if the siugularity conforms t a ‘spncial case' (Kr63), the
ruduced equatiun is still valid, otherwise the state space metho!
propased is inadmissable.

Express the characteristic equation (2.13) in terms of the
parameter vector b. The parameter space stability boundary then
may be Found conveniently by arbitrarily choosing any eigenvalue

to be complex so that:
A ea s+ jb (2.18)

At least one palr of complex cenjugate eigenvalues must exist if
oscillatery motion under operating stability conditions is to be
experienced. Substituting equation (2.18) into the
characteristic equation yields two substituent equations, one
each for the real and imaginary parts respectively. The
stability boundary is defined by a = 0 (that is, the real part of
the elgenvalur is Zexo), This enables cthe two substituent
squations to be solved simulcanecusly, so eliminating b (the
imaginary part nf the eigenvalue). The single equation thus
preduced is an analytic description of the stability boundary
hypersurfuce expressed in texms of the compenents of the
parametex vector b,

Solution of the stahility boundary hypersurface equation enables
a set of compatible parameters to be chosen. When substituted
into the characteristic aquation, these parameters permit the

imaginary part of the complex eigenvalue A" and the balance of




the eigenvalues A‘: to be faund. An examination of the
eigenvalues ); in accordance with equation (2,14) determines
whether the particulat parameter set chosen will enable operating
stabilicy to be achieved. In particular, if any of the remaining
eigenvalues xl has a non-negative real part, then that ~articular
parameter set will not result in & worlking FPSM configuration.

6. The complete eigenvalus set may be wsed te perform the Leplace
transformation necessary to soly. wguation (2.12)., The

oseillatory steady-state solution is extracted as a pareicular

case by considering the limit £ -» =,

7. A set of physically meaningful initial conditions z(0) ms:. be
chosen by censidering the physical compatibility comstraints of ¢
the FPSH being considered. Appropriate constraints are a
specification of strokes or a stipulation that pistons may not i
oscillate bevond the confines of their cylinders.

8. The state space vector solution thus obtained enables the
indicated and mechanical work outputs of a particular FPSH to be

determined i ly. Their di is an indication of

the irreversibilities necessary to achieve the opexating
stability condition.

9.  An optimisation index such as thz mechanical power output may

then be defined as a means of determining the optimality of a

given parameter vector b,
The symbolic oxpression of this generalised procedure is most clearly : ;

demonstrate the procedure, both a 'spscial case’ and a 'normal’ FPSM

shown by considering particular FPSM examples. Thus in order to fully .
configuxation are presented in the following sections as case studies.




In closing, particular note of the form of the governing differencial
equations (2.8) must be taken. As thoroughly documented in the
literature (UB84) and demonstraced later in chapter 3, a description
of the dvnamics and Fluld dynamics of Stirling cycle machines
generally may be cast in the form of equation (2.8). However, this
equation does not conferm to that of & typlcal control system owing to
the absence of a digtiact control input term (0g67). Thus che
inclusion of a contral term in che state space analysis (advocated,
for example, by Cichy et al (CCB4)) canmot be physically justified
unless a control mechanism is actually included in the FPSM

configuraction as, for example, described in reference GL8S,

2.3 APPLICATION OF THE STATE SPACE AN, qQ CK-TQ-BACK

TSTON STIRLI

ENGIN]

2.3.1 Intreduction

The configuration of the back-to-back, Free-piston Stirling engine
(FPSE) apparently originaces in William Beale’s patent disclosure
describing the free-piston Stirling engine concept. Two examples of

the back-to-back engine configuration reported by Beale (Be9) aze a

‘refrigerator-heat engine' und a ’double ended fluid p 4 liquid-
piston or gamma-configuration of the back-to-back proposed
by Rallis and & working prototype was demonstrated b, ot al

(LL79). A solid piston vorsion of a gamma-configuration engine is

also reported to have achileved seclf-sustaining operation (Ra86).




The particular verslon of the back-to-back FESE used for this case
study ls described in figure 2.4, The engine consists of twe back-to-
back Beale or bota-configuration engines which share a sommon power
piston, Work output is conceptualised as being via a linear

alternator of the moving permanent magnet type (LT84, LT85). This may

be achieved, for example, by incox ing cobalt
magnets in the power plston construction while bullding the field
coils into the piston cylinder casing. The displacer piutons in the
working spaces on either side of the power plston are connected via a
tube which passes through the center of the power piston. An annular
hest exchanger is formed i{n each working space by the gap betwsen the
displacer and Lts cylinder wall. The cylinder wall may be grooved
with a splral Whitworth thread for improved heat transfer (FC67).
Heat is added externally to the displacer cylinder walls at their
ocuter ends and is removed via externally mounted cooling jackets at
the imner or power piston side ends. The digplacer cylinder walls
between the heater and cooler portions are exter: 1ly wrapped with

thermal insulation and function as the regeneracuts.

The particular back-to-back FPSE configurvation usew .5 convenient as a
cage study in view of Lts inherent simplicley which resulrs in a
parameter vector with as few as 19 compenents. A practical version of
such an engine would probably necessitate the use of external heat
axchangers as described by Buale (B269), as well as a significantly
more complex linear alternator design than the idealisation depicted

in figure 2.4,
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2.3.2 Back:-to-Back FPSE Stave Space Analysf

The application of the state space analysis to the back-to-back FPSE
is performed using the sequential mechodolsgy describad at the end of
section 2.2 above, Generally, only the final analyrical zesults are .

included here; the derivational detalls are given in section A1 of

appendix A.

1. Stare space vecror selection and formulation of the governing ;
differencial equarions
A complete lisc of the «usumptions used to describe the engine being
considered Ls given in section A.1,1, The most important assumptions
are an isothermal treavment of the expansion and compression spaces
and a constant, linear temperature profile in the regenerator. A four
co;nponen: state veetor enables a complete description of the engine
operatior to be specified. This is the smallest state vector with )

which any FPSM may be described, The state vector is given by:

X, piaton displacement 1

P
X = | piston velocity : }
ze| ? (2.19)
Xy dlsplacer displacement }
Xy displacer velority

The 19 parameters comprising Che parameter vector ave listed in table

2.1 and depicted in figure 2.5, 1In view of the thermodynamic symmetry

assumed for the working spaces, the origin or equilibrium position of [
the displacer assembly motian is located at the center of either

displacer cylinder, while the power plston motiom has its origin at
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the center of ths pover piston cylinder.

Using the threaded temporal derivative formulacion of

equations (2.2),

the governing diilerential equations may be expressed as:

HTDTR(Ap-Adr) [2/[a + za“ex”e'“ex"’dr"”c’ + zl(Ap»Adx7/Tc}
< Ule - 2 A T (A -8 /T ) - z‘(AP-Adx_)/Tc])_IMP

+ ‘cdpzn - :z(cp+cdp)‘/ﬂp

‘TGTFAdr[l"za F A/ T (A oAy )T o) + 2, (45400 /T ]
< Lle - 2 A T (A Ay /T ) - z‘(AP«AdK)/Tc]/Hd

* (cdpzz - z'(cdx‘cdp)l/ﬂd

-7 T+ ¥
« Ve/l'e + Vr/‘r + &c/Tc

= PopgWe + Vp + VO/RE,

.20.1)

.20.2)

.20.3)

.20.5)

.20.8)




Table 2.1 Back-to-back FPSE parameter vectpr components

Component

Symbolic description

Displacer piscon face area
Displacer rod area

Displacer piston length

Displacer assembly mass

Displacer assembly damping coefficient

Displacer assembly/piston incerface
damping coefficient

Displacer amplitude of oscillacion
Power piston gross face area

Power piston length

Power piston mass

Power piston loading coefficient
Power piston amplitude of oscillation
Displacer cylinder area

Displacer cylinder length

Power piston cylinder length
Expansion space isothermal temperature
Compression space isothermal temperature
Working £luid charge prossure

Working gas constant

i
¢

|
|
|
i
[

Aq

Adr

g
g
Cd

Cdp

*dmax

2. Determination of E and B in the reduced equation

Since cthe engine is oriented orthogonally to the gravity vector:

E=0

The Jacobian B is given by:
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21 “22 “23 Paa 2.22)

where the elemencs of B axe given in terms of the parameter vector

components bv equations (A.19) in appendix A.

3. Development of the determinant of (MI-B) and investigation of its
characteristics
The determinant of (A\X-B) may be expressed using the elemen:s of B

given in equation {2.22) by:

det(AI-B) = A - A8, 48,3 + A%(B, B, -~ B B, - B, - B, )
* X(leab‘ - BZJB a2 + BZ)ElA * 824551) + BZlBLJ
TN (2.2%)

Using equations (A.19) to evaluate the coefficients of the A-terms

shows that the coefficient of the A’ term is zera, or:

BanBag w By 7 0 (2.24)

Hunce equation (2.23) becomes:

der (AL-B) = A(A" - A(B, 4B, ) + MB, B, - B, B - B, - B.)
b BBy - BB, +E, B ¥ B, B (2.25)

Thus the determinant is singular when A = O,
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However, the nature of the singularity conforms to » special case
discussed by Krasovskii (Kr63) who proved the following theorem:

"I all the eigenvalues in the nelghbourbood of the origiu have

negative real parts excepting ona simple eigenvalue which is
zero, then the equilibrium of the reduced equation {equation 3

(2.11)] is asymptotica'ly stable.’

Hence the state space analysis is admissable fer the back-to-back

FPSE.

4. Analycic description of the stability boundary hypersurface in I

the parameter space

a
From equation {2.23}, the characteristic equation may be expresse I
terms of condensed coefficients as:
PR P S N S (2.26) :
3 2 1 N
Choose a particular complex eigenvalue: .
A watib (2.27) .

1

Substicuting (2.27) into (2.26) yields two equations in a and b which :
may be solved simulcansously. Setting a = O in these equaticus then

gives:
K= KK, (2,28)

which defines the stability boundary hypersurface.

Expressing (2.28) in terms of the parameter vector components ylelds:
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HporRUAge/Ty + (A -Ag 3/ To) (Ag e thyca) + (Ay-Ag) (A (e ey,
2

- AgpCg T Mg

Uegreg )/, + (.-d»,ndp)/udw[(cdp«de) + egep Mg,

+ 'zuTDTR[(,ap-,‘am_)’/npzC + Ag A, /T, - (Aex»Adt)/Tcl/Md]/az] (2.29) ,

where a and MTGT are glven by equations (2.20.5) and (2....8)

respectively,

5. Solucion of the scability boundary hypersurface equation
Any parumeter in equation (2.29) can be expressed quadratically in ;
terms of the othev parameters. Thus a complete description of the g

stabilicy boundary hypersurface is acnievable analytically. However,

an analytic approach is not convenient numerically, particularly when i
generalising to hypersurface equations of higher than biquadratic

order for which no analytic solutions ceem to exist (Us48). Thus a

physically significant dependent parameter methodology Ls used to

develop a generalised solucion procedure for a hypersurface sguation

of arbitrary order. B

In this methodology, the power piston loading coefficient c, is chosen o
to be the dependent parameter such that variations in tha remaining .
independenr parameters are evaluated by solving for e As ¢

determines the nature of the loading on the engine, its numerical

value gives immediate insight into the viability of a particular

parameter set in enabling operating stability to be achieved, In

terns of c,, equation (2.29) has the quadracic form: Iy

2
Kyeh + Ko, 4K, = 0 (2.30.1)

I U Amuwmm.m I s T




where, for the sake of clarlty, the coefficients are expressed by the

threaded sequence:

K =Ky (2.30.2)

2
K, = KK, + K7/Mp - 2K:,NTOTRAdr/°‘ Md"p (2.30.3) i

K3 = K}.’\" - 2”TDTR{KCA‘DC‘;1 + (AP»AdI)(Ap(cdh_dp)

- Adrcd)/Tc]/aszNp (2.30.4) X
K= badTe = (ot Te (2.30.5) i
Ky = cdp/MP + (cd‘““dp’/"'d (2.30.6) 'i .
Ky = (egre ), (2.30.7) )

H z “

Ky = eplalig, + WrorRiCa, Ay ) /T, + K ag Myle (2.30.8) i
The solution of equation (2.30) for the roots c,, and oy, has the ‘
Eullowing physical significonce; : (
a. if both oy < 0 and o2 < 0 then the engine will not achieve ol

self-sustaining operation since external work must be done on the
power piston to sustain oscillation i

b. if K% - 4K, < 0 then the roots ave imaginary and the
parameter set s physically incompatible

c. if cm >0 ox ¢, » 0, self-sustaining operation as an engine is s

bp2
possible. Loy

Supposing that the given parameter set satisfies the third condition
so that self-sustainlng operation is possible, the numerical values of
the coefficlents in equation (2,26) may be determined, The angular
operating frequency is given in terms of the imaginary part of

equation (2.27) by (see section (A.1,1)): ;




0.5
b= (ByyByy - BBy Byt Byy) (2.31)

If b is imaginary, then, once again, the given paramater set is

physically incompatible. Also, if b is zero, then mo perturbation ¢

(from equation (2,17)) will resulc in operating stability being

achieved.

Substituting a positive value of & into equation (2.27) (with a = 0) i-
results in che complex conjugate pair of eigenvalues A, , = 4jb.
Dividing equation (2.26) by the factor product (A2+6%) and noting the

idencity of equacion (2.28) gives the third eigenvalue:
Ay =B, + 8 (2.32)

If A, 2 0 cthen, by Lyapunov’s First theorem (equation (Z,14)), the ‘
behaviour of the reduced equation (2.11) is not significant and the

analysis is inadmissable.

6. Solution of rhe reduced state space equation
From equations (2.21) and (2.22) the reduced equation for the back-to- Lo

back FPSE is given by:

z = Bz (2,33)
which has & solution given from equatior. (2.12) by:

7 = £ HATBY e (2.34)

The generalised methodology used te evalunte this equation and, in
particulax, to perfoxm the requived matrix inversion, is given in
section A.3 of appendix A. Fox the set of eigenvalues A= +ib and

X, < 0, equation (2.34) becomes:

.
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are unknown. These unknowns may be determined from geometrical

compatibility considerations by requiring that the piston and

This may be accomplished by specifying steady-state piston and

z = mz‘J cos(bt++‘) + Z, exp(,£))x(0) (2.35.1)
where:
Z, @ (BHIDT) (B-),1)/23BC- A +ib) (2.35.2)
z, = (8° + 2°'1)/0] + 8% (2.35.3)
$, ~ tan”'(Inag(z,) / Real(z)} (2.35.4)
The sceady-state solution as t = « is given by:
F‘ \‘ 25 = Mz | cos(brrd)) 2(0) (2.36)
_;\ ’b, since X, < 0.
L8 ?.  Selection of the Initial conditions
Since the engine must oscillate about its equilibrium position by
° definition (equations (2.7) and (2.17)), 2(0) may be defined in terms
) of equation (2.19) as:
°
: z(0) = % (2.37)
x4(0)

- where the piston and displacer velocities at the equilibrium position

displacer oscillate within the coafines of their respective cylinders.

e ol ’m_w.»mm.usi
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displacer amplitude limits (. .ad x respectively) as listed in

AreX

table 2.1. As shown in figure .5, xpmax and Xgpay OCCUX at angular
positions of §.,,. and f,,. respectiveiy.
x

mpmx

x i
%o
i
[
e

0) fa-

i
[l
|
b

L

Figure 2.6 Piston and displacer notions

Substituting equation (2.37} into equation (2,36) with § = bt

produces: i

g | | $ !
x_ = % 2{(z) ] costs + (43 ;) 2 (2,38.1) i
P = IS8y} 1] J \

4 .
xy ujzlzi(zx)ul costd o (é,w] 2(0); (2.38,2) Lo
Since xpmnx and Ximax A7 maxima, ”pmax and admax may be found by

differentlating the r.ght hand sides of cquations (2,38) and equating

the resultant exprossions with zero., This produces:

b




3
% omax = tan”t[-( Zinl(z))ulz(o)J sin$,), ;)

&
7 ULz 20 cos(d) )] (2.39.1)
= 11y J 4’1 1f

&
@ g ™ tan {0 M(zpuiz(mj singé,), ;1
4
/ (J§11<2,>,J]c<0)j cos(d,), ;)] (2.39.2)

In terms of figure 2.6, the phase angle by which the displacer

assembly leads the pover piston s given by fonu - fgny..

Substitu.ing equations (2.39) into equations (2.38) and setting xp =

x and x, enables physically compatible piston and

‘pmax = Xdmasx

displacer equilibrium position velocities to be determined from the

following matrix eguationt

F % (0} x
? pmax (2.40)

F,, F | &4t *dnax |

where the coefficient matrix ¥ is given by:

Foo- 21(zl)”[ o818 (LI \2.41.1)
Fl- 2[(zl)”i cos(apmx " (,h)“) (2.41.2)
Foyo= 2]z, , | contlg, . + [ERIN} (2.41,3)
Fopo= 22, ] cestiy v (B0 (2.41.4)




The matrix oquation (2.40) cannot be solved directly since there are

four unknowns and only twe indep. at equations, Hence the following ©
iterative solution procedure is adoptad: -
a. Guess ¢

pmax’ ¥ dmax:

b, Use metrix squation (2.40) to solve for %,(0) and xg(0).
c, Substitute these ;}p(o) and %4(0) into equations (2.39) to produce i

8

. .
pmax 209 D

4. If |8 -8

p— pmxl and 185 o < famax! ave small enough, the :

last values of kp(O) and %4(0) computed are the solutisn,

Otherwiss set dp and iterate

max ™ pmax 209 Camax = {amax

from step b, "
The iteration procedure converges, that is a solution for S:Pm) and
%4(0) exists, enly Lf det(F) > 0. The physical implications of this

restri tion are discussed below in terms of the thermodynamic engine

performance.

8.  Thermodynamic performance determination ;

The values of X,(0) and %,(0) determined enable & combination of

equations (2.37) and (2.38) to produce the following expressions for

the stare variables:

xp =200z,

cos(br+(+x) "

+ |(ZA’4 |$«d(0) cos(bt:r({;[)“)] (2.42.1)

P 2[|(zl)“|icp(0) cos(brrth,), )

+ i(zl)“ kd(O) cns(bm«(élm)] €2.42.2) N
g = 21(E,), [%,00) conibeacd,y 1
- 142,05, 1400 costhtrch )y 11 (2.42.3) ‘\
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xy = 2(] z‘)n{&p(m costher(d 3, )

+ |¢z))

. “i:}d(m cos(br+($))“)] (2.42.4)

In turn, these equations enable the net {nstantaneous indicated power

output For the back-to-back FPSE to be given by:

) (2.43) :

Vrop = FyWgy + Vo) + BV v ¥y oL

where the subscwipts 1 and 2 denote the left and right hand sides of

the engine respectively.

Since the working spaces are assumed to be isothermal:

0” - p“('m + p:('” (2.44.1) X

jm - zr:i‘_, + sz'“ \2.44.2)

Hence no additional indepcndent performance information may be

obtained by considering cyclic heat transfers.

ra
Substituting equations (2.42) into equation (2.43) produces the
resule: :
- 2 LIPS
Hror = 2Byl % Aq. ¥ 3play-8,0)/(0"-8%) (2.65.1) N f

where:

)/Tu {2.45,2)

B Xy g/ Ty« Qg g T ) 8 Aoy,

and o is given by equaticn (2.20.5)

As this equation is not readily amenable to analytic integratien, a

simpler, although approximate, analytically tractable expression may

_ " ’m e e . £ Lo S



be obtained by expressing the pressures P, and P, as Taylor series
(TM72). Ignoring second order and higher terms in these sevies

results in the linearised expression:
. . . 2
Wpor = ~2BHpopRixgAg, + X (A 4401/ e 12.46)

where o and # ave unchanged from equation (2.45).

Using a simple numerical algorithm (such as Simpson's rule (Ge70)) for

equation (2.45) or analytical for equation (2.46},

the cyclic indicated work is given by:

In b
Fror ™ |, ¥ror %€ (2.47)

The net instantaneous power dissipated mechanically is given by:
Wpre = O %0 + e Uk )+ ok (2.48)
pis ” Sp%p * Cap\¥a %p 4 d -

which may be integrated analycically to produce the cyclic mechanical

dissipation:

2n/b.
Wooo = Wooo dt 2.49)

DIS 0 DIS

Similarly, the gross power output produced by the piston is given by:
[ (2.50)

which yields the snalytic cyclic ir tepral:

2m/b
Your = |, ourde (2.51)




The analytical eyelic intagrals of Wygp, Wppg and Woup may be

exprassed as a sum of the product combinations of two state vector

components. Hence these integrals have a form which may be described

by:

W= tanfby 5K E) o costd )y, 2,000+ 12 | costd);, #y(0)

% 6z ol sos b)) gy 5000+ {2, | costdy) 5, xg(0)) !

=l st ), 500+ {2, ] sindd ), #4000

Xl ] stad) g, #5000 + 20 | sinth) g, %40003) (2.52; -

where 1 and j denote any twe state vector compoments (inmcluding cases

for which i = j) and K vepressants a constant.

The cyelic indicated, dissipation and gross power outputs are givenm

respectively by:

/b (2.53.1) .

¥ror ™ P¥ror
&DIS - 2wl o/b (2.53.2)

our ™ 2 oyg/® (2.53.3)

By the conservation of energy postulate. the ecyclic indicated and N '
dissipation work outputs must be exactly equal ox: T ]
¥ror = ¥p1s (2.5%)

Since the reduced equation {2.11) is used as the basis of the state

space analysis, equations (2.42) represent de facto linearised

solutions. Hence equation (2.48) also produces a linearised

instantaneous dissipation power. BEquation (2.45), however, is J
developed from first principles (see section A.3) and does not produce s

a linearvised result. Therefore a comparison of WTOT produced by o

o . m PR S Y




equation (2.45) with ¥, o slways shows a suall error, whereas use af
the linearised Wyo. producid by equation (2.46) Tesults in an exact
equality with Wpro. Since equation (2.46) produces a more
conservative sstimate of Fyg:. than equation (2.45) and also maintains
an exact energy balance, it is preferred for use in the state space

analysis.

Equation (2.54) holds strictly on the parameter space stability
boundary hypersurface determined by setting the real part of the
complex eigenvalue )" to zevo (that is, a = 0 in equation (2.18)).
However, if equation (2.40) does not yield a solution for a
physically compatible set of intial conditiocns on this hypersurface
{indicated by a negative det(¥)), then the given parameter set will
not produce an operating stability condition for the giver
pmax/Ndpaye COBbInation chosen. This means that the dependent plston
loading coefficient C;: produced by equation {2.3C) is too large to
enable the chosen amplitudes to be obtained. Intuitively, this is
reasonable in the light of a large body of generic FPSE experimental
data which show that the piston and displacer amplitudes are dependent
on the engine load for a givea net cyclic heat input. This situation
may be ameliorated by reducing ¢, to a valus at which det(f) = 0. &
zexo det(F) defines an wpper Limit for ¢, belov which oscillatory
motion with the desired amplitudes may be obtained. In effect, this
defines a mew hypersurface in the parametes space which may be termed

the operating hypersurface as llustrated by figure 2.7,

R




e stability boundary
typersurface: 2=0, det{F)<0

4 / AN /
hypersurfsce limit:

-
“‘/‘1 a0, det(F}

R ]’ >0, det(F)>0

Figure 2.7 Operating hypersurface in the parameter space

On a given operating hypersurface, a is greater than zero and so the
operating hypersurface Lies within the stability boundary. Undex
these conditions "TOI‘ > NDIS and the motion would be unstable by
definition (equation (2.5)). For stable oscillation, however, & must
equal zero on the operating hypersurface; a condition which can be
achieved by adding an amount of irceversible dissipation exactly equal
t: (pgr-Wprg) to the system. This additional dissipatien is a
measure of the irreversib{lity required fn but excluded from the
governing differential equations (2,20) by assumption. In other
words, a set of governing equations which include the required
irreversibilities would shift the stability boundary to coincide with
the operating hypersurface so that, for a given set of piston angd

displacer amplitudes, a = O and dec(F) > 0 simultaneously.

operating hypersurface:




This process gives a useful indication of the magnitude of the error JE— |
in the indicated work output as a result of using a given set of
thermodynamic or fluld dynamic assumptions. In this case, the

relevant assumption is the treatment of the working spaces as being

isothermal.

9. Selaction of an optimisacion Index
Considering the Lsothermal nature of the working spaces and the manner Pos

in which the dissipation 1s defined, WD!IT ar 3'10”1‘ are suitable

optimisation indices depending on the desired emgine application. In ;
the case of the back-to-back engine where the oscillating frequency

may be largely controlled by che engine pressurisation, a key i
patrameter is the available cyclic work output at a given frequency.
Thus, perhays arbicrarily. iy o {s selected here as the optimisation

index.

i «7,,{’/
The application of the state space analysis to the back-to-back FPSE
is embodied in a computer programme entitled 'SYMENG', the listing and

algorithmic details of which are given in appendix B. The : It

g e

quantitative results of the analysis are presented firstly in texms of §

a baseline parameter vector and thereafter as a sequence of variatlons
of several of the parameter vector components im turn, Finally, an

attempt at determining an optimised parameter sat is described. ! ]
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2.3,3,1 Baseline Engine Performance

The baseline parameter set is almost identical to that used in the
initial analysis of the back-to-back FPSE (Go80) and is given in table
2.2, There is no parcicular justification for choosing che values
listed for Lhe baseline case ocher than the intuition of physical
significance and the praghatism of convenient numerical magnitudes.
The actual parameters used in the computer programme correspond to the
parameter vector components given in table 2.1 although particular
cc.ponents are represented in a more convenient form such as diameters
replacing areas and strokes replacing amplitvies. In addition, the
parameter desciptions have been clarified and abbreviated to conform
with the label length restriccions of the graphics programme used to
process the results (LOTUS 123). In compliance with the boundary
hypersurface equation solutien methodology, the piston loading

voefficient is not included in the baseline parameter set.

Table 2.2 Back-to-back FPSE baseline parameter vector

Parameter Compornent Value
Displacer diameter 35 mm
Displacer rod diameter 16 mm
Displacer length 80 mm
Displacer mass 150 g
Displacer damping coefficient 6 kg/s
Displacer/piston damping coefficient 3 kg/s
displacer stroke 8 m
Piston diameter 44,5 mm
Piston length 30 mm
Piston mass 1,5 kg
Piston stroke 18 mm
Displacer ¢ylinder diameter 37 mm
Displacer cylinder length 90 wm
Piston nylinder length 50 mm
Expansion space temperature 330°¢
Compression space temperature 27°¢
Charge pressure 10 bats
Working fluid Helium
60




Table 2.3 Back-to-back FPSE baseline parameter set performance

Selected loading coefficlent: 26,2 ke/s .
Rejected leading coefficient: 42,9 x 10° kg/s D F |
Frequency of oscillation; 42,4 Hz -1
Nen-steady-scate term damping coefficient: 279,587t ‘[
Displacer/piston phase angle advauce: -0,18° >

lic indicated work: 5,69 7 ;
Cyclic output work: 3,773 .
Cyclic output power: 159,68 W P
additional dissipacion work: 03 ‘

The performance of the engine described by the baseline parameter set

is reflected by the data listed in table 2,3, The selected and ’
rejected loading coefficients correspond respectively to the roots

and ¢, of equation (2.30). Since ¢,, >0 and o,

, <0, the engine ;

Cp1 3
is capable of self-sustaining operation. The root ¢, legitimately :
may be ignored since its large negative value Ls not physically i
meaningful in comparison with the value of c,,. The predicted i .
frequency of oscillation of 42,4 Hz is compatible with the dynamics of : ,
a spring/mass system corresponding to the pilston being acted upon by '
two opposing gas springs with the stiffness equivalent of a 10 bar t
pressurisation. The negative non-steady-state term damping
coefficient (which corresponds to A, in equation (2.32)) determines {

that the state space analysis is admissable. Gonsequently, the

steady-state solution of equation (2,36) may be inferred from equation

(2.35). The piston leads the displacer by a small phase angle of
0,16°, This may appear patadoxical in the light of the accepted [

notion that a significant piston/displacer phase angle is necessary

for an FPSE to achieve self-sustaining operation. Whils this is
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undeniably true when the displacer and piston strokes are nearly
equal, in the baseline parameter configuration the piston stroke is
specifed as being more than double the dlsplacer stroke, The
resulting rvatio between the expansion and compression space volume
variations produces out-of-phase pressure profiles in each half of the
engine. The pressure differential thus established drives the
displacer and so maintains self-sustaining operation, Since it is the
phase relationship between the pressure diffevential and the displacer
motion which is cardinal to the back-to-back FPSE operation, a given
parameter set may yield displacer/piston phase angles which appear to

be incongruous,

This highlights one of the subtleties inherent in the state space
apalysis approach, namely, the necessity of stipulating piston and
displacer stroke limits ia order to achieve a discrete closed form
solution, Essentially thls is accomplished by converting the initial
value problem of squation (2.35) into the boundary value problem of
equations (2,42) wherve the 'initial’ conditions are such that the
piston and displacer oscillations meet given boundary constraints.
These boundary constraints are artificial parameters since their
values are implicltly contained in the full solution of equation
(2.35). Such a solutlon may only be obtained from Lndependent initial
conditions at time ¢ = 0 using numerical techniques. Thus use of
piston and displacement stroke limits as independent parameters
(without prior knowledge of thoir physical viability) makes multiple
engine performance evaluations using a range of peometrically
compatible stroke limits mandatory. WNevertheless, the analytic
procedure used to find the steady-state solution directly is

physically aduissable. This is demonstrated for the RE~1000 FPSE in
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section 2,4.3 where prior experimental knowledge of the piston and

displacer strokes is available.

The net cyclic indicated work done is low in comparison with ex’-ring
Stirling FPSE havdware of similar size, although this is not
significant in view of the avbitvariness of the baseline parameter sot
which is far from optimised (see table 2.4). The cyclic output work
is 34% less than the indicated work, indicating that the work absorbed
by the displacer in a back-to-back engine can be significant.
Nevertheless, an output power of about 160 W for a non-optimised

configuration is encouraging.

Perhaps the most sigrificant attribute of the back-to-back FPSE
configurarion is its ability ro operate on the stability boundasry
since the additional dissipation work required is zero. This means
that det(¥) > 0 for equation (2.40) without the necessity of reducing
the piston lc «wing coefficiant cp Erom Lts maximum theoretical value,
Apparently, the engine is inherently capable of operating on the
stability boundary hypersurface since, over the entire numerical test
sequence, no cases where det(F) = 0 on the stabillty boundary have
been encountered. Considering this phenomenon from an available
energy or exerpgy perspective, the baek-to-back FPSE seoms to have the
capahility of maximising the energy yleld from isothermal working
spaces, However, this maximum necd not be congruent with the
realisation of an f{deal Stirling thermodynamic cycle per se since with
a -0,16° displa.er/plston phase advance, the gas displacement parts of
the cycle are far from isochoric. Thovefore, even in a demonstrably
non-ideal practical implementation of the Stirling cycle, the back-ta-

back FPSE may have an intrinsic advantage compared with other Stirling

- e wr e
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machine configurations.

2.3.3.2 Baseline Parameter Variations

In addition to the piston and displacer stroke variations, the
parameter varlation profiles discussed are limited to those which show
either definite performancs optima or effects crltical to the englne
operation, Each parameter variation is depicted in two graphs. The
first graph shows the behaviour of the pisten losding coefficient,
operating frequency, displacer/plston phase advance and piston work
output (which is the optimlsation parameter). The second graph
deplets the indicated and output power characteristics. As each
parameter is varied, the remaining parameters are held constant at

their baseline vaiues.

The displacer stroke variation Ls depicted in figures 2.8 and 2.9
while figures 2,10 and 2.11 show the piston stroke variation. Both
figures 2.8 and 2,10 reveal that the plston loading noefficient and
operating frequency maintain thelt baseline values and are independent
of the operating strokes. This is anticipated analytically in the
case of the back-to-back FPSE, since both equation (2.30) for the
loading coefficient and equation (2.31) for the operating frequency

are independent »f the amplitudes of oseillation.

Figure 2.8 indicates that as the displacer stroke {s Increased from a
minimum of 2 mm to a maximum of O mm (which gives & 0,5 mm clearance
prior to an end-stop impact), the eyclic output work decreases from
4,6 to 3,8 J corresponding to an output power range (from Elgire 2.9)
of 197 to 160 W, However, over the stroke rangs, the displacer/piston

phase advance Lncreages from -35 to -0,2°, Conversely, as the piston
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stroke is increased from 2 to 19 mm (which also gives a 0,5 mm end-

stop impact clearance), the phase advance dacreases from 9,5 to -0,2°.
Since the maximum strokes in each case correspond to the baseline ’
parameters, this behaviour demonstrates the influence of the strokes s ﬁ
on the phase angle and thereby on the expansion/compression space
~volume yatio. This ratio, which determines the pressure differential i

across the displacar, is continuously adjusted to maintain self-

sustaining operation. When the displacer and piston strokes are equal

at 9 mm, the displacer leads the piston by 4,7° which is intuitively
i reasonable for a back-to-back configuration, Figure 2.11 also reveals
that as the piston stroke is increased, both the indicated and output
power increase non-linearly from a negligible value (0,1 W at 2 mm},

behaviour typical of an FESE. At the maximum stroke, approximately 82 |

i

W is dissipated by the displacer. At a 9 mm stroke, the dissipation i
i

is reduced to 13 ¥ although, in both cases, the dissipation is .'% of

the indicated power (the same as the baseline percentage). However,

as the displacer stroke is varied, the displacer related dissipation

is reduced from 101 W at 2 mm to 82 W at 9 mm while remaining at 34%

of the indicated power. The overall constancy of this fraction is

L consistent with the constancy of the damping and loading coefficients.

It can be argued that the most eritical parameter in achieving an

operational back-to-back FPSE is the displacer rod area or diameter. ;

The displacer rod area determines the net driving force on the

displacer assembly at amy point in the cycle and hence whether the i
timing of the gas displacement will allow a positive indicator ox Lo !

i pressure-volume diagram to be achieved, As shown in figure 2.12, the §
displacer rod diameter is limited to a range of about 9 to 26 mm.

Exceeding this range results in the piston loading coefficient ;
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becoming negative, so excluding operation as an engine. A maximum
cyclic work output of 7,2 J is achieved for a rod diameter of
approximately 21 mm, a 92% Iincrease over the baseline case. At the
optimum, the displacer/piston phase angle advance is close to its
minimun of -2,4°, that is, the piston leads the displacer. This is
perhaps surprising because the back-to-back FPSE was conceptualised op
the basis of a classical Stirling pressure-volume diagram. However,
in view of the baseline 2:1 piston/displacer stroke ratio, the result
is consistent with those reported above, At the output work optimum.
the frequency is at a minimum of 37,2 Hz which defines the lower bound
of a 14,9 Hz variation range. These phase angle and frequency
characteriscics are the inverse of those of conventional FPSE
configurations such as the RE-1000 engine (see figure 2.28 for
comparison). The power output characteristics are shown as a function
of the displacer rod diameter in figure 2.13. The output power
reaches a maximum of 268 W at the optimum 21 mm rod diameter while the
tnéicated power peaks at 848 W for a rod dlameter of 25 mm.

Therefore, as the driving force on the displacer is increased by
increasing the displicer rod area, the additional indicated work ig
absorbed in overcoming the displacer dissipation at the expense of the
piston output. Numerically, at the optimum, the displacer dissipation
amounts to 59% of the indicated work while, at a 25 mm rod diameter,
the displacer dissipation fraction dilates to 853%, These numbers
indicate that the work required to drlve the displacer can be
substantial, raising the question as to whether the displacer also

should be cons.dered as a work extraction site.
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This theme is relterated by the displacer damping coefficient
variation profiles of figures 2.74 and 2,15, At the optimum damping
coefficient of 35 kg/s, the work output reaches 8,9 J per cycle while
the loading coefficient reaches its maximum of 81,4 kg/s for a
displacer damping coefficient of 50 kg/s. Both the frequency and
phase angle display monotenically incressing behaviour. Under optimum
conditions, the displacer damping factor is 5.8 times larger than the
baseline value and produces a phase advance of 24,6% which begins to
be more in compliance with observed FPSE behaviour. Based on the
speculation that a prototype back-to-back FPSE employing external (as
opposed to aruular) heat exchangers is likely to have an effective
displacer damping coelficient in the 80 kg/s or larger ramge (such as
for rhe RE-1000 FPSE), the resulting phase angles of 45° or greater
are consistent . :th generic FPSE hardware. Figure 2.15 portrays a
maximum output power of 410 W for a 40 kg/s damping coefficient which
also ylelds a maximum indicated power of 655 W. The displaver
dissipates 37% of the indicated work which is similar to the 34%
baseline value, revealing a typical order of magnitude for the

baseline engine.

The effect of varyirg the displacer mass is displayed in figures 2.15
and 2.17, Essentially, the profilles show that the displacer mass
should be kept as small as possible in order to maximise the work aud
power outputs. A qualificatlon to this assertion arises from the
observation that the operating frequency decreases quite rapidly below
a 150 g displacer mass, Thus the requirement of a specific frequency
of operation may restrict the degree of mass minimisation desirable.
In practice, the realisation of even a 400 g displacer may be

difficult using conventional materials bearing in mind that, in

%
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comparison, the RE-1000 FPSE discussed in seccion 2.4.3 has a single-

ended displacer with & mass of 425 g,

Conversely, figures 2.18 and 2.19 veveal that increasing the piston
mass has a dramatic i., .ot on the work end power outputs although the
ir:resse in work znd power output is achieved at the expense of an
operating frequency reducrinn, Thus for prospective applications such
as alternating current e, rical power generation, where fregusncies
of 50 or 60 Hz are desirable, increasing cthe plston mass must be
accompanied by a corresponding increase in engine pressurisatirn.

This serves t» nffsec the drop in frequency by increasing the
stiffness of the equivalent gas springs against which the piston

oscillates.

Figures 2.20 and 2.21 demonstrate that minimising the pisten diameter
or area te~s co maximise che work and power utputs, The minimum
plston diameter chosen is equal ta the baselinc displacer cylinder
diameter and produces the largest cyclic work output of 42,4 J over
the diameter range plotted. Decrearing the diameter further to 35 mm
vasults in an imaginary oscillating Evequency while increasing the
diameter beyend 71 mm produces a nepative piston loading coeff{cient.
Keeping the displacer and plston cylinder dismeters equal reflects an
existing FPSE design trend which in this Lustance seems to be
substantlated, In the case of the back-ta-back FPSE, a practical
Limitation on minimising the plston arca arises from the desirability
of simultaneously maximising the plston mass. This oceurs because,
for a given .aterial density, increascd mass may only bs achisved by
increasing the diamerer or length of tha piston. A diameter increase

decreases the work output as shown by Eigure 2.19 while a length
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BACK—-TO—-BACK FPSE POWER OQUTPUT “

PISTON MASS VARIATION FIGURE 2.19
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increase increases the displacer dissipation by providing a greater
bearing avea. Thus an overall optimised design requires the balancing
of these various factors. It may also be noted that the frequency
increases with the piston diameter. This is a consequence of an
increasing mean working space volume at a constant pressurisation
yielding an increasing equivalent gas spring stiffness. At lower
piston diameters, therefore, the pressurisation may need to be

increased to achieve a desired operating frequency.

Table 2.4 Back-to-back FPSE nptimised parameter vector

Parameter Component Value
Displacer diameter 35 mm
Displacer rod diameter 20 mm
Displacer length 80 mm
Displacer mass 120 g
Displacer damping ccefficient 20 kg/s
Displacer/piston damping coefficient 3 kg/s
Displacer stroke 8 mm
Piston diameter 44,5 wm
Piston length 30 mm
Piston mass 2,0 kg
Piston stroke 8 mm
Displacer cylinder diameter 37 mm
Displacer cylinder length 90 mm
Piston cylinder length 50 mm
Expansion space temperature 330°¢
Compression space temperature 27°c
Charge pressure 50 bars
Working fluid Helium




Table 2.5 Back-to-back FPSE optimised parameter set performance

Selected loading soefficient: 253.5 kg/s L
Rejected loading coefficient: -4,6x10% kg/s
Frequency of oscillation: 53,3 Hz
Non-steady-state term damping coefficient: -319,9 s7°
J Displacer/piston phase angle advance: 5,57° [ R

Cyelic indicated work: 66,53 J ; @
Gyclic output work: 28,8 J Y

A Gyclic output power: 1536,10 W
Additional dissipation work: [ w
2.3.3.3 Optimised Engine Performance ; !
An attempt to achieve an optimised parameter set has been made using L
the results discussad above, The optimised parameter set is given in ! )
table 2.4 while the corresponding performance results are listed in
table 2.5 OF particular note are the 30 g decrease in displacer mass E

and 0° g increase in piston mass while the displacer rod diameter and
danpirg factor are increased to 20 nm and 20 kg/t respectively. The

displacer and plstorn ~trokes are kept equal and restricted to 8 mm

while the pressuxisarior. is increased five times to 50 bars, which is

not unusual for generic FPSE havdware. The vemaining parameters are

R kept at their baseline values. Under these conditioms, the predicted

i output power yield is 1536 ¥ at a frequency of 53 Hz with a
displacer/piston phase advance of 5,6°. Figures 2.22 to 2,25, which

o depict the 4i-placer and piston stroke variations, have the same {

characts .3 as figures 2.7 to 2.l0 for the baseline parameter set. i

The output power decreases from 2,2 to 1, 5 k¥ as the displacer stroke
ranges E£rom 1 to 9 mm for a constant piston stroke of 8 nm. Keeping

the displacer stroke constant at 8 mm produces an ll kW power output
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for a 19 mm piston stroke, an impressive theoretical yield w. ch may
not be achievable in practice. Figure 2.25 demonstrates that, over
the entire piston stroke vange, 37% of the indicated power output is
sacrificed to displacer dissipation under optimum conditions, A clear
case for providing the required additional displacer dissipation via a

work extraction device may thus be made in this instance,

2,3.3.4 GConclusion

The numerical results for the back-to-back FPSE show the wealth of
design information that may be pleaned rapidly and efficlently from an
applicacion of the state space analysls, Particular performance

characteriscics which appear to be unusual, such as the typically

small displacer/pisran phase angle advance, are highlighted and
alternate design strategies, such as using the displacer as a work
extraction medium, ave suggested, Paramectric studies may be used to
bound the uncertaincies inherent in the design of new and uncested
hardware. Hence the major performance unknowns not explicitly
produced by a steady-state analysis, namely the piston and displacer
strokes, may be included in the performance sstimates. ¥rom a
havdware perspective, the characteristics of the back-to-back FPSE
and, in particular, its ability to operate on the stability boundary
hyparsurface under all parametric conditions, make it a configuration

worchy of further analytical and experimental scudy.




2.4 APPLIC Q! B kL SPAC YS1S TO THE SUNPOWER

RE- 1000 _FRER-PISTON STIRLING ENGINE

el Introduction

The RE-1000 free-piston Stirling engine (FPSE) was designed and
tabricated at Sunpower Incorporated, Athens, Ghio. Since the engine
is intended for rescarch purposes, an internally mounted dashpot power
sbsurbing device precludes the avallability of any usable power
wutput. The RE-1000 engine is designed to yleld maximum efficiency at
4 power level of 1 kW using helium working fluid at 70 bars
pressurisation, a heater metal tube temperature of 600°C and an engine
frequency of 30 Hz, Owing to ivs extensive testing by the National
Aevonautics and Space Administration's (NASA) Lewis research center
«§c83:, the specifications of the RE-1000 FPSE have been publically
disclosed, making it an ldeal case study representing a typical beta-

configuration FPSE.

A schematlc of the RE-1000 engine is shown in figure 2.26. The
displacer slides on a spider mounted gulding rod such that a ground.
coupled gas spriny s formed within the displucer plston cavity. A
radially symmetrie external heater, regenecaror and cooler are
positioned around the displacer eylinder. Thivty-four parallel tubas
torm the element of &n olectrica’ rosistance heater, permitting the
passage ol a low veltage curtent to supply beat directly to the
copine. The heater tubes are jolned to an annular cavity created by
positioning an external sleove around the displacer eylinder. Knitted
stainless steel 'Metex' mesh ! packed inte the cavity to forw the

repenerator. & series of 135 parallel rectangular passages located

» N Wi
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Figure 2.26 Schematic of the RE-1000 free-piston Stirling engine
(adapted from a figure reproduced from reference Sc83)
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betweer the regenerator cavity and the compressicn space constitute
the cooler. These passages are formed by press-fitting an aluminium
gas passage fin module into the annular cavity below the regenerator,
ensur..g that the cooling water flows parallel to the working gas.

The power piston, which is attached to the dashpot power absorber by a
coupling rod, is sprung to ground via a gas spring formed by the

bounce space. Clearance seals are used throughout rhe engine to

separate the expansion and compression spaces from zach nthr. and From
the displacer gas spring and bounce spaces. The motions of tae
displacer and power piston are centralised oy a system of ports which
connect the bounce space vith the displacer gas spring and with the

working space when the displacer and power piston are, respectively,

at their mid-stroke positions.

2 4.2 RE-1000 FPSE State Space Analvsis

The specifics of the application of the state space analysis to the
RE-1000 FPSE are described in section A.2 of appendix A. Since many
of the application details are similar to those of the back-to-back
FPSE discussed in section 2,3.2, previous :laboration will not be
repeated in the Following discussion. As w ‘ore, the application

procedure follows the listing sequence described in section 2.2,

1. Stace vector solution and formu’ation of the governing
differential equacions

A complete 1ist of the assumptions made in describing the RE-1000 FPSE

is given in section 4.2.1. The expansion space and heater are

considered as being isothermal at one temperature while the

e I m My N, s BT :..»‘ .




compression space and coolet are isothermal at a lower temperature.
The temperature profile in the regenerator is constant and linear
between these two temperatures. The displacer gas spring and the

bounce space are treated as being auiabatic while the engine is

assumed to be positioned vertically so rhat gravity influences the ;

piston ard displacer Cymamics. Ihe fout cowponent state vector

necessary to completely describe the RE-1000 is the same as that for

the back-10-back FPSE (given by equation (2.19)).

The parameter vector has 22 components which are listed in table 2.4
and shown in Figure 2.27. The displacer and plston ars assumed to
oscillate about ur ¢quilibrium position defined by the alignment of
their respective centering ports. It may be noted that the parameter
vector does not represent a minimum set; the expansion space dead H
volume and heater volume could, for example, be combined, as could the

cooler volume and compression space dead volume. The deviation from a

rigourous minimum is undertaken in the interests of maintaining

compatibility with the published RE-1000 data set (Sc83), although s

prior to implementing the analysis the parameter vector is reduced to

a minimum configuration (equations (A.28) to (A.31)).
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Table 2.6 RE-1000 FPSE parameter vector components

Gomponent Symbolic description -
Displacer rod area Adr

Displacer gas spring midstroke volume v,

Displacer mass Hy

Displacer damping coefficient g

Displacer stroke between stops Xag

Displacer amplitude of oscillation s i
Piston bounce space midstroke volume ‘71: H
Piston mass HP : rvq“
Piston loading coefficient °

Piston stroke between stops *os

Piston amplitude of oseillation Xomax

Expansion space cylinder area 4, )
Bxpansion space dead volume V) dozd

Expansion space / heater temperature T,

Heater volume vy

Regenerator volume v,

Cooler volume Vie

Compression space dead volume (V) gead ‘ K
Compression space / cooler temperature 7, '
Working fluld charge pressure Porg

Working gas constant R !
Working gas ratio of specific heats ¥ :

The governing differential equations describing the RE-1000 FPSE in
terms of the assumptions made may be stated using the threaded

derivative formulation (equations (2.2)) as:




z, =z, (2.55.1)
. — Al
2, = AP{Kb/(Vbd-zlAp)" < HporR/ e+ 2 U8 Ay )Ty - ATy " a
< a AT My - ez, - (2.55.2) -
i -z, (2.55.3) o
i

2= "dr("s/“’s"“:‘dr)’ - Hpgrf/le + 2 WAL 490/ Tg - Ap/T,)
- zxAP/ch}/Md eyr Myt B (2.55.4)
where a and My, are given by equations (2.20.5) and (2.20.6)

respectively and:

. v
Ry = Popg + 8807, (2.55.5) P
T
Ks - (Pcrg + Mdg/AP)Vs (2.55.86)
2. Determination of E and B in the reduced equation

As the engine is oriented in parallel with the gravity vector:

E = (2.56)

Y

B~ 21 “23 Y23 (2.57)
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where the elements of B are expressed in terms of the parameter vector

components by equation (A.43) in appendix A,

3. Development of the determinant of (AI-B) and invesri.ation of its
characceristics

Using the elements of B det(AI-B) may be expressed as:

b s D

4 3
det(AT-B) = A - AT(B,, # B, ) kN B - B, - B

FAB By By B BBy - BBy, (2.58)

Expanding the coefficients of the A-terms in terms of the pirameter N
vector components (equation (A.47)) shows that the state space
analysiz is unconditionally applicable, that is, no special case

stipulations need be invoked, i

4.  anslytic description of the stabllity boundary hypersurface in
the parameter space

Developing the characteristic equation using condensed coefficients

From equation (2.54) produces:
L] 3 2
[T S S RN AN (2.59)

Substituting a particulaxr complex eigenvalue given by equation (2.27

and solving the resultant equation for the real and imaginary perts i
simultaneously produces on the stability boundary hypersurface (where 1
a=0) f

KJKQ “Kx(Kz'K;/K:\) (2.60)

In terms of the parameter vector components, the stability boundary

bypersurface defining equation becomes:

. R a,m o



A VCCp /My + gl (Ko R T o o/ /7L 9
ey
= KpNporRUCA Ay ) /T Ay /T ) /YT )
Moy Rl o/ Tg = € gl CA 4y /T« ATV /a® + q0e a2 K JTI7
To1%--d" p/le pidet Ypmlapilte - Apfte Tiephartel Vs
z pITl 2 1t
e hlk VY )] [Cp%/”p”d ERI /A i
2 it N 2
- Adtks/vs Md) + NTGTR[AP/TCNP - AdrHAp'Adt)/Tc
2 2 P
- Ap/Tel/Md)/a - ["Tor”cd"p”c - CPA,,;((AP-Adr)/Tc - AT/
2, el 2, el ;
ARG R WA R W N >]/(CpMd+chp)] (2.61) .
where M. @, Ky, and K| are given respectively by equations !

(2.20.5), (2.20.6), (2.51,5) and (2,51.6).

5. Solution of the stabllity boundary hypersurface equation

Using the dependent parameter methodology described for the back-to-

back FPSE, equation (2.61) forms a cublc polynomial when expressed in
temns of the piston leading coefficient o,. This polynomial may be

expressed as:

3 2 . a
K‘cp + K3CP + K’CP + l‘ -0 (2.62.1)

where the cosfficients ate given by the following threaded sequence:

K, = Koty (2.62.2)
Ky = Kol + KWKy - i/l (2.62.9)

Ky = KMy oK ‘lK’A;chﬁ (2.62.4) .

Ky = Kyogty + A;c:l(: (2.62.5) ‘
Ry = hy R A ST g RK fa) (2.62.6)
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Ky = ARy - KATCHMD I, - KK, (2.62.7)

K, = KoeaMy - A;chBKm (2.€2.8)

Ky = tporR/Toa® v A/ T (2.62.9)

Ky = oA (IR A K UL akytrorRE, 2™ (2.62.10) I
Ko ™ A;Ke/”p * Adr('stAdz/V;“ - KUMTOZR/"Z)/”d (2.62.11) ! Y

Ky = UAg-ag ) /T, - 4T

Equation (2.62.1) may be solved analytically using Cardan’s formulae
(Usa8). These formulae enable the extraction of a simple root,
factoring equation (2.62.1) into the form:

(cyo8,) (optB,c,46,) = 0 (2.63) i

The physical significance of the roots ¢

interpreted in the light of che experimental behaviour of the RE-1000

p/Te (2.62.12) !

o1 Cpy AN €y may be

FPSE (5c83) as follows;

a.

1€ 6% - 4f, > 0 then the loading coeffic® -t is non-discrete

and the engine may operate at more than vae loading state ! ‘
simultaneously, As this is physically Lncampatible with the

requirements of the operating stability concicion, the parameter

set is {nadnissable.

I£ B, <0 and ,3: < 4B, < O then the machine will not achieve

self-sustaining operaction as an engine, but may operate as a heat

pump.

£ £, > 0 and B2 - 4B, < 0, selE-sustalning operation as an

engine is possible.

- 4




Supposing that the last condition is true, the coefficients in .
equation (2.60) may be evaluated and the angular frequency of

ogcillation can be found from: "

b~ ((B,,B,, + 5,8,/ -5,

0.
22753 T P27 BN (2.84)

z

As for the back-to-back FPSE, if b is imaginary then the parameter set

is physically incomparible. If b is zero then operating stability

Aj'

will not be achieved.

Substituting a positive value of b into equation (2.27) produces a

quadratic factor (A*+b®). Dividing equation (2.5%) by this factor and

invoking equation {2.60) produces the remain®n~ renvalues given
by!
) .
X:“ = 0'5(522+Blﬁ) * 0'5[(521+B€k> - thZZBAA : le " Bkl
e.5
+ (8,8, + BB, /B, + B )N (2.65)
If A, , ave complex com,  tes and thelr real part is nom-negative, or

3

if they are simple and either eigonvalue is non-megative, them, by
Lyapunov's first theorem (equation (2.14)), the behsviour of the
reduced equation (2.11) is not significant and the - alysis is

inadmissable.

6. Solutlon of the reduced stare space ecquatlon

The reduced equation for the RE-1000 FESE is give- ' wquation (2.11)
since, by equation (2,56), E is non-zero. Thus t' 4 -eral solution
of equation (2.12) is valld in this case. Using the sathodology
deseribed in section A,3 for a particular set of admissable

eigenvalues A, , = :jb, A, and A, equatien (2.12) becomes:
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% = (2|2 ] cos(bt+d) + Z, exp(A£) + Z, exp(A,))(1.0) + 3 g

LBl (2.66.1) -
L]

where: .
7, = (BH]BI)(B-3, T)(B-X T)/2§B(-2 +]b) (-, +}b) (2.66.2) !

2 2 2, 52
2z, = (B°X + 62T (B-3, D/OE% (0 1) (2.66.3)

2 2 2,2 )
z, = (81 + BPD) (B3 /0BT (-4 ) (2.66.4) P
b, = tan”'(Inag(z,) / Real(z,)1 (2.66.5) :

As ¢« o the steady state solution is given by:

z, = 12]2,] cos(berd)1tz(0) + B7'E) - BE (2.67)

7. Selection of the lnitlal conditions

The method used to determine the initial conditions is identical to
that elaborated for the back-to-back FPSE. Since the piston and
displacer by definition escillate about thelr equilibrium positions,
#(0) is defined by equacion (2.37). This produces the Following

expressions for x, and xj:

&
X, w -(87E), +J§12|(zl)uy contr(h,), 1 (2(00H8 7R (2.68.1)

4
xg = (878, .-lezuzt)uj cos{HCh, ) 1 (07 (2.68.2)

where § = bt,
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The engular displacements at which x, and x; are at thelr meximum msy

be found from;:

4
“1 ‘1
¥ omax = tan [-J[zll(zl)uhz(m + B8R singd,), )

i,

/ ﬁl\(z‘)ljlxz(m LRI cos('#»)ul) (2.69.1)
-1 3 -1 |
- tan ('521“2:"1J|‘“°) ey stn(@,)ul B
& .1
S AN costh,), 1) (2.69.2)

Substituting equation (2.69) into equations (2.68) produces cthe piston

) and displacer equilibrium position veloeity matrix equation: .
. - 3
i | BLOF, 2,00) Sonax * BB, +Jélaj
{ 1 - (2.70.1)
| . N 4
LELF,. &4(0) Xpmin * BTE), ¥ % 8y
! ! J=1
where:
. 1 .
a2 |(zx,u,<s E)j costfp, * <¢l)u\ (2.70.2)
; ' .
"y 2“Z1)1J|(B By ectll gy ¥ (‘{’x)u’ {2.70.3)

and the cocfEicient matrix ¥ ls given by cquations (2,41).
Using the same iterative mothod of solution described for the back-to-

The phase augle by which the displacer leads the piston is given at

back FPSE, o solutlon for ¥,(0) and %,(0) may be found 1f dat(F) > 0.
ﬁ canvergence by 0

pmax " ? e
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8. Thermodynamic performsnce determination

Using the values of kp(o) and x,4(0) found from equation (2.70), the
state variables are given by the components of equation (2.67). In
turn these stace variable solutions yield the net instantaneous

indicated power output given by:
Bpop = B0 (2.71)
which, after substitucion of the state vecror components and relevant
paramecers, produces the non-linearised form:
Frop = HpopRUighg, + B ALY [ {a + XgUA 8 /T - A T,

X AT 2.72

X AT 2.72)

where o is given by equation (2.20.5). The linearised pressure
version becomes:
.- % . . . 2
Fror = HporR (S ghg Wyhn) [xgUA- 840 /T -80/T,) - XA /T ] /@ (2.73)
The net instantanous powar dissipated mechanically is given by:

7 o .2
Yprs = p¥p * g (2.74)

while the gross power output produced by the piston is limited to:
W

22
ot 7 Cpp (2.75)

The cyclic integrals of Wpyp, Wpro and Wy aze given respsctively by
equations (2.47), (2.49) and (2.51) while rhe cyelic power cutputs are

given by equations (2.53).
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Invoking the sane arguments cited for the back-to-back FPSE, the

linearised equation for Wp,, is also preferred here, Thus the cyclic

integrals of Wy, Wprg and Wy, may by expressed in a formac similar ™

to that of equation (2.52) as:

4
W = (2x/b) ZKU [(zz“s)i(a"z)j + 2E1|(zx)1k| cos(,) ;. (2(0)+87 8]

4 S
-1 .
x g1|<zl)Jk| cos(él)jk (2(0)+87 1B} + 21[21“2‘)“" sin(d);p

&
- . -1
X (2(0) + 87BN} + £§1|(21)1k| sin(d,) e f2(0) + 8 E)k}] (2.76)

where i and j are any two state vector components (including cases for

which i=j) and K is a constant.

The significance of a negative det(F) in terms of the indicated and
dissipation cyclic work is the same as that for the back-to-back FPSE.
Hence the discussion given previously (in section 2.3.2) elucidating

this significance is also applicable to the RE-1000 FPSE

9, Selection of an optimisation index

Once again, either Wpy,. or Wy, are useful oprimisation indices
because the assumption of isorhermal working spaces does not yield any
independent heat transfer information. As the RE-1000 is intended as
a research engine, more attention seems to have been focussed on the
power delivered to the dashpot leading device (Se83) and hence Wy, is

selected as the optimisation index.
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2.4.3 Numerical Results

A computer programme entitled 'REL000' embodies the application of the
state space analysis to the RE-1000 FPSE. Details of the algorithms
use | as well as a programme listing are given in appendixz B. The
numerical results are focussed on using the available experimental
data for substantiating the validity of the state space analysis.
Initially, a baseline parameter vector is estsblished by calibrating
the resules of the analysis against the nominal design performance
test data supplied by Sunpower Incorporated prior to the engine being
accepted by NASA Lewis. Thereafter, a comparison between the state
space analysis and NASA experimental results is made over a
representative segment of the engine’s performance map. Finally, a
series of variations of sevecal of the more prominent parameters
affecting the power sutput is presented to provide an assessment of

the optimality of the baseline parameter set,

2.4.3.1 Baseline Engine Performance

The baseline parameter set listed in table 2.7 reflects a more
detailed definition of the heater, regenerator and cooler geometries
than given in table 2.6. This results from an effort to maintsin
correspondence between the gecuatrical data reported by NASA (Sc83)
and the interactive data entry procedure incorporated in the RE-1000
computer programme. As for the back-ta-back FPSE, data entry is
clarified by using diameters in preference to sress and strokes in
preference to amplitudes. All rhe geometrical parameters quoted in
table 2.7 are those supplied by NASA vhile the parameters defining the
engine operating state (displacer and piston strokes, charge pressure

and working space temperatures) correspond to those defining the
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Sunpower acceptance test point ($c83). Only the displacer damping
coefficient is obtained by calibrating the state space analysis
performance results against these test data. The approximate value of

the damping coefficient had been previously established using a

simulation employing isotheymal working spaces (GL85, LT85). Inm

conformity with its dependent status, the piston damping coefficient

is not included in the parameter set used tc implement the state space ° |

analysis numerically.

Table 2.7 RE-1000 FPSE baseline parameter set

Parameter Value
Displacer rod diameter 16,63 om_

Displacer gas spring midstroke volume 31,79 ¢

Displacer mass 526 g .
Displacer damping coefficient 80 kg/s ¢
Displacer stroke between stops 40,4 mm

Dlsplacer stroke 25,5 mm

Piston bounce space midstroke volume 20500 em”

Piston mass 6,2 kg

Piston stroke between stops 42 mn

Piston stroke 23,2 mn

Expansion space cylinder dismeter 57,23 mm

Expansion space dead volume 11,62 em®

Expansion space / heater temperature 567,41°C

No. of heater tubes 34 ©
Heater tube inside diameter 2,362 mm

Heater tube length 177,876 mm

Heater dead volume 13,11 en®

Regenerator annular gap outex diameter 71,8 mm

Begenerator annular gap inner diameter 60,7 mm

Regenerator length 56,368 mm

Regenerator matrix porosity 75,9 %

No. of cooler passages 135

Cooler passage width 0,508 mm

Cooler passage depth 0,376 mm

GCooler length 79,19 my

Cooler dead volume 8,08 em”

Compression space dead volume 55,98 om

Compression space / cooler temperature

Charge pressure 70 bars

Working f£luid Helium

The performance of the RE-1000 FPSE described by the baseline

pazameter set at the calibration point is listed in table 2.8,
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Table 2.8 RE-1000 fPSE baseline parameter set performance

det(F) 0,66018x10" °s*

[ —_—
Atslytical Experimental
Stability boundary hypacsurfaee | 1148,7 kg/s -
loading coefficient
Operating hypersurface loading 405,0 kg/s -
coefficient
Fr quency of oscillation 29,9 Hz 3 2 bz
Non-steady-state term damping 126,6 % j129,0 | -
coefficients !
Displacer/piston phase angle 49,6° 47,6°
advance
Cyclic indicated power 1766,2 W 1100 W
Gyclic output power | 1000,0 W 1000 W
Power dissipated by displacer | 227,2 W -
Additional dissipation power i 5390w 0w
}

Using the previously determined displicer damping coefficient of 70
kg/s as a starting point (GL85, LT85), the damping cosfficient was
varied to obtain the closest agreement between the analytical and
experimental frequency of opevation and displacer/piston phase angle
advance. Thereafter the magnitude of det(F) was altered to equalize
the experimental and analytical power outputs. This in turn changed
the operating Frequency and phase angle mandating another adjustment
to the displacer damping coefficlent, Iterating these adjustments
produced the converged calibration state described by table 2.8
defined by a displacer damping coefficient of 80 kg/s and a value for

det [B) of 0,7x10°° &%,
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It may be observed immediately that, unlike the back-to-back FPSE, the
RE-1000 engine is not capable of achleving self-sustaining operation
on the stability boundary hypersurface, a characteristic which is

consistent over the entire numerical test sequence. As noted in

section 2,3,2 with reference to the discussion of figure 2,7, the
operating hypersurface lies within the stability boundary hypersurface
and {5 dafined by det(¥) > 0. However, the magnitude of det(F) is N
indeterminate without additional boundary condition data, thus
vredicating that, under design conditions, the limiting case defined
by det{F) = 0 must be used initially. The availability of the power
output experimental data for the RE-1000 engime in this case permits a
value of det(¥} to be chosen so as to enable & precise calibration of
the analysis in output power terms. The small magnitude of det(F) of
order 10°% is consistent with that of the back-to-back FPSE which -

yielded values in the range of 1x1077 to 2x10°% s

on the stability
boundary hypersurface. Of primary significance from a valldity
perspective, though, is the existence of a physically credible det(F)

which enables the achievement of a calibration.

The conditions governing the solution of equation (2.63) arve satisfied
since the stability boundary hypersurface loading cosfficient is

positive while the vemaining roots are imaginary. A 743,7 kg/s

diffarence separates the stability boundaty and perating

hypersurfaces indicating that the RE-1000 operates well within the
limits defining the maximum utilisation of the energy available from a
thermodynamic cycle with Lsothermal working spaces. Of the §66,2 ¥
separating the analytical and expevimental {ndicaved works, 538 W or
81% im devoted to additional irreversible dissipation which shows the

k extent of the error made in using an isothermal analysis to describe
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the RE-1000 FPSE fluid dynamics. Corresponding to the eigenvalues
3., in equations (2.62), the non-steady-state term damping
coefficients are a complex conjugate pair with negative real parts.
This confirms the admissability of the state space analysis for the
basrline parameter set and the validity of the steady-state solution
given by equation (2.67), At the calibration point, the analytical
frequency differs from that experimentally measured by 1% while the
discrepancy in the phase advance is 4,2%. In view of the assumptions
made in deseribing the RE-1000, particularly with regard to treating
the piston loading and displacer damping as being l.nearly dependent
on velocity, these discrepancies are considered to be acceptable. The
displacer loading (which incorporates all the gas dynamic dissipation)
is intuitively non-linear while, physically, a dashpot piston load
tends to be proportional to the square of the veloeity. Thus for the
relatively large calibration point piston and displacer strokes of
23,2 and 25,5 mm respectively. the exvors accrued from the linear
loading and damping assumptions are likely to be significant, This
argument may be substantiated by noting that the phase angle errors in
particular should increase with increasing strokes, a characteristic
which is demonstrated by the NASA-Lewis / state space analysls data

comparison discussed below.

2.4.3.2 Comparison with Experimental Data
The comparison of the state space analysls and NABA experimental data
for the RE-1000 FPSE is summarised iu rable 2.9. The experimental
data used comprise a consecutive series of tests designated by ths
numerical sequence 598-617. These date, which were kindly supplied by
Mr. J. Schreiber of NASA-Lewis in November 1984, were labelled as

being preliminary and, as such, had not been published.
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Table 2.9 RE-1000 FPSE stpte space mnalysis / experimental dats comporisen

HASA | Piston] Displ-] €xp | Comp | Tomp | Gutput dexiFy Fraguency phase Indicated
Tesc | Stroke| acer | space | space | Space | Power |  (sZx10%) 2y (degrees) power {H
Ho. Citwn) Stroke{ Temp | Temp | Mean )
tmmy | (%0 | (% Pres Experi~ | State €xperi- | state | Experi- | stato
(bary mental | space | mentsl | space | mentai | space
ses | 17,8 | 21,8 [566,0 45,7 |70,26 | 709,0 | 0,460446 | 29,9 29,3 56,7 54,3 | 739,80 11950
s99 | 20,0 | 23,6 |563,3 |49, 70,19 | 889, | o,508280 | 29,8 29,5 55,4 53,6 | 8,0 |1419,9
600 | 22,1 | 25,2 {562,2 (53,5 |70,31 | 976,0 | 0546299 | 29,9 29,6 56,1 se,7 [1021,0 (1639,
501 | 23,8 | 26,5 |857,6 |57,4 170,21 [1077,0 | o,566203 | 29,9 29,6 57,1 52,5 |1125,0  [1815,4
s02 | 25,8 | 27,2 |s54,8 {61,6 |70,86 [1216,0 | o,606970 | 29,9 29,8 57,1 51,6 |1262,0 119695
603 | 18,0 [ 21,7 [s19,9 {478 (10,35 | 62,0 | 0468352 | 29,8 9,5 56,2 56,0 | 86,0 |1153,1
s6s | 20,0 | 23,4 [517,6 |s1,0 jvo,19 | 7760 | 0,496 29,8 29,5 57,0 55,4 | 808,0  [1346,7
505 | 21,9 | 24,8 | 5146 54,2 |70,37 | 866,0 | 0,525498 | 29,8 22,7 57,7 56,6 | so7,0  |1530,7
606 | 24,0 [ 26,3 [509,2 60,2 |70.,42 | 1004,0 | 0,536745 | 29,9 29,7 58,8 54,5 |1045,0  |1724,5
807 26,0 26,9 }507,3 | 63,2 j70,52 |1095,0 0,594506 29,7 29,8 58,5 53,1 37,0 18524
soa | 17,9 | 21,6 Jare,7 Jao,h [70,50 | 12,0 | o.405018 | 30,1 29,5 8,8 sa,5 | e36,0  [1071,0
s09 | 19,9 | 23,0 [4s6,9 | 50,4 |70,34 | 693,0 | a,458908 | 29,9 29,6 59,1 57,4 | w10 |17
610 | 21,9 { 24,5 {484,7 55,7 Dro,3 | 78,0 | 0,491082 | 29,9 29,6 59,6 56,9 [ 21,0 (19,0
e | 23,9 | 25,5 4e2,7 59,5 70,65 | 890,80 | 053319 | 30,2 9,7 61,4 58,7 | 923,06 |1se0,4
612 | 25,9 | 25,9 [4se,5 {63,5 (70,58 | ort,a | o,577ms3 ) 30,1 29,7 61,6 54,6 | 996,0  [1637,9
613 | e [en1 (azs2 {4a,6 {70,846 { 545,0 | 0,309¢43 | 30,9 29,5 60,6 60,7 | s6r,6 993,2
64 | 19,9 | 22,4 Ja2,8 |55,3 [70,38 | ez2,0 | o4a6wt7 | 30,1 29,5 81,6 59,2 | 649,0  [1132,6
615 | 21,9 | 23,8 [418,7 [54,8 |70,62 | 700,0 | ©0,405644 | 30,1 29,6 62,3 58,3 | 30,0 |12m9,2
616 1 23,9 | 25,1 (4154 {569 J7o,50 | 77,0 | 0512006 | 30,2 29,6 6.9 57,8 | 98,0 |14ss,4
817 | 25,8 | 25,6 |412,6 | 62,8 7n,szi 83,0 | o,554744 | 30,0 29,6 62,7 56,6 | 850,80  [1517,8




Subsequently, tests 598-602 have been published in finsl form in
reference SG86. The data published in reference Sc83 reveals
significant deviations from the nominal performance gpecification
owing to prior physical defects in the engine and its Instrumentation.
oOnly after some considerable testing, rebuilding and modification by
NASA was the engine restored to its performance specification as
reflected by the baseline calibration results. Hence, the original
chojce of unpublished data was motivated by a desire to use test data
garnered on the engine ss restored to its acceptance test

specification.

The experimental data set covers four nominal heater temperatures,
ranging from 450°C to 600°C in 50°C increments, At each heater
temperature, the piston stroke is varied over a nominal 18 to 26 mm
range. The test results used as variable inputs for the state space
analysis are the piston and displacer strokes, expansion and
compression space gas temperatures and the mesn eyclic pressure in the
compression space, These parameters ostensibly ensble the greatest
degree of correlation between the actual and state space analysis
approximaced fluid dynamic operating states. ALl the remsining
parameters, including the displacer loading coefficient, are kept
constant, At each test point, det(F) is varied so as to match the
experimental and analytical power outputs to at least two decimal

places, hence the reporting of six significant figures for det(F).

Three p o pa :s are then to exanine the validity
of the state space analysis, namely, the operating frequency,
displacer/piston phase advance and cyclic indicated power. Sines the
analytic indicated power is known from independent theoretical

considerations to be a considevable over-estimate of that measured,
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anly the frequency and phase angle comparisons are practically

significant as validation indics

Over the entire performance map, the largest discrepancy in operating
frequency encountered is 2% (test no, 598) while the largest
discrepancy in phase angle amounts to 11,4% (test no. 612). For all
four heater temperatures, as the piston and displacer strokes
increase, the phase angle discrepancy increases in compliance with the
sssumption of linear loading and damping forces. Considering the
smallest piston strok.s only (nominally 18 mm), the maximum phase
angle discrepancy is reduced to 0,7% over the test map. Examining the
phase angle trend indicates that, for all heater temperatures, as the
piston stroke increases the state space phase angle decreases while
the ernerimental phase angle increases. This may be attributed to an
increase in det(F) with increasing piston stroke to maintain
experimental and analytic output power equality (while the displacer
damping coefficient is kept aonstant). Varying the displacer damping
coefficlent to better the linear approximation of the actual displacer
damping as the displacer stroke changes ylelds a much closer agresment
between the analytic and experimental phase angles over the entire
piston stroke range. No consistent trend is exhibited by the
experimental operating frequencies, behaviour which Ls matched by the

state space frequencies.

Both the experimental and analytic indicated powers increase with
piston stroke for the four heater temperatures considered, The
discrepancies between the analytical and experimental veaults are
tabulated in table 2.10, In all cases, the analytic indicated powers

ave greater than thelr experimental councerparts.




Table 2,10 Comparison of the indicated power discrepancies

Heater Temperature (°C) F Indleated Powar Discrepancy (%)
[ wemaps | demm

600 : 60,4 l 62,1

550 66,2 t 58,8

500 ' 70,2 j 73,2

550 i 77,0 i 79,9

Both the average and maximum discrepancies increase with a decreasing
heater temperature. This trend is consistent with the notion that the
error resulting from an isothermal working space assumption (compared
with actual non-isothermal conditions) increases with a decreasing hot

side temperature. This occurs since the irreversible dissipation, as

a proportion of the available energy. increases with decreasing
expansion space / heater temperatures for approximately constant

compression space / cooler temperatures,

3

Within the constraints of the assumptions made, the comparison between
the analytic and experimental data for the RE-1000 FPSE demonstrates
the validity of the state space analysis in predisting the output
power, operating frequency and piston/displacer phase angle advance
with - worst case discrepancy of less than 12%., This 1s achieved with
the availebility of sufficlent empirical boundary condition data to
defino the operating boundary hypersurface. The magnitude of the
parameter defining the operating hypersurface (namely, det(¥)) seems
to be consistent within an srder of mugnitude for both the RE-1000 and
back-to-back engines. This establishes a pragmatic baseline standard

for use in pplylng the state space analysls to untested FPSE designs B
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which cannot operate on the stability boundary hypersurface.

A limiting case defined by det(F) = 0 (which determines the maximum -
theoretical output power yleld) may, however, always be evaluated,

thus establishing an upper bound on the design performance e
expectation. It is this capability of the state space analysis .

methodology which s Fully substantiated by the

analytical/experimental performance data comparison and, therefore, -

which endows the analysis with its practical utility as a design tool

2.5.3.3 Basaline Parameter Variations

Six parameter variations are presented as a frameswork within which the
optimality of the RE-1000 FESE baseline parameter set may be reviewed.
In each case, only the designated parameter is varied; all the
remaining parameters are held constant at their baseline values,
Furthermore, over the entire variation sequence, det(F) maintains its
baseline calibration value. As for the back-to-back FESE, each
parameter variation is preseéntsd in two graphs. The first graph
depicts the displacer loading coefficient, frequency, displacer/piston ¢
phase advance and output work. The second graph shows the indicated,
output and additional dissipation powers. In compliance with the
discussion in section 2.4.2, the output power is used as the

optimisation index.

Figures 2.28 and 2.29 reflect the influence of the displacer puiding
rod diameter on the engine performance. This parameter is arguably
the most critical from a design optimisation perspective (5¢83), a
characteristic shared with the back-to-back FPSE. A maXimum power

ouptut of 1478 W is attained for a displacer rod diameter of 19,5 mm
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while the maximum work output occurs at a 19 mm displacer diameter.

However, the minimum additional disspation power of 358 W occurs at a

diameter of 17,5 mm while the maximum indicated power is experienced L
at a 21,5 mn displacer diameter. Self-sustaining operation for the

baseline parameter set is achievable only within a 16,5 to 22,5 mm S

range; nmo operating states for the given piston strokes exist outside

these bounds. Thus the narrew 6 mn dismeter range for which self-
sustaining oparation may apparently be achieved is indicative of the
precision required in the design of RE-1000 style enmgine
configurations. The haseline value of 16,63 mm would appear to be
2,87 mm smaller than optimum although the Gverall accuracy of the
state space analyses of 12% does not warrant the conclusion that the
baseline value is an inappropriate choice, particularly Lf a 30 Hz
operating frequency at a 70 bar pressurisation is desired. Figure
2,28 shows a 5,6 Hz increase in frequency aver the diameter variation
range while the phase angle falls within an 18,7 degree interval,
peaking at 69,6 degress for a 21 mm displacer rod diameter. The
piston loading coefficient and work output decrease at the range

extremities, the decrease being more substantial at the upper limit.

T variation in displacer damping coefficlent is depicted in flgures
2.30 and 2.31. As for the displacer rod diameter, no operating states
for the given piston and displacer strokes are possible outside a 45
to 81 kg/s displacer damping coefficlent range. A maximum power
output of 1421 W is achieved for a 54 kg/s damping coefficient while
the minimum additional dissipation of 95 W occurs at s 58 kg/s damping
coefficient. However, che output power optimum is not particularly
notable, as the output power is within 1,6% of the optimum value over

a 46 to 62 kg/s damping coefficient range. Of more interest is the
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observarion that, ac the calibration value of 80 kg/s, the output
power is at a minimum, as is the phase angle, while the operating
frequency is maximised. The contrast batween the optimum and baseline
displacer demping coefficients is indicative of a fundamental dilemma
facing the FPSE designer, namely, a desire to achieve a required level
of displacer dissipation to optimise performance while simultaneously
not being able to manipulate the dissipation in a design sense. This
ar s because the fluid dynamic dissipation cannot be controlled
precisely. In particular, the frictionmal dissipation in the
regenerator matrix (which is the principal fluid flow related
irreversibility) may be manipulated with the least amount of
precision. Such dissipation may be included in the state-space
analysis using an approach based upon ome proposed by Chen and Griffin
(CG86), although at some increase in analytic complexity.

Practically, it usually materialises that even though every effort is
made to reduce the displacer related dissipation, the value obtained
is still greater than the optimum, a situation exemplified by the RE-
1000 FPSE. The operating frequency experiences a 3,8 Hz rise over the
damping coefficient range while the phase angle advance spans & 6°

interval, neither variation being substantial in a relative sense.

The displacer mass variation given in figures 2,32 and 2.33 shows that
the output power increases monotonically with displacexr mass,
behaviour which {s the inverse of that exhibited by the back-to-kack
FPSE. Furthsrmore, the additional dissipation power decreases as the
output power increases. This behaviour, however, is limited to the
312 to 445 g range plotrad, no operating states for the given
displacer and piston strokes being possible beyond these confines.

Thus the haseline value of 426 g for the displacer mass is an
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appropriste cholce. In addition, the necegsity of minimising
displacer mass is not a critical constraint, permitting some design
Flexlbility. Both the piston loading coefliclent and cutput work
increassy over the displacer msss varlation range, while the frequency
and phase angle decrease uniformly over 2,3 Hz and 4° intervals

respectively.

As expectad, the requirement of constant displacer aad piston strokes
limits the expansioun space / heater teuperature range for which
vperating states exist., For the basaline parameter set, this range is
limited to about 405 to 600°C as shown in figures 2,34 and 2.35. As
the "oC end temperaturs increases, the output power increases and the
nddicional dissipation pawer decreases, both variations being
monotonic. The indicated power also increases with temperature, -
although the gradieat is significantly less than that of the output
power increase. Hence the baseline expansion space / heater
temperature of 567,4°C enables 93% of the maximum power output to be
achieved within the given stroke limits. The operatlng frequency is
minimally influenced by the hot end temperature, experlencing a 1,3 Hz
drop as the temperature increases. The phase angle also decreases
with inereasing temperature, although the 8,1° phase angle drop

indicateys a more marked dependence on temperature.

The behaviour of the engino as the compression space / copler
temperature 1s varied (shown in figures 2.36 and 2.37) is the Inverse
of that for the expansion space / heater tamperature variation. 'The
temperature renge enabling operation for the given displacer and
piston strokes spans about 80°C between 30°C and 116°C, which is more

restricted than the corresponding 200°C hot end temperature range.
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Increasing the compression space / cooler temperature causes a
reduction in output power and an increase in additional dissipation
power. Concomitantly, the indicated power experiences a relatively
gradual drop. Hence the baseline cold end temperature of 40°G is
close to the allovable minimum for the given stroke limits and
therefore is appropriately optimised. The operating frequency and
phase angle advance characteristics are mirror images of those shown
in figure 2,34 for the hot end temperature variation. Over the
temperature range plotted, the frequency and phase angle undergo a 1,3

Hz and 8,2° increase respectively.

The permissable charge pressures (for which operating states at the
given stroke limits exist) may range between 11 and 13 bars as
depicted in figures 2.38 and 2.39. The baseline charge pressure falls
centrally within this range, indicating that the remaining baseline
paxameters as a whole have been well-configured to achieve the design
performance. In compliance with generic Stirling engine hardware, as
the charge pressure is increased, both the indicated and output powers
{ncreass while the additional dissipation power decreases. Increasing
the charge pressure also increases the sciffness of the equivalent gas
springs thus resulting in an expected frequency rise. Figure 2.38
shows that the frequency increases merginally by 1,4 Hz over the
charge pressure range plotted, As the charge pressure increases, the
phase angle advance decreases by 3,24 degrees while both the output
work and piston loading coefficient lucrease monotonically. These

characteristics are in harmony with the aforementioned observations,

2.4.3.4 Goneclusion

Generally the six parameter variations discussed reveal thac the
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baseline parameter set describing the RE-1000 FPSE represents an
adequate state of optimisation with respect to the design performance
specification, Perhaps some additional fine.tuning of the displacer
gulding rod diameter and further effort at reducing the fluid dynamic
dissipation may be justifisble. When modelling the RE-1000 FPSE using
isothermal working spaces, it is evident that the state space analysis
inadequately assessas the fluid dynamic irreversibilities which have a
significant impact on the overall performance, However, it is worth
repaating that this is a restriction imposed by the assumptions made
rather than an intrinsic limitation of the state space analysis

methodology presented per so.

2.5 CLOSURE

The derivation of the state space analysis and its application to the
back-to-back and RE-1000 free piston Stirling engines establish the
validity of the ficst thesis statement (section 1.3), namely, that ‘s
parameter space boundary hypersurface is a sufficient and unique
characterisation of the combined dynamics and thermodynamics of an
FESE', The application examples demonstrate the two possible
parameter space hypersurfaces that may ariie when describing any
physically realisable FPSE, namely, one which is locatr = on the
stabilicy boundary hypersurface and anocher, defined as the operating
hypersurface, which occurs within the stability boundary. Unambiguous
analytic criteria for locating the position of the stability boundary
hypersurface and the limiting position of the operating hypersurface
are established as well as a means of determining which hypersurface

is appropriate for a given FPSE configuration, A comparison of the
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state space analytical predlctions with experimental performance data
for the RE-1000 FPSE demonstrate the numerical validity of the state
space analysis and quantify the hypersurface criterion defining self-
sustaining FPSE operation. The parameter variations described for the
back-to-back and RE-1000 engines exemplify the usefulness of the
analysis as a design tool without the limitations imposed by defined
piston and displacer motions (which are characteristic of many design

analyses presented in the literature).

Given a means of reliably translsting fluid dynamic dissipation data [
into a linearised approximation, the state space analysis shows sa
overall accuracy of 12% in predicting the combined

dynamic/thermody output p of & ive plece of

FESE hardware, evs within the limiting confines of the particular
assumptions made. Although the case studies analysed have been
restricted to fourth order state spaces, there is no theorstical limit
on the order of the state space vector. Hence the intreduction of
working £luid temperatures and velocities as state variables would
enable a much more comprehensive description of the fluid dynamic
dissipation to be built into the analysis. Hereby, & considerable
refinement in prediction accuracy with respect to the indicated and

addlitional dissipation works and powers would be attainable.

Ultimately, however, the stace space methodology, while eminently
suitable as a design tool, cannot replace a full fluid dynamic
simulation for the purposs of obtalning a complete understanding of
the detailed operation of a free-piston Stirling engine. Thus a dual
track approach yields an optimum design/analysis mix, The state space

methodology may be used to design and optimise a raw confijuration and .
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define the working spaco geometry and kinematic boundary condiriens.
These defined boundary conditions make the subsequent use of a full
fluid dynamic simulation as aest-effective and productive as possible.
Within this context, the remainder of the thesis {s devoted to an
examination and development of a fluid dynamic analysis of the working

spaces of Stirling cycle machinery im general.
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A _CONTINUUOY MECHANICS DESGCRIPTION OF

COMPRESSIBLE FLUID FLOW

3,1 INTRODUCTION

‘rraditionally, the pastulates expressing the conservation of mass,
momentum and energy have been inferred from empirical evidence gleanad
from macroscopic experiments. In this century, through the dynamic
grovth of nuclear physics, the prolifsration of microscopic
experimentation has yielded new perspectives on the physical universe,
These perspectives cannot be inferred purely from macroscopic
observation. Hence the intuitive formulation of microscopic or
differential congervation postulates based on macroscopic observations

philosophically seems open to gquestion.

Although extensively used and well-founded {n the literaturs, as
typified by standard reference works such as that of Schlichting
(5c79), this appreach is not fundamental in ths sense that it
predicates an intuitive transformation of macroscopic conservation
onto the microscopic planme. This process has resulted in considerable
argument amongst the Stirling machine research community (Be7s, Or82,
Sc78, TaB4, Ur77) a: to what constitutes the 'correct’ set of
conservation equations for use Ln Stirling machine analysis.
Semantically, the argument seems to be spurious, sinee the
conservation equations applicable to Stirling machina boundary
conditions must be identlecal to those used for every other set of

boundary conditions in the physical universe provided that the

134

L
N “A,&wm.@m@m

£



conservation basis is held invariant,

Hence the essence of the formulation of the conservation equations -
does not reside in the mechanics of symbolism but rather in the 4
definition of a set of postulates which can be experimentally
demonstrated to represent the physical universe adequately depending
on the scale of observation. This -postulational’ approach is
described in Tisza (T166) in his discussion of the evolutjon of the
concepts of thermodynamics. Gallen (Ca60) uses this approach to
develop the physical theories of equilibrium thermostatics and
irreversible thermodynamics. In summarising the efficacy of the
postulational apptpach, Tisza makes the following critical ¢
observation:
‘First, and most important, we claim no absolute validity for our
postulational basis, The valiaity of the postulates and the
usefulness of the primitive concepts are only tentative and have
to be justified by the sxperimental verification of the

implications of the theory.'
Thus the postulational appruach used to develop a symbolic description
of the fluid dynamics of §tirling cycle machines ultimately can be

justified only by the extent to which the results produced can be

given valldity by experimental observation,

3.2 THE GENERALISE RANSPORT RQUATTON

The First postulate is based on the classical concept that matter is

uniformly distribured through space (S181). Even though this
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postulate i{s known to be unrcalistic .n termz of the particulate,
discontinuous nature of matter, its usefulness lies in the simplicity
with which macroscopic phenomena may be described, The following
statement of the first postulate is adopted:

Postulate Matter is conrinuous and distributed uniformly within an

arbitrary bounded space.

‘This statement is more restrictive than those usually offered (5181,
2ZH76) since the uniform and continuous distribution of matter is
postulated only within a space delineated by boundaries. Thus the
unbounded continuity of matter is not Ineluded in the definition which
admits the existence of discontinuities at the space boundaries. This
permits disconcinuous physical phenomena such as shock waves and phase
change interfaces to be accomodated within the piecewise continuum
model postulated. The particular characteristics of & continuum
necessary to give quantitative meaning to postulats I are stated in
section G.1 of appendix C and may be summarised as follows:

1. A control volume may be used to delineate an arbitrary bounded
space such that discontinuities may be completely demarcated by
control volume boundaries.

2. Continuity within the control volume is maintained by
representing the behaviour of a continuum with smooth functions

which may be repeatedly differentiated (ZH76),

3, The physical & of the continuum deseription is
ensurud by limiting the largest particle mation considered to ba

much greater than the malecular mean free path (ZH76),
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Having defined a continuum in postulate I, the essential requirement
is te deseribe the temporal variation of intensive properties within
the contrel voliwme from macroscopically observable external

vonditions, If, for example, the mass density of a cohesive material K

_ bady iz denoted by p. . the tural mass of the body may ha eypressed
as:
R _{v pdV @
my

Thus the rate of change of mass of the bady is given by: .

d.\"m)/dl‘ - dch‘V’:le (3.2)

In order to determined how the density of the body varies with time,
it is necessary to interchange the ‘ffercontiation and integration

operations un the right hand side of equation (3.2).

The derivation of the equations describing how this process may be
performed is presented in appendix G, section C.2, A generallsed

scalar, vector or tensor quantity ¥ is defined by:
. % = Y(x.t) (3.3)
The total temporal derlvative of the quantity ¥ for a cohasive

material body i{s then denoted hy:

dde $dv (3.4)
v

om

The derlvacior in section G.2 produces:
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ddtJ’ PAV = J {d¥/3e)av +J‘ P(ven)ad (3.5)
v

em m tm)

Equation (3.5) indicates that the total change of % for the entire

material body is a function of rhe change of ¥ at each fixed point

within the body pluc the transport of ¥ at the boundaries of the body .

jation, which is known as the 'transport theorem’ (S18L),

5 na restrictions on the nature of the hody other than that it be

it
regar+.” as an autonomous entity within a given volume V:m) and that

it have ~he chsracteristics of & continuum, In particular, the degree

of coheslvemeas is arbitrary, implying that equation (3.5) is

A

applicable t~ « bady irrespective of its state, whether it be solid,

A
Lo

gasetis. Hence the body may be generalised to a system of -

1liquid

particles with :nv cohesiveness. This allows equation {(3.5) to be N

RS

[

applied ¥ the volume cucupiad by the system of narticles is identical

to that «f tl.: boay and the normal component of the velocity of the
particies 4t the buindary of the system is equal to the normal

conporient of the by ndary velocity of the body. Thus:

Jand v mv (3.6)

SN amy Cesy oy sy

Therefore £-om (3.5) an.. (3.6): N

ddc‘[ Hav =J (ap/aer + [ WV 5, mdA (3.7)
V(S) (5) TSy
fquation (3.7) is known &s the 'generalisea transport theorem’ (S181)

and, in esscnce, is the -mbolic realisation of the first postulata.

The transport theotrem of e riation (3.9) provides the means by which

i the macroscopic conservation postulates may first be transformed into

N their microscopic or differential counterparts. Thereafter, the
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generalised transport theorem permits the differential conservation

postulates to be applied to a system of particles such as that

comprising the working fluid ef a Stirling cyvle machine.

3.3 THE ERENT CONSERVATION .

Three postulates of macroscopic conservation have classically been
cited (BS60, 5¢79, S181). namely those of mass, momentum and energy. -
On a differential basis, these conservation postulates may be
expressed in two ways depending on the observer's frame of reference.
In the Lagrangian Erame, the observer moves with the body while in the
Eulerian frame, the observer remains stationay relative to the fixed
stars. & Lagrangian temporal derivative is denoted in terms of
equation (3.3) by D¥/Dt (usually ter-ed the subscantial time ',_;;/
derivative (BS60)) while rhe Eulerian temporal derivative is given by
the partial derivative form d¢/d¢. As both forms of the differential
conservation equations are useful, both are giver in the course of the

following discussion.

3.3.1 Conservstion of Mass
The macroscopic conservation of mass of an arbitrucy material body is
expre:sed by the following postulate (5181):
:II The mass of an sutonomous material bod is independent
of time.

Symbolically, from equation (3.2}, this may be expressed as:
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dch paV = 0 (3.8)
V(m)

Choosing ¥ = p in the transport theorem, the following equation
describing the differential conservation of mass in a Eulerian frame

of reference is derived in section €.3.1 of appendix G:

8p/8t = -(V+pv) 3.9y

In a Lagranglan frame of reference this becomes:

Dp/Dt = -p(V-v) {3.10)

rquations (3.9) and (3.10) describe hov the intensive property

‘density’ varies at every point in a body.

3.3.2 Congervation of Momentum

The macroscopic conservation of momentum of an srbitrary material body
is expressed by the following postulate which is referred to =

classically as Euler's first law (S181):

Postulate IIY The time rate of change of the momentum of an

autonomous material body relative to the fixed stars is

equal to the sum of the forces acting on the body.

In general, three kinds of forcer may act on a material body, namely:
- contact forces on the surface of the body
- exterual forces resulting from the body being located in a force

field (for example, gravitational, electrostatic, or magaetic
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fields)

- mutual forces resulting from the interaction between the
particles comprising the material body (such as mutual
gravitational forces between any two substituent porsions of the ‘ﬁ

body).

Thus denoting the contact forces per unit area by s and the external L
and mutual forces by £, postulate IIT may be symbolically expressed

as:

:mcj pvdv = J- sdd + { piav (3.11)
V(l‘ll) m V(”l)

In this case, selecting % = pv (the momentum pex unit volume' in the
transport theorem (equation (3.5)), the following Eulerian

differential momentum conservation equation is derived in appendix C

{section G.3.2):
3(pw) /B + U+ (pwv) = VT - VB + pf (3.12)

The first term on the left hand side denmotes the temporal variation of

the intensive property 'momentum per unit volume', while the second

term is a dyadic product which describes the differential advection of

momentum. The flrsc and second terms on the right hano side represent .
the contact forces resultant from the shear stresses and thermodynamic
pressure respactively, while the last term describes the mutual and

external forces at each polnt in the body.

In the derivation of equation (3.12), the sign convention adopted For
determ‘ning the extra shear stress tensor T is such that T represents

the stress acting ac any point within a materiel body. ihus invoking
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Stokes hypothesis (5c79), the extra shear stress for a Newtonian fluid

may be expressed in terms of the deformation temsor D as (S181):

%
T = 24D - (2470v/3)T (3.13.1)
A
where:
D = 0,5(%% + (¥} (3.13.2) !

In the case of gaseous fluids, equation (3.13.1) may be modified to ;

inelude the ‘bulk viscosity’ (BS60) as follows: -
T = 2D+ ((A-28/3 (T WIT (3.18)

A manipulation of equation (3.12) described in section G.3.Z results

in the Lagrangian form:

PDV/DE = V0% - VP + pf (3.15)

It may be noted that the right hand sid~s of equatious (3,12) and
(3.15) are identical while the left hand side is reduced to the

substantive derivative of velocity only. This is consistent with the

notion that, in a Lagranglan system, an observer moving with the -

particle velocity will not perceive any advection of momentum,

3.3.3 Conservation of Energy o

The conservation of ensrgy postulate for a material body is not as
clearly defined in the litervarure as is the case for mass and
momentum. Most authors (Caé0, .1e79, Wa77, ZHZ6) adopt the Ffirst law

of thermodynamics as their postulational basis, namely (ZH76):
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d(total stored energy) = 6Q - W (3.16)

In the context of this work, equation (3.16) is not specific enough
for a macroscopic material body since, in parcicular, the nature of ¥
(the work lone), which is usually considered in thermedynamic terms,
is not precisely stated. Furthermore, the meaning of 'tutal stored
energy’ is also imprecise In a pestulational sense since there may
exist forms of energy as yet unobserved which do not obey equation
(3.16). Thus the following formulation advocatsd by Slattery (S181)
for the macroscopic conservation of energy of an arbitrary material
body is preferred:

Bostulate IV The time rate of change of the internal and kinetic
energy of an autonomous material body relative to the
fixed stars is the sum of the rate at which forces
acting on the body do work on the body and the rate of

enexgy transmission to the bady.

In this context, the internal energy U is defined in equilibrium

thermodynamic terms using the postvlational relationshlp U = U(E,V,I)
(Ca60) where T, represencs the mole numbers of the i chemical species

constituting the material body,

The forces acting on the body are the contact, external and mu. al
£srces described for postulate III (sect?n 3.3.2) while the enexyy
transmission to the body has three simllar components, namely:

- contact energy transmission through the bounding surface of the

body
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- external energy transmission (such as that arising from
radiation)

- mutual energy rransmission resulting from an exchange of energy
between any two portions of a material body (such as that caused

by mutual radifation).

Thus denoting the contact energy transmission rate per unit area by §
Py
and the external and mutual energy transmisslon rate by E, postulate

IV may be expressed s/mbolically as:

dch UV T ves)dA + [ sl Eyav +J- 4dA +
v

[ hav  (3.17)
<my el V(m) A(m) V(

)

The first and second terms on the right hand side represent tha work |

done »y the corresponding force tezms im equation (3.11).

It may be noted that the intensive ronservative property on the left
hand side of equation (3.17) is the sum of the internal specific
energy U and the kinetic enetgy per unit mass v*/2. The conservation
of patintial energy is included n che intevaction of the first two
integrals on the right hand side of equation (3.17) to produce a
change in (J+v}/2). This is demonstrated in section £.3.3 (appendix
C) for the particular case of gravitational potential enmergy. Under
thess conditions, the murual and external force per unit mass term &
may be split into two componants such that the forces arising firom a
gravitacional Eiold are accounted for separately. Hence defining the
scavitaticnal potential cvergy per unlt mass as a conservative field

”i‘, f may be oxpressed as!

ot .vl (3.18) N
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This allows aquation (3.17) to take the form:!

dch’ Pt /2ty AV - I
v

(ves)da +[ plve )y +J 4da +f oBav (3.19)
my v A V(

< o um m)

Thus equation (3.17) impllcitly imcludes rhe conservation of
gravitational potential energy and, by extension, that arising from

any other congevvative foree field,

Ghoosing the intsrnal plus kinetic energy per unit volume as the
cransport property by setting % = p(04v?/2) in the tramsport theorem
(equation (3.5)), the following Lagrangian differential energy

conservation equation is derived in appendix € (section C.3.3):
Ay aA .
PO /2) /Dt = pLLw EIEEY + Vo (Trw) - Ve(Py) - Ved (3.20)

This equation deseribes the differential conservation of thermal and
mechanical energy. It may be simplified by observing that the
differential conservation of mechanical energy may be determined
separately using postulate IIL, Forming the scalar product of
eguacion {3.13) with v yields the dlffevential conssrvation of
mechanizal energy equation In a Lagrangian frame of reference (section

€.3.2,:

- DR /2)/DE = Ve (Bew) - (Ti0%) - (veTP) + p(ved) (3.21)

The second term on the right hand sic» is a tensor scalar preduct
i which vepresents the irraversible couversion of mechanical energy intn
thermal emergy, or dissipation, Subtvacting equation (3,21} fxom
aquation (3.20) results in the Lagvanglar differential conservation of

thermal energy equation:
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ODD/DE = B + (T1V%) - P(Tew) - Veg (3.22) ' 4
In Bulerlan terms, chis becomes: !
E

3(oly /8¢ + Te (plv) = oF + (TiW¥) - P(Vew) - Vog (3.23)

Equations (3.15) and (3.22) contain the same information in terms of

i
intensive properties as containeé¢ by squation (2,20). Thus a i (/
conservative differential equation system consisting of equations
(3.15) and (3.20) contains a redundancy which is absent from a

combination of equations (3.15) and (3.22) and their Eulerian

counterparts, Although either equation set {s admissible, and both i

sets must ultimately yield identical results, in thiz work the fnrmer !

set (equations (3.15) and (3.22), or equations (3.12) and (3.23)) is

preferred because of the convenience it affords in describing Stirling

machine fluid dynamics,

3.6 [THE INTELRAL BALANGES

The generalised transport theorem of equation (3.7) allows the o

differentlal conservation balances to bo applied ro a system of
particles. The resulting inregral balances sxpressing the
sonservation of mass, momentum and energy for such a system are
produced in total tempiral devivative Form, This foxmulation is frame
indifferent such that the equations may be applied to Bulerian,

Lagrangian or combined Eulerlan/Lagrangian frames of reference. Thiux

frame indifference is demonstrated for each of the integral balances

i
‘\ by deseribing both the Lagrangian and Eulerian forns. These forms are
H particular cases of the generalised integral balancas which correspond
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to the combined Eulerian/Lagrangian form, In all cases, the details
of the integral balance derivations may bo found in section €.4 of

appendix G,

3.4.1 Gopservation of Masg C

Identifying the mass per unlt voinme as the transport property (that

is, $ = p) in the gemevalised transport theorem (equation (3.7)) and {

replaciag 8p/8¢ vith equacion (3.9) results in:
[
N d”(!)/dE_J ﬂ((v-v<s))"ﬂ)dA (3.24)
7 (s) L 1

=
P

o

In this generalised or combined Eulerian/Lagrangian form, the rate of

change of mass of a system of particles is equal to the net advection

[

L. of mass Across the boundaries of the system. It should be noted that
the advection veleclty L& the relative velocity between the partizles o e
and the boundary itself.

In a Eulerian frame of veforence Ve ™ 0, hence equation (3.24)

s
Ced becomes:
M, /dE = J (pvr-136A (3.25)
: Aess
1
. However, in a Lagrangian frame of rvefersnce v = Visyr which transforms
. ‘ t
esquation (3.24) into: ' '
¥ )
ay _ fde = 0 (3.26) I

el £33
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Although equation (3.24) has been rigourously derived, it is
intaresting to note that some aut. cs of Stirling machine analysis
have used the particular case of equation (3.25) directly as the
postulational basis (Be78, Ur?7). This approach is justifiable even
though it potentially complicates experimental validation of the
relevant equations by introducing additional assumptions at a

fundamental level.

3.4.2 Gonservation of Momentum

Defining the momentum per unit volume (% = pv) as the transport
property in equation (3.7) and replacing 3(sv)/d¢ with equation (3.12)

yields the generalised or combined Eulerian/Lagrangian form:

(W g,)/dE -[ AVL(v-v C\)eemidA - J Pnd4 - J (T+-m)da

8y 5 (3

+I pEav 3.2
V(S)

Thus the rate of change of mumentum of a system of , rticles is equal

to the net advection of momentum across the boundarles of the system
relative to the system boundary velocity plus the contact, mutual and

external foreces acting on the system.

In a Eulerian frame of reference Vs ” G, which transforms equation

(3.25) into:

d((w;ﬂ(s))/dc-J ,,v(v--nm-)[ PndA»j- (T-»n)dA+J pkay  (3.28)
sy t5) [E:3] "
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n & Lagrangian frame of referemce ¥ = v, ., thus equation (3.26)

allows equation (3.27) to be expressed as:

Heg,d S/de = - § Pnda - (Teenyda + | pRav ¢3.29)
RS2 A A
s )

ts)

In contrast with the approach presented h re, equation (3.27) has besn
used directly in tlie guise of equation (3.28) as a postulational basis

by other Stirling machine analysts (Be78, $c78).

3.4.3 Cansepvacion of B

Choosing the internal energy per unit volume as the tvransport property
in the gemeralised Lransport theorem (that is, ¥ = a0 in .quation
(3.7)) and substieuting equacion (3.23) for 8(sl /2r results in the

combined Eulerian/Lagranglan formulation:

d({”UN(K))/dE -,{ (pl;v + (T:9%) + (¥-VP))dV +'{ {4+ -n}da
Ag

>
+
A

Thus the rate of cnange of Internai energy of a system of particles is

As)

pHL(v-v o)) rmlda j P(v, g, m)d4 (3.30)
4

(&3] (£

)

equal to the sum of six components, which in left to vight saquence

.t be deseribed as

N the rate of mutual and external enovgy transmission to the system
2, the rate of irveversible convarsion of mechanical Into thermal

enetgy within the houndarles of the aystem
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3. the Gibbs free energy and isentropic heat generation rate (Wa77)
within the boundaries of the system

4.  the met rate of contact energy transmission across the boundaries
of the system

5. the net advection of enthalpy across the boundaries of the system

relative to the boundary velocity N

6. the net rate at whiszh mechanical work is done at the boundaries

oi the system

Equating v, with zero yields the Eulerian version of equation

(3.31):

V1S

a¢,, 08, y/de -} of + (TiVe) + (veVP) IV +J (4 -m)da
<5y A(S)

+ [ ph(ve-n)aa (3.31)
Ja,

Since v, = 0, equacion (3.31) indicates that ia an exclusively

Eulerian system with fixed boundaries no mechanical work is dome by .

the system of particles. In concrasc, for a Lagrangian system v =

v g+ which, after invoking equacion (3.26), yields:

M _a G/de = | (oF + (T:0%) 4 (wUR) IV 4 | (qr-m)da
sy v 4
'8y (sy q
- L Pl o, mdA (3.22)

)

Thug in this frame of reference, the only mode of merhanical emergy

transmission between adjacent systems of particles is via the action .
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of mechanical work at the interface between systems.

3.5 TURBULENT FLOW INTEGRAL BALANCES

The integral balances of equations (3.24), (3.27) and (3.30) are
strietly applicable in the lirlt as ac + 0 (Hi7$). However, when the
balances are applied to systems in wnic: ¢t is finire, then the
balances are precise only for laminar flow conditions. Under
turbulent flow conditions, the transport properties may experisnce
random fluctuations with periods less than At thus invalidating the
instantaneous constancy of the temporal gradients implied by the
equations as derived. This limitation is minimised for At << ac*
where At” is the period of the highest frequency perturbation, as

illustrated by figure 3.1 for a generic quantity ¥ defined by equation

{3.3).

- [
=1
-

=

“y

<
B

m )

Figure 3.1 Turbulent flow profile
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The instantanecus value of 3 may be represenr.d as the sum of a time-

averaged component and a fluctuating component (Sc79):

b=y (3.33)

In terms of the thesis statement, attention is focussed on directly .

sbtaining the time-averaged gquantizies . This treatment should not

be construed as a limitation of the concinuum analysis presented but

vimply a restriction imposed by the scope of this thesis. N /
The most general approach to obtaining the time-averaged or turbulent ‘

| energy balances is to perform the averaging process on the integral

balances direcrly (S18l). This admits fluctuating control volume

geometries such as those occurring in combined Eulerian/Lagrangian

N o systems with non-rigid boundaries. The method used to time-average

the integral flow balances (equations (3.24), (3.27) and (3.30)) is

described in appendix C (section G.5) and results in the following

relationships.

Hass:

i /de = | plleev ) -mida (3.34)
' sy
HMomentum:
i
4l ¥ 5, )/de -J PYL(T-v, ) e-n)dA - ., PndA - J (T+ -1)dA ,
(5 (s) sy
IS
! o1 ptav (3.35) .
v !
, )
! Energy: .
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gy B e -J (BT Tey (v VPV #J (4+-n)da
sy )

+J pﬁ((v-v(s))n-n)dd - I P(v g, om)dA (3.36)
4 A

) [EH

Equations (3.34), (3.35) and (3.36) are by definition also applicable
under laminar flow conditions since, from equation (3.33), ¥ = 3 when

B =0,

In order to implement the integral conservation balances for gaseous
fluids such as air, helium and hydrogen which are commonly used as
Stirling machine working fluids, an equation of state is requised.

The equation of state for an ideal gas has the form:
PV = MRT (3.37)

In keeping with the established pre~tice for Stirling machine analysis
(Sc187L, Wa73) the ideal gas equation of state is used here.
Nevertheless, there are no intrinsic restrictions placed on the form
of the equation of state; other equations describing the behaviour of
real gases, such as that of Redlich and Kwong (RK49), may be used.
Generally these equations are significantly more complex than equation
(3.37) and are thus not as convenient to use numerically, mainly
because of the gifficulty in establishing fiduciary pressures and

densities at absolute zero (Ca60).
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Equations (3.34) through (3.37) thus provide an analytic basis in
terms of the continuum model for determining the time-averaged wrrking
fluid behaviour of Stirling cycle machines. The equation set is 4
generally applicable to combined Eulerian/Lagrangisn, Eulerian or L.
Lagrangian frames of reference in one, two or three dimensions

employing arbitrary coordinate systems,
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THE DISCRETE SIMULATION MODEL

4.1 INTRODUCTION

An examination of the generalised form of the time-averaged integral

balances developed in chapter 3 reveals that tha equations may 1ot ud

solved directly using numerical methods for two principal reasons.
the first instance, the time-averaging is performed over groups or
ensembles of parameters so that the equations are not expressed in
terms of individual cime-averaged parameters. The time-sveraged
ensembles may only be converted into groups of individual time-
averaged components with knowledge of the temporal fluctuations of

each component. However, as derived, the integral balances are

In

explicitly devoid of any features permitting the determination of the

fluctuatin t property

Secondly, the total derivative of each of the transport properties
defined by the integral balances of mass, momentum and energy is
expressed atrictly in volume-averaged terms. However, these

derivatives are determined by expressions composed of parameters

which. in general, arve not volume-averaged. In other words, the left

and right hand sides of the integral balances are not consistent with

respect to volume-averaging. This arises since the rigourocus
derivation of the integral balances has the consequenca that, by
gefinition, the spatial variation of intensive parameters such as

density and temperature within any control volume is not deseribed

explicitly. Hence, the volume-averaging incensistency precludes any
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literal application of the integral balances as derived

These impediments are resolved by the postulation of a turbulence
model and a volumetric spatial discretisation scheme, respectively.

In the following development, the generalised integizl balances are
cast into numerically soluble form by describing ==3 then applying the

turbulence model and spatial discretisation scheme successively.

4,2 THE TURBULENCE MODEL

As has been scated, a principel difficulty in selvia, the time-
averaged integral balances is the unavailability of the fluctuating
components of the transport properties. One of the main thrusts of
current fluld dynamics research is to develop mumerical aad other
methodologies for determining or simulating these fluctuating
components, In a numerical coatext, these methodologies have been
termed ‘higher-level’ simulations for turbulent flows by Ferziger
(Fe83). He classifies these simulations into two categories, namely,
‘largs eddy’ and ‘full’ simulations In a large sddy simulation, the
differentisl conservation balances are averaged over a small volume so
that an equation for the large eddies of the turbulent field is
derived. §incc the small eddies are not explicilely simulated their
affect on the large eddies is accounted for by imveking empirical or
theoretical correlations. A fuil simulation attempts to solve the
differential congervation balances directly using time-steps small
enough so as to track the turbulent fluctuations. However, as
Ferziger notes, this approach is Limited to low Reynolds numbers in

view of its imherently severe computing requirements.
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Both of these highes-level simulation approaches are beyond the scope
of this thesis which, by stipulation, is limited to determining time-
averagad behaviour only. Consequently, the snalytic approach adapted
for dealing with turbulence falls into the category of ‘Ruynolds
zveraged equations’ (Fe83). In this context, since the integral
balances derived include both time- and volume-averaging, Ferziger

mak.s the following obuervation:

‘... The equations describing the mesn £ield contain averages of

products of fluctuating ve.ocities and there are fewer equatione
than unknowns - the well-%nown closure problem. In fact, the set
of equations can mever be closed by further averaging; a closure
assumption, or what is the same thing, a turbulence model, has to

be introduced. The closure assumption must represent the unknown

higher-order average quantities in tezms of the lowez-order

quantities that are computed explicitly.’

The difficulties inherent in developing turbulence madels for

compressible fluid Elow may be d to by the pr of
research performed for incompressible fluid flow (Hi75). The usual
approach to such modelling 1s to develop « -rrelation equations which
are parametric in particular flow properties and then fit the
equations to experimental data. One of the most common corvelation
equations is the double velocity corvelation which may be described in

terms of figure 4.1.
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Figure 4.1 Double velocity covretation

The correlation tensor Q Is given by:

(4.1) i

This correlation has been extensively amalysed for spatially
homogeneous (the same quantitative turbulenmce structure in all parts

of the flow) and isotropic (no statistical preference for any

particular flow direction) incompressible turbulent flow fields, With
this as background, Hinze (Hi75) makes the following comment with
regard to compressible turbulent flows:
'Now for the incompressible case it was already impossible to
obtain complete soluticns of the dynamic equations for the double
correlation (v]),(v))g. Neediusu to say, it will be hopeless

for the compressible case,’ !

Furthermore, the experimental correlatiu 3 developed have been for
relatively simple £low geometries and boundery conditions (Fe83, Hi75,
1872, Se79). MNone of these cases appears to be aquivalent to the
complex geomstrical interstices of Stirling cycle machines with

oscillating velocity boundary conditions.
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These observations crystallize into the central difficulty inherent in

the numerical simulation of Stirling cycle mechines, namely, that

"y

despite their superficial simplicity, Stirling machines have £luid
dynamie boundary conditions which elevate a completely rigourous L
treatment to a plane beyond that of current practical capabilitics.
This difficulty has not really been given Eull cognisance in previous

numerical analyses of Stirling cycle rachines (Be78, Or82, Sc78, Ur77) ;
since the underlying assunptions regarding turbulence necessary to

make these analyses tractable are not explicitly stated.

In this woik, the minimum set of assumptions constituting a turbulence

model which enables the time-averaged solution of the integral :

balances developed to be achieved is clearly stated. The turbulence !

model adopted is defined by the fo’ <rictivms:

1

The turbulent flow field is statiouary such that:

ALy rbulen~ sharacceristie << 8fanalytical time increment (%2 :
l_les:rictign 1L
The turbulent flow £ield is spatially homogsneous such that:
B purbulonce charscteriscic < Yoapr. o1 volume %.3)
‘
P
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These observations crystallize into the central difficulty inheremt in
the numerical simulation of Stirling cycle machines, pamely, that
despite thelr superficial simplicity, Stirling machines have fluid

dynamic boundary comditions which elevate a completely rigourous

treatment to a plane beyond that of current practical capabilities.
This difficulty has not really beem piven full cognisance in previous
numerical analyses of Stirling cyele machines (Be78, Or82, Sc78, Uz77)
since the underlying assumptions regarding turbulence necessary to

make these analyses tractable are not explicitly stated,

In this woerk, the minimum set of assumptions coenstituting a turbulence
model which enables the time-averaged solution of the integral
balances developed to be achieved is clearly stated., The turbulence
model adoptec is defined by the following restrictions:

[ tios

The turbulent flow field is stationary such that:

A urbulence characteristle < “Canalytical time increment (42
Restrietion I }
The turbulent flow field is spatially homogeneous such that: °
AViyrbulence characteristic << eoncrol volume .3 |
i
' I
I
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Restriction II1
Tre srgodic hypothesis (H175)% is valia for scalar turbulent
fields.

Restriction IV
The effect on the mean £low resultant from veetor turbulent
fields may be modelled.

Restriction ¥

The control volume boundarins 1 mot experience temporal

fluctuations.

Rigourc.sly, equations (4.2) and (4.3) are conflicting conditioms for ;
any turbulenc flow, This arlses since if a turbulent flow field is
homogeneous then it is simultancously a decaying £low field. However,

Lf it is also stationary then the dissipation in the field can only be

4 balanced by a non-homogeneity in order to maintain the decaying
chavacteriskis. The following rationale offered by Hinze (Hi75) for
proceeding with the stationary, homogeneous flow field model is
adopted here.

... Fortunately, the rate of decay of the mean properties is

rather slow with respect to the time scale of the smaller eddies.
* Therefore, the actual state of non-stationarity is considered mnot
to be a serious drawback in the experimental study of the smaller
scale turbulence. For the theoretical study, this makes it
possible te apply the concepts and theorles of stationary randow

IThe ergodic hypothesis states that for o stationary and homogenaous

turbulence:

= o = .
TP Gnsomnie?
where ¥" vepresents a scalar or a component of a vector, The ensemble .

average is the average over & number of identical experiments for the
sume boundary conditions.
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processes.’

Thus if the turbulent field is stationary and homogeneous then by che

assumed validity of the ergodic hypothesis for any scalar turbulent L
field property:

o
t¥ecalar = ¥scalar 4.4
or, the volume-average of any scalar property is equal to the time-
average of that property. But, by definition (equation (3.33)), a -
time average has no fluctuating component, that is:
¥ocatar = °
Hence by equation (4.4}, a volume average also has no temporslly
fluctuating components, or: '
(v)'ﬁ;calar =0 4.5) g

|
Hemce in particular for demsity and temperature: f
P’ =0 4.6.1)

T =0 (4.6.2)

vl

Bquations (4.6) constitute two of the explicit restrictions of the
turbulence model described in section D.1 of appendix D while equation
(4.2) represents a chird, Since the ergodic hypothesis is applied to
scalar properties only, non-zero temporal fluctustions of vector
properties are permitted. Thus, in particular, the velocity field
need not necessarily be both stationary and homogeneous. The effects
of the velocity fluctuation en the time-averaged flow field properties

are, by assumption, included via modelling using empirical .
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correlations.

The final restriction of the turbulence model may be expressed

symbolically as:

4 _ =0 (4.

(s

which in turn implies that the magnitude of the control volume does

not fluctuate, oxr:

[ .

ts)

Thus by equation (3.35):

Equations (4.8) have the further comsequence that the unit outward

normal does not fluctuate which leads to the rvesult:

den = Pon (4.

Equations (4.7) and their implications do not place a restriction on

the Lagrangian condition v = v__ as suggested by the generalised

s
transport thearem given by equation (3.7). Under turbulent

conditions, this is achieved by setting v,, = v and admitcing a

s)
turbulent flux as a funtien of v - Vs {which is equal to v') across
the Lagrangian boundary. In effect this converts a turbulent
Lagrangian boundary into a combined Eulerian/Lagrangian boundary. In
the context of Stirling cycle machine numerical analysis, a spatial

discretisation scheme may be devised without any loss of comvenienmce

such that the case for which "st # 0 does not arise. Thus
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equations (4.7) ard (4.8) do not result in any further assumption for

the particular class of problems being considerad.

In applying the turbulence model, it is mecessary to introduce the
oncept of a second order time average or, the time average of a time
average. Thus from equation (3.33) and the definition of a time

average given by equation (C.52) in appendix G, a second order tims

i
[

average may be formed as follows:

L
i

- e+AL cHaE
= (L/8t) ((1/a8) ¥dt yde (4.9
& t

From the derivation detailed in section D.1 of appendix D it is shown

that because equation {4.2) holds by assumption such that:

s / 8% gnalytical time increment <

Ceurbulence characteristic <1 ‘

then:
$=3 (4.10)

Hence as a lemma to equation (4.2), the exactness of equation (4.10) ,

is taken to be the sixth restriction of the turbulence model, namely:

Restriction VI
The stationarity of the turbulent flow field is sufficient for

the equality of the first and second order time averages, or:

[Ex] (4.11)

Thus by taking the time average of equation (3.33) it immediately
follows that: i

P =0 {4.12) b
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The six restrictions of the turbulence model cited are sufficient to
reduce the generalised turbulence integral balances to a form in which

they are amenable to numerical solution without explicit knowledge of

the fluctuating components of the transport properties.

4.3 APPLICATION OF THE TURBULENCE MODE! .

The details of the application of the turbulence model to the equation
of state (3.37) and the resultant thermodynamics of the working fluid
are described in section D.2 of appendix D. Similarly, the reduction
of the time-averaged integral balances of equations (3.34) to (3.36)

is detailed in section D.3.

4.3.1 Thermodynamics of the Working Fluid

As stated, the equation of stats (3.37) is applicable to a finite mass

of gas M, occupying a given volume ¥ .. Hence expressing equation

£3.37) in volume-averaged terms results in:

wif = PR T
Taking the time average and applying equation (4.6.1) results in the
Yorm:

T (4.13)

wn? T R

Equation (4.13) is often stated in non-volume-averaged form as a

necessary assumption in ovder to solve the compressible turbulent £low
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equation set (Sc79), even though, as shown, it is a consequence of the :

turbulence model adopted.

Equation (4.13) may “e expressed in terms of second order time
averages and time-averaged fluctuating components using equation
(3.33). In this form, equations (4.6), (4.11) and (4,12) may be used

to show that: P

wnf =0 (4.14)

which is intuitively expected, .

In terms of the characteristics of an ideal gas, the internal emergy

and enthalpy are functions of temperature only such that they -

disappear at absolute zero (Ca60, Wal7). Thus if the specific heats
are taken as being constant, the volume-averaged internal energy is

described by:

v“U =Gy T (4.15)

t vy

while the specific enthalpy tskes the form:

A=t 4.16)

These latter two equations enable the integral energy balance to be
expressed in terms of temperature which may then be used as a primary

variasble.
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4.3.2 The Reduced Turbulent Integral Mass Balance

At this stage it is convenient to introduce the mass flux g iuto the
analysis. Tuis simplifies the numerical solution of the equation set
by eliminating the necessity of determining density transport at the
control volume boundaries. The mess flux is formed from the product

of density and velocity, or:
g - v .10

Applying equations (&.38) (which result from restriction V) te the mass
balance of equation (3.34) and substitucing equation (4.17) results
in:

oM, g, /de = JZ {(g-pv ,,)-nlda (4.18)
¢s)

The Eulerian and Lagrangian forms of (4,18) follow the same pattern as

those of equation (3.24). It may be noted that, from equation (4.17),

g ~ §,, under Lagranglan conditions. This must be true in any case

since, by equations (3.26) and (3.33):

g sde =0 A gde =0

In a combined Bulerisn/Legrangian spplication, the further reduction

of ;G‘m may be achieved by an sppropriate choice of spatial

discretisation scheme as described in section 4.5.

4.3.3 The Reduced Turbulent Integral RBalance

Applying equations (4.8) to the right hand side of equation (3.33) and
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using equations (4.17) and (4.7.2) respectively to reconstitute and

reduce the left hand side yields:

4y 8 U ig,0rde = J_ ((3¥ - gv,,,)+-n)dd - J“ Fnd

s) A(S)
- J, (T+-n)dd + J_ PRV (4.19) i
A(é‘) 8y L
5 In terms of restriction IV, the effect of the fluctuating velocity
’ Vv field on the time-averaged turbulent field is modelled. This may be

achleved by defining the Reynolds stress tensor for a combined
Eulerian/Lagrangian field. This definition is a generalisation of the
Reynolds stress tensor definition for incompressible Eulerian flow

, fields usually quoted in the literature (Sc79, Fe83) and is given by:

T . (3BT - (B - B, €4.20)

which by invoking equations (4.11) and (4.12) hes the functional form:

53] ey o
T e £V, BTV ) (4.21)

The formulation of a correlation equation useful for expressing T°%’

in terms of p, v and ¥,_, is dependent upon the spatial discretisation

(13}
scheme adopted in a similar manner to that required for the further

reduction of equation (4.18).

Substituting equation (4.20) into (4.19) and collecting terms results

i in the combined Eulerfan/Lagrangian form:
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d((w]_ Vm)/dc - J_ E((;-;(s,)umdx - J_ PndA
«

s) A(S) E
- J_ (CB+1* ") e .n)dd + J_ prag (4.22) '
t8) V(S)
The Bulerian and Lagranglan forms are similar to those for aguation :
i
(3,27) with the exception that under Lagrangian conditions, as noted 0
in the discussion of equations (4.7), T¢*) does not disappear but {
takes the form: i
LT (4.23.1) '
since: ;
- ;
Sy m TV (4.23.2) i
4,3.4  The Reduced Turbylent Integral Ene ce
Expressing , 0 and i in terms of cempevature using equations (4.15) N
and (4.16) and then applying equatlon (4.17) and the restrictioms of :
the turbulence model enables equation (3.36) te be reduced to the ‘
form:
a ~ = T e .-
[ TOR TR VLT j_ (o + (Ti9w) + (SvP)1dV + L\ (3 -myda
sy (£:2]
* Gy J_ (T - 7T, ) midh - j’; B g, mda (4.20)
tsy 8

The effect of the fluctuating velocity Fleld on the enthalpy transport .
is determined by modelling as permitted by restriction IV, In this f

context, it ls important Lo note that equation (4.6.2) cannot be used »
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to simplify the time . araged enthalpy transport given by the third !
integral on tbe right h - . .irn of equation (4,24) since the enthalpy

transport is not expresses In volume-averaged terms. Thus a

generalised turbulent energy flux vector applicable to a combined o
Bulerian/Lagrangisn system may be defined analagously to the Reynolds :
stress tensor. Likewise, chis generalised definition is based upon a
definition for a Eulerian field commonly cited in the literature

(5c79, S181) and is given by:

13}

q - 5 (6T - pvw)T) - @®T- pv”) ) (4.25)

By equations (4.11) and (4.12), the turbulent flux veetor has the

functional relationship:

Q') o 5By, PV, BTV T (4.26)

The development of a sultable corvelation equation using 7, ¥, ¥ :
and T is dependent on the spatial discretisation scheme adopted as !

roted previously.

Substituting (4.25) into (4.24) and ecollecting terms produces the

combined Eulerian/Lagrangian form: i

A

{0k 4 (Ti9w) + (V-VB) 1AV + f_ ((Aeqtyeom)dd
{8 s

Gyl T Hegy)/de = '(-

- J. (B g, mdd + Gp J_ (T(gpv o) midd (6.2
8y (£23]

The Eulerian and Lagrangian forms of equation (4.27) are similar to .

equations (3.31) and (3,32) respectively. The latter form is achieved -

by noting that, as for equatlon (4.18), under Lagranglen conditions H

the last integral on the right hand side of equation (4.27) disappears
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because g = g, . Howsver, 9'%) does not vanish under Lagranglan :

conditions since by equation (4.23.2) it cakes the form:
(e P T - i
@ =G vT - v D) (4.28) P

Thus che applicacion of che turbulence model eliminaces the need for [
explicit knowledge of the fluctuating components of the turbulent :
fleld. The influence of those Fluctuating components required to
describe the time-averaged turbulent field is included in the form of ;
empirical correlations which use time-averaged quantities as

independent variables.

4.4 THE SPATIAL DISCRETISATION SCHEME

In his e review of onal fluid mechanics, Roache

(RoB2) descvibes a variety of spatial and temporal discretisation

schemes for the numericael application of the differential conservation

balances, Generally, these schemes fall into two categories which may
be loosely termed ‘coincident’ and 'staggered’ mesh systems
respectively. Furthermore, the mesh systems may be applied both ;
spatially and temporally thus yielding a multiplicity of schemes

tnvolving combinations of coincident and & mesh systems.

In & coincident mesh scheme, the three differential transport
properties, namely, density, veloecity and temperature, are evaluated
at the same time and/or at the same spatial location. Hovever, in a
spatially staggered mesh, generally the density and temperature are
computed at one sat of grid points whil/ the velocities are computed

at an offset grid point mesh as shown in figura 4.2 for a particular

/0




two-dimensional case.

O = VELOCITY NODES

% = DENSITY, TEMPERATURE
NODES

Figure 4.2 Spatially staggered two-dimensional grid

In a temporally staggered mesh, the velocity is computed at a half
time step offset from the demsity and temperatuze. A realisation of
this scheme is shown for a one-dimensional spatially coincident mesh

in figure 4.3 and for a spatially staggered mesh in figure 4.4.

34328 % — X% — x
g | ! |
S ] o o
| | | | O = VELOCITY NODES
BH2E X X e ¢
| | | | x = DENSITY, TEMPERATURE
i o o o] NODES
I |
|
| [ O s O
’ [ | |
&% X - x
i i+1 2
) - Space
Figurs 4.3 Temporally , spatially coincident one-dimensional
grid
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* i X '
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Figure 4.4 Temporally and spatially staggered one-dimensional grid

o
G

In recent years, particularly with the advent of commercial general
purpose fluid dynamics computer pingrammes, a tangible consensus

appe rs to have emerged that spatially staggered, temporally
coinaident discretisation schames are convenient and useful for fluid
flow modelling (FeB3, Pa80). Roache seems to infer that the first use

of a version of the spatially staggered mesh may be attributed to

Harlow and Fromm (HF64), although its apparent reinventiom over the

incervening two decades is an attestation of its efficacy,

In the field of Stirling mwachine analysis, Urieli (Ur77) applied the
temporally coineident, spatially staggered grid to a generically
simple machine geemetry. Schock, by contrast, used a temporally and
spatially coincident grid and introduced the concept of velumetrically
weighted averages for computing flow rates between grid points (8c¢78).

Both of these discretisation schemes involve the application of the

differential conservation balances in a one-dimensional Eulerian frame

of raference.
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Although the spatial discretisation scheme used in this work contains
elements employed by Urieli and Schock, it has its origins in the mesh 9
structure used in the
Welch (HWS6S). In particu.ar, the general precepts of a temporelly
coincident, spatially staggered numerical discretisation scheme
suitable for the application of the differential conservation balances
are applied to the time-averaged integral balances described in
section 4.3. This application admits a three-dimensional space in a

combined Eulerian/Lagrangian frame of reference.

4.4.1 The Staggered Control Volume Spatial Discretisation Scheme

As the mass, momentum and energy integral balances are fundamentally
based upon the concept of a control volume, the spatial discretissation
scheme naturally devolves to partitioning a given space into an
assemblage of finite volumes with coincident boundaries. All the
intensive parameters are thus expressed in volume-averaged terms so

that, by definition, the value of any intensive parameter at a point

within a control volume is unknown.

'Marker And Cell’ (MAC) method of Harlow and

)

The essence of the spatial

discretisation scheme involves a method of constructing the control |

volume grid so that, within any control volume, scalar intensive

parameters are assigned a position and vector intensive parameters are

assigned a plane respectively. This

‘volumetric filter’ which may be defined for a scalar field as a
control volume surrounding a point such that the value of a scalar N

intensive parameter at that point represents the volume average over

the filtered space.

Similarly, for a vector field, the volumetric -
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filter 15 a region of space split by a plane such that the value of &
Vvector intensive parameter over that plane represents the volume

average over the filtered space normalised with respect to the area of .

the plane. Hence every point or plame in the spatial domain may be
associated respectively with s unique scalar or vector volumetrically
filtered intensive parameter so that the variation of the

volumetrically filtered parameters is spatially continuous.

The methodology employed to construct the spatiar diseretisation is an
adaptacion of the staggered grid construction used by Harlow and Welch

in the MAC method. The characteristics of the scheme may be

illustrated for the saks of clarity by a two-dimensional, Eulerian

space using a Cartesian coordinate system as shown in figure 4.5. .

©

= MASS/ENERGY CONTROL
VOLUME

MOMENTUM CONTROL
VOLUME IN THE
z) DIRECTION

"

= MOMENTUM CONTROL
YOLUME IN THE
@ DIRECTION

*

Figure 4.5 Spatial discretisatlion scheme characteristics -
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The mass and energy integral balances are applied to a common control
volume while the meumantum balance is applied to a control volume which
is offset horizontally or vertically from the mass/energy control
volume depending on the coordinate direction. In this arrangement,
the integral momentum balance is split into ics vector components so
that each component balance Ls applied te a unique offset control
wolume. As indicated by the double cross-hatched avea in figure 4.5,
the net momentum over any volume may be determined by vector addition
of the momentum components determined individually for that volume.
The net vector momentum field for the entire spatial domain may thus
be determined from its vector component fields which are explicictly
produced by applying the staggered control volume discretisation
methodology, It may also be observed that the volume-averaged
intensive parameters corresponding to the mass/energy volumetric
filter, namely, demsity and temperature, are located at a point
defined by the intersection of the dashed lines within a mass/energy
control volume. However, the volume-averaged intensive parameters
corresponding ta the momentum volumetric filter, namely, the velocity
or mass flux components, are located on the planes bounding the
rass/energy control volumes. This latter condition mandates that in a
generalised coordinate system where the planar area of a momentum
component control volume is non-uniform, the mass/energy control
volume boundary areas must be used as the normalisation basis for the

volume-averaged values produced by the momentum integral balance.

Qeneralising these conmeepts to a three-dimensional space with an
arbitrary coordinate system, the characteristics of the staggered
control volume grid may be expressed symbolically by denoting the

nass/energy control volume as V . and any momentum component concrol
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volume as ¥, Then considering any sdjacent mass/energy control

sy’

volumes ¥ and V in a particular coordinate direction, the

sy (5)i+1

following attributes may be defined for the control volume grid.

tribute T
A momentum control volume straddles every mass/energy control
volume boundary and has a magnitude equal to half that of the sum
of the adjacent mass/energy control volumes. Sywbolically, this

may be expressed as:

Veor M Pnisy ™ Visy/? 4.29.1)
Veert/2 Y Vigyin/2 = Vnesy 4.29.2)
Attribute II

The volume-averaged intensive parameters corresponding to a
mass/energy control volume are located at its 'centroid’ which is
positioned at the intersection of the boundaries of all the

surrounding momentum control volumes. Thus o ¥ is located at

the centr go that for each coordinate direction:

0
Andx = Andx (4.29.3)
-a o
where a is the location of the centroid.
Atgribute ITT

The volume-averaged intensive parameters corresponding to a

momentum countrol volume are located cn the plane separating

adjacent mass/energy control volumes. Therefore ., ¥ is
S

determined by:
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nes) syl (syir

The adjacent mass/energy control volumes may be of arbitrary

magnitude, ox:

Visrifesri ™

where V is taken to be non-zere for the sake of reference.

ts)ivs
Equation (4.29.3) implies that in the case of a one-dimensicnal

coordinate system, the centroid is defined by a plane separating two
adjacent momentum control velumes. In a two-dimensional system, the
centroid becomes a line perpendicular to che coordinate surface while

only in three dimemsions does the centroid become a point.

The concept of the volumetric filter as expressed by the attributes of
the spatial discretisation scheme enables all the non-volume-averaged
boundary terms in the reduced integral halances to be replaced with

volume- ged terms, The grid permits the

boundary mass fluxes required for the mass and energy balances to be
computed explicitly while simultaneously ensuring that the pressures
driving the rate of change of momentum are located correctly. Hence
the attributes of the discretisation scheme are sufficient to enable
the numerical solution of the reduced equation set developed in

section 4.3,
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J\ﬁdV—J pav +J $av (4.29.4)
v 0,57 0,5v

azl (4.29.5)
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4.5 AEPLIGATION QF THE REDUGED INTEGRAL BALANGES

A detailed descripusve of the manner in which the attributes of he
spatial discretisation scheme (equations (4.29)) are used to apply the
reduced integral balances of equations (4.18), (4.22) &nd (4.27) is
expounded In appendix D in sections D.4.1 te D.4.3. The following
discussion summarises and elucidates the sallent features of the

application methodology.

4,5.1 Application of the Reduced Integrsl Mass Balance

Applying attribute III to equation (4.18) and invoking tha

restrictions of the turbulence model to reduce the time-averaged

product term results in the combined Eulerian/Lagrangisn form:

dM(s)/db = [X (([wn)g T oqevgy? vms;)"“’dA (4.30)
nes)

where the subseript n denotes that the relevant parameters are

associated with the momentum control volume, The Eulerian and

Lagrangian forms of equation (4.30) follow the same pattern as those

for equation (4.18). In particular, it may be noted that under

Lagrangian conditions:

tevy1® ™ tuvg 18y (4311

since, by definition, the mass/energy control volume boundary valocity
is the same as that of the momentum control volume straddling that
boundary, or:

Vnes) T oreva”

(4.31.2)
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The transient density field may be extracted from the temporally
integrated mass field by applying restriction V of the turbulencs

model {equation (4.7.2)) which results in:

H_/V

evi? T sy (4.32)

ts)

Further, by attribute III of the discretisation scheme, the momentum
control valume density is given for a pair of adjacent mass/energy

control volumes { and I+l by:

cev? 7 Wiys * M0 ey (6.33)

4.5.2 Application of the Reduced Integral Balance

The shear stress temsor T given by aquation (3.14) may be expressed in
time- and volume-averaged form with respect to a mass/energy contral
volume by applying the kinetic theory of gases to the commonly used
working fluids for Stirling cycle machines, namely, helium, hydrogen
and air. Thus in terms of the Sutherland molecular model (Sc79}, the
viscosity may be expressed as a function of temperature anly, or g =
#(T). Similarly, Hirschfelder er sl (HC54) shaw that, from the
kineric theary of dilute gases, the bulk viscosity is also a function
of temperature, or A = A(T). Hence substituting equation (3.13.2)
into (3.14), taking the volume and time averages and simplifying the

result by an invocation of the turbulence model restrictions yields:

- - P - -
(e e BT T a8 LG s 20,0, 0/3) (7 MIIT (4.36)
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In considering the analysis of the fluid dynamics of stirling cycle
wachines, the only mutual and externsl forces operating are those
resulting from the influence of an external gravitational field. 1In
most cases (other than the use of Stirling machines in outer space)
the gravitational field is constant for a particular location. Hence
considering a terrestrial location for the sake of specificity
(although any aibitrary constant gravitational acceleration is
acceptable), the mutual and externnl forces per unit mass are given

by:
A
- -g (4.35)

Applying attributes I and II of the spatial discretisation scheme to
equation (4,22) and substituting equations (4.34) and (4.35) produces

the combined Eulerian/Lagrangian form:

oy 18 Tneay /88 = Loy BH )TV 5y deomida - Ly Padd
Acs) Ay

Feo 5
N JZ LT 7 -mdad - 508

sy

) j‘— [ “uv]zwuvx;*' (v“v);)r)
Aks)

+ 1 M“v)ﬁ/a)(v-(m;)mnn da (4,36)

tev)

1t may be noted that 3(5 is not expressed as a volume average since

b
it represents the motion of the planar boundary separating adjacent
momentum control volumes. The Bulerian and Lagrangian forms of
equation (4.36) follow the prescription for those of equation (4,22).
In particular, under Lagranglan conditions, the Reynolds stress tensor

is given by:
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3 = -
IRt (4.36.1)

since under these conditions the boundary velosity is equal to the 4

time-averaged velocity across the boundaty, or:

MM i
- - I
- . 8 !
[LZMATIA (4.36.2) i
i
4.5.3 Application of the Reduced Ingegxral Energy Balance

The application of the reduced integral emergy balance of equation

(4.27) to the staggered grid requires a greater amount of manipulation :’
than was necessary for the mass and momentum balances. In particular, ;
those terms which are expressed as volune integrands are not readily

apparent. Following an argument similar to that used to produce

equation (4.34), the time- and volume-averaged dissipation term may be
reduced to the following form after application of the turbulence

model ' =trictions;

TT Yoy e - ” - 2y | av " - 2
(bV)(T'Vv> (H'aVIA 2[;\!]“/3)[‘%(5!\']"1/6)‘1) } gi‘lnvl‘“atvlvi/axl) i
n z
+ % 5 ,tv]u(azv)vl/axf + afv]vj/axl) 4,37)

where i and j repressnt coordinate directlion indices.

Further simplification of thls expression requires the definition of a

dissipation tensor similar in nature to the Reynolds stress tensor.

Generally, equation (4.37) is approximated using an empirical

correlation (Se79) owing to the complexities involved in establishing
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a formal correlation in the form of equation (4.1) for Stirling
machine boundary conditlons. Thus it is convenient to define a

dissipation term @ such that:

ORI G 22) (4.38)

The volume integral of the (v-¥P) terw is reduced by applying the
turbulence model restrictions to its volume average so resulting
int

L) 4.39)

) = ™V

(ev]

The pressure pradient in equation (4.39) is expressed in terms of the
staggered grid by a finite difference approximatisn between the
centroids of adjacent mass/energy control volumes. This results in a
pair of finite difference pressure gradienrs oceurring for each
coordinate directlon in a mass/energy control volume, a situation

requiring a careful numerical interpretation

The numerical evaluation of equation (4.38) may be accomplished

directly in two or three dimensions usiug time and volume averages.

Powever, in a one-dimenslonal system, which necessarily requires an
empirical correlation to account for significant three-dimensional
dissipation effects, the physical significance and numerical {
application of this equation bscomes problematic, An interpretation
of the equation which has been demonstrated numerically to yleld a

successful solution is described in chapter 5.
The boundary time-averaged heat flux term may be evaluated in the -
context uf the staggered grid spatial discretisation scheme by

invoking Fourier’s law of thermal conduction (5181). After
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appropriate volume- and time-averaging, this process produces:

{4.40)

(sv,,la - -(hvnlzv(tvnl?

As for equation (4.39), the temperature gradient centered over the
momentum control volumes is determined by a finite difference
approximation between the centrolds of the constituent mass/energy
control volumes. In this case, the approximation is natural since the
temperature gradient is single-valued over sach momentum control
volume, However, the boundary thermal conductivity nv,ﬁ is
determined using a weighting procedure involving the conductivities of
the sdjacent mass energy control volumes as discussed in section

4.6.3.

The final issue arising in the application of the discretisation
scheme iavolves the determination of the mechanical work done ot the
boundaries of a mass/emergy control volume. As this term does not
represent the flux of a tramnsport property, the pressure acting on
each side of a boundary is the volume-averaged pressure (in
discretised terms) assoclated with the mass/energy control volume in
the direction of the unit inward normal (-m) for that side. Thus
after invoking the restrictions of the turbulence model, the
mechanical work rate W for a discretised mase/energy control volume

may be expressed as:

Vo= jz [bVIP(vﬂ(s)‘n)dA
5

But since the volume-avervaged pressure is constant ovex the contrel

volume boundaries:
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Y ,[Z sy a4 (4.41)
(s
applying the generalised transport theorem of equation (3.7) with % =

1, time-averaging and luvoking equations (4.7) glves:

)

AV JdE = JZ (V(s)'n)dtl
s)
or in discretised terms for a mass/energy control volume:

Wy a8 = IK sy M4

acs,
Hence substituting into equation (4.41) results in:

¥ oy ? Wy /de (4.42)

which represents the classical equilibrium thermodynamics expression

for the rate of performing mechanical work (Cag0, Wa?7).

in the light of the above discussion, attribute III of the spatial
discretisation scheme may be applied to equation (4.27) to produce the

£inal combined Eulerian/Lagrangianv form:

. . - = _ - e .
Cy8C T Hig))/96 = Vi Lo P+ (g ® 4 Gy W T n P - 0 P 5, /68
= Femvdd - IO
R nyd L Coyg @' -mdd
nesy n{sy

+ Cp JK Lovar T v 18 vy Vnesy A (6.43)
n{sy
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The Eulerian and Lagrangian forme of this equation are similar to
those of equation (4.27). In particular, under Lagrangian conditions,
the advection flux term (the last term on the right hand side)
disappears as a consequence of the argument expressed by equation L]

{4.31). The turbulent flux vector then takes the fi

g R - %
Cplevar? v ™ v T T v P tvm ™ rev D (&.48)

tvq1
Thus the scaggered grid, volumetrically filtered discretisation scheme :
enables all the parameters in the reduced integral balances to be

expressed in volume-averaged terms. This makes the equations

consistent with respect to volume- and time-averaging so permitting

their numerical solution without the intrusion of implicit or hidden

closure assumptions.

4.6 THE IMPLICIT CONTROL VOLUME BOUNDARY TERMS

In order to implement equacions (4.36) and (4.43) numerically,

expressions for deternining the control volume boundary terms which B

are not explicitly available must be found. For the momentum control

2 v and v

(ev1 s while for the

volume these terms are T

mass/energy control volume the only additional unknown term is ., li
n
Burthermore, the determination of the advective term in the momen-ux

squation is not obvious since the mass flux % is a transport

(el
parameter which must be normalised with respect to the momentum

control volume area across which tho averaged flux . |§ Flows.
“
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These unknown terms may be found conveniently by splitting the
analysis into three sections. The first section deals with the mass
£lux and velocity gradient within a mass/emergy control volume, while
the second section describes the mass flux advected across the L]
momentum control volume boundaries. The third section develops a

formulation for determining the advected temperature on the

mass/energy control volume bounda-ies.

4.6.1 Mass/Energy Control Volume Mass Flux and Velocity Gradient

The details of the analysis for determining tue mass £lux and velocity
gradient in the mass/energy control volume are given in appendix D,
section D.S. The analysis is initiated by noting that, since volume
is distributive over density, che rate of change of density may be
split arbitrarily into three substituents such that each substituent
may be assoclated with a boundary mass flux vector component. Thus

for the three coordinate directions j, from equation (4.30):

3 - =
A sde = T a0 )/
=)
3 = - = _
_El N umBf * (avg1? e ) P18 .a5)
4 nes)

Consider a generalised, combined Bulerisn/Lagranglan mass/energy
control volume in any coordinate directicn j as shown in figure 4.6.
Let the control vulume be split into left and right hand components by

a plane of area A moving with velocity V.5, &t & Jisplacement x fram

)

the arbitr i ! “ined boundary entrance plane. A mass flux g with
velocity v flows across the bifurcating plane. The entrance boundary -
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area A, is Lagrangian and consists of a piston moving with a velocity A §

Vns) while the exit boundary is Eulerian with an area AnR across
which flows a mass flux &np' The control volume has a lemgth Al such !
that the centroid of the control volume occurs at Al( SV d
1Y
I
/ @
'
L~ 0 @ ! ,
L I - ‘ —
“n(a) A i % ; nR
- I
™ X . '
ENTRANCE e i
. v ) 0
&)
B
Y
(5%}

Figure 4.6 One-dimensional mass/emergy control volume

By equation (4.32), the time- and volume-averaged density is single-
valued over the entire control volume which is spatially fixed. Thus,
dropping the overbar and ] subscript notation for the sake of

simplicity:

Y (4.46.1)
which results in:

dpy/dt = dpg/dt (4.46.2)
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Applying equation (4.45) in single coordinmate airection form te the
left and right hand components of figure 4.6 separately, rearranging
the resultant expressions to isolate the temporal derivatives of the
total density, substituting into equation (4.46.2) and simplifying

Pproduces:
CPVaiayhnr © 48)/VL = (A8 - Buphapd/Vp

Expressing the left and right hand averages in terms of length-

averaged areas results int
8 = (o ARlOLXIPVy o Ay o+ ApE g1 /AY (4.47)

From equation (4.17) Lt can be shown (see the development of equation

(D.56)) that:

12938 7 e freny” (6.48)

which allows the velocity across plame A to be given Erom (4.47) by:
Vo= Uy ig(BLexdovy o)Ay AR AR AV P (4.49)

Differentiating with respect to x gives the velocity gradient:

3v/8x = <(1)ALgnRAnR - ll]Avan(s:AnL>/AV(s)P (4,50

In conformity with the attributes of the velumetric filter, the
velocity gradient is constant over the control volume while the
averaged velocity and mass flux at any plane within the control volume

is displacement dependent.

At the control volume centroil defined in terms of attwibute II
(equation (4.29.3)) by V;=V,, the mass/energy control volume velocity

and velocity gradient may be expressed in full notation for each e
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coordinate direction i from equations (4.49) and (4.50) by:

ten ¥t ™ Lev P ae fai t v Eintns 007200 ? Aey (4.51.1) o

@y V700 = {pyBisibniey 100780 ovn g

v 1P 1Vncerifnesy 1/ 1AL gy g) /210y Ay, (451D

1371

vwhere 1 and I+l represent adjacent mementum control volumes in the ith

coordinate direction. i

Furthermore, it is shown in section D.5 that the velocity of the

centroid is given by:

Yot T Vst /s (6.52)

In the case of a fully Eulerian control volume v = 0 and equations

(531
(4.51) are applicable with the following alteration:

R - R
tevg 1P iVnest (v, 81

(4.53) :

4.6.2 The Boundary Advection of.

In the 1 gkt of the attributes of the staggered grid discretisation

scheme and, in particular, the area normalisation requirement for the
averaged momentum, the inturpretation of the momentum advection term {
in equation (4.36) is not self-evident. Superficially, it might be

concluded that equations such as (4.47) and (4,49) for g and

(835
[m_v may be used to determine completsly the boundary advection of
momentum. However, such an approach is not transportive in nature and
therefore violates the physical meaning of the peneralised transport

theorem. Roache (Ro82) discusses the importance of maintaining the
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transportive property in numerical terms and demonstrates that under
certain conditions, failure to ensure transportivity results in
numerical instability. In the context of Stirling machine analysis, L]
these difficulties were encountered by Urieli who overcame them by )
using the well known 'upwind differencing method’ for determining the

boundary momentum flux (C152), However, this method is only first

order accurate (Ro82) and is justified by an g posteriori numerical

stability analysis.

The approach adopted here is based on & methodology developed by
Spalding and Patankar (Pa80) in which the momentum balance is reduced
to a steady-state, one-dimensionsl Bulerian form amenable to analytic
solution. The solution thus obtained (the datails of which may be
found in section D.6 of appendix D) is used as the basis for

determining the discretised nature of the boundary momentum advection.

Following the methodology used to develop equation (4.36), by applying
equation (4.22) to a mass/energy control volume and ignoring mutual
&nd external forces and turbulent momentum fluxes, the momentum

balance may be expressed as:
)8 Vigy 29 = }.Z 18y, Ve omdd JX Cugyy T omidd (459
s) (£

Consider a Bulerian mass/energy comtrol v .ume in any cooxdinate
direction | as shown in figure 4.7. Let the control volume have a
length Al and an entrance area A across which there is a diffusion r
and & mass flux g wicth velocity v. At the exit plame, the area,
diffusion, mass flux and velocity are incrementally iarger than their

corresponding terms at the entrance plane by A4, Ar, Ag and Av .
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respectivaly,
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Fisure 4.7 One-dimensional, Eulerian mass/enezgy control volume

Expressing the volume in terms of a length-averaged area and
substituting the entrance and exit plane boundary conditicns imto
equation (4.54) in one-dimensional form results in the following
expression (which is simplified by dropping the time avexage overbar

notation):

d(, | AEAI/AE = (gv-r)A - ({g+bg) (vHAV) - (r+a1))(4+ad) (4.55)

Ly
Applying equation (D,49) in one dimension to the boundary conditions
of figure 4.7 results in an expression for dp/dt. Thus using equation
(4.48) to decompose the mass flux g on the left hand side of equation
(4.55) into veloclty and density components allows a simplifying
substitution for dp/det, After ignoring second and third order of

smalluess texms, this produces:

“]”Apu dv/dt + gAAv = A(TA)
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Substituting aquation (4.34) in one-dimensional form fox r, treating
the bulk viscosity of the common Stirling machine working fluids as
being zero or vanlshingly small (HC54) and noting that

Goup# L8

constant over a mass/energy control volume results im:
Apbl dv/de + gAnv = LpA(ABv/dx)/3 (4.56)

(3%}

Applying equation (4.51.2) in Eulerian terms to the boundary
conditions of Eigure 4.7 and substituting the result into equation

(4.56) produces in tha limic as Al + 0:

pAdv/dt + vB(ga)/ax = (4u/3p)8" (g4) /x> (4.57)
since (mZ is constant over a spatially fixed mass/energy control

volune.

Considering equation (4.37) in steady-state form ensbles the following
analytic solution to be found:

(g4) = ((gA) - (gAdyy ) (X (ip x/1) - L) / laxplipg)-1)} + (gd),  (4.58.1)

where NPa is the Peclet number defined at the centroid of a finite

mass/energy control volume of length I by:
hpg = 3ovi/ba (4.58.2)
and the L and R subscripts represent the control volume boundary

values.

Denoting the net boundary momentum flow (advection plus diffussion)
across a single momentum control volume boundary as &, equations

(4.58) result in che following sxpressiens:
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if ¥pg = O then:

G = (/301 ((8) - (8D ) .59.1) 9

L Npy # O then:

6 = VI(3A) yy+ (84~ (84) ) [exp (Wp ) -1 (4.59.2) i

Undexr steady-state laminar flow conditiens in one-dimsnsion, equations

(4.59) provide an exact solution for the met boundary momentum flow.

Some authors, notably Patankar and Spalding (Pa80), seem to suggest

using these equations for all .ases even under transient flow '
canditlons, despite the steady-state assumption made in their

derivation. However, such an approach is not considered warranted for

Stirling machine beundary conditions which can be highly transient,

particularly at machine operating frequencies which have already

approached 100 Rz (S186) In certain pretotype configurstions.

However, equations (4.59) do provide a physically meaningful
methodology for detezrmining the boundary advected momentum f£lux.
Consider a plot of the net momentum flux G as a function of the Peclat
nunber Hp, as shown in figure 4.8, Since the Paclet number expresses
the ratio between the advectlon and diffusion of momentum across a
momentum control boundary, figure 4.8 shows that even at very low
Peclet numbers the advection term dominales. At a zero Peclet number

there is no advection while in the ate vange, the

flux is partly diffusive and partly advective. Furtharmore, from
equation (4.59.2) the net momentum £low exhibits the follawing

behaviour in tne limit:

As N,

pe > ®0 6  vigA) (4.60.1) s
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- w6 v(gh) (4.60.2) .
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Figure 4.8 Net momentum Elux dependence on the Peclet number

Thus £{gure 4.7 and equations (4.60) establish a physically meaningful

model which may be used to detarmine the boundary advection of

momentum. In keeping with the transient nature of the problem being
considered, the diffusion s included separately as a discretlsed term
and 1s not lumped togsther with che advection flux in & single term.
Considering the spatially discretised momentum balance of aquation
{4.36) and the definitlon of the Peclet number given by equation
(4.58.2), tho independent pavemeter detormining the value of the
advected mets Elux in a given coordinate direction Ls the relative

boundary velocity defined by:

. I
e Y (4.61.1) -
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Hence for a particular coordinate direction i:

1£ v} = O then:

JX [LV]B(V r-m)dA b4 (I-Vn)g AH(E))I (4.61.2)
(s i
and 1€ vj < O then:
JZ (v B PmmEA | = iy B Ay ey i (4.81.3)
ts) H

where i and [+l denote adjacent momentum control volumes.

Equations (4.61) intrinsically perform the area normalisation ‘equired
for equation (4.36) as mandated by the attributes of the
discretisation scheme. This occurs since the tramsportive term is g4
(or the mass flow rate) which is independent of the momentum control
volume boundary area. Hemee the advected mass flux depends only on
the averaged mass Flux |, | flow area which, by definition, is the

normalising area,

Lt is noteworthy that equations (4.61) represent a convoluted integral
version of the 'second upwind differencing’ method proposed by Gentry
Martin and Daly (GM66). An anslysis of this method shows that, while
it is clearly transportive (as with the classical or first upwind
difference), it is also second-order accurate for the auvection field
(Ro82). Hence, although the advection is determined on a physical

basis, it also has a mathematical justification.
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4.6.3 The.Boundary Advection of Energy

The determination of the energy advection term for tha discretised
integral energy balance of equation (4.43) is less problematic than
that for tha equivalen: term in the momentum balance. This arises

since the an., term at issue is the advected tempezrature .. T and
n

taere 1s no requirement for any area normalisation.

The approach aa. i (detailed in section D.7 of appendix D) is
similar to that used in section 4.6.2 above and thus will only be

described in outline below.

Consider a constant area Eulerian momentum control volume of length
Aln in any cooxdinate direction [ as shown in figi.e 4.9, al, is
composed of the lemgths AL, and A, . which locate the centroids of
the adjacent mass/energy control volumes. Let the averaged mass £lux
o, flow across the boundary normalising area 4, which s taken to be
the constant eross-sectional area fox tne control volume. The
temperatures in the adjoining mass/energy control volumes are given by
T and T+AT respectively, Thls constant area approach is justiried by
noting that only the boundary 4, 1s active in the energy transport

between adjacent mass/energy control volumes.
Applying equation (4.43) to a constant area Eulerian momentum control

volume (by exchanging mass/encrgy and mementum control volumes) and

ignoring all non-boundary and turbulent flux terms results in:
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Figure 4 & Normaliued Lulerian momentum control volume

Substitutie, equatiza (4.33) into (4.62), applying the one-dimensional
boundary cnd cions of figure 4.9 and dropping the overbar notaction

prodtces, for a constan: crosa-sectionsl area:
Cyp1, 00T, 03/t = 1 A(87/8%) - Cpg 6T (4.63)
since the volume is givan hy:

V, = AL,

Dividing equation (4.63) by M, ignoring the temporal derivative and
ctaking the limit as Al - 0 -esults in the steady-stace differential

equation:

B dT/8x = 0"T/0x" (4.66)

&
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Since equation (4.64) has the same form as the steady-state version of

equation (4.57) it has a similar solution given by:
T = (Tg-Ty) (exp(Np /1) -1}/ Lexp (¥, ) -1) + Ty (4.65.1)

where NPG is the Peclet number at the boundary between two finite
mass/energy control volumes whose cenivoids are separated by a Length
1., Under these conditions, NPe is redefined (compared with equation

(4.58.2)) as:
¥pe = Cp8nl/ey (4.65.2)

The L and R subscripts denote the temperatures at the boundaries of

the momentum control volume.

Denoting the net boundary energy flow (advection plus diffusion)
across a single mass/emergy control vol me as G, equations (4.65)

produce the following expressions:

if Npe = 0 then:

3w kA (T eTR)/1 4.66.1)

if Ny # O them:

G- gna‘PAn[TL + (T T/ (exp(Npy) -11] (5.66.2)

Using an argument analagous to that used in section 4.6.2 to produce
equations (4.61) from equations (4.59), a physically meaningful model
for the determination of the boundary enchalpy flux may be developed.
As befor~, in keeping with the transient nature of the Stirling
machine .nulysis problem, the diffusion of emergy acros, a boundary is
inciuded separately as a discretised term and not lumped together with

the enthalpy advection Elux in & single term. From the form of the
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advection term in equation (4,43) as well as the definition of the

Peclet number in equation (4.65.2), the independent parameter

determining the value of the advected enthalpy flux in a given 3
coordinate direction is the relative boundary mass £lux given by: |
R -

- . N
g (“mg teval? Yacsy) (4.67.1)

Hence for a particular coordinate direction i:

If g} = 0 then:

.{7 nv,..lT(s «-m)da - (& (w]An(s))l 1) ie1 (4.67.2)
“ncsy i
and if g) < 0 then:
.
J~ (v T8 *-mYd4 ] = & ey f Anesyds (4.67.3) “
'aesy i

where i-1 and i denote adjacent mass/energy control volumes.

From a numerical analysis perspective, equations (4.67) represent the
integral version of the upwine differencing scheme. In this case,

since the attributes of the staggered grid permit the explicit

determination of the boundary mass flux, the upwind differencing and
second upwind differencing schemes are operationally equivalent and .
hence equations (4.67) also maintain second oxder accuracy for the

advection field.

The discretised boundary diffusion of heat as described by equation

(4.40) requires the determination of a boundiry thermal conductivity
which is also used in the Peclet number definition (equation

\4.45,2)), This boundary conductivity is evaluated as the harmonic ; 1
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mean of the thermal conductivities in the mass/energy control volumes
associated vith any momentum control volume. As detailed in section

D.7, the boundary thermal conductivity is given by:

”'(Mt + AL )

tevy®ien

(4vnl LSVl s ivd oy

+ (4.68)

7GRt s T e ® B sy

where I and i+l denote adjacent mass/energy control volumes in the ith
coordinate direction and Al sy, denotes a centroid location as

depleted in figure 4.6.
4.7 CLOSURE
N\ Both from the standpoint of rigour and that of the available

experimental evidence for Stirling cycle machines, mome of the

assumptions made in developing the turbulence model or the spatial

disererisation scheme can be unequivocally or directly substantiated

Nevertheless, all of the claimed experimental validation of existing
Stirling machine numerical analyses has traditionally been ussd as a
means of justifying the assumption practice. This is contradictory in
b the sense that, strictly, the fictitiousness of assamptions in

. deviating from physical reality should mitigate against the -
R achiavement of ‘validation', Hawever, the prevalent resort to an

empiricism which forces validation can be justified pragmatically only

‘ if such an empiricism is acknowledged unambiguously. Thus the

proceeding application of the discrete simulation model developed is

undertaken in the spirit of using the validation process as a means of

testing the consequences of the turbulent model and spatial

discretisation scheme in as abjective & manner as possible. .




CHAPTER 5
EUMERICAL APPLICATION TO ~TITRLING
CYGLE ES

5.1 INTRODUCTION

‘v. As the numerical analysis of Stirling cycle machinery has evolved from
the purely analytic techniques espoused by Schmidt (5¢1871) to the
plethora of computerised numerical methods surveyed by Urieli (Ur83),
three distinct approaches may be discerned. The first approach,
initially promulgated by Finkelstein (Fi60) and refined by Uriell
(Ur77) snd Schock (Se78), divides a Stirling machine working space
into an arbitrary mumber of Fixed control volumes or ‘nodes’ to which
i the partial differential ecuations of mass, momentum and energy

! conservation are applied in Eulerian form, The resulting set of
equations are solved in what Organ (0r82) has termed an ‘ad hoc'

. fashion in which the partial differential equations ara treated as
total or ordinary differential squations and temporally integraved

using explicit numerical algorithms.

R

One of the principal objections to the ‘ad hoc' nodal approsch made by
Organ (0r8?) is that:

' (These) numerical schemes draw no distinction betwsen the

respective speeds of propagation of pressure information, of

temperature informatlon and of the integration process itself,’
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This criticism should not be interpreted ta imply a generalisation
that control volume based numerical schemes are inhezently incapable

of accurately modelling compressible gas flow, as such a

generalisacion would menifestly be repudiated by the large number of
compressible gas Elow control volume based numerical schemes reviewed
by Roache (Ro82). Inm particvlar, approaches such as the ‘Implicit
Continuous-fluid Eulerian’ (ICE) method of Harlow and Amsden (HA71)
and the more esoteric 'Flux-Corrected Transport’ (FCT) methods of
Book, Boris and Hain (BB75) ate examples of successful methods used to

simulate physical situations in which the accurate modelling of

information propagation is cardinal, However, in the semse that the

nodal Stirling numerical simulation schemes treat partial temporal
differentials as total differentiels and violate physical continuity
by imposing artificial discontinuities on the working fluid domain as

a result of the discretisation process, Organ’s criticism {s

w Organ 2 second to Stirling machine

simulation, namely the 'method of characreristics’ solution described
by Shapiro (Sh54), This approach has been applied in one dimenmsion to
a hypothetical isothermal Stirling emgine with gradually varying area
changes (Or82), Taylor (Ta84) has extended the one-dimensional method
of characteristics solution to include a non-isothermal working fluid

flow fleld.

While undoubtedly providing a physically accurate description of t. .
information propagation effects in a compres ible flow field, the
method of characteristics approach has not been widely implemented for
a large array of problems owing to the difficulties inherent in its
application to geometrically complex boundary conditions such as those

found in Stirling .achine working spaces. As an example, Taylor "
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(TaB4) noted inltlally that in the context of a one-dimensional
Stirling machine analysis:
‘Attempts ... to allow for Fie sudden changes in cross-sectional
area, usually encouucered in a Stirling engine, have led to

instabilities in the solutien.’

Thus in the context of simulating genevallsed compressible fluid
filows, including turbulence effects in two or three dimensions, the
method of characteristics becomes cumbersome with excessive
computational requlremenvs, even by 'supercomputer’ standards.
Perhaps for thes- 1s unusual to find the method of
characteristics a che simulation of turbulent compressible
flows such as those occurring in Stirling machine working spaces

{1s83).

Furthermore, both the characteristics and nodal spproaches as
presented by Taylor and Uriell respectively utllise explicit
invegration algorithms which have a time step magnitde limitation
imposed by the requirement of satisfying the Courant criterion (GF67).
In essence, the Courant criterion rvejuires that the integration time
inerement be chosen such that information may propagste at most across
a single control vslume in & nodal simulation or a single spatial grid
interstice in a characterlstics simulation, This ensures that in the
characteristics case the solution remains stable (Ta84) while, for &
nodal simulation, the information propagatlon rate error is bounded

In both approaches, maintaining comp’iance with the Courant criterion
necessitates the capability of using a unigue integration time
increment at every node of grid point in the flow fleld, Usually the

tendency in explicit algorithma is to choose the smallest integration
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time increment determined within the flow field as the universal time
increment, In the case of a characteristics simulation involving
geometrical complexities (such as the discontinuous Flow area changes
found in Stirling machines), this mandates the use of Lterative
‘indirect marching’ mechods reguiring a grid point interpolation which
is a potential source of insccuracy. The minimum time increment
selection in a nedal simulation leads to what Roache has termed
‘phase’ and ‘dispecsion’ errors in the simulated pressure fisld in
particular (Ro82). In this regard also, Organ's criticism of nodal

methods is appropriate

The salient issue in the context of Stirling machine £luid dynamic
simulation is that even in a one-dimensional implementation,
compliance with the Courant criterion results in both the nodal and
method of characteristics solutions requiring large amounts of
computation on a unit cycle baris. Coupled to this is the nocion that
ultimately only the cyclic staady-state or equilibrium solution is of
interest. This mandates that many cycles be simulated prior to the
steady-state being achleved, so compoundin; the computatica problem,
Therefors the prineipal difficulty with the method of characteristics
upproach per se is one of practical implementation in view of its
excessive computational requirements, particularly in the presence of

complex geometrical boundary conditions

A third approach to Stirling wachine eimulation is described by Rix
(R183). This approach seeks te overcome the entha’py advection
deficiencies of the nodal methodology which arise from the imposition
of arbitrary discontinuities on the temperature field, The method is

based upon a Lagranglan racher than a Euler!.n system model of the
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entire working space, However, Rix only demonstrates this method for
& case in which transient momentum conservation is ignored. Changing

the frame of reference cannot, by definition, have any effect on the

physical laws describing the working £luid dynamics. Therafore, the

working fluid behaviour detevmined by sn observer moving with the

fluid (Lagrangien system) may be converted into the behavieur i
determined by an observer who ls stationary with respect to the fluid

£low (Bulerian system) and vice versa by an appropriate coordinate

system transformation.

In particular, for any property ¥, fram equation (C.9):

¥Lagrange ™ VBulerian * JAc<v-vwwd; 5.1

Hence, provided w(t) and $(¢) are known functions, no improvement in
physical accuracy for a wholly Lagrangian analysis is apparent.
However, in the classical nodal simulation approach, the problem is

that over any time inerement At the functions v(&) and (&) are

unknown and are wssumed either to be constant at thair starting values

(Pag0) or to be approximated by the istics of the 1 ion

algorithm as shown in figure 5.1,
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Figure 5.1 Incvemental property profile of the ewplicit integration
algorithm
A wholly Lagranglan simulation avoids this difficulty since, by
definition (equations (3.26), (3,29), and (3.32)), the control volw e
boundary mass fluxes are always z~ro. However, as the Lagrangian
approach of Rix and the classical nodal approach both employ control
volume spatial discretisations, the difficulty with the Eulerian
approach may not be attributed to the discratisation scheme but rathex
to the characteristics of the explicit integration process used. The
degree to which the difficulty may be resolved thus depends on the
effectiveness of the chosen explicit integration scheme in
approximating the $(t) and v(t) profiles over At. It should, however
be noted that in order for thase algorithms to be effective, At must
be constrained so that " approximations of $(r) and v(¢) produced
are physically credible. [his constraint is usually defined
numerically in terms of the truncutlon error with its attendant
stability implications. Almost wirhout exception in compressible flow

situations, such a truncatlon error constraint is satisfied by the a
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priori requirement of satisfying the Courant criterien.

Acknowledging the integratlon algovit - restriction, the choice of

using Lagranglan or Eulerian frames of vefersnce is usually boundary

condition dependent, as some boundary conditions are more amenable to
a Lagrangiaa than a Eulerian treatment (No64). In any event, the
wholly Lagranglan approach advocated by Rix is also seemingly a
candidate for Organ's 'ad hoe' criticism in that, unlike the method of

characteristics which rigourously ylelds total temporal derivatives,

Rix‘s method is based on the integration of substantive temporal
derivatives. In this sense, the method devolves to a transformed
version of che nodal method, cthus predicating that the two methods

share the same 'ad hoc' deficiency. Nevertheless, use of such a

Lagrangian system can be advantsgeous Ln overcoming at least one of
the def{clences in the classlcal nodal approach (Ur77), namely, in
eliminating the assumption of zero momentum in the expansion and
compression spaces, Hewever, in view of the complex heat eachanger
and regenerator geometries of actual Stirling machines, Lagranglan

methods ars not practically convenient throughout the working space

Thus a comblned Eulerian/Lagrangian (CEL) system in which the variable
volume spaces are treated ss Lagranglan and the constar™ volume spaces
as Bulerian potentially offers a better utilisation of the Lagrangian {

analysis concept suggested by Rix,

5.2 NUMERICAL ALGORITHM SELEGTTON

Coalescing the attributes of the nodal, method of characteristics and

Lagranglan approachas to Stirling machine £luid dynamic simulation, an .
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idealised methodology may be defined. In this methodology, the
tractability of the control velume approach is combined with the

i on 1on of the method of characteristics 1

solutfon and the flexibility of the Lagrangian scheme in accomodating -
non-stationary boundary conditions. The foundation of such an ’
idealised scheme must be based [nter alla on a rigourous analytic

treatment of the conservation equations which yields a fermul ion

devoid of the ‘ad hoc' deficilencies of existiusg control volume

approaches. In particular, the formulation must be cast in frame-of

reference Indifferent, total temporal derivative terms such that no

arbitrary discontinuities are Lmposed upon the temperature and

pressure fields. Within the limitations of the turbulence and

diseretisation models proposed in chapter 4, the theoretical

development of chapters 3 and 4 ostensibly docs provide & conservation

equation Formulation with the necessary attributes, although no

absolutism of any kind is claimed or warranted for this formulation.

The selection of a numerical algorithm to apply the integral
conservation equation set to Stirling machine boundary conditilens may
be made on a physical basis since each algorithm has dafinite
tmplications in terms of accurately modelling infoxmation propagation.
& summary of the rolovant numerical algorithws is tabulated

hierarchically in table 5.1.
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Table 5.1 Stirling machine mumerical algorithm hierarchy

Algorithm

Physical implication

Implicit - implicit mass, momentum
and energy conservation.

Tramsient solution under cyclic
equilibrium conditions only.

Hybrid implicic/explicit - explicit
momentum, implicit mass and explicit
or implicit energy conservation.

Transient solution under cyclic
equilibrium conditions only with
numerically restricted
integratior, time increment.

Pressure domain splitting, hybrid
implicit/explicit - explicit momentum
and explicit or impliciL energy
conservation, implicit mass
conservation with chara:teristically
determined local field limits.

Transient solution with
rumerically restricted
integration time increment.

Method of characteristics, explicit -
explicit mass, momentum and energy
conservation.

Transient solution, governed
by Gourant criterion.

Explicit - explicit mass, momentum
and energy conservation,

Transient solucion with phase
and dispsrsion errors, governed
by Courant criterion.

Table 5.1 is arranged such that th- yhysically unvestricted transient

algorithms are located centraily and are bounded by restricted

explicit and implicit algorithms.

The traditional approach to

Stirling machine simulation as diseussed above has been to progress

from the bottom of table 5,1 upwards, while in this work, the approach

adopted is to move from the top of table 5.1 downwards.

When compared with the move traditional explicit algorithms (Sc78,

Ux77), an implicit numerical algorithm has several advantages to

recommend it in the context of one-dimensional, Stirling machine fluid

dynamic simulation.

These advantages may be cited as follows:

1. Numerical stability independent of the 'stiffness’ of the totsl

temporal derivative equations to be solved.




2. Computatior times on a unit cycle basis which are significantly

lower than explicit algorithms owing to a reduced computacional

volume and ability to large time i
3. Reduction in the number of simulated machine cycles needed to

achieve numerical convergence at the steady-state.

Moreover, in physical terms, implicit end hybrid implicit/explicit
methods have advantages over purely explicit methnds in that, when
properly formulated, they permit a physically ¢fserare < :ounting of
information propagation and advection effects in a manner which iz p
independent of Courant criterion restrictions. This may be understood

by considering the incremental time step profile of any transport

property ¥ in an fmplicit process depleved by figure 5.2.

s 5400t
Time

Figure 5.2 Incremental property prof. . of an implicit integration
algorithm

Tn this case, $(£) s effectively assumed to be constant at its Final

value over the time increment At, but the final value is a variable

datermined by the requirement that the mass, momentum and energy -

conservation balances are satisfied simultamecusly over the entire
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flow field at time £™+At. Thus knowledge of $(t) over At is not
mandatery in order to guarantee that the conservation criteria are

satisfied without advective anomalies.

The structure of an implicit algorithm must account properly for
information propagation both on a cyclic equilibrium as well as on a
transient basis. Such a straccure depends upon the analytical
methidology used to formulate the conservation of mass equation so
that it implicitly defines the pressure field, This methodology is
described in section 5.5, and yields pressure field equations of the
form:

itm
(5.2)

jﬁi_mxj woif " o
vhere i denotes the individual mass/energy control volumes of which
the flow field is comprised and m is dependent on the dimensionality
of the problem, In a cyclic equilibrium solution, equation (5.2) is
applied to the entire flow fleld, while in a transient solution
equation (5.2) is applied to a series of pressure domalns, ome for
each mass/energy control volume as illustrated (for a particular two-
dimensional Bulerian field) in figure 5.3. Each pressure domain has
an extent detetmined by the information propagation characteristics
Lf(vav, ) ; where (v.); is the sonic velocity within each mass/energy
iontrol volume comprising & particular pressure domain. Hence by this
process of partitioning, the ‘pressure domain splitting’ (EDS)
algorithm may be structured to yield a transient information

propagation simulation. This simplified explanation ignores the

complexities arising from defining the pressure domaln boundaries

under supersonic or sonic flow comditions (that is, whem |v|, 2 (v)))
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since such an explanation is beyond the limits set by the thesis
statement. However, it may be mentioned that under these conditions
the PDS algoric m essentially devolves to a standard approach such as o

the ‘region-to-region’ method (Jo69).

PRESSURE —— | A Q “—1"PRESSURE DOMAIN

DOMAIN FOR FOR CONTROL

CONTROL : ! VOLUME

VOLUME k o* !
i t-o s

Figure 5.3  Structure of the pressure domain splitting algorithm i

£pplying equation (5.2) to the entire flow field (or treating the flow
fleld as a unitary pressure domain) epables the cyclic equilibrium
solution to be obtained diretly. Two approaches to obtaining the .

equilibrium solution may be hypothesized:

1. Infinite information propagation

This hypothesis may be justified by the motion that, at cyclic

equilibrium, sufficient time has passed such that every point in

the flow field has received informatiorn from every other point in

the flow field for all instants over the cyclic peried. This

concept is graphically illustrated by Organ (Or82) who depicts a
Mach line net for about 1,25 cycles after the initiation of the .
oscillation of an alpha-configuration Stirling engine as showm in

the reproduction denoted as figure 5.4. The infinite information .

212

& — e W % e ¢ e . Lok v



(810 9oUSIayel WOXJ POIVRIINT) wdi QOOY
203 35U SUTT OB PuTSUR FUITATIS UOTIRINSTIUOO-EUdTY -G SInBTi

R

R

AR R
@%Mw.%&% oo»“ooowox i 4\&&

TR RIS TATIAVAVAYS

213

R R TR
R




propa ation hypothesis may be implemented by arbitrarily
selecting an integration time increment which is much less than

the smallest information propagation time characteristic of «

ik

particular machine. The time characteristic may be defined as il
the interval required for a pressure wave to exactly traverse the
unitary pressure domain once. Henceforward, the infinite

informatlon propagation “ypothesis is distinguished by referring

to its implementation as the 'equilibrium algorithm’.

2. istically d i i ion time increments

Here, the integration time increment is treated as a dependent
variable which is instantaneously equal to the machine time
characteristic. In this instance, the equilibrium solution
produces the spatially limiting case of the pressure domain
splitting algorithm and as such yields an approximation ta the
full information propagation transient solution. The

implementation of tne ch, istically i ion

time increment hypothesis is termed the 'unitary pressure domain

(UED) algorithm’

The validity of the unitary pressure domain and cyelic equilibrium
algorithms is limited strictly to Stirling machine configurations
which never experience sonic or supersenic conditions at any time
during thelr operation. This Ls apparently not a restriction of

for a r ive sample of the Stirling engine

hardware constructed to date. Over this hardware map (8586) the
largest Mach numbers encountered have been much less than 0,3 (Se88)
while both algorithms have been successfully tested to threshold Mach

numbers of at least 0,85 (Go87.1). As intuitively expected, both
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algorithms fail for Mach numbers of unity or greater.

However, the assertion that most Stirling engine hardware experiences
low cyclic maximum Mach numbers is by no means definite. The maximum
Mach numbers referred to have been determined for sach piece of
Stirling hardware at the minimum flow area (usually th.
heater/regenerator interface) where the peak cycli. flow velocities
are inferred to occur. Yet Organ (Or84) has argued, based on single
screen experimental data, that the flow in the regenerator may choke
at upstream Mach numbers in @ range 0,2 < Ny < 0,5 for regenerator
matrix poresities in cthe range 0,4 < ¢ < 0,8, a porusity range
spanning most Stirling machines, Should this be trus then the
consequent existence of a weak shock front in the reger. rator
militates against the use of the equilibrium or UPD algorithms, so

mandating the use of the FDS algorithm,

Referring once agein te table 5.1, it may be observed that, in
addition to the pressure domain splitting and implicit cyelic
equilibrium algorithms, a hybrid implicit/explicit version of the
eyclic equilibrium algorithm is also described, This hybrid
algorithm, even though numerically res.ricted, becomes useful when
considering two- and three-dimensional flow fields with relatively
fine control volume spatial discretisations. Under these conditions,
the computational effort in the fully implicit method mandated b rhe
repeated inversion of very large square matrices may become comparable
with or greater than the effort involved in using partially explicit,
numerically restricted algorithms. This statement also takes
cognisance of the particular difficulties arising from Stirling

machine boundary conditions which yield 'stiff’ differential equations
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(Sh82), so predicating the use of iterative explicit algorithms (Ge67)

which can become fairly complex (Bu4),

Thus in the Light of the Eoregoing discussion and in accordance with
the thesis statement which stipulates that only cyclic equilibr.um
solutions are of relevance, atiention is restxicted here to the
Jevalopment and application of the fully implicit algorithm under
cyelic equilibrium corditions only, The remainder of this chapter is
therefore devoted to transforming the time-averaged and spatially
discretised integral conservation balances developad in chapter 4 into
a form amenable to solution by an implicit numerical algorithm
Although this development is undertaken in one-dimensional terms (as
required by the constraints slucidated in section 1.4), the
methodology may be applied readily in two or three dimensions. Such

multi-dimensional applications are in some respects simpler than the

one-dimensional case discussed, since they avoid some of the
convolutions necessary to apply uni-dimensional empirical correlations

in a volume-averaged setting

In presenting the development of the implicit numerical algorithm, a
complete listing of all the relevant equation: as actuslly implemented
in the simulation programmes is given. Unavoidably, such an approach
results in a certain amount of tedium but eliminates any loss of

rigour in translating analytical symbolism into numerical details,
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5.3 IHE ONE-DIMENSTIONAL SIMUIATION SYSTEM MODEL

The system model depicted in figure 5,5 is a literal one-dimensional
application of the discretisation scheme described by equations (4.29)
to a Stirling machine working space, The working space is divided
into three sub-regions termed the expansion, transfer and compression
spaces respsctively. In turn, the expansion and compression spaces,
which are defined as having constant cross-sectional flow areas, are
split further into purely Lagrangian and combined Eulerian/Lagrangian
(CEL) zones. A single CEL mass/energy control volume provides the
interface batween the pursly lLagranglan and Bulerian control volumes
bordering the Eulerian/Lagranglan zone, Each Lagrangian mass/energy
control volume is denoted by a numerical sequence which increases from
the piston inwards towards the transfer space. This produces what may
cursorily appear to be a needlessly complex mirror image numbering
sequence in the expansion and compression spaces, However, in view of
the structure of the Bulerian/Lagrangian interfacing scheme discussed
later, this notation yields the most effective computer programme
structurs, In both the expansion and compressi~n spaces, the
Lagrangian momentum control volumes (wi .se centrolds are depicted by
the single chain dashed lines) are numb- -s. so that the numerical
indices denoting any mass/energy control volume and its piston side
momentum control volume are idemtical. The properties of the first
momentum control volume in both the axpansinn and compression spaces
describe the kinematics of the pistons, so defining the momentum

boundary conditions for the sntire flow field.
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Figure 5.5 One-dimensional Stirling machine working space system modal



There are NE/NG' mass/energy and NE+1/NG+l momentum control volumes

instautaneously in the expansion and compression spaces respectively,
The vniversal sign convencion defines positive to be in the direction
£rom tie expansion space to the compression space. In addition, zewo

piston displacements ave defined for both variable volume spaces ta

occur at their junctions with the space, i

control volume pasitions will appear as negative and positive values
in the expansion and compression spaces respectively. The momentum
contral volume velocities and displacements in both spaces adhere to
the universal sign convention such that positive vectors are directed

towards the right.

Separating the expansion and compression spaces is a Eulerian transfer
space comprising the heater, regenerator and cooler as well as any
intermediate ducting. The mass/energy contzol volume discretisation
of the transfer space may be arbitrary with the restriction that
discontinuous changes in flow area occur at mass/energy control volume
boundaries. The momentum control volume stiaddling the left hand
boundary of a given mass/energy control volume has the same numerical
fndex as the given mass/energy control volume. This results in the
transfer space having an aggregate of NT mass/energy control volumes
and NT+1 momentum control volumes. In terms of the universal siga
convention cited above, all mass fluxes and velocities fn the transfer
space are positive when vectored towards the right (or compression
space end). The 'entrance’ to and 'exit’ from a particular control
volume are defined to be coincident with its left and right boundaries
INon-boldface upright capitals refer to computer programme

nomenclature which is i directly into the notation in order

to simplify the symbolism and allow the programme listings to be
interpreted more readily.
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respectively.

In the following discussion as well as in the computer simulation

programmes, the sign conventions discussed above are meticulously

applied rhroughout and thus will no longer be alluded to explicitly.

S.4 THE REDUCED AND DISCRETISED ONE-DIMENSTONAL INTEGRAL BALANCES

The one-dimensional conservation balances as well as their associated
boundary advection terms are a simplification of the generalised
equations developed in sections 4.5 and 4.6. Henceforward, the
nomenclature is simplified where appropriate by ignoring the overbar
averaping nomenclature and reducing all the vector terms to their one-
dimensional form which, in terms of the adopted system sign
convention, need not be referred to using bold-faced symbols. As the
system model involves Eulerian, Lagranglan and combined
Bulerian/Lagrangian control volumes, the one-dimensional conservation
equations are given in all the forms necessary for a complete

description of the Stirling machine fluid dynemic system.

5.4.1 One-Dimensional Inte s Balance

From equation (4.30), the Eulerian version of the integral mass

balance is given by:

T -3
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where, as before, the subscript n refers to those parameters occurring

at a momentum control volume centroid.
From equation (4.18), under Lagranglan conditions, the integral mass
balance becomes:

a,/de = 0 (5.4)

while for the combined Eulerian/Lagrangian control volumes in the
expansion and compression spaces (which are denoted henceforward by

the Greek subscripts ¢ and y respectively):

ai /e = (g4, ¢5.5.1)
(5.5.2)

dH_'/dc - (5nAn>H:*1

5.4.2 One-Dimensional Integral Momentum Balance

The one-dimensional Eulerian version of equation (4.36) is complicated
by the properties of the system model. In particular, the non-uniform
flow areas and the necessity of including the multi-dimensional
characteristics of the stress tensors into a uni-dimensional mould
mandate that equation (4.36) be applied with careful adherence to

local geometrical boundary conditions.
Consider a momentum control volume straddling a flov area

discontinuity between two mass/energy control volumes i and i+l as

depicted in figure 5.6,

» ’ ‘m RSy e e s A

P

ta

%




®
®

Figuce 5.6 Flow area disconcinuity

Since the area difference A, -4 constitutes a rigid boundary, the

i+1

surface incegral of pressure from equation (4.36) yields:

- L I Tk R SLT IR FACTAL PR R FYRC TN
)
= APy (5.8)
In other words the net pressure force acting on the momentum control

volume is given by the vol dif: ial acting on

the centroidal area (A),,,.

Since only & uni-dimensional variation of velocity v is permitted, the
full stress tensor iacorporated into equation (4.36) may be simplified
considerably and expressed in terms of the cylindrical coordinate

system of figure 5.6 as:

- - o - - -
CoawrP e ¥ 7 gy ™01+ 1 A = 200w/ T

{(bp/3 + AYBv/dx + pi(dv/80}/r + dv/drt]; (5.7)
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From equations (4.34) and {4.36), the total stress tensor, including

the Reynolds stresses, may be expressed as: J
T IO - T I
J— (on T+ T D eomiaa J T T S
) .
B T mas (5.8.1) i
AB
!
where:
4 a (5.8.2)

4 " Ssrent,ext

(5.8.3)

'3 ™ 45y Acsrenc, ext

Examining equations (5.7) and (5.8) with reference to figure 5.6, it

may be noted that:

S0
Goni T+ (T Dgron = 0 on 4 (5.9.1)

oI T

[£33] tv1 m = 0on 4y (5.9.2)

xr,x8

Hence substituting equation (5.7) lnto equation (5.8) and simplifying

in terms of equations (5.9) produces:

J" (((mi + (V;T(”)nn]dA - L[((Au/a + A)Bv/Bx + r;:_)) -n]dA
[£23) A

+ [{#((ﬁv/aﬁ)/r + av/er)
AB

[
e ) n]dA (5.10)
In terms of the one-dimenslonsl system model 8v/30 and 3v/dr are
explicitly indeterminate and thus must be expressed, via an empirical
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correlation, as a function of v (BS60). The Reynolds stress tensor

3]

compones
ponents et o

are also explicitly indeterminate and must
likewise be expressed empirically in terms of v. It is convenient to
combine these correlations and express them as the single relationship &

O(v). Hence the second integral on the right hand side of equation

(5.10) becomes:

JA [[ﬂ((év/éﬁ)/r + dv/ar} + r;;jxa]--n)an
B

(B4, 15 + 184,05, (5.11.1)
where:
G+ Ay =4y~ Asrent,ext (5.11.2) ;

represents the solid surface bounding the two mass/energy control

volume segments comprising & momentum control velume.

Following an argurent offered by Schlichting (Sc79), r4%’is

ignored since, by an ordsr-of-magnitude analysis, it is significantly

s

less than Tar, 0"

Thus from equations (5.10) and (5.11):

(_ (T * mr‘“)~~n)da = [ [{(4p/3 + A)dv/ax)-n)da
J 4
s 4

A+ (WA, (5.12)

Hence, reducing equations (4.38) to one-dimensional form and

substituting equations (5.6) and (5.12), the Bulerian form becomes:

A(g, V) /de = (gva) | - (gvA); + (A);(P; Py - (M)8
- (/3 + MBY/BXIAL |+ [L(su/3 r A)BV/Bx14);

B USOZ IR TR (ﬂ(v)A,}i
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Substituting equations (4.50) and (4.61):

dg V), /88 = vy

B v A (B E - e : F]
R+ A/ KB A L - (A )

A, Y - AR/ (g A) - (gyA) L ) (5.13.1)

whare (gA)J. are determined such that for j = I-1 snd j = i;

£ vy = 0 chen: (gA):, - (8 (5.13.2)
if vJ < 0 then: (gA)} - (gnAn)jn (5.13.3)

and v; is given by: i
vy = ((gnA,,)j + (gnAn)j,l) / 2PJAJ (5.13.4)

£quation (5.13.1) is applicable to the Eulerian momentum contrel :
volume at the junction of the expansion and transfer spaces with the

modifications described by equations (5.14). J

When j = L1 = c:
if v, 2 0 then: (gA): BRI (5.16.1)

n®n’yeer

if v, <0 cthen: (gA)) = (g,4.), (5.14.2)

Since the centroid of the ¢ mass/energy control volume constitutes @

moving boundary, from equacions (4.51.1) and (4.36), v, is given by:

Ve m 1 pBedygay t (B /20,8 - 0030V ey (5.14.3)

and hence by inference:

P ViAnduges T Gitn)j (5.14.4)




w

Similarly, for the Eulerian momentum control volume at the i

1on, space 1 . equation (5.13.1) applies with I
the changes given by equations (5.15). P
When J = I = 7t
4 1E v %0 them: (gA)) = (540, (5.15.1)
1f v < 0 chen: (gA) = 2, A ey (5.15.2)
where!
. ! R 0 - JONS V2 VIO S 100 SN (5.15.3)
i
: hence:
R o
N i
N 2,0l venr 7 Bafn) oy (5.15.4)
’ The Legrangian form of equation (4.36) may be expressed using the
| structure of equation (3.28). In texms of the system model (figure
i 5.5) the Lagrangian form is used only in a constant flow ares
s environment, This permits the simplified result:
!
i
i AV /36 = (A (P -P) - (B(WIA ), | - (BWA), « ()8
o +LAG/3HI/1Y, W) e (o) )
: - ALp/3 /L (L) - )00 (5.16)
: The form d(M,v,),/dt of equation (3.28) is preferred to
(,)(dv,/88) ; given by squation (3.29) in order to accomodste the
NE+L and NO+1 momentum control volumes in the expansion and
compression spaces respectively (see figure 5.4), In terms of
. ecuations (4.33) and (3.5), these particular control volumes will in
general have d(M,),/dt # O,
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Equation (5.16) is applicable to the NE+1 momentum control volume in

L]
the expansion space with the veplacement (determined from equation o
(4.50)):
U ahdyres = ) I = () = O 1 (s.27.1)

and the addition of an advective term on the right hand side so that:

(RHS Of (5.16)) - v_(gA), » (RHS of (5.16)) (5.17.2
where (gA): is glven by equations (5.14)

Stmilarly, for the NC+l momentum control volume in the compression '
space equation (5.16) applies with the replacement

UBpndyrar = 23 nfndncar 178, = Uvdy ) - v 0/8; (5.28.1)

and the addition:

{RHS of (5.18)) + v’(gA); - [RHS of (5.16}) (5.18.2)

where (ga)) is given by equations (5.15),

5.4.3 One-Dimensional Integral Enerpy Balance

In translating the gemeralised integral energy balance of equation

(4.43) into & one-dimensicnal Eulerian form, difficulties similax to

those encountered above for the dissipation and turbulence terms

arise, namely, the inclusion of essentially multi-dimensional :
phenomena in & uni-dimensional styucture. Thus in texms of the uni-

dimensional velocicy v, from equations (4,37) and (4.38), the
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il

dissipation is gi:-. in cylindrical coordinates by:

Cpo®y ™ {(au/a + A/t + sl(av/ar)t ((av/88) /1 h) ;

(evy
o "
SR, T o)) (519

where the function F represents an empixical evaluation of the

dissipation resultant Erom the temporally fluctuating compoment of the i
volume-averaged velocity. As for equation (5.7), (dv/dr) and (dv/86} {
are not explicitly determinable and hence it is convenient to combine

these terms with the functional term F into a single empirical

relacionship #°(v). Equation (3.19) then becomes:
([”)3)1 = (bp/3 + MV + 8T () (5.20)

The non-advective heat flux and turbulent heat flux surface integral
terms in equation (4.43) may be combined and repartitioned into flow

and non-flow surface area components as £ollows:

= )
J‘; TR TR L S AL
nes)

- = =y,
JA g1 vy T g @ Jeomida
‘4

X - i3]
+{ Wy Vv T ¥ gy 800 rmida (5.21.1)
A
where:
A4 ™ Anisyene, ext (5.21.2)
A5 = Ansy dncsrent, ext (5.21.3)
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In a one dimensional field, the second integral on the right hand side
of equation (5.21.1) (which describes the heat transfer between the
solid portions of the boundary and the control volume fluid) is

dependent: on 47/2r, 8T/86 and v(r,d) as well as on their temporally

fluctuating components. As none of thess terms are explicitly
available, it is cuscomary to lump all the solid boundary / fluid heat
transfer effects into a single convective heat transfer term (BS0).
This term incorpo-. tes an empirically determined heat transfer

coefficient as follows:
e T %)
Lﬂ“tnv,‘)‘vuvnxT oy @ IR = hA) (T (5.22)

where h is the empirical heat transfer coefficient and (An)a danotes =
the solid surface bounding a mass/energy cuntrol volume. By analogy

with the momentum balance, following Schlichting (Se79):

) ey
vai® ¥ lrayg (528

)

or the turbulent flux qf*’ << qfi’, by an order-of-magnitude

analysis end may thus be ignored.

Hence combining equations (5.21), (5,22) and (5.23) and substituting
the result together with equation (5.20) into equation (4,43) yields

the one-dimensional Eulerian form:

3Vd(TM)1/dc - Mile OV LChR/3 + Ay (@v/8x) m'(v))L + (VvaP/8x)
A (T D)+ (b (/80
- (A (AT, /0%) (5.24)

+ Opl8Tydn) ;- CplaphyTy)

i+1




The discretisation of all the gradients in equation (5.24) is quite

natural in terms of the oystew model with the exception of the

(9P/ax); gradient. As o

tioned previeusly in the discussion of

equation (4.39), an approach which has proved to be numerically 4

successful is developed with reference to figure 5.7 for the

particular case of a constant area mass/energy control volume.

—t (1 A

A0 ¢ G
A A
! \
! |
E o |
) Gin

Figure 5.7 Pressure gradient discretisation

As there are two pressure gradients existing in the mass/energy

control volume, the aggregate effect may be obtained by integrating

v(8P/8x) in two parts as follows:
1,/2

(wvar/oxy, = A || Ctvia(P-Py /(1) 1
°

1
+ f Lot @y, -2/, 1dx]
2

1,/

Substituting equation (4.49) for v{(x) and rearranging:
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1./
(Vvapsax) | = (4 /0 VLB <P /(1)) L‘«(gnan)lufx) + (gA,) p, X0

1
4
* AP P 1) J | Byftn) 1 (1,30 + (gyAp)y, X1dx]
1,72
Integrating and simplifying produces:
WVAP/AX) | = (Ly/8p ) (P Py I3 (Ean) s + (8pAg) 1, /04
TGP B U(8Ay)  + 3(8aA) ML) L (5.2%)

This equation is a paradigmatic expansion of (VvdP/x), although the
algeora may become quite complex when 4; is an arbitrary function of
x. As the constant area case is most prevalent, equation (5.25) ia

used henceforvard for exemplifying the algorithm development.

Substituting equations (4.50), (4.67), (4.68) and (5.25) into equation

15.24) yields the final Eulerian form:

N 5 .
Cyd(TH) /de = HE) & (4u/30) 1B A 11 = (BpA) ) /651/, + (Ve (ny

L8Py - By )0 E Ay + (BuAy)y, M/

B PO+ 3 A LV ) gy
A (T, T+ a8 (T - &P<gnan)ml.rn>l,,
FA) Ty T2y gy ey, 1)

T IR LT L VAL IS AT (5.26.1
where (rn)J are determined such that for j = 4 and J = i+l
LE () = 0 then: (Tn)_', =T (5.26.2)

T

J (5.26.3) '

LE (g,); < O then: (Tn); -
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The Lagrangian form of equation (4.43) may be expressed using the

structure of equation (3.32). In terms of the system model given by

figure 5.4, the Lagrangian form is used in a constant flow area

environment only and thus may be simplified to yleld:

Cytty

T /9T = 08+ (/340 V(L) 1, - o) 1,0

SR )+ (VBB < Bp )UBv) R 1AL

PPy PO ) 3 v ) /0] - PRAY ) L - ) )

+AR(AD) (T D)) o+ AT T )2 e,/ Geyly ybe i 1)

ST T 2y g Dl 1)) (s.27)

The energy equation in the combined Eulerian/Lsgrangian ¢ mass/energy

control volume in the expansion space is given bu:

Cpatamy fac = ME 4 P A (v L+ G/ (880,70, - (Vphd s, )27,
L OUE, - Py B A gy H (A /2 M () sy

Py B VA 1 43(8,A /0 1/ () ] - Cplgan) (T))

n)y
+RGAL (T, + (A L (T, T 326, s /(6 Ly ey 2 )
VTN, - (A) (T T2 6 1 e 1) (5.28.1)

where (Tn): is determined such that:

i€ (gy), = 0 then: (T))} = T, (5.28.2)

LiE (g, <0 then: (T)] =T, (5.28.3)

similarly for the y mass/energy control volume in the compression

space:




R 4
Cyd(m) fde = M E + (n/340) 108D oL -(Bbnd s, /01719,

V)] 4 (/DR - P B lg A /0,
* g )y * Cue - BOUEA) 0 /e,
* A oV ) gan ]+ A (T D) - P A Gy

* Cplnt e urss Tdures * (od yres Ty T 020y, /0 1

. .-
+'c”l’) (An)ucu‘rw T"c)Z)c’)c“c/(m“cl_'hc‘,l“c) (5.29.1)

where (T,)y.,, is determined such that:

iE () ey 2 O then: (T)L =T

LE (8)yg,, <O then: (Tl =T (5.29.3)

5.5 THE IMPLICIT NUMERICAL ATGORITHM

The implicit numerical algorithm used has its origirs in the Implicit
Gontinuous-Fluid Eulerian (ICE) technique of Harlow and Amsden (HA7L)
and che Semi-Implicit Method for Pressure-Linked Equations, Revised
(SIMPLER) of Patankar (Pa80). In turm, this latter meth.d reportedly
(1s83) extracts its central ides from a semi-implicit scheme developed
by Chorin (Gh68). Although elements of the implicit algorithm are
clearly identifisble with the ICE and SIMPLER algorithms and, in
particular, the overall iterative approach used conforms to the
SIMPLER scheme, the details and sequencing of the algorithm have not

been encountered in the literature (Es83, Ro82).

The implicit algorithm is discussed in several sub-suctioms. Firstly,
the necessary implicit pressure, temperature, velocity and mass flux

field equations are developed from the one-dimensional integral
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balances discussed in section 5.4, As before, the Eulerian,

Legrangian and CEL forms of the relevant equations are listed for the

sake of completeness. Thereafter, the algorithm itself is defined in '
terms of these implicit field relationships. Finally, the methodology

used to interface the Eulerian and Lagrangian flelds is discussed in

terms of the defined algorithmic strueturc.

5.5.1 The Implicit Pressure, T Velocity and Mass Flux '

Field Equations

Central to the implicit algorithm is the methadology by which the
implicit pressure field equation (5.2) is extracted from a combination i
of the conservation of mass and momentus equations. This methodology
is in essence similar to that proposed by Harlow and Amsden in the ICE

algorithm.

Discretising the left hand side of equation (5.13.1) and invoking
equations (5.13.2) and (5.13.3) allows the Eulerian integral wmomentum

balances ta be given the foxm (for 2 < i =< NT):

Kgdy = Kapdplgyd s + Kupd i) iy * (A0 (P Pp) + (a);  (5.30.1)

where:
By = (A5 AR/ 3 (5.30.2)
B = (Ay) p,, LACGR/I+A) /M) (5.30.3)
Kar)s = By [" Vi), ]if v, =0 (5.30.4)
1
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Koy = B | - v (A, s
nR’ i R[ InlJifV1<0
)y = (V) /6t + By + By

v, <A>] [wu)] .

1Y’ i 1¥nls |,
[ v, <0 v, 20

Cady = (VEEH) /08 - M8 - (0WAL) L - 1904, (s.
For the momentum control volume straddling the expansion/transfer
space junction (i=1), equation (5.13.1) is coupled with equations
(5.14) to produce:
Kandy = Kngdy Cpdugey + Kgdy 8ol + (AR B Py) (), (.
whers S and (K,p), are Eiven by equations (5.30.3) and (5.30.5)
respectively with i=1 while:
By (AChn/ 348 /M) ¢s.
(Knl.“l - p:(An>N!4—lﬂL {“- V‘p‘(An)“!’l ]if v,z ° s
(Kp)y = (V) /60 + (A B + By

S v (4 v, (4) (s.

[ ¢ ”‘}vaﬂ<o { : n‘]ifv’zo

.

(o) = (VEgS) /86 = () (8 - (B(VIA), = (WA}, (s.

Similarly, for the momentum coutrel volume straddling the
compression/transfer space junction (i=NT+l), equations (5.13.1) and

(5,15) are combined to yield:
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30.11)

30.12)

i !

" £, . '* N R T S o



Knfndyray = KapdyzeiEndur * Kapdueoy Taducer ¥ BAadyrey Fyr 2 §
* (o) ey (5.30.13) ‘
where, in this case, f; and (X)), . are given respsctively by #

equations (5.30.2) and (5.30.4) with i=NT+1, while:

B~ (A(‘m/]#\)/ﬂ)_, (5.30.14}

]

Kardyzey = 2, Undyessfr [ Vs Andyen ]if v <0 -30.15)

Kidures = pdyzer/BE + B+ Bdyyifp

- v (4) V(4 (5.30.16)
[ s ““Jifv“<o { ’ “””]:’.Er@g&

- (g%
SELAITI

(ay) /88 - (M) 8 - 1BWIAY - 184, (5.30.17)

wret T
The Lagranglen integral momentum balances are obtained from equation
(5.16) which may be manipulated to yield, for 2 < i SNE or 2 = J <
Ne:

Bevdy = Ko V) % opd )y + (B (B, Py )+ (ap), (5311

n'n’ i
4o R A i J-1 J
where:
Kppdy = AlG/3+8)/1); (5.31.2)
J J
Kppd; = ACh/30) /01 (5.31.3)
j et
(Kp)y = (M) /8 + (Kpp)p + (Kop) s (5.31,4)
J i J J '
(o) = Cpvn) 786 = (M) B - (B(DAY, - (WA ), (5.31.5)
J J drr J
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The intagral mementum halance for the (NE+1) control volume in the
expansion space is determined from the combinmation of equations (5.

and (5.17) resulting in

(Knvn>ln:n - (KnL)»EH(Vn)H: * (KnR)nzﬂ(gn)1 * (An)nsH(PME'P:)

* ("n>na+x

where (KnL) is defined by equation (5.31.3) with { = NE+1 and:

HE+1

B = LACGR/3+A)/H,

X, =)

ndygar e an /86 F (Kpdy oy, e () 0 e

+vop (4)

(@) ygey = (V)05 /B8 - (M) 018 - 1BODA) L - (B4,

Similarly for the compression space, the (NG+1) control valume
integral momentum balance is obtained from equations (5.16) and (S.

which combine to produce:

<KnVn)N:*1 - (KnL)NC‘l(gn>N'xﬂ * (KnR)Ncﬂ(vn)Nc * ‘An)ncﬂ(‘p1'?|(c)

AU

where (Kop)yo,, is defined by equation (5.31,2) with j = NGl and

By = (Alhp/34a)/M)

(Kpp) = (4) By | v (4
nL/nc+t n’nreiFL LRRUS LA PP v, 20
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16)

(5.31.6)

(5.31.7)

{5.31.8)

(5.31.9)

{5.31.10)

18)

(5.31.11)

(5.31.12)

{5.31.13)



Fadyoar = Wpdyes /86 + 0, hn) ey s P+ Kppdyes, '
|
[ = v (A year ]if Y <o (5.31.14)
” A
() yery = (VA oy /BE = () yey 8 * IROVA), ~ 18(A,) (5.31.15)

Discretising the left hand side of equation (5.3) and substituting the

equatien of state (4.13) produces:
(PY/RT-H') (/AL = (8,807 - (BpAn) ;. (5.32)

The lefc hand side of equation (5.32) is implicirly dependent upon the
information propagation rate at time t*+At (see figure 5.2) for the
mass/energy control volume i. This may be shown by noting that v, is

a constant for a Eulerian control volume so that:

PV/RT - M® = V(P - RTp®}/RT
= VRT(p-p")/RT

= (V/RT) (32/80) 1 (p- ") (5.33)

vhere (8P/8p)y is the square of the isothermal speed of sound for a

£luld with constant specific heats,

Substituting equacion (5.30.1) into equation (5.32) end rearranging

produces the implicit Bulerian pressure field relationship:

2
PV, /RT 06 + (AR/KL), + (AR/K) (1) = By (AR/KL)
X
" Plr)(An/Kn>Jn—l
Hi/ae + (A 1) | (Kapd ) + (8 5,y (Kogd g + (@) 1/(K)

() 1 (B Kag) gy + B) gaa Kl jes ¥ (o)1 Kby (5.34)
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The Lagrangian pressure field relationship may be found by

manipulating equation (5.4) as follows:

0 = an,/ar

= py4V /4t + V,dp, /dt

Since the control volume flow areas in the Lagrangian zones are

constant, in advanced time form this becomes: .
dpy/8t = pyCvy-vy g/l
biscrecising the left hand side and substitucing equation (4.13):

L H
(PR - %) /88 = py(vyvy, ) /1, ¢5.35) ;

Following a manipulation similar to that used to produce equation
¢5.33), the implicit dependence of the left hand side of equation
(5.35) on the information propagation rate may also be demonstrated.
Substituting equation (5.31.1) into equation (5.35) and rearranging

yields the implicit Lagrangian pressure field equation:

PLLCL/RT,AE + o L (A /KD + (ALK, VLY - Prop (807K /L,
P p ARy /L
pI/AE + o LUv) (KoY b () (Kppd g o (o) (MR

) K)oy ¥ ) gy () g (o) g 1/ CK ) 544072 (5.36}

Considering the ¢ CEL control volume, using a process similar to that
which produced equation (5.35), equation (5.5,1) may be transformed

into:

(B/RT ~ %) /88« p vy, Sh, - (Bua) Y, (5.37)

CESY
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Substituting equations (5,30.8) and (5.31.6) into equation (5,37) and

rearranging yields the ¢ control volume pressure field equation:

.
P80 0, (/D /L, BE) V) = Byt (AafR) e 111,
R,

P+ b L )y * Gy FaRpes * Cduaes/ Edaa,

A, ey Cgdy + Bdy () + () 18,7, (5.39)

Similarly, the presnure field relationship in the y CEL contxol volume
is given by:

2
P7(1/RT1AC + (An/l( )

AR NS N TISVEN

wors/ T,
2
 PurllCadunan??, - Puct, Un/Xdyeindt,

oL/8E + (4) [¢3 + ()

wenn @y Enpd yran * Wpdyess Kopdyras
* oy VsV, 0 2 18 i KD veer + ) eKnrd o
e VKD sl (5.39)

nfucey 1w Rer1ty

The temperature £ield equation in the Bulerian zone may be determined
directly urom equations (5.26), Discretising the left hand side of

equation (5.26.1) and rearranging yislds:
KTy - R Ty - KTy, =y (5.40.1)

where the constants are defined by the threaded sequence:

By = 24D mg m /gl bk, 1) (5.40.2)

Bp = 2ap) j mpey gyl b Rply) (5.40.3)

Ky =8 [*ra(gA) ] (5.40.4)
23 Pnnllf(g")lzo
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. i
Kp); = 8 ['C(EA) ] {5.40.5)
#1 " Pp P{8nn) gar
1f (g); <0 §
a a ”‘
Ky o= Cyty/0r + By + B + (A 0y | - Bptegh; |
if (g), <0
+ 8088, (5.40.6)
[ Pt i | . ey * 0
PR A
ay = Gy(H*T™) /A6 + ME) + (bp/3eA)  [U(gAnY - (gnA,,)Ll/ﬂilz/V1
.
FVET(IY (1,8 KPPy V(MG AD  + (8 Ay 1LY
Py POUEAD  F 3E A 1 )/ ) R T, (5.40.7)
The implicit temperature field equation in the Lagranglan space is
similarly defined with the notable addition that the work term
P4V, /de) Ls included in the temperaturs coefficient term K, rather
than in the constant term ay. This is accomplished by substituting .
the equation of state (4.13) into the second term on the right hand '
side of squation (5.27) yielding:
PALO) 0y () ) = P RTA TG gy~ i) ) (5.41)
Hence, diseretising the left hand side of equation (5,27,
substitucing equation (5.41) and rearranging produces:
BTy - Ty - K Tiy =0y (5.42.1)
where the censtants are redefined by:
(Kpdg o= 240y 0/ Cegly y * kg 1) (5.42.2)
(Kpdy = 2Apspny, /gy dy + mpdy,,) (5.42.3)
Ky m Gyt y /o + (RpRe)y + o RALL(V) = (v) )+ (BG4 1) (5.42.4)
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oy GUNT®) /86 + HE) o (/30 VL0 - (v ) 017107
- RN VB R P L By v (v /)
+ (P

ey POV 3 /U, ) (A T (5.42.5)

similarly, for the CEL ¢ control volume, using an equation of state

substitution, equation (5,28) may be wanipulated to yield:

LT, - Kp) Ty - KTy = o, (5.43.1)

where!

L L LA R e (5.43.2)
B = 204 8k /sl 4k 1)) (5.43.3)
Kg) =By | - Cptg A (5.43.4)
R R[ Pnn‘}if(gn)‘<0
K= G /ae 4 () + By - p BALYY L, A )
+ Bplg A } (5.43.5)
KLV

@, = GO T /o + B+ /) LB A o, - (A el 1Y,
S VN1 (L /BY (KR By M) oyt (Bt /2 M/ ) ey

P Ay + 384 /0 /W) ) ¢ (A T, (5.43.6)

Likewise, for the combined Eulerian/Lagrangian vy control velume, after

manipulation. equation (5.29) produces:

KT, - Kp) Typ - Kp) Ty = 2, (5.44.1)
where:
B = 2040 oy Fprh /(8 yp R L) (5.44,2)
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), - hy [ Gyt ) yey ] (5.64.9

g, 20
(Kg), = 204,

X
wo+1*r e

K, = G J8E 4 By b (Kp), + o RA (VoL 4 (RGAD )

[ - Cplahd e, ] (5.44.5)

M (g, <0

a, = BTty sbe M B+ (/3 T o,y B s /P, VT,
S+ L OUE B D sy + Ao ) i,

* <PNc-p1>((gH"n>)H'v1/P1 * 3(VnAn)Nc+1)/(ln)NCv1]

4 {h(a) T} (5.44.6)

nlatw'y

Finally, the implicic forms of the momentum equations may be
determined Erom tha previous diseussion. For the Eulerian zone, the
implicit mass flux field equations are given by rearranging equations

(5.30) as:

Ky~ Bo) W yaes ~ K1 (80, = (A (2P + (o), (5.45.1)

(Kngn)llT'fL N (KHL)“T*Z(EH)NT " (KHR)HTfi(Vn)MC&l - (AN)NTQX(PHT‘P'I)

+ {e) (5.45.2)

0/ NTeL

ana for 2 s 1 s NT:

(Kogdy - Kp)iB) s, - Kppd (Gpdy,, = (A);(By ~P) + (&), (5.45.3)

Similarly, the velocity field equations in the Lagrangisn zomes are

given by reavranging squations (5.31) to produce:

Fp¥ndyzes * Kapduper¥adpe ~ FneduzesBndy = Bodypey @poP )

+ (a ) (5.46.1)

nNEL
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(Kvy)

n'n’yery T (KnL)ch—x(gn)Nﬂ) - (KnR)ucﬂ(vn)nc = (a4 (Pw‘PNc)

n NC+1

+ mn)nc&\ {5.46.2)

and for 2 £ i = NE or 2 £ J 5 NC:

Eovpdy - Kopd(vd sy - Kupd (V) = (A (B -P ) ) + (e}, (5.46.3)
J J Jri J J-i JoJ 4o J
5.5.2 The Implicit Numerical Algorithm Gomputin

The algorithm is presented in the form of a sequence of operations

required to progress fiom time t* to time t®+Ac. Peripheral issues

such as the establishment of initial conditions, fluid property B
determinations, data input/output procedures and che like are

discussed in appendix ¥. Machine specific details such as the

computation of tube wall or regererator matrix temperature fields

(which are based on thermal conduction considerations and are not

intrinsic co the fluid dynamics) are discussed in chapter 7 for the

specific hardware sim:lated. As elucidated in section 5.2, two

versions of the algorithm are presented. The equilibrium algorithm

based on the infinite i i ion hypothesis is described

first followed by the unitary pressure domain (UPD) algorithm

embodying the characteristically ined i on time incremen

hypothesis.

5.5.2.1 Equilibrium Algorithm
Assuming a constant, arbitrarily determined integration time increment
At which is much less than the smallest time characteristic of a given

Stirling machine, the equilibrium algovithm is given by the following
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computational sequence: !

1.

Determine the expansion space and compression space piston

(xpvp)

. ; s s s
kinematics at time & +At, that is, find ("n"'n)m’ 0 Vadse

Guess the Lagrangian zone velocity fields (vi)|, , ... and

@)1l suz yoey a0 Ehe Eulerisn zons mass flux field ;
(87 5l guy ypvy 8E Cime £48E by seceing (v); = (v5); and i

(g = (&g

Explicitly compute the CEL zone control volume masses using

equations (5.5) as follows:

"o Ar:{gr:,an)1 (5.47.1)
R .
UM LA ey (5.47.2)

Test whether the masses in the ¢ and y CEL control volumes are
sufficiently large. If not, reduce the time increment At and

return to step 3.

Explicitly compute the Eulerian zome comtrol volume masses using

equation (5.3) as follows:

Hy o= My oelgudn); - (8pag)y,,! (5.47.3)
Explicitly compute the Lagrangian zone momentum control volume

displacements Erom:

(vdy = 9> Y /8 .

such that.
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g > R
Gepd = (gd; + Ac(vy) (5.48) E
7. Datermine the density field in all spaces using equation (4.32). o

8. Gompute the necessary fluid properties such as viscosity and

canductivity and calculate the mass/energy control volume

velocities using equations (4.51.1) and (4.53). Thereby

Gatermine the required empirical coefficients (heat tramsfex

coefficients and friction factors) using appropriate correlation

formulae or tabulations.

9. Implicitly solve equations (5.40.1), (5.42.1). (5.43.1) a=

(5.44.1) to produce the unified temperature field at time :'rif.

10. Implicitly compute all the necessary thermal conduction

temperature fialds (such as those occurring in tuoe walls and

regenerator matrices) using the time fluid

of step ¢ as boundary conditions.

1. Implicitly solve equations (5.34), (5.36), (5.38) and (5.39) as a
unified field, using the latest advanced time temperatures to

datermine the pressure field at time t’+At.
12. Solve equations (5.45) and (5.46) implicitly o produce the

uniflied advanced time velocity and mass flux fields, using the

advanced time pressures of step il
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13. IE: [ all g, and v, are sufficiently converged, or:

max (- 180/8l 1) juy wrer + (V0000 0 s apea) <8 (5.69)

I=z,HC+1
where § is of arbitrary smallness ]
THEN:
( g ta step l4. ]
ELSE: [ set:
BoonelBds * LBoom) 8105 = (1),
convon’ L conv’ n' i n’ i 51, NT4L
BroneTadi + boom) Vndy = (V)
conv n’i cony’ n’i n'i =2 NE4L
i=2,NC+1
where B, is a comiergence factor ia the range
O < ooy 1. Go to step 3. ]

14, Test the mass in the ¢ CEL control volume as follows:

IE: { M, < (M), and NE > 1}

THEN:

{ Gombine the NE an ¢ mass/emergy control volumes snd
reduce the number of Lagrangian control volumes by 1 or

RE-L -+ NE. Go to next step. ]

mse iz (a, > o), )
THEN:
( Greate a new Lagrangian mass/energy control volume
by partitioning the ¢ CEL control volume and increase
the nunber of Lagrangian control volumes by L or

NE+l + WE. Go to next step. ]

BLSE: [ga to next step. ]
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15. Repeat step 14 for the v GEL control volume by replacing z with 7

and NE with NC.

16. Ser t'vAr - t* and all necessary $ - §' (where ¢ = mass,

momentum, energy, etcetera) and repeat from step 1.

5.5.2.2 Unitary Pressure Domain (UPD) Algorithm

The UPD algorithm (which is the limiting case of the pressure domain
splitting (PDS) algovithm) has the potential for generating very large
time increments. This has the advantage of producing a significant
increase in computation speed since fewer time increments are requirad
to integrate the equations over a cycle. However, fewer time
inerements make a fine resolution of the flow field in the Lagrangian
spaces impractical using the alporithm described above because of the
nged to reconfigure expansion and compression space control volumes at
almost every time stap. It may be noted, though, that this
impracticality would not apply to the Full PD§ algorithm since
arbitrary time increments of adequate smallnegs may be selacced to

restore he viability of the CEL interfacing scheme described.

The UPD algorithm may be formulated as a subset of the infinite
information propagation algorithm since the CEL interfacing steps fall
away and the expansion and compression spaces are represented
throughout the cycle by the ¢ and v control volumes respectively.

Thus the UPD algorithm may be described in terms of steps 1-16 listed

in section 5.5.2.1 as follows:

a. Compute the time increment At from:




e = max (BLi/v, v b 2/ lept o) Dy e
i B
b step 1.

c. Guess the Bulerian zone mass flux £ield (g), , ..., at time

t*+at by setting (g",)1 - g,

4. Execute the following steps omitting all refarences to the

Lagrangisn zomes: 3, 5, 7-12. i

e IE: [ all g, are sufficlencly converged, or from
equation (5.48):
ma (G118, 1y g < 7 )
THEN;

[ go to step f, }

ELSE: [ 3081 Boony(Bds + (UBogn (805 = (&)1 Liny wen

Go to step a.
£, Step 16 and repeat from step 1.

In practice, this algorithm has an artificial limitation in the sense
that it does not permit precise values for cyclically integrated
parameters (such as heat transfers and indicaced works) to be
computed, This avises because, in gemeral, a given cyclic period will
aot centain an integral numbe: of time characteristics, or, the end of
a cycle and the completion of a pressure p'‘se traverse will not
coineide, Various methods of dealing with this difficulty have been
tested including the obvious protocol of interpolating between data
points to detarmine the cyclic closure values. However, the
characteristics of the implicit algorithm combined with the relative

d make the int lati protocol guite

sparsity of data points
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hazardous and prome ke large errors, Thus an alternate approach has
been developed in which the average time increment over an entire
eyele 1s used to generace the nearest integral mumber of increments to

be used in the next cycle, or:

no, of increments = integex (¢ __ /(&f) + 0,5}

per’ average

This approach, while eliminating the numerical cyclic integral errors,
has been demonstrated to yield small discrepancies in closure
temperatures and pressures under onerous boundary condltions (Go87.1).
Hence, in physical terms, the eyclic {ntegral values produced by the
time increment approximation are mot exact UPD values. The cyclic
intregral errors seem to be proportional to the operating frequency
such that a: 100Kz, the errors reach values of about 2-3% (Go87.1).
1f necesaary, thls discrepancy must be taken into account when

compa' ng experimental results with those simulated by the UPD

algorithm,

5.5.3 Discussion of the Implielt Algorithm

The structure of the implicit algorithm described above is the result
of 2 prolonged trial and error development procsss, Hence the
principal justification for the algorithm's structure is ius
demonstrated efficacy under a wide range of generalised fluid dynamic
boundary conditions including, for example, ite application to a
generalized cavity flow preblem in two-dimensions (Go85). Since
myriad diffevent appraaches to solving the given equarion set are
theoretically possible, the selection process necessarily depends on

criteria such as computational speed, ease of implementation and data
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storage requirements. Hence for Stirling machine boundary uonditions,
the implicit algorithm deseribed above outperformed the SIMPLER

algorithm {n all categories, notably in compucational speed. This is
attributable to the implicit algorithm's significantly faster rate of A

convergancs, that is, fewer itorations are required to satisfy

equation (5.49) than needed by the SIMPLER algorithm. However, this

improvement in performsnce is only swbstantial under conditions in

i
B which the varfous cosfficient matricas are inverted using non- i
iterative techniques such as Gaussian elimination or Crout reduction

{Ge70). In a one-dimensional context this is not a limitation, since |

. all the implicit field equations may be cast in the following tri-

diagonal matrix (IDMA) form:

,
i o K 0 ! ' 0 ¥ o ¢
'{ LT T ! ° !
J o : 4
: - (5.50)
| ° '
| '
:w ¢ Km-x.m-z Km~1.m»1 Km-lym
i 0 ' : o Kpo-r Xom ¥ %

Co

The cosfficient matrix [K];; may readily and rapidly be inverted using
i Gaussian elimination techniques such that only the elements in the

three no.-zero dlagonels need be stoved,
An essential difference between the implicit and SIMPLER algowithms,
however, {s in the treatment of the tomperature field equation. In

: the SIMPLER slgorithm, steps 8 and 9 which produce the tamperature
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[
E
field are performed after steps 12 and 13 in which the velocity and
mass f£lux fields are determined. Furthermoze, the temperaturs field
equations in the (EL and Lagranglan zones do not apparently (Pa8D) i 3
include the indicated work term within the coefficlent matrix (using %

the substitution of equation (5.41)), but rather incorporate the

indicated work in the constant term, Since the piston motions drive
i the flov in a Stirling machine, the driving impstus is thus not as

B directly involved in tho convorgence process In the SIMPLER algorithm

as it is in the implicit algorithu, Thls offers an sxplanation for
the inferior convergence performance of the SIMPLER algorithm under
] [ Stirling machine boundary conditions. One other difference between
the two algorithus is che use of squations (5.47) and (5.48) to

explicitly deternine the Eulerian masses and Lagrangian displacements i
respectivaly, a procedurs which is not explicitly included in the
SIMPLER algorithn as reported in reference Pag0, The above i
comparative discussion is strictly relevant to a one-dimensional, .

compressible fluid flow situation. In two or three dimensions, as

well as under incompressible flow conditions, the two algorithms as

deseribed are mot comparable, Compressible flows in mote than one-

dimension yleld cosffictent matrices [K];; (in equation (5.50)) which

ars no longer tri-diagonal. The non-iterative inversion of these

matrices may not always be computationally tractable, Under such
circumstances, Lterative inversion schemes such as Causs-Seidel
iteration (Ge70) or Stome's 'strongly implicit method' (St68) are
requirrd. Modifications to the presented implicit algorithm ave
needed to implement thess iterative schemes, whereas ne modification
of the published SIMPLER algorirhm (Pa80D) is necessary, Furtherwors,
Lee unlike the SIMPLER algorithm, the implicit algorithm as described may

mot be applied to incompressible flows,
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In summary, the modus operendi of the implicit algorithm is an
iterative determination of the mass f£lux and velocity fields such that
all other unknowns may be determined as functions of the icerated
parameters. At first examination, such an iterative, implicit
approach would seem to be incapable of yielding superior computational
pexformance to & non-it-rative, explicit scheme such as that described
by Urieli (Ur77) and Bexchowitz (Be78). In practice, however,
particularly when meeting the physically mandated Courant criterion,
these explicir schemes are about an order of magnitude slower than the
iterative implicit algorithm described (Go87.1). Furthermore, if the
particular Stirling machine boundary conditions yield a sufficiently
/stiff’ set of differential equations, explicit algorithms are prome
to instabilities caused by truncation arrors. The implicit algorithm

does not suffer from this disadvantage.

These observations are corroborated by Annand (Ané8) who compared the
use of iterative and mon-iterative (fourth order, explicit Runge-
Xutta) integration schemes for modelling a diesel cycle in a
reciprocating engine. The iterative method showsd no evidence of
instability and allowed complex two-component effects to be accurately
modelled, attributes not shared by the non-iterative Runge-Kutta
methed. In addition, the {terative method proved to be faster than

its nen-iterative counterpart.
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5.5.4  Gombined Fulerian/Lagrangian Gontrol Volume Interfacing

Inherent in the conservation balances incorporatud in the implicit
algorithm is the capability of interfacing the Bulerian and Lagrangian
zones in a way that maintains overall mass, momeatum and energy
conservation, This is accomplished logistically via the CEL control
volumes which enable Lagrangian mass/energy control volumes to be
ereated or destroyed depending on the total amount of mass within the
expansion and compression spaces. The destruction of Lagrangian
masa/enexgy cottrol volumes is necessary to prevent Lagrangian
momentum contral volumes encroaching beyond the confines of the
constant flow area cylinders as the plstons move towards the transfer
space, Conversely, as the pistons move away form the transfer space,
new Lagrangian mass/energy control volumes need to be created in order
to maintaln the desired level of discretisation. These reguirements
are fulfilled via steps 4, 15 end 16 of the implicit algorithm. The
following discussion of the CEL interfacing methodology is described
in eerms of the ¢ expansion space control volume since the identical
process applies in mirror imsge form to the y compression space

control volume.

The constant mass of a Lagranglan mass/energy control volume is
determined by dividing the mass of gas contained within the entire
cylinder cavity at piston bottom dead center (BOC) by an arbltrary
discretisation number m, such that the constant or conttel mass ¥, Ls

given by:

Ho = Porghel®yolnoc/Riy Tane (5.51)
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whete [x {pna is the expansion cylinder position at BDC and “]Tew is

the length averaged expansion space wall temperature at equilibrium

conditlons (which may either be estimated or available ewpirically).

and (!)

R gy Used in step 14 of the algorithm are

The limics (M,

defined in terms of M_ such that!

oy

Oain * 003, (5.52.1) ;

gy = 11, (5.52.2)

while the time increment change limit in step 4 is set at:

,),, = 01K, (5.52.3)
Conslder the case when #f, < (4,),;, and NE > 1 as shc o in figure
3.8,
:
e z,

:
:
;
@) i ®

|
IS —
(Zﬂ) NE+1

®

|
|
|

‘
'
'
'
L

Figure 5.8 Elimination of a Lagrangian mass/energy cuntrol volume

The elimination of Leprangian mass/energy control volume NE is

described by the following sequence:

I D (5.53.1)
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Ld o~

B

(my, + ) - e, (5.53.2)
The state properties of the £ control volume are recomputed by:

T, - (1), /M, (5.53.3)

B

L HQRT(/A‘(l“E«\‘l‘) (5.53.4)

Equations (5.53) are mass and emergy comservative by inspection.

Tie »limination of the (NE+1) momentum control volume results in
wrurribunions f; and f Lo the Taft and right hand moments (Mv. ).

anc. (5,7, respectively. From [igurs 5.8, the left hand contribution
is proporticusl to the mass of fluig removed Erom the (NE+L) momentum

contrel volume ox:

B =0

RER ¢5.56)

The right huid contribution is also proportional to tha mass of fluid

ram vad and is given by:

R” ‘3.51“5(?’“\’:,‘/.[“)“!*] (5.55)

But, from equati.ms (4.36), the momentum (g ¥.), is normalised with
respect to the Flow area (4,), while fp is novmalised with respect to
4,. Thus B must >e adjusted to comply with the normalisation of
(8,V,), so that the momentum added to (g,V,), is given by:

By = 0,51 G ) (5.56)
s nermalised with respect to (4}, .

whers (vi)y, .

This may be accomplistied by noting that, from equations (4.17) and

(5.3), under constant density, steady-state conditions: ‘]
i
i
1
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AE<Vn)!E*1 - (An) 1<Vn)“tn

Rearranging and substituting into (5.56) yields:

By = BpAo/(4)|
This result implies that in tramsferring fp from (M,v) ... to

(8,Vy),, there is an apparent loss of momentum given by:
B - B = STyt v L) oAy (000

since 4, > (4,),. However, the magnituda of By - fj is exactly
equal to the external impulse fd¢ that is required to reversibly
N .

from (v_) to (vn) so that:

accelerate 0,50, /L),, Daees

o

£dE + By - Fp = 0

(5.5

This ensures that overall momevtum is conserved during the momentum

control volume elimination process. The elimination of the (NE+l)

momentum control volume may thus be described, using equations (5.56)

and (5.57), by:

R R A
(gly), * g » &V,
Bquations (5.53) and (5.58) then allow:
NE-1 =+ NE
When M, > ()., the conditions described in figure 5.9 pertain
After an additional mass energy control velure .s created.
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J Figure 5.9 Creation of a Lagrangian mass/energy control volume

, The creation of an additional Lagranglan mass/epergy control volume is
an inversion of the elimination process demoted by equations (5.53)

and (5.58). The following sequence describes the creation process:

N Initially, a new control volume is created by:
: NE+L ~+ NE (5.60.1)
- Then:
Moo H, - H, (5.60.2)
i Hyy = H, (5.60.3)

The state propertias of the new Lagrangian and ¢ mass/energy control

(5.60.4)

(5.60.5)

Hence the internal energy is redirtributed so that;

(5.60.6)

o

.




(), ~ (M) (D) (5.60.7)

e

The mase/energy control volume boundaries and geometries are updated

by:
1!15 - R(MT/P)‘/AE (5.60.8) .
Gppgar ™ Cpdyg * Lpg (5.60.9)
L= eyl (5.60.10)

By inspection, equations (5.60) are mass and energy comservative.

The momentum (M. v, ) .., of the created momentum control volume
comprises emntribucions f, and B, from the left and right hand momenta

(Mvodyy and (g,7,), respectively. From figure 5.9, the left hand
contribution is proportional to the mass of fluid removed from the NE

momentum contrel volume, or: i
B = 031,000, RS

The right hand contribution is proportiocual to che voiume of fluid

removed from the right hand Eulerian momentwm comtwol volume so that:
B = 0,51, 4,08, (5.61.2)

However, from equations (4.36), By is normalised with respect to the
flow area (4.), while (M v ) .., must be normalised with respect to

4, s0 that the right hand side momentun contribution is given by:
B = 0.31,:4,08,),

where (g;)l is normalised with respect to 4. From equation (3.3)

under steady-state conditions:




£
i

(Bp)y = 4g(8y),
%

which implies that: o

By = 0,51, (4,8, (5.62)

Sincs 4, > (4,),, this suggests sn apparent increase in momentu which

may be sxpressed as:

By - Bp = 0.51,.(g)), (4, (A )

But the magnitude of fp - fj, is exactly equal to the reactive

impulse fdc exerced on the walls when 0,51, 4 (s,), is reversibly

dacelerated from (v,), to (v)) , which results in:

g - By = Fét

This ensures that overall momentum is conserved during the momentum

control volume creation process. Equstions (5.61.2) and (5.62) allow

the creation of the NE+l momentum control volume to be expressed by:

HoVpdyy = B~ Wgvp)yg (.85

[CRANEY AU A AN (5.63.2)

HaVndyeer = P * P (5.63.3) !

Finally, as described in the algorithm listing, the time increment
adjustment of step & is performed for the & and v GEL control volumes
simultaneously, since a common time increment for the entire flow
field is mandatory, Using the ¢ CEL control volume as an example, the
sub-algorithmic expansion of step 4 is based upon the substitution of
equation (5.52.3) into equation (5.5.1). Hence the global time

increment adjustment algorithm may be described by:
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[M: < ”,17Ab ot M_’ < (M'y)AC]
THEN:
((mim ot - 0 / (a8,
(M) o - M08E /(g ad .1 = Bt

Return to step 3. )

ELSE: [go to step 5. }

5.6 CLOSURE

The foregoing discussion has defined the manmer in which the final
analytic forms of the reduced integral balances developed in chapter 4

are transformed into a one-dimensional, numerical algorithm suitable

for implementation in a comps . The ion has
been rigourously accomplished so that the boundary strass tensor
(0(v)) and the dissipation (#'(v)) terms have bsen included in the
Aiscrerised equations without change. The equilibriwm and UPD
algorithms offer a means of bowiding the influence of information

propagation effects so that the validity of the Lmplicit algorithm per

se may be comparatively evaluated.

A final step in implementing the simulation is the incorpor ‘on of
the mecessaxy emplrical correlations thich enable the computation of
0(v) and 8" (v) terms. Additlonsl empiricisw is necessary to
adequately resolve one-dimensional system description and spatial

i discretisation effects, These considerations ars treated separately
in chapter 6 in oxder to demarcate the boundary between empiiical

assumption and analytical rigour.
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CHAPTER 6 ;
4
EMPTIRIGCAL CONSIDERATIONS IN T HE "

SIMULA OF STIRLING CYCLE MAGHINES

#.1  INTRODUCTION

Three areas in which cmpiricism s necessaty be acecount for the

limitations of the simulation model have emerged, namely:

- the effects nf a one-dimensional system deseription

- spatial diseretisation issues i
- correlarions for the boundary stress tensor {fi(v)] and

disstpacion 14 ) torms.

Some of these vifects are inter-related; for example, the f(v) and
v terms necessarilv Include the etfects of a one-dimensionsl

system description.  The spatial diaererisatien issue arises in all

the components comprising the working space of a Stirling machine,

namelv, the teater. regenerator, cooler, expansion and compression
space evlinders as well as anvy comveering ducts, plena or dead
volumes, 1In all rases other then the regenerator, a parametuic . i
varfation of sparisl diserotisacion {s adequate to guancify !
digeretigatinon «ilvets,  Theretore, the apatial disevstiszation of the

regencrator alone requires specific discussion,

$imilarly, the effects of the oncsdimensional system doseripeion ave
universally relevant, yeb they o ly need he isolated For specific
digeussion in rhe exvanaion and compression spaces, UElsewhere,

dimensional effects may be effectively in-orporated in a parametwic
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evaluation of the Div) and &' (v) terms. \

Hence discussion of the empirical vonsiderations is divided into three

sections, namely:

- the influence of two-dimensicnal flows in the expansion and
compression spaces

- the effect of gpatial discretisstion on the medelling of
advection in the vegenervator

- the selectlion and implementation of empirical correlations.

Finally, the manner in which a comparison of the numerlcal predictions 3
with exparimental dara may be used to assess the validity of the

simulation is presented.

£.2  THO:DIMENSIONAL EFERCTS EXPANSION AND COMPRESSION SPACES
‘There is a large body af lirevature, particularly with respect to the
flows in intevnal comhustion engine cylinders, that agserts that |
2ylinder Flows are strongly mult{-dimensional. This is no less true

for Stirling machines, although in mast cases the radial symmetry of

the expansion and compression space eylindevs makes a two-dimensional

£low deseription adeauate. Two cxamples of sirongly two-dimensional

Flows which typically occur {n Stirliag machine working space

eylinders are shown in figure 6.1,
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. Figure 5.1 Examples of strongly two-dimeisirnal flows in Stirling
N machine velinders
The nne-dimensional Laprangian and combined Eulerian/Lagr 'nglan model
in not intrinsicallv capable of describing the - eciveulating £lovs
which can arlgse in the expansion and compression spaces. The
principal ebfect of such reclrenlation becomes appavent in the extent

ta which the one-dimensinnal linear or volume-averaged temperature |

gradients within the evlinders depart From the actual temperature
rradients. This in turn alfeets the enthalpy transported into the
transfer space, ah effect whiek can dramatically influence the ’

simulated wall/fluid heat transfer in the hearer and coolet.

With n the context of the s'mulation model, only the spatial

discrerisation of the worklop space eylinders may be used to

quantitacively investigate this effect, The veciveulation effect may
be bounded above by assuming that a povFoctly mixed condition exists

w. hin the cylinder over the entire cycle. This may be specified by
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setting m, and m, (the Lagrangian diseretisation numbers) in equation
(5.51) to unity. Conversely, a completely unmixed condition may be
specified by choosing m, and m, >> 1. Partially mixed conditions are

then characterised by intermediate values of ey and o,

The methodology usad to accomplish this evaluation is discussed in
section 6.5. However, It musi be stressed that a one-dimensional
parametric evaluation cannot de relied upon to delineate unambiguously
the influence of two-dimensional effects in the cylinders. Such a
delineation requires the use of s two-2dlmensional discretisation of
Jhe expansion and compression spaces. a topic which is beyond the 1

scope of this work. Nevertheless, the integral balances developed in

Sy chapter & are relevant for such a two-dimensional application. !

Some researchers (Be78) have speculated that ignoring one-dimensional
momentum in the expansior and compression spaces may be 2 significant

S cause of simulation error. Since the simulation madel rigourously

includes one-dimensional momentum in these spaces, the sforementioned

g speculative error is eliminated as a potential source of simulation

discrepancies.

6.3 ADVECTION MODELLING IN THE REGENERATOR

In view of the very large temperature gradients typieally oceurring
within the matrices of Stirling engine regenerators, the enthalpy
advection calculation procedure described by equation (4.67) mandates
that a very fine regenerator mass;/energy control volume discretisation

is necessary to predict the regenerator working fluild temperature




ficld accurately. As the integral snalysis will, by definition, yield
the same total internal energy for the working fluid in the

regeneracor irrespective of the discretisacion, the requirement for an -
accurat: temperature field (which is a differential propercy) is

predicated by the physical fumction of the regenerator, This device

is intended to minimise the enthaipy flux “etween the heater and
caoler, enabling the energy transfer portion of the ideal Stirling .-
cycle to be accomplished. During this process, huat ir =var- srred

isochorically from the working fluid displacement phase occurriug

after ewpansion to that occurring after compivssion. The efficiency

of practical Stirling cycles is thus largely dependent upen the

effectiveness of the regenerator in achieving the theoretical ideal.

In view of the very high rates of heat transfer occurring in porous .
matrices, it has been experimentally validated in several imstances . ‘
{Be78) that the working fluld and matrix temperatures may both be
approximated by linear profiles over the entire regenmerator. Thus
consider the linear working fluid temperature profile in a single .

regenerator mass/energy control volume depicted in figure 6.2.
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Figure 6.2 Discretisation of a single regenerator mass/energy control
volume

The time. and volume-averuged temperature mi is approximated by:

€

(TL+TR‘),2 (6.1)

AN

Hence by equations (4.67):

if g < 0 then: T = ’:VITi (6.2.1)

if 8 > G then: Tdya, = “v]rl

Thus the error made in the energy advected to the heater is
proportional to (Tp-Tp)/2 while the cooler advection has an error
proportional to (T;-Tp)/Z. This implies chat che energy advested to
the heater is under-predicted and that advected to the cosler is over
predicted. Gennralising this analysis to a regenerator with a
discrerisation of oy control volumes reveals that the heater and
cooler advection errors ave propartienal ta (T -Tp)/2m and (Tp-
T,)/2m_ respectively. Hence for prototype Srirling engines where
temperature differences across the regenerator may reach values of
400K or more (see chapter 2 for the RE-1000 engime for example), a 1%

error for a nominal coocler advecticn temperature of 300K would require
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a regensrator discretisation of 67 control volumes. This is

computationally imprescical and so mandates an alternate approach.

Before proceeding, it should be noted that small advection errors may
be achigved with a relatively coarse spatial discretisation for
regeneracor mass/energy contrel volumes with uniform boundary
conditions (Ty=Tp} or ararly uniform boundary conditions (jTL-Tki is
small). Furthermore, the advection problem discussed above for the
integral energy balance does not arise for the integral momentum
balance irrespective of the wniform{ty of the boundary conditions in
view of the characteristics of equations (4.61). These
charactaristics ensure that the scaling effect of the discretisation
on the advection error is avoided beczuse the velocity gradient within
any massenergy contrel volume is included in computing the momentum

transpors.

The methodology used te resolve the regenerator discretisation dilemma
is adapted from an approach suggested by Gedeon (Ge84). Linear upwind
spatial extrapolations of the temperature field lead to a better
approximation of the actual adveeted temperatures within the
regenerator, in a manner which is largely independent of the
discretisation. The particulars of the method are discussed with

reference to figure 6.3.
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Figure 6.3 Extrapolacion of the liuear regenerator temperature field

Using the mass/encrgy control volume temperatures to defime a
temperature gradient, the upwind extrapolation procedure has the

form:

if i;;”\i = 0 chen:

(Tpip = T, (01 % 05K (1700 3 - 0.5K,(L7), (T, (6.3.1)

if {g,); < 0 then:

P 05K /LY,

Ve 0K L), T (6.3.2) .
The upwind extrapoiation format of these equatians is essential in

order to maintain the transport properties of equations (4.67). The

porous advection coeffistent K. {s {ntroduced as a means of accounting

for the deviation of actual repenerator behaviour from the ideal

behaviour suggested. Such deviations encompass nom-linear matrix

temperature profiles and oscillating [low matrix/fluid heat transfer

characteristics which make a linear extrapolation of the fluid +

temperature profile unrealistic.

269 d

. . sﬁn e o s Al ¢ ol T



Equations (6.3) apply at all the regmerator momentum control volume

centrolds (NRF to NRL+l) with the following exceptions:

if (8p)yge 2 0 then: (‘I‘")u“ = Tyne (6.4.1)

if (gn)”a” < O then: (Tn)mu‘: = Tagr (6.4.2; o )

1t may be noced that at momentum control volume centroid NRF+l, the

@ adjacent heater temperature would be used fox TL2 in equation
! (6.3.1). Similarly ac momentum vontrol volume centroid NRL, the

cooler centrol volume temperature Tw' is substituted for Tiu in

F

equation ¢8.3.2). This is an approximation which is felr to be
* physically more consistent than the alternative of assuming that T““ . A

occurs at & and T, _ oscurs at B in Figure 6.3. In practice, though,

p uxs
“
Pl ir has been determined that the discrepancy betwsen the two approaches

A is minimal.

Equations (6.3) are ineluded in equations (5.50), when appropriate,

via the following modificationg:

if Bty ™ 0 <hen:

f {gnin)ill 'o'akr“/ln)iw’ hd (,’;"An\l (6.5.1) !

ap - 0,58plg,A KW 1/1) | Ty, =+ e (6.5.2)

3 L (g0, « O then:

(ayh) 11+ 09K L /WD ) (Eph) (6.5.3)
ay + 0,585 gAY 1 K L/ U Ty @y (6.5.4)
270




Tt may be noted that equations (6.3) are split in equations (6.5) so
that the once removed temperatures T, , and T, are included in the
constant term « and not in the coefficient matrix [K]U' This
maintains the integrity of the tri-diagonal matrix topology while also

yielding a faster rate of convergence.

In terms of Eigure 6.2 and equations (6.2), the scheme of equations
(6.3) yields a zeva ervor if ;> 1 and the working fluid temperature

profile is linear so that K, = 1 ns the requirement of an
inordinately large number of regenerater coatrol volumes to achieve
adequately small advection errors in the presence of a sev re boundary

condition non-uniformity is eliminated.

6.4 EMPIRICAL CORRFIATIONS

As described in seccion 5.5, the one-dimensional equation set to be
solved numerically incorporates a residue of unknowns which may not be
determined by further amalysiz, These unknowns embody most of the
modelling assumptions made in deriving the s.mulation equations.
Therefore, the accuracy and relliability of the emplrical correlations
used to evaluate the residual unknowns is of major significance in
determining the extent to which the simulation predictions may be

validated by experimental ohsarvations.

The manner in which these correlations are ineluded in the simulation
is discussed in the following sub-sections. The mathematical form of
the B(v) and ®"(v) correlations is developed Flrst, followed by a

discussion of the correlation selection process.
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6.4.1 T 1o d Digsipation Modell:

ALY

Ry definizion {BS60), the magnitude of the force exerted on a flvid as

a resulr of its metion ueing constrained by the boundrries of & given

spice {5 described by:

R

{6.6) =

where A, is a characteristic boundary area, x is a friction factor and

the remaining terms represent a characteristic kinetic energy per umit

volume (based on a time- and volume-averaged velocity).

It should be

emphasised that equation (6.6) is not physically fundamental, but is

scrictly & definition of x. Thus comparing equations (5.11.1) and

(6.6) it is evident that the physical relevance of x is defined by:

aw) = 0,5xpv]v]

= pl(@v/30)/r + Jvsary + «L%)

x is therefore a parametric representation of the laminax and

xr,x8

(6.7)

turbulent shear stresses and the turbuleant momentum fluxes in the

plane orthogonal to the uni-dimsnsional coordinate direction.

Expressing v? as v}v| maintains the physical relationship between the
P H

direction of t'w and v, Hence, in terms of equation (5.10), it is

convenient to signify these laminax and turbulent boundary effects as

the combined houndary stress cei

(r'+-n)a4 =~ 0,5xpv|v|a,
4g

nsor T so that:
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where 4y fa given by squation (5.8.3). Typically, dimensional

analysis (BS60) allows x to be expressed as a function of the Reynolds

L
numbe Ng, as well as various parameters deseribing particular -

o

physical characteristics of the confining boundery or wall, such as

its roughness ($c79). Hence:

x = £ (6.9)

Re* Lrough’

where lrough is a measure of the relative protuberance of surface

irregularicies into the flow stream.

Using the definition of the friction factor x given by equation (6.6),
& means of representing the dissipation #°(v) as a one-dimensional

corretation may be developed.

From equations (5.19) and (5.20):

3" (v) = Pi(avlar): + ((ﬁv/i’ﬂ)/r)z} + F( x,r,8) (6.10)

tn#ren)Y

Therefore, & (v) is comprised of the following comtibutions:

- the laminar and turbulent dissipatior .csulting from the shear
stresses and advection fluxes in the ; - orthogonal to the uni-
dimensional coordinate directloen

- the dissipation caused by the turbulent ac¢ ection fluxes in tha

uni-dimensional coordinate direction.

The approach used to develop an cmpirical expression for squation
(6.10) (which is included in the dissipation term (w:'(v))l in
equations (5.27), (5.28) and (5.29)) is a more generalised
implementation of an analysis sugpested by Bird, Stewart and Lightfoot

(BS60, §7.4). By equation (4.38) and the tensor identity of equation
273 : 4
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side:

vsa

(VI = J
A

N

respectively,

ven = 0 on Ag

A

aeey

on AA’ T = T =

v

(LVI; * 2

oo (T}

(€.28), for any mass/onergy control volume L:

& (v -[ [9e(Tew)" - (v (Tem)) " eV
v

TV = | (2 (vem) ) A J‘ (T- (vem) 1"dA - J (v
"A v

A

By equatlon (4,34) T is symmetrical, an¢, in ter—

dimensional system model:

Thus equation (5.48) becomes:

d - | tve(mem) v
v

But frem equations (5.9}, (5.12) ard (6.10):

]

Thus equation (6.12) may be approximated by:
LURS I Lve (1)) "dV
v

New if a volume of magnitude g exists such that:
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Applying the divergence theovem to the first term on the right hand

(ver)) Ay ¢6.11)

wheve 4, and 4y are glven by equations (5.21.2) and (5.21.3) j "

-¥ the one-

(6,12) H

(6.13)

4

¥

Saade 5 st sl wdk iR



or, 1f V is small enough to prevent the volume-averaged velocity from

being affected severely by tha discretisation then: e
& v = -vJ wertav
v

Applying the divergenve theorem tu the relevant cocrdinate directions “

noted for equation (6.10):

LTI vI (7" -n)da
(]

which after substitution of equatfon (6.8) in the mass/enexgy control

volume context produsss the flnal resule:
ot 0 fefiay (6.14)

This equation s the same result produced by Bird, Stewert and
Lightfoot with the exceptien that it is very strongly qualinied by
equation (h.13). Consequently the use of equation (6.14) requires an
adequaze level of spatial discretisation to satlsfy equation (6.13) In
at least an asvmptotic sensc so that the computational vequlremerts
arc not exacerbated, Such caurfen {s partieularly warranted when N
consldering Stirling machine regenerators whose porous chavacteristics

endow them with vory large shear stress pradients, This lack of

scalability of the dissipation model is ome of the principle practical

difficultlies in fmplementfng the one-dimensional simulation, a

difficulty which may he resolved uluimately by cschewing a one«

dimensional approach in favour of two- or threa-dimensional

treactments.
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a2 Heat Transfer Modelling ;;I

Equation £9.22) serves as the definition of the heat transfer

vetticient h (BSAMY such thar:

S,om A (T, - T {6.15)

“hers. from equatien 15,223, @ s the effective heat exchange between

feowalloand the fluid as a functien of the tluld velecity v, or:

- [REPTAT S S g venida (6.16)

ith oy defined by oquation o3 2 b

sder zera flow vopditions, b is a4 pure comduction term.  For laminar

ws. the oxistence of vadial and cireumterential velocity gradients

reares combined candietion and advection heat transfer in the plane

roral o the unf-dimensional coordinate divection; hence the term

wrfon coeftietent.  Lastly, when the flow is turbulent, the

weintence of the tarbalont alvestive fluses q''? adds a rurbulence
i

component. ta b, Hence cxpresaing b as a function of the veloclty as

oan other paramerers §

A ] (6.17)

cribles all posaible flow conditioay ro be covered In a ona-

dimensfonal correlation treatment.
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6.4.3 Empirica’ Correlation Selection

In their comprehensive review of the literature pertaining to

oscillating Flows L. the context of Stirling machine boundary

conditions, Seume and Simon (5586) point out chat one-dimensional
correlations for shear stress and heat transfer are not strietly -
appropriate in a physical semse. Nevertheless, without recourse to

two- or three-dimensional simulation, the mecessity of using ome- ,,
dimensional correlations cannot be avoided. They prepose one-

dimensional correlations of the form:

x = B 0 (e Xpa /LD (6.18.1)
B FUNR) L (Npd g Xpay /L (6.18.2)
where:
(¥pp), = Valensi number = wpd®/p (6.18.3)
i

(¥pg) gy = Reynolds number based on veloclty amplitude

- |Vmaxlpd/p (6.18.4)
Xuax/LL = relative amplitude of Fluid displacement. or: (the ' f

streamwise maximum distance of travel of a fluid element

between flow reversals) / {total heat exchanger length) <(6.18.5)

(NR€>u and (NRe)mx arise from a normalisation of the differential N

equation (3.12) while the (xmax/zl) ratio derives from the ‘critical
length vatio’ concept suggested by Organ (0r75). Under conditions
where the Mach numbers are small, equations (6.18) may be adequate,

although there is at least some experimental and anecdotal evidence
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(0r84) to suggest that the inclusion of the Mach number N, as a

correlation parameter may be essential, particularly in regemerators.

From a simulation perspective. equations (6.18) may not be
sufficiently generalised because cthey ara dependent on global steady-
state equilibrium pavameters such as w, X, and v, which, by
definition, canmot be detexmined on a local transient basis as
required by equations such as (5.13) and (5.24). Thus the author has
suggested (Go87.1) the use of an acceleration based non-dimensional
parameter as a suirable means of improving the simulation

applicability of equations (6.18).

Concomitant with the effects of oscillarning flow and compressibility,
Stirling machines operate in a regime ranging from laminar to fully
developed turbulent flow. In addition to the turbulence sffects
discussed {n section 4,2, thers is Seemingly a large void in the
understanding of laminar to turbulent flow transition processes,
particularly under Stirling machine boundary conditions ($586). Since
such transitions may occupy & significant portion of the cycle,
ignorance of these processes militates against the use of existing
oscillating flow correlations which do not specifically encompass

transition phencmena,

Thus, from the perspective of a one-dimensional simulation, there do
not appear to be any generalised oscillating flow correlations which
are appropriate for Stirling machime boundary conditions. Hence, in
order to implement a simulation, recourse to the pssudo-steady-state
2ssumption for using existing non-transient correlations becomes

mandatory. This approach has been vsed by most Stirling analysts
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(Be78, Or82, Sc78, Ur’7), clthough always with the appropriate
qualifications. In essence, the pseudo-steady-state assumption
dictates that, instantaneously, steady-state heat transfer and

frie

ion factor correlations produce approximately the same result as

strictly :ansient correlations. Physically, the validity of such an

assumption is dependent on the local transient acueleration;

consequently, the assupption becomes progressively worse with :
increasing acceleration, In addition, under reversing flow

conditions, the gseudo-steady-state assumption yields demonstrably

incorrect results (UcS6), even when the flow is laminar, since the

core and boundary layer £lws have opposing velocity directions.

However, in mitigation, it has been argued that on a cyclic integral

basis, the use of the pseudo-steady-state assumption yields fairly

accurate results for the indicated work done as well as for the net i
boundary heat transfers. This is based on the notlon that, since the

flow is pertedic, etrors resulting from flow in a particular direction

are cancelled by the erxors oceurring during flow in the opposite

direction. i

There are a plethora of steady-state correlations for friction factors

and heat transfer coefficients sased upon amalytical as well as ;
experimental data available in literature. In the context of this

work, chiefly in the Interests of standerdisation, the experimental

correlations compiled by Kays and London (KL64) are used exclusively.

These correlations have seemingly become a de facto standard in

Stirling machine simulation and thus their use here aids in a

comparative assessment of the simulation results produced with those

of other workers. This choice does not imply that the Kays and London

correlations are always the most appropriate for particular
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geometrical conditions. However, in view of the errors inherent in

all steady-state correlations under oscillating f£low conditions,

difference: between particular steady-state correlations are likely to -
be of less signiflcance. Hence the argument for using a well-defined

and reproducible set of correlations carries greater weight than an

attempt to locate tailored correlations whose improved efficacy may be .
relatively marginal. In any #vent, the assessment of such an -
improvement, even if quantitative, may be spurious when cognisance is

taken of the omnipresent errors which are generic to steady-state

correlations under oscillating flow conditions.

6.3 VALIDATION PROTOCOL

In view of the empirical uncertainties that have emerged during the

simularion model development, a parametric evaluation of the

simulation model is mandatory. This i¢ justified not only by the

unavailability of definitive friction factor and heat transfer

correlations, but also by the limitations of a one-dimensional system i
description in the presence of multi-dimensional effects. The major ;
advantage of a paramstric approach is that it enables observed

discrepancies between experimental and simulation data to be bounded.

This iz an effective method of isclating deficiencies in the

simulation model in a physically relevant manner since, very oftenm,

arbitrary or unbounded correction procedures can produce spurious

agreement between experimental and simulation results.
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The choice of parametric variables is governed by the empiricism
incorporated into the simulation model. Five such empiricisms have
emerged as being necessary. These are:

1.  ‘The spatial discretisa.ion of Lagrangian expansion and
compression spaces (my and m ).

2. The spatial discretisation of the Eulerian transfer space
(¢~fined by NMH, MR, NK Eor che heater, regenerator and rooler HE
respectively).

3. The porous advectifon coefficient in the regenerator (X.).

4, Correlations for the friction Factor x.

5. Gorrelations for the heat transfer coefficient h,

The first three empiricisms are directly capable of parametyic
implementation, A parametric variation of the friction factir for a
given correlation may be accomplished conveniently by defining a

nulciplier X, so that from equacion (6.9}t

X o K B Lguend (6.19)

Similarly, a parametric variation of the heat transfer coefficient for

a particular correlation may be determined by defining Kp,, changing

equation (6.17) to: i
Bo= Ky E(v, %)) (6.20)

The parametric variation coefficient set so defined (mB, m,, NH, NR,
MK, K, Ky, k) and the UED and equilibrium algorithms are the
ingred.ents for creating the required validation protecol, Thus for
every experimcncal point used, a maximum of 16 parametric var®ations
may be performed by varying e single parameter at a time while

hundreds more variations may be defined by varying more than a single
281 : "
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parameter at once. Such an approach predicates an inordinately large
amount of computation especially if every simulation is run to cyclic
convergenca (defined by acceptably small cyclic energy balance closure
ervors - sae section 7.6.2). Furthermore, a complete parametric map
at each test point usually incurs significant redundancy since certain
paranetric variations may be irrelevant physically for a particular
engine copfiguration. Simplifications can be made by noting that, for
example, a variation of the spatlal discretisation parameters in the
transfer space (NH, NR, 8K) nced only be performed once, since the
geometrical boundary conditions in the transfer space are imvariant
for a particular Stirling machine. These issues are coalesced into
the validation protocol defined in table 6.l and applied in chapter 7.
This protocol has been found to enable all the required parametric
varistions to be accomplished in a physically meaningful manner

without an exorbitant amount of computation.
The validation is accomplishec in tbree phases:

1. Baseline calibration phase
The baseline calibration phase determines the appropriate or
optimup level of spatial discretisatien in the transfer,
expansion and compression spaces using baseline values for K,
I(X and Kp.. The eptimum 1s derermined to be the minimum level of
discretisation which produces an acceptably small change in
cyclic integral parameters (such as indicated work output and
overall heat transfer) per unit change In discretisation,
Initially, the optimum transfer space discretisations ave
determined by simulating single cyeles from rest conditions.

Thereafter, using the established transfer space discretisations,

282




Table 6.1 Parametric validation protocol

Simulation | Experimental | Parametric Parametric o
Run Test Data | Cosfficiencs Held | Coefficlents
Type Constant” Varied ﬁ
Baseline Singls k. =0 K, =1; H
r x
cali- represent-
bration ative data [ NK H
point
m, =a, =1 R s
! Py iy
i i
! H :
| r"o’ xkul, i m, c
i Kpe = L (such that ¢
| . -
E 8" m, = @) c
Baseline | Serfes of | K, =0i K =L none c c
data | o
poincs | Ky =1 8T
i o gt )
A N |
m, ;
Corrected |  Series of ;  NH'; R'; mK'; C Ry ¢ c
data | N
i\ points | AR (as
: appropriate ;
H i to match
: j experimental
H and simulated
i data) H
RS U TR I

The asterisk superseripl denotes an optimum value chosen from a previous
step in the validation sequence.

IR § = single cycle gimulation from rest conditions.

© = multiple cycle simulation uutil cyelic converpence is achieved.
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the effects of varying the cxpansion and compression space
discretisations are determined from cyclically converged
simulation results. An effective simplification is accomplished
by choosing the same discretisation in both the expansion and
compression spaces since separate variations were found to
produce little additional information. The entire calibration
run sequence is performed for & single experimental data point
which g¢hould be chosen arbitrarily. 1In all cases, the
coefficiencs Kr' Kx and th sre set at their baseline values
which are chosen to exclude the influance nf the regenerator
advection model (X, « G) and to produce mo mod{fications to the
nominal friction factor and heat transfer correlatious selected
(Kx = Kpe = .0 AL the spatial discretisation evaluation
simulations are performed using the equi.iorium algorithm since
its eyclic integrals are less prone to aumerical error (see
section 5.5.2.2) while m, and m, are alvays unity for the UPD

algorithm.

Baseline simulation validation phase
Keeping the optimum discretisation determined in the calibration
phase constant, the second or baseline simulation phase is

implemented, In this phase as well, X KX and K, are held

"
constant ar their assigned baseline values, excluding the
influence of the regenerator advectlion model and maintaining the
heat transfer coefficients and friction factors ac¢ their nowinal
values. Both the UPD and equilibrium algovithms are cycled to
convergence for & sevies of experimental data points defining the

experimental performance map of the particular Stirling machine

chogen for the validation exercise.

284

"y




Corrected simulation valid. .n phase

Finally, all the Faseline simuluvion runs are repeated in the
thizd or corrected simulation phase. In this phase, however, X,
Kx and th are varied simultaneously in order to match the
simulated and experimental data, The precise methcd of
coefficient variation cannot be specified a priori because the
variation sequence is dictated by specific machine
characteristics, the experimental test boundary conditions and

the behsviour of the simulation itself

Since the purpose of the parameteric validation approach is to endow
the simulation evaluation exercise with as much objectivity as
possible, other than the variations listed in table 6.1, no
alterations of any kind are made to the geometrical description of a
given test machine or to any aspects of tha equation set comprising
the simulation model. Furthermore, the validation protocol permits a

comprehensive assessment of the relative importance of information

propagation and empirical correlation effects, an

which remains as one of cthe principal controversies surrounding
Stirling machine simulation. As the final form of the derived
Integral balances is the literal form in which they are solved
aumerieally, the validation protocol tests the simulation model in an
environment in which numerical and boundary condition dependeat
effects may be isolated Thus the validation protocol not only
provides a well founded evaluation basis bur also serves as a means of
highlighting simulation model deficiencies related to a one-

dimensional discretisation.
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CHAPTER 7

SIMULATIONM QF THE GENERATL ¥OTORS

GROUND EOWER UNTIT 3 TIRLING ENGINE

7.1

INTRODUCTION

The Geneval Motovrs ground power unit 3 (GM-GFU3) was obtained by the
NASA (United States National Aeronautics and Space Administration)
Lewis Research Center for the specific purpose of obtaining
experimental data Eor validating Stirling cycle machine computer
simulations, The GM-GPUI engine was originally built for the United
States Army in 1965 as part of a 3-kW englne-generator set designed

for partable electric power generation.

In the context of this work, the GM-GPU3 is a suitable choice for

evaluating the validity of the simulation model developed for the

following reasons:

1.

Using hellum and hydrogen as working fluids, the GM-GPU3 may
operate in a 15 to 60 Hz speed range with a pressurisation from
20 to 70 bars. As s single cylinder, piston/displacer, beta-
configuration engine, the GH-GPU3 has am overall working space
topology which ls typical of & broad range of frec- and
disciplined-piston Stirling machines, Hence use of the GM-GBU3
as a validation test case enables the simulation to be assessed
for a representative Stirling machine under realtstfc boundary

conditions.
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$ince the engine smploys a mechanical linkage to move the
pistons, the momentum boundar- nditiens (piston and displacer

positions and velocities) may ba defined preciscly, so avolding -
the potential inaccuracies resulting Erom assumed piston and ﬂ
displacer motions, This assumption is a prevalent practice in

simulating free piston engine fluid dynamics since it permits

complicating dynamic comnpling effects to be ignoved.

“he working space geometry and mechanical linkage of the GM-GPU3 B
are adequately defined in reference Th79, ensbling the engine to ’
be deseribed analyrically in one-dimensional terms.

The experimental test data available in veferences Th79 and Th81

define a GH-GPU3 performance map caverimg a broad range of

operating conditions (heater temperatures, working fluid

prassurisations and engine speeds) for both heliwn and hydrogen .
working fluids. The experimental data available for valldation
purposes enable a cyclic energy balance comparisoen to be
performed in terms of the cyclic heat supplied to and temoved
from the working fluid as well as the net indicated work done.
Energy balauce closure ertors are included in this experimental
data, so & means of assessing the magnitude of any
experimental/simulation data discrepancies in the light of ;
possible experimental errors is available. Scveral cyclic wean

working fluld temperatuves are also reported as are amplitudas

and phase angles of the pressure profiles in the expansion and

compression spaces, although no quantitative means of assessing

the individual vellisbility of these measurements Ls provided,
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Hence the availability of adequate experimental tost data and
descriptive documentation as well ay the lmprimatur of a recognised,
independent Stirling machine reseatch center all contribute towards P

the selection of cthe WM-GPUY as a suicable test case for evaluating

the simulation model develvped fun this theais.

RIPTION OF THR

suby R

The GM-GPU3 as confizared For wxperimental investigation is shown in

¢ Eigure 7.1, The engine has a single cylinder, beta configuration with

W the pistan and displacer motions implemented via a rhombic drive
W mechanism. Sliding shatt scals ave used on all the reciprocating Y
surfaces o separate the expansion, compression and buffer spaces, As
the GM-GPU3 is opersted as a fully pressurised engine, the seals are

subjected only o the ditferential pressuves which arise between the

expansion and camprussion spives as well as botween the compression

and butfer spacen. The englne is designed to yield a maximum power

outpnt of about 1,3 KW using hydrogen as the working £luld at a mean

pressurisas Lon of 69 hars.

A detailed quantitative deseription of the GM-GPU3, cogether with an
analysis of the rhoabie drive kinematics is presenced in appendix .
The following hriel deseription of the working Eluid flow path is
glven with reference to Pigure 7.1 Porey 3,02 nm internal diameter
Weater tubes rise perpendicularly from the periphery of the expansion
space cylinder and are tevmliuated by s header, The header is
contiected to eipght regoeneralor/cooler assemblies via a second sat of

40 tubes so that five tubes 4

allocated to cach assenbly.
283 *

¥

VN ,mmmﬁwmm




‘\.
4
HEADE\RL
&1 —T=) - dl
I
HEATER y
TUBES THERMAL EXPANSION
INSULATION SPACE B
i
H £
A 7 Z .
[} o0 - I
REGENERATOR
CASING
| .
i
REGENERATOR .
|
e CODLER '
i —
i COOLANT
i oS
et
COMPRE $SI0K N
SPACE DISPLACER
PISTON
BUFFER SPACE
"/
- RHOMBIC DRIVE i
MECHANTSM
!
- LUBRICATING OIL |
Figure 7.1 Schematic of the GM-GPU3 Stirling enpine |
(adapted from a figure reproduced from reference Th79)
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Approximately one third of the lower section of both sets of heater
tubes is shrouded with insulation while the remaining portion is
heated by a diasel fuel Eired burmer. The eight regenerator -
cartridges sach consisc of 308 layers of 200 mesh stainless steel wire

cloth, Thirty nine coolrr tubes, with a 1,0t mm inrernal dlameter,

are connecced te a baffle plate beneach each regenerator matrix. The

312 tubes chus consticucing the aggregate cpoler connect with an

annular plenum which is radially ported to the compression space.

Cooling water circulates around che cooler tubes so that, in effect,

heat is vemoved from the entire lower portion of the displacer

cylinder assembly.

A tabulacion of the salient specificaticns of the GM-GPU3 used in the
simulation programme is given in table 7.1. It may be nocted that the
heater is represented geometrically as three components (as described
abowve) with the header separating the two sets of tubes conmnecting to
the expansion space and the regenerator. As detalled in section E.4,
each set of tubes is further subdivided inte insulated and uninsulated
portions for the purpuse of specitying experimentally determined wall
temperature boundary conditions. The volume contained wichin the
expansion space slde heater tubes is shown as having active and
passive components. This serves to include the gas contained within
the instrumentation tubes in the overall heater dead volume while
excluding this gas from participating in the convective heat transfer

process.

An analysis of the regenerator mesh geometrical properties is decailed
in section E.$. The free flow area is computed from the tabulated

parameters using a sinusoidal flow area ratio as defined by Pinker and




Table 7.1 Salient specifications of the simulated CM-GPU3 Stirling

engine

Rhombic drive:

.

Crank Radius 13,8 mn -
Gonnecting rod length 46 mm ﬂ
Fgcencrigity 20,8 mm,
Expansion space:
Diametsr 70,1 mm
Radial clearance volume 3,34 en®
Axial clearance volume . 9 cm®
Compression space:
Diamecer 69,9 m»
Displacer rod diamecer 9,53 mm
Radial clearance volume 7,36 om
Axial clearance volume 13.83 e’ -
Displacer:
Shell length 43,59 mm
Shell inside diameter 66,42 mn
Shell outside diameter 69,6 mm .
Macexial 310 stainl stesl
Heater - expansion space side:
No. of tubes 40
inside diameter 3,02 mm
Active volume 33,36 e’
Passive volume (i fon tubes) 2.7% cn
Haater header: !
Hydraulic diameter 5,03 mn
Aggregate flow area 7,9 cm
Aggregate volume 7,67 em
eat ares 55.33 en®
Heater - regenerator side:
No. of tubes 40
Inside dismeter 3,02 mn
Yolume 37.07 enm®
Regenerator: H
No. of casings 8 !
Casing diametsr 23,06 mm :
No. of layers in gauze stack 308
Gauze mesh 200 / inch ;
Gauze wire diameter 0,0406 mm !
Volumetric porosity 69,7 %
Volume between heater and matrix 8,75 cn’
Volume within matrix 50,6 en®
Volume between matrix ard coolev 6,26 ca®

Gauze material

304 stainless steal

Coolar;

No. of tubes 312
Inside diameter 1,08 mn
Volume, 13,14 cn
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Herbert (PHE7). The axial conduction area between gauze layers is
defined somewhat arbitrarily by considering the eatire matrix to be a
homogeneous sponge whose vold volume is anisotropically quantified by
the volumetric porosity. The radial conductinn area between the
matrix and regeneratox casing is more precisely determined as an
aggregation of the mesh wire cross sectional areas in planar contact

with the casing.

The tabulated displacer parameters are used to perform a thermal
energy balance on the displacer to account for the conduction heat
transfer between the expansion and compression spaces via the

displacer shell (see section £.2).

7.3 (PERIMENTAL NEASUREMENTS

Two series of experimental tests using helium and hydrogen as working

fluids vere pevformed on the GM-GPU3 engine. The first series, termed .
the ‘low-power baseline’ tests, is reported in reference Th79.

Subsequently, a second series of tests, termed the 'high-power

w.seline' rests was carried out and is described in reference Th81.

The experimental measurements performed arve sufficient to infer hot
and cold end enerpy balances as well as to determine indirectly the
indicated power output. As the hot and cold end thermal energy
balance measurements ave non-controversial and well documented in
reference Th79, details of these measurements will not be repeated
here. However, some discussion of the indicated work inference

procedure is warranted, The shaft power output for all the low-power
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tests was determined by messuring the electrical power output
delivered by an alternator coupled to the engine. The measured

alternator output power was then converted into engine shaft power
using a calibrated alternator efficiency correction. In the high-
power test series, the shaft power was determined directly from the
measured engine speed and a torque measurement supplied by a shaft-

mounted transducer,

The otal power disslpated by the mechanical linkage and shaft-driven
i 01l pump (located within the crankcase) was assessed by measuring the
heat rejected by the crankcase oil which was circulated through an

Rt
. . ‘\ external heat oxchanger. The indicated work or preasure-volume

hysteresis loss occurring in the buffer space was estimated by
measuring the hear rejected to the coolant circulating through a

N buffer space zooling jacket.

[ Thus the net indicated pover produced is found by adding the shaft
power to the crankecse oil heat vejection rate and buffer space
coolant heat absorption rate. There is some question as to the
overall accuracy of this approach, particularly with regsrd to the
efficacy of inferring the buffer space hysteresis loss from the
cooling water heat absarption, However, the experimental energy
balance closure arvors reporCud hy ¥asa (Th79, ThBL) do provide some
quantitative means of assessing the ervors whlch may arise from this
source, Some cotraboration of the indiveckt indicated power
measurement was provided by direct pressure-volume (P-V) diagram
measurements made in the expansion and compression spaces. Excellent
agreement between the direct and indirect measurements is reported for

some of the low-power tests (Th79), although the same level of
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agreement was apparently not achieved for all the low-power tests.
Apparently more consful..it agreement between the indicated works
determined from P-V diagrams and thase inferred from energy balance
measurements was achieved in che later series of high-power tests.
However, anomalies in the P-V disgram results for the helium working
fluid high-power tests are still cause for councern, In general terms,
then, the imdirect energy balance method appears to be an adequate
assessment of the indicated power output with universal corroboration

being inhibfted by deficfenciles in the P-V Jdiagram measurements.

Other experimental measurements which are relevant to the simulation
validation include cyclic mean working fluid temperatures in the
compression space and at two locations in the heater tubes. In
addition, expansion and compression gpace dynamic pressure
measurements enable pressure swings und phase velationships relative
to the displacer cop dead center (TDC) or minimum expansiun space
volume to be reported. As discussed in secticns E.3 and E.4 for the
compression space and heater respectively, no precise physical
locations for the working fluid temperature measurements are suppliesd
{Th79, Th81). Hence, in this regard, comparisons of simulated and
exparimental cyclic mean working Eluid temperatures are subject to an

Lnherent systematic error.

A similar deficiency exists with regard to the pressure measurements.
The expansion space pressuve transducer was located at the end of a
152 mm long tube which was presumably connccted to the expansion space
cavity, although no diagrammacic or textual evidence of this is
provided. The compiession space pressure transducer was approximately

flusl mounted {(Th81), although once again no exact location is
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specified. A loglcal presumption for the mounting location would be
on the annular compression space plenum wall (Flgure 7.1), although no
confirmation of this has been obtained. Several problems with the -
pressure measurements themselves are reported (Th8l). Owing to a lack "[
of watex cooling of the pressure tranducers during the low power
tests, the transducers are postulated as having suffered from a
variable, temperature induced sensitivity shift. This deficlency was
crected in the high power tests. A response problem with the
expansion space transducer, owing to the length of its attackment

tube, is also suggested, but only for the helium working fluid tests.

In view of the experimental uncertainties inherent in the temperature
and pressure measurements compared with the relative confidence
expressed in the energy balance measurements (Th81), the cyclic energy
balance measuréments are used here as the primary mesns of determining
the validity of the simulation. The temperature and pressure
experimental data are thus used in a more qualitative fashion as &

means of clarifying deficiencies in the sfmulation medel as suggested

by discrepancies encountersd in the experimental/simulation eyelic

energy balance comparison. :

The remaining experimental measurements of concern are those required H
ta establish the boundary conditiens defining a given experimental

test. Measurements of the expansion space, heater and repgenerator

casing wall temperatures provide the hot end thermal boundary

conditions {discussed in sections E.2, E.4 and E.5, respectively).

Coolant flow rates and temperature drops enable a common cooler and

compression space wall temperature to be inferved (section 8.6), The

eyelic frequency is determined from the output shaft speed measuremsnt
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and the working fluid pressurisation is equated to the monliored mesan

compression space pressure.

4
7.4 MORELLING ASSUMPTIONS
In applying the one-dimensicnal simulation model to the GM-GPU3, the
assumptions discussed below have been riade. These assumptions, by >
definitlon, detract from the abjectivity of the validation process by
introducing artificial dissimilarities between the simulated and
actual engines. In order to mitigate these effects, the assumptions
made are generally restricted to thase predicated by limitations in
the description of the engine geometyry (Th79) or by the requirements
of a purely one-dimenslonal discretisation, The assumptions are ! .
categorised by their avea of application.
7.4.1 d Dynamies
1. External and mutual energy transmisgion to the working fluld is !
either nou-existent or negligible and may be ignored, ‘
Specifically, radiation heat transfers between the walls and the :
gaseous working Fluid as well as between different segments of
working £luld may be ignored because the thermal radiation of
gases such as hollum and hydrogen is essentially zero (ED72).
Hence E‘ = 0 in equations (3.40), (5.42), (5.43) and (5.44).
9,  The acceleration of the working fluid caused by the piston and
displacer motions §s several orders of magnitude larger than the
acceleratlon due to gravity thus permltting gravitational forces
B
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to be ignoved. This is a standard practice In vertically
oriented Stirling machine simulations (8¢78) which fs well-
Justified empirically since the inclusion of gravitational forces
in the momentum equations has a negligible impact on the overall
simularion results. Ignoring gravity also permits a consi.erable
simplification {n the computer programme because the logistics
necessavy to derermine whether a particular control volume is
vertically or horizontally inclined may be eliminated, Hence g =
0 in equations (5.30) and (5.31),

3. The bulk compressibility is identically zero for monatomic gases
such as helium and is negligibly small for diatemlc gases such as
hydrogen (HCS54). Hence the bulk compressibility A is set to zero

in equatlons (%.30), (5.31), (5.40), (5.42), (5.43) and (5.44).

7.6.2 Soundary Cendftions

1. Working fluid leakage across the sliding seals is assumed to be
zero. Consequently the mass of the working flutd is taken to be
constant over the cyele and no parasitic momentum and enthalpy
losses are allowed. This assumption may be justified physically
by noting that the seals arc subject only to differential
pressures which vary in an approximataly sinusoidal fashion. .
Hence, at cyclic steady-state, gas leakage in one directlon 1s
compenanted by leakage in the opposite direction when the
pressure differential changes sign, producing an overall cyclic
effect which is small. Pragmatically, neither seal geometry
specifications noy pressure dlEPfsrential dependent seal leakage

rate data aro supplied in refersnces Th79 and Th8l. Hence little
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basis for realistically accomodating seal leakage effects exists.
2, The radial temperature gradient in the expansion space cylinder
wall is negligibly small, As discussed in section E.2, this
enables the cylinder wall boundary condition temperatures to be
expressed via a logatithmic profile.
3.  The heater wall temperature boundary co.ditlons may be specified

hy flve discrete temperatures as noted in section E.&, This

represents a best effort at quantitatively applying qualitative
temperature transducer location data given in the form of
unscaled schematics (Th79). The experimental cyclic mean gaseous
and wall temperatures used are averages of the temperatures
measured over several heater tubes at the same axial location.

b, The radial temperaturs gradient in the regenerator casings is
negligibly small. As described in section E.5, this allows the
regenerator casing temperature boundary conditions to be
deseribed by a combination of linear and logarithmic profiles.
The wall temperatures used Lo establish these profiles are
avarages of the cemporatures messured on several of the
regenerator assemblies at each axial location.

5. A single experimentally measured agpregate cold-end temperature
is used to establish the wall temperature boundary condition for
the cooler and comptession space as justified by the analysis

presented Iin saction E.6,

7.4.3 tonduction Heat Transfere abt the Syatem Boundary

1. The c,clic steady-state heat transfer between the expaysion and

compression spaces via the displacer is primarily dependent upon
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7.4.4

the conduction heat transfar through the displacer shell. The
contribution of convection laops within the displacer shell
cavity {s assumed to be negligible and {s thus ignored. The
displacer chell temperatuies is determined on a transient basis
{see section E,2) by assuming that the upper and lower displacer
faces are in instantancous equilibrium with their adjacent
working fluids. This approach enables cyciic integral comduction
lieat transfers between the expansion and compression spaces to be
approximated adequately.

Conduction heat transfexs between the buffer and compression
spaces are ignored as predicated by a lack of adequate
geometrical data. This neglect is also justifiable because,
apparently, these conduction transfers are not included in the
experimental cold-end energy balance which datermines the heat
removed externally Erom the working fluid (the experimental

result used for validation purposes).

Reganerator Matrix Geomet:

As alluded to in sectlon 7.2 and detailed in section B.5, a
sinusoidal flow area ratioc is used to determine the free Flow
area through the regenevator matrix. This is based upon the
assumption that oxparimental flow data developad for single
acreen matrices may be generallsed to multiple screan matyices,
in a compressibla flow situation, the use of a sinusoidal area
ratio rather than the more conventianal orthogonal araa ratio is
justified on the basis that a sinusoidal area rvatio apparently

yields a more cradible estimate of the choking Mach number
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(Or8ay,

The axial matrix sonduction srea is decermined by treating the
matrix as o homogeneous spenge whose vold to solid area ratio is
anisotropically quantified by the valumetvric porosity. In the
absence of any experimental data quantifying the actual axtal
conduction area, which is dependent upon random stacking induced
effects, the anisotrople assumption is a pragmatic alternative.
The radial conduction area between the mesh stack and the
regenevater casing i{s detevmined by assuming that the {ndividual
gauze wires are n plonar thermal contact with the casing wall.
This appears to be admissable, given the notion of a tightly

packed and radially compressed gauze stack.

One :Dimensional Riseretisation

rarallel working Eluid Flaw paths in the heater, regenerator ard
cooler are aggregated and represented by a single flaw path.
This assumes that the flow is identical in each parsllel path
which is given credence by the ra. 41 symmetry of the GM-GPU3
englne. Multl-dimensional effects in the expansion and
compression space cylinders as well as geometrical differences
between individual flow patha can distort the radial symmetry of
the flow pattern. The description of such distortions is,
however, heyond the eapabilities of tlie one-dimensional
simulation model.

The actual radially symmetric expansian space topalogy depletod
in Figure 7.2 is represented by the one-dimensional tepalogy of

Eigure 7.3,
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A
Figure 7.3 Simulated one-dimensional expansion space topology

It is evident ia figure 7.2 that the momentum transferred to the
working fluid at A is oriented axially while the momentum flux at
B is oriented radially. This phenomenon is cowbined with the
influence of the two-dimensiona’ vecirculating flow effeccs
discussed in section 6.2. In contrast, the one-dimensinnal
apuroximation assumes that the momenta at A and B are both
axially orienced, so limiting two-dimensicnal effects to those
caused by recirculaling flows only. Traditionally (Sc78, UBS4,
Ur77), the strictly one-dimensional assumption of figure 7.3 has
been used in Stirling machine simulation. However, there is

recent stroug numerical evidence which suggests that ignoring

¢
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avial to radfal momentum tramsitions in expansion space dead
volumes can be a major source of error (Go87.2). Nevertheless,
the strictly one-dimensional interprotation of figure 7.3 is

retained here since a more heuristic pseudo-tw>-dimensional

approach might unduly skew the validation process and result in
the attribution of undeserved qualitirs to the one-dimensional
simulation model.

3. The radislly symmetric, dual piston compression space topology of
figure 7.4 may be approximated by the one-dimensional topology of

figure 7.5.

e e
A

A
o

ez

Figure 7.5  Actual two-dimensional compression space topolopy !

AB

Figure 7.5 Simulated cne-dimensional compression space tonology

The diserete di.. and piston motions depicted in figure 7.4
are aggregated into the single piston motion shown in figure 7.5.

This aggrepate is precise for the volume and rate of change of
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volume terms (V and dV/dr, respectively). In contrast, the
aggregate one-dimenslonal piston velocity at 4 in figure 7.5 is

defined by:
(o) = (Y /A0) / hpgy = Agpd .1

Hence, (vn)1 is unrelated to the momentum boundary conditions
actually prevailing in the compression space as depicted in
figure 7.4, Under these circumscances, the axial to radial
nomentum transition phenomenon (noted above for the expansion
space) is compounded by the existence of two opposed axial
momentum generation sources (A and B in figure 7.5) producing a
coalesced radial momentum flux at C. Thus the one-dimensional
disecretisation of figure 7.5 is an even more serious assumption
than that made for the expansion space. Nevertheless, this
assumption has been adopted routinely by previous researchers
($c78, UBB4) since it is a strict application of a one-

dimensional spacisl discretisation.

Alternate approaches such as that depicted in figure 7.6 have
had, of necessity, to be rejected owing to the lack of adequate
geometrical data {Th79) for the annular compression space /
cooler plemum (section E.3). For example, the approach depicted
in Figure 7.6 Ln essence allows for a pseudo-two-dimensional
mowentum balance te be performed upon the compression space /
cooler plenum while still retaining the one-dimensional struccure
of the momentum equations ((5.30) and (5.31)). A zero radial
mass flux oo the displacer rod is established as a momentum
boundary condition, while the influence of the piston and

displacer velocities are manifest only via volume-dependent terms

303

[ P »\-‘&MM

o

i
i
i




Figur

that do not make an advective contribution to the radial momencum
flux at B (in figure 7.6). This approach has been applied
successfully te a simulation of the Space Power Demonstrator
Engine (Te86, Go87,2). However, as defined, the pseudo-two-
dimensional concept does not permit the fluid dynamics of the
compression space to be described by the Lagrangian model

established in section 5.3,

@ 7.6 Pseudo-two-dimensianal compression space discretisation

Therefore, the strict one-dimensional description of the
compression space defined by figure 7.5 has been retained, not
only owing to the lack of geometrical data, but also in the
interests of abjrctively teating the one-dimensional simulation
model as defined in chapter 5. Hevertheless, cognisance of the
weaknesses of the one-dimensional compression space topology
assumption must be borne in mind when comparing the simulated and

experimental data,
Hence, owing te the crucial dissimilarities between the actual

and similated expansior and compression space momentum boundary

conditions, in a tundamental sense, the simulated and actual
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engines are not iderntical from a fluid dynamics perspective.

7.5 EMPIRICAL CORRELATIONS

Following the avgument presented in sectlon 6.4.3, the friction factor
and heat transfer correlations are extracted from Kays and London
(KL64Y. Two classes of correlations are required, one for flows in

eireular tubes and a second for flows within the regenerator matrix.

The circular cube correlations selected sre portrayed in figure 7.7.
These correlations represent a summary of the analytic and
experimental data available for flow in tubes with abrupt contraction
entrances, an appropriate description for each of the Iindividual tubes
comprising the heater and cooler of the GM-GPU3. In a one-dimensional
system, the heater and cooler heat exchangers are described as an
aggregation of their constituent tubes. This predicates the
assumption that the working fluid mass flux in each parallel flow path
is identical. Hew-e, evaluation of the friction factor and heat
transfer coefficient based on the geometry of a single tube enables
the aggregate boundaty shear force f and convective hest ctransfer

rate "?, to be computed,

The correlation curves depicted in figure 7.7 are parametrically
dependent upon the length to diameter ratio (1/d) of a given circular
tube. Thus, applying the correlatlons te an arbirrarily discretised
section of tube is problematic; strictly, the correlations are
applicable to entire vubes only, Previous workers (Be78, Ur77) have

chosen to circumveat the problem by arbitrarily selecting correlations
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for infinite I/d ratios. However, the use of the infinite 1/d
profiles in figure 7.7 is unsatisfactory here because the
unconditional convergence of itevative numerical schemes (such as that
ewmbodied within the implicit algorithm described in section 5.5.2) is
dependent upon the absence of any aruificial discontinuities which are
arbitrarily introduced into the computations. (Conversely, physically
real discontinuities, such as shocks, whicl are explicitly described
mathematically do not impose any limitatlons on an iterative

simulation algorithm.)

In particular, the infinite 1/d curves in figure 7.7 include a
discontinuity in the laminar to turbulent transition regime for the
range 3000 < ¥p, < 10000. Physically, the laminar to turbulence
transition appears to be continuous although a well-defined
mathematical description or understanding of the mechanism involved is
seemingly as yet unavailable (5586). Hence, the curves for 1/d = 100
in figure 7,7 are selected as the basis of the frictien factor and
heat transfer correlations used throughout the transfer space of the
GM-GPU3. In this context, it should be noted that these correlations
are also applied to the heatsr/regenerator and regenerator/cooler
tubular plena as well as to the non-tubular heater header. The
potential inaccuracies Ln using the l/d = 100 correlation profiles in

this global fashion on a discretised basis are i d

within the paraseriic validation protocol defined in section 6.5.

One of the ateributes of Lhe simulation wodel is its ability to treat
discontinuous changes in cross-seccional flow area oxplicitly (see
section 4.6,2). Hence, the selection of friction factor and heat

rransfer coefficlont correlatinsns for the strictly one-dimensicnal
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expansion and compression spaces defined in section 7.4 appears to be % .
less problematic than suggested by Berchowitz (Be78). The inclusion

of momentum modelling in the variable volume spaces (either by 2 i :

multiple control volume Lagrangian discretisation in the equilibrium P Pl

algorithm or by a single CEL control volume in the UPD algorithm)

simplifies the correlation selection process. In both the UPD and
equilibrium algorithms, a conrinuum mechanics analysis admitting
generalised boundary condltions is applied strictly in one-dimension [
to a space which has ¢ particular non-stetionary boundary condition i
(namely, a moving piston). Hence, co maintain consistency with the '
continuum mechanics analysis as well as to remain true to the

objective simulacion model application ethic, the one-dimensional

expansion and compression spaces are necessarily no different from |

cireular tubes and are thervefore rreated as such in the correlation
selection process. However, as notad in section 6.2, two-dimensional i
EFlows {n uni-axial c¢vlinders (that is, cylinders in which the piston
motion and boundary fluxes have the same orientation) cannot be

represented reliably using a one-dimensional discrecisation with fts

attendent correlations, irrespective of their sophistication. In view

of the relatively small convective heat transfers and boundary shear
stresses empirically observed for the cylinders of most Stirling |

machines and f£or the GM-GFU3 in particular (Th79, Th8l), the striet

interpretation of the necessity Eor a onc-dimensional cireslar tube
correlation ts mainly of puduntic sigulficance, the practical impact
being negligible. From the perspective of the validation protocol
(section 6,5), the variation of the Lagvanglan diseretisatlon
paramecevs m, snd m, has @ Lar greater Lwpact on the engine

performanca than altering tho magnitude of the eylinder friction

factors and heat transfer coefficients, Therefore, in terms of
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validating the simulation model, the inclusion or exclusion of any
Friction factor and heat transfer correlatiouns In the expansion and

compression spaces is move an issue of consistenscy than practical

importance.

In tais context, the geometyy of rhe one-dimensional vatiable volume P

space cyilnders suggests a selectlon of the curves with a 1/d ratia of [

25 Lo Eignre /. ' since Kays and Loudon do not present any pipe flow Ll

data for tubes with abrupt expansion entrances. These corvelations

sexve purely as a polnt of reference for parametric variation
purposes. ILn this way, the impact of expansion and compression space
heat transter and eulel-dimensional dissipation effects on the overall
simulation prodictisus mev be demonstrated within the context of the

defived waildation protocel.

The frictien faclor and beat tvansfer coefficient correlations for
randomiv stacked, woven screen matrices ave extracted from Kays and
Londot. 1¥ina) and depleted In £igures 7.8 and 7.9, Since the GM-GPU3
regenerator has a volumetric porosity of 0,697, interpolation between

the curves bounding this value in figuves 7.8 and 7,9 is required.

In an effart tou adhere as closely as possible Lo the correlations
plotted in e 200, 18 and 7.9, they are {ncluded in the
simutation usluyg a Laprangion fnterpolation (Ge?0) of the tabulated
data preduced by a dipitisation of the relevant profiles. The
digitisation was perkormed using a Flat-bed digitlser with an
optically magnifled sight and a spatial resolution of 1 in 10000, The
details of the digitisation and intovpolation prucedures are given in

sectien E.7.
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As zero Reynolds number conditions may occur during the Stirling cycle

(at startup and when the flow reverses), sxtrapolation to Ny = 0 in -

figures 7.7, 7.8 and 7.9 is required. A linear regression analysis of
che digitised curves in Figure 7,7 produces & minimum correlation
coefficient of 0,9999 for Ny, < 800 (see table £.8). Likewise, a

linear regrassion analysis of the interpolated friction factor

4 .. iba curve developed From figure 7.8 ylelds a correlation
reeifliier of 0,9999 ior Np, < 11, By a similar procedure, the

Tessia coefficient for the iuterpulated heat transfer correlation

is also 0,9999 for ¥p, < (. Twus the linear regression equations
axtrapolating the correlations of figures 7.7, 7.8 and 7.9 to a zero
Reynolds humbei {developed iw section E,7) appear to be justified on a

statistical basis

For the sac: of corpleteness, it has also been found necessary to
extrapolats the corcelations of figure 7.7 beyond the Reymolds number
of 500G plutted. Kevnolds numbers greater than 50000 at the heatexr
ard soolsr encrances have been observed to occur when inictiating a G-
GPU3 engine simulation from rest conditions. However, in all other
circumstances, the peak Reynolds numbers have not exceeded 50000 while
the maximum Reynolis mur%ers observed in the regenerator have been
wiihin the range plotresd i~ figures 7.8 ard 7.9. The extrapolation
beyond Np, = 50000 in {1e,r- 7.7 is accomplished via & linear
regression analysis of the ciritised data above Reynolds numbers of

10000, The minimum correlalon coefficient of 0,9998 produced (table

E.8) warrancs the use of ch: iimear regression extrapolation sguations

developed in section E.7.
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In applying the correlations to the simulation in the context of the

validation protecol, it has beem found conven’ent to use separate »
friction factor ard heat transfur multipliers (Kx and Kh:
ruspeetively) For the cirtular tubs and regenerator matrix
correlations. This enables the i “wnce of the two sets of

correlations to be independsasly assessed by parametric variation.

7.6 NUMERICAL TORICS

Details of computer programmes embodying the UPD and equilibrium :
algorithms are presented in appendix F. The programmes, which are

written in standard ASSI FORTRAN-77, are accompanied by descriptive

tabulations of all the FURTRAN variables used. Also inciuded are )
algorithmic flow charts awd the methodology used to establish the

initial cyclic conditfons whem starting the simulation either From

rest (a cold start) or from 2 condirion established by a previous

simulation run (a warm start). Hence the issuss discussed below are

limited to those which are of particular significance to the

simulation model developed and Lts application to the CM-GPUI engine.

In oxrdar to implement the .quilibrium and UPD algorithms described in

ablished. These

section 5,5.2, several mumerical congtunts mush be e

are:
- £l integration time incvemeut in the equilibrivs algorithm

- the iteration convergence test limit B in equation (5.48)
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- the itexation convergence factor §, in both the equilihxium

conv

and UED algorithms.

It is also necessary to establish whecher the simulatlon has comverged

to a eyclic steady-state.

These issues, together with a description of the computer hardware and

software used to carry out the GM-C7U3 simulat.on are discussed in

following subsections.

7.6.% Numerigal orithm Constants

The largest physically admissable integration time increment that may

be used for a given set of boundary conditions is produced by the UED
algorithm (see section 5.5.2.2). Hence the time imcrement chosen for
the equilibrium algoriths should be sufficieatly small in comparison

with the UPD algorithm time in-rement so as to fulfil the equilibrium

information propagation hypothesis. Simultaneously, the equilibrium
algorithm time increment is bounded below by the desirability of
minimising the amount of computation required, On this basis, using
an empirical selection process, a time increment defined by a periodic
discretisation of 350 increments/cycle has yielded a satisfactory
campromise. All the equilibrium simulstions performed for the GM-GPU3
have thus used a 330 inerement/cycle temporal discretisation so as not

to add any numerical distortion to the results,
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In evaluating the impact of the UPD algorithm, it is useful te
incroduce a non-dimensional number, termed the characteristic number

(¥.,), as a means of quantifying the informacion propagation behaviour L

instantaneocus time increment in the UPD algorithm is equal to the

machine time characteristic; that is, the interval required for a VL
pressure wave to exactly traverse the unitary pressure domaln once. P
Hence the characteristic number may be defined as the number of

pressure wave traverses occurring per cycle or!

7

Vep = (eyclic period) / (lime characteristic) n
or, using the UPD time inciement definition (section 5.5.2.2.):
Yoy = B, / uax | ; Lifvi-(v g, )1: L/ e, 02
As the maximum characteristic numhers for the entire GM-GPU3 o

S,
simulat{on map have not exceeded 240, use of a 357 increment/cycls
equilibrium temporal discretisation has proved to hs sore than “
adequate for fulfilling the equilibrium aigorithm hypothesis while
probably being excessiva for crses producing characteristic numbers of
less than 100.
The iteration convergence test limit.  in equation (5.48), is also i

subject to bounds. From the standpoint of minimising the amount of
computation, § should be as large 2s possible, while numerical

accuracy dictates that the extent te which # may bo increased is quite

seversly constrainvd. The optimum value of § = 0,05% has been
determined empirieally by applying the implieit algorithms to a

variety of physical situations, including natural convection cavity
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flows (Go83). This value of # is used for all cthe simulation runs

performed for the GY-GRUI.

In contrast, the iteration convergence factor @ section

conv

5.5.2.2, slgorithm step 13) may be selected arbitrarily within the

range 0 < A, % 1. The general criterion for choosing f_... 1is that

it should be as large as possible to enable iterative convergence
throughout the c¢ycle with a minimum number of iterations at each time

step. Two approaches to choosing 8, have been adopted, In the

conv
equilibrium algoritkm, an aucomatic selection procedure dynamically
alters A, at the end of each ireration so as to minimise the number
of iterations required for convergence (see section F.4 for a more
detalled description). This procedure also has the capability of
reducing the integration time increment, when appropriate, to further
optimise the convergence process. It may be noted that arbicrary
time-step reduction is admissable under the equilibriuwm algorithm
hypothesis. Conversely, no time-step reductI 1 is permissable in the
UPD algorithm., This has been found to elimirate any computational
Hence the UPD

advantage accruing from automatically varying 8,,..-

algoricthm ut{lises a single user-Inpuc A, value over the entire

cycle. Generally, A, valucs of about 0,5 have yielded adequate

performance for all the GM-GPU3 UPD alpovithm simulations.

7.6.2 Cyclie Steady-State G

The primary requirement for determining wherher cyclic steady state
has been achieved is that a cyclic thermal energy balance must be

satisfied for the overall working space system as well as for each of
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its substituent parts. In the context of the GM-GPU3, energy balances *
nay be performed on the working fluid itself as well as on the i
regenerator matrix. Treating the working fluid as an isolated system, . o

in terms of the encrgy conservarion formulation of eguation (3.31),

the first lav of thexmadynamics (Wa?7) may be cxpressed in cyclic .

integral texms as:

;
jii'dc - § Q. ar - i::;'ur 7.3) "o

where the first integral on the right hand side denotes the net haat

transfer with the soli{ boundaries including the regemerator matrix.

Hence at cycle steady state, fde = 0 go thac:

(7.4)

For couvenience, the luvel of cvelie steady-state convergence may be

defined In terms of ar energy nalance evror Iy .. by:

S T L I D (7.5)

slimevele

where the boundary heat transfer is split into beat addition and heat

removal components,

S fruig 18 not only a meas re af steadv-state convergence but iz also

an overall {(ndicatoc of the integrity of the simuiation model, Tn i)

practice, it has been obscrved that the inahility to achieve onetgy
brlance errers less thun %% s a definitive indfcation of analyrical
and/or numerical errors. In this cohtext, & mass balance check is

also performed at cach time incvement as a furthexr teat for errors,
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From equation (E,31) the cyclic ¢nergy balance for each regenerator

matrix control volume I may be described by:

\ f -
[N J; ) 40107 = § (s - Qs+ @, - @1 de (.6) @
wheve tie first two terms within the right band integral represent the
axial heat conducted throwgh the mesh, the third term denctes the 1

!
radial heat conducted Erom the casing while the last term signiffes
the converrion “eat transfer with the working fluid. At cyelic v
steady-state conversir  -he right hand iutegrel musc he Ldentically
zevo which rhen o G
(T sey = Tgdeants = 0T eyege = 0 a.n
that L. the £inal and initial cyclic reg mavrix es

are equal for each regenerator control velume. The temperature

difference “Mm‘x‘;m'cle is a computationally convenient and sensitive
indicator f regenevator thermal couvergence and is used as such in : o
the simularion, In particular, the thermal convergence criterion usec =

in the simulatios of the GM-CPUI has been selected somewhat

arbitrarily ns:

max HAT’")I)C‘““, 1R (7.8)

An tnordinately large amcunt of computation 18 required to achieve
ehis 0,1K eviterion for rhe GM-GPU3. 1In some cases, this bhas been
demonscrated to ameunt to the slmulation of 100 cycles or more, even
though enevgy balance ervors of less than 1% are schleved aftev Eive
or six cycles. Based upon a suggestion of Urieli (Ur77), the
following algorlthm has been used sutcesstully to speed up the

regenerator thormal convergence process:
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From equation (E.31) the cyclic energy balance for each regenerator

matrix control volume i may be described by:

HCdy % 14T, /dride <]£ Wy - @y, + Q) - (8,) ) é& (7.6

wheve the flvst two terms within the right hand integral represent the
avial heat eonducted through the mesh, che third teem denotes the
radial heat conducted fvom the vasing while the last term signifies
the convection heat transfer with the working fluid. At cyelie
steady-stace convergence the right hand integral must be identically

zero which then vequives that:

Hodiaaes © Tadamy s 7 V8T lovere = O .7

that fs, the £inal and initial eyclic reg matrix

ate equal for ¢ach regenerator control velume, The temperaturs

diffarence {

't ovese 18 @ computationally convenient and sensitive
Lodicatoy of regenrrator thermal convergence and is used as such in
the slmdation,  In parcieular, the thermal convergence criterion used
in the similacion ot che GM-GBUY bas been selvcted somewhat

arbirrarily

man {(A'Z'm,“”(,le w1 E 7.8

An inerdinately large amount of computation s required to achieve

this 0,1R criterion for the GM-GPU3. In some cases, this has been

R demonstrated to amount to the simulation of 100 cycles or more, even
though energy balance vrvors of less than 1% are achieved after five
or siz cycles. Based upon @ suggestion of Urieli (Ur77), the

following algorithm has boen used successful 7 to speed up the

thermal convers process:
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T gl = W) puseo ™ Preonv®Tdeyerel 1 (7.9}

where ((Tm) are the cokrected baseline temperatures at the

N
soti

start of the next cycle.

Typically, regensrator convergence factors in the range 1 & Brcanv 55
have led to a threefold decrease in the nuwber of cycles required to

achieve r. tor thermal B¢ . It should however be noted

that even under conditions in which equation (7.8) is satisfled, the
net regenerator boundary heat transfer will be finite, or from

equation (7.6):
] )}% @y = Qudpey ¥ (@), - @) 3dE] >0 (7.10)

Generally, the reziduals at the 0,1K convergence limit do not exceed 5
Ji in comparison, achievement of residusls smaller then 1 J requires
that the criterion in equation (7.8) be reduced to 0,01K, a
prohibitively expensive requirement in terms of the relatively large
number of simulations mandated by the validation protocol, The entire
issue of regenerater thermal convergence has perplexed other
resesrchers who have developed simulations based on rigourous fluid
dynamics consideratlous (GeB6.?). Clearly, a methodology for short-
clreulting the simulated physical effects of regenerator matrix
thermal Lnertia would be a useful addftion to the art {(as opposed to

the science) of Stirling machine simulation.

In closing, Lt may be noted that, as alluded to above, small energy

balance errors for thu GM-GPU3 are obtained with far less computation




than that required to satlsfy the tor thermal convergen
criterion, Hence, in practice, equation (7.8) has proved to be the
dominant measure of the achievement of a simulated cyclic steady-state

condition,

7.6.3 Cs tey I and Software

Several different processors and compliers have been used in H
developing, testing and running the UPD and equilibrium algorithm i
programmes. A chronological summary of the various items of hardware

and software usod {s listed in table 7,2, The initial scages of the Ly
simulation programme development were carried out on an IBY mainframe '
computer. Thereafter, upon the ralease of an ANSI FORTRAN?7 comp.ler
by the Rvan-McFarland Corporation, the code development was shifted teo
a standavd 4,77 MHz IBY Personal Computer equipped with an Intel 8087
arithmetic coprocessor. It soon became apparvent that this system was
far too slow for code developmant purposes. A chis juncture, an add-
in processor board based on an 8 MHz Intel 80286/80287 micyoprocessor
/ arithmeiic coprocessor set with zero wait-state dynamic random
access memory (DRAM) hoeame temporarily avallable. This acceleratad i
the compilation spsed by & Factor of about four and the code execution : <
speed by a factor of tva., When the 80286 microprocessor board wag

required elsewherc, the standard IBM PC was modified by the

installntion of a substitute mothorboard supporting a NEC V30

microprocessor, Intel 8087 arithmatle coprocessor, zero walt-state

DRAM and a elock speed of 9,54 Mz, This system produced a slightly

slower compilation speed than the 80246 basad system but the execution

speed was increased to alsost 2,5 times that of a standard IBM PC,
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Table 7.2 Simutation pragramme development hardunre and softvare chronalogy 1

Processor/ Hachine | Arfthmetic | Clock | Memory | Gperoting FORTRANT? :
Kicroprocessor &lass Coprocassar | Speed [ Wait- Sysiew Compiler
(Kiz) | states
184 4341° Hainfrane . . - wH/eHS VS fortran raloase 3.0
Intel 8088 Ricrocomputer | Intel 8087 | 4,77 | 1 184 PC 00§ Ryan-MeFarlond
€16 bit) {18H PC} version 2.1 version 1.0
Intel 802860 Microcomputer | intal 80287 8 0 [BH PC DOS Rysn-NcFerland
€16 bity {18M PC based) version 3.0 version 1.0
Hee vio® Microcomputer | Intel 8087 9,54 i 18K PC DOS Ryan-HeFarlend ver. 1.0
CIBM PC based) versfon 3.1 | and Hicrosoft ver. 4.0
Hotorola 68020° | Workstation | Metorota | 12,5 | 3 18K PC DOS siticon Valloy
(32 bit) C1BH PC based) 48081 varsion 3.1 Softusre ver, 2.5

Hotes:

a, 8K is the registerad trademark of the International Business #achines Corparstfon.

b.  tnstalled as a plug-in processar/memory system board on the |BM Porsonal Computer input/output bus.

¢.  An enhanced version of the Intel 8086 microprocessor, HEC (s the reglstored trademark of the Nippon Electric
Carporatian,




The bulk of the simulation programme development ind testing was

carriad out on this system.

buring the final etages of the equilibrium aigorichm programme
development, the length of the source programme cade excrvoded the
capacity of the Rvan-McFarland compiler which resulted in some
spectacular prograume failures. Fortunately at this point, use was
obtained of an IBM Personsl Computer equipped with an add-in 32 bit,
12,5 MHz Motorola 68020/68881 microprocessor / arithmeric coprocessor
system which supports the robust Sillcon Valley Software FORTRANT7
compiler, The remafnder of the ¢quilibrium cade development was
carried out on the Motorela system, which has a processing capacity
voughly equivalent to that of a Digital Equipwent Corporation VAX 750
minicomputer. Towards the end of the simulation programme

¢ relupment, Microsoft Corporation released version 4.0 of its
FORTRANT7 compiler which, although not error-free, duss enable the
final versions of both tho equilibrium and the UPD algorithm
simulacions to be run on any computer using one of the Intel 8086
family of microprocessors. ALl the equilibrium algorithm simulation
final rans were pevformed on the Motorola microprocessor system while
the UPD algorithm runs wore performed on the modified 9,54 MHz IBM

Personal Computer.

The output data produced by the simulation programmes have been
procassex via the LOTUS 123 gpreadshecet programme which has also been
used to produce the two-dimonsional graphics. The three-dimensional
graphics are the output of a spocialised programse written by &

student under tha supervision of the author (see acknowledgements),

!




7.7 VALIDATION RESULTS

The GM-GPU3 experimental performance map is defined in reference Th79

by & total of 67 individual, low-power baseline test data point;.
Each data peint is typically represented by two sats of experimental
readings taken sequentially, There is only one high-power baseline

performance test dara set included in reference Th8l, although

additional high-power baseline test results are reported as being
obtainable from ¥ASA. The experimen:al test data points used here are -
selected from the published data only because of their general

availability.

The primary cricerion for selecting appropriate test data points is an
experimental energy bi'ance wrror lese than 10%. This reduces the
candidate performance map from 68 to 5/ test peints; 40 helium and 17
hydrogen working fluid tests respectively. The simulation validation
map comprises ¢ data points, & helium and 4 hydrogen working fluid
rests plus an additional tesc for the simuiation calibration phase.

The non-calibration experimental test points are chosen to provide a

representative range of operating speeds, working space
pressurisations, heater temperatures and power outpucs, In all cases,
the experimental reading set with the lowest energy balance error is
selected while a lower energy balance srror also governs the choice
between two test data points with equivalent experimental parameters.
No simulations were performed prior to the non-calibracion
experimental test point selection. The tests selected are therefore
free from any biss incurred from an attempt to choose t.its which
produce good agreement with the simulation. The calibration

experimental test point was chosen arbitrarily because it is included
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within the text of referenmce Th79; the remainder of the test points

are reproduced on microfiche and are thus not as convenient te use,

Table 7.3 1ists the input parameters required by the simulation model
fox the nine validacion test points. The test description
designations used (and adhe~ed to throughout) are the same as those
reported in references Th7® and Th3l. The preface H or HE denotes

hydrogen or helfum as the working £l.id ' w1 the digits prior to the

hyphen represent the heater wall temperature (L = 118(°T; 2= 1200°
25 = 1250°F; 3 ~ 1300°F). Toe first ome or two digits following tne
hyphen des.ribe the working fluid pressurisation in units of 100 psi
(ranging from 2 = 200 psi to 10 = 1000 psi) while the last digit gives
the engine speed in decrements of 500 rpm (from 1 = 3500 rpm to 6 =
1000 rpm). In terms of this latter terminelogy, test HE3-21B should
really be defined as HE3-23B in view of its nominal 2500 rpm speed
parameter. However, the erroneous designation is maintained to ensure
reproducibility. The A or B terminating the designation indicates
whether the test parameters correspond to the first or second set of
experimental readings taken at each data point. All the hydrogen and
helium tests are extracted from the low-power baseline series with the
exception of the hydrogen -«» H25-105A which is the sole high-power

baseline test reported in - ur<nce Th8L,

The hydrogen tests cover a nominal engine speed range of 1500 to 3500
rpm, a pressurisacion range of 27 to 69 bars and an average heater
wall temperature range of 594 to 726°C. The cold end temperatures
vary within 3,8°C of the 20°C mean over the hydrogen test series, A
slightly more extensive parameter map is covered by the helium tests

which span a speed tange of 1000 ta 3500 rpm, a pressurisation range
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Table 7.3 Irput parameter set
input Paremeler HASA Test Number
HY-438 H2-42A | H25-105A1 H3-6%A RE1-46A KE3-218 HE-448 HE3-43B | HE2-1018
Working fluid Hydregen | Kydrogen| Wydragen| Hydrogen | Heliwum Hetium Helium Hetlium Belium
Speed (rpm) 2499 2990 1504 3516 998 2496 2003 2503 3495
Charge pressure (bar) 27,4 27,3 9,2 1,3 7.4 13,8 27,4 41,3 69,0
Expansion space wall 776,40 818,50 847,15 886,15 698,90 792,15 w2, 250,90 B4G,15
temperature profile (K) 588,15 636,15 680,15 722,15 521,15 600,15 579,15 456,15 707,15
493,15 534,15 570,15 801,15 444,15 500,15 484,15 548,15 609,15
Heater wall temperature 826,15 875,15 922,15 946,15 761,15 871,15 829,15 932,15 889,15
profiie (K) 899,15 952,85 1036,65 029,15 853,15 984,65 927,15 1049,85 1619,65
906,65 952,15 1014,96 [ 1034,65 903,15 1007,90 957,40 1052,15 1022,15
877,15 928,65 1058, 65 1033,15 850,65 968,15 926,15 1088, 35 1034,65
877,15 928,65 1050,65 1033,15 830,65 968,15 926,15 1088,15 1034,65
877,15 929,15 [1016,15 997,15 858,15 979,15 905,15 | 1007,15 986,15
896,35 853,15 900,15 913,15 771,05 519,15 17,15 898,15 836,15
Regenerator casing 769,15 814,65 824,15 876,45 "7, 15 821,84 771,65 843,65 797,15
temperature profile (K) 626,55 640,75 651,75 666,35 834,15 681,15 847,15 696,32 847,48
410,15 419,65 399,15 443,65 393,15 423,65 411,15 440,15 445,15
Cold end tempersture (K) 291,10 291,70 296,95 292,90 286,40 287,20 208,70 290,30 297,18
Y . - K.




of 14 to 69 bars and a mean heater wall temperature interval of 564 to

756°C. The cold end temperatures are less uniform than those for the

hydv gen tests, varying within 7,1°C of & 16,8°C mean. r.
R

Table 7.4 Working fluid properties

Kydrogen Helium Reference

Gas constant (J/kg.K) 4125 f 2085 ED72

Ratio of specific heats 1,40 1,67 D72

Prandcl number 0,697 0,71 D72 :

Fiduciary viscosity (kg/m.s) 8,35x107° | 18,85x107° | Bz71 -

Fiduciary viscosity reference | 273 273 Br7l ;

temperature (K) L

Sutherland constant (K) 84,4 80,0 Br7i & d/‘

The helium and hydrogen working fluid properties used in the

simulations are given in table 7.4, These data have been extracted ! »
from the sources listed and have been corroborated by other references
(HCS54, Wa77). The gas constant and Prandtl number values tabulat.

are typical values for the range of temperatures encountered within

the CM-GPU3 over the test map specified in table 7.3. The fiduciary

temperature and viscosity as well as the Sutherland counstant are

required for the Sutherland molecular model used to determine the

working fluld dynamic viscosity u (see section F.3).

In the following sections, the validation protacol is described in the
sequence defined by table 6.1, The specifics of the validation
protocol pertaining to the selection of the transfer, expansion and
compression space discretisations are described in section 7.7,1.

This is followed by & discussion in section 7.7.2 of the

characteristics of the simulation model as a function of the baseline




calibration point experimental and simulation data. Thersafter, the

baseline and corrected run results are presented in secticas 7.7.3 and

7.7.4. To help the reader, all the graphs referred to in sections _
7.7.1 and 7,7.2 are collected together at the end of section 7.7.2,

beginning on page 360.

7.7.1 Baseline Calibration of the Simulation Model :

The baseline calibration exparimental data point is defined by helium

test HE3-63B (table 7.3). As noted above, no effort was made to

deliberately select a test which would indeed enable a baseline ,
calibration to be achieved; the choice of test HE-63B was essentially .
~ . one of convenience. The baseline calibration phase is carried out in

two stages as shown in table 6.1. The first stage leads to a

selection of the heater, regenerator and cooler spatial .,

discretisations and the second stage does likewise for the expansion

and compression spaces.

7.7.1.1 Spatisl discretisation of the heater, cooler and regenerator

Acceptable minimum levels of spatial discretisstion for the heater,
regenerator and cooler are determined by holding the coefficients X_,

X
and compression spaces by & single control volume eack. In the case

!

1 K and K, at their baseline values and by representing the expansion
|

i of the GM-GPU3, as shown in figure E.9 (section E.5), the regenerator
is comprised of three sections such rhat the matrix is bracketed by
void plena, These plena are alvays discretised as single control

volumes since they have axial lengths of only 2,6 and 1,8 mm

! respectively. This is a considerably finer discretisation than that
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ised in the other unrestricted flow components (as opposed to the

restricted flow existing within the matrix).

The baseline calibration simulation run results used to establish the
heater discretisation are listed in table 7.5, The runs are performed
using Intuitively reasonable (Ur77) regenerator and coolexr
diseretisations of & control volumes each. 4s noted in sections 7.7
and E.4, the heater is operationally segmented into the Eive sections
reflected by the sub-discretisation shown in table 7.5. The variation
in the tabulated single-rum eyclic indicated work cutputs and net heat
transfers is generally quite small. As the total number of control
volumes is increased from 7 vo 28, the largest variation amounts ta 5%
of the initial value for the regenerator heat transfer. On this

basis, the 2:4:2

2 {or 14 control volume) heater discretisation is
chosen as the 1:2:1:2:1 discretisation is too coarse to give an
adequate spatial resolution of the flow in the heater for graphical
display purposes. The l4 control volume discretisation also
approximately defines the ‘knee’ in the indicated work output and

heaver heat rransfer profiles.

Maintaining heater and regenerator discrecisations of 14 and 6 control
volumes respectively, the baseline calibration runs to determine the
conler diseretisation were performed next. The cyclic indicated work
and net heat transfers produced are listed in table 7.6. The ‘knee’
of the indicated work and caoler heat ttansfer profiles occurs for a
cooler discretisation of about 7 control volumes; hence, a 7 control

volume discretisation is selected.
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Table 7.5 Heater spatial discretisation calibration with 6 regenerator
and cocler control volumes

Sub-component Total Number Indicated Work Net Heat
Control of Gontrol @ Tramsfer in
Volume | Volumes Beater
Allocation® |
112:1:2:1 —{ 7 71,22 306,26
214:2:6:2 | 14 71,46 305,97
3:6:3:8:3 | 2 71,51 305,78
* 28 71,55 305,66
Notes:
a. llsting order given oy:

(insulated exp. sp
header : uninsulal
regenerator side)

Table 7.6 Gooler spal

ace side : uninsulat.d exp, space side ;
ted regenerator side insulated

tial discretisation calibiastion with 14 heater

and 6 regenerator control volumes

No. of Control |  Indicated Work | Net Heat Transfer
Yolumes | @) In Coaler (J)

A | 71,00 -85,28

5 -86,08

6 -86,62

7 -87,0L

8 87,31

Finally, using the 14

S -

and 7 control velume discretisation for the

heater and cooler raspectively, the regenerator discr:tination

baseline culibration was performed and produced the r ~uito given in

table 7.7.
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Table 7.7 Regenerator spatial discretisation calibration with 14 .
heater and 7 ceoler comtrol volumes

No. of Tndicated Work | Net Heat Net Heat Net Heat
Coatral &5 Transfer in| Traasfer in | Transfer in b
Volumes Regenerator | Heater (J) | Cooler (J)
&8 E

& 71,57 27,44 306,07 -87,0%

8 7322 17,12 304,73 ~80,06

10,62 303,94 ~75,63

6,03 303,38 -72,49
)

;
+
|
| 257 303,02 -70,13 T

14 73,54

In this case, the variations in the tabulated parameters ave H

substantial as predicated by the discussion of porous advection

effects in gection 6.3. Simce X = 0 for the baseline runs, the net 4

heat transfers demonstrate the impact of regenerator discretisstion on

the enthalpy fluzes emtering the heater and vooler. The variation in
net vegenerator heat transfer is somewhat spurious. This arises
because after the simulation of a single cycle from rest conditions,
the regenerator matrix is very far from convergence at a steady-state

condition. tHence, Erom equation (7.10), the mactrix cyelic heat

residuals, which genevally change sign through che regenerator, may or
may not sum to zero, depending on the discretisation. Based on the
indicated wark and heater and cooler heat transfer profiles, a 12
control volume spat{al discretisation of the regenerator approximates

the optimum and is thus selecred.

The net GM-GPU3 ctransfer space spatial discrecisation amounts to a
total of 35 control volumes over & 1 length of 328 mm,
yielding an average spatial resoi. 4 wn per control volume. ;

This is finer than the discretisation ...ocated by Uriell as being
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optimum (Ur77) for a gemeric Stirling machine working space. Use of * -
this lavel of discretisation to perform all the GM-GPU3 simulations )
mandated by the validation protocol (more than 830 simulated angine ¥
cycles for the % test points considared) demonstrates the relative ‘A

computativnal officiency of the simulation model.

7.7.1.2 Spatial discretisa ion of the expansion and compressicn

spaces i

A summary of the cyslle energy balance vesults for the baseline !
calibration of the simulation model in terms of the expansion and i
compression space Lagrangian discretisation parameters m, and m_ is /
presented in table 7.8. As discussed in section 7.3, the primary

means of calibration is a comparison of the cyclie energy parameters,

namely, the indicarad work done and the net heat externally supplied

to and removed Eram the working fluid.

The data presented in table 7.8 includes the test RE3-63B experimental
energy balance results together with their simulated counterparts
produced by the equilibrium ~!jorithm. Five levels of Lagrangian
discretisation were tested fm @ expansion and compression spaces
with both spaces having the idertical discretisation as stipulated in
table 6,1. As m, and m, are incicased, the minimum and maxlmwun number
of control volumes produced by rhe simulation over a evele also
increase, although {n a d{fferent qualiiacive Faghion in the expansion
and compression spaces. The influence of the Lagranglan
diseretisation is discussed Fivst for the expansion space and then for

the compression space.
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Table 7.8 Test HE3-63B buseling calibration sinulation muns:

larce compazison

cyelic energy

Calibration Parameters Dara Source
and Results
Axpert- ByudLibrive Algerithn
mental
Lagrangian discretisation - 1 2 3 4 6
parameter
Minimm:maxime no. of - 1 1:2 1:2 1:3 14
nass/energy (V'S produced
over cyele in expansion
space
Minimmmaximen vo, of - L1 22 24 35 5:7
mass/rnergy O's produced
ove: ycle in compression
space
External heat supplied ¢ 1 271,52 ) 230,48 & 261,01 | 263,35 | 255,66 | 248,73
t
External head rejected (1) | 16,80 |17 0 | 175,68 | 177,54 | 173,08 | 168.83
Trdicated work 41) % 9L, . 68,89 89,80 86,55 83,87
Matvix heat batance - -2.60 -3.05 -3,36 -3,42 <377
residual {J)
Erergy balarce erver’ (%) 1,40 ¢,02 -0,17 <0,21 0,19 -0,07
Exteraal . = supply
digereps %} - 3.3 -39 -3,0 ~3,8 -84
fxcerral it Tejection
discreparcy® (%) - 5,5 0,5 0,5 2,0 b
Irelicated work
discrepancy® (%) - s1.4 -5,0 7.9

Mates
2. Simdacion crergy balae crror dete
b, Discrepaey w 100 (shmlation value

@ ustuyg equacon (7.5),
rimental value)

7 (eporinental vadue

o K
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The expansion space minimum discretisation remains constant at unity.
This means that, irrespactive of the value of m,, a condition for
which no Lagranglan control velumes are present always exists within
the cycle, In these circumstances, toe entire space is represented by
the CEL (combined Eulerian/lagrangian) control volume. As m,

incteases, the portisu of the cyele durlng which only the SEL control

volume exists {s reduccd,

This effect iy illustrated by the three-dimensional temperature field
plats given in figures .10 to 7.1a. These plots (in common with all
the three-dimensional plots presented) ave arranged so that positien
along the one-dimensional axis of the euglne is represented by the Y
axis, crank angle twhich vorresponds to the temporal dimens{on) is
plottes aleng the X axis while the field properties (temperature,
pressure or veloolty) are denoted by the 2 axis. In accordance with
the svstem model of figve 5.%, the cxpansion space is located
spatially at the origin of the ¥ axis Follewed by the heater,
regenerator, cooler and compression space in the direction of
increasing V.

The case for which My, 1 ino Lagrangian control volumes exise
throughoue the evelud Is shewn fr Figwe 7,10, Note that che plscon
face temperature profiles in rhe vxpansion and compression apaces are
Included only as a spatial baund, sinve, by definition, the plsten
face and CEL mass/energy control volume centrold temperatures are
identical. The cveation and eliminalion of a singlo Lagravgian
control volume which oceures when m, = 2 s depicted in Eigure 7,11,
Inereasing m, to three does not produce an additional Lagrangian

control volume but increases the perlod for which the single
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Lagranglan cantral velume exlsts, as shown ln figure 7.12. A furcher
{ucrease of m, to four produces two Lagrangian control volumes (Eigure
*13), while three Lagrangian control volumes are created and
eliminated ovor the eyele (flgure 7.14) when m, = 6 (the lavgest value
simulated). Viewing the discvorisation sequence (Figures 7.10 to

> 14) as a vhole, the portion of the eyele during which only the CEL

control volume exists is reduced as my 1s lncreased.

The priscipai physical effcct of alteriiy; the Lagrangian
discretisation {n the e:pansion space can be seen in the temperature
aradient. Under fully mixed vonditions when m, = 1 (figure 7.10), the
temperature gradient between the expansion space CEL and first
rransfer apace ot heater control volume is relatively small,
sreepening as m, s increased. Referring to figures 7.15, 7,16 and
T.17 (whieh depict the velocity fields for the 1, 3 and 6 Lagrangian
control volume discretisationsy, when the working fluid flows in a
hegative direction from the compression to the expansion spaces (shown
by the dashed lines), expansion space control volumes sre created.
Cunversely, control volumes are eliminated during periods of positive
flow. Hence the expansior space tunctions as a 'first-in, last-out’
buffer in which the working Fluid (ox gas) entering first is coolex
cowing to its shorter vesidency in thae heater) while the gas entering
last is hotter sinee jt bas been ronvectively heater during passage
thrangt the rogencvator aud heater. The ene-dimensional Lagrangian
model docs not permit adveetive fluld tnterchange via reeireulation
within the expansion space; hence the ebserved tempetature

stratification.
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The physical effect of this stratification is evident in the external
heat supply results listed in table 7.4. As m, is increased, the gas
advected into the heater from the expansion space during periods of

positive flow becomes hotter on average, so reducing tha comvective

tempcrature gradient between the gas and heatet wall. This is

reflected by the increase in cycle maximum temperatures (which occur
in the beater) reported in figures 7.10 to 7.1%4. Furthermoze, as the
maximum heater temperature lncreases, the convective temperature e

gradient may reverse in sign at certain points in the cycle, causing

heat to be removed from the gas in the heater. These convective heat
transfer effects in the heater become more significant as oy is
increased, causing a concomitant met decrear= in the cyclic external
heat supplied. Over the discretisation range considered, the external
heat supply decrease amounts to 31,8 J (or 11% of the simulated
external heat supply when my = 1). This trend is not entirely
consistent as a small increase (2 J) in external heat supply oceurs
when m, is increased from 2 to 3. This is probably a particular
consequence of the phase angle betwsen the creation and eliminatlon

processes and the flow field reversal points.

A similar stratification effect occurs in the compression space
although with an alrered mechanism. As m, is increased, not only does
the maximum number of control volumes in the compression space
increase but so too does the minimum number of control volumes. Hence
for m, = 2 and m, = 3 there is at lesst ane Lagrangian control volume
present over the entire cycle (figures 7 11 and 7.12) while when m_ —
4 and my = 6, two and four control volumes respectively are always
present (figures 7.13 and 7.14). In addition, it may be noted that

irrespective of the value of Mg, At WOSt two Lagrangian coutrol
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volumes are created and eliminated over a cycle as shown in figures
7.12, 7.13 and 7.14. The only effect of changing the value of m, is
that the period of existence of the Lagrangian control volume created L
second increases while that of the control volume created first

decreases,

Viewed as a wheole, figures 7.10 to 7.14 demonstrate that there is a

pocket of gas adjacent to the piston which never leaves the

comptession space of the simulated GM-GPU3 englue. The impact of this ;

is revealed by comparing figures 7.10 and 7.14 which contrast the
compression space temperature gradients occurring under fully mixed
(m, = 1) and virtually unmixed (m_ = 6) compression space flow fleld

conditions. The of this are elaborated further

in discussions of the baseline and corrected simulation results. w

Figures 7.1C and 7.11 show that the cyclic minimum temperature (which
ocaurs in the compression space) decrsases sharply by 58K when m, is
incremented from 1 to 2, so introducing a single omnipresent

Lagrangian control volume in the compression space. Thereafter,

furthex increments of m, produce a more gradual decline in cyclic
minimum temperature which reaches 15K when m, = 6 (figures 7.12 to
7.14). These phenomena are a direct result of the isolation of the
pocket of gas adjatent to the compression space piston. The isolated
gas pocket more or less undergoes a separate adisbatic cycle which is
advectively decoupled from the events occurring elsewhere in the
working space. A& further comsequence of this decoupling is that the

temperature gradients tend to be small in the purely Lagrangian

P

section of the cylinder and increase rapidly towards the CEL control

volume end. As the Lagrangian control volume creation process occurs
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primarily during the positive flow portion of the cycle (see figures
7.15 to 7.17) while the control volume eliminations occur during the
negative flow portion, by the inverse mechanism described for the
expansion space, the gas entering the compression space First is o
warmer than the gas entering last and vice versa. This accounts for

the relatively steep temperature gradients observed for the portion of

the cylinder gas dynamically involved in the advection process.

The mechanism by which the heat rejected externally decreases with
increasing m_ (reflected in table 7.8) is = direct consequence of the
concomitant dscrease in rhe mass of compression space gas actively

involved in the advection process. Hemce from figures 7.10 to 7.1u,

the average of the gas into the cocler during the i

negative flow porticn of the cycle decreases as m_ increases. This ;
reduces the convective temperature gradient in the cooler which causes
the amount of heat removed in the cooler to be decreased. As m,
increases, the reduction in heat removal becomes more acute on a
eyclic integral basis, The impact on the external heat rejected
amounts to 17,6 J (or 9,4% of the m, - 1 value) over the m, range o
tested, The same anomaly noted for the expansion space also occurs

when m_ is inoreased from 2 to 3, producing a 2 I increase in external |

heat rejection, .

In coucert with the behaviour of the external heat transfers, the

indicated work outputs also decrease as m_ and m, are increased, This

e

mimicry includes an indicated work increase to accompany the anomalous
rise in external heat transfers when m, and m, are increased from two
to three. The correspondence bstween the indicated work and external

heat transfer behaviour is a consequence of the changes in the
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expansion and compression space one-dimensional temperature fislds

caused by variations in the Lagrangiasn discretisation.

Comparing the experimental cyclic energy balance data with those

produced by the equilibrium algorithm simulation, Lt is apparent that
in all chree cowparison sategories included in table 7.8, a three

control volume fiscretisation of the expansion and compression spaces i
(m, = m, = 3) produces the minimum discrepancies. A maximum error of

331 in the external heat supplied is produced by this level of i
discretisation, The largest energy balamee error oceurring over the

sinulated baseline calibration map amounts to 0,21% vhich is an order

of magnitude smaller than the HE3-63B experimental emergy balance

error. The largest macrix hest balance resiiual produced is 3,77 J

(for the 0,01K criterion of equation (7.8)) or 1,5% ot

cotresponding external heat supplied. The smallness ol imbers

testifies to the integrity of the baseline calibration simulations

owing to the absence of any systematic arrots.

In summary, based upon the validacion protocel, the baseline
calibracion phase leads to the selection of m, = m = 3 as the desired
expansion and compresson space discretisacion. The physical

implications of this selection as well as an assessment of the

simulacion model in the light of the HE3-63B experimental test data is

the subject of the following section.
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7.7.2 Bsseline Calibratjon Phase Fvaluation of the Simulation

Model

The evaluation of the simulation model in terms of the baseline : 4
calibration phase results is performed ip two segments. Tbe first

segment covers a discussion of the physical implications of a one- ;
dimensional discretisation of the expansion and compression spaces in .
the light of the HE3-63B experimental test dacs  The second segment
addresses the effects of {nformation propagation and looks at certain P

salient characteristics of the simulation model which are not directly

related to the validation exercise.

7.7.2.1 Physical implications of the one-dimensional, varisble
volume space discretisation
In section 6.2, it is argued that the primary purpese of o
paramstrically varying the one-dimensional Lagrangian discretisatian
of the expansion and comprission spaces is to establish empirically &
level of discretisatlon which emulates the actual state of mixing
within the cylinders. As noted in section 7.4.2, the validity of this
approach is strongly qualified by its lack of compiiance with the
actual two-dimensional boundary topology of the GM-GPU3 cylinders,
Hence, the question at issue is whether the chaice of m, = m = 3
produced by the baseline callbration phase is physically relevant or
whether it is a purely Fortuiticus consequence of the numerically
well-behaved naturg of the HE3-63B test parameters. Insight to this
question may be obtained from a comparison of the simulated mean
cyclic parameters with thelr experimental counterparts given in table

7.9.
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Teble 7.9 Test HE3-638 baseline calibration simulation runs: ecyclic porsmeter comparisan

vata Lagrangien | Mean Hean Heon Pressure Suing Pressure Profile Phase
b source viscret- | Hester | Meater Comp. (bar) Angle® (deg)
isatfon Entr. | Midpaint space
Pacaneter | Temp. Temp. Doad exp. | comp. Exp. Space comp. space
<ty °cy volune Space | Space
Tenp.? Hin. Hax. Hin. Hax.
°cy
L
Experinentat - 682, 97, 98, 28,9 | 20,4 295, 70, 285, o, ‘
1 688,1 887,9 83,8 22,3 23,5 302,4 81,3 292,1 80,2 1
2 688,7 88,4 85.8 20,8 22,0 301,4 81,3 92,1 80,2
Equilibrium 3 6934 590,8 80,6 21,0 22,3 301,4 81,3 292,1 80,2
algortha “ 96,1 91,9 9.2 20,5 | 21,7 303,4 a,8 | 29,2 80,7
13 98,9 92,7 78,2 19,8 21,1 298,3 82.8 293,1 8a,7
fores;

a, Taken to be the CEL contral volume temperature in the siwulation.
b. With reference to the displacer TDC (minimum expansion space volume).
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In all cases, the wean hester entrance temperatures simulated are

greater Lhan those measured; s maximum discrepancy of 6,1°C occurs

when m, = 1. Conversely, the experimental mean heacer midpoint

Cempexatures are greater than their simulared counterparts with the

smallest discrepancy of 4,3°C occurring for m, = 6. Noting the :

systematic errors inherent in the experimental temperatures discussed

in section 7.3, these discrepancies may just as likely be due to heat :

transfer correlation errors as to a physically inadmissable ome- -

dimensional discrecisation of the expansion space. Furthermore, the
relative smallness of these temperature diserepancies shows that, on N
balance, a one-dimensional discretisation of the expansion space may i
be approfriate, notwithstanding its two-dimensional boundary topology.
Undoubtedly this arises partly because all the working fluid in the
axpansion space is coupled to the heater via advection as portrayed by
figures 7.10 to 7.14. The increase in mean heater entrance and
midpoint temperatures with increasing m, shown in table 7.9 also
validates the mechanism discussed In section 7.7.1.2 for explaining

how the cylic external heat supplied decreases as m, insreases,

However, the same degree of confidence in the one-dimensional
discretization camnot be expressed for the compression space. Noting
the error srising from the uncertainty in the location of the mean
compression space dead volume temperature measurement (section 7.3), a
minimum discrepaney of 14,2°C (14,5% in Celsius terms) is somewhat
unpalatable, Qualitatively, the simulated mean compression space dead
volume temperature hehaviour (temperatures decreasing as m, increases)
does support the mechanism for describing decreased external eyclic

heat rejections with increasing m, (see gaction 7.7.1.2). The rise in
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mean e when m, is . to two is a consequence of the

introduction of an isolated, cyclically omnipresent Lagrangian contral

volume in the compression space.

Additional insight into tha adequacy of the one-dimensional
discretisations of the expansion and compression spaces may be
obtained by consideriny the simulatud pressure-volume diagraws glven ]

in figures 7 18 to 7.22. Both the compression and expansion space

diagrans for all values of m, and m, are identical in shape. Taking

cognisance of the pressure amplitude scaling effect, they also appear

to be similar in all respects to the only examples of experimental
helium pressure-volume diagrams given in reference Th79 (see Figure
7.23 for a reproduction). Henze, at least from this qualitative

perspective, the one-imensicna. Lar >nglan discretisation of che b

expansion and compression spaces appears to be justified. S

An examination of the expansion and compression gpace pressure profile
parameter tabulatlon reveals what appear to be significanc
quantitative discrepancies between the experimental and simulated data
(table 7.9). On a qualitacive basis, however, Loth the experimental
and simulated pressure profiles have the same behaviour, as is
deplcted hy the simulated profiles in Eiguves 7.24 ta 7.28. In all
these cases, the compression space pressure profile leads rhat of the
expansion space by 5,2 to 10,3” at the profile minima while the
profiles are almost in phuse (a 1,1 to 2,1° coupression space phase
lead) at their maxlma. As these figures (rogether with figures 7.18
to 7.22) are plotted to rhe same pressure scale, the trend of
decreasing pressure swing with increasing m, and m, can be observed,

At the calibration polnt (m, = m, = 3), the simulation predicts that




the compression . -ce pressure profile leads that of the expansion
space by 9,3 and 1.° . ‘he profile minima and maxima respectively
while the cosresponuli_ measuved phase advances ave 10 and 0°, In

view of the uncertailnties in ihe pressure measurements noted in

section 7.3, this is judged to be an acceptable level of geomstrical

similavity. Hence, the gqualitative agreement between the phasa angle
behaviour of the experimental and simulated pressure profiles does t
contribute to resolving the issue of the edequacy of the simulation
model in portraying information propagation effects. It also lends
credence ta the vxperimental observations of Berchowitz (Be78) who
noted similar behaviour for very different expurimental boundary
conditions, bebavisur ot replivated by the Urieli/Berchowite

simulation model 1Be?8, Ur?7y. '

Nevertheless, on a quancitative basis, the pressure profile paramecer s
discrepancies are indicative of a deficiency in rhe simulation model,
notwithstanding the agreement (absolute errors globally less than

8,5%) obtained between the slmulated experimencal eyelic energy

balance results (table 7.8). The significance of these discrepancies

is enh bv the simulated ton space dead volume

mean temperature differencos (ranging from 12,2 to 19,8°C) observed.
This is alse true, although to a much lesser extent, For the heater
mean vemperature differences, The following analysis is developed as
a means of shedding some light on the significance of the mean cylic

parameter discrepancies.

From equations (E.1) and (£.2) (in section E.1), the motlons of the
displacer and piston produced by a rhombic drive mechanism may he

approximated reasonably well by sine curves. The pressure profiles in
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the expansion and compression spaces are also approximately sinusoidal
(figures 7.24 to 7.28). Hence the indicated work done on each plston

and displacer face may be approximated by:

A aear ™ Pampsih(dﬂ\) A ind) (7.11)

The subscript ‘ideal’ is used to distinguish the rate of work done as
an ideal approximation of the actual work rate. Pamp and VEmp are the

sinusoidal profile amplitudes and $ is the phase angle between the

pressure and volume profiles.
Integrating eguation (7.11) over a 2ycle:

2
¥ ideal ™ PampVamp Jl)sin(ﬁ-réwosﬁdd (7.12)
Using trigonometric substitution and noting that sine zurves are
periodic over 2rx produces the resulc:
T5ing (7.13)

Yidear = Pomp¥amp

From the GM-GFU3 kinematics described ia section E.1 and the tabulated
pressure profiles parameters (table 7,9}, the phasor diagram of figure

7.29 may be constructed
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Figure 7.29 CM-GPU3 pressure and volume vaviation phasor dicgram

Using the displacer top dead center (minimum V,) as a £lduciary point,
the compression and expansien space pressure profiles lead ¥ by ¢,
and §_ respectively. The compression space valume variation due to
the piston motion (V.), lags V, by +P while that due ta the displacer
(V) ) lags by 180° (4;). Hence substituting these relationships
into equation (7.12) snd summing the contributlions of the displacer

and piston faces produces the met ideal cyclic indicated work:

Flasal = " Ponp¥anp) 51080 + Cang¥omp) ot s1nlhrby)

+ sinl o+ 1) 7.14)

since, from equations (E.1) o (E.9), the motlons of the displacer and

piston ave symmetrical, or:
Vampde = Wanpdela = 100600 = Loplagy1-ag,) (7.15.1)

345 4

il e o o e cnd e




Also:
Fample = Lorfayl (7.15.2)
Substituting equations (7.15) ints equation (7,14):
Videar = 7 orl Pappdafoy5indy + (Popodo(ayy) -4y

x tsmwawp) + stngh ) (7.16)

In order to use this analysis to gain physical inmsight from the

pressure profile parameters, it is useful to define a correetion

faceor ﬁideal which tes che i i by the

sinusofdal profile assumptions. S is defined by:
Ldeal o4

Bidea1 = ¥ / ¥igeardsiquiacion 7.17) !
i

Since the experimental and simulated pressure-volume diagrams are

similar in shope and differ in area only as a function of thelr

pressure amplitudes, it may be assumed that:

Prdeal’ simutated * Prdeal’ experimental (7.18;

Hence the corrected experimental indicated work determined [roi the

pressure profile parameters is glven by:

"o/ ™ Pidoa1 W ideal) experimental (7.19)

Finally, an experlmencal pressure swing compensation factor ﬂcomp is

defined by:

Boomp ™ Wexporimental / ¥psp 7.20)

ﬁcomp is intended to account for:
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A *

- the response error of the expansion space transducer
- the uncertainty in the compression space measurement transducer
location

- the systematic errors in producing the experimental pressure

profile data from spparencly manual analogue oscilluscope and

oscillograph readings. :

Substituting equation (7.19) into equation (7.20}:

8 -~ (WA

comp tdeal’ experimental / Pideal (7.213

Assuming, for the sake of comparative conveniencz, that the effect of

8

comp Y be exercise¢ on the experimental pressure amplitudes only
(in reality, there are experimental errors in both the amplitudes and
phase angles), then the compensated experimental pressure swing is

given by:

Poying'psp ™ PoompFowing) experimental (7.22)

Note that, from equacion (7.16), equation (7.22) is applicable to both

the expansion and compression space pressure swings.

Using data from tables 7.8, 7.9 and E.1, the above analysis is applied
to the baseline calibration phase pressure profile parameters. The
phase angles ¢, and §_ are taken to be the mean of the angles measured
at the expansion and corpression space pressure profile mexima and

minima. The value of §,

ideal chosen for substitution into equation

(7.21) is thac produced by the baseline calibration run for which m, =

m, = 3. The tesults are compiled in table 7.10 which lists the

uncorrected ideal indicated work W,

ideas From equation (7.16), B4 .,

produced by each simulation run from equation (7.17), .., from
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P Table 7.10 Jest HE3-638 baseline calibration simulation runs: ideal indicated work results generated using pressure profite paremeters
— -
ata Lograngian | Uncorrected | Ldeal Mork | Experimental | Compensated Pressure Average Pressure
source | Giscretisation|ldesl indicated | Correction | Pressure Suing suing Comparison® Peofile Phase
Parameter Work (13 factor | Compensation ¢bary Advance (degrees)
s
. (m=m ) B gaal) Factor
e e ideal @B Expansion | Compression | Expansion | compression
comp space Space Space space
<) (b
Experimental - 109,01 - 0,894 25,8 26,3 87,5 92,5
1 102,37 @944 - 2,3 2,5 78,15 83,85 ‘
2 95,51 0,93t . 20,8 22,0 8,65 1,85
Equilibrium 3 96,13 0,934 - 21,0 22,3 78.85 83,85
;‘ Algaritha & 95,40 0,907 - 20,3 21,7 77.40 82,55
o 6 92,91 0,903 . 19.8 21,1 79,45 83,10
soves:
a. Based on an ideal work correction facter of @,934.

b. Only the experimental swings arc compensated; the simulated swings are replicated érom table 7.9.
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equation (7.21) and the compensated experimental pressure swing Erom
equation (7..2). Also tabulated are the simulated pressure swings
which are replicated from table 7.9 and the mean prassure profile
phase advances used in equarion (7.16) to produce W g ...
The uncorrected ideal indicated works follow the same trend as the
indicated works listed in ratle 7.8. This trend is also evidemt in

the behaviour of 8 which experiences a relatively sharp decrease

ideal
in value when m, and m_ are incremented from 3 to 4. Hence, from the
change in compression space temperaturo field characteristics evident
in figures 7.12 and 7.13, the omnipresent existence of two Lagrangian
control volumes in the compression space apparently does produce a
discontinuous degradation in the quality of the one-dimensional
discretisation model. The experimental pressure-swing compensation

factor § shows an estimated experimental error of 10,6% in the

comp
pressure measurements which appears to be reasonable in the light of
the experimental problems discussed in section 7.3. Using the
compensated experimental swings to conduct the experimental/simulation
pressure swing comparison yields discrepancies in the range of 1,36 to
23,3% for the expansion space and 10,6 to 19,8% for the compression
space. At the calibration point, the expansion and compression space
pressure swing discrepancies are 18,6 and 15,2% respectively.
Comparing the average phase angle advances, the discrepancy ranges are
9,2 to 11,5% and 9,4 to 10,8% for the expansion and compression spaces
respectively, while the corresponding calibration point discrepancies

are 10,1 and 10,3%.
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The pressure swing discrepancies in particular, together with che
17,4°C difference at the calibration point in the mean compression
space dead volume temperatures, are in sharp contrast to the small
calibration point energy balance discrepancies in the range of 0,5 to
2,08 given in table 7.8. Thervefore, based on these data, it may be
concluded that while the simulation model of the GM-GPU3 is
thermodynamically equivalent to the actual engine it is not fluid
dynamieally equivalenc. Thermodynam ¢ equivalency implies that the
simulated and actual boundary conditions are idencical for the mass
and energy conservation balamces. Fluid dynamic equivalency requires
thermedynanic equivalency in addizion to identical boundary conditions
for the momentum conservation balanve. Referring to figures 7.2 to
7.5, it is evident that the simulated and actual engines are not fluid
dynamically equivalent in the variable volume spaces (as noted in
seccion 7.4.5). Specifically, this is a result of the two-dimensional
boundary condition topology of the actual expansion and compression
spaces which is neglected in the strictly one-dimensional simulation
model. Judging from the better agreement obtained between the
experimental and simulated mean heater temperatures (notwithstanding
the transducer placement uncertainties alluded to in section 7.3), the
degree of fluid dynamic non-equivalency occurring in the expansion

space appears to be less than that oceurring in the compression space.

Therefore, in closure, the baseline calibration phase leads to the

conclusion that the thermodynamic equivalency of the simulation model
as applied in a strictly one-dimensional context is validated by the
experimental data. The lack of fluld dynamic equivalency is a result
of the inability of a one-dimensional discretisation of the variable

volume spaces to describe two-dimensional effects adequately, It is
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important to note that this i{s strictly a boundary condition related
problem; the data do not support the existence of any inherent
deficiencies in the simulation model per se, other than its prescribed

limitation (see section 1.4) to a one-dimensional system.

This is substantiated not only by the good agreement in energy balance
results obteined over the entire baseline calibration map (the largest
single comparison discrepancy being less than 8,5%), but also by the
geometrical identity of the experimental and simulated pressure-volume
diagrams and the similarity of the expansion and compression space
pressure profile characteristics. Any inherent errors in the

si ulation model would not permit this level of agreement. Moreover,
the thermodynamic equivalency of the simulation model is achieved
precisely because the simulated mass flux field adjusts to its imposed
one-dimensional boundary conditions. This produces the
simulation/experimencal energy bilance agreement mandated by the
equivalency of the actual and simulated mass and energy conservation
balance boundary conditions. As the fluid dynamic non-equivalency
occurs only in the variable volume spaces, the mass flux field
adjustmenc s manifested in a phvsicslly consistent way: the
temperatures advected from the expansion and compression spaces have
different values from those measured (table 7.9) and there are
discrepancies between the measured and simulated prassure profile
parameters (see table 7.10). The assertion that there are no inherent
errvors in the simulation model is also supported by addltional
validation work petformed on the NASA Space Power Demonstrator Engine
(GoB7.2) which is briefly summarised in cheapter 8. The issue of
whether the thermodynamic equivalency of the simulation model

demonstrated by the test HE3-63B baseline calibration comparison may
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be confirmed over a rapresentative engine test map is addressed in the

baseline and corrected phases of the simulacion protocol.

7.7.2.2 Simulacion model characteristics 4
The cyclic parameter and energy balance results produced by the UPD ;
and equilibrium algorithms ave compared against cheir experimental iy
counterparts for test HE3-638 in ctable 7.11, Roth the single (m, =
m, = 1) and the calibrated (m, = m, = 3) expansion and compression
space lLagrangian discretisation results are tabulated for the
equilibrium algorithm in order to facilitate the discussion of

information propagation effects.

Table 7.11 Test HE3-63B baselire si s sk model
Parmmetar Experinental D Equilibriun Algoritm
Mgoridm [ F =T =3
External heat supplied (J) 271,52 279,76 280,48 263,25
Bxternal heat rejected (J) 176,64 186,97 186,43 177,54
Indicated work (J) 9,07 94,06 96,6 89,8
Matxix heat balance residual (J) . 1,72 2,60 3,3
Energy balance ervor® (%) 1,0 0,15 0,02 0,21
Mean heater entrance terp. (°C) 682, 690,1 68,1 693,4
Mean heater midpoint temp. (°C) 697, 690,3 687,9 690,8
Mean carp. space dead volume 98, 8,4 83,8 80,6
e (°C)
Exp. space pressure swing (bar) 28,9 22,2 2,3 2,0
Corp. space pressure swing (ber) 29,4 23,5 23,5 2,3
Bep, space mimimat pressure 295,70, | 303,8:82,5 | 302,4:81,3 301,4:81,3
phase angle® (deg)
Conp. space minimax pressure 285,170, 292,5:82,5 | 292,1:80,2 292,1:80,2
phase angle® (deg)
Transfer space mencimum Mach ro. - 0,051 0,051 0,052
Transfer space maxdmn Reynolds 10, - 15775,1 15874,4 14980,0
Characteristic rmber - 95,8 - -
Notes:

a. Stmilation energy balance evror detemmined using equation (7,5).
b. Taken to be the CEL contzol volume tenperature in tha simiation.
. With reference to the displacer TOC (minimm expansion space volume).

Of primary interest in assessing the intrinsic characteristics of the

simulacion modal is the extent to which information propagation
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effects appear to influenca the simulation results, This assessment
may be made most directly by comparing the results produced by the UPD
algorithm with those of the singly discretised equilibrium algorithm
(m, = m, = 1), The cyclic encrgy balance results agrea within 0,3%
for the external heat transfers and within 3% for the indicated work.
In similar vein, the mean heater entrance and midpoint temperatures
differ by 2,4°C at most, while the pressure swings and compression
space dead volume temperatures agree within 0,5% and 0,5°C
respectively, The differences in the pressure profile phase angles
(amounting to 3% at most) are primarily a result of the much lower
temporal resolution produced by the UPD algorithm (96
ineremencs/cycle, since test HE3-638 ylslds N, = 95,8) compared with
that used for the equilibrium algorithm (350 increments/cycle), The
maximum Mach numbers in the transfer space are identical for the UPD
and singly discretised equilibrium algorithms while their maximum
transfer space Reynolds numbers agree within 0,65%. As the Mach
runbers are small, both the UPD and equilibrium algorithms function
well within their region of applicability, which is bounded by the
sonie limit (section 5.2). Thus, on balance, there are no significant
differances between the UPD and equilibrium algorithms with g = my =

1 on a cyclic parameter basis, The small differences that do exist

£all within the ambit of numerical temporal resolution effects,

The similarity of the two algorithms extends to their transient
behaviour as well. Flguves 7.30 to 7.32 portray the temperature,
velocity and pressure fields for the UPD algorithm, A comparison of
the temperature field plots of figures 7.10 and 7.30 reveals no
geometrical differences while the maximum and minimum temperatures are

within 0,8% of each other. Similar geometrical identity is apparent
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for the velocity fields of figures 7.15 and 7.3( while in this case

the maxima end minima agree within 0,2%. Lastly, the pressure fields

of figures 7.32 and 7.33 replicate each other; their maxima and minima -
differ by 0,2 and 0,04% respectively. This is corroborated at a finer

level of detail by the simllitude of the pressure-volume diagrams

(figures 7.18 and 7.34) and the expansion and compression space piston

face pressure profiles (figures 7.24 and 7.35). Since information

propagation effects in the coatext of the UPD and equilibrium

algorithm postulates are mos: likely to manifest themselves in

pressure field dissimilarities, the level of agreement achieved

between the algorithms in chis regard is sigaificant.

Therefore Lt may be concluded that information propagation effects do
not have a significant impact on either the cyclic or the transient

predictions of the simulation model when applied to the GM-GPU3 engine .
for characteristic “umbers of 95,8 (produced by the HE3-63B test
parameters) or greater. Under these conditions, the equilibrium
information propagation hypothesis appears to be well-founded, It
must nevertheless be noted that for other engine topolegies,
particularly under extreme pressurisation and operating frequency
conditions (vwhich yleld characteristic numbers of 35 or less), notable
differences between the UPD and equilibrium algorithm predictions have

been observed (Gof7.1).

Referring once more to table 7.11, differences between predictions of
the UPD and calibrated equilibriun algorithms (m = m_ = 3) appear to
be caused principally by the influence of the expansien and

compression space Lagranglan discretization and not by the Lnfluence

of informacion propagation effects. This endows the baseline and
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corrected phases of the validation protocol with additional value
because the dual algorithw implementation of these phases enables an
assessment of the influence of Lagranglan discretisation effects over
2 broader esperimental test parameter map. However, caution in this
regard is mandatovy in cases ylelding characteristic numbers of 95 or
less, In these cases, information propagation and discretisation

effects may exist simultaneously, preventing either effect from being

definitively lsolated as the cause of any observed discrepancies.

& few of the more salient characteristics of the simulation model par
se which are not of immediare relevance to the validation protocol are

worth a brief note,

The temperature fields in the heater, regenarator and cooler are
geometrically identlcal irvespective of the expansion and compression
space discretisarion (figures 7.10 to 7.14 and figure 7.30). A
feature of interest in the trangfer space portion of thase plots is
tha cyclic hysteresis evident at the regenerato: boundaries. Over the
cycle, the working £luid (or helium gas) temperatures within the
tegenerator itself have an invariant linesr gradient and seem to be
constant, irrespective of the gas flow divection. In the case of the
GM-GPU3 regenerator, this offors ample justification for the use of
constant linear temperature gradients within the regenerator, as is
usually assumed in Schmidt (Sci871) (or isotharmal) and ideal pseudo-

Stirling (ot adiabatic) (Be78, Go79) amalyses,
The velocity field profiles of figures 7.13 te 7.17 and figure 7.31
are also geomatrically identical over the transfor space (heater,

regenerator and cooler). The velocity profiles in the tubular heat
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sxchanger comprising the heater and cooler are not perfectly

sinusoidal but may be more appropriately represented by a multi-

harmonic Fourier series. The impact of the abrupt area changes is [
also apparent at the heater headur, regeneracoer and variable volume d
space boundaries. Of particular intersst is the time delay taken for

the velocity veversal to propagate from the compression space piston

face to that of the expansion space. This is shown by the locus of
the interface between the solid and dashed plot lines, the latter

denoting negative velozitied, 1In the case of the positive/negative

trausition visible on the velocity field plots, the flow reversal

propagation delay ameunts to approximately 50° of crankshafe roration. i

The change in veloeity at abrupt flow area contractions does not
produce any observable discentinuities in the cyclic pressure fields
shown in figures 7.32, 7.33, 7.36 and 7.37. The pressure drops

associated with these flow area contractions are too small to be

visible within the resolution afforded by the pressure scale plotted.
However, they may be observed in the sample simulation programme
output listings given in appendix ¢. In compliance with the
temperature and velocity flelds, the pressure flelds are geometrically
similar over the transfer space irvegpective of the variable volume
space Lagrangian discratisation. Comparing the veloclty and pressure
EFields, a pesitive pregsure gradicnt acress the regenerator occurs (as
expected) during periods of nogative flow, and vice versa, The heater
and cooler pressure drops are relatively minor in comparison with the
regenerator pressure drop, even in the presence of the losses
encountered at flow area discontinuities., Hence, from a valldation
perspactivs, dissipation offects ars lisble to be of major impact in [

the regenevator only, suggesting that the accuracy of the smpirical
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friction factor corrvelations is of greater significance in the
regenerator than ¢lsewhere, Referring to Eigures 7.36 and 7.17, the

overall b of the surfaces ing the points at -

which Lagranglan control volumes ars crested or eliminated in the
variable volume spaces s apparent. This attests to the adequacy of
the numerical algorithm used to interface the Eulerian and Lagrangian :

spaces.

Examples of the cumulative heat transfers in the heater, regemerator
and cooler are shown for the UPD and calibrated equilibrium algorithms
in figures 7,38 and 7.39. These geometrically identical flgures are i
typical of those produced for all the simulation runs throughout the ;
validation protoecol. Both the heater and cooler cumulative heat

transfers generally increase monotoniecally in absolute value with

crank angle (an exception oscurring over the first 40° during which

heat is vejected in the hearer), while the regenerator cumulative heat

transfer is sinusoidal, terminating with 2 small positive value. This

small cumulative cyclic heat transfer (ranging between 2 and 4 J over

the baseline calibration simulation map) is a measure of the overall

regenerator inefficiency. The residual gaseous cyclic heat transfer

in the regenerator is supplied via heat conduction from the

regenerator casing wall.

The mean cyclic reg tor matrix for the UPD and

calibrated equilibrium algerithms are deplcted in figures 7,40 and
7,41, These geometrically identical profiles are not as linear as
they appear, but are slightly hypetbolic in a concave downwards

orientation. WNevertheless, their near-linearity ~oupled with the

linearity of the gaseous temperature gradient in the regenerator
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(figures 7,10 to 7,14 and figure 7,30) gives credence to the porous
Elow advection model postulated in section 6,3, This is furcher
reinforced by noting that all the baseline ecalibration simulation runs

were performed with a povous advection coefficient (Kr) of zero.

Finally, the overall emergy balance results for the baseline
calibration phase of the validation protecol are sunmarized in table

7.12,

Table 7.12 Baseline callbration phase emergy balance discrepancies

Ura Equilibrium

Algozithm Algorithm with

Mg = @y = 3
External heat supply discrepancy (8) 3,0 -3,0
External heat rejection discrepancy (%) 5,8 0,5
Indicated work discrepancy (3} v33 1,4

The largest discrepancy of 5,8% for the external heat rejection
(produced by the UPD algorithm) s not a definitive measure of the
appdrent energy balance parameter prediction accuracy or tiermodynamie
equivalency of the simulation medel, However, in view of the
extensive evaluation of all the baseline calibration phase simulated
data performed, this level o: igrecment does not seem to be Fortuitous
and helps to substantiate the second thesis statement (see section
1.3). In other words, when applied over a ono-dimensional spatial
integration path, a volume-averaged conrinuum mechanics analysis
permits the working fluid behaviour of a Skirling machine to be
determined. Such a one-dimensional analysis also enables an
assessment of the fluid dynamic non-equivalency arising from

dissimilar actual and simulated bhoundary conditions to be made.
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This latter feature is a unique characteristic of che simulation model
and results from its rigourous analytic founda.ion. Thir has an
important practical application in denoting which regions of a
Stirling machine can benefit from & two-dimensionel diser.tisation in

order to meaningfully impact prediction sceuracy.

The baseline calibracion simuiacions demonstrate the thermodymamic
equivalence of the simulation model and GM-GPU3 engire for the test
HE3-63B experimental conditions. Hence an inquiry mOSt pertiment to
the baselime and corrected phases of the simulation protocel is
whether the thermodynamic equivalency is sustained over a broader

range of engine «nerating conditions.
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Figure 7.11 HE3-63B/2 baseline, equilibrium run temherature field
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