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ABSTRACT

The description of ring conformation in terms i '  a  set of pocketing 

coordinates relative to  a  mean plane is shown to be equivalent to the group 

theoretic definition of the conformation of a  puckered ring in terms of 

out-of-plane displacements of a planar polygon. A description of the 

conformation of a  general N-membered ring, based on crystallographic 

coordinates, is provided in terms of the one-dimensional displacement modes 

of the regular polygon of symmetry. The set of puckered forms therefore 

represent a  linear space. The out-of-plane displacement modes of the 

irreducible representations provide a natural basis set.

Two linearly independent modes equivalent to the two orthogonal modes of 

each two-dimensional representation, and a one-dimensional mode for an 

even-membered ring, form a (N-3)-dimentional basis. The linear 

coefficients are independent of the puckering amplitude and of the ring 

numbering scheme. The linear combination of primitive forms provides a 

simple algorithm to identify classical forms and a quantitative description of 

conformations, intermediate between the classical forms.

The one-dim-nsional model describes the conformation of large rings. 

Conformational analysis of nine-membered rings is completed by projection 

of the conformational space onto a three-dimensional surface defined by the 

puckering parameters. Intermediate forms are expressed as a linear 

combination of six primitive forms. The conformation of larger rings is 

characterized by the linear coefficients, interpreted graphically. A 

nomenclature for any symmetrical conformation is proposed.
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1. INTRODUCTION

The conformation of a ring compound as a planar polygon, with a strain 

energy one-half the difference between the internal angle and 109.5°, was 

introduced by Baeyer (1885). The hypothesis tha t a  ring compound could be 

constructed in a number of different puckered shapes, free of angle strain 

(Sachae, 1890), was verified by the existence of trans-decalin (Khekel, 1925), 

a  compound predicted ;u be highly strained by the. Baeyer theory.

It is now recognized that the nature and extent of puckering is a  balance of 

two strain ifiects, In the smaller rings, the bond angles are usually 

constrained to be smaller than their open-chain values. The angles generally 

become smaller and the strain increases as the ring puckers. Torsional strain 

it  greatest In the planar form, when all bonds are in eclipsed conformations. 

This strain is lowered by a puckering of the ring.

The conformation of small rings has since been the subject of several detailed 

studies (Hendrickson, 1961,1984,1967a,bi Flapper and R om m , 1975; Bodan, 

Pickett, Rounds and Strauss, 2975; Kjjpatrick, Pitzer, and Spltzer, 1047). 

The characterization of the energetically preferred cyctoalkanes and the 

analysis of the various modes of interconversion have been completed.

The concept of ring conformation has been extended to all explanatory levels 

of chemistry. Chemical reactivity, products of organic syntheses and the 

Interaction of drugs with receptor sites can be rationalized using the concept 

of molecular shape. As unambiguous, accurate description and identification 

of ring conformation is therefore required.



Quantitative description of ring puckering is a non-triviai problem in 

three-dimensions, that requires 3hT parameters for the characterization of an 

N-membered ring. The set of Cartesian coordinates (Xj, yj, Zj) for each ring 

atom j would be such a set, but with limited descriptive power due to the 

large number of parameters involved. I t was first shown by Kilpatrick, Piteer 

and Spiteer (1947) that the conformation of any puckered form of 

cyciopentane can be specified in terms of two parameters— an amplitude and 

a phase angle. These parameters are derived from the out-of-place 

displacements required to generate the puckered form from the planar 

polygon. Generalization of the concept to the larger rings was formulated by 

Pickett and others (Pickett and Strauss, 1970,1971; Bocian, Pickett, Rounds 

and Strauss, 1975; Strauss,1971).

Puckered forms of an N-membered ring are generated by the set of N 

displacements perpendicular to a regular polygon. This one-dimensional 

description is unique for the smaller rings (N < 12), and involves a maximum 

of N parameters. In fact, any puckered form is fully characterised by N -3 

symmetry-adapted coordinates. The application of the model to a  general 

N-membered ring is not immediate. Early attempts (Adams, Geise, and 

Bartell, 1970; Geise, Adams, and Bartell, 1969) to define a general set of 

coordinates for five-membered rings required a number of approximations 

and were limited to a given degree of pucker.

A general definition of ring puckering coordinates for any type of cyclic 

compound was given by Creraer and Pople (1975a,b). The method defines a 

unique mean plane for a general monocyclic ring. The geometry of the 

puckering, relative to this mean plane, is described by a set of N-3



parameters, which are generalizations of the phase and amplitude of 

cyciopeataae (Kilpatrick, Pitzei and Spitser, 1947).

The method has been of practical importance in crystallography since the set 

of puckering parameters is calculated directly from the atomic coordinates. 

The conversion of these puckering parameters into a description of 

conformational type is not t-ivial. As a practical measure it  is useful to map 

the conformation as a  function of puckering parameters onto a surface in 

relation to the classical forms, Such a scheme requires the analysis of all 

possible canonical forms of the symmetrical conformations. The surface has 

been interpreted as a circle for five-membered rings (Altona and 

Sundaralingam, 1972), a  sphere for six-membeied rings (Boeyens, 1978) and 

a torus for seven-membered rings (Boessenkool and Boeyens, 1980). The 

method has been extended to the eight-membered rings (Evans and Boeyens, 

1988), as reviewed in Chapter 2.

The Cremer and Pople (1876a) algorithm to calculate the mean plane and the 

puckering parameters has not been correlated directly with a  physical model. 

A theoretical interpretation of the puckering coordinates is presented in 

Chapter 3. The one-to-one correspondence between the puckering 

parameters and the N -3 symmetry-adapted coordinates of Pickett and 

Strauss (1971) is demonstrated. The expressions for the ring puckering 

coordinates as out-of-plane displacement modes are derived from group 

theoretic representations to illustrate the general applicability of the model.

The calculated p a c k in g  parameters of any ring do not necessarily match 

those of the classical forms exactly, Where the match is close enough, a



symmetrical type is identified, but more often an intermediate ibim is 

indicated. In these cases, a  quantitative expression for the deviation of an 

actual form from a  symmetrical type has been proposed as the Euclidean 

distance between the points in (N-3)-dimensiG. ±1 space (Evans and Boeyens, 

1988). This useful guide has no theoretical basis and is sensitive to the degree 

of pucker.

A better description of these intermediate forms is given in Chapter 4. The 

group theoretic model of Pickett and Strauss (1971) gives the set of ring 

conformations as a linear space. I t is suggested that the normal modes of 

displacement be used as a basis for representing any conformation as a linear 

combination of a  few simple puckered shapes ia  the correct relative 

proportions.

The assignment of conformational type of the larger rings (N >  8) is largely 

descriptive (Dale, 1673a,b; Boeyens and Dobson, 1987). In Chapters 5 and 6 

the methods used in the conformational assignment of the smaller rings are 

extended to the medium-sized and large rings. The conversion of the 

puckering parameters of nine-membered rings into a description of the 

conformational type is achieved by mapping the classical forms onto a 

complex three-dimensional surface. A geometrical interpretation of the 

puckering parameters of larger rings in three-dimensional space is too 

complicated to be of any practical significance. The conformation of these 

rings is described by the set of coeEdents in the linear expansion of basis



2.CONFORMATIONA1 MAPPING OF PIGHT-MBMBERED RINGS

2.1 INTRODUCTION

The conversion of puckering parameters into conformational type is achieved 

by mapping the set of conformations onto a three-dimensional surface. The 

use of these conformational maps in the field of the puckering parameters is 

limited by the number of puckering parameters to rings smaller than eight— 

or nine-membered rings. The analysis of eight-membered rings prompted 

the investigation of an accurate description of intermediate forms, and a brief 

review of the top ic 's thus appropriate.

2.2 METHOD OF STUDY

The Cremer and Popie (18?5a) puckering parameters map a set of ten 

symmetrical conformations onto a three-dimensional surface. These classical 

forms comprise a  set of symmetrical conformations not confined to  the low 

energy cycloalkane forms of Hendrickson (1967a,b). Standard puckering 

analysis (Cremer and Pople, 1975a) yields three amplitudes ( q2, q3, ^ ) and 

two phase angles ( (|>2> $g ). The mapping represents the geometrical 

interpretation of five parameters in three-dimensional space.

To facilitate the geometric interpretation, the third amplitude is transformed 

to an angular coordinate, 0 < (? < r , such that



The angular value 0 is interpreted as the polar angle of the unit Sphere, shown 

in Figure 2.1.

H fore 2J. The polar angle 0

I t is noted that for =  0, the phase angle $  has no meaning. The four 

parameters q2, q3,4 2, and ^  define a torus, shown in Figure 2.2.

jgiqure 2.2 The torus defined by q2, q3, ijig and <|i3



A surface for the mapping of all possible conformations can be constructed by 

defining a unit sphere, with polar angle 0 < 0 < sr. At each value of if, a  torus 

is defined in ;erms of q2, q3, and The plane through the associated 

central track cats the sphere a t I), as shown in Figure 2.3.

Figure 2.3 The confbrma.tionai surface of eighi-meznbered nogs

'■ 1 - • A two-dimensional projection of this surface, shown in Figure 2.4, illustrates

,  / .  the various interconversion modes between the symmetrical forms. This ^

'  represeattalion, a projection of sU tori along the surface of the sphere and with '

their radial axes along the ^  =  0 circle, maps the BC-TBG forms uniquely. ' „

Overlap occurs at the positions X, Y and Z.



0 3]S 2ij8 228 8̂ 8__0
♦a(degrees)

Figure 2.4 Two-dimensional projection of the surface. The +  superscript 

refers to forms with 6<90e aad the -  superscript refers to 

forms with M 0 ° .  Y = (TOC1, B); X+ =  (CO*, BB, BC+ ); 

X~= (00*, BB, BC~); 2+ =  (TC, BC+ ) and Z "=  (TO,



2.3 RESULTS

This surface is a combination of the surfaces used in the analysis of six- 

(Boeyens, 1978) and seven- membered (Boessenkool and Boeyens, 1980) tings. 

The conformations of eight-membeted rings are mapped onto a set of tori 

which lie a t specific polar angles on a  sphere,

The pseudorotational pathways outlined by Hendrickson (1987b) are 

examined in two-dimensional projection. The C-TC cycle is shown in  Figure

2.5. The $ 2 - 0  polar projection in Figure 2,6 details the B-BB and the 

CC-TCO pseudorotational cycles. The BC-TBC cycles, shown in Figure 2.7, 

are polar projections of the tori lying a t polar angles of 75° and 105°.

Figure 2,5 The C-TC pseudorotational cycle



e(Uegfees)

Fieuifl 2.6 Tho BB-TBB /  CC-TCC paeudorotatiotial cycle:, The bold 

'ide of the TCC symbol inUcates a toision angle of 56.2°, 

The bold aide of the CC symbol indicates a  toision angle of 

105°, with the point of the wedge adjacent to a torsion angle 

of -105°, The bold side of the S symbol indicates a toision 

angle of 70°.





A unique nomenclature, baaed ca angular value of each canonical 

conformation is proposed. Bach conforr.ev'r. is unambiguously described by 

the integers h, k and 1 that specify the an^Uw positions ^  =  hir/16 , ^  = 

kir/16 and 6 =  I t /16 respectively. Positive indices are obtained by defining 

K, E =  32—h, k aad I  =  16-1, All forms are uniquely distinguished by at 

most two indices.

An investigation of a  number of heterocyclic rings, not represented exactly by 

classical forms, iatrodaced aa expression for the deviation of an bctiial 

conformation from a  classical form in the neighbourhood. The deviation, AX, 

is defined as

where xj represent actual puckering parameters, and x’ are the puckering 

parameters o f the classical form X.



a. GROUP THEORY i 'F  RING PUCKER

3.1 INTRODUCTION

The group theoretic model (Pickett and Strauss, 1971) des ibes any puckered 

form of a  cydoalkane ring as an out-of-plane displacement mode of the 

planar polygon. A conformation is characterized by N -3 symmetry-adapted 

coordinates. Given the coordinates of a general N-membered ring, the 

application of the model is not immediate. The characterisation of a general 

monoo/clic ring by N -3 puckering parameters (Cremet and Popio, 1975a), 

defined in terms of atomic displacements relative to a mean plane, is always 

possible. These puckering parameters have previously not been subjected to 

physical interpretation. The equivalence of the N -3 symmetry-adapted 

coordinates and the puckering parameters is now demonstrated. The 

expressions for ring puckering coordinates as out-of-plane displacement 

modes are derived directly from the group theoretical analysis.

3.2 MATHEMATICAL DERIVATION

Following Pickett and Strauss (1971), the puckered conformation of an 

N-membered ring may be generated by out-of-plane displacements of the 

atoms of the planar ring. The polygon, of symmetry, and the set of N 

displacements can be used as the basis for an irreducible representation, as in 

vibrational analysis. The irredndble representations are readily found using 

the character tables, for N even and odd, presented in Appendix 1.



r  (N odd) =  E2 +  Eg +  ... + B ( N - i ) / 2

The symbol (g:u) is taken as g for N /2 odd end m  h for N /2 even. The 

symbol (u:g) reads u for N/2 odd and g for N /2 even. The translational 

(A2u, or A2 tor N odd) and the rotational (Elg , or E1 for N odd) motions, 

which aie of no conformational significance, are excluded.

For each irreducible representation, the out-ot-plane coordinates of each ring 

atom, Zj, are written down in terms of symmetry-adapted coordinates.

The B^gm ) representation produces the out-of-plane displacements 

Zj =  ( - l^ Q  , where Q transforms as

The Em representations produce displacements 

Zj =  /Jgj cos (2ejBi/N +  y  

where pm cog and >im sin i#m transform together s$ Bm, j  =  J, ...N, m  =

2, ...(N -l) /2  (N odd); m  =  2,... (N /2 )-l (N even). This expression is based

on the out-of-piaae normal coordinates of a thin circular rod (Love, 1927)

g(S) =  t>m  cos (m 0 -4 m),m  =  2,3........

limited to  the out-of-plane displacements of the ring atoms only.

The out-of-plane displacements of a  general conformation may be expressed 

as a linear combination of the ont-of—plane displacements of the irreducible 

representations (Herzberg, 1945).

Thus for a general conformation

Zj «= (-1)^ <3 +  S 0)3 (2irj®/N f  ifim) (N even)

zj =  S />m cos (2irjm/N +  4m) (N odd)



The expression for each Zj is a  linear sum over all possible m  values. The 

normal modes are also mutually orthogonal and hence we can consider only 

one value of m  without loss of generality.

Zj =  fim  cos (2*jm/N +  i|im) 

Consider

.,j« 0  (1)

and S zj sin (2ajm/N) (2)

Substituting the expression for z, in these equations gives equation (1) as

E />m cos (2sjm /N  4- 4m) cos (2irjm/N) or

E pm  cos (2*jm/N +  *m) sin (2*jni/N) or 

S pm  cos cos (2irjm/N) sin ( 2 i r jm /N ) -E ^ s in  ^  sin5 (2sjm/N)

E cos5 (2xjm/N), E sin5 (2irjm/N), and S sin (2irjm/N) cos (2xjm/N) can be 

expressed as |  E (1 +  cos (4sjm/N)), g  E (1  -  cos (dijm /N)) and

S cos (4irjm/N) and B sin (4rjm/N) == 0, as shown in Appendix 2.



Equation (1) therefore reduces to y P m co8$m , and 

equation (2) reduces to - § /> m nin 4^ -

(N/2) pm cos = S Z j cos (2irjm/N)

(N/2) pm sin $m =  S 2j  sin (2irjm/N)

Sa? =  S c o s 3 (2frjin/N )■ ^

The coordinates om may be normalized so that

Using the normalized coordinates, equations (3) and (4) become 

fim cos =  /i/N S z. cos (2trjm/N)

Pm tin  ^  =  ~  </ 2/N S Zj sin (Sffjm/N)

To ensure a direct correlation between atom l  and it is necessary to 

replace j by (j-1) in the expressions above, without changing their meaning:

P m  cos ^  -  , /  2/N  S Zj cob [(25t(j-l)jn)/N} 

sin =  -  / 2/M S z j sin [(2ir(j-l)m)/N]

These expressions are those given by Cremer and Pople (1975a) to define a 

set of generalized ring puckering coordinates. The one-to-one 

correspondence of the 4>m values and of pa  with their qffl is clearly evident. 

These expressions hold true for any N >  3. For N even, the symmetry 

coordinate Q is included.



•g r

When /Pm =  0; V m =  2,3,4 ... (N/2) - 1  

Zj == (-1)^ Q 

8j =  H ) y <32 
N

W  =  Q: S ( - 1)JJ =  NQS 
j  J j= l

But s »? = q  s  f-iy i g.
j  4 j= l  3

Equating expreaeions (5) and (6),

Once again the value of Q must be normalized:

Replacing Q by the noimalized value givea

Q = / i / i  S H j i . j

j  must be replaced by (j-1) to  correspond with the atomic numbering of the 

previous expressions;

q  »  / T / n  b t - i y -1  *,

Q 1b the same as the parameter of Oremer and Pople (1976a). 

Replacing pm and Q with the normalized values yields the expressions for the 

out-of-plane displacements as defined by Cremer and Pople (1975a).

N even:

Bj =  / l / N  ( - l ^ Q  +  / 2 / N  S pm  cos [2irm (H )/N  +  * J ,  m = 2 ,... 

(N/2-1)

Nodd:

Zj =  7  2/N E fim  coa l2irm(j-l)/N  +  y , m = 2 ,... (N -l)/2



3.3 DISCUSSION

Pickett and Strauss (1971) approached the conformational description of a 

ring on the basis of symmetry-allowed displacements normal to the plane of 

polygons. Ciemer and Pople (1975a) presented a method to reduce the 

pucker of actual rings to displacements from aa  idealized polygon in  the mean 

ring plane -  the inverse operation. The two methods have now been shown to 

be consistent.

Any puckered shape is generated from the out-of-plane displacements of a 

regular polygon. The group theoretical analysis is based on infinitesimal 

perpendicular displacements. In conformational analysis this is an 

approximation since the puckered shape of a chemical ring compound ma,y 

involve finite perpendicular displacements from the mean plane and heniie 

motion of the a'ioms in the mean plane. The perpendicular displacements 

involved in generating the form are, however, much larger than the in-plane 

motions. The one-dimensional model is therefore quite adequate in 

describing the three-dimensional conformation uniquely,

The Cremer and Pople (1973a) amdysin of a puckered ring relies on the 

definition of a unique mean plane. The equivalence of this method and the 

group theoretic model requires the planar polygon to  be oriented with respect 

to  the puckered mode so that this form may be envisaged as arising from only 

out-of-plane displacements of the flat ring. The out-of-plane displacements 

are therefore subjected to the special conditions that restrict overall 

translation and rotation of the polygon. These conditions, used by Cremer 

and Pople (1975a) to define the mean plane:



s  Zj =  0 , S Zj cos [2< j-l)/N ] =  0 and S Zj sin [2ir(j-l)/N] , have now 

been shown to be natural consequences of the group theory.

Only perpendicular displacements are considered to operate on the fully 

symmetrical polygon. The same assumption applies during the inverse 

operation. The . i <mer and Pople (1975a) analysis o f a general monocyclic 

ring, having a u / Loud Iragihs and angles, is therefore in terms of the 

perpendicular displacements of a regular polygon. For moderate variations in 

bond length, as in most chemical structures, the conditions to fix the mean 

plane do not necessarily give zero angular momentum, but they do ensure 

that the projection of the ring onto the plane most closely resembles a regular 

polygon.

The theoretical basis of the Ctemer and I  ople ring puckering coordinates now 

provides insight into their number and nature. Group theory illustrates how 

N-3 parameters specify the positions of N atoms in a  one-dimensional 

projection. Bach symmetrical conformation and its ring puckering 

parameters must correspond to characteristic values of pm  and of the Em 

representation, as demonstrated empirically (Boessenkool and Boeyens, 1980; 

Evans and Boeyens, 1988). The observed alternation of the symmetry 

elements C2 and Cg along the pseudorotational pathways is also rationalized.

The theoretical derivation of the puckering coordinates has, however, shown 

the model to be a  one-dimensional description of a three-dimensional 

phenomenon . Extension of group-theoretical arguments to the general 

N-membered ring must be exercised with caution,



Aa an example, the hypothetical heterocyclic

with puckering coordinates as given in Table 3.1,

Picks

Puckering



Its puckering parameters ate the same as those of the rydohexane boat form. 

The ̂ g =  0 indicates a  mirror plane through the sulphur atom, perpendicular 

to another m inor plane

Clearly, is a pseudo mirror plane. The symmetry refers only to the Zj 

displacements and not to the ring as a  three-dimensional chemical object. 

This limitation however, detracts very little  from the general practical utility 

of the model.

I t has been shown that the total pucker of a ring results from a linear 

combination of symmetry-adapted normal modes. The displacement modes 

of the point group therefore provide a  natural basis set for 

conformational analysis, and the details of this scheme will be discussed in 

the following chapter,



4. THE LINEAR SPACE OF PUCKERED FORMS

4.1 INTRODUCTION

The group theoretical analysis of the normal modes of displacement of an 

N—membered polygon provides the basis o f a quantitative formulation of ring 

pucker, The set of puckered forms of a ring constitute a  linear space with the 

normal modes of displacement as a  finite-dimensional basis.

The description of conformation in terms of the symmetry-adapted 

displacement coordinates is unique, but the interpretation of numerical values 

in terms of conformational nomenclature familiar to chemists (boat, chair, 

etc.) is not obvious. The relationship between puckering parameters and 

conformational type has been established for the small rings (Boeyens, 1978; 

Boessenkool and Boeyens, 1980; Evans and Boeyens, 1988). The 

transformation from crystallographic coordinates to conformational type is 

achieved by mapping the general ring onto the appropriate surface as a 

function of the puckering parameters. Conformational type is then assigned 

on account of the proximity to a sy ' metricai form located on the surface. 

The assignment of conformational type of a form lying intermediate between 

two or more classical forms is expected to be largely descriptive. The 

conformation could be described as a linear combination of the symmetrical 

classical forms, with the share of the contributing forms estimated by their 

distance on the surface from the site of the cyclic fragment of interest. A 

quantitative expression for the deviation of an actual conformation from the 

symmetrical types in the neighbourhood has been proposed (Evans and 

Boeyens, 1988), but it is sensitive to the amplitude of pucker and has no



theoretical basis,

A description of the intermediate fo'.ms is now established from the group 

theoretical derivation of ring pucker. I t is suggested that the normal ja d e s  

of displacement, at different values of the Cremer and Pople (1975a) phase 

angle, and not the symmetrical classical forms, he used as a basis for 

representing any conformation as a linear combination of these basic forms.

4.2 DESCRIPTION OF RING PUCKER

The out-of-plane displacements of a general N-membered ring may be 

generated as a linear combination of the normal mode displacements (Pickett 

and Strauss, 1971; Section 3.2), represented by

I* (even) -  8 ^ +  $ 

r(o d d ) =  B E ^

The B2(U|g) mode represents displacements

zj =  Q (- l) j” 1

Bach mode of this representation is a  multiple of the form

zj =  CD

Bm (g,u)'o t Bm rot 0(15 N> rePreseilt9 displacements



*j “  pm cos E*m +  (27Fm/ N)(H )]

Bach mode of this representation is a  linear combination of two mutually 

orthogonal forms

Zj =  cos [(2*m/N)(j-l)] (2)

Zj =  sin !(2mn/N)(j-l)] (3)

Every conformation is a linear combination of these normal modes and hence 

a  linear combination of the sets of displacements (1) -  (3) (N even) or (2) -

(3) (N odd), for each m. The same result is obtained from the Cremer and

Pople (1975a) analysis, as shown in Chapter 3.

For an arbitrary conformation, the out-of-plane displacements are therefore 

given by the Cremer and Pople (1975a) equations

», - / V S  (-1)H  q +  / 1 / K  S cm [*„  +  (Jm /H M H )!

N odd

Zj =  /  2/N S cos [4m +  (2irm/N)(j-l)]

where q, pm, ^  are the normalized puckering parameters or 

symmetry-adapted coordinates.

These expressions may be written in  a number of equivalent ways, one of



•= / 2/N  E Pm cos (jim  cos

-  / 2 / N  S p m 8in*m 8in[(2irai/N)(j-l)j 

(+ 7  i/N  (-1)*-1  q] -  N even.

It has alieady been recognized, for six- and seven-membered rings, that the 

coefficients / I /N  ^  cos / 2/N sin and J1/N q carty the

planar ring into the normal modes where

■ j -  rMpectively,

(Bodan, Pickett, Rounds and Steams, 1975; Pickett and Strauss, 1970;

Strauss, 1971), The Cremer and Pople (1975a) equations are an explicit 

statement of this fact. All ring conformations can be reduced to linear 

combinations of the normal modes of the E representations (and the B2 

representation for N even). These fimdamental primitive forms and their 

relative out-of-plane atomic displacements for five- to eight-membered 

■’ngs are described in Figure 4,1 and in Table 4.1.

A number of forms equivalent to these normal modes exist, differing only in 

the value of the phase angle. For each m, any linear combination of forms

‘j "  ” n P im /N X H ) ]

is also a normal mode of the B representation (Hetzberg, 1946). T te 

equivalent forms at phase angles 4m, have

2j == cos ^  cos [(2«ra/N )(j-l)l ~ 8ln 8in [(2rm/N)(j-l)]



Table 4.1



Consider the forms *’%  , ®T2 and Bgg , in the nomenclature of the

l -4B: cos [4t/6  (H X

6T2 :s in [4 V e (H ) j

B2 5: cos 60° * 1,4B -  sin 60° * 6T2

1,4B is equivalent to B2 5 , although they differ in phase angle, by 60°. The 

equivalent forms are themselves normal modes of the Em representation and 

should form part of an extended basis set. Each conformation will still be 

expressed as a linear combination of N -3 normal modes, two from each Em 

representation, but now chosen to  have phase angles closest to that of the 

ting of interest.

Figure 4.1 The primitive forms of small rings



4.3 MATHEMATICAL FORMULATION

The set of normal modes, whose zj are given by 

/ l / 2  cob [(2— /H )(H )], »»  I (H m /N )(H )l ■» I n - *

independent, as shown in Appendix 3. These modes can therefore form a 

suitable basis for conformational type.

Group theoretical analysis shows that the forms equivalent to the cos-form 

and sin-form of each m have a  constant difference in phase angle. Given any 

arbitrary ring, its <£_ value will lie between those of a "cos-type" form and a 

"sin-type" form.

The forms equivalent to the cos-form and the sin-form can be expressed as 

linear combinations of these forms using the Cremer-Pople (1976a) equations. 

Any arbitrary ring can also be expressed as a linear combination of the cos— 

and sin-forms using this equation.

The arbitrary ring lying at Q (N even), qm, and ^  , where m =  2, 3, ... 

N /2-1 (N even), or (N -l)/2  (N odd), is given by

. Zj =  V 2/N  | Q / l / 2  ( -l)^"1 +  S 4in cos 4>m cos [(2*m/N)(j-l)]

-  S qm sin $m sin |(2«m/N)0-l)3

For each mode Em, there is a  cos-type form and a sin-type form lying closest 

to the ring a t phase angles am and bm respectively.



L

y

The cos-type form is given by

i j  =  cos am coa [(2inn/N)(j-I)| -  sin am sin

The sin-type form is given by

8j =  coa bm cos [(2inn/N )(H )] -  sin bm a n  [(2*m/N)(j-l)]

These normal modes ate linearly independent (Appendix 3.), and any 

arbitrary conformation may be expressed as a linear combination of the forms 

a t &m and bm , over all values of m.

Suppose the coefficients of the cos-type and sin-type forms are cm and dm 

for each m.

Then denoting t i e  Cremer-Pople normal modes as Xm, Ym for each m, we

J V “ '* m Xn i - ,>m*ln *mYm "  * V  V  Xm "  V  Ym>

+ dm(“,b»Xii.-,l,bmY»)
Since Xm, Ym are linearly independent, we can solve for cm and dm as 

follows:

c =  ♦ m 8tl1 bj a ' 1' 8 ‘ n V  C08 bm)
m sin am cos bm -  cos a ^  s in  bm

cos ^  Bin a ^  -  s i n cob am) 

Binam c o s b m -  cos anl Bin bm

/V .



representation- The displacements of the normal mode, Zj, are taken as 

1/ 1/2 ( - l ) j - 1 , so that the linear coefficient corresponds with the normalized 

puckering amplitude Q. It is noted that, as above, the factor of ■] 2/N  has 

been omitted since the coefficients are normalized in the final analysis. When 

the sign of Q is negative, the normal mode used in the linear combination is 

the mirror image of the form zj =  / i /2  i.e. Zj =  / 1/2 ( - 1)^.

This ensures that the coefficient is equal in magnitude to  Q, but greater than

In fact, chooa'ng t  phase angles of the cos-fonn and sin-form so tha t the 

phase angle of the ring of interest lies between them ensures that the 

coefficients in the linear expansion are always positive.

The cos-type and sin-type forms are always linearly independent, but they 

are only orthogonal when separated by 90 degrees in phase angle. The set of 

all possible ring conformations can be generated by a finite-dimensional 

basis. In all cases, (N~3) normal modes can be used as generating 

conformations. These groups of (N-S) normal modes are always linearly 

independent. The set of all equivalent cos-fbrms ard  sin-forms therefore 

form an extended basis, which consists of a  number ol verlapping subsets, or 

sub-bar each with (N-3) linearly independent forms. Which subset is used 

as a basis depends on the phase angles of the ring under investigation.

The elements of this extended basis comprise a reference set of ring 

conformations, called the primitive forms.



The coefficients in the linear expansion are independent of phase. The linear 

coefficients are thus always the same, irrespective of the ring numbering used, 

as illustrated in Appendix 3.

A description of ring conformation is really a description of molecular shape, 

and should therefore be independent of the degree of pucker. The overall 

molecular shape can be generated by adding together the primitive forms in 

the correct proportions. The same molecular shape is obtained provided the 

coefficients are in the same ratio. The linear coefficients are therefore 

normalized to unity. The method can now be applied to any ring type, 

irrespective of the puckering amplitude.

For example, the rings shown below are both boat conformations that differ 

in puckering amplitude.

V — -1 \ — y

4.4 APPLICATION OF THE METHOD

The primitive forms in the linear expansion are relatively simple 

conformations of either CB or C2 symmetry, and ate easily interpreted as 

boat-like, chair-like and their twisted counterparts for the smaller rings. 

The symmetrical forms, or classical conformations in conventional use, take 

on certain characteristic values of the linear coefficients.



The coefficients in the linear expansion are independent of phase. The linear 

coefflcientB are thus always the same, irrespective of the ring numbering used, 

as illustrated in Appendix 3.

A description of ring conformation is really a  description of molecular shape, 

and should therefore be independent of the degree of pucker. The overall 

molecular shape can be generated by adding together the primitive forms in 

the correct proportions. The same molecular shape is obtained provided the 

coefficients are in the same ratio. The linear coefficients are therefore 

normalized to unity. The method can now be applied to any ring type, 

irrespective of the puckering amplitude.

For example, the rings shown below are both boat inform ations that differ 

in puckering amplitude.

V — 'I \ — y

4,4 APPLICATION OF THE METHOD

The primitive forms in the iinear expansion are relatively simple 

conformations of either Cg or C2 symmetry, and are easily interpreted to 

boat-like, chair-like and their twisted counterparts for the smaller rings. 

The symmetrical forms, or classical conformations in conventional use, take 

on certain characteristic values of the linear coefficients.



I t is im putan t to realize that information on the phase angle is lost in the 

coefficients. The linear coefficients are not unique if  #)to # 0 for more than 

one value of m. A description of the ring in terms of linear coefficients is 

unique only if the phases of the cos- and tin-fornts are reported.

The primitive forms are often the traditional classical forms. For example, 

for slx-membered rings, the cos-form is a  boat and the Bin-fonu is a  twist 

conformation. The conformation of five- and six-raembered rings may 

therefore be reported as the linear combination of two or three classical forms 

respectively. The cos-form of a seven-membered ring, where m  =  3, takes 

the form of a  chair. This is not the chair form of Hendrickson (1867). I t is 

suggested that this chair (a combination of a primitive boat and a primitive 

chair) be denoted by the symbol H (half-chair) and its pseudorotation 

partner as T (twist-half-chair). For rings larger than slx-membered rings, 

different forms may assume the same coefficients. Since the phase angles of 

the primitive forms may differ, a  unique description is given by

where the bm and cm are linear coefficients,

and <£m , the phase angles of the primitive cos-form and sin-fo/m 

respectively, are characterized by the integer k of kir/2N, a(l)  occurs only for 

N even: (1) denotes the usual Bafcu) m oie  aad H ) its mirror image.

This nomenclature is unique if reported in order of increasing m, The linear 

coefficients give an indication of the relative contributions of each primitive 

form, and will be the same irrespective of atomic numbering, although the 

phase angles of the primitive forms will differ.



4.6 THE PROGRAM CONFOR

A FORTRAN 77 program, CONFOR, has been written to complete the 

description o f the conformation of intermediate forms and io identify a  ring as 

a  classical form. I t is included aa a subroutine of PUCKER, a  program that 

calculates the Ciemer-Pople puckering parameters from atomic coordinates. 

The general structure of the program CONFOR is shown in Figure 4,2, 

CONFOR consists of a  number of subroutines whose functions aie given in 

Table 4.2.

Fipura 4,2 Structure of the program CONFOR



TaW eW

The program CONPOR,

SUBROUTINE FUNCTION

Large, Odd, Even generates the phases of the primitive forms and 

determines if a ring is a  classical form

finds the primitive forms closest in  phase angle 

to the ring of interest

a h . solves for the coefficients in the linear 

expansion

w m . normalizes the coefficients to unity and mites 

these and the phase information to file

The phase angles of the primitive forma to be used aa the basis are calculated. 

The linear coefficients are solved by the methods detailed in Section 4,3 and 

normalized to unity, The linear coefficients of the conventional classical 

forms of five-, six-, seven- and eight-membered rings have been determined, 

and are used to automate the identification of any ring as one of these forme.



similar coefficients with different phase angles are not likely for the classical 

forms. The only sach cases are the forms of the S/TS and H/T 

pseudorotational cycles for seven-membered rings (Boessenkool and Boeyens, 

1980). The program CONFOR calculates the sum of the moduli of the 

difference in linear coefficients of any ring and a  symmetrical form. Below a 

certain threshold, the ring is identified as similar to one of the classical forms. 

For even smaller differences, the ring is taken as one of the classical forms, 

except in the case where there is more than one m for which & [BS, S, 

TS, T, H (seven-membered rings), Boessenkool and Boeyens, 1980; BO, TBO 

(tight-membered tings), Evans and Boeyens, 1088), The phase angles are 

then checked against the phases o f the classical forms, as determined bom  the 

two-dimensional projection of the relevant conformational surface. A listing 

of the program CONFOR and a sample output file is given in Appendix 4.1

4.8 EXAMPLES 

Five-membered rings

The basis is two-dimensional, consisting of the equivalent forms of

envelope



These are equivalent to the envelope aad twist forms (Altona and 

Sundaratingam, 1972). A number of riags reported in the literature have 

been analyzed and the results given in Table 4.3,

Table 4.3

Conformational analysis of five-membered rings

Bing M . * / > a**(B ] b * <KT)

1 c 5(20) 4- 96(19)

2 c 37(20) + 63(19)

3 d 356.3 79(20) + 21(19)

4 e 217.0 95(12) + 5(13)

S f 365.! 37(14) + 73(15,

e,b arc given afl percentages. ia expteeied ae a multiple of %/!{

e, Boeyene, Bull, Tulnman and aa Rooyer

d. Cccc&ielli Ruble and ieCfrey MM)

e. Gal, Behe Tihanyi, Horvath , Jerkovieli

I1

19B0)

£ Crerou and Pople (1976a)

The ring 1 is best described as a twist form according to  the program 

CONFOR. These results demonstrate the ease of interpretation of this 

method. King 2 ie a  twist conformation showing distortion to an envelope 

form. The method gives an exact value for the degree of this distortion.
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1(14)92(+l) 7(12)

45(+l) 31(4)

34(-l) 31(12:

24(2)

(1960)

ring (1) is



Ring (2), a  cyclohexene with a much smaller amplitude of pucker, ie readily 

described in terms of the linear coefficients. Ring (3) has been described as 

midway between the forms H, B and S. The conformation found here is 

intermediate between a boat, a  twist and a chair form. These two 

assignments are not contradictory. The E, H and S forms are themselves 

mixtures of the chair, boat and twist forms. The ring conformation could be 

expressed as a linear combination of the E, H and S forms since E, H and S 

forms can be expressed as a  linear combination of the independent forms, in 

other words, any conformation can be expressed as a linear combination of 

these mixed forms, but such a scheme would be complicated. These forms are 

not linearly independent, and an unambiguous definition of the number of 

mixed forms to include in the linear expansion is not possible.

Seven— and dght-membered rings can he expanded in terms of a four— or 

five-dimensional basis, For example, the ring described by 

q2 , ^  =  1'05 A  , 0.4°

q3 , $3 =  0.68 A  , 0.9°

q* =  -0.32 A

X =  0.163(-1) +  0.335(0) +  0(8) +  0.291(0) +  0(4), 

a  boat-chair form, is in agreement with previous conformational assignments 

(Evans and Boeyens, 1988).



4.7 DISCUSSION

The normal displacement modes of a  planar JY-ntembered regular polygon 

serve as a basis for the conformation of a  puckered N-raembered ring. Two 

linearly independent modes, equivalent to the mutually orthogonal cos- and 

sin-forms of each Bm representation, and one of the two possible equivalent 

modes of ^ (g m )  0424 *le com^*ned in  varying relative proportions to  give any 

puckered shape, from a few simple forms.

I t is noted from Figure 4.1 that the cos-type and sin-type forma for m =  2,3 

In eight-membered rings are equivalent. The sin-form is a primitive phase of 

the cos-form. In a case like this, the linear expansion is not unique for all 

phases. The coefficients of the cos-form and sin-form are interchangeable, as 

shown in Appendix 3.

In general, if two rings are compared to see whether they are of the same 

conformational type it  is advisable to ensure, by relative rotation if  necessary, 

that the phases of lowest index (m=2) have matching values. The 

equivalence of the ring conformations can then be considered established only 

if the calculated phases correspond for all m.

The definition of conformation, in terms of perpendicular displacements only, 

contracts the model from 3N Cartesian coordinates to  N-8  parameters. This 

projection from (3N-6) conformational space to an (N-3)-dimensional 

subspace has been interpreted (Petit, Dillen and Geise, 1883) to imply that 

conformational analysis requires a priori definition of standard conformations



This seems to invalidate the procedure of mapping conformations to 

normalized surfaces without taking the amplitude of pucker into account. 

However, as noted by Cromer (1984), perpendicular displacements relate to 

one-dimensional shape functions, by definition independent of the amplitude 

of pucker. I t is this shape, rather than the extent of distortion from 

planarity, that should be equated with the notion of conformation. This does 

not lead to  an ambiguous description for any given ring, since a  specific 

projected shape can be obtained a t only one value of the total puckering 

amplitude if the bond lengths and angles remain fixed.

The method proposed here is independent of absolute molecular geometry or 

chemical identity. The conformation depends only on the relative

contributions from the group theoretic modes of displacement. Any puckered 

six-membered ring with 100 percent contribution from the mode has, by 

definition, a  chair conformation. Any six-membered boat has the shape 

arising from the cos-mode of atomic displacements only. The envelope 

form is a  59-41 combination of the and the B2g representations. The 

amount of pucker cannot affect this ratio. Even heterocyclic rings, with 

irregular molecular geometry, can assume a chair shape, at =  6 =  0. The 

fact that the ring does not display D gj symmetry in three dimensions is not 

important. The shape factor of interest, the ring puckering, is 

one-dimensional and consists of a  contribution from the B2g mode only,



5. THE CONFORMATION OF NIKB-MEMBEItED RINGS

5.1 INTRODUCTIC 1

The various modes of interccnversioB of nine-membered rings hare been 

suggested and a  few of the low energy cydoalkase conformations atructnrally 

characterized (Hendrickson, 1964; 1667b). The symmetrical forms along 

these pathways are now identified and mapped aa a  function of puckering 

parameters onto a three-dimensional surface, in  a general scheme to convert 

atomic coordinates into conformational type. The conformation of

nine-membered rings as a linoar expansion of six basis forme is presented as 

an alternative description of ring pucker based on the linear coefficients.

5.2 METHOD OF STUDY

The set. o f symmetrical conformattoas of nixe—menbeied rings need not be 

limited to  the low energy cyclodkane conformations. Steric factors and 

crystal parting forces can force a ring to adopt a conformation other than 

those '>! Uie isolated entity. Sixteen conformations, some based on molecular 

mode.:, have been identified. These include the six conformations detailed by 

Hei drickson (19d4). These forms are not representative of a particular 

chemical system, but their bond lengths and angles are within the limits of 

chemical viability, and cz'lade arrangements with interpenetrating 

aon-bonded atoms. Pairs o f forms, with 0% and Cg ayrnmetiy, !»ving the 

same ratio of the puckering amplitudes, formally constitute pseudorotational 

pathways (Boessenkool and Boeyens, 1980; Evans and Boeyens, 1988). I t is 

noted that in the cydodkajies, where the Cg forms are of high energy, these



pathways ate not low energy inter conversion modes and hence are not 

peeudorotational cycles in the sense described by Dale (1973b). The classical 

nomenclature of the Cg forma is derived from the shapes of the forms in 

projection. T hai pseudoroUtlonal partners are described as twist foims. 

Torsion angles of the classical forms are given Table 5.1 and the forms are 

illaetrated in figure 5.1. Cartesian coordinates are given in Appendix 5.

boat-chair

twlst-chair-chair

bo&t-boat twist-boat-boat

boat twist-boat

Piipire 5,1 Classical forms of nine-merotrered rings



Figure s .l  (cont.) Classical forms of nine-membered rings



Table 5.1

Torsion angles (in degrees) of the classical forms. The symmetry element (Og 

or Cg) passes through the first atom.

nomen- symm- Wj Wg Wg wg

datum  etry



There are six Cremer and Pople (1975a) puckering parameters for a 

nine-membered riiig -  three amplitude and phase angle pairs, (qm, 

m=2, 3, 4. The puckering amplitudes of the classical forme are given in 

Table 6.2. As noted for eight-membered rings (Evans and Boeyens, 1988), 

when t y = 0, ^  has no meaning.

XftMg-M

Puckering amplitudes (in A) of the classical forms

CB

TCB

BO"

TBC"

CO"

TOC"



The geometrical interpretation of the six parameters is shown in Figure 5.2.

Figure. 8.2 Geometrical interpretation of the puckering parameters

This definition may he interpreted as mapping the forms onto

-  a  series of tori lying at positions determined by ^  and zj>2 on a major

-  a tube, helically coiled about a torus defined by 12, $2> 9^ and qg 

and define a  point on this tube.

The former interpretation is the logical extension of the tight-memlored 

rings mapped onto a  series of tori located on a  sphere, whereas the latter 

interpretation has the advantage of mapping the forms onto a continuous 

tube, shown in Figure 5,3.



Figave S-3 The complex surface for the mapping of nine-memlered rings

A two-dimensional projection of either surface is achieved by projecting all 

forms onto <t>2 =  0. The for.ns then map onto a torus given by q3l q4, ^  and 

A polar projection of this composite torus a t =  0, with the radial axis 

along the ^  =  0 circle, is shown in Figure 5.4. Pseudorotational cycles 

appear as spirals, In three dimensions these may be visualized as helices on a 

minor torus stretched around the major torus, or as a helix wound around a 

tube, coiled in space. Overlap of the forms occurs a t all positions S, S , T  and 

T*. The BB-TBB cycle is illustrated as the circle J-K , where ^  ic replaced 

by $2, to avoid projection of all forms to a point. The subscripts indicate the 

atom through which the symmetry element passes.



(degrees)

B pm a 5.4 A two-dimensional projection of the surface. S=(CC, CC", BC" , 

B), S’=(CB, C), T=(TCG, TCC'1, TBO", TB), t ’=(TCB, TC), 

K=BB, J=TBB.

' <5.



Figure 5.5 The TBC-BC paeudorotational cycle

eiven 1 ,  q3, ^  m l  AThe CC and TCC



 .     —       ---



EjannUL? The TOC-CC pseudoiotational cycle

In all these illustrations, the atomic numbering starts at the top of each 

polygon and proceeds clockwise. The signs of the endocyclic torsion angles 

are indicated. In Figures 5.8-5.12, the  fotai with ^  =  0 is indicated. The 

value of $4 increases in steps of %/Ig along each pseudorotstional cycle.



Figure 5.8 The TCB~CB

as integral



V

Xn , as for







ring ia a



f i gure S.13 Primitive forms of nine-membered ringa

The B4 repiesentatior.g do not correspond with any classical forma. Tbep= 

primitive forma require bond lengths significantly different from those di 

common chemical rings. The remaining twelve classical forms arc linear 

combinations of the six basis forms in specific relative proportions. An 

identification procedure to establish these forms, based on the values of their 

linear coefficients and pha«p fugles, has been included in ODD, a subroutine 

of the program CON1' '  (Appendix 4.1). The procedure is entirely 

analogous to the methods • d for the smaller rings (Section 4.5).

The relative contributions from each Em representation, and hence the shape 

of the puckered ring, depend only on the ratios of the qm Mucw, The 

conformations of the nine-membered rings can therefore be j r --..6?d onto a 

normalized surface, independent of ring type and extent of pu tW , to uvoid a 

definition of classical forms for each chemical class of rings (P  ■■■>. 'tilien and



5.4 EXAMPLES

Conformational analyses, reviewed by Boeyens and Dobson (1987), show that 

most nitrogen and sulphur donor maerocycles adopt either a  [333] or a (234) 

conformation in terms of the Dale (1973a,b) formalism. The results of a 

puckering analysis of a number of nlne-membered maerocycles, characterized 

in Figure 5.14 and Table 5.3, a rt given in Table 5.4.

.S .

(Setzer, Ogle, 

Wilson,and 

Glass, 1983)

(b)

(Glass, Wilson, 

and Setzer, 

1980)

(Zompa,

Margulis

1978)

<d)

(Hart, Boeyens 

,Michael and

(Boeyens, 

Dobson and 

Hancock, 1985)

(f)

(Dobson,

1986)

Hancock, 1983)

Figure 5.14 Nitrogen and sulphur donor macrocycles



Table 5.3

Endocycttc torsion angles (ir 

macrocycles

sulphur donorof nitrogen

Table L4

Puckering analysis of nitrogen and sulphur donor macrocydeg



On the basis of Figure 5.5, the  structures (a)-(d) are described as 

twist-boat-chair forms with some distortion to  the boat-chair forms. 

Structures (e) and (f) cannot be correlated with any classical forms on the 

basis of the qm and values. These intermediate forma are best described 

as a  linear combination, as shown in Table 5.5. The linear coefficients also 

quantify the distortion of the rings (a)-(d) from the TBC form.

Table 5.5

The linear coefficients of intermediate forms, The phase angles of the basis 

forms, denoted a sk  of ksr/18 , are given in parenthesis.

RING PRIMITIVE FORM

< 4 *«
I fcm te m t a n

.25(18) .75(15)

b .00 .22(0) .78(3)

c .00 .13(18) .86(21) .00
“ j! : d .04(34) .02(33) .15(38) .73(33) .01(36) .05(35)

e .05(14) .23(15) .44(38) .11(33) .17(2) .00

£ .14(18) .11(15) .51(36) .07(33) .10(2) .07(1)



The results show that the conformations of rings (a)-(d) are similar, and this 

form can be correlated with the [333] conformation of the Dale (1973a) 

formalism. The 9-aoe-Ng macrocyde (ring c) shows a  smaller distortion to 

the BC form. The 9-ane-N2S of the N i^  complex shows a slight distortion 

from a form on the BC—TBC cycle. The similar conformations of (e) and (f) 

can be correlated with the [234] conformation of the Dale (1673a) formalism.

These results corroborate previous observations (Boeyens and Dobson, 1987; 

Dobson, 1986):

9-ane-Ng, 9-ane-Sg and 9-ane-NgS when completed with Nin  adopt a 

similar conformation along the BC-TBC pseudoiotationai cycle. When 

9-ane-N 2S is complexed with C i f , a  diEEerent intermediate conformation is 

energetically preferred.



6. CONFORMATIONAL SPACES OF LARGE RINGS

6.1 INTRODUCTION

Methods to  assign the conformation of the large macrocyclic compounds are 

largely descriptive (Dale, 1973a,b). The characterization of a  ring

conformation by the set of endocydic torsion angles is not readily interpreted 

(Goldberg, 1980). Conformation is, however, an important concept in 

macrocyclic chemistry (Boeyens and Dobson, 1987). A projection of the 

conformational space of large rings onto a three-dimensional surface using the 

puckering parameters would require an extensive set of symmetrical forms 

and a  geometrical interpretation of a t least seven parameters. The 

conformation of a large ring is now described as a linear combination of N-3 

basis forms. The linear coefficients of eighteen-membered rings are 

interpreted graphically. A nomenclature based on the linear coefficients is 

proposed. This semi-quantitative method is compared with the Dale 

(1973a,b) nomenclature.

6.2 CONFORMATIONAL DESCRIPTION

The description of all rings having less than eighteen ring atoms, as a  linear 

combination of basis forms, is possible from an analysis of the primitive 

forms, The phase angles of all the canonical forms of these primitive forms 

have beea derived group theoretically, from the symmetry of the forms. All 

the canonical conformations arc included in the program CONFOR, in the 

subroutines ODD and LARGE (Appendix 4.1),



A complete one-dimensional description of ring pucker is obtained from the 

set of N—3 coefficients of the primitive forms and the phase information. For 

an eighteen—membered ring this may require a set of fifteen linear coefficient 

and phase angle pairs. A simplification of this quantitative scheme is 

necessary, albeit a t the expense of information,

A conformation may be specified by the linear coefficients only. The linear 

coefficients of any given series of ring structures can then be subjected to 

statistical procedures including, say, a cluster analysis. The problems 

associated with ignoring the phase information (Section 4.4) can be 

minimized by a comparison of the phases in the final stages of analysis.

The method o l a  linear expansion is greatly simplified in the special case of a 

symmetrical ring, where many of the coefficients reduce to zero. In the 

smaller rings, the coefficients are reported as pairs of the coefficients of the 

E representation, in order of increasing m (Section 4.4). In the large rings, 

where there are a number of basis forms, the coefficients of zero are omitted. 

An unambiguous nomenclature is established by denoting the crown form by 

the le tter A (N even only). The cos- and sin-forins of the E2 representation 

are denoted by B and B* respectively. All other pairs of the Em 

representation are similarly denoted by letters, in alphabetic progression as m 

increases. The coefficients, which are multiplied by ten and estimated to the 

nearest integer, are given as subscripts.

A pair of symmetrical twelve-membered rings (Boeyens and Dobson, 1987), 

detailed in Table 6.1, illustrate these general principles.



Table 6.1

Conformational analysis of twelve—membered macrocyctes

12-ane -P 3 12-ane-Ng

V W i V : 0.00 ; 332 0.00 ; 324

y w i t n 0.14 ; 0

0.00 ! 230 0,00 ; 162

0.00 ; 363 0.00 ; 181

i« (A)
Nomenclature A l° 9 AeCl

Daie(1973a,b)

Nomenclature m a

The Dale (1673a,b) nomenclature in both cases i > [444]g , despite a difference 

in the magnitude of the torsion angles. The difference in the out-of-plane 

puckering of the two rings is dearly illustrated by the nomenclature proposed 

here. The nomenclature in terms of the crown form and the Eg 

representation has the advantage of indicating a  ihree-fold axis, as predicted 

hy group theory (Pickett and Strauss, 1971).



The general utility of the model is illustrated in Figure 6.1.

fourteen-membered (Davis, White and Belford, 1975) 

x  M A6°3C1 ( y

" V j / "  ^
sixteen-membered (Smith, Ekstxand and Raymond, 1978)

x - V 2 (% )

'T V '

eighteen-mem be red (Yoshikawa, Toriumi, Ito, and Yamatera, 1882) 

X =  a i C4C5 (s e)

Figure 6.1 The conformation of large macrocycles. The symmetry element is 

indicated in parenthesis,



The various symmetry elements ensure that a number of the coefficients are 

zero. The method Is appropriate for large even-merobered macrocodes, 

where at least Ode element of symmetry is generally observed (Boeyeee and 

Dobson, 1987). This is not so for large odd-membered rings, where the lack 

of symmetry gives a Large number of non-trivial coefficients. For example, 

IS-ane-NgOSj (Louis, P&issard and Weiss, 1976),

described as BZc,D,E,B,P,

A large number of non-zero coefficients may be subjected to graphical 

interpretation. This method is used in the study of the complexes of 

18-crown-6 with alkali metal cations. The conformations of these complexes 

have been used to model the transport mechanism for metal ions across 

biological membranes, exhibited by antibiotics like nonactin and vatinomycin 

(Dobier aad PhiMcJtcriey, 1974; Dunitz, Dobler, Seiler, and Phizackerley, 

1974; Dunitz and Seiler, 1974; Seiler, Dobler and Dunitz, 1974). The 

percentage contribution of each primitive foym is plotted as a bar graph In 

Figure 6,2.



Rb+;CS+

uncomplexed

coefficient

(%)

A B B ' C  C D  D ' E  E ' F  F ' G G ' H  H'

Figure 6.2 Coefficient maps of 18-crown-6 complexes

The coefficient maps of the uncomplexed ligand and the potassium complex 

are similar, although this does not necessarily imply three-dimensional 

congruence (Section 6.3). The coefficient maps of the rubidium and caesium 

complexes are identical and show a decrease in the contribution from the 

primitive crown. The conformation of the sodium complex is irregular.



This is consistent with the s’ructurai findings of 1)units and othets. A 

distortion from the free ligand conformation is expected in complexes where 

the cation is either too large (Rb+ , Cs"1") or too small (Na+ ) for the ligand 

"equilibrium cavity". A justification of the ligand selectivity for the 

potassium ion based on this limited data is not possible, but the general 

utility of the method is evident.

6.3 DISCUSSION

The methods used to describe the conformation of small rings have the 

general limitation of increasing complexity as ring size increases. The 

one-dimensional model reduces the number of parameters necessary for 

conformational assignment, but not without a few approximations. The 

conformation of a small ring can be specified uniquely by the out-of-plane 

coordinates alone. For large rings (N > 16), a  set of out-of-plane 

displacements may be obtained from different in-plane shapes (Pickett and 

Strauss, 1071):

I t is no longer strictly true that the out- of-plane displacements are much 

larger than the in-plane displacements. An unambiguous description holds 

for most conformations, but the model must be interpreted and applied



The Dale (1973a, b) nomenclature is based or tlie signs of the en do cyclic 

totrion angles. I t is a  description of the shape of the ring as projected onto 

the Oremer and Pople (1975a) mean plane, and is thus perpendicular to the 

description in terms of out-of-plane displacements. Both afford a description 

of the shape of a projected ring, but oriy t ie  out-of-plane displacement 

model conforms to the accepted notion of ring puckering. Rings which do not 

have the same symmetry may be equivalent in the Dale formalism. The 

semi-quantitative method proposed here reflects a  Symmetry element in the 

linear coeffidents, bet the aoraeaclatare is concise only if some symmetry is 

present. The analysis in terms of the linear coefficients affords a  description 

of the conformation of all rings in terms of one model.



7. SUMMARY

A general definition of the Cremei and Pople puckering parameters has been 

derived from a group theoretical analysis of the out-of-plane displacements 

of a planar polygon (Pickett and Strauss, 1971). The conditions required to 

fix the unique Cremer-Pople mean plane have been shown to be natural 

consequences of the group theory. The conformation of a general 

N-membered ring telative to this mean plane is therefore correlated with the 

out-of-planf displacement modes of a regular polygon. The theoretical basis 

of the Cremer-Pople method has provided insight into the relationship 

between the puckering parameters and symmetry type and into the 

interpretation of this one-dimensional model.

I t has been shown group theoretically that the set of puckered forms of an 

N-membered ring is a  linear space. The normal out-of-plane displacement 

modes provide a  natural basis set to? the analysis of complex conformations. 

Two linearly independent modes equivalent to the cos- and sin-forms of each 

Eto representation, and one of the two possible modes of the B% 

representation for N even only, are superimposed to generate any puckered 

shape. These forms are part of an extended basis set, consisting of 

overlapping subsets, each with N -3 linearly independent elements. The 

linear coefficients of these primitive forms are independent of the extent of 

pucker and of the ring numbering scheme. The method has provided a simple 

algorithm to identify the classical forms. Any intermediate form is a linear 

combination of a few simple shapes, weighted according to the linear 

coefficients, In contrast to the graphical procedures, the method proposed 

here preserves the quantitative nature of the puckering parameters,



The conformational analysis of nine-membered rings in terms of the 

one-dimensional model has been completed. Sixteen symmetrical 

conformations have been proposed and characterised. The nine-membered 

rings are the largest rings for which a projection of the conformational space 

onto a  three-dimensional surface via the puckering parameters is of any 

practical importance. The various pseudorotatlonal cycles map as simple 

paths on the complex surface. Classical forms are identified from the 

two-dimensional projections of the surface. Intermediate forms are best 

described as a  linear combination of six primitive forms.

Tne conformation of a large ring has been described as a linear combination of 

basis forms. The linear coefficients provide a basis for the comparison of ring 

conformations, although ultimately the phase information of the primitive 

forma must also be examined. The derived nomenclature is concise for the 

case of a symmetrical ring, where many linear coefficients are zero. The 

method has been applied to the general case, where many non-zero 

coefficients are interpreted graphically.

A description of conformation should be concise and accurate. The 

one-dimensional model is a compromise of these two requirements. Future 

work should involve a detailed study of the applications of this method 

including, for example, investigations on the relationship between preferred 

conformation and biological activity of ring compounds. The possibility of 

another model, involving fewer approximations, cannot be discounted. This 

does not, however, seem likely at this stags of the development of 

conformational analysis in  terms of the accepted views of molecular structure.



8. CONCLUSIONS

The concept of the conformation of a  ring compound can be invoked to 

rationalize a  variety of chemical phenomena, not explained by electronic 

effects. A  simple procedure to describe and compare conformations of cyclic 

compounds in different environments is therefore of importance to the 

practical chemist. A set of quantitative parameters characterizing a ring 

conformation is essential to establish the relationship between observed 

chemical behaviour and molecular shape. The work presented here provides 

the basis for the characterization of any ring compound.

The conformation of any N-membeied ring may be envisaged as arising from 

the out-of-plaue displacements of the planar polygon. A group theoretical 

analysis in terms of this model shows that any conformation can be expressed 

as a linear combination of (N-3) mutually orthogonal displacement modes. 

This set consists of orthogonal pairs of doubly-dcgenerate displacement 

modes, and includes a non-degenerate mode for even-raembered rings. A 

number of forma, equivalent in shape to the two orthogonal modes of each 

degenerate pair, are characterised by group theoretically defined "phase 

angles". A pair of forms from each degenerate mode, chosen to  correspond 

most closely with the ring of interest, and the non-degenerate mode (or its 

m inor image) are superimposed to generate any puckered shape.

The (N-3) displacement modes and their equivalent fo-ma are the must basic 

shapes that cannot be decomposed into simpler shapes, and aey are referred 

to as PRIMITIVE FORMS.



Every conformation can therefore be expressed as & combination of (N-S) of 

these simple primitive shapes in the correct relative proportions.

The primitive forms often take on shapes familiav to the practical chemist. 

For example, any siz-merabered ring

(c h a ir )  (boat) ( tw ist-boat)

The coefGdents A, B, end C give the relative contributions of each primitive 

form. The values are independent of the ring numbering scheme or chemical 

identity of the ring, and can be used to characterize any conformation. A 

unique description of ring conformation is obtained from the coefficients and 

the phase angles of the primitive forms.

These coefficients form the basis of a concise nomenclature, useful for large 

rings. The pair of forms of each degenerate mode, Em {m=2, 3 ...), ate 

denoted by the letters X and x ’, starting with B and fi’ and progressing 

alphabetically as m  increases. The non-degenerate mode of even-membered 

rings is denoted by A. The coefficients, which are multiplied by a factor of 

ten and rounded to the nearest integer, appear as subscripts.

For example, the six-membered ring described as:

X =  0-90 + 0.10-\ ------- /  ,

can be identified as %= AgB%.



A Fortran 77 program, CONFOfi, has been w riftai to convert atomic 

coordinates of any ring into a  description of conformational type as a 

combination of primitive forms. The input requires only the number of ring 

atoms and the  atomic coordinates, The primitive forms closest to the ring of 

interest are determined. The algorithm, obtained from the group theoretical 

analysis, is used to calculate the coefficients of each primitive form. The 

output provides the investigator with a set of coefficients and phase angles of 

the contributing primitive forms. CONFQfL provides a  quantitative 

expansion of any conformation into a linear sum of simple shapes.

The well-known classical forms (boat, chair, etc.) take on certain 

characteristic values of the coefficients and phase angles of the primitive 

forms. A comparison of these values provides a simple algorithm, used by 

CONFOR, to identify any ring as a traditional classical form.

The group theoretical analysis of ring conformation, which is of practical 

importance to the experimentalist, offers a number of advantages:

-  Conformational analysis of cyclic compounds is simplified. A 

description is readily obtained from atomic coordinates using the 

program CONFOR.

-  Identification of the classical forms is fully automated and th r i 

provides an unambiguous assignment and an indication of any slight 

distortion from the classical forms.

-  The description is suitable for low symmetry conformations and it 

provides a nomenclature of all rings.



The coefficients provide a set of quantitative parameters on 

statistical analyses of a series of compounds can be based.

A complex shape is expressed as a sum of simple shapes, 

puckered shape of any ring is readily visualized in terms 

superposition of a few familiar shapes.



CHARACTER TABLES FOR THE POINT GROUPS 

(Adapted from Wilson, Decius and Cross (1955) 

and Pickett and Strauss (1971))



DNk(H even)

CnN/3.Cj N/SCj' N/k J i Kn/#/8-1 SSjjN/W

S 2rM(5y'k) Seo»{ *̂3k)

E(W/2)-l)6 2

S-M^) 2mef(^*2) -ScosE-J) -2cm(^ '2 )

i= 4 r )B((N/i)-l)u 2 - s"><2n)

Holm WUcn (N/l) lleven, tha cduroni under N/2 »v and N/s Uj iislnverted.



APPENDIX 2 

TRIGONOMETRIC IDENTITIES

It is reqaivjd that

S cos (4irjm/N) = 0  and sin (dujm/N) = 0

According to  Dun d Robson (1959),

ni» ( m )

“ s 1 ain fa  + nffl = ^  (tt +  (n~1)/2^) 8in 
” ’ °  H n (/>/2)

a  (4irjm/N) -  cos (4mn/N) +  ... +  cos (4 m )

=  coe (4nn/N ) +  ... +  cos (4nn (N -l)/N ) + cos (0) 

=  cos [(N -l)/2  (4im/N)] sin (2imt) /  sin (2*m/N)

^  sin (4ajm/N) =  sin (4irjm/N) +  ... +  sin (4*m)

=  sin (0) +  ... +  sin (4 n n (N -l)/N )

=  sin [(N -l)/2  (4nn/N)] sin (2mn) /sin (2*m/N)



• \

(These exptessioas hold, if sin (2mn/N) f  0 

m =  2,3, ... (N -l)/2 , N odd

m =  2,3 ... (N /2 )-l,N even

However

sin (2ff(m/N)) =  0 

=* 2m/N =  K, K e  N

=» N |?m

Since m <  N/2, V N > 3, sin (2irm/N) # 0.)



APPENDIX 3

CHARACTERISTICS OP THE LINEAR COEFFICIENTS

1. Linear independence ot the Cremer—Pople normal modes

Due to the nature of the primitive forma far each m, cos (2*m (j-l)/N ), 

sin(2inn(j-l)/N), they are mutually orthogonal.

That in, =  0

In  order for the set of these forms over all m to be a  suitable basis, they 

should be linearly independent. By the fact that these forms are normal 

modes of different symmetry types, they are linearly independent.

i, we first show that the normal modes a

orthogonal. That is

Ez.jt t Z j^ = 0 , ft,/? normal modes

For N even, consider

E cos(ir(j-I)) cos[(2m /N )( j- l )]  
j= l

Using the identities,

cos(A+B) =  cosAcosB -  sinAsinB



I  [ cob {(t +  2m i/U )(i-l)j +  cos [(*■—2»m/N)(j-),)J ]

Using the identity given in Appendix 2, tl 

ain(Nv/2 +  mrr) a  0 if N is even.

Slmiiarly B^ coB(ff(j-l))sin[(2)mi/N){j-l)]

g [ ^  du  [{t +  2irm /N )(H )l sin [(* -  2m n/N )(j-l)] ]

Therefore

cos(ir(j—1)1 Or is orthogonal to any linear combination of

a  cm  [(2sm/N){j-l)J +  b ain ((2rai/N )(j-l)j, 

as required.

.)U1), sin [{2 t/N )(H )M 11, oo,[(l,/N )U -l)M gl 

[(2s-/N)(j-l)M2j are orthogonal

a) S cos[(2,/N )(j-l)M ^ cos|(2ir/N)(H)M 2]

=  I  S eo.[(!»/N)()-l)(I*1 +  M,)] +  j  s  -  M;)l



u) SB taK ai/N X H jM j] tin[(27/i- ) (H )M 2]

Jj M a[(air/N)(H)(M 1 +  M2) ] + ^  £ C08[(2^/N)(H)(Mr M2)]

c) I  sin[(2ir/K)(j-l)Mj]cos[(2jr/N){j-l)M2]

=  E coB((2ff/N)(H)Mj -  r/g] cos{(2!r/N)(j-l)M2l 

=  5  s  cos[-5r/2 +  (2t/N )0-1)(M 1 +  M2)] 4- 

5  2  c o s H /2 +  ( k / f f )  -  Mg)]

=  0

d) £  aiu[(2T/N)(H)M2] =  0

(By analogy with fi.)

We now show orthogonality =» linear independence.

Suppose the 8j of the modes a, f i , ... f  are given as

z ^ a\  ...

Suppose these modes are not linearly independent 

Then

o' Z|(") +  ... ( ’ z / 0  =  0 VI

=» 3 a t  least two coefficients i  0 

(since zj # 0 Vi)

At least one of the modes, say a ,  is a  linear combination of at least one other 

mode fi:



Now a  and 0 are orthogonal

7 S # D , {since B = 0  ==* z ™ Q V i)

But a,f} are orthogoaal and hence S =  0. This is a  contiadiclion.

The modes are therefore linearly independent.

for N even

A (-!>• +  B am [cos (2ffm(j-l)/N)] +  bm [sin (2 m (j-l)/N )]  =  0, V j 

=* A> am. bm =  0, V m

and for N odd

B am [cos (2m n(j-l)/N )j +  bm [sin (2«ro(j-l)/N )j =  0, V j 

=» am. t,m =  0,V m

This la used in solving the equations for a  linear combination of primitive



■v

2. The primitive forms ate linearly independent.

Bach primitive form is a  linear combination of the normal modes (which are 

linearly independent).

Consider a  cos- and ain-form a t and f  +  * respectively.

The coefficients oi a  form at ^  in the linear expansion in terms of 

cos((2imi/N)(j-l)] and 8in[2inn/N)(j-l)] are cos (ji" and -sin  respectively,

S cm(coe ^  cos [(2 im /N )(j-l)l - sin *m sin [(2inn/N)U-l)])

+ d  (cos (A +  /t)cos[(2irm/N)(H)l- sin ((|i +  A)sim |(2*m /N )0-l)l)

Since cos aad sin w e linearly independent and

the pairs in m are linearly independent, we have

mcM V  +  dm cos ^  cos k - dmsin *m sin « =  0 

sin *  +  d sin * cos k +  d cos * sin k  -  0 , t e  aU m.

sin *m * (cm *m +  dm 606 *m 009 "  -  4m 8in dn ^  ”  0

”  *m * lcm , m *”  *m ™  " 1« e”  *m ,l»  *) -  0 '
for all m.



ot dm =  0 unless N =  0 or r , which it  does not, 

and cm cos i|im  =  0 

cm sin 4m =  0 =» cm =  0

Therefoie the primitive forms are linearly independent.

3. The linear coefficients are independent o£ the atomic numbering scheme

Since the normal modes of Bm are linearly independent, the equations for the 

linear coefficients may be solved in groups of m. The expressions for a ring at 

4m =  R ,  with primitive forms at phase angles A and B, are:

sin  A cosB  -  cos A sin B 

Q cos R sin  A -  Q sin  R cos A
(coefficient of sin-forro)

Any equivalent primitive forms are generated by Cn or Sn operations: 4  ' ■* 

4’ +  (2trm/N). Any ring will thus have equivalent forms (a different ring 

numbering) a t 4—’ +  (2irm/N) (Pickett and Strauss, 1971).

,X

/  ■”

A

A description of the ring should be independent of the ring numbering chosen;



This gives: dB sin « =  0

or dm =  0 unless «  =  0 orir, which it  does not,

tod  =  o

cm Bia =  0 "*  cm =:0

Therefore the primitive forms axe linearly independent.

3. The linear coefficients are independent of the atomic numbering scheme

Since the normal modes of Em are linearly independent, the equations for the 

linear coefficients may be solved in groups of m. The expressions for a  ring at 

$m =  R , with primitive forms a t phase angles A and B, are:

i R s in  A -- Q sin R cos A
  (coefficient of sin-form)

Any equivalent primitive forms are generated by C or Sa  operations: 4  ’ ■* 

4' +  (2 ra /N ). Any ring will thus have equivalent forms (a different ring 

numbering) a t $m ' +  (2irm/N) (Pickett and Strauss, 1971).

f  ■P2
. P'

A description of the ring should be independent of the ring numbering chosen;



i.e. the linear coefficients should be equal in both these cases. Thig can be 

shown to be the case.

Oonaidet the ring at 40  =  R , with the closest primitive forms at phase 

angles of A and B. An equivalent phase thus ties at -f Strm/N.

Let (2ini/N ) =  a  Then for this equivalent phase 

(cosfoim) =  A +  a

4 (dnfonn) =  B +  o

*  (ting) =  R  +  a

The coeffidents are given by XA’ and X B\

-cos (R  +  a)sin(B +  o:) +  Bin(R +  a)cos(B +  ») 

s in  (A +  e)cos(B + a) — cos(A +  o)sin(B +  «)

The numerator reduces tor

— cos R tin  B cos2 q +  sin R sin B sin a  cos tt — cos B cos R aln a 

cm a  +  cos B sin R sin1 a  +  sin R  cos B cos2 a  +  cos R cos B sin a  

ooeo — t in B s m o c o s a s in R  — c o sR sin B  tin2 a  

=  — cos R  sin B +  sin R cos B

The denominatoi becomes

sin A cos B cos2 a  -  sin A sin B cos a  sin a  +  cos A cos B sin a  cos tt -cos A

sin B sin1 a  +  coe B «ln A sin3 a  — cos A sin B cos2 a  — cos A cos B cos a

sin a  +  sin A sin B cos a  sin a 

=  cos B tin  A -  co A tin B

The numerator ia  the XB' expression is



(cos R cos a  -  ain R ain a) (sin A cos a  +  cos A sin a)

-  (sin R cos a  +  cos R sin a)(cos A cos a  -  sin A sin a)

=  cos R  sin A -  sin R  cos A 

XA’, XB‘ are therefore the same as those given for the ring a t R, even though 

the primitive forms are different.

I f  a form has neither 0% nor <rv symmetry, the enantiomeric form will not be 

generated oy Cn or Sn operations. Thus the phase angle of $ +  (2rair/N)(+ 

(t)) will not generate this Dim. I t can only be generated by C2 though atom 

1 followed by This implies (Pickett and Strauss,1971)

} -t -(ti +  i t + t s - 4  

Thus ,'f a  form lies at (|i, the enantiomer lies at -$■ I t must be shown that the 

coeffidents of enantiomers are the same, since the enantiomer may be 

generated by a different atomic numbering.

P ’ is generated 6om P by rotation of 2k, s in e  the spadngs of the primitive 

forms are 2k. We now show P ' and X have the same linear coeffidents. Since 

P1 and P  are related by a  Cg operation these have the same coeffider.ts.

The form X
^  _  -C os(A  +  a)sin(A +  /t) +  sin(A +  a )c3s(A  +  /t)

sinAfcosAcosw- s in A sin / t] -  cosA[sinAcosit +  siiwcosA]



tin  a  «M # -  Bin * cos a

Hie form P*

~co8(A +  2 k -  a )a in (A  +  k) +  s in ( A  •+ 2 « -  a )c o s(A  +  it) 

8in(A +  2(t) cos(A +  k )  -  cos(A  4- 2 k)  sin(A +  «)

This dsnozainatoi become::

-sin1 A tin  s  coa 2k +  coss A sin 2k uoa zt +  tin* A cos s  tin Sit — cos2 A 

flia s  cos 2/t

= -s ia  k coa 2« +  eta 2k cos k 

The numerator reduces to

-  sin A cos A cos k cos a  cog 2* -  sin2 A cos * gin a  cos 2* +  sin1 A cos k cos 

a  sis 2< — sia A cos A cos k tin  a  tin  2ft — cos' A tin k  coe a  cos 2k -  cos A 

sin A tin  « sin a  cos 2k +  cos A sic A tin  /t cos a  sin 2k -  cos2 A sin k sin a  

r in 2 «  +  cosA sinA co8K C O sorcos2s- cos2 A cos k cos 2k sin a  +  cos1 A 

cos K cob a  sin 2k +  cos A sin A coe it sis a s in  2 s - t i n 2 A sin k cos a  cos 2k 

-f- cos A sis A sin k tic  a  cos 2k — cos A tin  A sin k cos a  sin 2k — sin8 A sin k 

tin  a  tin  2k 

= -  cos r  cob 2k sin a  +  cos k  sin 2k cob a  

-  tin  k  o k  2« cos a  -  sin sin 2k sin a 

=sin a  I -  cos Ji (cos8 k -  sin* k) -  2 sin5« cos«]

■+• cos « [2  cos2 k sin it -  tin k  (cos* k -  tin5 ft)]

= -  sin a  cob it +  cos«  tin R



The numerator of the forms:

P ‘: XB =  cos(A +  2*-or)sin(A +  2 ft)-

sin(A +  2 k -  a)cos(A +  2k)

X : XB =  cos(A +  a)sin(A +  2k) -  sin(A +  o)cos(A +  2k)

The expression for P ’ becomes: 

sin A cos A cos a  cos! 2k +  sin2 A cos2 2k sin a

— sin2 A cos 2k sin 2k cos a  +  cos A sin A cos 2k sin 2k sin a

+  cos2 A sin 2k cos 2k cob ft +  cm A sin A sin 2k cos 2k sin a

— cos A sin A sin2 2k Cos ft +  cos2 A sin8 2k sin a

— cos A sin A cos2 2k coo «  +  cos1 A cos2 2k sin a

— cos2 A cos 2k sin 2k cos a  -  cos A sin A cos 2k sin 2k sin a  

+  sin2 A sin 2k cos 2k cos a  -  sin A cos A sin 2k cos 2k sin a  

+ sin A cos A sin2 2k cos a  +  sin2 A sin2 2k sin a

The coefficients of enantiomers are therefore the same

4. Two primitive forms (cos-form and a'n-form) differ in phase only 

e.g. primitive forms of eight-membered rings



Consider the case where an equivalent form of the primitive cos-form is the 

primitive s in - te n . A s equivalent fo ra  of X wiii therefore lie a t P2. The

1. The forms X and P2 are equivalent simply 

-form are different phases of the same form.

To show that the coefficients are inverted, consider the forms (1) and (2)

with the 4m of th e ' a-forms aa A and B respectively.

cos(A +  a)sin B +  s in (A +  a)
XA(1)

A cos e  sin B +  sin A sin

XB(2)

i numerator is given by 

os B cos a a ia  A f a in !

XA(2) is similarly equal to XB(1).
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APPENDIX 5

CARTESIAN COORDINATES OF THE CLASSICAL FORMS
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2.9930 -1.4213
1.4341 0.0003

9919 0.0900 0.0000
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1.6271 -0.0179 
0.7544 -1.7920 

-0.7544 -1.7920
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-1.0433 -0.3990
•1.6863 0,3610

•1.0695 0.3985

L2413 -0,6958
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