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ABSTRACT

The description of ring conformation in terms : ¢ a sel of puckering
coordinates relative to a mean plane is shown $o0 be equivalent to the group
theoretic definition of the conformation of a packered ring in terme of
out~of-plane displacements of a planac polygon. A deseription of the

of a general N- bered ing, based on erystallographic
coordinates, is provided in terms of the one—dimensionat displacement modes
of the regular polygon of Dy, symmetzy. The set of puckered forsas therefore
represent a linear space. The out—of—plane displacement modes of the

irseducible representations provide & natural basis seb,

Two linearly independent modes equivalent to the two orthogonal modes of

each t i ion, and a mode for an

even-membered ring, form & (N-3)-dimenslonal basis.  The lincar

coefficients are independent of the puckering amplitude and of the ring
numbering acheme. The linear combination of primitive forms provides »
simple algorithm to identify classical forms and a quantitative description of

tonformations, intermediate between the classical forms.

The one-dimnsionsl model describes the conformation of large rings.
C ional analysis of ni
of the i space onto & th

bered rings is completed by projection
surface defined by the

puckering parameters, Intermediate forms are expressed as & linear

combination of slx primitive forms. The conformation of larger rings is

characterized by the linear coefficients, interpreted graphically. A
for any ion is proposed.
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Mss. 8. Pasker for typing the manuscripts for the journal acticles, pasts of
which were used in this dissertation.

The Chemistry Depaciment for the use of their equipment in the preparation
of this digsertation,

Tlge subject mastter of this work has been submitied for publication in the
Journat Acta Crystallographica B. In particular Chapters 3, 4, and § have
been submitted as articles entitled
“Gonformatfona! analysls of ring pucker” and "Mapping the eonformation of
nine-membered rings" respectively. Chapter 2 ia to be published as an article

"Group theory of ring pucker"!,

entitled "Mapping the conjormation of eight—membered rings" in Acta Cryst.
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1. INTRODUCTION

The conformation of 2 ting compound a¢ a planar polygon, with a strain
energy one-half the difference between the intanal angle and 200.5°, was
introduced by Baeyer (1885}, The hypothesis that a ring compound could be
congtructed in & number of different puckered shapes, free of angle strain
(Sachse, 1890), was verifiod Ly the exlstence of trans—decalin (Kickel, 1025),
& compound predicten iu be highly strained by the, Baeyer theory.

It is now recognized that the nature and extent of puckering i o balauce of
In the smaller rings, the bond angles are wvsually
constrained to be smaller than their open—chain valnes, The angles generalty

two sirain nffects,

becume smaller and the strain increases as the ring puckers. Torsional sirain
14 greatest in the planar form, when all bonds are in eclipsed conformations.
‘Whis strain is lowered by a puckering of the ring.

The conformation of small rings has since been the subject of several detailed
studies (Hendrickson, 1961, 1064, 1967a,b; Flagper and Romezs, 1675; Botian,
Pickett, Rounds and Streuss, 1075; Khpatrick, Pliser, and Spitzer, 1047),
The ch i of the I and the

unalysis of the vixious modes of interconversion have been completed.

preferred

‘The concept of ring conformation has been extended to all explanatory levels
of chamisry, Chemical reactivity, products of orgenic symtheses snd the
interaction of dengs with receptor sites can be tationalized taing the concept

of moleculsr shape. Az i aceurate d and ¥

of risg conformation is therefore required.




Quantitative description of ring puckering s a non-trivial problem in
thres—dimensions, that requires 3 pacameters for the characterization of sa
N-membered ring. The et of Cartesian caordinates (x, v 7)) for each ring
atom j would be such a set, but with limited descriptive power due to the
Inrge pumber of parameters invoived. 1 was firet showa by Kilpatrick, Pitzer
and Spitzer (1047) thet the conformation of any puckered form of

cyclopentane can be specified in terms of two parameters— an amplitude and
a phase angle. Thete parameters are derived from the out—of-plane
displacaments tequired to gemerate the puckered form from the planar
polygon. Generalization of the concept to the larger rings was formulated by
Pickett and others (Pickett and Strauss, 1970,1071; Bocian, Pickets, Rounds
and Stravss, 1975; Sixauss,1071).

Puckered forms of an N—membered ring are generated by the set of N
displacements perpendicular to a regular polygon. This one—dimensionsl
description is unique for the smaller rings (N ¢ 12), and Invoives & maximum
of N parameters, In fact, any puckered form is fully characterized by N~-3

try-adapted coordi The agplication of the model to & general

N-membered ring is not immediate, Eatly attempts (Adams, Geiss, and
Bartell, 1070; Geise, Adams, and Bartell, 1969) to define & general set of

coordinates for five-membered rings required a number of approximations

and were limited to  given degree of pucker. i

A general definition of ring puckering coordinates for any type of cyclic
compound was given by Cremer and Pople (1975a,b). The method defines a
unique mean plane for 4 peneral monocyclic ring, The geometry of the

puckering, relative i¢ this mean plane, is described by a set of N-3 i




pacameters, which are generalizations of the phase and amplitude of
cyelopentane (Kilpatrick, Pitzer and Spitoer, 1947).

The methad has been of practical importance in crystallography since the set
of puckering parameters i calculated directly from the stomic coordinates.
‘The conversion of these puckering parameisrs into & deseription of
conformsational type is not {xivial. As a practicel measure it iy useful to map
the conformation a8 & funciion of puckering parameters onto a surfage in
relation to the classical forms, Such s scheme requires the sualysis of all
possible canonical forms of the symmetrical conformagions. The surface kas
been interpreted as a circle for five-membered 71ings (Altona snd
Sundaralingam, 1972), a sphere for six—membered rings (Boeyens, 1878 and
a torus for seven-membered rings (Boessenkool and Boeyens, 1980). The
method has been extended to the eight-membered rings (Evans and Botyens,
1088), a8 reviewed in Chapler 2.

The Cremes and Pople (1675a} algorithm to caiculate the mean plane and the
puckering parsmeters has not been corselated dizectly with a physical model.
A theoretical inverpretation of the puckering coordinates is pressnied in
Chapter 3. The one-to—one corespondence between the puckering
and the N-3 symmetry—adapted of Pickett and

Strauss (1071) is demonstraied. The exprestions for the ring puckering
i a8 out—of-pl E modes are Jerived from group

theoretit Tepresentations to ilusirate the general applicability of the model.

The caleulated puckering parameters of any ring do not necessarily match
those of tho clamsical forms exactly, Where the maich s close enough, a




symmetrical type is identified, but more often an intermediate form is
indicated. In these cases, a quantitative expression for the deviation of an
actual form from a symmetrical type has been proposed as the Buclidean
distance between the points in (N—3)—dimensic. il space (Evans and Boeyens,
1988). This useful gulde has no theoretical basis and is sensitive to the degree

of pucker.

A beiter description of these intermediate forms is given in Chapter 4. The
geoup theoretic model of Pickets and Strauss (1871) givee the set of ring
conformations es a linear space. It is suggested that the normal modes of
displacerent be used as a basis for representing any conformation as a linear
combination of a few simple puckered shapes im the correct relative

proportions.

The assignment of conformational type of the larger rings (I > 8) is largely
descriptive {Dale, 1673a,b; Boeyens and Dobson, 1987). In Chapters 5 and 6
the methods uged in the conformational assignment of the smaller rings are

extended to the medium-sizd and large zings. The conversion of the

puckering of ni bered rings into a description of the
conformational type is achieved by mapping the classical forms onto a
i ion of the

gurface. A

comaplex th:
puckering parameters of larger rings in threedimensional space is too
complicated to be of any practical significsnce. The conformation of these
rings is described by the set of coefficients in the linear expansion of basis

forms,




2.CONFORMATIONAL MAPPING OF MGHT-MEMBERED RINGS
2,1 INTRODUCTION

The conversion of puckering parametess into conformational type is achieved
by mapping the set of conformations onto a three—dimensional surface. The
use of these conformational maps in the feld of the puckering parameters is
limited by the number of puckering pacameters to zings smaller than eight—
or nine-membered rings. The analysis of eight~membered rings prompied

the i igation of an aceurate iption of i iate forms, and a brief

Teview of the topic s thus appropriate.

2.2 METHOD OF STUDY

The Oremer and Pople (1975s) puckering parameters map & set of ten
i unto a th i fonal surface. These classical

forms conprise a seb of symmetrical conformations not confined to the low

- energy cycloalkane forms of Hendrickson (1987a,b). Standard puckering
analysis (Gremer and Pople, 1975a) yields three amplitudes ( 4, qg: 9y ) nd
two phase angles { 9y, ¢g ). The wapping represents the geomeirical

of five in th Bpace.

To facilifate the geometzic interpretation, the third amplitude is transformed

L to an angulsr coordinate, G € ¢ < =, such that

q
= S = 2
2 rhere Q= 2 g}




‘The angular value & is interpreted 28 the polar angie of the unit sphere, shown

in Figure 2.1,

Figare 24 The polar angle 4

It is noted that for q = 0, the phase angle tbm has no meaning. The four

parameters qg, Gy, q\2, and wa definie & torus, shown in Figure 2.2

Bigure 2.2 The torus defined by g, aq, G and ¢y




A surfacs for the mapping of all possible conformations can be constructed by

defining a usit sphere, with polar angle 0 ¢ 0% 7. At each value of 4, & torus
is defined i cerms of qy, g, 4y and §g. The plane throagh the associated

A central track cuts the sphere at 4, as shown in Figure 2.3,

Bigure 2.5 The conformational suxface of eight-membered rings

A two-dimensional projection of this surface, shown in Figure 2.4, lnatrates
the varions interconversion modes between the symmetrical forms. This
PR ,' . representation, a projection of all tori along the surface of the sphere and with
their radial axes along the @3 = 0 cirele, maps the BC—TBC forms uniquely.

Overlap occurs at the positions X, Y and Z.

<
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FPiguze 2.4 Two~dimensional projection of the surface. The + superscript
refers to forms with §<80° and the — superseript tefera 10
forms with >00°, Ye= (TCC*, BY; XF= (0C% BB, BCYY,
X"= (GG, BB, BG™), 2= (TC, BCT) and 7= (10,
BC)




23 RESULTS

Thig gurfecs is & combination of the surfaces used in the analysis of six~
(Boeyens, 1678) and seven~membered (Boessenkool and Boeyens, 1980) rings.
The conformations of sight—membered rings are mapped onto 2 set of torl

which fie a4 specific polar angles on a sphere,

The pseudorotational pathways outlined by Hendrickson (1567b) are
exawined in two~dimensional projection. The G~T'C cycle is shown in Pigure
2.5, The ¢, — @ polat projection in Figuts 2.6 details the B-BB and the
GC-ICC pseudorotational cycles. The BC~TBC cycles, shown in Figuse 2.7,
are polar projections of the tori lying at polac angles of 76° and 105°.

HFigure 2.5 The C-TC pseudorotational cycle
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(tagrees)

Figute 26 The BB-TBB / CC~TCC psendorotationsl cycles, The bold

-ide of the TCC symbol inticatos & torsion angle of 56.2°,
The bold side of the GC symbol indicates o torsion angle of
106°, with the point of the wedge adjacent to o torsion angle
of -105°, The bold side of the § symbol indicates a torsion
angle of 70°,




maximum positive vaiues, through sero, 1o negative velues. In the BC-TBC
“u cycle, the torsic angles change at ragular intervals from positive o negative
ar values. In each GO-TOC cycle, the atoms remain in the same relative

[
b, ‘These projections indicate the gradual change in bond torsion angle, from F// S
position with respect to the mesn plate. The pseudorotational cycle is 5

described 2s a type of breathing mode where each totsion angle changes

gradually in magnitude, but not in sgn L,
>
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R o Pigire 27 'The BO-TBC pseudorotational cycles at 0= 75° and 105°.
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A unique nomenclature, based on  angular velue of each canomical
conformation is proposed. Each conforr.eii~n is unambiguousty descrived by
the integers h, % and 1 that specify the ang-Jar positions , = ha/I6 , gy =
k16 and 0= 1%/16 respectively. Positive indices are obtained by defining
E¥ = 82-h, kauwdl = 16-1 All forms are uniquely distinguished by at

most two indices.

An of 3 number of

rings, 206 exactly by
dlassical forms, introduced sn expression for the deviation of an setual
conformation from a classical form in the nelghbourhood. The deviation, AX,

is defined as

1
where x, represent actual puckering parameters, snd x| ere the puckering
parameters of the clagsical form X,
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3. GROUP THEORY ¢'F RING PUCKER

3.1 INFRODUGTION o

The group theorette model {Pickett and Stzauss, 1971) det 'ihes any puckered

dorm of a I #ing as an out-of-pl mode of the LT
g .
planat polygon. A i by N-3 symmetry-adapted . "'fv .o .
Given the coordinates of a genersl N-membered ring, the i D e
appiication of the model is not immediate. The characterizatior of a general . P

monoq,clic ting by N3 puckering parameters (Cremer and Popis, 10752), .
defised in terms of atomie displacernents relative to & mean plane, is always N
possible. These puckering parameters have previously not been eubjected to

physical i ion. The equi of the N-3 symmetry—adapted : o
coordinates and the puckering psrameters is now demonstrated, The ) o : e
expressions for ring puckering di 26 f-plt ! bl

modes are derived directly from the group theoretical analysis.

3.2 MATHEMATICAL DERIVATION

Following Pickett and Strsass (1971), the puckered conformation of an R

N-wmeribored 1ing may be generated by out—of-plane displacements of the
atoms of the planar ring. The polygon, of DNh symmetry, and ihe gat of N "

displacements can be used a8 the basis for an irceducible zepresentation, as in .
vibrational analysis. The irredneible representations are readily found nsing
the character sables, for N even and odd, presented in Appendix 1. h -

F (N evan) = By 3+ By + ok By, 1)(40)




4

" :
U(Nodd) =By +By 4 . +B (y_yy

The tymbol (g:u) is taken as g for N/2 odd znd ag u for N/2 even, The

symbol (wg) reads w for N/2 odd and g for N/2 even, The trauslational

(Agys oF A Tox Y cdd) and the rotational (K, ox By for I 0dd) mstions,

which are of no conformational sgaificanse, ate excluded.

di of each ring

For each bl ion, the out—of-pl
atom, % are written down in terms of symmetry—adapted coordinates,

f—piane displ
pla;

The By ‘produces the out

ty (-17Q, where Q transforms a5 Bygu)

The Em representations produce displacements
4= gy o8 (2m/N + )
whete g, cos 4y sud py sin §y eransiorm together 28 By, j= 1, N, =
2, «(N=1)/2 (N 0dd); m = 2, ... (N/2)~1 (N even). This expression is based
on the out—of-plane normal coordinates of & thin cizoular fod {Love, 1627)
2(0) = py €08 (W= Gy m = 23, .,
limited {0 the cat—of-plane displacements of tie ring atoms only.

may be expressed

The out—ofpl i

of a genetal
¢ 2 linear i

of the out—of-pl: of the irreducible

representations (Heraberg, 1945).
‘Thus for a general conformation

3= -1¥q+ 2 i 00 3/ + by (N even)

(N odd)

5= 3 g o (/N +4,)
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‘The expression for each % is a linear sum over all possible m values. The
normal modes are alse mutually orthogonal and hence we can consider only

one value of m without loss of generality.

2= A, <08 (22m/N + §y,)
Consider
)} 2 cos (27jm/N) )
and )j:zj sin (2jm/N) (@

Substtating the expresson for 3 in these equations gives equation (1) 28

?pm <08 (2jtn/N + ¢, cos (2xjm/N) ox

)-‘me 008 con? (2im/N) — 8 gy, sin . con (2rjm/N) sin (2ajm/N)
J
and equation (2) a8

E py, cos (2xjm/N + ¢} sin (3nim/N) o
1

2 py, 08 ¢, c08 (2nm/N) sin (2xjm/N) - B g, sin § sin? (2mjm/N)
1 3

£ cos? (2xjm/N), $ ein? (2ajm/N), and 3 sin (2xm/N) cos (2njm/N) can be
1
expressed as £ (14 cos (4njma/N)), 3 (1 - cos (dxjm/N)) and

]

,‘}?m {4rim/N) respectively.

3 cos (4nfim/N) and 5 sin (4=jm/N) = 0, 85 showas in Appendix 2.
¥ )




3 B
o T B b
i 12 e L >
: S e qoe : 5
o : . o
N
E N
‘ 16
%
e Baustion (1) therefore reduces to. 3 5., cos ¢ ,and
0, " equation (2) rednoes to — N p_ aing. T d
Hence .
(M/2) gy cosdy =’f'i <08 {22jm/N) 8} °
and I
(412 1t by =Dy i) @

§a§ = }; o2, cos? (axim/N + ) =N 2

‘The coordinates oy, mey be normalized so that

Bple 822
w ™ j
Using the normalized coordinates, equations (3} and (4) become .

P c0sdy = 2N B (2njm/N)

P tin by =~ 2N }J 5gin (2mion/N)
To ensure & direct correlation between atom 1 and ¢, it s necessary to o
seplace j by (1) in the expressions above, without changing thelr meaning:

ppoosty= J2N By s (an-2ym)

i 88y =~ 373 2 a2y

T'hese expressions are those given by Cremer and Pople {1975} 1o define 2
get of generalized xing puckering coordinates. The oue~to-one

farh corsespondence of the ¢y, values and of p,, with their g, 15 clesdly evident.
o These expressions hold tmme for any N > 3. For N even, the symmetry

coordinate Q s included. P o




When p = 0;Vm =234 ... (Nf2)~1
5= (a

A= (12
N
Til=Q? ¥ (-4 =NQ? (8
i =1
But  5#=Q g(—lﬁ ()
AR

‘Equating expressions (5) and (6),
f3eiy=0
Once again the value of Q must be normalized:
2=
1o
Replacing Q by the normalized valus given
Q= JUN 5y
i )
j must be replaced by (j~1) to correspond with the atomic numbering of the
previous expressions:

a= /N 2y
H

Q s the same a5 the parameter qy 2 of Cremer and Pople (1875s).
Replacing pp, and Q with the normalized values ylelds the expressions Jor the
out-of-plane displacements ag defined by Cremer and Pople (1975a).

N event
2= JUR Q4 V2N 8 g o8 (/N + ) =,
m
(N/3-1)
Nodd:

ay=/2N 3 g 008 Drm{ )N 4 gl 2 (N2
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3.3 DISCUSSION
Pickett and Strause (1971} the i ion of a

thng on the basis of symmetry-allowed displacements novmal to the plane of
Dyyy, bolygons. Cremer and Pople (18758) presented a method to reduce the
pucker of actual rings to displacements from aa idealized polygon in the mean
ting plane - the inverse operation. The two methods have now been show to

be consistent,

Any puckesed shape is generated from the out—of—plane displacements of a
regular polygon. The group theoretical analysia is besed on infnitesimal
i di In analysis this I8 an

approximation since the puckered shape of a chemical ring compound may
invatve finits perpendicular displacements from the mean plaue and hente
motion of the atoms in the mean piane. The perpendicular displacements
involved in generating the form ace, however, much Iaxger than the in—plane
motions, The one-dimensional model is therefore quite adeguate in
deseribing the three—dimensional conformation uniquely.

Ihe Cremer and Pople (1975a) anufysin of s puckersd ring relies on the
definttion of & unique mean plane. The equivalence of this method and the
group thearetic model requires the planar polygon 1o b orfented with respect
1o the puckered mode so that this form may be envisaged as arising from only
out-of-plane displacements of the flat ring. The out-of—plane digplacetients
are therclore subjected to the special conditfons that restrict overall
$ranalation and rotation of the polygon. These conditions, used hy Cremer
and Pople (1976n) to define the mean plane:




19

$3,=0, Dz cos [2n(}1)/N] = 0 and B, sin [21(}-1)/N] , have now
FCR R i

been shown. t0 be natural consequences of the group theory.

Only perpendicular displacements are considered to operste on the fully
symmetrical polygon.
operation. The
ring, having as; boud Imgths and angles, is therefore in terms of the

The same assumption spplies during the inverse
.1 'mer and Pople (1675a) analysis of a general monocyclic

petpendicular displacements «f & regular polygon. For moderate varlations in
‘bond length, as in most chemical structures, the conditions to fix the mean
plane do 20t necessarily give zero angulat momentum, but they do ensure
that the projection of the ring onto the plane most closely resembies a regular
polygon.

‘The theoretical basis of the Cremer and I ople ring puckering coordinates now
provides insight into their sumber and nature. Group theory illustrates how
N-3 parameters specify the positions of N afoms in a one—limensional
projection.  Bach symmetrical conformation and its ring puckering
pasameters must correspond to characteristic values of P and ¢m of the B

a8 iri (3

end Boeyens, 1980;

Evans and Boeyens, 1988), The observed aliernation of the symmetry

elements Cy snd cl ajong the pathways i also i

The theoretical derivation of the puckering coordinates has, however, shown
the model to be a dimensi desczip
phenomenon .

N-membered ting must be exercised with caution,

of 2 th

Extession of group—theoretical sxguments to the general

P
i
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" As an example, consider the hypothetical heterocyclic six—membered ring:
n
e
" )

with puckering coordinates a5 given in Table 3.1,

Eabled.l

Cartesian and puckering coordinates of the SCGg boat form

atom Cartesian Coordinates Puckering Coordinates

8 0.00 170 0.50 .00 159 0.50
C1 140 075 -~0.25 140 064 ~0.25
c2 125 -7 -~0.25 126 -0.86 -0.25
o] 0.00 ~1.05 0.50 000 -118 0.50
C4 ~1.3% 075 ~G.25 -1.26 ~086 025
[+ ~1.40 05 ~0.26 ~1.40 064 -0.28

9 =0874

Puckering parameters
gg=04




Lo 1ts puckering parameters are the same as thoss of the ryclohexang boat form.
The ¢y = 0 indjcates 2 mirvor plane through the sulphur atom, perpendiculax T

R 1o another mizror plane - 5 M

--m--m,

LSRN A N S

my 0
Cleasly, my i8 o preudo mirror plane. The symsmstzy refers ouly 10 the 2) L
disglaceraents and aot to the ring o8 & threedimensional chemicaf object.
This limitation however, detracts very little from the genersl practical utility T
of the model. A :

Tt has been shown that the total pucker of a ring Tesults from @ linear

combination of symmetry—adepied normal modes. The displacement modes e

of the Dy point gloup therefore provide a natural basis set for .
copformational analysis, and the details of this scheme will be discussed in ('\ .

the following chapter,




4. TEE LINEAR SPACE OF PUCKERED FOBMS

4.1 INTRODUCTION

"The group theoretical anslysis of the normal modes of displacement of an
N-membered polygan provides the basis of & quantitative formulation of ring
pucker, The st of puckered forms of a xing constitule a linear space with the

normal modes of displacement 25 a finite—dimensional basis.

The description of conformation in terms of the symmetry—adapted
displacement coordinates is unique, but the interprotation of numerical values
in termg of conformationsl nomenclature familiar to chemists (hoas, cheir,
eic.) 18 not obvious. The relationship between puckering patameters and
conformational type has been established for the small rings (Boeyens, 1678;
Bostsenkool and Boeyens, 1980; Evans aud Boeyens, 1088). The

from 10 type is

achieved by mupping the general ring onto the appropriate surface as a
function of the puckering parameters. Conformational typs is then assigned
on account of the proximity to & sy >metrical form located on the surface.
The assigament of conformational type of a form lying intermediate between
two or more classical forms is expected to he largely descriptive. The
conformation could be described #¢ a linear combination of the symmetrical
classical forms, with the share of the contrlbuting forms estimated by their
distance on the surface from the site of the cyclic fragment of interest. A
quaniitative expression for the deviation of an actuat conformation {rom the
symmettical types in the neighbourhood has besn proposed {BEvans and
Boeyens, 1988), but it is sensitive to the amplitude of pucker and has no




theoretical besis,

A iption of the iate forms I8 now from the group

theoretical derivation of ring pucker. It is sugaested that {he normal odes
of displacernent, ai different values of the Cremer and Pople (1975a) phase
angle, and not the symmetrical classical forms, be used as s basis for

any 88 a Hnear ination of these basic forms.
4.2 DESCRIPTION OF RING PUCKER
The out~of-plane displacements of & general N-membered ring may be

generated as & linear combination of the normal mode displacements (Pickett
sad Strauss, 1971; Section 8.2), zepresented by

Tleven) = Byrug)t I Bmfg)
rlodd) = 3B
) = 35

The Ba(“’ 2 mode represents displacements
5 = Q)
Bach mode of this representation is & mubtiple of the form
5= = (1)

Em(g,u)’ or E;'x for odd N, represerits displacements




Prg 008 [, + (2 /N)(1)]

Bach mode of this representation is a linear combination of two mutually

. - orthogonal forms
;= co8 [(2em0/N)(1-1)] @
3, = in [f2am G0 ®

Every conformation is % Hinear combination of these normal modes and hence
a linear combination of the sets of displacements (1) = (3) (N even) or (2) —
(3) (N 0dd), for cech ru. The ssme result is cbtained from the Cremer and
Pople (19755) analysis, 85 shown in Chapter 3.

For an arbitrary the out-ofplane di are therefore
given by the Oremer and Pople (1075a) equations

Neven §
5= N O 4 23 gy e by + oM : ok
N odd B
sy=VEN 5 gy oo 4, + (2N
m
whete ¢, g, B, are the normalized puckering paramsters or ,
RO syrmmetry-adapled coordinates. (\ |

‘These expressions may be written in a number of equivalent ways, one of i
which gives:
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g O B gy 0 4y, o 2/ Y1)
= B3 gy sin s (@ /)0
H
(N () - Neva

Tt has alzeady been recognized, for six-- and seven-membered rvings, that the

coefficients \/_2/—Ii Py €08 Qe [’2/—“ Py 80§y and  1/N g carry the
planar ring into the uormal modes where
o= 58 [m /NG, (P respectvely,

{Bocian, Pickett, Rounds and Strauss, 1975; Pickett and Strauss, 1970;
Strauss, 1071), The Cremer and Pople (1975a) equations are an expliclt
ototement of this fact. All ring conformations can be redeced to lMnear
ombinations of the normal modes of the B, representations (and the B,
representation for N even), These fundamental primitive forms and thelr
relative out~of-plane atomic displacements for five— to elght-membered
~'ngs are deacribed in Figure 4,1 and in Table 4.1

A number of forms equivalent to these normal modes exist, differing only in
the value of the phase angle.
with

For each m, any linesr combination of forms
= ofa lam/N)-1)

is also a normal mode of the B, sepresentation (Hersherg, 1045}, The

equivalent formis al phase angles Qm, have

2= 008§y, cos [(2a/N)(1)] — sl ¢y wim [(2orm /N)(G-1)]
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Table 4.
Classical nomenclature of the primitive forms

N primitive form classical nomenclature
"

5 Ey (cos—form) envelope
By (sinforns) st

6 Byy chair
By, {ecs am) boat
By, {sin—iom) twist-boat
"

7 Ey {cosfomm) boat
E; {sin—form) twist-boat
B, (cosform) chair

By (sin-form)

8 BZu
By, (cos-form
By, (sin~form)
By {cor~form)
By, (sin-fom)

twist—clair ®

crown

boat—hoat

twist—chair

8~ gee Section 4.4

Rl




Coneuder the forms “%B , T, and By, in the nomendature of the
six~membered rings proposed by Bosyens {1078), with £ given by :

1 cos [4x/6 (1)]

Oy - sim {dxf6 (0]

By g con 609 * 1A - gia 607 Oy

143 i equivalent to By, , although they differ in phase sngle, by 60°. The
equivalent forms are themseives normal modes of the By represeniation and
should form part of an extended basis set. Each conformation will stilt be
expresses. 7 a linear combination of N~ normat modes, two from each B
Tepresentation, but now chosen o have phase angles closest to that of the
ring of interest,

,
:

o




,
X 2
C 43 MATHEMATICAL FORMULATION
5
Lt The set of normal modes, whose 3 axe given by
T S 5, on [famy/N)(-0)], sin {(arm/N)(-1)] are linearly M
S independent, as shown in Appendix 3. These modes can therefors forin & i '@ ST
.0 o )
suitable basis for conformational type. b g
Group theoretical analysis shows that the forms equivalent to the cos-form
Ty and sin—form of each m have & constant difference in phase angle, Given any 27
arbitrary ring, its Qm value will lie between those of a "eos—type" form and 4
ginetypet form, ) R
ey ;
The forms equivalent to the cos~form and the sin—form. can be expressed as " e 3
linear combinations of these forms using the Cremer—Pople (1975a) equations.
Any arblirary ring can also be expressed as a linear combination of the cos— N '

and sin—forma using this equation, ) <

Tho arbitrary ring lying at Q (N even), a,,, and ¢, , where m = 2, 3, ..
U N/2-1 (N even), or (N~1)/2 (N 0dd), is given by

cxy= SRR I 4 3 g oo gy on (2emy (-0
= B 4 oindy, dn [Bm/N)(1-1)]

- For ench mode By, there is a cos—iype form and & gin—$ype form lying closest
v to the sing at phase angles a,, and b respestively.




- l. ’ The cos—type form is given by

i 3= <08 8, con {(3mm/N)(11)] - s &y s {2/ N)(3-1))
S The sin—type form is given by

5= 008 by, cos [(2mm/N)(j-1)] = pin by, sin (2 /N)(i-1)]

These normal modey are linesrly independent {Appendix 3.), and any . i
arhitrary conformation may be expressed as & linear combination of the forms g

atay, and b, over all values of m, «

Suppose the coefficients of the cor-type and sin—iype forme are o and dj . -
[ for each m, u :

A s s 5 N

VT Then denoting the Cremer-Pople normal modes a8 X,y Y, for each m, we o =q
. tave '
By oon gy, X —qpsing; Yy = Boy (conay X ~sinay, Y} o .
m m

LA +dm(wubm%—uinbm\{m)

T Sine X, ¥, ste lincarly independent, we can solve for c, and d, a8
Ty follows: f : -

Gy (=008 p sin b 4 sing, cos by} .
sn s, cosby, « cos ay bin bm .

G ( 08§ 8in ay - sing cosay)

#na, cosby — e a sin by




When N is even, there is a coefficient for the normal mode of the Bz(g:u)
representation. The displacements of the normal mode, 2j ate taken a8
172 (1)1, 60 that the linear coefficient corzesponds with the normalized
puckering amplitude Q. It is noted that, as above, the factor of  2/N has

heen omitted since the coefficients are normalized in tho final analysis. When

the sign of Q is negative, the normal mode used in the linear combination is

the mirtor image o the form 7 = iz (e 5= iy

This ensures that the cosfficlent is equal in magnitude to Q, but greater than *

2610,

In fact, choow'ng 4 phase angles of the cos—form and sin—form 5o that the
phase angle of the ring of interest es between them ensures that the

coefficients in the linear expansion are always positive.

The cos—type and sin—type forms are always linearly independent, but they
are only orthogona when sepasated by 80 degrees in phase angle. The set of
all possible ring conformations can be gearated by a Huite-dimensional
basls. In all cases, (N-3) normal modes can be used as generating
conformations. 'These groups of (N--8) sormal modes are siways linearly
indépendent. The set of all equivalent cos—forms srd sin—forms therefore
form an extended basis, which consists of a number of verlapping subsets, or
sub-bas ., each with (N~3} linearly independent forms., Which subset is wsed

as a basis depends on the phase angles of the ring under investigation.

The elements of this extended basis comprise a reference set of ring

conformations, calied the primitive forms.
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e The coefficients in the lincar expansion axe indepeadent of phase. The linear
coefficients are thus aways the same, irrespective of the ring numbering used,
as {llustrated in Appendix 3. - S
A description of ring is really a description of molecalar shape,

end should therefore be independent of the degree of pucker. The overall
molecular shape can be generated by adding together the primitive forms in

the correct proportions. The same molecular shape is obtained provided the
caefficients sre in the same ratio. The linear coefficlents are therefore

normalized to wnity. The method can now be applied to any ring iype, [ (N
irrespective of the puckering amplitude. " L

For example, the tings shown below ate both bost conformations that differ S

in puckering amplitude,

N——/ { S

4.4 APPLICATION OF THE METHOD . .

The primitive forms in the linear expansion ace relatively simple ‘ .

! (/":: conformations of elther C; or C, symmetry, and are easily interpreted a
s boat-Hlke, chair-dike and their twisted counterparis for the smaller rings.
] The symmetrical forms, or classical conformations fn conventional use, toke P
: on certain chatacteristic valies of the linear coafficients.




‘The coefficients in the linear expanston are independent of phase. The lingar
coefficlents are thus always the same, irtespective of the ring numbering used,
as illustrated in Appendix 3,
A iption of ring s really a iption of molecular shape,
and should therefore be independent of the degree of pucker. The overall
molecular shape can be generated by adding together the primitive forms in

the correct proportions. The same molecular ghape is obtained provided the
coefficients are in the same ratio. The linear coefficients are therefore
normalized to unity. The method can now be applied to any 1ing type,
frrespestive of the puckering amplitude.

For example, the rings shown below are both boat ronformations that differ
in puckering smplitude.

N

44 APPLICATION OF THE METHOD

The primitfve forms fn tho linear expangion are relativaly simple
conformations of efther Gy or Oy symmetry, and aze easily interpreted as
boa-like, chair-like and their twisted counierparts for the smaller tings.
The symmetsical forms, or classical conformations in conventional use, inke

on certaln characteristic values of the linser coefficients,




1 i impo.tant to reslize that information on the phase angle is lost in the
coefficients. The ilnear coefficients are not unique if p, # ¢ for mote than
one value of . A desceiption of the ring in terms of linesr cosfficients is

unique orly if the phases of the cos— and sin—forms are reported.

The primitive forms are often the traditional classical forms. For examyle,
for slx-membered rings, the cos—form is & boat and the sin—form ig a twist
conformation. The conformation of five— and six-membered xings may
therefore be reported as the linear combination of two or three classical forms
respectively. The cos—iorm of & seven-—snembered ring, where m = 3, takes
the form of & chair, 'Tids is not the chair form of Hendrickson (1967), i is
suggested that this chair (a combination of a primitive boat and a primitive
chair) be demoted by the symbol H (hali-chair) and ita pseudorotation
pattner as T (vwist-half~chair). Por rings lasger than six~membered rings,
different forms may assume the same coefficients, Since the phuse angles of
the primitive forms may differ, o unique description Is given by

x= o) 4 B by () + 5, Oy )
where the by, and e, aro linear coefficients,
§y, 2 ¢, , the phase engles of the primitive cos-form aud sin—form
respectively, are chazacterized by the integer k of kn/2N. a(1) occuzs only for
Neven: (1) denotes the tsual Bz(g:u) mode and (1) ite mirror image.

This nomenciature ia uniyue if reported in order of increasing m, The linear
coefficients give an indication of the relative contributions of each primitive
fotm, and will be the same jrrespective of atomic numbering, aithough the
phase angles of the primitive forms will differ.

-
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g 4.5 THE PROGRAM CONFOR

A FORTRAN 77 program, CONFOR, has been writien o camplete the LR
of the ion of & iate forms and 4o identify a ting a8 : Lt

a classical form. It is included a8 u subrontine of PUCKER, a program that

ealeulates the Cremer-Pople puckering parameters from atomic coordinates. Tt
The general structure of the program CONFOR is shown in Figure 4.2, 5

CONFOR consists of a number of aubroutines whose functions are given in g
Table 4.2. oo -

subroutine
LARGE

Ngajls it

subroutine
WRITES

R Figwe 4,2 Structuse of the program CONFOR

i ) o
e P
s, | : !




Zabled2

The progtam CONFOR.

B SUBROUTINE

FUNCTION

Large, Odd, Even

Mini

Solves

Writes

generates the phases of the primitive forms and

detesmines 3f a Ting is a classical form

finds the primitive forms closest in phase angle
to the sing of interest

golves for the coefficients in the linear

expansion

normallizes the coefficients to unity and wites
theso and the phase information to file

LI normalized to wnity,
forms of five-, six—, seven— and elght—membered rings have been determined,

and se used to automate the identification of any ring as one of these forms,

The phase angles of the primitive forms to ba used ag the basis are calculated.
The linear coefficlents are solved by the methods detailed in Section 4.3 and
'The lneat codfficients of the conventional classical




As noted the linear coefficients need not be unique, Results show that s5is of
gimilax coefficients with different phase angles are not likely for the classical
forms, 'The only such cases are the forms of the S/TS mnd H/T

cycles fox bered tings (] and Boeyens,
1980). The program CONFOR, caleulates the sum of the moduli of the
difference in linear coefficients of any ring and a symmetrical form, Below a
cettain threshold, the ring is identified as similar to one of the classical forms.
For even smaller differences, the ring is taken 28 one of the classical forms,

except in the case where there g more than one m for which oy # 0 [BS, 5,
TS, T, B (seven~membered rings), Boessenkool and Boeyens, 1680; BC, TBO
(eight-membered tings), Evaus and Boeyens, 1088). The phase angles are
then checked against tho phases of the classical forms, ag determined from the
two-dimensional projection of the relevant conformational surface. A listing
of the program CONTOR, and a sample output fle is given in Appendix 4,1
and 42,

4.6 BXAMPLES

Five-membered rings
The basis is two-rdimensional, consiuting of the equivalent forms of

1 9
~0.800 ~0A509 —0.59 0.59
0.308 0,308 0.85 ~0.95
envelope twist
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S
e These ave equivalens to the envelope and twist forms (Altona and
i Sundaralingam, 19721, A number of rings reporied in the literature have k
Ly been analysed and the remilts given in Table 4.3,

Tabledd W
Conformational analysis of five-membeéred rings

5} ;
) meg et Gl GO B+ D B
: ' b
1 I3 49 3429 5(20) + 96(19) ’ i
2 ¢ 48 3487 37(20) + 83(19) »
3 d 45 350.3 (20) + 21(19) . K
4 e A2 2170 95(12) + 5(13) . ) ' § v
5 35 265.1 M(14) + 731, - o N
b avo given an percentages. § it axpreoted a6 & muliiple of 7/10 LR

¢, Bosyens, Bull, Tuinman snd vaa Rooyer: (1975

d, Cecearelli, Ruble sad Jetirey (100) .
& Oal, Reher, Tihonyl, Horvath , Jerkovick, Argay and Kalman (1980)

£ Gremer and Popls {19758} M
The ring 1 is best descrlbed a8 a twist form according to the program '
CONFOR. These results demonstrate the ease of interpretation of this .
i
method. Ring 2 ir a twist conformation showing distortion to an envelope . - -

forst. The method glves an exnct value for the degres of thia distortion. e . : ‘
|
i
I




A description like this is more familiar to chemists than the
parameters or 4 linear comblnation of 5" and "I s ;
fng 2 = 047 "L* - 0.09 "IV

‘The method is also suitable for a dereriplion of heterocyclic rinv.

puckering

Dhug b, &

Fursnoid ring, is seadily idemtifed v 3 twist sonformall v -Hn some
distortion to an envelope form.
Six-membered rings
The basis is three—dimensional, conslting of snzv:d forma of
0.707 10 a0
~0.707 0707 -0 (\ 08 0:366
aﬂu'r [T Y ‘iquwq.rv 2u ) -0.86
-0.707 1 ]
crown beal | twist

A number of xings reported in the Hierature have been analyzed and ‘the '

results given in Table 4.4.
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[ Table 44
N Conformational analysis of six-membered rings

Ring Ref. Q, Q5 &, 2(1) 54(B) cH(T)
h & O

14 005 055 1837 o2(+1)  12) 1(14)

2 e 03 02 420 4541y a4 24(2)

3§ o4l -2 1860 34(-1) 31(12) 35(14)

b, bnd ¢ ae given 25 percentages. § 15 & multiple of /12

d, Cremer and Pople (18750}

& Oal, Feher, Tihauy, Horvat,  kovich, Argey and Kalmon (1060)
£ Boeyens (1578)

‘The pyranoid xing (1) is shown by program CONFOR to be much kike a Lo N o

crown form. The distortion towards the fon

TN

[s]

is estimated to & 10 percent contribution from the primitive bost at % =na

conclusion easily reached from an exemination of the linear coefficients. '
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Ring (2), & cyclohexene with a much smaller amplitude of pucker, is readily
described in tetms of the linear coefficients. Ring (3) has been described as
midway betweon the forms H, B and S. The conformation found here is
intermediate betwean a boat, & twist and a chair form. ‘These two
assignments are not contradictory. The E, H and § forms are themselves
mixtures of $he chair, boat and twist forms. The sing conformation could be
expressed a8 a linesr combination of the B, H and S forms since B, H and §

forms can be expressed as a linear combination of the independent forms. in

other words, avy conformation can be expressed ag 2 linear combination of
these mixed forms, but such a scheme would be complicated. These forms are
not lineacly independent, sud an unambiguous definition of the mumber of

mixed formg (6 include in the linear expansion is not possible.

Seven— and eight-membered rings can be expanded in terms of a four— or

fivedimensionel basis, For example, the ring described by

a0y = 1054,04° .
g8y = 058A,08° *
9 = -0;4

as
¥ = 0.163(1) + 0.535(0) + 0(8} + 0.201{0) + 0(4),
» boat-chair form, it in agreement with previous conformational assigaments

(Bvans sud Boeyeus, 1088),

|
I
|
|
R
|

“ K e ;
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4.7 DISCUSSION

The normal dlsplacement modes of a planar Nemembered regular polygon
A serve a3 a basis for the conformation of a puckered N-membered ring. Two
linearly independent modes, equivalent to the mutuaily orthogonal cos— and
sin—forms of each E,,, representation, and one of the two possible equivalent
modes of By, .. can be combined in varying relative proportions to give say

puckered shape, from a few simple forms.

1t is noted from Figure 4.1 that the cos—type and sin—type forms for m = 2,3
In eight-membered rings axe equivalent. The sinform is & primitive phase of
the os~form. In & case like this, the linear expansion is not unique for all
phases. The coefficients of the cos—orm and sin~form are interchangeable, 28

shown in Appendix 3.

Tn general, if bwo rings are compared o see Whether they are of the seme
conformational type it is advisable to ensure, by relative rotation if necessary;
that the phases of lowest index (m=2) have maithing velues, The
equivalence of the ting conformations can then be considered established only
31 the calcalated phases correspond for all m.

“The definition of ion, in terms of i d oaly, L
contracts the model from 3N Cariesion coordinates to N-3 pasameters. This " . ”

profection from (3N-6) conformational space to an (N—3)-dimensional
subspace has been interpreted (Petit, Dillen and Gelse, 1883) to imply that LA

conformational analysiy equires & priord definttion of standard conformations " 5
Ior each clags of chemical compound, B
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This seems to invalidate the procedure of mapping conformations to
normalized surfaces without taking the amplitude of pucker into account.
However, as noted by Cromer (1984), perpendicular dispiacements relae to
one—dimensional shape functions, by definition independent of the amplitude
of pucker. It is this shape, rather than the extomt of distortion from
planarity, that should be equated with the notion of conformation. This does
not lead to an ambiguous description for any given ring, since & specific
projected shape can be obiained at only one value of the total puckering
amplitude i the bond lengths and angles reman fixed,

The method proposed here is independent of abgolute molecular geometry or
chemical identity. The conformation depends omly om the relative
contxibutions from the gronp theoretic modes of displacement. Any puckered
six-miembered ring with 100 percent contribution from the By, mode has, by
definition, a chair conformation. Any six-membered boat has the shape
arising from the cos~mode of E,, atomic displacements only. The envelope
form is & 5941 combination of the E,, and the B2g epresentations. The
amount of pucker cannot affect this ratio. Even heterocyclic rings, with
irregular molecular geometry, can assume a chair shape, at gy = = 0. The
fact that the ring does not display Dyy symmetry in three dimensions is not
The shape factor of interest, the ring puckering, is
from the 13zg mode onty,

smportant.

and consists of &




5. THE ATION OF NINE- RINGS
St 51 INTRODUCTIC ¥ : o v
i S .
The varlous moden of nterconversion of nine-membered rings kave heen P

suggested and a few of the low energy cycloalkane conformations atructurally - o

characterized (Hendrickson, 1964; 1867b). The symmeirical forms along e y S
these pathwags are now Mentified and mapped ss s function of puckering 8 ’ ’
1 ‘parameters onto e three—dimensional surface, in & general gcheme to convert ’ o -
g atomic into i type. The jon  of SR o

ning-membered rings as & lincar expansion of six basis forms i presented as
an alteraative description of ring pucker based on the linear coefficients. LT

5.2 MBTHOD OF STUDY

The et of i of bered rings nesd not be ¢ B
limited to the low energy cycloclkane conformations. Steric factors and o

crystal paciing forces can foree a ring to adopt 2 conformation other than
those nf wbe isolsied entity. Sixteen conformations, same based on molecular
mote.:, have heen identified. These include the six corformations detailed by

Hei drickson (1964). These forms gre not representative of & particular

chemical system, but theix Lond lengths and ansles are within the limits of

chemical viahility, and exelude arrangements with interpenstrating

non-bonded atoms. Pairs of foress, witk G and O, symmetry, having the R

same ratio of the puckering amplitudes, formally constitute pseudorotational

f
pathways (Bosssenkool and Boeyens, 1080; Evans and Boeyens, 1988). It is [ .
noted $hat in the syclonlkanes, where the C! forms are of high energy, these !
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pathways are sot low energy interconversion modes and hence are not
pseudorotational cycles in the sense desoribed by Date (1073b). The classical
nomenclatore of the G’ forms {9 derived from the shapes of the forms in
projection,  Their psendorotational pariners are described as twist forms.
Tarsion angles of the classical forma ste given *~ Table 5.1 and the forms ate
iltusteated in Pigure 5,1, Cariesian coordinates are given in Appendix 5.

boat~chair
%{ '
&? twist—chalz—chair
w L
boat~boat twist—hoat--boa§
[
bost twist--boat

Figure 5.1 Classicat forms of nine-membaered rings
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chair iwist-chair
chait-bout twist-chair-bost

el e

chair—chair "

‘boat~chair !

Ywlgi—chair—chedr

by

{wist—boat--chair *

Figuze 5.1 (cont.) Clagsical forms of nine-mermbered rings




Jable 5.1

Torsion angles (in degrees) of the classical forms. The symumetry element (G,

or G) passes through the first atom,

nomen— symme Wy ay ™ w0 ™
clature  etry

BC Cgy 114 0 e - 0
TBC Dy ~57 180 57 57 130
el <, 59 08 -3 83 9
TCC G, -54 126 115 80 -~
¢ [ 121 -30 80 ur 0
7o [ Bl 100 [ 88 125
B c, ~121 3 -80 ur 0
TB [N -0 108 —43 o -8
BB <, 4 48 -0 —83 e
THS G, 8 0 -10 34 185
CB <, 80 ~l0s 0 90 0
TOB G, -2 k] “ 105 4
BO" O, ] 5t o 82 0
TBC" G, 43 124 88 28 17
car g 58 72 - u7 [
TCCH Gy -62 120 ~B4 o -




Pt
There are six Cremer and Pople (19752) puckesing parameters for a
sine—membered rirg — thice amplitude end phase anglo pairs, (a, $)i
m=9, 8, 4 The puckeriog smplitudes of the classical forms are given in
Table 5.2, As noted for eight-membered rings (Evane and Boeyens, 1088),
when g, =0, & has no meaning,
Tables2
. Puckering smplitudes (in A) of the classical forms
- VF‘"), RI:G % L] U
Y
- / BC 0.00 125 0.00
© TBC 0.00 126 0.00
v 0.00 0.5 0.87
TGO 0.00 0.53 087
[ 054 119 022
] 0.68 104 0.30
B 135 0.3 0.58
TB 125 0.36 0.53
BB 218 0.00 0.00
TBB 2.06 0.00 0.00
GB 164 0.67 0.48
08 120 .82 0.4
BOY 0.81 109 036
TBQ" 0.64 L4 024
oor 0.85 .40 087
TOC" 0.90 043 0.88
| !
) \ :
. | !
S i .




' ' The ical of the six is shown in Figure 5.2.

Hlgue 53 ical son of the puckering

‘This definition may be interpreted as mapplag the forins onto

~ & petfes of torf Iying st positions determined by ¢, and ¢2 on & major
torus,

~ & tube, helically cofled about a torus defined by 45, ¢y 94 and ‘94. a3
and (ba define a point on is tube.

The former interpretation is the logicsl extension of the eight-membared
rings mapped onto a series of torl located on & sphere, whereas the latter
interpretation has the sdvantage of mapping the forms omto & continuous

{ube, shown in Figure 5.3,

Tl e - e e -



Figure .3 'The complex surface for the mapping of nine-membered rings

A two~dimensional projection of either surface Is achieved by projerting all
\\J forms onta ¢y = 0, The for.ns then map onto e torus given by gg, qy, ¢ and
44 A polas projection of this compesite torus at gy = 0, with the radlal axs
along the ¢y = O circle, is shown in Figure 5.4, Peeudorotational cyclen
appear as spizals, In three dimensions these may be visualized us helices on a
misor torus siretched around the major torus, or 48 a helix wound around &
tube, coiled in epace. Overlap of the foras securs a1 all positions 8, S’, T and
T, ‘The BB-TBB cycle s illustrated as the cirele J-K, whete , io roplaced
Y Gy, 0 avoid projection of all forms to & point. The subscripts indicate the

atom through which the symmetry element passes.
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5.3 RERULTS AND DISCUSSION

The TBO~BC aad TBB-BB pieudorotational cyvies map onto mutually
perpendicular circles, and are shown in Figures 5.5 and 5.6.

JFiguse 5.5 The TBC-BC peeudorctational cycle

The CC and TCC fonns map onto & torus given by qg, gy dg and ¢, A
polar projection of this surface is shown in Figure 5.7,




Figue 5.6 The TBB-BB psendorotationsl cycle, The circle is represeated
lineasly for dlarity.

All other preudorotational cyides map onto the complex surface and ate best
viewsd as two-dimensionsl projections in Figuses 5.8-5.12. The loast
confusing projection is onto the suslace given by Gy = 0. A projection of the
rasliting torus, defined by ag, dgs By and gy, is taken ot fized amplitudes
with the phases along the Oatteslan axes. The angulax values pre denoted by

the integer k of kr/18 .




Figure 8.7 The TCC-CC pseudorotational eydie

In all these illustrations, the atomic numbering stacis ab the top of each
polygon and proceeds clockwise. The signa of the endocyclic torsion angles
aro indicated. Tn Figures 5.8-5,12, the fosn with ¢, = 0 is indicated, The
value of §, 4 increases in steps of /18 along each pseudorotational cycle.




Figure 5.8 The TCB--CB pseudorotational cyde

" The angular posltions of all symmetrical forms can be expressed as integral

muitiples of r/18 . Enantiomeric forms lle at angular positions
fp=bptw




Tiguze 5.8 The TB~B pseudorotational cycle 4 ©

Each clasaical forn X is represented 48 Xn, where x is the number of the
atom throngh which £i» symcnetry element (G, or Cy) passes. The mieror
image 18 denoted Xi , as for stven—membered rings (Bosssenkool and

Boeyens, 1080).
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Figwe 5,10 The TC—C preudorotational cycle

‘The endocyclic torsion-angle change along all pseudorotational pathways

takes place gradually, decreasing it positive value to negative values, often

through zexo.




Figue 5,11 The TCG"-CC" pseudorotational cycle

There is a progression of the symmetry clement through an atom w a
symmetry element through an adjacent bond in all the pseudorotational

|
cycles except in the BB-~TBB cycle, where & symmetry elemcat through an j
s stom progresses to & symmetry element through an adjocent atom, as |
observed in the B-TB cycle of seven—membered rings (Boassenkool and ?
Boegens, 1980). I .
|
1
1
l
!




Hgure 5,12 The TBC'--BO" pseudorotational eycle

A

of an i form in torms of the
conformational surface is clearly not possible, In this case, » wixed form in
expressed a8 a linear combination of primitive forms, 83 detaile in the
previous chapter,

A nine-membered ring is o linear combination of six
primitive forms, illustrated #n Figuse 5.13,

&
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. S
. The Ej representations do not correspond with any classical forms.  Thes= y K ;
¥ primitive Torms requice bond longths signlficantly diffcent from those s . L ¥
N common chemical rings. The fomaluing twelve clossical forms arc linesr N
. \"\] combinations of the six basis forms in specific relative proportioms. An R
S " identification procedure to establish these forms, based on the values of their ; T oo
i linear coefficients sud phase angles, has been included in ODD, a subroutine . -
R of the program CONF ° (Appendix 41). The procsdure is enirely e
e o analogons o the methods + { for the smabler rings (Section 4.5). i ‘
7 < ;
I Tho relstive ioms from each By, jon, and hence the shape ~

of the puckered ring, depend only on the rativs of the qp otues,  The
conformations of the nine~membered rings can therefore be m+, ;24 onto &

a normalized surface, independent of ring type and extent of puth-, v uvoid &
= definition of classical forras for each chemical class of rings (P . /illent and
' Gelae, 1083).




54 EXAMPLES

O]

(Setae, Ogle,
Wilson,and
Glass, 1983)

0

S
Ni"
N, N

(d)

© (Hart, Baeyens
- i Michael and
Hancock, 1983)
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conformation fn terms of the Dale (1873a) formalism.

Conformational analyees, reviewed by Boeyens and Dobson {1987), show that
most mitzojgen and sulphur donor macrecycles adopt either & {333] or a [234)
‘The results of a

puckering analysis of a number of ni hered
in Figure 5.14 and Table 5.3, ar= given in Table 5.4.

()

(Glass, Wilson,
and Setzer,
1980)

S~ (NO,),
&u”
N,

()

(Boeyens,
Dobson and
‘Hancock, 1985}

Figure 5,14 Nitrogen and sulphur donor macrosycles
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Table 5.3 :
Endocyelle torsion angles (in degrees) of nitrogen and sulphur donor . ¢
macrocycles 8
. o ‘
m ® 0 @ @ M S .
S g
A 5 ~131 134 55 Lt e el
uy 5 B 45 5 5 L
g ~131 55 -1 144 5 5 LT g .
1y B -3 1B -1 -85 -94 g .
g 56 B 4 4 4 - ’
g -132 55 ~10 136 150 141 .
upy &7 181 188 -2 -7 75 7)’ ‘
" 56 50 46 51 38 -36 ’
uy -132 55 Bl 120 ] % .
Table5.4
‘Puckering analysis of nitrogen and sulphur donor macrocycles . "
I T ‘
A @M 60 h 6O q® 4O v L
a e 1 160 167 0.01 180 ; ;
b 0 18 T I 000 46 “
¢ 002 o8 12 208 0.0 288 (
d [N 136 835 011 2 i
e [T 12 a4 08 l .
05l 138 10 6 6 18 [ L
|-
j ©




On the basis of Figure 55, the structures (a)-(d) are described as
twist—boat—chair forms with some distortion o the boat-chair forms.
Strectures (e) and (f} cannot he correlated with any classical forms on the
‘basis of the gy and ¢, values. These Intermediate forma are best described
as a finear combination, as shown in Pable §.5. The linear coefficients also
quantify the distortion of the rings (s)~(d) from the TBC form.

Table 5.5
‘The linear coefficients of intermediate forms, The phase angles of the basis
formg, denoted as k of ka/18 , are given in parenthesis.

RING PRIMITIVE FORM
cas— gin— cos~ gin- co5— sin—
form  form  form  form  form  form
S a 00 00 25(18)  75(18) 00 00
- / b 00 00 22000 78(3) .00 .00
s c 00 00 13(18)  B6(21) 00 00
R 4 04(34)  .02(33) .16(36) .73(38) .01(36)  .06(35)
e 05(14)  .28(18)  .d(s6) .1n38) A7z} 00
f a4(16)  (18)  bU(36) .07(38) do(z)  07(1)




"The results show that the conformations of rings (a)-{d) are similar, and this
form can be corrslated with the [333] conformation of the Dale (19732)
formalism. The 0-ane-Ny macrocycle (ring ¢} shows a amaller distortion to
the BC form. The 0-ane-N,S of the Nill complex shows » slight distortion
from & form on the BO~TBC cycle, 'The similar conformations of (¢) and (£)
can be correlated with the [234] conforrmation of the Dale (1073a) formalism.

These results corzoborate previous cbservations (Boeyens and Dobeon, 1987;
Dobsos, 186) :

9-ane-N,, §-ane-$; and 9~pme-N,8 when complexed with Nl adopt &
similar conformation along the BC-TBC prendorotational cyce. When
9-ane~N;5 is complexed with Cu™l a different intermediate conformation is
energetically preferred.
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8. CONFORMATIONAL SPACES OF LARGE RINGS

6.1 INTRODUCTION

Methods to assign the
largely descriptive (Dale, 1973a,b).

of the large i e
The characterization of a 1ing
conformation by the set of endocyclic torsion angles is not readily interpreted
{Goldberg, 1080).
maceocyclic chemistey (Boeyens and Dobson, 1087). A projection of the

Conformation is, howeve:, an important concept in

conformational space of large rings onto a three~dimensional surface using the
puckering pazameters would yequire an extensive set of symmetrical forms
and a geometrical imterpretation of ai least seven parameters. The
conformation of a large ring is now described ag a linear combination of N~3
basis forms. The linenr coefficients of eighteen-membered rings ave
interpreted graphically. A nomenclature based on the linear coefficients is
propased. 'This semi-quantitetive method is compared with the Dale
(1973a,b) nomenclature.

6.2 CONFORMATIONAL DESCRIPTION

"The description of all rings having less than eighteen ting atoms, as a linear
combination of basis forms, s possible from an analysis of the primitive
forms, The phase angles of all the canonical forms of these primitive forms
have been derived group theoretically, from the symmetry of the forms. Afl
the canonical conformations arc included in the program CONEOR, in the
subtoutines ODD and LARGE (Appendix 4.1),
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A complete one—dimensional description of ring pucker is obtained from the
set of N3 coefficients of the primitive forms and the phase information. For
&t eighteen—membered ring this may require a set of fifteen linear coefficlent
and phuse augle pairs. A simplification of this quantitative scheme is
necessary, albeit at the expense of information,

A conformation may be specified by the linear coefliclents onty. Tbe linear
coefficients of ary giver series of ring structures can then be subjected to
statistical procedures including, say, a cluster analysie. ‘The problems
agsociated with ignoring the phase information (Section 4.4) can be
minimized by & compariso of the phases in the final stages of analysls.

The method of a Jinear expansion is greatly simplified in the special case of a
symmetrical ting, where maay of the coefficients reduce io zero. In the
smaller rings, the coefficlents are reported as paira of the coefficients of the
£, representation, in order of ingreasing m (Section 2.4). In the Jarge sings,
where thete are o number of basiy forms, the coefficients of zero are omitted.
Au unarbigucus norenclature is established by denoting the crown form by
the letter A (N even only). The cos— aud sin~forms of the B, rep-osentation
ate dencled by B and B respeciivly. ANl oiher pairs of the B
epresentation are similarly denoted by letters, in alphabetic progression as m.
increases. The coefficlents, which are multiplied by ten and estimated to the

nearest integer, are given a8 snbscripts.

A pair of symnetrical twelve-membered rings (Boeyens and Dobson, 1987),
datailed in Table 6.1, iitustrate these general principles,




[¢ ional auslysis of twel bered . e
12-ame-Py 13-ane-Ng . B g
o ' N i
[XOR N 0.00 ; 332 000 ; 324 g o
044y 1450 22 ; 2 o ;0 PR
0,(A)5 8,0 0.00 ; 230 000 ; 182 ! N o0t
qﬁ(A);qas(“) 000 ; 363 0.00 ; 181 E e Th
N ag(h) o1 084 . T
Nomenclatuze ATy A AT E
Date(1972a,b) e
Nomenclaure [y foad)y PR
The Dale (19732,b) nomenciature in both cases i [444], , despite 2 difference "
in the magnitude of the torsion ang} The differences in the out—of-plane '
puckering of the two rings is clearly lilustrated by the nomenclature proposed \
here, The nomenclature ln terms of the crown form and the By - .,
representation has the advantage of indicating a three—fold axiy, as predicted - K
hy group theory (Pickett and Sirauss, 1971). .
» .
i




The genetal utility of the model is illustrated in Figure 6.1.
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Figure 6.1 The conformation of large macrocycles, The symmetry element ig
indicoded in parenthesis,
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‘The various symmetry elements ensure that a number of the coefficients are

bered

zero.  The method s
where ai least 0ae element of symmetry is generally observed (Boeyexs and
Dobgon, 1987), This i8 not 5o for large odd--membered rings, where the lack
of symmetry gives & large number of non—irivial coefliclents. For example,
15-ane~N,08, {Louis, Pélissard and Weiss, 1876),

for latge

. s 83y o
0
s 1m
- it
£ fas
S, g s
-n (3
-

. . s '
is described a8 B,CyD E.Ey Fy

A large number of non—sero coefficients may be subjected to graphical
interpretation. This method is uvsed in the study of the complexes of
18~crown~8 with atkali metal cations, The conformations of these complexes
have beet used to model the iransport mechanism for metal ions across
biological membranes, exhiblted by antibiotics like nonactin and valinomyein
(Dobler and Phizackedley, 1074; Dunits, Dobler, Seiler, and Phizackerley,
1074 Dunitz and Seiler, 1974; Seiler, Dobler and Dunitz, 1974). The
pércentage contribution of each primitive form I8 plotéed as a bax graph in
Figure 6.2.
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uncomplexed e . i;,
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Figure 6.2 Coefficlent maps of 18-crown—6 complexes

‘The coefficient maps of the uncomplexed ligand and the potassium complex
are similar, although this does not necessarily imply three-dimensional
congruence (Section 6.3), The coefficient maps of the rubidium and caesium
complexes nre identical and show 2 dectesse in the contribution from the

ptimitive crown. The conformation of the sodhm complex is irregutar.
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‘This 8 consistent with the structural findings of Dunitz and others. A
distortion from the fres ligand conformation is expecied in complexes whero
the cation is sither oo large (Rb ™, Cs) or o0 smalt (Na*) for the lgand
“equilibrium cavity". A justification of the Ligand selectivity for she
potassium ion based on this limited data Is not possible, but the general
utility of the method s evident,

6.3 DISCUSSION

The methods used to describe the conformation of small rings have the
general Hmitstion of increasing complexity as ring size incceases. Tho
one-dimensional model reduces the number of parsmeters necessary for
conformational assigument, but not without a few spproximations. The
conformation of a small ring can be specified uniquely by the ont—of-plane
coordinstes sioue. For lage tings (N » 16), a set of onb-of-plane
displacements may be obtained from different in-plane shapes (Pickett and
Strauss, 1071):

=00

T4 is no longer strictly true thai the out-of~plane displacements are much
An i iption holds

latger than the in—plane
for most conformations, but the model must be inteepteted and applied
carefully,
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The Dale (1978a,b) nomenclature is based on the signs of the endocyctic
torgion angles. Tt is & description of the shape of the ring as projected onto
the Cremer and Pople (1975a) mean plane, and is thus perpendicular to the
in terms of out—ofpk Both afford & d¢

of the shape of & projected ring, but only the oui-of-plane displacement
model conforms o the aceepted notion of ring puckering, Rings which do not
have the same symmetry may be equivalent in the Dale formaliom. The

semi~quantitative method proposed hete reflects a symmetry element n the
Hnear coefficients, but the nomenclaturs is concise only if some symmefry is
pregent. The analysis in terms of the lingar coefficients uifords a deseription

of the coformation of ail rings in terms of one model,




7. SUMMARY

A general definition of the Cremer and Pople puckering parameters has been
derived from & group theoretical analysis of the out—of~plane displacements
of o planar polygon (Pickeit and Sirauss, 1671). The conditions xequired to
fix the unique Cremer--Pople mean plane have been shown to be natural
consequences of the group theory. The conformation of a general
N~membeted ring relative to this mesn plane is therefore corretated with the
oui-of-plane displacement modes of a regular polygon. The theoretical basis
of the Cremer—Pople method has provided insight into the relationship
between the puckering parameters and symmetry type and into the

interpretation of this one~dimensionai model.

1t has been shown grovp thecretically that the set of puckered forms of an
N-membered ring is & linear space. The notmal ovt—of—plane displacement
modes provide 8 natural basis set for the analysis of complex conformations.
Two lineaxly independent modes equivalent 10 the cos— and sin~forms of each
E.m repregentation, and one of the two possible modes of the By
representation for N even only, are superimposed to generate any puckered
shage. These forms are part of an extended basis set, consisting of
ovedlapping subsets, each with N—3 linearly independent elements. The
finear coefficients of these primitive forms sre independent of the extent of
pucker and of the sing numbering scheme, The method hag provided a simple
algorithm o jdentify the classical forms. Anmy intermediate form is a finear
combination of a few simple shapes, weighted according to the linear
coefficients, In contrast to the graphical procedures, the method proposed
here preserves the quuntitative nature of the puckering paramoters.




The analysls of ni bered rings in terms of the
one-dimensional model has been completed, Sixtees symmetrical

conformations have been proposed and characterized. The nine—membered
rings are the largest rings for which a projection of the conformational space
onto a three—dimensicnal surface via the puckering parameters ls of any
practical importance. The various pseudorotational cyclas map a¢ simple
paths on the complex surface, Classical forms are identified from the
wo-dis i jections of the surface.

described 84 a linear combination of six primitive forma.

forms are best

Tue conformation of  large ring has been described as & linear combination of
‘basis forms. The lineax coefficients provide a basis for the comparison of ring
conformations, although ultimately the phase information of the primitive
forms must alss be examined. The derlved nomenclature is conclse for the
cuse of a tymmetrical ring, where meny linear coefficients are zero. The
method has been applied fo the gemeral case, where many non—zero
coefficiente are interpretad geaphically.

A description of conformation should be concise and accurate. The
model is & of these two Fotwe
work should involve & detalled study of the applications of this metked
inzluding, for example, investigasions on the relationship between preferred

conformation sad biotogical activity of ring compounds. The possibility of
another model, involving fewer approximations. cannot be discounted. This
does not, however, seem lkely at this stage of the development of
conformational analysis in terms of the accepted views of molecular structure.




w3

8. CONCLUSIONS

The concept of the conformation of & ring compound can be invoked to
tationalize a variely of chemical phenomena, not explained by electronic
effects. A simple procedure to describe and compare conformatizns of cyclie

in different is therefore of to the
practical chemist. A set of quantitative parsmeters characterizing a ring
conformation is essential to establish the refationship between observed
chemical behaviour and molecular shape. The work presented here provides
the bagis for the characterization of any ring componnd.

The conformation of any N-membered ring may be envisaged a8 arising from
the owt~of—plane digplacements of the planar polygon. A group theoretical
snalysis in $acms of this model shows that any conformation can be expressed
28 8 linear combination of (N-8) mutnally orthogosal displacement modes.
This set consists of orthogonal pairs of doubly-d:generate displacement

modes, and includes mode for bered riggs. A
aumber of forms, equivalent in shape to the two orthogonal modes of each
L pair, are by group defined “phase
angles". A pair of forms from esch degererate mode, chosen to correspond

most closely with the ring of interst, and the non-degenerate mode {or its

mirsoy image) are superimposed to generate any puckesed shape.
The (N-3) dispiacement modes and their equivalent f+-mus are {he must basic

shapes that cannot be decomposed inlo simpler shapes, and - aey are referred
to as PRIMITIVE FORMS.

T e t




Bvery conformation can therefore be cxpressed as 8 combination of (N-3) of

these simple prinaitive shapes in the cotrect relative proportions.

The primitive forms often take on shapes familiax to the practical chemist.
For example, any six~-membered ring

= AP+ BN—/+Cs -

(chair) {boat) {twist~boat)

The coefficients A, B, snd C give the telative contributions of each primilive
form. The vatues ave independent of the 1ing numbering scheme or chemical
identity of the ring, and can be wsed to charscterize any conformation. A
unique description of zing conformation is oblained from the coefficients and
the phase angles of the primitive forms.

These coefficlents form the basis of & concise nomenclature, useful for large
tings. The palr of forms of each degenerate mode, B {m=2, 3.}, ate
denoted by the letters X and X, stasting with B and B’ and progressing
slphabeticaily ag m increases. 'The non-degenerate mode of even—membered
tings is denoted by A. The coefficients, which are multiplied by 8 factor of
ten and rounded {o the nearest integer, appear as subscripts. ‘

For exanple, the six-membered ring described as:

can be identified s x = Ag B, .




%

A Fortran 77 program, CONFOR, has been writien to cosvers atomic
coordinates of any ring into a description of conformational type a8 a
combination of primitive forms. The input requires only the number of ting
atoms aud the aiomic coordinates, The primitive forms closest to the zing of
interest are determined. The algorithm, obtained from the group theoretical
analysls, is used to calculate the coefficients of each primitive form. The
output provides the investigator with a set of coefficients and phase angles of
the coniributing primitive forms. CONFOR provides a quantitative
expansion of any confvmation inte a linear sum of simple shapes.

The well-known classical forms (boat, chalr, et} iake on certain
characteristic values of the coefficients and phase amgles of the primitive
forms, A comparison of these values provides a simple algprithm, used by
CONFOR, to identify any ring 88 & traditionsl dlassical form.

‘The group theoretical analysis of ring conformation, which is of practical

importance to the experimentalisi, offers a number of advantages:

- Conformational anmalgsis of cyclic compounds is simplified. A
description 8 readily obtained from alomic coordinates using the
program CONFOR.

- Identification of the classical forms i8 fully automated and thes
provides an tnambignons assignment and an indication of any slight
ditortion from the clsssical forms,

— The description i5 suitable for low symmetry conformatons and it
provides a nomenciaturo of all tinga.




7

— The coefficients provide a set of quantitative parameters on which
statistical analyses of a series of compounds can be bated.

~ A complex shape is expressed as a sum of simple shapes. 'The
puckered shape of any ring is veadily visualized in terms of the
superposition of a few familiar shapes.

EY




iy

= © - )
@
B
2 &
o B R T il 0z~ (ilgyon, (AT Y =
a 2 . .
E S : :
m £ = ¢ o G0 GlgNg™r  GEgdgmaz ¢ Hioig
£ g g o o0, = U G-I (el or Qg o Mg
h iz : :
- g
' s B2 m LI (lgs Wiy a7 wpot 2 =\
m - roeoo e (g Wy [CCEL I K
= & 8 I = [ t - T v
: L I -
2= 3 B e e x ' [ A:
m m & vt 1 x ER =
w 8
m H B % e Moz s oz Yo
3
<
- E [
! g
{

1.
i
}
1




DN even)

By B0y 0,2 OyN=C,  NfIG) NGy & sNfat W22 "n N, N,
Ay [ 1 o oo 1 2 1o 1 1
Ay 1 ' o1 S [ i [ - -t R,
B, 1 1 a @ PR 1o s g (N ' -
g
By = 1 ey = t 1A 1 W M - L
By 2 2ol 2ot - ¢ o 2 2% 2eoZf ) P ° voR
By 2 20050 zeBEr ) #etft R PR AR P L) 2k o
N2t} . Nj2-1)
By 2 -2l 20009 z(-:{ & [ 2 vl 2aa(Zf 42 1Sy [ [l
Ay [ 1 Ut [ -t -t -t EE) - -
Ay 1t 1 41 -4 Rt - “A 3 Lo,
N/ Nfz 1
By 1 1 w [ LIRS - woowgP - )
R/2 Nf241
By I ' a1 - R -t * (~|)/ * ! -
By, 2 sty 2eoBf 2 -2 [ ER ) ~2onlfi vy 2 [ LI
: : 41
By L P A '] - aofrn 2 2(-|)+ ] °
. %/2-1) . N,
Bt 2 ~ResZ) 2oty 2(-‘)’ P 2 2l e 2(4)/2 o ]
Nolus When (4/3) s aven, tha aolimns under N/2 o, and ¥/ 0, sto Inverted.
'y (]
. - v i e
[ «

e e A e

[ A SV

"4




APPENDIX 2
TRIGONOMETRIC IDENTITIES

Tt is requirod that
N N
% oos (dnjm/N) =0 and 8 sin (4njm/N) =0
F= =1

According to Dur  d Robson (1959},

3 o (s o) = (6 + (1)/28) sin (n/2)
=0 sin (372)

and

"3, oy 50 (04 (0/20) i a2
==t Wn (9/2)

Hence

jgl o8 (dzjm/N) = cos (47m/N} + ... + cos (drm)
= 008 (Arm/N) + ... + co8 (4mm (N—L1)/N) + cos (0)
= 008 [(N-1)/2 {4xm/N)] sin (2mm) [ sin (2am/N)
=0

and
jgi sin (4xjm/N) = sin (bxjm/N) + ... + sin (4men)
= ain (0) + ..o+ sin (dmn (N-1)/N)
= st [(N—2/2 (4mm/N)) sin (2rm) Jsin {2em/N)
=0
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(These expressions hold if sin (2mm/N) # 0

However

m=23, .. (N-1)/2,Nodd
m=23 .. (N/2)-1,Neven

sin (2r(m/N)) = 0
2m/N=K,Ke N
N2m

Sincem < N/2,V N > 3, sin (2m/N) #0.)

".“y "
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APPENDIX 3
CHARACTERISTICS OF THE LINEAR COEFFICIENTS
1. Linear independence of the Cremer—Pople normal modes ] §
Jow B ’
‘ - o
Dus to the nature of the primitive forms for each m, cos (2rm(j-1)/N), ¢ i
. sin{2mm(j~1)/N), they are mutually orthogonal. : ) ‘
- Thatit,  Bag; gy o= 0 - .
. . v,; n . i
anr s - w @ <
2/ In order for the set of these forms over all m to be a suitable basis, they
o .
M should be linearly irdependent. By the fact that these forms are sormal - N
modes of different symmetty types, they are linearly independent. i K . o
o . w7
m"’\«: Pioofs -5 Tl
< 2 To prove linear independence, we first show that vhe normal modes are - " o
B orthogonal. That is ‘
v v
25%af =0, o nom.il modes -
]\ N
Fot N aven, consider i
N
3 cos{(j-1)) eosf(2mm/N)Y(;-L)]
5 =1
i i
S Using the identities,
‘<, 08(A+B) = cosAcosB ~ sinAsinB
& s,

Vo : f H

. u:fe _M(a‘q



cos{A-B) = cosAcosB + sinAsinB
thia is equivalent to

i 8 N
305 conftrt 2mm) + 3 cos lr—amm/m)s 1))
= =1

Using the identity given in Appendix 2, this reduces to yero, since
din(Na/2 + ma) = G f N is even.

Simitarly .’él cos((j-1))sinf(2mm/N){i~1)]
=

N

L0 X (et 2 - ;g'lmur—um/mu-xn]

n

1

Therefore
confr(§1] ar (=14 is orthogonal to any linear combination of
& o8 [(27m/N)(3-1)] + b sin {(2em/N)(1}],
a8 required.

For N even or ndd, we need
ool (/M) 1-1)My ] sl (2 )-2008 g col (/N1 )M)

sud sin [(2%/N)(j1)My] are orthogonal

o) om0y a4
= b3 colbaMHMy 050+ § B coon/ N0~ M)

=0

o




) Bl /NG00y (s -0y
=k 3 a0t + 3+ 3 ol M)

=0

S

) 3 sinl(2n/N)(1-1)04 eon(2n/20)(1-1)My]
col(2/N)(-1)84; ~ 5/,] con(on/N) -1)Mg]
Sol-oly + @O0 + M)+

%ljv coslrfy + (ar/N) (10, — My)]

=0

[

3
1
i
3

4 ¥ snl(/N-1)g]colnN)(-)M ] =0

(By analogy with .}

‘We now show orthogonalily = lineas independence.

Suppose the # of the modes & 4, ... £ aeglven as
o), . 5@

Suppoge these modes are not linearly independent
Then
wi{®y . pa®ao v
=4 Jat least two coefficfents # 0
(since 70 Vi)
At least one of the modes, say t, is 2 inear combination of at least one other
mode f:

e
&& .
d woh
P
°
7 "
I
’ &




@ ar® s 3en O

Now aand §are orthogonal

;,i@') 'i(ﬂ) = h‘(ﬂ) (7,‘(19) ¥ 3,,6,i(5))
BB e 3 g 1l = 3440
But
'ygzi(ﬂ)n‘(m#l),(dnce?:iw)z =0 = 5=0Vi)
i i

But 0,8 aco orthogonal and hence 3 #(%5, (%) = 0. This is » contradiciion.
i

‘The modes are therefore lineatly independent.

Hence,
for N even
A+ 3 oy s (rm(i=1)/N)] + by [oin (ri-5)/N] = 0,¥§

= Aagb, =0¥m

and for N odd
3 gy o (Bmli-1)/N) + by fin (m{=1)/N) = 0,V

= ap,by= 0,Vm

‘This is used in solving the equations for a linear combination of primitive

forms.
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2, The primitive forms are linearly independent.

Each primitive form is & linear combination of the normat modes (which are
linearly independent).

Consider & cos— and sin—form at ¢, and ¢, + & respectively,
The coefficients of a form at %‘J in the linear expansion in terms of
cosf(2mm/N)(j-1)] and sin[2ma/N)(-1)] are cos ¢ end —sin " respectively.

Let

I (008 §y cos [(2mm/N)(-1)] — sin gy sim [(2m/N)(i-1)])

+ (o8 (@ + whoos{(2rm/N)(§-1)}- sin (§,+ ssin [(2mo/N)(H-L)])
=0

Since cos [(2rm/N)(i1)] and sin [{27m/N){-1)] are Hinearly independent and
the pairs in m are linearly independent, we have

00008 &y + dy cos by, 08 ki~ sind sin k=0
and

cmsln¢m+dmﬁnebmccsn+dmcoa¢mai”=o,fmaum.

Hence
sin by * (g, con b o+ dpy cos by con K=y sl i ) = 0
con i * (e, sin g + Ay oindyy cod s+, con gy sin k) =0,
for afl m.
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This gives: dting =0
ord;, =0 unless &= 0or x, whichit does not,
and ¢, cos ¢m =0
epsingy =0 = ¢y =0
‘Therefors the primitive forms are linearly independent.
scheme

3. The linear are i of the atomic

Since the normal modes of By are lineatly independent, the equations for the
Iinear coefficients may be solved in groups of m. The expressions for a zing at
4§ = R, with primitive forms ai phase angles A and B, are:

~ Qcos Rsin B+ Qsin Rcos B

XAM) = of cos-form)

sin A cosB -~ cosA sin B

Q cos R sin A —~ Q #in R cos A
XB(M) = —
sin A cos B -

of sin—forra)
cos A sin B

Any equivalent primitive formy are genecated by G o §, operations: ¢ -
& + (2m/N). Any ring will thus have equivalent forms (s different ring
numbering) at ' 4 (2mm/N) (Pickett and Strauss, 1671).

X
]
P
i

¢\ e
b2

A description of the ring should be independent of the ring numberiag chosen;
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W “
sl This gives: dosing =0 K
il N N
i ord; =0 unless &= 0 or 7, which it doss mot, o
- and o c08 gy, =0 s

Cp BinGy =0 = c

Tharefore the primitive forms aze linearly independent.

3. The linear coefficients ate independent of the atomic numbering scheme

Since the normal modes of By, are linearly independent, the equations for the o
linear coefficients may be solved in groups of m. The expressions for a ring 2t B R

Gy, = R, with primitive forms at phase angles A and B, are:

—Qcos Rein B 4+ @ sin Reos B L e

XAQM) = dent of cot~form) 3 W ;
in A cosB - cosA sinB ' ; 5
cos R sin A - Q 8in R cos A .

xB() = 2 o jent of sin-form) . -
sin Acos B — cos A sin B . A

Any equivalent primitive forms are generaled by G, or §,, operations: $r -
, ¢ + (2mm/N). Any ring will thus have equivelent forms (s different ring o
e numbering) a4 ¢ 4 (2xm/N) (Pickett and Steauss, 1071). [

A description of the ring should be independent of the ring numbering chosen;
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ie. the linear coefficients shonld be equal in both these cases. Thiz can be

#hown to be the case.

Consider the ring a¢ ¢m = R, with the closest primitive forms at phase
angles of A and B. An equivalent phase thus lies at ¢m + 8rm/N.
Let (27m/N) = a Then for this equivalent phase

 (cosform) =A+a
¢ (stnform) =B+a
4 (ring) =R+u

The coefficients are given by XA’ and XB',

o {R 4+ akia(B + &) + sin(R + aoos(B + o)
T sin (A + a)eos(B + a) — cos(h + asin(B + a)

The numerator reduces to;

~cosRln B oos? a+ sin Rsin Bsin acos a—cos BeosRain &

o8 &+ cos B sin R gin® a + sin R cos B eos® o+ cos R cos Bsin o

o8 & —ain B sin & cos o sin B cos B #in B sin &
=wcos Rein B+ sin Reos B

The denominator becomes

&in A cos B cos® ~sin A gin B cos crsin e+ cos A cos B sin cecos @ —cos A
sin B sin? o + cot B sln A sin® o~ cos A sin B cos? o ~ cos A coa B eos o
sin & -+ gin A sin B cos asin &

=cosBsinA~ro AsinB

“The numerator iz the XB' expression is

o B
b
\‘ ‘
e .
L
o]
D
s
MRS
5]
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(cos R cos a~-sin R sin &) (sin A cos o -+ cos A sin a)

~(sin R 08 @ + cos R sin a)(cos A cos @ ~sin A gin a)

= cos Rsin A—sin Roos A
XA, XB’ aze therefore the same as those given for the ring at R, even though
the primitive forms are different.

1 a form has acither Oy nor 7, symmetty, the enantiomeric form will not be
generated by C,, or §; oporations. Thus the phase angle of ¢ + (2mn/N)(+
(w)) will not generate this 1orm. Tt can only be generated by C, though atom
1 followed by T This implies (Pickett and Strauss, 1971}

Ao bt rdrs—d

Thua 'f a form lies at ¢, the enantiomer lies at —¢. It must be shown that the
coefficients of enantiomers are the same, since the emsniiomer may he

generated by a different atomic numbering.

P is generated from P by rotation of 2x, sinc the spacings of the primiive
forms are 2. We now shiow P and X have the same linear coefficients, Since
#' and P are selated by a G, operation these have the same coefficlents.

The form X
~cos(A + a)sin{A + &) +oin{A + a}cos(A + &)

inA(cosh

XA

sinAsing] - cosA[sinA

K& -+ sinkcosA]
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5 X 5 . e
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#in @ cos K- iDL K COB &
=
- sla & P
’ ; g
A The form P! : -
: ~cos{A + 25— o)sin(A + &) +sin(A + %~ a)cos(A + K} L ’
£ oy

< sin(A 4+ 26) cos(A + &} —cos{A + 2x) sin{A + )

This denominator becores:

—gin? A sln & cos 2% 4 cos® A sin %k von & + sin® A cos & 8in 24 — cos® A . .
& S

sin & cos 26

=50 & cot 26 4 Hin 2% 08 &

=sin g !

‘The numerator reduces to J

—8in A co8 A 008 & €08 & €08 2 — sin? A cos & sl & o8 2% + sin” A €08 K co

agin 2% —ain A 0o A co8 & sin o sin 25— cos® A sin & 008 & coB 25~ 06 A [

sin A sin & sin o 005 28 + 008 A sin A sin & c05 o sin 25 —cos? A #in K sin & !

sin 2 4 cos A sin A cos £ c08 & c08 24— 08% A ¢08  CoB 2k Bin &+ cos® A J
i

¢as K cos asln 2k -+ cos A sin A cos & sin @ gin 25— gin? A sin £ o8 o 08 2%

+co5 A sin A sin 5 sin @ cos 26 cos A sin A sin & cos arsin 25— sin® A sin x

sl a6in 26

N

== 08 K 608 2 sln @ + cos x sin 26 cos @

I ~ il & Co8 2% ¢o8 o —3in & 8in 2k B0 @

T =4ith ¢ | ~ co8 i {cos? x—sin’ £) — 2 sin® & cos 4]

> + cos e [2 con x sln & — sin & (cos® x —sin? k)]

' sin o con &+ cos arsin £




XB
The numerator of the forms:
P: XB = cos(A + 26~ asin(A + 26) —
sin(A + 25— ajcos(A + 24)
X: XB = cos(A + a)sin{A + 2x) ~ sin(A + a)cos(A - 2x)

= —gina

"he expression for P? becomes:

sin A cos A vos acos® 2 + 6in? A cos® 3 sin
—sin? A cos 25 8in 2 cos &+ o8 A sin A 208 2% 8in 26 5in &
+ cos? A sin 2 cos 2 con & + cos A gin A sin 2k cos 2 sin &
—cos A sin A sin? 2% ¢os & + cos? A sin® 2xsin o

~ o A sin A c0s® 2 con & + cos” A cos® 2x sin &
—cos? A cos 2k sin 26 cos & — 608 A sin A ¢08 2% sin 25 6in &
+ gin? A gin 2% co8 26 co8 u—sin A cos A sin 2 cos 25 sin &
+ gin A cos A sin? 25 08 o+ sin? A sin? 2 6in o

=gna
The coefficients of enantiomers are therefore the tame

4. Two primitive forms (cos~form and s'n—form) diffex in phase only
e.g. primitive forms of eight—menmbered rings

ronu
ix
[ b2

e )

e
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Consider the case whete an equivalent form of the primitive cos—form is the
primitive gin-form. Ar equivalent form of X will theeefore lie at P2, The
coefficients of P2 and X will not be the & e, but the cosfficients of each cos—
aud sin—form will be reversed. The forms X and P2 are equivalent simply
beezuse the cos—form and sin~fornt are different phases of the same form,

To show that the coefficients ate inverted, consider the forms (1) and (2)

with the ¢,,, of the cos— and sin—forms ay A and B respectively.

RAQ) ~ cos(A 4 a)sin B + sin{A+ ) 03 B
#in A cogB — cosA sin B

‘The nurmerator is given by
—cos A cog xsin B3 + sin A sin &sin B + sin A cos @ cos B

+cos A con Bain o

cos (B ~0) 8in A — sin (B -¢) cos A
sinAcos B —cos A sinB

XB(2) =

The numerator ig given by
05 B cos asiz A + sin B sin A sin o ~sin B cos acon A
+eosBginaeos A

KA(2) 15 simlacly equal to XB(1).
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HE EGOATIONS T SHE LEWAR CONRIHAION ARR MOW SOLYED
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DEHEASION 0[20),7R5{20),3A{29), 13(20}, IRA20), 1B 20}
FRAL T{8},1(56), SHTN(50), TATN(SR)

TP {RLIEA)IHEL
aede

Meto
o

TSLE)
THRB, bo)Tumé
0 24 Nea 0

2 28 6,0

I
LLsfE-1352
168 CONVIRET

ey
CALL STHECHIN, R ETN(N), W, PETCKY)
‘CALL HEL(RRH, b, IATKCH}, 58, PHELS))

0 CORIME.
en.l. SBLTLQ, BATH, ECTH, 5, R, AT, KA, X3}
VAEYES(N, TN, KR, Y, SHER, LNTH, XXM, R2E, V1)
nmu,m) 12,980
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LTisaE-1)0
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(ALY, BIHE(H2X, K, NLS(H), WR, BHECK) }
CALL MIRT{RZZ,L, LUTHCN), NR, PHEURS )

CALL SORVE(O, SO, TN, 3,38, 951, 1), 31}
CALL WRIZRS(Y, 1, X3, ¥, SHER,LATH, 50,103, ¥9)
BLTR(2, 147 I8/, TP.AA
117 BORBAR(SE, 12,,15.3, 81,14
ELSRIENA,D. 14 }RHER

0 202 2,8

0 3 1,15
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MU=
THOE

18
CALL WIKT(HIG,X, ENIRCH) R, PHSLS) )
CAUA: HERE(REC, b, LATN{NY 3, FSTLH))
7 CMELNL
XL SOLXE{Q, NUIH LK., 55, PHE, 10, 38}
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309 CONTINOR
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.2 Sample Ouiput File

165

- CONPNRMATIONAL ANALYSIS OF

8 MEMBERED RING

AN ILLUSTRATIVE EXAMPLE

ey PUCKERING PARAMETERS

B Mo QM)

; 2 120 5.00
3 .000 90.00
Q)= 000

PHI(M)

CORFFICIENTS OF PRIMITIVE FORMS ) ;
M COSFORM SINFORM W
PR 09 '
3 o 000 EENENN

M COEFFICIENT
OF PRIMITIVE
oy FORM

P 2 g

4 +000

ANGULAR VALUE
OF PRIMITIVE
FORM

00b

80

80

20

-10

o ¢ WARNING : THIS IS VERY SIMILAR TO A BB FORM

] a— the coefficlents for cach m tofer to bhe cor— and sln—{orms reapectively

b the phase angles are expressed o5 k of kif/2N

NORMALISED COEFFICIENTS - vy




00008
Ltk
T4
1
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-0. 1601
“1.3000
20
-1.2887

0.0000
. L3139

PRITE S.46400
K ; Lan
v T
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@
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Lénz
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0,44t
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0,249
L.z
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1600
16500
S0

~1,0000

“3.1000

21000

1066
228
1.6008

-0.293%
-0:29%

-2.601
B0t
08161

2,431

26200

.03
090
04721
.21
0,850
2080
418

APPENDIX §

v

CARTESIAN COORDINATES OF THE CLASSICAL FORMS

me
-0.0000  2.2080 0,019

00841

00000
L1
19100
1800
0,570
0810
500
«1,9100
=1.4200

1.3000

~a.521%

.03

~b,2400
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