

xi

LIST OF FIGURES (CONT)
5.4. A two-dimensional projection of the surface
5.5. The TBC-BC psevidorotational cycle
5.6. The TAB-BB prendorotational cycle
5.7. The TCC-CC paeudorotational cycle
5.8. The TCB-CB preudorotational cyele
5.9. The TB--B pseadorotational cycie
5.10. The TG-G paedorotational cycle
5.11. The $T C^{14}-C^{+1}$ pectdorotational cycle
6.12. The TBC"-BC" pbeudorotational cycle
5.13. Primitive ${ }^{\text {B }}$ orms of ine-membered nings
5.14. Nitrogen and sulphur donor macrocycles
8.1. The conformation of large macrocycies
6.2. Uoefficient maps of 18 -arown-6 coraplexes

parametars; which are genexalizations of the phase and amplitude of cyciopestane (Milpatrick, Pitzer anà Spitzer, 1947).

The method has been of practical importance in crystallography since the get of puckering parameters is calculated directly from the atomic coordinates. The conversion of thees puckening parametare into a desmiption of conformational type is not thirizi. As a practical measure it is useful to map the conformation as a function of puckering paramesers onto a surface in sedation to the classical forms. Such a scheme requires the analyais of all possible canonical forms of the symmetrical contormations. The surface has been interpreted as a circle for Eive-ruembered rings (Altona and Sunderalingam, 1972), a sphere for six-membered rings (Bocyens, 1978) and a torus tor seven-membered rings (Boessenkool and Boayens, 1980). The method has been extended to the eight-membered rings (Evans and Bosyens, 1988), hs reviewet in Chapter 2.

The Cremen and Pople (1975 a) aigorithm to caiculate the ruean plane and the puokering parameters has not been corrolated directly with a physical model. A theoretical interpretation of the puckering coordinates is presented in Chapter 3. The one-to-ane correspondmace between the puekering parameters and the $\mathbb{N}-3$ symmetry-adapted coordinates of Pickett and Stratus (1871) is demonstrated. The exprestions for the ting puchering coordinates as out-otmplane displacesnent modes are lorived from group theoretio representations to illutrate the gencral applicabitity of the motel.

The calculated packring pazameters of any ring to not necossarily match those of the classical forms exactly. Where the match is close enough a

2.1 IN'CRODUCTION

The conversion of puckering parameters into combormational type is acheved by mapping the set of cosiformations onto a three-dimentional surfece. The use of thene conformational maps in the feld of the puckering parameters is limited by the number of puckering pazameters to rings smatler than eightor nine-membered rings. The analysis of eight-membered rings prompted the investigation of at necrirate description of intermediate forms, and a brief review of the topic ts thus appropriate.

2.2 METHOD OF STUDY

The Cremer and Pople (1075s) puckering paranteters mas a set of ten symmetrical conformations unto a threamdimensional surfece. These classical forme coniprise a set of symmetrical conforntations nos confined to the low energy cycloalkane forms of Hendrickson ($\mathbf{1 9 6 7} \mathbf{7 a}, \mathrm{b}$). Standard puckering enalysie (Oremer and Pople, 1875a) yields three ampistndes (q_{2}, q_{3}, q_{4}) and two phase angles (ϕ_{2}, ϕ_{3}), The mapping represents the geometrical interpretation of five parameters in three-dimensional apace.

To facilitate the geometric interpretation, the thitd amplitude is transformed to an anguler coordinate, $0 \leq 0 \leq \pi$, guch that

$$
\cos \theta=\frac{q_{4}}{\sqrt{\sum_{w}}}=\frac{q_{1}}{Q} \text {, where } Q=\sqrt{\Sigma q_{\pi}^{2}}
$$

A surface for the mapping of all possible confornations can be coastructed by defining a unit sphere, with polar angle $0 \leq \theta \leq \pi$. At each value of θ, a toras Is feisized in cerms of q_{2}, q_{3}, ϕ_{2}, and ϕ_{3}. The plane throagh the associabed central treck cetci the sphere at $A_{\text {, as }}$ as shown in Figure 2.3.

Figure 23 The conformational surica of eight-menbered rings

A two-dimensional projection of this burface, thown in Figure 2.4, 1lluatrates the various interconversion modes betwees the symmetrical forms. This xepresentavion, a projaction of all tori atong the surface of tha sphere and with their radial axes along tie $\phi_{2}=0$ clrcie, maps the BO -TBC forms uniquely. Overlap occurs at the positions X, Y and Z.

Piguse 2.4 Two-dimensional profection of the surfaca Tha + superseript refers to forms with $0<90^{\circ}$ aud the - superscript xefera to foms widt $\Delta>E O^{\circ}, Y=\left(T C C^{ \pm}, B\right)_{i} X^{+}=\left(C^{H}, B B, B C^{+}\right) ;$ $\mathrm{X}^{-}=\left(\mathrm{CO}^{*}, \mathrm{BB}_{1} \mathrm{BC}^{+}\right) ; \mathrm{Z}^{+}=\left(\mathrm{TC}, \mathrm{BC}^{+}\right)$and $\mathrm{Z}^{-}=\left(\mathrm{TC}_{1}\right.$ BC)

Figure _2.6 The $\mathrm{BB}-\mathrm{TBE} / \mathrm{CC}-\mathrm{TCC}$ psetidorotational cycles, The bold -ide of the TCO symbol intimates a torsion angle of 56.2°. The bold aide of the OC symbol indicates a torsion angle of 105°, with the point of the wedge adjacent to a torsion angle of -105°. The bold side of the S symbol indicates a torsion angle of 70°,

These projections indicate the gratual change in bond toraion angle, from snaximum positive valuen, through zaro, to negrative values. In the BC-TBC cycle, the torsit i angles change at regular intervals from poaitive to negative valuet. It eack CO-TCO cyale, the atoms remain in the same refative pasition with respect to the mean plano. The psetdorotational cycle is described as a type of breathing mode where each totsion angle changes gradually in magnitude, but nol in mign

Pugure 2.7 The BC-TEC pseudorotational cyeles at $\theta=75^{\circ}$ and 105°.

A unique nomenciature, based on angular value of each canoxical conformation is proposed. Each conforr, arinn is unambiguonsly described by the integext h_{1}, x and 1 that spectify the angulas positions $\phi_{2}=h \pi / 16, \phi_{8}=$ kr/16 and $8=1 \pi / 18$ respocively. Ponitive indices are obtained by defuing $\mathrm{h}_{\mathrm{t}} \overrightarrow{\mathbf{k}}=32-\mathrm{h}, \mathrm{k}$ and $\mathrm{I}=$ 10-k, All forms are uniquely distinguished by at most two indites.

An investigation of a number of heterocyclic ringe, not represented exactly by classical forms, introduced an expression for the deviation of an ectital conformation from a clessical form in the neighbourhood. The deviation, $\Delta \mathrm{X}$, is defined as

$$
\sqrt{\sum_{i}\left(x_{i}-x_{i}\right)^{2}}
$$

where x_{1} represent actual puchering parametera, and x_{1}^{*} are the puckering parameters of the classical form x.

The expression for each z_{j} fs a linear sura over all possible m values. The normal modes are also mutually orthogonal and hence we can consider only one value of m without loss of generality.

$$
\begin{align*}
& \quad z_{j}=\rho_{\mathrm{m}} \cos \left(2 \pi \mathrm{~m} / \mathrm{N}+\phi_{\mathrm{m}}\right) \\
& \text { Consider } \tag{1}
\end{align*}
$$

and $\sum_{j}^{j} z_{j} \sin (2 \pi j m / N)$
Substituting the expression for z_{j} in these equations gives equation (1) as
$\sum_{j}^{\sum} \rho_{m} \cos \left(2 \pi j m / N+\phi_{m}\right) \cos (2 \pi j m / N)$ or

and equation (2) as

$$
\begin{aligned}
& \sum_{j} \rho_{\mathrm{m}} \cos \left(2 \pi j \mathrm{~m} / \mathrm{N}+\phi_{\mathrm{m}}\right) \sin (2 \pi \mathrm{jm} / \mathrm{N}) \text { or } \\
& \sum_{\dot{j}} \rho_{\mathrm{m}} \cos \phi_{\mathrm{m}} \cos (2 \pi j \mathrm{~m} / \mathrm{N}) \sin (2 \pi \mathrm{~m} / \mathrm{N})-\sum_{j} \rho_{\mathrm{m}} \sin \phi_{\mathrm{m}} \sin ^{2}(2 \pi \mathrm{~m} / \mathrm{m} / \mathrm{N})
\end{aligned}
$$

$\sum_{j}^{\Sigma} \cos ^{2}(2 \pi j m / N), \sum \operatorname{ain}^{2}(2 \pi j m / N)$, and $\Sigma \sin (2 x j m / N) \cos (2 x j \min / N)$ can be

 expressed an $\left.\frac{1}{2} \underset{j}{d}(1+\cos (4 \pi] m / N)\right), \frac{1}{2} \sum_{j}^{j}(1-\cos (4 \pi i m / N))$ and $\frac{1}{2} \frac{1}{2} \sin (4 \pi j m / N)$ respectively.$$
\frac{\Sigma}{i} \cos (4 \pi j r a / N) \text { and } E \sin (4 \pi j r m / N)=D, \text { as showa in Appendix } 2 .
$$

When $\rho_{\mathrm{m}}=0 ; \forall \mathrm{m}=2,3,4 \ldots(\mathrm{~N} / \mathrm{L})-1$

$$
\begin{align*}
& z_{j}=(-1)^{\frac{1}{2}} Q \\
& x_{j}^{2}=(-1)^{2} Q^{2} \\
& \sum_{j} z_{j}^{4}=Q^{2} \sum_{j=1}^{N}(-1)^{3}=N Q^{2} \tag{5}
\end{align*}
$$

But $\quad \underset{j}{2} \underset{j}{z}=Q \sum_{j=1}^{N}(-1)^{j} z_{j}$
Equating expreagions (5) and (6),

$$
\frac{1}{N}{ }_{j}(-1)^{X_{j}}=0
$$

Once again the value of Q must be normalized:

$$
\underset{j}{y} z_{i}^{3}=Q^{2}
$$

Replacing Q by the nomalized value give

$$
Q=\sqrt{1 / \mathrm{N}} \Sigma_{j}(-1)^{\mathrm{j}} \mathrm{z}_{\mathrm{j}}
$$

j must be replaced ty ($\mathbf{j}-1$) to correspond with the atomic numbering of the previous expressiona:

$$
Q=\sqrt{1 / N} \underset{j}{ }(-1)^{j-1} z_{j}
$$

Q is the same as the parameter $q_{7 \pi / 2}$ of Oremer and Popie (1975a). Replating ρ_{m} and Q with the normaized values yielde the expressions for the out-ofmplane displacements as defined by Gremer and Pople (1.975a).

N event

$$
\begin{gathered}
z_{j}=\sqrt{1 / N}(-1)^{-1} Q+\sqrt{2 / N} \sum_{m} \rho_{m t} \cos \left[2 \pi m(j-1) / N+\phi_{m}\right], m=2 ; \ldots \\
(N / 2-1)
\end{gathered}
$$

N odd:
3.9 DISCUSSION

Pickett and Stranss (1971) epproached the conformational detcription of a fing on the basis of symmetry-allowed displecemento normal to the plane of D_{Nh} polygons. Cremer and Pople (1875a) presented a method to reduce the pucker of actalal riggs to diaplacements from an idealized polygon in the mean ting plane - the inverse operation. The two methods have now been shown to be consistent.

Aby puckered shape is generated from the out-ot-plane displacements of a ragular polygon. The group theoretical analysis is besed on infintesimal perpenificular displacements. In conformational analysio thús is sin approximation since the puckered shape of a chemical ring compound may invoive finite perpendioular dasplacemente from the mean plane and hence motion of the aromg in the mean plane. The perpendicular tiaplacements involved in genarating the form are, howewer, much larger than the in-plane motions. Tha one-dimensional model is therefore quite adequate in describing the three-dimensionsi coniormation utrueis.

The Cromer and Pople (1075a) analysin of a puckereat ring relies an the deinition of unique menr plane. The equivaience of this method and the group theoretic model requires the planar polygon to be oriented with respact to the puckered mode so that this form may be envisaged as anising from only out-of-plane displacements of the flat ring. The cut-of-plane diaplacements are therefore sabjected to 綪e special conditions that restrict overall tranalation and rotation of the polygon. These condtions, used by Cremer and liople (1975m) to define the mean plane:
${ }_{j} x_{j}=0, \underset{j}{i} x_{j} \cos [2 \pi(j-1) / N]=0$ and $\sum_{j} x_{j} \sin [2 \pi(j-1) / N]$, have now been shown to be natural consequences of the group theory.

Only pespendicular displacements are considered to onerate on the fully sypmatrical polygon. The same asfumption applies during the inverse operation. The a mer and Popie (1975a) analysis of a generai monocyclic ring, having acif bould ingthe and angies, is therefore in terms of the perpendicular displacements of a regular polygon. For mocerate variations in bond length, as in most chemical structures, the conditions to fix the mean plaze do not necessarity give eero angular momentum, but they do ensure that the projection of the ring onto the plane most closely resembles a regular polygon.

The theoretical basls of the Cremer and F ople ring puckering coordinates now provides insight late their aumber and nature. Group theory iliuatrates how $\mathrm{N}-3$ parameters apecity the positions of N atoms in a one-dimensional projection. Each symmetrical confotmation and lis ring packering parameters must conrespond to characteristic palues of ρ_{m} and ϕ_{m} of the E_{m} representation, as demonstratel empirically (Moessenkool eatd Boeyens, 1980; Evans and Beeyens, 1888), The observed alternation of the dymmetry elements C_{2} and C_{B} siong the pseudorotational pathways is nlso rationalized.

The theoreticai derivation of the puckering coprdinates has, however, shown the model to be a one-dimenaional description of a three-dimentional phenomenon, Extenion of gromp-sheoreticat arguments to the general N -membered ting must be exercised with cautlon.

As as example, consicer the hypotheifal heterocyclic six-membered ring:

with puckering coordinates as given in Table 3.1.

Table 3.1
Cartesian and puckering coordinates of the SC_{5} boat form

atom	Cartesian Coordinetes			Puckering Coordinates		
\mathbf{S}	0.01	1.70	0.50	0.00	1.59	0.50
C1	1.40	0.75	-0.25	1.40	0.64	-0.25
C2	1.25	-4.75	-0.25	1.25	-0.86	-0.25
C3	0.00	-1.05	0.50	0.00	-1.16	0.50
C4	-1.25	-0.75	-4.25	-1.25	-0.80	-0.25
C5	-1.40	0.75	-0.25	-1.40	0.64	-0.25

Puckering parameters
$\mathrm{q}_{2}=0.87 \mathrm{~A}$
$\mathrm{H}_{\mathrm{g}}=0 \mathrm{~A}$

$$
\phi_{2}=0^{\circ}
$$

4. TRE LINEAR SPACE OF PUCKEMGD FORMS

4.1 INTRODUCTION

The group theoretical anslysis of the normal modes of displacement of an N -membered polygan provides the besis of a quantitative formulation of ring pusker. The set of puckexed torme of a ring constitute a linear space with the normal modes of displacement as a finite-dimensional basis.

The description of conformation in terms of the symmetry-adapted displacement coordinates is unique, but the interpretation of numerical values in terms of conformational nomenclature familiar to cheraists (boas, chair etc.) is not obvious. The relationship between puckering parameters and conformational type has been established for the gmall rings (Bceyens, 1.978; Boeseenkool and Boeyens, 1980; Evans and Boeyena, 1988). The fransfortation from crystallographic coordinate to conformational type is achieved by mapping the general ring onto the approptithe surface as a function of the puckering parameters. Conformational typo is then assigned on account of the proximity to a sy metrical form located on the burface. The assignment of conformational type of a form lying intermediate between two or more clessical forms is expected to be largely densiptive. The conformation could be described as a linear combination of the symmetrical classical forms, with the share of the contributing torms eximated by their distanco on the surface trom the site of the cycile fragment of interest. A quatitative expression for the deviation of an actual conformation from the symmetrical types in the neighbourtood has been proposed (Evans and Boeyens, 18B8), but it is senstitive to the amplitude of pucker and has ac

$$
\mathrm{a}_{\mathrm{j}}=\rho_{\mathrm{m}} \cos \left[\varphi_{\mathrm{m}}+(2 \pi \mathrm{~m} / \mathrm{N})(\mathrm{j}-1)\right]
$$

Each mode of this representation is a linear combination of two mutually orthogonal forms

$$
\begin{align*}
& z_{j}=\cos [(2 \pi m / N)(j-1)] \tag{2}\\
& z_{j}=\sin [(2 \pi m / N)(j-1)] \tag{3}
\end{align*}
$$

Every conformation is a linear combination of these normai modes and hence 2. Hinear combination of the sets of displacements (1) - (3) (Neven) or (2) (3) (N odd), for eech m. The ssme result is obtained from the Gzemer and Pople (107Sa) andygis, as shown in Chapter 3.

For an arhitrary conformation, the out-of-plane displacements are therefore given by the Cremer and Pople (1975a) equations

Neron

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{j}}=\sqrt{1 / \mathrm{N}}(-1)^{j-1} \mathrm{q}+\sqrt{2 / \mathrm{N}} \underset{\mathrm{~m}}{\Sigma} \rho_{\mathrm{m}} \cos \left[\phi_{\mathrm{m}}+(2 \pi \mathrm{~m} / \mathrm{N})(\mathrm{j}-1)\right] \\
& \mathrm{N} \text { odd } \\
& z_{\mathrm{j}}=\sqrt{2 / \mathrm{N}} \sum_{\mathrm{m}}^{\mathrm{E}} \rho_{\mathrm{m}} \cos \left[i_{\mathrm{m}}+(2 \mathrm{~mm} / \mathrm{N})(1-1)\right]
\end{aligned}
$$

where q, ρ_{m}, ϕ_{m} are the normalized puckering parameters or symmetry-adapted cuot dhates.

Theie expressions may be witten in a number of equivalent ways, one of which gives:

Table 4.1
Classical nomesclature of the primitive forms

N	primidive form	classical nomenclature
5	$\begin{array}{cc} \hline \mathbf{E}_{2}^{\prime \prime} & \text { (cos-form) } \\ \mathbf{E}_{2}^{11} & (\text { (sin-forr. }) \end{array}$	envelope twist
6	$\begin{aligned} & \mathrm{B}_{2 \mathrm{~g}} \\ & \mathrm{E}_{2 \mathrm{u}} \\ & \left.\mathrm{E}_{2 \mathrm{u}} \quad \text { (scs finn-lown) }\right) \end{aligned}$	chair boat twist-boat
7	E_{7}^{11} (cos-fomm) E_{2}^{n} (sin-form) $\mathrm{E}_{3}^{\text {H/ }}$ (cos-form) E_{3}^{11} (gin-form)	boat truist-boat chair ${ }^{2}$ twist-chais ${ }^{8}$
8	$\left.\begin{array}{ll} \mathrm{B}_{2 \mathrm{an}} & \\ \mathrm{E}_{2 \mathrm{an}} & (\cos -\mathrm{form} \\ \mathrm{E}_{2 \mathrm{an}} & (\text { sin-form }) \end{array}\right\}$	crown boat-boat twist-chair

A- Etec Section 4.4

4.3 MATHEMATICAL FORMULATION

The set of normal modes, whote z_{j} are given by $\sqrt{1 / 2}(-1)^{j-1}, \quad \cos [(2 \pi m / N)(j-1)]$, sin $\{(2 \pi m / N)(5-1)]$ are linearly independent, as shown in Appendix 3. These nodes can therefore form a suitabie kasis for conformational type.

Group theoreticel anslysis shows that the forms equivalent to the cos-form and sin-form of each mhave a constant difference in phase angle. Given any arbitrazy ring, its $\phi_{\text {m }}$ value will lie between those of a "cos-typet form and a "sin-type" forms.

The forms equivalent to the cos-form and the sin-forme can be expessed as linear combinations of these forms using the Cremer-Pople (1975a) equations. Any atbitrary ring can aloo be expressed as a linear combination of the cosand ain-forma asing this equation.

The arbitrary ring lying it $Q(N$ even $), q_{m}$, add ϕ_{Tn}, where $\mathrm{m}=2,3, \ldots$ $\mathrm{N} / 2-1$ (N even), or ($\mathrm{N}-1$)/2 (N odd), is giver by

$$
\begin{aligned}
& \cdot z_{j}=\sqrt{2 / N} \mid Q \sqrt{1 / 2}(-1)^{-1}+\sum_{m}^{\sum_{m}} \cos \phi_{m} \cos [(2 \pi m / N)(j-1)] \\
& -{\underset{w}{m}}_{q_{m}} \sin \phi_{m}{ }^{\sin }[(2 \pi m / N)(j-1)]
\end{aligned}
$$

For ench mode E_{m}, these is a cos-type form and a ain-type form lying closiest to the ring at phase anglos a_{m} and b_{m} respectively.

The cas-iype form is given by

The tin-type form is given by
$z_{j}=\cos b_{m} \cos [(3 \pi m / N)(j-1)]-\sin b_{m} \sin [(2 \pi m / N)(j-1)]$

These normial modes are lineary independent (Appendix 3.), and any arbitrary conformation may be expresset as e linear combination of the forms $a a_{m}$ and b_{m} over all values of m.

Suppose the coefficients of the con-type and stin-type forma are $c_{\text {m }}{ }^{\text {and } d_{m}}$ for each m.

Then denoting the Cramer-Pople normal modea as X_{m}, Y_{m} for each m, we have

$$
\begin{aligned}
\sum_{m} a_{m} \cos \phi_{m} X_{m}-q_{m} \sin \phi_{m} Y_{m}= & \varepsilon_{m} c_{m}\left(\cos a_{m} X_{m}-\sin a_{m} Y_{m}\right) \\
& +d_{m}\left(\cos b_{m} X_{m}-\sin b_{m} Y_{m}\right)^{\prime}
\end{aligned}
$$

Since $X_{\text {en: }}, Y_{\text {iII }}$ are linearly independent, we can solve for $c_{\text {ia }}$ and d_{m} as follows:

$$
\begin{aligned}
& c_{m}=\frac{a_{m}\left\{m \cos \phi_{m} \sin b_{m}+\sin \phi_{m} \cos b_{m}\right)}{\sin a_{m i} \cos b_{m}-\cos a_{m} \sin b_{m}} \\
& a_{m}=\frac{q_{m}\left(\cos \phi_{m} \sin a_{m}-\sin \phi_{m p} \cos a_{m}\right)}{\sin a_{m} \cos b_{m}-\cos a_{m 1} \sin b_{m}}
\end{aligned}
$$

When N is even, there is a coefficient tor the normal mode of the $\mathrm{B}_{2(\mathrm{~g} u \mathrm{u})}$ representation. The displacements of the normal mode $\mathbf{z}_{\mathbf{j}}$, are taken at $\sqrt{1 / 2}(-1)^{-1}$, so that the linear coefficient corresponds with the normatived puckering emplitude Q. It is noted that, as above, the factor of $\sqrt{2 / N}$ has bees omitted stnce the coefficients are normalized in the final analysis. When the sign of Q is negative, the normal mode used in the linear combination is the mirror inage of the form $z_{j}=\sqrt{1 / 2}(-1)^{j-1}$ i.e. $z_{j}=\sqrt{1 / 2}(-1)^{j}$. This ensures that the cceficient is equal in magnitude to Q_{1} but greater than $z e r o$.

In fact, choosing t phase angles of the cos-form and sin-form 90 that the phase argle of the ring of linterest lies between them ensures that the ccefficients in the linear expansion are atways pasitive.

The cos-iype and sin-type forms are always linearly independent, bat they are only orthogonal when separated by 90 degrees in phase angle. The set of all possible ring conformations can be gensrated by a firite-cilmensional basis. In all cases, ($\mathrm{N}-3$) normal modes can be used as generating conformations. These groupt of ($\mathrm{N}-\mathrm{B}$) normal modes are always linemity independent. The set of all equivaient cos-forms ard sin-forms therefore form an extended batis, which consists of a namber of verlapping subsets, or sub-bas weach with ($\mathrm{N}-3$ 3) linearly independent forms. Which subset is used as a basis depends on the phase antles of the ring tetuder investigation.

The elements of this extended basis comprise a reference set of ring conformations, calied the primitive forms.

The coeffecents in the tinear expansion are inclependent of phase. The linear coefiscients are thus afways the same, irrespective of the zing numbering used, as illuatrated in Appendix 3.

A description of ring conformation is really a description of molecular shape, and should therefore be independent of the degree of pucker. The overall molecular skape can be generated by adding together the primitive forms in the corcect proportions. The same molecular shape in obtained provided the coeficieats are in the same ratio. The linear coefficients are therefore normalized to unity. The method can now be applied to any ring type, irsespective of the pucketing amptitude.

For example, the rings shown below are both boat conformations that differ in puckering amplitude.

4.4 APPLICATION OF THE METHOD

The primitive forms in the linear expanaion ate relatively gimple contormations of elther C_{B} or C_{2} symmetry, and are easily interpreted an bort-ilke, chair-like and their twisted counterparis for the smaller cings. The symmetrical corme, or classionl conformations in conventional use, take on certain chatacteristic values of the linear cosffelente.

The coefficienta in the linear expanaton are independent of phase. The linear coeficients are thus always the same, irrespective of the ring numbering uset, as illustrated in Appendix 3 .

A description of ring conformation is really a description of molecular shape, and shouid theretore be independent of the degree of pucker. The overail molecular siape can be generated by adding together the primitive forms in the correct proportlone. The same molecular shape is obtained provided the coefficients are in the sarse ratio. The linear coefficienta are therefore normalized to unity. The method can zow be applied to any ing type, trrespective of the puckering amplitude.

For example, the rings sacwn below are both boat monformations that differ in packering amplitude.

4.4 APPLIGATION OF TEIE METHOD

The primitive formo in the linear expanaion are relatively siraple conformations of elther O_{g} or O_{2} symmetry, and axe easily interpreted as boat-like, chain-like and their twisted counterparts for the smaller rings. The symmetrical forms, or classical conformation iti conventional use, take on certaln charecterietic yalues of the lineer coeficients.

Figure 4.2 Structura of the program CONFOR

A description like this is more familiar to chenoists than the puckering parametere or a linear corsbination of "ags" and "ret es :
 furanoid sing, is zeadily identibs. is a twist zonformpl: : ..it: sutice distortion to an envelope form.

Six-memtered ringa

The batis is three-fimensional, consigtity of stuvetici forms of

$$
\begin{aligned}
& \text { crown beai : twlst }
\end{aligned}
$$

Tinble 4.4
Conformational andysis of mix membered rings

| Ring | Ref. | Q_{2} | Q_{3} | ϕ_{2} | $0(\pm i)$ | $w \phi(B)$ | $c \phi(T)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | (A) | (A) | $\left({ }^{2}\right)$ | | | |
| 1 | d | 0.05 | 0.54 | 183.7 | $02(+1)$ | $7(12)$ | $1(14)$ |
| 2 | e | 0.29 | 0.24 | 47.0 | $45(+1)$ | $31(4)$ | $24(2)$ |
| 3 | f | 0.41 | -.22 | 186.0 | $34(-1)$ | $31(12)$ | $35(14)$ |

$a_{*} b$, aster care given as pereeptogoe. ϕ is a muittiple of $\pi / 22$
d. Cremer and Pople (IGT5a)
e. Gal, Foher, Tihnigi, Horvath rikovieh, Argay and Kolman (1080)
f. Docyens (1979)

The pgranoid xing (1) is shown by program CONFOR to be much like a
 cown form. The distortion towards the foum

is estimated to a 10 ;percent contribution from the primitive boat at $\phi_{2}=\pi$, a conclusion easily reached from an examination of the linear coafficienta.

Ring (2), a cyclahexene with a much sanaller ampliturte of pucber, in readily described in terms of the lizezr coefficients. Ring (3) has been described as midwsy between the formas H, E and S. The coniormation found here is intermediate betwero a boat, a twist and a chair form. These two assignments are not contradictory. The E, H and S forms are themselves mixtures of the chair, boat and twist former. The ring conformation could be expressed as a linear combisation of the E, H and S forms situce E, H and S forms can be expressed as a linear conbination of the independent forms. in other words, any conformation can be expressed as a linear combination of these mixed forms, but such a ccheme would be compticated. These forms are not linearly independent, and an unambiguous definition of the number of mixed forms to include in the lineer expansion is not porsible.

Seven- and eight-membered rings can be expanded in terme of a four- or five-dimensional basis. For exnmple, the ring deacribed by

$$
\begin{aligned}
q_{i}, \phi_{2} & =1.05 \AA, 0.4^{0} \\
q_{3}, \phi_{3} & =0.58 \AA, 0.9^{\circ} \\
q_{4} & =-0.32 \AA
\end{aligned}
$$

as

$$
\chi=0.163(-1)+0.535(0)+0(B)+0.281(0)+0(4),
$$

a bogi-chair form, is in agrearnest with previous conformational assignments (Evans and Boeyena, 1988).

40

4.7 DISCUSSION

The nornat diaplacement modee of a planar N -mambered regular polygon terve as a basis for the conformation of a puckered N -miembered ing. Two lineaty independent modes, equivaleat to the metuatly orthagonal col- and kin-forms of each E_{m} reqresentation, and one of the two postible equivalent modes of $\mathrm{B}_{2(\mathrm{~g}: \mathrm{a})}$ can be combined in varying relative proportions to give any puckered shape, trom a ferv aimple forms.

It is noted from Figure 4.1 that the cre-type and sin-type forms for $m=2,3$ in eight-membered rings are equivalent. The sin-form is a primitive phase of the cog-forma. In a case filve this, the linear expanston is not unique for all phases. The coefficients of the cos-form and sin-form are interchangeable, at shown in Appendes 3.

In seneral, if two rings are compared to see whether they are of the same conformational type it is adivisable to ensure, by relative rotation if necessary ${ }_{i}$ that the phases of lowest index ($\mathrm{m}=2$) have matching values. The equivalence of the ring conformations can then be considered estabtished onfy if the calculated phases correspond for all m .

The defmition of conformation, in terms of perpendicular displacensents only, contracte the model from 3N Cartesian coordinates to $\mathrm{N}-3$ paxameters. This projection from ($3 \mathrm{~N}-6$) coniormational space to an ($\mathrm{N}-3$)-dimensional subspace has bean interpreted (Petit, Dillen and Geise, 1983) to imply that conformational anaiysis requires a priori defintion of atanderd conformations for each alass of chemical compond.

This seems to invalidate the procernire of mapping conformations to nocmalized surfaces withous taking the amplitude of pucker into account. However, as noted by Gromer (1984), perpendiculaz displiacoments relate to one-dimensional shape functions, by defnition independent of the amplitude of pucker. It is this shape, rather than the extent of distortion from planarity, that shorld be equated with the notion of conformation. This does not lead to an ambignoas description for any given ring, since a bpecific projected shape can be obtained at oniy one value of the total puckering amplitude if the boad lengthe and angles remain fixed.

The method proposed here is independent of absolute molecilar geometry or chemical identity. The conformation depends only an the relative contributions from the group theoretic modes of displacement. Any puckered six-membered ring with 100 percent contribution from the $\mathbf{E}_{2 g}$ mode has, by definition, a chair coniormatlon. Any six-membered boat has the shape arising from the cos-mode of $\mathbf{E}_{2 \mathrm{n}}$ atomic displacements only. The envelops
 amount of pucker cannot affect this ratio. Even heterocyclic rings, with Irregular molecular geometry, chn assume a chair shape, at $\phi_{2}=\theta=0$. The fact that the ring does not digplay $D_{3 a}$ symmetry in three dimensions is not important. The slape factor of interest, the ring puckering, is one-dmensional and consiste of : contribution from the $\mathrm{B}_{2 \mathrm{~g}}$ mode only.

5. THE CONFORMATION OT NINE-MEMBERED RINGS

3.1 INTRODUCTIC V

The warious modes of intercenversion of nine-membered rings have been suggested and a few of the low energy cycloalkane conformations atructurally characterized (Hendrickson, 1964; 1967b). The symmetrical forms along these pativacys are now identified and mapped sa a furnetion of puckering parameters onto a three-diruessional suxface, in a zeneral scheme to convert atomic coerdinates into conformational type. The conformation of nine-membered rings as a lingar expansion of aix basis forme is presented as an alsennative description of ring pucker bated on the Hient coefficients.

5.2 METHOD OF STUDY

The set of gymuetrical conformations oin nemembered ringy nead not be limited to the low energy cycloalkene coxformations. Steric factors and crystel puching forces cas fore a ring to adopt a conformation ather than those on atse isolesed entity. Sixteen conformations, mome based on molecular mode: , have been identified. These include the six conformations detailed by Hei dricksom (1064). These forms are not representative of a particular chemical sybtern, but tieir lond lengths and aneles are within the limits of chemitcil viability, and ogrtade arraggements with interpenetrating
 elame ratio of the packering ampitates, formaly constitute poeudorotational pathways (Bossenkool and Boeyens, 1080; Evans and Boeyens, 1988). It is noted that in the rycloulkanes, where the C_{g} forms are of high energy, these
pathways are not low anscgy interconversion modes and hence are not pseudorotntional cycles in the sense described by Dale (1973b). The classical nomenclature of the C_{f} forms if derivod from the shapes of the forms in projection. Their pseudorotational partners are described as twist fommin
 illantrated in Figure 5.1. Oartexian coordinates are given in Appoudix 5.

boat-ehair

chair-chair

twist-chair-chastr

boat-boas

beat

- chaia

twist-boat-boss

twist-boat

Hipure 5 d Classicid forms of nine-membered cinge

Tables. 1
Tornion angles (in degrees) of the classical formas. The symmetry element (C_{2} or C_{g}) passes through the first atom,

norpen- clature	syman- etry	${ }_{1}$	ω_{2}	ω_{3}	${ }_{4}$	w_{5}
BC	C_{34}	-114	0	114	-114	0
TBC	D_{3}	-57	1.80	-57	-57	130
CO	C_{8}	-69	108	-138	88	0
TCC	C_{2}	-64	126	-135	80	-77
C	C_{8}	121	-30	-80	157	0
T0	C_{2}	-70	100	0	-88	125
B	C_{8}	-121	38	-80	117	0
TH	C_{2}	-70	108	-43	72	-143
BB	C_{8}	67	48	-10	-83	0
THB	C_{2}	80	-70	-10	-34	165
CB	C_{8}	80	-108	0	90	0
TCB	C_{2}	-72	78	44	-105	$\theta 3$
B6 ${ }^{\prime \prime}$	C_{6}	65	51	-140	82	0
TBC"	C_{2}	-43	124	--88	-88	117
CCl^{18}	C_{6}	-98	72	-134	117	0
TCC	C_{2}	-62	120	-84	01	-124

Thore are six Oremer and Pople (1975i) puckering parameters for a ninemaembered ming - wree amplitude and phase angle pairs, $\left(q_{m}, \phi_{m i}\right)$; $\mathrm{m}=2,3$, 4. The puckeriag amplitudes of the classical forme are given in Table 5.2. As noted for eight-membexed rings (Evane and Boeyens, 1988), when $\mathrm{t}_{\mathrm{m}}=0$, ϕ_{m} has no mearing.

Table 5.2
Puckering amplitudes (in A) of the classical forms

$\mathrm{RI}^{\prime}: 9$	${ }^{4}$	${ }_{3}$	a_{4}
BC	0.00	1.25	0.00
TBC	0.00	1.24	0.00
CO	0.00	0.53	0.87
TCO	0.00	0.53	0.87
C	0.54	1.10	0.22
${ }_{T C}$	0.68	1.04	$0.31)$
B	1.35	0.39	0.58
TB	1.25	0.36	0.53
BB	2.15	0.00	0.00
TBE	2,05	0.00	0.00
$C B$	1.64	0.67	0.43
TCB	1.28	0.82	0.45
$\mathrm{BO}^{\prime \prime}$	0.61	1.08	0.25
TBC"	0.64	1.14	0.24
OO"	B.85	0.40	0.87
TCO	0,20	0.43	0.98

The geonetrical interpretation of the six paremeters is abown in Figure 5.2.

Higute .2 .2 Geometrical interpretation of the puckering parameters

This definition may be interpreted as mappitg the fortns onto

- a 日erier of tori lying at positions determitned by a_{2} and ϕ_{2} on a major torus.
- a tribe, helically coiled about a torus defined by ${ }_{2}, \phi_{2}, q_{4}$ and ϕ_{4}. q_{8} and ϕ_{3} deffine a polint on 解 tube.

The former iaterpretation is the logical extension of the eight-membered rings mapped onto a series of tori located on a sphere, whereas the latigr interpretation has the advantage of mapplag the forms onto is continuous tube, thown in Figure 5.3.

Eigute 5.3 The complex 日urface for the mapping of nine-membered rings

A two-dimencional projection of either surface is achieved by projecting all forms oato $\phi_{2}=0$. The forms then map onto a torus given by q_{3}, q_{4}, ϕ_{3} and ϕ_{d}. A polar projection of thés compesite torus at $\phi_{2}=0$, with the radial axis along the $\phi_{3}=0$ ofrcle, is shown in Frgure 5.4. Preutorotational cyclea sppear as spirals. In three dimensions these may be visualized as helices an a minor torus stretched around the major torus, of as a helix wound around a tabe, colled in epace. Owertap of the forkns atenis at all positions $3,5, T$ and T^{\prime}, The BB-'EBB cycle is jlustrated as the cirole J-K, where ϕ_{4} in replaced by ϕ_{2} fo avoid projection of all forms to a point. The subscripty indicate the atom through which the symmetry elenent passes.

5.3 FEBULTS AND DISCUSSION

The TBCmBC and TBB-BB pyeudorotational cycles map onto mutuaty perpendicular circies, and ace showa in Figures 5.5 and 5.6 .

Figure 5 . The TBC-BC psendorotational cyele

The CC and TCO forane map onto a torus given by $g_{3^{1}} q_{4}, \phi_{3}$ and $\phi_{4^{+}} A$ polar projection of this surface is thown in FIgure 5.7.

Fiquze 5.8 The TCB-CB pseudorotational cycle

The angular nositions of all syminetrical forms can be expressed as integral multiples of $\pi / 18$. Enantioneric forms lie at argular positions

$$
\phi_{m}^{\prime}=\phi_{m}+\pi
$$

Eiguse Es The TE-E Breudorotational cycle

Eack classical fortn X is represented as X Xn, where I is the number of the atom throagh which the symrnetry element $\left(\mathrm{C}_{\mathrm{g}}\right.$ or C_{2}) passers. The mirror
 Bueyens, 1980).

A quantitative description of an intermediate form in terms of the conformational surface is clearly not passible. In this case, pivired form in expressed as a linear combination of primitive forms, as detailed in the previous chapter. A nine-membered sing is a linear combination of 3 ix primitive forme, illustrated forgave 3.13 .

5.4 EXAMPLDS

Conformational analyses, reviewed by Boeyene and Dobson (1987), show that most nitrofyen and sulphur donor macrocycles adopt either a [3a3] or a [234] conformation in terme of the Dale ($1973 \mathrm{~B}, \mathrm{~b}$) formaligm. The resulta of a puckering analysia of a number of nine-meminered macrocycles, characterized in Figure $\mathbf{3 . 1 4}$ end Table 5.3, ara giren in Table 5.4.

(a)
(Setzer, Ogle,
Whison,and
Glabs, 1953)

(d)
(Hart, Bueyens
Hancock, 1083)

(b)
(Giase, Wilson, and Setzer, 1980)

(c)
(Bceyens,
Dobson and
Hencock, 1085)

(c)
(Zompa, and
Warguilis 1878)

(t)
(Dobsoni, 1086)

Wigure 3. 14 Ntrogen and sulphur donor macrocyclen

On the basis of Figare 3.5, the structures (a)-(d) are described as twist-boat-chsir forms with some distortion to the boat-chair forms. Structures (e) and (i) cannot be correlated with any classical forms on the basis of the q_{m} and ϕ_{ma} values. These intermadiate forms are best described as a linear combination, as shown in Table 5.5. The linear coefficients also quantify the distortion of the riags (a)-(d) from the TBC form.

Table 5.5
The linear coefficieats of intermediate forma, The phase angles of the basis forms, denoted at k of $\mathbf{k} \pi / 18$, are given in parenthesio.

RENG	PRIMTITVE FORM					
	$\mathrm{E}_{2}^{\prime \prime}$		$E_{3}^{\prime \prime}$		$\mathrm{E}_{4}^{\prime \prime}$	
	cos- form	sim- form	cosm form	sinm form	$\cos -$ form	sinform
a	. 00	. 00	.26(18)	.75(15)	. 00	. 00
b	. 00	. 00	.22(0)	.78(3)	. 00	. 00
0	. 00	. 00	13(18)	.86(21)	. 00	. 00
d	. $04(14)$.02(34)	.15(36)	.73(33)	.01(36)	.05(35)
e	.05(14)	.28(15)	.44(38)	.11(33)	.17(2)	. 00
f	.14(18)	. $11(15)$.51(36)	.07(33)	.10(2)	.07(1)

The reaults show that the conformations of rings (a)-(d) are similar, and this form can be correlated with the [333] conformation of the Dale (1973a) formalism. The 9 -ane- N_{3} macrocycle (ring c) phows a pmaller distortion to the BC form. Tie $\mathrm{g}-\mathrm{ane}-\mathrm{N}_{2} \mathrm{~S}$ of the $\mathrm{Ni}^{\mathrm{II}}$ complex shows a slight distortion from a form on the BC-TBC aycle. The similar conformations of (a) and (f) can be correlated with the [234] conformation of the Dale (1073a) formalism.

These results corroborate previous observations (Boeyens and Dobson, 1887; Dobson, 1286) :
$9-a n e-N_{3}, ~ G-a n e-S_{3}$ and $9-a n e-\mathrm{N}_{2} \mathrm{~S}$ when coaplexed with $\mathrm{Ni}{ }^{\mathrm{II}}$ adopt a similer conformation alogg the BC-TBC psendonotational gycie. Whan 9-ane- $\mathrm{N}_{2} \mathrm{~S}$ is complexed with $\mathrm{Cu}^{\mathrm{II}}$, a different intermediate conformation is energetically preferred.

The general attlity of the model is illustrated in Figure 6.1.

fourtem-membered (Davis, White and Belford, 1975)

$$
x=\mathrm{A}_{6} \mathrm{c}_{3} \mathrm{c}_{1}^{\prime}\left(\mathrm{S}_{2}\right)
$$

sixteen-membered (Smith, Ekstrand and Maymond, 1978)

$$
x=B_{8} F_{2}\left(O_{2}\right)
$$

eighteen-membered (Yobikikawa, Toriumi, $\mathrm{Ito}_{\mathrm{l}}$ and Yamatera, 1982)

$$
x=A_{1} C_{4} C_{5}^{\prime}\left(S_{6}\right)
$$

Figure 6. The conformation of large macrocyelas. The symunetry element is indicnied in parenthesis.

The varlons symmetry elementa enaxue that a number of the coefficienta are xero. The method is appropriate for large aven-membered mactocycles, where at least ade element of byrmatry is generatly observed (Boeyuzs and Dobson, 1987). This is not so for large odd-membered rings, where the lack of symmetry gives a large number of non-trivial toeffictents. For exampie, 15-ane- $\mathrm{N}_{2} \mathrm{OS}_{2}$ (Loutis, Pelissard and Wass, 1976),

is described as $\mathrm{E}_{2}^{\prime} \mathrm{C}_{2} \mathrm{D}_{1} \mathrm{E}_{3} \mathrm{E}_{1}^{\prime} \mathrm{F}_{2}$

A large number of non-zero coefficients may be subjected to graphical intespretation. This method is used in the study of the omaplexes of 18-crown-6 with akkali metal cations. The conformations of these complexes have been used to model the transport mechamism for maetal ions across biologecal membranes, ecchibited by antibiotics like nonactin and vatinomycin (Dobler and Phizackozicy, 1974; Dunita, Dobler, Seiler, and Phimackerley, 1974; Dunita and Seiler, 1974; Seiler, Dobler and Dunitz, 1874). The percentage contribution of each primitive form is plotted as a bar graph in Figuire 6.2.

This is consistent with the structural findings of jusitz and others. A distortion from the frea ligand conformation is expected in complexes where the cation in either too large ($\mathrm{Rb}^{+}, \mathrm{Os}^{+}$) or too emall (Na^{+}) for the ligend "equilibrium cavity". A justificatioss of the ligand selectivity for the potassium ion based on this timited data is not possible, but the general utilisy of the method is evideat.

6.3 DISCUSSION

The methods used to describe the conformation of sinall rings have the generak tinsitation of increasing complexdty as ring gize incieases. The aze-dimensional model reduces the number of parasnethers necessary for conformational assigument, but not withoui a few approximations. The conformation of a small ring can be specified uniquely by the out-or-plane coordinates alone. For large tings ($\mathrm{N} \geqslant 16$), a set of out-of-plane displacements may be obtained from different in-plane shapes (Picleett and Strauss, 1071):

It is no longer atrictly true that the out- of-plane displacements are mach latger than the in-plane displacoments. As unambiguoss description holda for most conformations, but the model mast be intagpreted and applied cerefully.

The Dale ($1973 \mathrm{a}, \mathrm{b}$) nomenciaturg is based on the signg of the endocyclic torsion angles. It fe a description of the shape of the ring as projocted onto the Greroer and Pople (1975a) menan plane, and is thus perpendicular to the description in terms of out-mipplane displacements. Both afford a description of the shape of a prozected cing, bat onty the out-of-plane displacement model conforms to the acceated notion of ring pucketing. Fings which do not have the asme symmetry may be equivalent in the Dala formaligal. The sennimuantitative method proposed bere reflects a symmetry element in the Hinear coefficienta, but the aomenclatere is concige only if mone aymmetry is present. The analysiz in terme of the linear coeficicients affords a description of the conformation of ail tings in terms of one model.

7. SUMAMARY

A general definition of the Cremer and Popke puckering parameters has been derived from a group theoretical enalysis of the out-of-plane displecements of a planar polygon (Pickett and Strauss, 1871). The conditions required to Ex the unique Cxemer--Popte mean plane have been shown to be natural consequances of the grouy theory. The conformation of a general Nmmembered riag relative to this mean plane is therefore correlated with the out-0t-plane displacenesat modes of a regular polygon. The theoretical basis of the Gremer-Poqle method has provided insight into the relationship betwean the puckering parametera and eymmetry type and into the interpretation of this one-dimengional model.

It has been showin group theoreticaily that the net of puckered forms of an N -mambered ring is a linear apace. The normal out-ot-plane displacement nodee provide a antaral baria set for the analygis of complex conformations. Two kinearly indepeadeat modes equivalent to tile cos- amd ain-forms of each $E_{1 n}$ representation, and one of the two possible modes of the B_{2} represcritation for N even only, tiee superimposed to generate any pockered shape. These formas are part of an extended lacis set, congisting of overlapping bubsets, each with $N-3$ linearly independent elemonts. The Hnear coefilicients of these primitive forms are indegendent of the extent of pucker and of the ring numbering scheme. The method has provided a simple algort thm to identify the classical forms. Any intermediate form is a finear combination of a fevr aimple eliapes, weighted according to the binear coefficieata. In contrast to the graphical procedures, the method proposed here preaerves the qุusiatitative nature of the puckeriag patamoters.

Every conformation can therefore be expressed as a combination of ($\mathrm{N}-\mathrm{B}$) of these simple primitive shapes in the correct relative proportions.

The primitive forms often take on shapes farciitia: to the practical chemist. For example, any gix-membered ring

The coefficients A, B, and C give the relative contributions of each primitive form. The values are independent of the ring numbering scheme or chemical identity of the ring, and can be used to characterize any conformation. A unique description of ring conformation is obtained from the coefficients and the phase angles of the primitive forms.

These coefficients form the basis of a concise nomenclature, useful for large rings. The pair of forms of each degenerate rode, $\mathrm{E}_{\mathrm{m}}\left(\mathrm{m}_{\mathrm{m}}=2,8 \ldots\right)$, are denoted by the letters X and X^{\prime}, stating with B and E^{\prime} and progressing alphabetically as in increases. The nor-degenerate mode of even-membered tinge is denoted by A. The coefficients, which are matifplied by a factor of ten and rounded to the nearest integer, appear as subscripts,

For example, the six-membered ring described as:
$x=0.80$

$+8.10$

can be identified as $\chi=\mathrm{A}_{9} \mathrm{~B}_{1}$.

A Fortrart 77 progrem, CONTOR, has been writien to convert atomic coordinates of any ring into a desceiption of conformational type as a combination of primitive forms. The input requires only the number of ring atoms and the atomic coordinates, The primitive forms elasest to the ring of interest are determined. The algorithm, obtained from the group theoretical analpsis, is used to calculate the coefficients of each primitive form. The output provides the investigator with a set of coeffecients and phase angles of the contributing primitive forms. CONTOH provides a quatititative expansion of any contonmation into a linear sum of stmpic shapes.

The well-known classical forms (boas, chatr, etc.) take on eartain chatracteristic values of the coeffctents and phase angles of the prinitive focme. A comparison of these values provides a simple alcorithm, used by CONFOR $_{n}$ to identity any ring as a traditional classical form.

The group theoretical analysis of ring conformation, which is of practical importance to the experimentalist, offers a number of advantages:
.- Conformational aualgsis of cyclic compounds is aimplified. A description is teadily obtained from atomic coordixates uting the prograni CONFOR.
-I Identification of the classical forms is fully autamated and that provides an thamblgucua assignment and an indication of any slight diatortion from the clasical forms.

- The description is suitable for low symonetzy conformations and it prowides a nomenclatare of all ringa.
- The coefficients provide a set of quantitative parameters on which statistical analyses of a series of compounds can be based.
- A complex shape is expressed as a sum of simple shapes. The packered shape of any ring is readily vibualized in terms of the supexposition of a few fermiliar shapes.

77

APPENDEX 1
GHARACTER TABYES FOR THE D Nh POINT GROUPS
(Adapted from Wilson, Deciua and Orose (1956)
and Pickett and Strause (1971))

APPENDIX 2

TRIGONOMETRIC IDRNEITIES

It is requinud that

$$
\sum_{j=1}^{\mathbb{N}} \cos (4 \pi j m / N)=0 \text { and } \sum_{j=1}^{N} \sin (4 \pi j m / N)=0
$$

According to Dus d Robson (1959),

$$
\sum_{n=0}^{n=1} \cos (\alpha+n \beta)=\frac{\cos (\alpha+(n-1) / 2 \beta) \sin (n \beta / 2)}{\sin (\beta / 2)}
$$

and

$$
\sum_{n=0}^{\mathrm{n}-1} \sin (\alpha+\mathrm{n} \beta)=\frac{\sin (\alpha+(\mathrm{n}-1) / 2 \beta) \sin (\mathrm{n} \beta / 2)}{\sin (\beta / 2)}
$$

Hence

$\sum_{j=1}^{N} \cos (4 \pi j m / N)=\cos (4 \pi m / N)+\ldots+\cos (4 \pi m)$

$$
=\cos (4 \pi m / N)+\ldots+\cos (4 \pi m n(N-1) / N)+\cos (0)
$$

$$
=\cos [(N-1) / 2(A \pi m / N)] \sin (2 \pi m) / \sin (2 \pi m / N)
$$

$$
=0
$$

and

$$
\begin{aligned}
\sum_{j=1}^{N} \sin (4 \pi \operatorname{mon} / \mathrm{N}) & =\sin (4 \pi \sin / \mathrm{N})+\ldots+\sin (4 \pi \mathrm{~m}) \\
& =\sin (0)+\ldots+\sin (4 \pi n(\mathrm{~N}-1) / \mathrm{N}) \\
& =\sin [(\mathrm{N}-1) / 2(4 \pi \mathrm{~m} / \mathrm{N})] \sin (2 \pi \mathrm{~m}) / \sin (2 \pi m / \mathrm{N}) \\
& =0
\end{aligned}
$$

(These expressions hold if $\sin (2 \mathrm{~m} / \mathrm{N}) \neq 0$

$$
\begin{array}{lll}
\mathrm{m}=2,3 & \ldots & (\mathrm{~N}-1) / 2, \mathrm{~N} \text { odd } \\
\mathrm{m}=2,3 & \ldots & (\mathrm{~N} / 2) \mathrm{m}, \mathrm{~N} \text { even }
\end{array}
$$

Howlever

$$
\begin{array}{ll}
& \sin (2 \pi(m / N))=0 \\
\Rightarrow & 2 \mathrm{~m} / \mathrm{N}=\mathrm{K}, \mathrm{~K} \in \mathrm{~N} \\
\Rightarrow \quad & \mathrm{~N} \mid 2 \mathrm{~m}
\end{array}
$$

Since $m<N / 2, \forall N>3, \sin (2 \pi m / N) \neq 0$.

APPEADIX 3
CHARACTERISTICS OF THE LLNEAR COEFFHCLEN'IS

1. Linear independence of the Cremer--Pople normal modes

Due to the nature of the primitive forms for each $m, \cos (2 \pi n(j-1) / \mathrm{N})$, $\sin (2 \pi m(j-1) / N)$, they are matuaily orthogonal.

That is, $\quad \sum_{\cos _{3} j} z_{\text {sin }}^{3} \mathrm{j}=0$

In order for the set of these foums owex all m to be a suitable bosss, they should be linearly independent, By the fact that these forms are normal nodes of different symmetry types, tiby are linearly indepandent.

Proon:
To prove linear independence, we first show that the normal modes are orthogonal. That is

$$
\Sigma_{z_{j}}^{\alpha} x_{j}^{\beta}=0, \alpha_{1} \beta \text { norn. } 11 \text { moded }
$$

For No aven, consifer

$$
\sum_{j=1}^{N} \cos (z(j-1)) \cos [(2 m m / N)(-1)]
$$

Whing the identities,

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

$$
\text { i) } \begin{aligned}
& \sum_{\sin \left[(2 \pi / N)(j-1) M_{1}\right] \sin \left[\left(2 \pi / i_{1}\right)(j-1) M_{2}\right]} \\
& j-\frac{1}{2} 2 \cos \left[(2 \pi / N)(j-1)\left(M_{1}+M_{2}\right)\right]+\frac{1}{2} \underset{j}{2} \cos \left[(2 \pi / N)(j-1)\left(M_{1}-M_{2}\right)\right] \\
= & 0
\end{aligned}
$$

c) $\underset{j}{\sum \sin \left[(2 \pi / N)(j-1) M_{y}\right] \cos \left[(2 \pi / N)(j-1) M_{2}\right]}$
$=\Sigma \cos \left[(2 \pi / N)(j-1) M_{1}-\pi / 2\right] \cos \left[(2 \pi / N)(1-1) M_{2}\right]$
$=\frac{1}{2} \sum \cos \left[-\pi / 2+(2 \pi / N)(j-1)\left(M_{1}+M_{2}\right)\right]+$
$\frac{1}{2}{ }_{j} \cos \left[-\pi / 2+(8 \pi / N)(j-1)\left(M_{1}-M_{2}\right)\right]$
$=0$
d) $\frac{2}{j} \sin \left[(2 \pi / \mathrm{N})(3-1) \mathrm{M}_{2}\right] \cos \left[(2 x / \mathrm{N})(\mathrm{j}-1) \mathrm{M}_{1}\right]=0$
(By analogy with c.)

We now show orthogonality \Rightarrow linear independence.

Suppose the a_{f} of the modes $a_{1} R_{1} \ldots \xi$ wite given as $z_{i}^{(c)}, \ldots z_{i}^{(\xi)}$

Suppose these modes are not linearly independent

Then

$$
\begin{aligned}
& \alpha^{\prime} z_{i}^{(\alpha)}+\ldots \xi^{\prime} z_{2}^{(\xi)}=0 \quad \forall 1 \\
& \Rightarrow \exists \text { at least two coeffictents } \neq 0 \\
& \text { (since } \left.z_{i} \neq 0 \forall j\right)
\end{aligned}
$$

At feast one of the nodes, 日ay α, is a lineax combination of at least one other mode β :

$$
z_{i}^{(\alpha)}=\gamma z_{i}^{(\beta)}+\frac{q}{\delta} \pi_{\delta} z_{i}^{(\delta)}
$$

Now α nad β are orthogonal

$$
\begin{aligned}
& \sum_{i} z_{i}(\alpha) z_{i}(\beta)=\sum_{i} z_{i}^{(\beta)}\left(\gamma z_{i}^{(\beta)}+\sum_{\delta} \pi_{\delta_{i}}^{(\delta)}\right)
\end{aligned}
$$

But

$$
\gamma_{i}^{Z_{i}}(\rho)_{z_{i}}(\emptyset) \neq 0,\left(\text { since } Y_{i}(\beta)^{2}=0 \Longrightarrow y_{1}=0 \forall i\right)
$$

 The modes are therefore linearly independent.

Hence

for N even

$$
\begin{aligned}
& A(-1)^{j}+\sum_{m} a_{m}[\cos (2 \pi m(j-1) / N)]+b_{m}[\sin (2 \pi m(j-1) / N)]=0, \forall j \\
& \quad \Rightarrow \quad A, a_{m}, b_{m}=0, \forall m
\end{aligned}
$$

and for N odd

$$
\begin{aligned}
& \left.\Sigma_{m} a_{m}[\cos (2 \pi m(j-1) / N)]+b_{m}[\sin (2 \pi m(j-1) / N)]=0, V\right] \\
& \quad \Rightarrow b_{m}, b_{m}=0, V_{m}
\end{aligned}
$$

This is used in solving the eqmations for a linear combination of primitive forms.
2. The primitive forms are lineariy independent.

Bach primitive form is a linear combination of the normal modee (which are linearly independent).

Considar a cos-and cin-form at ϕ_{m} and $\dot{\phi}_{\text {IR }}+\kappa$ respectively,
The coefficietsts of a form at $\phi_{\mathrm{m}}^{\mathrm{n}}$ in the finear expantion in terms of $\cos (2 \pi m / N)(j-1)]$ and $\sin [2 \pi n / N)(j-1)] \operatorname{arc} \cos \phi^{t 1}$ end $-\sin \phi^{\phi}$ respectively.

Let

$$
\begin{aligned}
& \sum c_{m}\left(\cos \phi_{m} \cos [(2 \pi m / N)(j-1)]-\sin \phi_{\mathrm{m}} \sin [(2 \pi m / N)(j-1)]\right) \\
& +\mathrm{a}_{\mathrm{m}}\left(\cos \left(\phi_{\mathrm{m}}+\kappa\right) \cos [(2 \pi m / \mathrm{N})(j-1)]-\sin \left(\phi_{\mathrm{m}}+\kappa\right) \sin [(2 \pi x \mathrm{~m} / \mathrm{N})(j-1)]\right) \\
& =0
\end{aligned}
$$

Since $\cos [(2 \pi m / N)(j-1)]$ and $\sin [(2 \pi m / N)(j-1)]$ are linearly independent and the poirs in me ere linearly tudependent, we have

$$
c_{m} \cos \phi_{m}+d_{m} \cos \phi_{m} \cos \kappa-d_{m} \sin \phi_{m} \sin \kappa=0
$$

and

$$
c_{m}^{\sin \phi_{m}+d_{m} \sin \phi_{m} \cos \kappa+d_{m} \cos \varphi_{m} \sin k=0, \text { for } a \| m . . ~ . m . ~}
$$

Hence

$\sin \phi_{\mathrm{m}} *\left(c_{\mathrm{m}} \cos \phi_{\mathrm{m}}+d_{\mathrm{m}} \cos \phi_{\mathrm{m}} \cos \alpha-d_{m} \sin \phi_{\mathrm{m}} \sin \alpha\right)=0$
$\cos \frac{4}{m}^{*}\left(c_{m} \sin \phi_{m}+t_{m} \sin \phi_{m} \cos \kappa+d_{m} \cos \phi_{m} \sin k\right)=0$, for all m.

$$
\text { This gives: } \quad \begin{aligned}
& d_{m} \sin k=0 \\
& \\
& \text { or } d_{m}=0 \text { unless } N=0 \text { or } \pi_{,} \text {which it does not, } \\
& \\
& \text { and } c_{m} \cos \phi_{m}=0 \\
& \\
& c_{m}{ }^{\sin \phi_{m}}=0 \Rightarrow c_{m}=0
\end{aligned}
$$

Therefore the primitive forms are linearly independent.
3. The linear coefficienis are indopeadent of the atomic numbering scheme

Since the normal modes of E_{m} are lineariy independent, the equations for the Hisear coefficients may be solved in groups of m. The expressions for a ning at $\phi_{m}=R$, with primitive forms at phase angles A and B, ere:
$X A(M)=\frac{-Q \cos R \sin B+Q \sin R \cos B}{\sin A \cos B-\cos A \sin B}$ (cosficient of cos-form) $X B(M)=\frac{Q \cos A \sin A-Q \sin A \cos A}{\sin A \cos B-\cos A \sin B}$ (coefacient of sin-form)

Axy equivalent primitive forms are generateá by C_{n} or S_{n} operationg: $\phi^{\prime} \rightarrow$ $\phi+(2 \pi r a / N)$. Any ring will thas have equivalent forms (a different ring numbering) at $\phi_{\mathrm{m}}{ }^{\prime}+(2 \pi \mathrm{~m} / \mathrm{N})$ (Pickett and Strousb, 1971).

A description of the ang bhould be independent of the ring numberiag chosen;

$$
\begin{aligned}
& \text { This gives: } \\
& d_{m} \sin \alpha=0 \\
& \text { of } \mathrm{d}_{\mathrm{m}}=0 \text { unleti } k=0 \text { or } \pi \text {, which it does not, } \\
& \text { and } c_{m} \cos \phi_{m}=0 \\
& c_{m} \operatorname{tin} \phi_{m}=0 \Rightarrow c_{m}=0
\end{aligned}
$$

Therefore the primitive forms ate lizearly independent.
3. The linear coefficients ate independent of the atomic numbering scheme

Since the normal modes of E_{m} are linearly independent, the equations for the linear coefficienta may be solved in groups of m. The expressions for a ring at $\phi_{m}=\mathbf{R}$, with primitive forms at phase angles A and B, are:
$X A(M)=\frac{-Q \cos R \sin B+Q \sin R \cos B}{\sin A \cos B-\cos A \sin B}$ (coefficient $\left.0_{2}^{\circ} \cos -f o r m\right)$
$X B(M)=\frac{Q \cos R \sin A-Q \sin R \cos A}{\sin A \cos B-\cos A \sin B}$ (cosfficient of sin-form)

Any equivolent primitive forms are generated by C_{n} or S_{n} operations: ϕ, -1 $\phi^{\prime}+(2 \pi m / N)$. Any ring will thus have equivalent forms (a different ring numbering at at $\phi_{\mathrm{ml}}{ }^{\prime}+(2 \mathrm{~mm} / \mathrm{N})$ (Piskett and Strausi, 197L).

A detcription of the ring should be independent of the ring numbaring chasen;

87

i.e. the linear coefficienta should be equal in both these cases. This can be slown to be the cabe.

Consider the sing at $\phi_{m}=R$, with the closest primitive forms at phase angles of A and B. An equivatent phase tans lies at $\phi_{m}+8 \pi m / N$. Let $(2 \mathrm{~nm} / \mathrm{N})=a$ Then for this equivalent phase

ϕ (cosform)	$=A+\alpha$
ϕ (ginform)	$=\mathrm{A}+\boldsymbol{a}$
ϕ (ring)	$=\mathrm{A}+\boldsymbol{a}$

The coefincients are given by X.A' and XB',
$x A^{\prime}=\frac{-\cos (A+\alpha) \sin (B+\alpha)+\sin (B+\alpha) \cos (B+\alpha)}{\sin (A+\alpha) \cos (B+a)-\cos (A+\alpha) \sin (B+a)}$

The nuruerator reduces to:

$-\cos \mathrm{R} \sin \mathrm{B} \cos ^{2} a+\sin \mathrm{f} \sin \mathrm{B} \sin \alpha \cos \alpha-\cos B \cos \mathrm{R} \sin \alpha$ $\cos \alpha+\cos B \sin R \sin ^{2} \alpha+\sin R \cos B \cos ^{2} \alpha+\cos R \cos B \sin \alpha$
$\cos \alpha-\sin B \sin \alpha \cos \alpha \sin \mathrm{~A}-\cos \mathrm{R} \sin \mathrm{B} \sin ^{2} \alpha$

$$
=-\cos R \sin B+\sin A \cos B
$$

The denominator becomes

$\sin A \cos \mathrm{~A} \cos ^{2} \alpha-\sin \mathrm{A} \sin \mathrm{B} \cos \alpha \sin \alpha+\cos \mathrm{A} \cos \mathrm{B} \sin \alpha \cos \alpha-\cos A$ $\sin \mathrm{B} \sin ^{2} \alpha+\cos \mathrm{B} \sin \mathrm{A} \sin ^{2} \alpha-\cos \mathrm{A} \sin \mathrm{B} \cos ^{2} \alpha-\cos \mathrm{A} \cos \mathrm{B} \cos \alpha$ $\sin a+\sin A \sin B \cos \alpha \sin \alpha$ $=\cos \mathrm{B} \sin \mathrm{A}-\cos \mathrm{A} \sin \mathrm{B}$

The fumerator in the XB' expresslon is
$(\cos \mathrm{R} \cos \alpha-\sin \mathrm{R} \sin \alpha)(\sin \mathrm{A} \cos \alpha+\cos \mathrm{A} \sin \alpha)$
$-(\sin A \cos \alpha+\cos R \sin \alpha)(\cos A \cos \alpha-\sin A \sin a)$
$=\cos \mathbf{R} \sin \mathrm{A}-\sin \mathrm{R} \cos \mathrm{A}$
XA', XB' ate therofore the same as those given for the ring at R , even though the purimative forms are different.

If a form has aelther C_{2} nor σ_{Y} symmetry, the enantiomeric form will not be generated oy C_{n} or S_{n} oporations. Thus the phase angle of $\phi+(2 \mathrm{~mm} / \mathrm{N})(+$ (π) will not generate this darm. It can only be generated by C_{2} though atom 1 followed by a_{h}. This implies ((Fickett and Strause, 1971)
$t+-\phi+\pi+x \equiv-\phi$
Thut if a form lies at ϕ, the eamntiomer lies at $-\phi$. It muss be chown that the coefficteats oi enantiomers are the same, gince the enantiomer may be generated by a different atomic numbering.

P^{\prime} is generated from P by rotation of $2 t$, atint ; the spacings of the primitive forms are 2 k . We now 瞳ow P^{\prime} and X have the game linear coefficients. Since P^{3} end P are related by a C_{n} operation these have the game coefficients.

The form X

XA
$=\frac{-\cos (A+\alpha) \sin (A+\kappa)+\sin (A+a) \cos (A+\kappa)}{\sin A[\cos A \cos k-\sin A \sin \kappa]-\cos A[\sin A \cos x+\sin \mu \cos A]}$

The fort P,

$$
X A=\frac{-\cos (A+2 k-\alpha) A(A(A+\kappa)+\sin (A+2 k-\alpha) \cos (A+\kappa)}{\sin (A+2 \pi) \cos (A+\kappa)-\cos (A+2 n) \sin (A+k)}
$$

This donominator becomea:
$-\sin ^{2} A \sin x \cos 2 x+\cos ^{2} A \sin 2 \kappa \cos x+\sin ^{2} A \cos \kappa \sin 2 x-\cos ^{2} A$ $\sin \hbar \cos 2 \kappa$
$=-\sin \pi \cos 2 \mu+\sin 8 \pi \cos \pi$
$=\sin \pi$
The numerator reduces to
$-\sin A \cos A \cos \kappa \cos \alpha \cos 2 k-\sin ^{2} A \cos x \sin \alpha \cos 2 k+\sin ^{2} A \cos x \cos$ $\alpha \sin 2 x-\sin A \cos A \cos k \sin \alpha \sin 2 k-\cos ^{2} A \sin \kappa \cos \alpha \cos 2 k-\cos A$ $\sin A \sin k \sin \alpha \cos 2 k+\cos A \sin A \sin k \cos \alpha \sin 2 \kappa-\cos ^{2} A \sin k \sin \alpha$ $\operatorname{stn} 2 k+\cos A \sin A \cos k \cos \alpha \cos 2 k-\cos ^{2} A \cos k \cos 2 k \sin a+\cos ^{2} A$
 $+\cos A \sin A \sin r \sin a \cos 2 x-\cos A \sin A \sin x \cos \alpha \sin 2 k-\operatorname{ain} 2 A \sin s$ $\sin \alpha \sin 2 \kappa$

픈 $\cos \alpha \cos 2 \kappa \sin a+\cos k \sin 2 \beta \cos \alpha$
$-\sin \kappa \cos 2 x \cos \alpha-\sin \alpha \sin 2 k \sin \alpha$
$=\sin \alpha\left[-\cos \left[5\left(\cos ^{3} n-\sin ^{2} n\right\}-2 \sin ^{2} \kappa \cos n\right]\right.$
$+\cos \alpha\left[2 \cos ^{2} \kappa \sin n-\sin k\left(\cos ^{2} \kappa-\sin ^{2} k\right)\right]$
$=\sim \sin \alpha \cos \alpha+\cos \alpha \sin \kappa$

The numerator of the forms:

$$
\begin{aligned}
\mathrm{P}: \quad \mathrm{XB} & =\cos (A+2 \kappa-\alpha) \sin (A+2 \kappa)- \\
& \sin (A+2 \kappa-\alpha) \cos (A+2 \kappa) \\
\mathrm{X}: \quad \mathrm{XB} & =\cos (A+\alpha) \sin (A+2 \kappa)-\sin (A+a) \cos (A+2 \kappa) \\
& =-\sin a
\end{aligned}
$$

The expression for P' becomes:
$\sin A \cos A \cos \alpha \cos ^{2} 2 \mu+\sin ^{2} A \cos ^{2} 2 \kappa \sin \alpha$
$-\sin ^{2} A \cos 2 \kappa \sin 2 \kappa \cos \alpha+\cos A \sin A \cos 2 \kappa \sin 2 \kappa \sin \alpha$
$+\cos ^{2} A \sin 2 k \cos 2 k \cos \alpha+\cos A \sin A \sin 2 k \cos 2 k \sin a$
$-\cos A \sin A \sin ^{2} 2 \kappa \cos \alpha+\cos ^{2} A \sin ^{2} 2 k \sin \alpha$
$-\cos A \sin A \cos ^{2} 2 x \cos \alpha+\cos ^{2} A \cos ^{2} 2 x \sin \alpha$
$-\cos { }^{2} \mathrm{~A} \cos 2 \kappa \sin 2 \kappa \cos \alpha-\cos \mathrm{A} \sin \mathrm{A} \cos 2 \kappa \sin 2 \kappa \sin \alpha$
$+\sin { }^{2} A \sin 2 k \cos 2 k \cos a-\sin A \cos A \sin 2 k \cos 2 k \sin \alpha$
$+\sin A \cos A \sin ^{2} 2 \kappa \cos \alpha+\sin ^{2} A \sin ^{2} 2 \kappa \sin \alpha$
$=\operatorname{tin} \alpha$

The cocfficients of enaintiomers are therefore the aame

4. Two primitive forms (cos-form and a'n-form) differ It phate only e.g. primitive forme of eight-inambexed rings

VGETE (2,111)
MEHI $(2,199)$
Hitite 2 ,503)

[^0]

日RTA ETD

swaiditine will

Trajan
$001000 \mathrm{E}=1 \mathrm{IN}$
Ted

60501900
tols xH Hz
thatit (t)
1000 cantiole
DETUR

6H:

4
 150 P133.141
$30211 \mathrm{H} \mathrm{x}_{2} \mathrm{H}$

ractan. 417 dess 29

tol confinus

24

0

4athot
DO $250 \mathrm{H} \times 2, \mathrm{y}$

260 chintive
TOTL-EDTH
Kancrini,110)
Hind 2.5)

(1014 ${ }^{2}(2,111)$
(154)(2,505)

mith (2, (0y)

30 cothrint
Try/damb

๕

Mringen mixas

 (1) ${ }^{1}$


```
4. \(+=1.1\)
3158
Ald. 0
beIf
```


6
6

fit $(\underline{1} \times 1(\rho-1)+2$
os conition
3IKT

3 Comritus

E

axta

(0) 7aso J=1,6

9000 comprilis

c

64t
DO 161 Endin

54120151,3

WIM=1d(t-1) 6
(t) 60 ITHEDE

4789
Ch

RLSE
10140 13 $\$ 15$
((1) $)^{4}(\mathbf{2}-1)$

140 Coninint
Mis

Hin
ut chatidut

Hith H2

 1, $4,630,4,0,4.2297$

4, $4,0,0,636,0,2 a y /$

4.0.0.113

(54, 9.2) 3

4. $172,0.172,0.11 \%$

DJ $7500 \mathrm{Ial}, 15$

()

9560 chan 11 酸
30750112512

14(2)

M8

to6s cerminios

50 9018 371. 8

$\%$
IIt

IF(a)

3016 contrias
QiIF 16.16

an comelion
th．
（2x（2， 5 （3）

（a）（T）anditis）
50 $302 \mathrm{~d} 2 \mathrm{y}, \mathrm{k}$

（1）
政
아난ㄷ․ 0

coatins

nsi
tomtyos

Milip

735j）Manis

明

t

（Ty！

路叫

K（I）$=[4(\mathrm{I}-\mathrm{C})$
$4(\mathrm{t})=86(\mathrm{I}-1)+1{ }^{2}$
cole chirlat

維虾

（ㅁ（ 1$)=100(1013$

foss colizilue

Whit $=11$
$1040 \$ 3$ It1, 11

403t contintis

14S8

(1) 1 2 $\mathbf{4}$ ($1+1$)

WII $12+(1+1)+1$
40 con

twity
45 collitip:

1Fin

OHE SEl $11.0,0.0 /$
Dutik 5te $10.4,1,01$

yta cosarinit

c

4000 Cont
109 $9663 \mathrm{I}+2$, H

IT (TIIC)

M(J):
LOH1 contixis

(925 Do $1021 \mathrm{Jal}, 14$

Miftalat

ER(

(and
40al cortilits
975-16.69

4968 colitrow

to 10 OOOL

" 7 (1)

Hous chative
(171010.03
(Whar 10.01
\$0 $1499 \mathrm{Jal}, 14$

13s cownize

别却
301519 In 1,4

（ti）comthen

组旗

 ELS

this E月 $11,04,4,0,0,0,4,6,0,4,0,4,0,30 \quad 9,0,0,502, *, 401,0,1,0.0$

60．0．617，0．255，9．0．0．4／

52， $0.0,0,0.0,0.315,5.319$／

$\$ 0,0,104,0.154,0,0,0,1 /$

$5,0,0,0.0,0.145,0.199 /$
De 4I5t IEf， 5

（4）
301 COMEIROS
的 9665 La ，H

9046 cobrliex

（6） 51311 Jul， 10

B11！wintitit

06 5998 Joi， ta

alcal

6112 continit
解 $1=16.03$

6447 Corrixit

6

20 3113 jx1, 18

A

[5 (1)

S906 COHTHMS

5994 comituos

314）

4．47＇ 101

10 $51 / 7 \mathrm{~F}+1,18$
Alifer $180+(204180 t(\mathrm{~J}-1)) / 16$

LEA

5117 chalimit

to B 9 g 2 Jan ， La

覑相

It（ unit14

Io Blif Joly 16

514 Chatilus

S935 contiluit

00 Hif $7=5$ ， 18

fitt?

 4 Hx(14)

Wis.

IR(

Tw

5119 corrixat

399 ctazilit

4 42431

 HHE(N)

Do b:14 3=1,16

W

SLit, 1000)

5(J)
514 cmins

80 5355541,16

5998 cy

(1)

17(4)

5160 Cutinith
jaritall
Dis Smis Jxi,is

5 53 comitioi

4) (12)

11(h)

kt

5 fla cominal

6fliters)

titus 10)

Hetis
$5050001 \pm 1,4$

R H

6 （ary

6
II（4．18．4）
A $18-1.0$
析
Mnti． O
Higir
7土ats（t）
$\stackrel{\rightharpoonup}{6}$

70243 Jcl， 11

byllali

366 Conitione

叫 $308[51,3$
［15－24（5－1）
$\mathrm{L}(\mathrm{t}) \times 2 \mathbf{2} \mathbf{t}(\mathrm{t}-1)+12$

n43

WITad $\{1-1\}$
1（ $\mathrm{I} \mid+(\mathrm{t}-1)+1$
398 60172

nait

2 N COMTINTE

33 comprilis

OLL M M M（

70 $309 \mathrm{E}=\mathbf{2}$ ， H

D0 363 24l， 5

4(7) $164(1-1)$ t
124 contuge
Hess

[$(1\}=324(\mathrm{I}-1)$

379 chatimat
$\boldsymbol{H}_{\mathrm{H}} \mathrm{CH}$
ThS:

K(LIt 1
MI $=5=(1-1)+4$
3 3 contrint
MTA4
nant

obs conticis

cuse

D0 3941×1,?

$4(1)-12+(1-1)+6$
599 comintit
new
HSt

LITM44
53 CWHITR
arcels
monty

Chth sitilid

[17

siatr
sicture
5
4.2 Semple Outpat File

CONFRIMATIONAL ANAL.YSIS OF AN ILLUSTRATIVB EXAMPLE B MEMBEAED RING

PUCKZURING PARAMETERS
$\mathrm{M} \quad \mathrm{Q}(\mathrm{M}) \quad \mathrm{PHI}(\mathrm{M})$
$21.250 \quad 5.00$
$3 \quad .000 \quad 90.00$
$Q(4)=\quad .000$
CORFITOIENTS OF PRIMITIVE FORMS
M COSFORM SINFORM
$2 \quad 1.245 \quad .109$
3.000 .000

NORMALISED COEFFICLENTS
M COEFFTLTENT ANGULAR VALUE OF PRTMITIVE OF PRIMITIVE
FORM TORM

2	$.020^{\mathrm{a}}$	0.0^{b}
	.080	8.0
3	.000	8.0
	.000	4.0
4	.000	-1.0

WAANING : THIS IS VERY SIMILAR TO A BB FORM
 b- the phase anglos are expressed as is of $4 \pi f$ fiN

REPERAENCES

ADAMS, W.J., GMSB , F.J., and BARTELL, L.S. (1970). I. Am, Chem. Soc. 92, 5013-5019

ALTONA, C., and SUNDARALINGAM, M. (1072). J.Am, Chern. Soc. 94, 8203-8212

BADYER A. (1885). Bex, 18,2269
BOMAN, D.F., PICKETT, K.M., HOUNDS, T.C., and STRAUSS, H.L. (1975). J.An-Chem. S0c. 97, 687-695

BOESSENKOOL, I.K., and BOEYENS, J.C.A. (1980), J_ Gryst. Mol. Struct: 10, 12-18

BOEYENS, J.G.A., BULL, J.R., TUNMAN, A., and VAN ROOYEN, P.․․ (1979). J. Am. Chem. Soc. Perkin Tzang. In, 1279-1287

BODYENS, J.GA, and DOBSON, S.M. (1987). in Sterenchemistiy of Srganometalic and Inorganic Compounds: Volume 2 (Elsevier, Ansterdam), edited ly 1. Bernal

BORYENS, J.C.A., DOBSON, S.M., and HANCOCK, R.D. (1085). Frote Chem 24, 3073-3076

GECCARELDI, C., BUBLE, J,R, and IEFPRRY, G.A. (1980). Acta CEyPEt. B36, 861-865

CR.EMER, D. (1994). Acts_Ccyet B40, 498-500
 1354-1358

CREMER, D, AHE POPLE, J.A. (197Sb). I. Am. Ohem. Soc, 97, 1358-1356
DALE, J. (1973a). Acta Chem. Scand, $27,1115=1129$

DALE, J. (1973b), Acta Chem. Scand. 27, 1130-1148

DAVES, P.H., WHITE, L.K., and BELFORD, R.L. (1975), IGOrg Chome 14, 1753-1757

DOBEER, M., and PHIZACKBRLIEY, R.F. (1974). Acta Ctyst. B90, $2746-2750$

DOBSON S.M. (1086). A Cryetatlogreghic and Themodmamic Study of Mactocyclic Complexes, Ph.D. Thesis, University of the Witwatersrand, Johannesbuxg, South Africa

DURELL, C.V., and ROBSON, A (1959). Adwanced Trigopometry (G. Bell \& Sons, Loniont $\mathrm{Pp} .125-126$

DUNITZ, J.D., DOBKER, M., SEIEEK, P., and PHIACKERLEY, R.P. (1974), Acta. Cryat, Bato, 2732-2738

DUNITZ, E.D. \quad SEIEER, P. (1974). Acta Crys. B30, 2729-2743
BVANS, D.G., and HOEYTNS, J.C A. (1088), Acta Cryst, B, in press.

FLAPPER, W.M.J., and ROMERS, C. (1975). Tetrehedron 31, 1705-1713
GAL, M., FEEER, O., THEANY, N., HORVATH, G., JERKOVICH, G_{4} ARGAY, G., and KALMAN, A. (1980). Tetrahedron Leth 21, 1567-1570

GEISE, H.J., ADAMS, W.J., and BARTELL, L.S. (1969). Tetrahtegrom 25, 3045-3052

PICKETTT, F.M., and SPRAUSS, H.L. (1070). L.Am. Chem Soc, 92, 7281-7290

PIGKETT, H.M, add sTRAUSS, 甘.L. (19\%1). J. Chem. Phys. 55, 324-334

SACHSE, H. (1890). Z. Phyeik. Chom, 10, 203
SEIEER, P., DOBLER, M., and DUNTTL, J.D. (1874). Lcta Gryst. BSO, 2744-2745

SETZER, W.N., OGLE, C.A., WILSON, G.S., and GLASS, R.S, (19B3). Znorg. Chera, 22, 266-271

SMITH, W.L., EKSIRAND, J.D., and RAYMOND, K.N. (1978). J. Am, Chem Soc, 100, 3399-3544

WILSON, E.B., DECIUS, J.C., and CROSS, D.C. (1955). Molecular Yibrationa (McGraw-Hill, New Yotk), pi. 318-340

YOSHIKÁWA, צ., TORIUMI, K., MO, T., and YAMATERA, H. (1882), Bull, Chen, Soc, Jyn, $55,1422-1424$

ZOMPA, L.J., and MARGULIS, T.N. (1978). Inorg. Cheithacta 28 , L.157-L159

Author Evans Deborah Glynis
Name of thesis The Linear Space Of Ring Conformations. 1988

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

[^0]: IF(NB/2,6x,H)
 1C 7 相/2

 hisk

 Wint

