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ABSTRACT

The use of embedded computers in Railway Signalling 
systems and other highly-critical monitoring and 
control applications has led to a demand for an 
effective method of validation of the software within 
such systems. An important aspect of validation is 
proving a computer programme to be consistent with its 
specification.

This dissertation proposes a pragmatic method of 
proving a machine-code programme to be consistent with 
its high-level p r o g r a m s  specification. A disassembly 
of the machine-code programme is obtained and 
automatically analysed in terms of control-flow and 
data-flow. By using information from the data- 
declaration portion of the specification, the 
disassembly listing is translated to a level 
corresponding to that of the high-level specification. 
Consistency between the translated programme and the 
original high-level specification is proved by direct 
comparison.

The dissertation suggests the validity of the above 
approach and shows by example, how such an approach may 
be implemented.
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CHAPTER 1 INTRODUCTION

1.1 Background

In railway signalling, an "Interlocking system" is a 
control system which ensures the safe operation of 
trains. Until very recently, all interlocking systems 
vrfire fail-safe, ^el&y-based control systems. These 
relay-based Inter leaking systems have evolved to a 
point where they display extremely high degrees of 
reliability. However, many of the relays used in 
reley-based interlocking systems are specialised items 
which are expensive to manufacture and require routine 
maintenance.

The interlocking function is essentially the logical 
manipulation of an input state to produce an output 
state and is chus ideally suited to implementation by a 
computer-based system. With the cost of computer 
hardware continually decreasing, computer-based 
interlocking systems are becoming an in-.reasingly 
attractive alternative to rsloy-based interlocking 
systems. Several electronic, computer-based
interlocking systems are already in use in various 
countries as pilot schemes for evaluation.

The south African Transport Services, who are 
responsible for the national railway system, has had 
two computer-based, electronic interlocking systems 
commissioned for evaluation. In addition to evaluation 
of the individual interlocking systems, the South 
African Transport Services wishes to keep abreast of 
technology in the field of electronic interlocking 
systems.

In order to be a viable alternative to relay-based



interlocking systems, electronic interlocking systems 
must at least match the safety standards of relay-based 
interlocking systems. This high degree of safety 
required is normally achieved by hardware redundancy. 
Software output-coruparlson and voting are used to 
isolate faulty components or, in the event of multiple 
failure, to shut-down the entire system. Software 
also often does routine hardware-monitoring to check 
the integrity of hardware components such as RAM and 
PROM memories. Thus the integrity of the software is 
of prime importance,

Therefore, before a compute.'-based interlocking system 
can be put into use, engineers in the railway 
organisation must satisfy themselves as to the 
integrity of the embedded software. Also, if changes 
are t- be made to the software after commissioning, 
engineers making the changes must be able to show that 
their changes have not decreased the safety of the 
railway system controlled by the computer-based 
interlocking system.

•Thus a iibcu for a method of dating software
embedded in electronic interlocking systems was 
required by the South African Transport Services. The 
research described in this dissertation was sponsored 
by the South African Transport Services in order to 
develop such a validation method.

1.2 Statement of the Problem

"The computer's messed it up again!'1
"It's not the computer, it's those people who work it I"

These days, most people have at some time or other 
encountered a computer malfunction or computer-operator



error. These errors manifest themselves In the form of 
exorbitant water accounts, incorrect bank balances, 
delayed aircraft schedules and the like. These errors 
are the errors which arise in '‘business computers". 
When these computers are incorrectly programmed or 
operated, or when they malfunction, the harm they do is 
to stlr-up human emotions varying from Irritation to 
frenzied anger.

There is another class of computers whose consequences 
of failure from malfunction or incorrect programming 
are far more dire. These are the "life-critical 
embedded systems" - the computers that steer 
aircraft, route trains, monitor nuclear reactors and 
perform a host of other life-critical functions. These 
computers simply must not fail. They must do exactly 
what their users intend them to do, even if they have 
been programmed Co do otherwise! Therein lies the 
dilemma.

In the world of real-time process-control, a computer 
Is empolyed to do a specific job and nothing else. Two 
grey areas iirjr.ediately become apparent. How does one 
exactly specify the job the computer is to do and how 
does one precisely translate that job specification 
into a computer-executable programme? The extent to 
which these duties can be correctly performed 
determines the extent to which a computer will do what 
it is required to do.

With any method of specification and translation, one 
aims to ensure that the specification exactly 
represents the requirements and that the programme, 
translated from the specification, exactly represents 
the specification. This is the crux of software 
validation.



Whatever the form of the programme and however it was 
generated, it must be shown to meet its requirements, 
whatever form they too, may take. This is the ultimate 
goal of validation. In the real world, however, 
infinite variations of programming style and technique 
render this task impossible.

Where validation of programmes is essential, programmes 
must be written in a way which will facilitate their 
validation. The use of haphazard control-flow and 
“sneaky", elusive data manipulations renders a 
validator's task extremely difficult and eliminates the 
possibility of automatic analysis of programmes. An 
automated or semi-automated validation technique 
requires that programmes be written using only 
allowable constructs and forms of data-manipulation. 
This places restrictions on programmers, but in the 
words of C.A.R. Hoare, “ ...and simplicity is the 
unavoidable price we must pay for reliability!" (Hoare 
[1975 3 p. 533).

Software is generated for many very different 
applications. Each different application requires 
programmes to be written to suit that application.

Therefore, programmes are written in a variety of 
languages and using a variety of data-manipulation 
techniques, from low-level bit-manipulation to high- 
level mathematical computation. Therefore, no single 
validation technique can be expected to be universally 
applicable. For a particular application, a validation 
technique must be fornd which is most suited to the 
type of software and fro the software generation process 
used in that application.

Software written for the control of real-time 
processes, such as those performed by an electronic



Interlocking system, must cater for such things as bit- 
manipulation and critical timing. In this field, 
software is often produced as hand-written assemtily- 
language code or compiled from languages allowing low- 
level manipulation. In railway signalling, fail-safety 
is of prime importance and so validation of any 
software for an electronic interlocking system is 
essential. However, no convincing techniques for 
validation of low-level programmes exist. The 
techniques normally used are those borrowed from other 
areas of application - techniques which were developed 
with different validation goals in mind.

A survey was conducted of available publications on the 
subject of software validation, verification and 
testing (Chapter 2). Almost all publications referred 
to static code-parsing and dynamic testing of 
programmes written in high-level languages. Where 
authors and researchers referred to validation 
throughout the life-cycle of software, this too, was 
only up to the point of high-level language generation.

>!a references were found to the validation of assembler 
language or machine-code programmes with respect to a 
higher-level language or specification. No references 
were found even to the analysis of assembler language 
or machine-code programmes in environments where no 
high-level language or specification exists.

It was therefore decided to conduct research aimed at 
developing a method of validating embedded software 
with respect to a higher-level language or 
specification,

1,3 Direction of Research

The aim of software validation is to demonstrate the



consistency between a computer programme and the user 
requirements. In the generation of software, the 
extremes of the generation process are marked by user 
requirements at one end and machine-code at the other. 
The translation of the user requirements into machine- 
code is far from standardised, although some common 
stepping-stones are in use.

From the requirements, some form of programme 
specification is usually drawn-up. This is typically a 
formal statement of what the programme must achieve.
It may or may not include information on how' the
programme is to achieve its goal - the important aspect 
of the specification is the exact definition of the
goal. In a contractual context, the programme
specification is often the dotted line between a user 
and a supplier of software.

The specification, if it is not already in the form of 
a bigh-order-languaga, is translated into a ) ^er-
language and then processed by a compiler t r "• ice 
machine-code. A typical software generation ». .dure 
is shown in figure l.i overleaf.

In the generation of software for railway signalling 
and other critical fail-safe applications, the levels 
of high-level-language and intermediate-language are 
often omitted. The specification is translated by hand 
to assembler level and then processed by an assembler 
to produce machine-code. This is done to gain the 
advantage of bit-mantpulation at the assembler level 
and sometimes t oo, for reasons of code length.



USER REQUIREMENTS

I
PROGRAMME SPECIFICATION 

1
HIGH-LEVEL-LANGUAGE PROGRAMME4

INTERMEDIATE-LANGUAGE REPRESENTATIONi
ASSEMBLER "-LANGUAGE PROGRAMME

I
MACHINE-CODE PROGRAMME

F i g . 1,1 Typical Software Generation Procedure

In order to validate a programme generated by the 
procedure shown in figure 1 .1, a method is proposed 
whereby the generation procedure is reversed. The 
proposed procedure begins at the level of the machine- 
eode programme. This programme is then translated 
backwards through the various levels shown in figure
1.1 until it is at the level of the user requirements.

The proposed validation procedure would thus have 
generated a set of user requirements derived from the 
machine-code programme itself. If the user
requirements thus obtained can be shown to be 
consistent with the original user requirements used in 
the generation phase of the programme, then the 
programme would have been shown to correctly implement 
the original user requirements.

Unfortunately, user requirements are not usually 
formally stated. They normally take the form of



informs! human language statements about what is 
required. The level of the programme specification is 
normally where formality is first encountered.

Since user requirements are normally informally stated, 
validation of the programme specification with respect 
to the requirements is a matter of manual 
interpretation, involving checks for completeness, 
consistency'and unambiguity.

The research described in this dissertation was 
directed towards validating machine-code with respect 
to its high-level specification. Since the high-level 
specification can be formally stated, automation of the 
validation process is possible. One of the major aims 
of thie research was to show how this process could be 
automated.

1.4 Scope of Research

Programmes and specifications take on many forms. In 
attempting to develop a validation method involving a 
programme and its specification, the first question 
must be: whae type of programme and what type of
specification?

1.4.1 Programme

A high-order-language programme suffers many 
manipulations and changes of appearance before it can 
instruct a cenCrsl processing unit. It is compiled or 
interpreted) library functions and routines are called 
and linked; lower level representations such as P-code 
or assembler are generated and only finally is a string 
of executable instructions produced. To assume that a



high order language is an exact representation of the 
instructions which will be given to a central processor 
Is to ignore the fallibility of these manipulators and 
their operators,

The validation philosophy proposed in 1.2 involves 
analysis and upward-translatlon of machine-code to 
prove its consistency with a high-level specification. 
Input to the proposed validation procedure is thus 
machine-code. This has the additional advantage that 
embedded software which was written without reference 
to a specification can be subjected to the same 
analysis and upward-translatlon processes, This will 
greatly assist understanding of such software when 
necessary, for example when a modification is to be 
made to the software.

It is also intuitively correct that the level at which 
a machine executes instructions should be the end of 
the generation phase and beginning of the validation 
phase of those instructions.

1.4.2 Specification

Many methods of software specification are in use, for 
example SPECK (Quirk £1983]), PSL/PSA (Teichroew and 
Hershey £19771), SADT (Ross and Schoman [1977]) and 
ESPRBSO (Ludewig (19613). In the railway signalling 
department of the South African Transport Services, the 
software specification method in use is P-notation 
(Young [1900]),

P-notation Is of a lower level than most other 
specification languages o.r methods, being roughly at 
the level of a high-level-language such as Pascal. 
This level of specification language was chosen by the



signalling department because it is used to specify 
programmes which are then coded directly from it as 
hand-written assembler.

P-notation, as presented by Young, was found by 
programmers in the signalling department to be 
inadequate in certain areas, particularly those of 
data-type specification and Boolean variable handling. 
Thus, as it is used in the signalling department, 
P-notation is a modified version of Young's original 
P-notation. A description of P-notation, as it is used 
in the signalling department is contained in Appendix

It was not within tha scope of this research to assess 
the effectiveness of modified P-notation for 
application in the signalling department, nor to 
compare it with other specification languages in u s e . 
Since it is already in use in the department and found 
to be effective by programmers, modified P-notation was 
selected as the specification language for use in this 
research.

1,4.3 Automation

Programmes are often long. Humans make mistakes. In 
fact, the longer programmes a re, the more likely are 
human validators to make mistakes.

Whatever guise a validation method may take, it is 
likely to possess the attributes of rigour and 
repeti tiveness. This will render it tedious and 
time-consuming for human execution, Automation should 
thus be a major consideration in the development of any 
validation method or procedure. Errors which would 
inevitably arise in manual validation exercises would



also be avoided.

One of the ma)o. ^  sis of this research was thug to 
automate the prop- 3 validation procedure wherever 
possible, or at lea.-.•t to demonstrate that it could be 
automated.

1.4.4 Stated goal

The goal of this research was to devise a method of 
showing a machine-code programme, as executed by a 
microprocessor, to be consistent with its specification 
in P-notation. Maximum automation of this process was 
of prime importance.

1.5 Overview of Dissertation

The need for an effective method of validation of 
software for fail-safe, real-time process control 
systems was the motivation for the research presented 
in this dissertation.

A software validation method has been proposed which is 
a reverse of the typical software generation process.

The proposed method is based on the hypothesis that 
each stage of the generation process can be validated 
by translation of its product to the level of the 
product of the previous stage and validating by 
comparison. For example, a high-level-language 
programme can be upward-translated to the level of its 
specification and compared with the specification. 
This would validate the specification-to-high-level- 
1anguage-programme translation stage of the generation 
process.



Since user requirements are normally informally 
presented, -,he reverse translation, or validation of a 
programme specification against these requirements, is 
also an informal process. However, since a programme 
specification can be formally presented in a 
specification language, software generation processes 
from that level right down to machine-code can he 
formally validated by the proposed method of reverse- 
translation.

The research presented in this dissertation was aimed 
specifically at software for the electronic 
interlocking systems used in railway signalling, where 
assembler language programmes are often generated 
directly from their high-level specification. These 
assembler language programmes are then processed by an 
assembler to produce machine-code. It was to be shown 
that these two processes could be validated by the 
proposed method of reverse-translation. Automation of 
this validation method was also to be investigated.

A description is given of a guinea-pig microprocessor 
system, the process of tracing its operation and 
manipulation of the resultant traces to form a complete 
disassembly listing of the system's embedded software.

Methods of automatic control-flow and data-flow 
analysis of the disassembly listing are described and 
their operation is demonstrated by using sample 
portions of code. These analyses are done in 
preparation for translation of the disassembly listing 
into P-notation.

Final formatting of the programme to P-notation format 
is then described. This essentially involves control- 
flow formatting and variable-name insertion.



Finally, an analysis of the overall effectiveness of 
the proposed validation method in terms of the goal of 
the research is given. Conclusions drawn as a result 
of the research are presented.
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CHAPTER 2 LITERATURE SURVEY

A survey was conducted of available publications on the 
subject of software validation, verification and 
testing. Most publications present generalised 
approaches to software and are, as such, not 
specifically relevant to the reliability of software 
within embedded systems. However, it is precisely this 
shortcoming which renders these publications relevant 
to the history of validation.

2.1 Survey of publications

By 1975 the poor reliability and high cost of large 
software systems was becoming a serious problem.
Formal proof of programme correctness was thought to be 
infeasible or at least many years away and manual
testing and code inspection of large systems were, in 
themselves, unreliable and costly.

Some automated analysis tools and software evaluation 
systems were in use at the time and Ramamoorthy and Ho
[1975] described these as the most effective means of 
improving the reliability and reducing the cost of 
large software systems. Automated tools were capable
of checking the presence of certain software attributes 
such as syntactic correctness, proper control
structuring and module interfacing.

“Software evaluation systems" were defined as composite 
systems of automated tools for the purposes of system 
design analysts, debugging, testing and partial 
validation, that being the process of demonstrating the 
validity of a programme to an acceptable degree of 
reliability and performance.



Remamoorthy and Ho also described the software 
evaluation systems in use at the time as only partially 
fulfilling their requirements in that they analysed the 
source code, but generally ignored the design and 
specifications.

Miller [19773 proposed a method of path-based testing 
and showed how a test coverage measure could be used as 
a measure of “how far the testing process has gone".

Testing a programme by running it on sets of test data 
had, until 1975, not been regarded as an effective 
validation method, since sets of test data were 
generated on an ad hoc basis by analysis of the 
internal structure of a programme only. Goodenough and 
Gerhart [19753 proposed a more rigorous method of test 
data selection. They proposed a "condition table" 
method of deriving test predicates. Test predicates 
describe what aspects of a programme are to be tested. 
Derivation was done by reference to the general 
requirement a programme was to satisfy, the programme's 
specification and the general characteristics of the 
Implementation method used.

Admitting that exhaustive testing was rendered 
impossible by such time-considerations as human 
mortality, Goodenough and Gerhart hypothesised that the 
input domain of a programme could be partitioned into a 
finite number of equivalence classes such that a 
representative test for each class would, by induction, 
test the entire class. They did, however, point out 
that the fundamental problem of testing was the 
Inference from the success of one set of test data that 
others would also succeed and that a problem with 
equivalence class testing was to shew that the input 
domain partitioning was, in fact, appropriate. They 
suggested that their rigorous test case generation



method led to a better approximation of exhaustive 
testing and, used in conjunction with programme 
correctness proofs, significantly decreased the 
likelihood of programme failure.

While Goodenough and Gerhart were testing programmes by 
running them on sets of test data, Allen and Cocke
[1976] were proving the integrity of data-relationships 
within a programme without execution of the programme. 
Their algorithmic approach used a control-flow graph 
representation of the programme and information about 
the data items used, to determine the data-flow 
relationships within the programme.

King £1976) was not convinced. He considered programme 
testing and programme proving as extreme alternatives 
and introduced the concept of symbolic execution, which 
he regarded as a practical approach between these two 
extremes. He developed EFFIGY, an interactive 
symbolic execution system for language statements in 
PL/I-style syntax. In EFFIGY, a user could define 
arbitrary identifiers to be symbolic programme inputs 
in place of specific integer constants and analyse 
programme behaviour by Inspection of the resultant 
expressions generated by symbolic execution.

A further practical implementation of the concept of 
symbolic execution was provided by Clarke [1976]. She 
presented an interactive system for automatic test data 
generation to execute a specified path of an ANSI- 
Fortran programme and subsequent symbolic execution of 
that path. Her system also provided the facility for 
detection of nonexecutable programme paths.

Based on K ing’s EFFIGY, Che SELECT symbolic execution 
system devised by Boyer, Elspas and Levitt, and 
Clarke's ANSX-Fortran symbolic executor, Howden (1977]



developed the DISSECT symbolic testing system. The 
major advantage offered by the DISSECT system over 
previous systems was the command— fi2e facility whereby 
a user could initially set up a series of executions to 
be performed, some conditional on others if desired, 
for any specified paths and with any combination of 
symbolic and real input values. As with Clarke's 
system, DISSECT was ANSI-Fortran specific.

In a case study of the effectiveness of various
analysis and testing techniques, Howden £1978} applied 
the techniques to six sample programmes 
containing "naturally" occuring errors. He found that 
the use of symbolic testing resulted in an increase in 
reliability of 10-20 percent over testing on actual 
data. The increase was, however, reduced to 3-4
percent if "actual data" testing was augmented with
other programme analysis and testing techniques such as 
special values and interface analysis. He showed that 
in most cases, one particular analysis or testing 
technique was more effective than the others in 
pinpointing a particular type of error and his over­
riding conclusion was that no single programme analysis 
technique or programme testing strategy should be used 
to the exclusion of all others.

In the midst of the massive drive to automate the
validation process, work was still being carried out on 
the development of more reliable manual validation 
techniques for use in environments where limited 
resources were available. The coupling effect, whereby 
most global errors such as failure to satisfy a 
particular specification are seen as being coupled to 
simple errors such as missing control paths, was
exploited by De Hillo, Lipton and Sayward £1978]. They
based a series of "hints on manual test data selection" 
on the hypothesis that test data which distinguishes
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all programmes differing from a correct one by only 
simple errors is so sensitive that it also implicitly 
distinguishes more complex errors. Branstad,
Cherniavsky and Adrion [19801 also proposed a stream­
lining and improvement of manual validation techniques 
throughout the development life cycle by testing, code 
reading and inspection, and independent reviews.

While referring to the various validatio" tools 
available at the time, Meyers [1979] too, proposed 
rigorous manual validation techniques and testing with 
carefully chosen test cases as being the most 
effective. His choice of test cases was based mainly 
on boundary-value analysis and cauas-effeet graphing.

The selection of test data had, for the most part, 
always been based on the internal control structure of 
a programme. Howden [1980a] proposed a "black box" 
approach to programme testing in which the internal 
structure of a programme was ignored during test data 
selection. Tests were constructed from the functional 
properties of the programme that were specified in the 
programme's requirements. The technique was known as 
functional testing, as opposed to structural testing.

Howden described the disadvantage of the black box 
approach as the fact that it ignored important 
functional properties of a programme which were part of 
its design or implementation and which were not 
described in the requirements. A case study involving 
a collection of scientific programmes led to the 
predictable conclusion that structural and functional 
testing were complementary rather than competing 
techniques.

Testing was still accepted as being more effective than 
formal programme proof in the demonstration of



programme correctness. Formal representation of 
specifications was viewed as so problematical as to be 
of little practical value. Formal proofs could not be 
used with the informal specification methods in use at 
the time. Kopets described the specification methods 
in use as "verbal specification of software systems 
outside the areas of logic or numerical mathematics" 
(Kopetz {1979}).

Deutsch [1979] was sceptical about both testing and 
proving of programmes as effective means of increasing 
their reliability. Reduction of the complexity of 
programmes, he believed, would increase productivity, 
clarity, maintainability and modiflability.

Various papers were produced on the theory of test data 
selection for revealing particular types of error. 
Weyuker and Ostrand [1980] found Goodenough and 
Gerhart's [1975] theory of test data selection 
difficult to apply in the real world and proposed 
certain modifications to the theory whereby they set 
semi correctness-proving a- their goal. Proving semi- 
correctness meant demonstrating the absence of certain 
errors rather than the ideal proof of correctness, 
which meant demonstrating the absence of all errors.

White and Cohen [198(f] developed a method of testing 
specifically to pinpoint control-flow errors and the 
conditions under which their method was reliable were 
carefully specified. Gustafson [1964] proposed testing 
for errors whose necessary input conditions were more 
likely to occur and for errors whose consequences were 
serious. His test case selection was based on what he 
called the "cost of errors".

A consolidation of software analysis and testing 
techniques as developed up to 1980 was provided by



Howden 11 980bJ when he applied various existing 
testing and analysis methods to a package of Fortran 
subroutines. He divided the rtiethcds used into two 
distinct categories: static analysis methods and
dynamic testing methods. Static analysis methods 
referred to methods which were performed without actual 
execution of the code. Dynamic methods consisted 
essentially of testing and were performed 
automatically, except for the selection of test data. 
Test data was selected with a view to both structural 
and functional testing as previously described (Howden 
[19B06]). Static analysis methods consisted of 
automatic methods such as path flow analysis and 
statement analysis and manual methods which mostly 
involved checking consistency between subroutine 
headers and programme or requirements content. He 
concluded that the methods used could discover "a large 
majority" of errors in programmes of the type used. He 
found that testing (static and dynamic) and analysis 
methods were equally useful, each responsible for the 
discovery of about half the errors found. He indicated 
the need for extensible static analysis systems which 
allowed for the addition of further static analysis 
rules. He also stressed the importance of the 
development of a method to identify and test general 
and detailed design functions.

Csrr6 [1980] described the principle methods of 
validating programmes as flow analysis (control-flow 
and data-flow analysis) and semantic analysis. He 
described a systematic manual method of control-flow 
analysis involving a methodical labelling technique to 
show such control flow anomalies as black holes and 
unused labels.

In data-flow analysis, Carry's detection of undefined 
variables and unused definitions was based on

i



algorithmic processing of sets of binary vectors 
representing variable-definitions within the programme. 
His method of semantic analysis was twofold. 
Assertions, derived from programme specifications,' were 
inserted into the programme and manually processed 
using the programme logic and computation statements. 
A systematic technique was presented to prove that the 
truth of an assertion at any point followed from the 
truth of assertions at previous points in the 
programme. The other aspect of semantic analysis was 
symbolic execution. He was later to automate and 
present these techniques as a "validation package" 
C SPADE, 1985].

Because of the real need to validate large software 
systems, various validation packages or validation 
environments were developed after 1980. They mostly 
used existing techniques such as static code-parsing 
and dynamic testing, each implementing the techniques 
slightly differently in an automated package. 
Important amongst these were the STRUM system 
[Patterson, 1981] which concentrated on programmes for 
microevmputei's and a system presented by Benson [1981] 
which introduced the concept of instrumentation of a 
programme with "executable assertions". Executable 
assertions are formal assertions made tibout the state 
of the programme variables at various points in the 
programme. The assertions are presented in such a way 
that the programme statements can be applied to them to 
show that execution of the programme would not violate 
any of the assertions.

The practice of translating a high-level source 
language into an intermediate language more suited to 
validation techniques had been instituted as early as 
1975 (Ramamoorthy and Ho [1975]), No further 
development of the technique took place until it was



again used in the IVTS system {Taylor,1983].

The IVTS system (Integrated verification and Testing 
Sytem) was designed specifically for use on HAL/S, a 
language used mostly in aerospace applications. 
Although IVTS used standard established validation 
techniques, its advantages over other integrated 
validation systems were a very sophisticated user 
interface, making application of any of the techniques 
simple for unqualified personnel, and the incorporation 
of an automatic "report writer" for documentation 
enhancement. The major advantage of the use of an 
intermediate language is that it renders the tools, used 
non-source-language-specific. All source languages are 
translated to the same intermediate level and are thus 
able to be processed by the same tools. This feature 
was exploited by Carr6 in his validation package 
C SPADE', 1966].

Software fault tree analysis, the hypothesising of a 
particular fault occurring and subsequent 
"backtracking" through the software to discover all 
possible osusas of the fault-, was introduced by Taylor 
11982) and used in a practical impl' mentation by 
Leveson and Harvey [1983). Taylor presented a proposed 
method of automating the procedure, but to date not 
much interest has been shown in the analysis method. 
The lack of interest has been due to difficulty in 
handling loops and the size of trees generated for most 
hypothesised faults. The method can be, and sometimes 
is, used for analysis of some highly-critical 
individual possible faults, but has little general 
application.

In the early ninteen-eighties, there was an increasing 
awareness that validation of programme code with 
respect to its requirements was only one facet of



validation in general, It was realised that design 
errors discovered as late as the coding, stage were 
expensive to correct. Thus, validators began to 
realise that validation techniques had to be applied 
throughout the life-eycle of the software (Rzevski 
[19811 and Howden [1982]).

Validation techniques applied to software requirements 
and specifications wore those related to checking 
consistency, completeness and correctness. Howden 
[1982] proposed the selection of test cases throughout 
the software life-cycle, including the requirements and 
specifications definition phases.

An in-depth survey and evaluation of the existing 
techniques of validation, verification and testing of 
computer software was conducted by Adrion, Branstad and 
Cherniavsky [1982]. To say the least, their conclusions 
were controversial, Because most validation and 
testing techniques were applicable to the testing of 
actual programmes and had little other relevance 
through the life-cycle of the software, they concluded 
that traditional, manu9? validation methods were most 
effective. Such methods included walk-throughs,
reviews and inspections. Traditional manual methods 
could be used without massive capital expenditure and 
had uniform applicability throughout the software life­
cycle, although they required a serious commitment and 
disciplined application. They also concluded that most 
existing automated validation techniques lacked a sound 
theoretical basis.

Thus it was that, where validation was of critical 
importance in the development of real systems, 
validation techniques used were still essentially 
manually orientated, involving massive human effort 
(eg. Short [1963]).



In a recent publication, Gerber (1966) described the 
techniques which were used to validate a large, real­
time process control programme. Modules were
individually validated by test cases and automatic 
integration and module-lnterface (inter-module data 
flow) analysis were performed, Functional analysis was 
manually performed by cross-referencing of the
documentation. Timing analysis, too, was manually
performed by doing a series of time-related
calculations based on the programme code and showing 
tnat the programme would always operate within its 
specified timing constraints.

2.2 State-of-the-art

The previous section has given a general history of 
developments in the field of software validation since 
1975, by reference to, and r6sum6s of, significant 
publications. During the period from the mid- to late- 
ninteen-seventies, the emphasis was on developing the 
ability to analyse and test high-level language
programmes which performed arithmetic and logic 
functions. Much mental effort and practical trial went 
into this development and a sound basis for further 
development was created. Noteworthy were papers by 
Ramamoorthy and Ho [1975], Goodenough and Gerhart 
[1976], King [1976], and Howden [1978], The original
motivation for the development of t'lis analytical and 
testing ability was a so-called "software crisis"
brought about by the low reliability and consequent
high cost of software. The objective was to improve 
software reliability to a level where the cost of its 
generation and implementation were acceptable.

Within the context of the above motivation, it can be 
argued that early work in the field of software



analysis and testing was extremely successful.

ssml-correctness (correctness up to an acceptable level 
of reliability) of programmes was achieved both by 
validation techniques and by design-for-validation 
techniques. Even to this day, programmers writing 
computational programmes can use established validation 
techniques to Improve the quality and reliability of 
the software they produce.

After the late nineteen-seventies, however, a branch of 
computer usage which had been slowly developing for 
some years, very quickly became an Important aspect of 
computing technology and usage. The microprocessor was 
to be used in real-time process control applications 
involving the risk of the loss of many human lives, 
such as in nuclear-reactor monitoring and transport- 
system control. Validation needs changed; the science 
of validation did not.

The goal of validation changed from "partial validation 
for increased reliability" to "complete validation for 
cer-plete rell»hltty". Not only did the goal change - 
applications of software also changed. Real-time 
applications involve aspects that were not previously 
considered in validation philosophies such as stringent 
timing constraints and the cyclical nature of real-time 
programmes. Emphasis changed from arithmetic/ 
computational high-level-language programmes to
programmes involving many and varied I/O routines and 
blt-manipulation, often written In low-level languages.

A summary of techniques available and in use for the 
validation and verification of real-time software was 
provided by Quirk [1985]. His book contains a 
comprehensive bibliography of relevant publications.



A sign!fleant contribution to the assessment of the 
stats-of-the-art of software validation and 
verification was made by the third Verification 
Workshop CVBRkshcp III [1965]), held in California.

The principal goal of VERkshop III was to review 
verification technology and, in particular, to identify 
what was being used in practice and what specific areas 
required additional research, The attendees included 
researchers who were active in the development of 
verification systems, theorem proving, formal language 
semantics and applying current verification techniques 
to production problems.

Although four years had passed since the previous 
Verification Workshop (VERkshop II), there was a 
consensus of opinion that only incremental progress had 
been made in the area of programme verification. It 
was agreed, however, that using existing methods and 
technology, significant progress had been made in the 
development of integrated verification systems, 
although the systems were still usable only by highly 
skilled individuals and were not in a position to be 
used on a production basis.

A stagnation in the abilities of validation techniques 
has been brought about by the application of analysis 
faeehfiiques So software which has different validation 
requirements from those ich motivated the design of 
the analysis techniques. All developments in vali­
dation since 1980 have essentially been refinements of 
the original techniques developed by validation 
pioneers such as Ramamoorthy and Ho 119753 and King 
[19761 . The fundamentals of validation as <* science 
must be re-addressed in order to develop new, more 
applicable validation techniques to meet new validation 
demands.



Thus it was felt appropriate to undertake an 
exploratory project to show the validity of the 
validation procedure proposed in the previous chapter. 
The proposed validation procedure would meet the 
validation demands of a computer-based railway 
signalling system and many other applications of 
computer-based control systems.
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CHAPTER 3 DISASSEMBLY

The validation procedure proposed in chapter one of 
this dissertation consists of analysing a machine-code 
programme executed by a microprocessor and translating 
the programme up to the level of its high-level 
specification. The translated programme is then 
compared with its original specification.

In this approach, ho assumptions are made about the 
correctness of assembly-language listings supplied by a 
manufacturer or programmer. The machine-code programme 
is obtained directly from the microprocessor itself. 
Actual operations executed by the microprocessor, as a 
result of instructions fetched from PROM, are used to 
reconstruct the machine-code programme. Validation is 
thus ensured from the lowest possible level - that of 
the effect of the software on the microprocessor chip.

The operations of a microprocessor are traced by a 
logic analyser whilst external stimulus is given to the 
microprocessor system to force the software to traverse 
every one of its possible paths. All traces thus 
obtained are combined and edited to form a complete 
disassembly listing of the programme. This disassembly 
listing is then subjected to subsequent analysis' and 
translation procedures.

The method of obtaining a disassembly listing of a 
machine-code programme was demonstrated by practical 
trial. The test set-up used and experimental procedure 
followed are described in this chapter.



3.1 T#tsfc Set-Up

3.1.1 Guinea-pig microprocessor system

A method of producing a disassembly listing from a 
microprocessor-based system has been proposed. To test 
the proposed method, a guinea-pig microprocessor-based 
system was required. One such system, the "TEH L 30
Block Instrument Controller" (TEH L 30 Block
"instrument Control Unit, A Technical Description 
(19833), was available m  the Signalling Department of 
the South African Transport Services, where the 
research was undertaken. This system was selected so as 
to provide a test-bed which was a true representation 
of the application area being addressed in this current 
research investigation.

In railway signalling, a "block instri.meui;" is an 
electro-mechanical device which is used to o-t.id current 
of forward or reverse polarity down a pair of wires to 
another block instrument. It also indicates the
presence and polarity of any current it receives from 
any other block instrument. A more detailed 
description of a signalling block instrument can be 
found in Appendix A.

The "TEM L 30 Block Instrument Controller" is a 
microprocessor-based control-unit designed to 
facilitate the operation of block instruments over 
radio links, instead of over wire-pairs. The task 
performed by the TEM L 30 controller is the bi­
directional, fail-safe transmission of information, 
between two block Instruments, over a radio link. A 
more detailed description of the TEM L 30 controller
can be found in Appendix A.
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3.1,2 Tracing the microprocessor operations

Tracing was done with the State-6 Analyser option of an 
HP6400Q measurement system (HP64000 Logic Development 
System, System Overview E19623). The system offers 
instant disassembly, mass storage of traces on' its 
associated disc, sophisticated triggering and storage 
specification facilities, printing of traces for 
documentation purposes and uploading of traces to a 
minicomputer for manipulation.

3.1,3 Stimulus of the device

The TEM L 30 was required to traverse every possible 
path of its programme while its operations were traced 
by a logic analyser. In order to ensure that all 
possible paths had been traversed, the contents of the 
programme-FROM were listed. A check was made fro ensure
that there were no programmed PROM locations which did
not appear in any of the logic analyser traces.

Certain paths of the TEM L 30 software are not
traversed during normal power-up, quiescent operation 
or power-down. They are the paths associated with the 
operation of one or both of the block instruments
causing message-transmission, hardware-monitoring with 
associated failure strategies and message-reception 
with subsequent output to the block instruments. In 
order to cause the TEM L 30 controller to traverse 
these paths of its programme, it was necessary to 
provide external stimulus to the TEM L 30.

Operation of the block instruments

Block instrument simulation was realised by means of



two block instrument simulators supplied with the 
controller for testing purposes. The simulators r'mply 
provide the ability to source current of either 
polarity to the controller by manual pushbutton 
operation.

Hardware-monitoring and failure strategies

The actual monitoring of the condition of the hardware 
is a routine operation when the controller is in a 
powered-up state. It w a s , however, necessary to 
simulate hardware failures to force the software along 
the paths of its failure-strstegjes. such hardware 
failures were easily simulated by false feeds, 
component removal, supply voltage adjustment, e tc.

Message reception and analysis

A radio simulator was provided with the controller for 
testing purposes. The simulator simply injects noise 
into a physical connection between the modem cards of 
two TEM L 30 controllers. This creates the effect of 
the operation of the modems over a radio link. Another 
controller could, therefore, have been used to send a 
valid message via the radio simulator to the controller 
under test.

The normal, operative interaction of the two 
controllers, however, forms a small part of their 
message-handling routines. To force the TEM L 30 
controller to traverse all possible programme-paths 
related to message-anaXysi s , it was necessary to 
transmit to the controller under test messages with 
incorrect parity, faulty Manchester II coding, less 
than three messages in agreement, e t c . The easy



manipulation of messages to be sent was thus an 
important criterion. A programmable microprocessor- 
based data acquisition and transmission system was used 
for this purpose. This microprocessor-based system was 
developed by engineers of the South African Transport 
Services and is known as a Remote Data Unit (RDU).

The modem card of a second controller was used to 
interface, via the simulated radio link, to the 
controller under test. Control of the modem card, 
interactive message-compilation and message- 
transmission were realised with the RDU.

Programmes were written on the RDU to perform the 
various message-generation tasks and were executed by 
the RDu as compiled Basic programmes.

The complete test set-up which was used to obtain the 
traces is shown in fig. 3.1 overleaf.

3.2 Traca-Speciftcatlon

Before any of the traces were executed, a trace- 
specification document was produced. This document 
showed the address trigger point to be set up on the 
HP64000, the section of code to be stored and the 
stimulus to be applied to the TEM L 30 for each trace 
to be executed and recorded. The trace-specification 
document was produced by reference to the TEM L 30 
manufacturer's software listing, circuit diagrams and 
description of operation. Any errors or omissions in 
these manufacturer's documents would have become 
apparent when actual execution of the traces was 
attempted. A sample portion of Che complR^e trace 
specification document is shown in figure 3.2.
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Fig, 3.1 Test set-up

simulator

analyser
option



F ig. 3.2 Portion of trace specification document

3.2.1 Trace-Specificafcion Document 

TrIgger-occurrence

It will be seen that the fcrsce-speeiflcation document 
(figure 3.2) contains a column headed "occur.". This 
specifies the occurrence of the trigger-point address 
on which the analyser must trigger: first or second.
Triggering on the second occurrence was specified in 
order to trace through a section of code ended by a 
branch instruction back to a point within that section. 
This was preferable to triggering on the branch 
instruction itself, since it showed that the code was 
actually taking that particular branch of the decision.
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Trigger-on-opcode

What is not apparent from the trace-specif leation 
document (figure 3.2) is that triggering was not 
initiated on the occurrence of a particular address 
alone. The TEM L 30 does regular inter-processor PROM
comparisons and so a particular address may appear on
the address bus for the purpose of a data-read from the 
PROM. Triggering was desired only in the case of the 
correct address being present and an opcode being
fetched. This was specified for all triggering
conditions.

3.3 Production of the Disassembly Listing

Production of the disassembly listing consisted of two

Firstly, each of the test runs specified on the trace 
specification document was executed. All the trace 
listings obtained were stored as files on the HP64000 
measurement system's local disc.

Secondly, all files thus obtained were uploaded to an 
HPIOQO minicomputer, where they were edited and sorted 
by absolute address to form the complete disassembly 
listing.

3.3.1 Obtaining the Traces 

Providing the stimulus

The stimulus to be applied to bhe TEN L 3D controller 
to obtain each trace was determined from the trace- 
specification document. Some stimuli consisted of



initial conditions to be set up (eg. removal of a 
fuse), while others were actions to be taken during 
operation of the device (eg. operation of one block 
instrument during servicing of the other).

Tracing the test runs

Triggering and storage conditions for each test run 
were set-up on the measurement system. Once - the 
trigger had been enabled and the measurement system was 
waiting to trigger, the TEM L 30 controller was 
powered-up as specified in the trace-specjficatlon 
document. On completion of storage, the trace obtained 
was stored on the measurement system's disc.

3.3.2 Manipulation of the Traces

Uploading the files to a minicomputer

All the traces which were stored as files on the 
measurement system's disc were uploaded to an HP100Q 
minicomputer for editing, sorting and analysis.

Since all files were to be concatenated for sorting and 
analysis, the large virtual-RAM capacity of the 
minicomputer was required for this purpose.

Editing and sorting the traces

Pascal programmes were written and run on the HP1000 
minicomputer to edit and sort the traces into a 
complete disassembly listing. A sample trace-flie is 
shown in figure 3,3.
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Fig. 3.3 Sample trace file

AC16 LDA8 F003 
AC17 EORB #FD07 
AC1B STAB F003 
AC19 STAA X 
AC1A CMPA 8FOO0 
AC1B SGT AC20 
AC1C LDAA F001 
ACID ORAA F009■ 
AC1E STAA F009 
AC1F BRA ,'.C2fl 
AC20 LDAA F001 
AC21 COMA 
AC22 ANDA F00? 
AC23 STAA F009 
AC24 LDAA FQOO 
AC25 LOAB #F00A 
AC26 CMPA F001 
AC27 BEO AC2E 
AC28 8LT AC2A 
AC29 LSR8 
AC2A LDAA F002 
AC2B ANOA «F0QB 
AC2C ABA 
AC2D STAA F002 
AC2E BRA AC01

Fig. 3.4 Sample disassembly listing



These trace-files were first individualZy edited to 
remove the unnecessary text at the h ead, triggering 
information and data-reads and writes, All the 
resultant edited trace-flies were then concatenated to 
form a single file. All duplicated statements were 
removed and the file was sorted by absolute programme 
address to form a complete disassembly listing. A 
sample ft the resultant listing is shown in figure

3.4 Result c ‘ • sassembly

A method of deriving a complete disassembly listing of 
a programme executed by a microprocessor has been 
described.

The method essentially involves tracing the operations 
of the microprocessor with a logic analyser while the 
mi croprocessor system is externally stimulated to 
execute every path of the machine-code programme. 
Resultant traces are manipulated to form the complete 
disassembly listing.

The actual disassembly of machine-code instructions is 
performed by the logic analyser. If required, the 
integrity of the disassembler can be demonstrated by 
re-assembling the resultant disassembly listing and 
comparing the result with the original machine-code.

The analysis and translation techniques described in 
further chapters are aimed at demonstrating the 
consistency between a machine-code programme and its p- 
notation specification. Since the machine-code 
programme of the TEH L 30 was not written from a P- 
notatlon specification, the programme will not be 
subjected to such analysis and translation,



Assembler listings of the same format as the TEM L 30 
disassembly listing which were written from p-notation 
specifications will be used to demonstrate these 
techniques. It will, however, be shown how the 
techniques developed can greatly assist the readability 
and understandability of a disassembly listing such as 
that obtained from the TEM L 30.

Further chapte/s describe how a disassembly listing can 
be analysed and translated to the level of its P- 
notation specification. This process begins with 
cnntrol-flow analysis, described in the following 
chapter.
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CHAPTER 4 CONTROL-FLOW ANALYSIS

The previous chapter described a method of deriving a 
complete disassembly listing of a machine-code 
programme. In order to translate the listing thus 
obtained into P-notation, it was necessary to analyse 
the listing in terms of control and data-flow. A 
method of analysing the control-flow of a disassembly 
listing in terms of standard P-notation constructs is 
presented in this chapter.

4.1 Constructs in P-notetion

P-notation supports constructs in the three broad 
categories of sequence, selection and Iteration.

4.1.1 Sequence

Sequence refers to the top-down sequential execution of 
programme statements. If a statement does not 
Explicitly transfer control to some other part of. the 
programme, then the statement below it is the one which 
will be executed next.

4.1.2 Selection

P-notation supports two types of selection construct: 
the case statement and the if statement. Definitions 
of these statements can be found in Appendix B.

4.1.3 Iteration

P-notation supports three iterative constructs: the



repeat statement, the while statement and the- for 
statement. Definitions of these statements can be 
found in Appendix B.

4.2 Construct Recognition and Labelling

4.2.1 Input and storage of disassembly listing

The control-flow analysis programme provides the 
facility for the input of any user-specified file 
containing a disassembly listing of the form obtained 
from the TEM L 30 (Chapter 3). The listing is stored 
in a record structure in RAM. Fields of each record 
contain absolute programme address, opcode, and where 
applicable, operand.

4.2.2 Processor-specific information

A data file containing information specific to the 
Motorola 6802 microprocessor is referenced by the 
analysis programme. The data file contains information 
about whether a particular opcode is a conditional 
branch statement, an unconditional branch statement or 
neither. For each statement read from the disassembly 
listing file, branch information is read from the data 
file and added to the record of that particular 
statement.

Together with the absolute addresses in the 
disassembly listing, the branch information from the 
data file is sufficient to facilitate automatic 
control-flow analysis of the disassembly listing.
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4.2.3 First pass: if-then-elso and loop recognition

Recognised constructs ar« numbered sequentially in 
order of recognition. An internal labelling system is 
used in labelling recognised constructs. The various 
elements of a construct are labelled with a charscter- 
string indicating their significance.

So if recognised construct number # is an if-then-else 
construct, the statement beginning the if portion is
labelled if #, the statement beginning the else
portion is labelled else# and the end of the construct 
is labelled comp#. In the simplified case of an if- 
then construct, the else# is omitted.

If recognised construct number # is a while do loop 
construct, then the beginning and end of the loop are 
labelled whil# and endw# respectively. In the case of 
a repeat until loop, the beginning and end of the loop 
are labelled rept# and untl# respectively.

Distinguishing between a for loop and a while do loop 
is difficult and in any case not always possible. For 
loops are .ecognised as while do loops. Standard 
coding of for loops for the purpose of recognition 
could be added as a refinement of the loop recognition 
process.

If a branch and •» destination are not recogniseable 
in the context of any standard construct, then they are 
labelled unkn# and endu# respectively.
Using the abbreviations UCB for unconditional branch 
and CB for conditional branch, generalised 
implementations of the p-notation standard constructs 
are given In figure 4.1 overleaf.



CB

if-then-else i ‘l if portion

—  >C 1
BOB

else portion. C^1

CB
if-then [ S  if

--->1 1
t ]

portion

—  >E 3
repeat until C^ 3 body of loop
.............. CB ---- t 3 teat for completion

[ 3 prepare test

while do V body of loop

F ig, 4.1 Generalised implementaticns of P-notation
standard constructs
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The algorithm used to recognise the above constructs 
and label the relevant statements accordingly is shown 
In Appendix C. The algorithm was implemented as a 
Pascal programme for automatic construct recognition. 
A sample printout after the first pass of the analyser 
is shown in figure 4.2 below.

I l l
C1D1 NOP

Fig. 4.2 Printout after pass <

4.2,4 Second pass: case recognition

If recognised construct number is a case construct, 
then the statement beginning the construct will bxi 
labelled case#. The statement beginning each of the 
separate cases within the construct will be labelled 
of #.

An implementation of the P-notation case construct 
could take the form shown in figure 4.3 overleaf.



: V

1 C 3 lat cese body

i ' '

2nd case body
UCB

3rd caae body

.3 An implementation of the P-notation 
case construct

Branching need not have occurred in the order shown. 
The first conditional branch could have branched to che 
second case body and bhe second conditional branch to 
the third case body, or any other order,

Whatever the order of branching, the whole construct 
would have been analysed in the first pass of th@ 
analyser as a series of overlapping if-then-edse 
constructs. This fact is exploited In the recognition 
of case constructs by the second pass of thg analyser.

The analyser does a second pass of the listing, 
searching for statements which were marked in the first 
pass as multiple eomp statements. All such statements 
could form the end of case constructs. The algorithm 
shown in Appendix C is used to determine whether a 
particular multiple comp statement does in fact form
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the end of a ease construct. The algorithm also .marks 
the relevant statements accordingly if a case construct 
is recognised.

The number of a recognised case construct is the 
number of the lowest numbered overlapping if-then-else 
construct forming part of the case construct.

The algorithm shown in Appendix C was implemented as a 
Pascal programme. This programme was used to perform 
automatic case construct recognition.

Figure 4.4 shows a printout after pass two of the 
analyser. The portion of code which was analysed is 
seen to contain an if-then constpucfc (construct number 
2 ) nested within the first case of a case construct 
(construct number 1).

Fig. 4.4 Printout after pass two of the analyser

i l l2 SMB
compl CJ1E3 NOP 
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4.2.5 Overlapping and unrecognlseable constructs

Programmes which have been incorrectly coded from their 
P-notation specifications or which were not written 
from P-notation specif'cations, will often have 
unrecognlseable structure. Such programmes may contain 
branch statements which do not form part of standard p- 
notation constructs.

Once a particular construct has been recognised by the 
analyser, inadvertent branching into or out of ' that 
construct Is disallowed. Such a branch statement is 
not recogniseable in terms of that construct.

Branches which are not recogniseable in terms of 
standard P-notation constructs are marked as such by 
the first pass of the analyser.

Automatic detection of overlapping constructs is also 
possible. A third pass of the analysed listing is 
performed, checking for overlapping constructs. For 
each loop and each section of an if-fchen-else or case 
construct, a check is made that all constructs nested 
within the loop or section are complete. This is done 
by checking Chat within the loop or construct section:

each whil# has a corresponding endw# and vice versa
each rept# has a corresponding untl# and vice versa
each if # has a corresponding comp#
each case# has a corresponding comp#
each comp# has a corresponding if # or case#
each else# has a corresponding if #
each of # has a corresponding case#

Violations of these completeness criteria are flagged 
by being printed during this third pass of the analyser.
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Figure 4.5 shows a sample analyser output together with 
tts corresponding overlapping construct printout. The 
elae portion of an if-then-else construct is seen to 
overlap the end of a repeat until loop,

WE200F ASA... iE Iiii
" B a :eompl 2022 MOP 

Overlapping constructs

Fig. 4.5 Overlapping construct detection

Overlapping constructs are not representable in P- 
notation. For translation of disassembly listings 
containing overlapping constructs into P-nottation-, it 
is necessary to modify the original machine-cpde 
programmes to contain no overlapping constructs -

When a printout from the analyser shows no 
unrecogniseable branches and no overlapping constructs 
in a disassembly listing, then the structure of the 
listing is sound and it may be translated into P- 
notation format -

4.3 Results of Control-Flow Analysis

The control-flow analyser described in this chapter



analyses a disassembly listing of the form obtained in 
the previous chapter, Analysis is in terms of standard 
P-notation constructs.

The analyser indicates L..anch-relevant statements which 
are not part of standard P-notation constructs. 
Overlapping constructs are also detected and indicated. 
For the analyser to fit all branch-relevant statements 
into standard, non-overlapping P-notation constructs is 
a necessary and sufficient condition for the 
translation of the control-flow framework of the 
disassembly listing into P-notation.

The control-flow analyser is no more than its name 
implies. It analyses only the control-flow
possibilities within a disassembly listing, Test 
predicates which determine along which path execution 
of a programme will occur at run-time are ignored.

Once the control-flow framework of the disassembly 
listing has been analysed, only sequential portions of 
code remain to be analysed. The next chapter describes 
how the remaining sequential code portions are analysed 
in terms of data-flow. It also describes the analysis 
of test predicates, where possible, for insertion into 
the final P-notation control-flow framework.

The following chapter describes how information from 
both the control-flow analyser and the data-flow 
analyser can be used to translate a disassembly listing 
into P-notation.
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CHAPTER 5 DATA-FLOW ANALYSIS

The previous chapter described a method of analysing 
the control-flow framework of a disassembly listing. 
0 ..ce this control-flow framework has been extracted 
from the disassembly listing, only sequential portions 
of code remain.

To enable translation of a disassembly listing into P- 
notation, the remaining sequential portions of code 
must be analysed in terms of their memory-location 
manipulation. Test predicates (data-preparations for 
conditional branch instructions) must also be analysed 
for insertion into the control-flow framework. 
Analysis of code in terms of its memory-1ocation 
manipulation and test predicates is referred to here as 
"Data-Flow-Analysis".

This chapter presents a method of automatic data-flow 
analysis. The abilities and limitations of this method 
are demonstrated by applying it to portions of 
assembler code. These portions of code are of the same 
format as the TEH L 30 disassembly listing obtained as 
described in Chapter 3.

5.1 Data-Typea in P-notation

P-notation in its original form (YoungttseO]) supports 
only two predefined simple data-types called 8bit and 
16bit. All other simple types must be user-defined in 
terms of these two predefined types. The type 
indicates the size of the data object, thus the minimum 
size of a data object is eight bit s .

The predefined structured type record, however, may 
contain entries of type less than eight bits. Even in



this case, however, the type declaration declares only 
the size of a data object. No facility is available in 
P-notation for specifying the position of a data object 
of less than eight bits within an eight bit word. 
Assignation of absolute memory addresses to bytes is
also not possible in P-notation. Having only two 
predefined simple types was also found to be a
shortcoming of standard P-notation. P-notation, as it
is used in the Signalling Department of the South 
African Transport Services, where this research was 
conducted, has been modified to overcome these
shortcomings.

Modifies P-notation has three predefined data-types 
which are shown below, together with their memory 
requirements.

integer : 8 bits (signed 2 ‘s complement)
po'nter : 16 bits
Boolean : 1 bit

The above list of predefined types could be expanded to 
suit a particular application.

A facility for positioning a data object of less than 
eight bits within an eight bit word has also been added 
to P-notation. The eight bit word is declared as a 
record and the positions of its entries are indicated 
by binary values, as in the example of figure 5.1 
overleaf.



storbyte = record
flagl : Boolean (%0000 0001);
flag2 : Boolean (%0000 0010);

JuT*:Boolean (%iooo oooo);

" I - Data object posifcic ntng within a record

Here sCorbyte has been declared ss a byte containing 
packed bits flag!, fiagZ, and fl»g3 in the positions 
indicated.

Another addition to P-notation is the facility to give 
a data object an absolute addresss in memory. This is 
necessary, for example, when hardware is designed 
before its embedded software is designed. In such 
cases, address decoding predetermines the addresses of 
memory and I/O devices.

For example, to read from or write to a single line of 
an I/O port, the port is declared as a record 
containing a Boolean variable in the position of the 
I/O line. The record is then assigned an absolute 
address in memory.

If the I/O line of the above example is in bit position 
zero of an I/O port at absolute address 1000H, then c W  
P-notation data declaration would be as shown in figure

In this case, outport has been declared as a variable 
at absolute address 1000H containing a single I/O line 
called 'xmic' in bit position zero. In effect, this 
amounts to a declaration of the absolute address of



r = record
xrnit i Boolean (*0000 0001);

outport;r absolute:1000H;

Fig. 5.2 Absolute address declaration

Further references to P-notatlon roust be taken to imply 
modified P-notatlon, that is, P-notatlon with the above

5.1.1 Formulation of a data-table

A disassembly listing of a programme references 
variables only by their absolute addresses in memory. 
If such a disassembly listing is to be translated to 
the level of and compared with its P-notation 
specification, the original variable names from the 
specification would have to be added to the listing. 
An automatic method of translating a disassembly 
listing Into P-notation would thus require information 
regarding the correlation between variable names in the 
P-notation specification and absolute addresses in the 
disassembly listing.

If the data declaration portion of the P-notation 
specification contains absolute address and optional 
bit-within-byte position declarations, then these 
declarations give direct correlation between variable 
names and their absolute addresses. For variables not 
declared at absolute addresses, variable name/absolute



Page 54

address correlation is determined by the way in which 
assembler language code is written from the P-notation 
specification.

By inspection of the data declaration portion of the P~ 
notation specification and the declaration/equate 
portion of the assembler language code, all variable 
name/absolute address correlations can be determined. 
Together with information about the types of the 
variables, these correlations ara presented in a fixed- 
format tabular fashion. An example of such a table is 
shown in figure 5.3 below.

[0000] linesCl] integer
[0001] 1 ineS[2] integer
[0002] storbyte record

0 f ).agl Boolean
1 f lag2 Boolean
2 flags Boolean

£1000] outport record

° xmit Boolean

Fig. 5.3 Standard format of data-table

A data-table such as the one shown above includes data­
type and absolute addjess information for all the 
variables appearing in the data declaration portion of 
a P-notation specification.

if a byte consists of packed variables of less than 
eight bits, then the bit positions of such variables 
within the byte are indicated below the absolute 
address of the byte.

Actual insertion of the variable names into the



disassembly listing is performed by an automatic 
programme translator, described in the next chapter. 
Data-flow analysis, as described in this chapter, 
involves the derivation of expressions representing 
data manipulations within the disassembly listing and 
verifying their type-consistency. Thus, once the data­
flow analyser indicates no type-inconsistencies within 
expressions, the programme translator can simply insert 
variable names in place of absolute addresses, 
according to the variable name/absolute address 
correlation t^ble.

5.2 Effect of Data-Type on Date Manipulations

Data objects, depending of their declared type, are 
either whole bytes (eg. Integer), combinations of 
bytes (eg. pointer) or portions of a byte (eg. 
Boolean). So the nature of manipulations which are 
performed on a particular byte of memory depends on the 
data-type of the byte, or of data objects within the

In the case of integer and pointer variables, only 
whole-byte manipulations may be performed. A bit or 
bits within a byte may not be selectively manipulated. 
Typical whole-byte manipulations would be to clear a 
byte, to add a value to a byte, to decrement a byte 
etc. Such manipulations are clearly of an arithmetic 
nature.

In the case of Boolean variables, arithmetic-type 
manipulations of bytes containing such variables 
constitute data-type violations. Boolean variable 
manipulation consists of logical operations on 
individual bits within bytes. Such manipulations make 
use of the operations of loading, masking, shifting.



operating (logically) and storing of bytes.

So the type of manipulation performed on a particular 
byte of memory depends on the data-type of the variable 
of which the byte forms a part, or which forms part of 
the byte. This fact Ss exploited in the development of 
a method of automatic type-cohsistency checking during 
data-flow analysis.

5,3 Analysis of Data Manipulations

As stated earlier, two distinct types of manipulation 
are used to manipulate data objects of P-notation 
predefined type. These are bit-wise, logical 
manipulation and whole-byte, arithmetic manipulation. 
The manipulation method used depends on the type of the 
data object being manipulated.

5.3.1 General strategy

Data-flow analysis consists of two stages. Firstly, 
expressions representing data manipulations are 
generated and then type-consistency within such 
expressions is confirmed. The two processes work hand- 
in-hand. An expression containing a type-consistency 
violation will not be printed - the appropriate 
section of code will be flagged as containing illegal 
operations.

In cases where disassembly listings do not have 
corresponding P-notation specifications, no data-type 
table exists. Partial data-flow analysis can still be 
applied to such listings to aid manual analysts of the 
programme. In such cases, type-consistency checking Is 
disabled and expressions representing data



manipulations are generated In all cases of data object 
manipulation.

The general strategy of the analyser Is to parse the 
disassembly listing {including information from the 
control-flow analyser) from beginning to end, searching 
for conditional branch statements and statements which 
affect the contents of memory-locations.

If a statement affects a memory-location 
'immediately' (independently of any other statement), 
as in the case of memory-location clear, memory- 
location increment etc., then an expression of the 
operation is derived a described in 5.3.2 below.

If a register storage statement is enccuntered (effect 
on memory-location dependent on contenta of register) 
then the analyser works backwards through the code, 
generating an expression as described in 5.3.3 below.

In the case of a conditional branch statement, the 
analyser again works backwards through the code, this 
time generating an expression representing the
condition under which branching will occur, as
described in 5.3.4 below.

For manual inspection of type-inoonsistencies and for 
analysis of code where no P-notation specification 
exists, an intermediate data-flow analysis result may 
be produced. This result consists of a printout of the 
listing, together with generated expressions inserted 
in the appropriate places within the listing.

All expressions representing data manipulations are
stored in a text file, together with the addresses of 
the statements which caused their generation. This
file is then referenced by the programme translator as



described in Chapter 6.

5.3.2 Immediat- manipulation

Certain instructions in the Motorola 6802 instruction- 
set operate directly on memory-locations and are 
independent of the contents of the processor's 
registers. Some examples are shown in figure 5.4.

LSR 1000 - Do a logical shift right of data in 
memory-location 1Q00H 

CL.R 000F - Clear memory-location 000FH 
DEC C126 - Decrement data in memory-location C126H

Fig. 5.4 Immediate memory-location manipulation

With the exception of the CLR (clear) statement,, all 
such immediate statements have an implicit arithmetic 
or logical connotation. Thus the analyser, before 
generating an expression representing the operation, 
checks that the variable being manipulated is of the 
appropriate type. If not, it generates a type- 
inconslstency message.

In the case of a packed Boolean type, a string of 
expressions is generated, showing the effect of the 
operation on each of the Boolean variables in the byte. 
This is achieved by reference to the data-table.

In the case of the CLR statement, the analyser cannot 
check for type-Inconsistency, since the operation is 
legal for all data-types. So the analyser uses 
information from the data-table to ' •mine what type 
of expression should be gener?6 wise or whole-



b yte. Examples are shown In figure 5.5.

disassembly listing data-table analyser
outputstatement

CLR 1000 
CLR FOOD

C10003 integer [10003:*0
[F000] record ti0 Boolean CF00010:«0

4 Boolean [F000l4:-0

Fig. 5.5 CLR statement type-determination

Intentional misuse by programmers of the natural 
connotation of immediate instruction opcodes will 
prevent analysis of the code because of type- 
inconsistencies. Typical of such misuse is the

Boolean variable in bit position zero, In order to 
complement that Boolean variable. 1

5.3.3 Register storage :

If a store-register instruction is encountered, the ,
analyser has to work backwards from the instruction to '
determine what the contents ■ :-he register would have
been at the time of the store operation. However, ",
register contents are not always completely |
determineable. Where a register emerges from a
previous construct to be manipulated and stored before j
being redefined, its contents are not completely i
determineable. The origin, and hence consents, of the
register are unknown at the time of emergence from a
previous construct.

of a record which is known to contain a
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The analyser is able to generate a complete expression 
representing the effect of a store instruction when all 
registers affecting the data to be stored are defined 
prior to the store instruction and in the same 
sequential portion of code as the store instruction.

A whole-byte, arithmetic expression can be generated to 
represent any store Instruction. Even when a bit-wise 
operation is performed, this can be represented as a 
whole-byte expression, as shown in figure 5.6 below.

Fig. 5.6 Whole-byte representation of bit-wi: 
operation

The intention in the above example was clearly to 
complement bit 5 of memory-location 0002H and the 
correct representation for this would be as shown in 
figure 5.7.

t 0 0 0 2 ] 5 i - n o t ( t 0 0 0 2 3 5 3

Fig. 5.7 Correct representation >t bit-complement

Before the analyser can properly ynsiyse a portion of 
code, therefore, it must know w h i t e r  a bit-wise or a 
whole-byte operation is being performed, This 
information is given by the datu--v-rpo of the operand 
of the store instruction, If tv-, operand is of type



Integer or pointer, the analyser uses a routine to 
perform arithmetic expression generation. If Che 
operand is of type record (containing Boolean bits), 
the analyser uses a routine to perform bit-wise 
analysis and expression generation.

The bit-wise analysis routine considers only a small 
subset of the processor's instruction set as valid for 
bit-wise manipulation. These are the instructions 
related to loading, masking, shifting, rotating, 
clearing, storing and logically operating on data 
objects. If the analysis routine encounters an 
instruction outside of this subset, it is unable to 
continue bit-wise analysis of the portion of code 
containing that instruction. The bit-wise analysis 
routine then indicates that an arithmetic-style 
operation has been attempted on a Boolean variable.

If, during its analysis, the bic-wise analyser 
encounters a variable of type other than Boolean, it 
terminates analysis of that portion of code and 
indicates that a bit-wise operation has been attempted 
on an illegal variable.

Similarly, for the purpose of type-checking, the 
arithmetic expression generator excludes certain 
opcodes which are inherently of a bit-wise operative 
nature (eg. rotate, logical and, exclusive o r^. The 
expression generator too, indicates bhe attempted use 
of these excluded opcodes on non-Boolean variables. 
The appearance of bytes containing Boolean variables in 
arithmetic expressions Is also prohibited and flagged 
as a type-violation.

Where no P-notatlon specification of a programme 
exists, the Jata-flow analyser can still be used as an 
aid to manual analysis of the programme, In such



case*, no information Is available concerning intended 
types of data objects within the programme, All type- 
checking Is thus disabled. The bit-wise analysis 
routine attempts to analyse all store operations in 
terms of bit manipulation. When It encounters an 
unknown opcode, it terminates analysis of that portion 
of code and continues with the following store 
instruction.

When bit-wise analysis is complete, the arithmetic 
expression generator parses the listing, generating 
expressions for all remaining, unanalysed store 
operations. When doing so, the expression generator 
does not prohibit the use of any of the processor's 
opcodes. Thus expressions are generated representing 
all data manipulations. Where such manipulations are 
obviously of a bit-wise nature, bit-wise expressions 
are generated. This greatly assists In the manual 
analysis of a disassembly listing.

Bit-wise analyser

The bit-wise analyser uses character-strings to 
represent what each of the register bits would have 
contained If normal execution of a portion of code had 
occurred. It thus starts from an undefined register 
bit; and determines an expression for the contents of 
the bit to be stored by working backwards through the 
instructions. Once all register bits appearing in the 
expression have been defined (eg. by load, clear), then 
the expression is complete. The process is best 
demonstrated by example!

When a store register Instruction is encountered, the 
ar.Myser Initiates all Its character-strings to 
represent the undefined register bits as in figurn 5.8.



Instruction ch^racter-strings
bit? bite b i '5 bit4 bit3 bit2 bltl bitO 

STAB 9000 I B7 | B6 | B5 I B4 I B3 I B2 I Bl I BO I

F i g . 5.8 Character-string initialisation

Thus after the store, bit 7 of location 9000H would 
contain bit 7 of register B, bit 6 of location 9000H 
would contain bit 6 of register B , e t c .

Now suppose the previous instruction had been to mask 
certain bits of register B . Working backwards, the 
analyser would have modified the character-strings as 
shown in figure 5.9 below.

M D , #0F 0 1 0 1 0 ! 0 I 63 1 B2 1 Bl | B0 1
S M B M M B7 | B6 J B5 I B4 I B3 1 B2 I B! 1 BO 1

Pg. 5.9 Character-string modif cation
bit-mask operation

After each modification of the character-strings, the 
analyser checks to see if there are any remaining 
undefined register bies. In this case there clearly 
are, so analysis continues. Note that the analyser 
will never continue back through the end of a previous 
construct. A check is thus also made on whether the 
next statement to be considered forms the end of a 
previous construct. This check is carried out by using 
information derived by the control-flow analyser.

In the example under consideration, suppose that the



previous statement had caused register B to be loaded 
from a memory-location. The analyser vould have
modified the character-strings as shown in figure 5.10.

LDAB 0C00 | 0 I 0 lOIOi [0C0013I [0C00 J2 | ( O C O O U  < COCOO'ici
ANDB #0F |0|010101 B3 I B2 I Bl I B0 I
STAB 9000 IB7|..|B4I B3 | B2 | Bl I BO f

Fig. 5.10 Character-string modification after 
__________________register-load operation ______________

The analyser has replaced each undefined register bit 
(in this case, bits 0 through 3) with fie corresponding 
bit of memory-location OCOOH. A check shows no 
remaining undefined register bits, so the bit-wise 
expression-generation procedure is terminated.

Each character-string is an expression which is 
assigned to the corresponding bit of the store 
instruction operand. The leftmost string is assigned 
to bit 7 of the operand, the one to the right to bit 6 
of the operand, e tc. The only exception to this, rule 
is when a character-string is identical to its 
corresponding operand and bit number. In such cases, 
the expression is not generated. The reason for this is 
that the expression would represent a bit which was 
left unchanged by a bit-wise operation. Before 
generation of each expression, type consistency 
checking is performed.

If any of the bits in a potential expression are part 
of an integer byte or pointer double-byte, an error 
message is generated. If all of the bits in a 
particular expression are of type Boolean, the 
expression is generated. The above example would 
produce the expressions in figure S .11 below.



f 9000 JO: = [OCOO]0 
[9000jlf-C0C00Jl 
[900012:-[OC0012 
[900013i»IOCOO 3 3 
I9000)4:-0 
[9000]5:=0 
[900036:.0 
[9000]?:.0

Fig. 5,11 Expressions generated 
for bit-wise operation

I[C000 37I[C00033I [0001351[000134 1 .. .
. ..i[0001]3 I (0001 J2([0001J1I 0 I

Fig. 5.12 Character-strings for stcre-operation 
with operand 0002H

If a store operation with operand 0001H generated the 
character-strings in figure 5 .12 above and the deba­
table confirmed variables [C000j7, [C000J3 and £0001 Jo 
to be of type Boolean, then the series of expressions 
generated would be as shown in figure 5.13 below.

[000130;-0 
[000136:.[C00033 
[000137:-[C00037

Fig. 5.13 Expressions generated for 
bit-copy operation

All other bits of memory-locAtion 0001H were unchanged.

4



The following examples are from actual outputs of the 
automatic bit-wise data-flow analyser.

In the first example, the data-table contained the 
entry: • [00021 integer'.

The analyser detected a type-vielation in the portion 
of code shown in figure 5.14. '

ILLEGAL eor ON TYPE integer

Fig. 5.14 Data type-viblation detection

With the relevant bit properly declared as 
analyser was able to analyse the operatic 
intended - a Boolean-bi t complement. This 
figure 5.15.

data-table: 100023 record
5 Boolean

C000215:-not(t000235)

Pig. 5.15 Recognition of Boolean
complement operation



Note that with type-checking disabled (no data-table 
available), the above expression would be the one to be 
generated.

Bit-copies within or between bytes are conceptually 
simple operations, but their implementation invariably 
results in several machine code instructions. If is a 
laborious and error-prone task to analyse ' such 
operations manually from a disassembly listing. tiven 
where a disassembly listing was not to be translated 
into P~notation, the data-flow analyser was found 
extremely useful in analysis of such portions of code. 
The examples of bit-copy operations si.^.n in figures 
5.16 and 5.17 were taken directly from the TEH L 30 
disassembly listing (Chapter 3).

c m

Fig. 5.16 Bit-copy within byte

§11* IE £100212.'"£000236

Fig. S .17 Bit-copy between bytes

In addition to eight character-strings representing 
eight bits to be stored, the analyser keeps a ninth, 
"hidden" string, to keep track of the contents of the 
carry bit. This is dqne because many of the shift and



rotate instructions make ise of the carry bit. The 
example of figure 5,18 overleaf shows how the analyser 
keeps track of the carry bit.

m  08"
Biol fiNDB WFE A1QA ABA A10B STAA EOQO

Fig. 5.18 Analysis of manipulation using carry bit.

Arithmetic expression generator

When a 'store-register instruction has an operand of 
type Integer or pointer, the analyser uses an 
expression generation routine to translate the relevant 
portion of the disassembly listing into an arithmetic 
expression format.

As with the bit-wise analyser, the expression generator 
starts at a store instruction with an Internal 
representation of an undefined register to be stored. 
It then works backwards through the listing, generating 
an arithmetic expression, until all registers 
appearing in the expression have been defined (eg. by 
loading, clearing etc.). Again, as with the bit-wise 
analyser, the expression generator will not continue 
working backwards past the end of a previous construct. 
The process Is best demonstrated by example.

When the expression generator encounters a store



instruction, it initiates a character-string as the 
name of the register to be stored. This is shown in 
figure 5.19 below.

processor instruction character-string
STAA C000 A

Fig. 5.19 Character-string initialisatIon 
according to register-name.

Suppose that the previous statement had been to add the 
processor's registers. The character-string
(expression) would have been modified as shown in 
figure 5.20.

ABA A+B
STAA C000 A

JMg 5.20 Character-string modification after, 
register-addition

A check for undefined registers shows two undefined 
registers, so the analyser continues. If the previous 
two statements had defined the registers by loading 
them (one from memory, the other immediately), the 
expression would have been modified as shown in figure 
5.21 overleaf.



LDAA 2002 C20O2J+0E
LDAB #0E . A+OE
ABA A+B
STAA COOO A

Fig. 5.21 Character-string modificatio 
register-loading

.,t.r

A check shows no undefined registers, so analysis is 
complete. Figure 5.22 shows the resultant expression.

t C O O Q ) i - [ 2 0 0 2 ) + G E

Fig. 5.22 Addition-operation representation

Attempted loading of s rcjist-'” from a memory-iocation 
containing Boolean bits generates a type-violation 
message.

This process is similar for all opcodes of the 
processor's instruction-set. A slight problem occurs 
with the insertion of parentheses. When the expression 
is modified by insertion of a character-string in place 
of a register name, parentheses are placed airound the 
character-string to maintain the sense of the 
expression. This is shown in figure 5.23 overleaf.



ID'V 1000 a sl((1000 3+1)
asl(A-i-l)

8TAA 20L0 A

[2000]i-asl ([10003+1)

Fig. 5,23 Insertion of parentheses

This can unfortunately lead to redundant parentheses, 
aa in figure 5,24.

LDftA 1000 a sl(([1000]+l)+l)
INCA asl((A+l)+l)
INCA asl(A +l)
ASLA
STAA 2000 A
[2OO0);«asl(<riOO0)+l)+l)

Fig, S.24 Insertio n of redundant parentheses

Removal of redundant parentheses is proposed as a 
refinement of the arithmetic-express ion generator,

5,3.4 Conditional branches

In the analysis of the code preceding a store 
instruction, the operand of the store instruction (data 
destination) is used to determine whether a bit-wise or 
whole-byte operation is being performed. In the case 
of branches, however, the operand of the branch



instructit• is the destination address of the branch. 
No data element is available to determine the type of 
analysis to be done on the code immediately preceding a 
conditional branch instruction.

The strategy employed in this case, therefore, is the 
same as for the analysis of memory-location 
manipulation with type-checking disabled. Bit-wiae 
analysis is attempted for each conditional branch 
instruction and if this fails, the expression generator 
is used to generate an arithmetic-style expression. 
Failure of bit-wise analysis is caused by an irrelevant 
opcode or a data object of type other than Boolean.

The major differences between conditional branch 
analysis and store instruction analysts are the type of 
expression to be formed and the initialisation of 
character-strtngs.

In the case of a conditional branch instruction, the 
analyser must produce an expression of condition, not 
an expression of assignment. The conditional branch 
instruction represents the final test to be performed 
after the necessary data manipulation. Both in the 
case of bit-wise expression generation and arithmetic 
expression generation, the analyser forms the final 
expression by adding a textual representation of the 
branch instruction to the relevant character-string.

Before forming a textual representation of a 
conditional branch instruction however, the logic of 
the test causing the branch is inverted. This is 
because of the way in which conditional branches are 
used. For example, in an if-then construct, the body 
of the construct will be executed if the condition of 
the branch is &p_& met. So the textual representation 
of a test is not a representation of the branch



condition, but a representation of the construet-body- 
executlon condition.

Some examples of textual representations of conditional 
branch instructions are - own in figure 5.25 below.

The instruction imraediar.-preceding a conditional 
branch instruction, together with the branch, 
instruction itself, is used for initialisation of the 
character-strings for both arithmetic and bit-wise

processor textual representation
Instruction (inverted logic)

BBQ
BGT
BNE

Fig. 5.25 Textual representations of
conditi nal branch instructions

expression generation. This Is because the instruction 
immediately preceding a conditional branch instruction 
sets up the condition for the branch. Examples are 
shown in figure 5,26 below.

bit-wise analysis
CMPA #03 IA7-0 IA6-0! AS-0IM-0I . . ,

...IA3-0IA2-0IAl-1iAO-11
BNE 2000

arithmetic expression generation 
CMPA #03 A-03
BNE 2000

Fig, 5,26 Initialisation of character-strings 
before conditional branch instruction
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Analysis continues in both case? using the same 
routines as for register-store instruction analysis.

When no registers remain undefined, the analyser forms 
a final expression or aeries of expressions by addition 
of the inverted-logic textual text representation.

Sample analyser outputs for some conditional branches 
follow:

m w :  ,...
M O O O  32 <

Pig. 5.27 Successful bit-wise ,

In the above example, bit-wise analysis was successful.

Fig. 5.26 Unsuccessful bit-wise analysis

In the above example, bit-wise analysis was 
unsuccessful - an arithmetic expression was generated.

Ma MAS"""
( C 4 0 i e U l ) * B > - 0

0078 BLT F0A6

Fig. 5,29 Premature termination of analysis



In the above example, analysis was terminated by 
attempted analysis past the end of a previous 
construct. The state of the expression at the time of 
termination is printed, showing undefined registers.

5,4 Results of Data-Flow Analysis

A method of automatic data-flow analysis has been 
described in this chapter. Sample outputs from an 
implementation of the method have been shown to 
demonstrate the effectiveness of the analysis method. 
By reference to a data-table derived from the P- 
notation specification of a programme, an automatic 
data-flow analyser is capable of flagging data-type 
violations. Data-type violations consist both of 
attempting to combine incompatible data-types within, an 
expression, and of attempting to operate on a data-type 
with an operator incompatible with that data-type.

Data-type checking can be disabled when the analyser is 
used as an aid to manual analysis of programmes which 
do not have P--notation specifications.

Expressions generated by the analyser are either of a 
whole-byte, arithmetic nature or of a bit-wise, logical 
nature, depending on the data-types of the variables in 
the expressions. With data-type checking disabled’, the 
nature of generated expressions is at the discretion of 
the analyser.

Between them, the proposed automatic methods of 
conurol-flow and data-flow analysis and a manually 
derived data-table provide sufficient information for 
the translation of a disassembly listing into P-



notation.

The following chapter describes a proposed method of 
using this information to translate automatically a 
disassembly listing into P-notation.



CHAPTER 6 PROGRAMME TRANSLATION

The previous two chapters have described m&thods of 
analysing a disassembly listing in terms of its 
control-flow and data-flow. The purpose of these flow- 
analysis techniques is to provide information for, the 
translation of a disassembly listing Into p-notation.

This chapter describes a method of automatically 
translating a disassembly listing into P-notation. The 
method uses information from the automatic flow- 
analysers, together with information from the manually- 
derived data table described in Chapter 5. The 
translator parses the disassembly listing, checking 
whether each address represents either a control-flow 
node or a data-flow expression. Although control and 
data-flow translation occur in a single pass of the 
listing, they are described separately for clarity.

6.1 Structure Translation

The control-flow analyser described in Chapter 4 
identifies loop and selection constructs in a 
disassembly listing. The analyser creates a file 
containiftg the memory locations of the nodes of all 
identified constructs. This information is used by an 
automatic programme translator which translates the 
control-fxow framework of the disassembly listing into 
P-notation format.

6.1.1 Formatting of constructs

The selection constructs in P-notation are the case 
construct and the If-then-else construct. The if-then 
construct is a simpler, single-bodied version of the



if-then-else construct.

The translator uses a character string to represent the 
line of indentation of the P-notation programme at any 
point in the programme. The character string contains 
blanks and, where relevant, key words such as "if", 
"case", e tc, This character string is updated whenever 
a structure node is encountered, as determined by the 
'»tput file of the oontrol-flow analyser.

Successful control-flow analysis is a pre-requisite for 
translation of the contt ol-flow framework of a 
disassembly listing into P-notation (4.3). , The
translator, therefore, does no checking on correspond­
ence between key words. It simply translates according 
to information in the output file of the control-flow 
analyser. For example, if the control-flow analyser 
has shown a particular address In the disassembly 
listing to correspond to else3, the translator 
determines the indentation level of the corresponding
if 3. It then modifies its indentation character
string to contain the word "else" in the position of
the "if" of if 3. Thus the "else" of elseS will be
printed vertically below the "if" of if 3. The
modified indentation character string ensures that 
until the next control-flow node, data manipulation 
expressions will be printed directly below each other 
in the correct horizontal position.

An example of control-flow translation is shown in 
figure 6.1 overleaf. Data manipulations have been 
omitted.



if__I if
reptz rept
untia untl
i f__2 if
else?, else
comp2 end

else
compl ena

Fig. 6.1 Control -flow translation

A further example, containing a case construct, is 
shown in figure 6.2.

easel case
of__1 of
(f__2
elseZ else
coropa end
of__1 of
o f _ l
. . p i

Fig. 6.2 Control-fl ow translation including

caaeconstruct

6.2 Data-Flow Translation

All data type-checking and expression generation is 
performed by the data-flow analyser (Chapter 5). The 
translator has only to insert variable names in place 
of memory locations in expressions and insert the 
expressions into the control-flow iramework. Data-flow



translation makes use of the manually derived data
table and the output file of the data-flow analyser.

As described in Chapter 5 (Data-Flow Analysis),
conditional branch statements generate expressions
representing construct body execution conditions,
These conditions are used to complete the test
predicates of the control-flow framework. In Che case
of an if statement, the word "then" is added to the
derived condition. An example is shown below.

H.ta table entry: [20001 counter integer

1000 LDAA
1003
1005 100C if counter-55«0 then
1007 2000 counter:-0
100A 100F else
100C 2000 counter:-counter*!
100F =nd

Fig. .3 Translat on of itf-then-else construct

A further example, containing a repeat until loop, is 
shown in figure 6.4 overleaf. In this example, the loop 
index is held in a memory location. Where this is not 
done (loop index held in a register), the data-flow 
analyser would have been unable to analyse the code. 
The register name would appear in the test predicate, 
as in figure 6.5 overleaf, Further analysis would have 
to be manually performed.



d.t. table entry: [20F0 ] counter integer '

,040 repeat

10 = 0 DEC 20PO counter:*counter-l

LDAA 20F0
BNE 1040 until counter”0

Fig. .4 Translation of repeat-until construct

C M C LDAA 1000
c w a

C.,0 m e .

COSO CMPA #04
C052 BNE C003 until A-04-0
C064

Fig. 6.5 Register-name appearing in test-predicate

Difficulty of test predicate insertion arises with the 
case construct. Each conditional branch to a case body 
causes generation of a test predicate. This predicate 
is inserted at the head of each case body, preceded by 
the word "of", as shown in figure 6.6 overleaf.



original translated
P-notation programme programme

case count of 2000 case
CMPA

0105 BBQ
0107 CMPA
0109 0120
010B CMPA #03
OlOD BEG 0130
010F BRA

1,- 0111 of count-1-0 : -

BRA

0120- of eount-2-Oi -

BRA
3:- - of count-3=0: -

end

Fig. 6 6 Translation of case construct

The first case body :ts often executed by default - none 
of the other cese tests resulted in a branch. In such 
cases, no test predicate is generated for chat case 
body. Further analysis must be manually performed.

So translated case constructs are not fully authentic. 
It is felt, however, that the case construct 
translation procedure described above generates an 
easily readable, high-level version of a esse 
construct, albeit slightly different from the standard 
P-notation case construct definition.



6,3 Results of Programme Translation

The automatic programme’ translator described in this 
chapter translates a disassembly listing of the form 
obtained from the TEM I 30 rChapter 3) into P-notation.

The translator uses results from the control and data­
flow analysers of the previous two chapters, together 
with a manually derived data table described In the 
previous chapter, to perform its task.

Translation is performed in a single pass of the 
disassembly listing. All disassembly listing 
statements referenced in the control and/or data-flow 
analyser output files have control and/or data-flow 
relevance'. They initiate the generation of 
appropriate P-notation statements.

The overall effectiveness of the proposed methods of 
disassembly, analysis and translation of a machine code 
programme into P-notation is assessed in the next 
chapter.
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CHAPTER 7 CONCLUSIONS

Previous chapters have discussed how a machine-code 
programme can be shown to be consistent with Its high- 
level specification. This process essentially consists 
of four phases,

A series of traces of a microprocessor running the 
actual machine code programme is obtained. These 
individual traces are processed to form one complete 
disassembly listing of the programme.

The disassembly listing is analysed in terms of its 
control flow. Standard constructs are identified and 
unrecogniseable constructs are flagged.

The disassembly listing, together with information 
generated by the control-flow analyser, is then 
analysed in terms of data-flow. Information from the 
specification's data declaration is used to authorise 
memory location manipulations and flag attempted 
data-type violations.

Finally, information from the control-flow analyser, 
the data-flow analyser and the specification’s data 
declaration is used to translate the disassembly 
listing into P-notation.

Demonstration of consistency between a machine-code 
programme and its high-level specification is then by 
direct comparison of the tw o . This comparison is at 
present a manual task, but has the potential to be 
automated.



7.1 Techniques Developed

7.1.1 Features

Operations of the microprocessor are traced by a logic 
analyser as the microprocessor lo forced by external 
stimulus to traverse each path of its programme. Thua 
actual code, as executed, Is used as input to the 
validation system. If desired, this code can be 
compared with its equivalent PROM listing to indicate 
"dead" or unreachable code in the PROM.

The validation techniques need not necessarily operate 
from processor traces. Code at higher levels can be 
used instead. For example, portions of assembler-code 
can be checked against their P-notatlon equivalents 
before the entire program is assembled and ru n .

Even where no P-notatlon specification exists, the 
validation techniques will do a complete control-flow 
analysis and translation of the code to a register- 
independent level. This greatly assists readability 
and analysis of code where little or no documentation 
is available.

If a programme is inconsistent with its specification, 
this will be shown in one of two ways. If there are 
unrecogni aeable constructs or daea-trype
inconsistencies, these will be flagged by the 
analysers. If there are n o t , the resultant P-notation 
representation will be seen to differ from its 
specification by inspection.

7.1.2 Limitations

The analysis techniques presented will not



automatically analyse all machine-code programmes. 
Programmes must be coded according to certain 
conventions in order to be analysed automatically. In 
some cases this is desireable; in others, unfortunate.

Limitations of control-flow analysis

Programmes whose structure exactly mirrors that of 
their P-notation specification will always be 
snalyseable in terms of control-flow. This is 
necessary and sufficient for control-flow validation of 
such programmes. Where a programmer has inadvertently 
or intentionally deviated from the P-notation 
structure, the structure of the resultant programme may 
or may not be analyseable. If it is not, the validator 
knows immediately that the programme contains unsound 
structures. If it is, it will be seen by inspection to 
differ from Its specification.

Programmes without P-notation specifications can still 
be analysed In terms of their control-flow. Zf the 
control-flow analyser finds no unknown structures in a 
programme, the programme has been shown to contain only 
sound structures. If the analyser finds unknown 
structures, an operator may Indicate to the analyser 
that such structures are to be ignored if he finds 
them, by manual inspection, to be acceptable.

A limitation of the contxol-flow analyser, albeit 
relatively minor, is its all-or-nothing recognition of 
a particular structure. If a structure contains any 
irregularity, the analyser is of no assistance to the 
validator - code must be manually inspected.



Limitations of data-flow-analysis

Every instance of deta-manipulati on will generate 
either an arithmetic-type representation, or a logical 
(bit-manipulation) representation. If a programme 
exactly mirrors its P-notation specification, then all 
such representations will be val.'.f. Limitations of 
analysis are epitomised by processor registers 
appearing in such representations. This occurs when a 
programmer carries registers through structure end- 
boundaries. The data-flow analyser is then unsure of 
the origin and thus the contents of such registers and 
can represent them only by their register names. It is 
obvious that this i„~itation can be minimised by use of 
an appropriate coding technique -

Another limitation occurs with indexed addressing. The 
data-flow analyser is unaware of the contents of the 
inde.. -egister and can thus represent the absolute 
address only as index-register plus offset.

Where programmes were not written from P-notation 
specifications, the data-flow-analyser will still 
generate arithmetic or logical representations","" "but 
these cannot be expected always to be valid, since the 
analyser has no information about the types of the data 
items involved. It will not, for example, notice if an 
arithmetic operation is performed on a Boolean 
variable. This is not a serious limitation since,- used 
in this mode, the analyser is essentially an aid to 
manual analysis, rather than an automatic validation

General limitations

The analysers are unavoidably processor-specific. In



the case of the control-flow analyser and expression 
generator, the operating programmes are non-processor- 
specific, working from data bases containing processor 
data. It is, in the case of these two analysers, a 
simple task to adapt them to other processors by 
changing their data bases.

In the case of the bit-manipulation analyser, however, 
the operating programme has to simulate the operation 
of the -processor and is thus, in itself, 
processor-specific. So to adapt it to another 
processor would involve changes which, although simple 
to perform, would be substantial.

7.1.3 Recommended refinements 

Control-flow-analysis refinements

The all-or-nothing recognition oi individual structures 
is a shortcoming of the control-flow-ansiyser. 16 is 
not a serious shortcoming, since properly structured 
code will always be analyseable (compiler-generated 
code, for example, will always have proper structurej. 
It is only improperly structured code which will need 
manual analysis.

However, certain bad coding practices lead to common 
forms of improper structure. The overlapping of 
structures is the only form of improper structure 
detected b*_' the control-f low analyser. A list of 
overlapping structures is printed during the third.pass 
of the control-flow analyser.

Research could be done to identify and appropriately 
treat other common forms of bad structure. This would 
•• •..lly reduce any manual code inspection which might



otherwise' have been necessary.

Data-flovr-analysis refinements

A limitation of the data-flow-analyser Is its inability 
to take into account the structure of the programme. 
When data-flow is heavily dependent on the structures 
within a programme, it is not practical to do data-flow 
analysis across such structures. Generated expressions 
become multiple expressions, selection of a particular 
expression being dependent on the data active in 
previous constructs. In such cases it is better to 
admit defeat, since translated code becomes even less 
readable than the code from which it was generated!

When too many previous constructs affect Vh'?.--contents 
of a register at a given position in the ^rcgfamme, it 
is clearer to generate an expression Invylving the 
register name than to try to indicate the possible 
contents of the register.

However, in certain simple cases, where for example, 
the body of an if-then construct does not" "afffcct a 
register, analysis could be continued above the body of 
the construct. So a proposed refinement would be to 
identify instances where register:! are carried "around" 
simple constructs and to continue analysis above such 
constructs.

General refinements

Manual intervention is required in formulating a data 
table from the P-notation variable specification. In 
the case of larger programmes, this process could 
entail a substantial amount of work, not to mention of



course, the unfavourable human trait of inadvertent 
error-seedingl So automation of this process Is a 
proposed refinement. It would have to be determined 
whether there would always be sufficient formal 
information within the P-notation variable declaration 
and assembler declaration for automation of the above 
process.

7.2 Conclusions

The absence of effective methods of validating real­
time process control software was the motivation for 
the research described in this dissertation.

Real-time process control software has attributes such 
as stringent timing constraints, cyclic programmes and 
low-level bit-manipulatioh, which are not present in 
many other software applications. Therefore, 
established validation techniques for other software 
applications have very limited effectiveness in the 
validation of real-time process control software. But 
such sof\Ware is being used increasingly in the control 
of life-critical systefiis. It Simply has to be 
validated.

A major aspect of validation is the proof of 
consistency between a programme and its specification. 
The goal of the research described in this dissertation 
was to show how such a method could be developed, the 
programme and specification being In the forms of 
machine code and P-notation, respectively. Automation 
of the method was also of prime concern.

A method of deriving a complete disassembly listing of 
a machine code programme has been developed. The 
method consists of tracing the operations of a



microprocessor as it executes the machine code in 
question. The microprocessor system is stimulated to 
cause the microprocessor to execute all path> jf the 
programme. All traces thus obtained are edrted and 
sorted to produce the complete disassembly 1'sting.

Methods of automatic control-flow a',d data-flow 
analysis of a disassembly listing have also been 
developed. These methods have been shown to be 
effective in all cases where assembler programmes have 
been directly and formally derived from their 
specifications. The analysis methods have also been 
shown to be effective in pinpointing inconsistencies 
between programmes and their specifications.

It has been shown how, by use of control-flow and 
data-flow analysis and use of information from the 
specification's data declaration, an assembler 
programme can be translated into P-notation. It has 
also been shown how this translation process can be 
automated.

The methods of control-flow and data-flow analysis have 
been shown to be useful also in the analyst*-.- of 
assembly language programmes and their translation to 
a register-independent level where no P-notation 
specification exists.

The above analysis and translation techniques could be 
integrated into an interactive validation environment 
for validating machine code programmes with respect to 
their high-level specifications.



REFERENCES

Adrion, W . R ., Branstad, M .A . and Cherniavsky, J.C. 
(1962) Validation, Verification and Testing of Computer 
Software, Computing Surveys, vol. 14, no. 2, Jun 1982, 
pp. 159-192.

Allen, F.E. and Cocke, J. (1976) A Program Data Flow 
Analysis Procedure, Communications of the a .c .m .,
vol.19, no. 3, Mar 1976, pp. 137-147.

Benson, J. (1981) A Preliminary Experiment in 
Automated Software Testing, ACM Sigsoft, Software 
Engineering Notes, v ol, 6, no. 3, Jul 1981, pp. 68-75.

Branstad, M.A., Cherniavsky, J.C. and Adrion, W.R. 
(1960) Validation, Verification and Testing for the
Individual Programmer, Computer, Dec 1980, pp. 24-30.

Carr6, B .A . (1960) Software Validation, Microprocessors 
and Microsystems, vol. 4, no. 10, Dec 1980, pp. 395-

Clarke, l .a . (1976) A System to generate Teat Data 
and Symbolically Execute Programs, l.E.B.E. 
Transactions on Software Engineering, vol. SE-2, no. 3, 
Sept 1976, pp. 215-222.

De Mlllo, R.A., Lipton, R.J. and Sayward, F.G. (,1978) 
Hints on Test Data Selection : Help for the Practicing
Programmer, Computer, Apr 1978, pp. 34-41.

Deutseh, M.S. (1979) Verification and Validation, in
Jensen, R.W. and Tonies, C.C, eds., "Software
Engineering", Prentice-Hall Inc., New Jersey, 1979.



Gerber (1985) Generation, Documentation and 
Validation of Software for the siemens Electronic 
Interlocking, Siemens LTD., Department T/SI-ST (Railway 
Signalling), 1985,

Goodenough, J . B. and Gerhart, S.L. (1976) Toward a 
Theory of Test Data Selection, I.5-E.E. Transactions on 
Software Engineering, vol. SE-1, no, 2, Jun 1975, pp.

Gustafson, D,A. (1964) Guidance for Teat Selection 
Based on the Coat of Errors, Proceedings AFIPS National 
Computer Conference, 1984, pp. 425-429.

Hoare, c.A.R., (1975) Data Reliability, Proceedings of 
the International Conference on Reliable Software, Los 
Angeles, 1975, pp, 528-533.

Howden, W.E. (1977) Symbolic Testing and the DISSECT 
Symbolic Evaluation System, I.B.E.E, Transactions on 
Software Engineering, vol. SE-3, no. 4, Jul 1977, pp. 
266-278.

Howden, W.E, (1976) An Evaluation 6* the Effective­
ness of Symbolic Testing, Software - Practice and 
Experience, vol. e, 1978, pp. 381-397,

Howden, W.K. (1980a) Functional Program Testing,
1.E.E.E. Transactions on Software Engineering, vol. 5E- 
6, no, 2, Mar 1980, pp. 162-169.

Hoyden, W.E. (1980b) Applicability of Software
Validation Techniques to Scientific Programs, ACM
Transactions on Programming Languages and Systems, vol.
2, no. 3, Jul 1980, pp. 307-320,



Howden, w.B. (1982) Life-Cycle Software Validation,
Computer, Feb 1982, pp. 71-78.

HP64000 Logie Development System, System Overview, 
Hewlett Packard Company/Logic Systems Division, 
Colorado, USA, 1982.

King, J.C. (1976) Symbolic Execution and Program 
Testing, Communications of the ACM, vol. 19, no. 7, Jul 
1976, pp. 385-394,

Kopetz, H. (1979) Software Reliability, The Macmillan 
Press Ltd., 1979.

Leveson, N.G. and Harvey, P.R. (1983) Analyzing 
Software Safety, I.E.E.E. Transactions on Software 
Engineering, vol. SE-9, no. 5, Sept 1983, pp. 569-579.

Ludewig, J.L. (1961) Specification of a Specification 
Language, paper for presentation at IFAC/IFIP Workshop 
on Real-Time Programming, Kyoto, Japan, 1981.

Meyers, G.J. (1979) The Art of Software Testing, John 
Wiley and sons. New York, 1979. - - -

Miller, E.F, (1977), Program Testing; Art Meets Theory, 
Computer, Jul 1977, pp. 42-51.

Patterson, D.A. (1981) Ah Experiment in High LeVal 
Language Microprogramming and Verification, 
Communications of the ACM, vol, 24, no. 10, Oct 1931, 
pp. 699-709.

Quirk, W.J. (1963) Recent Developments in the SPECK 
Specification System, HARWELL Report CSS.146, 1983.



Quirk, W . J . (1985) ed. Verification and Validation of 
Real-Time software, Springer-Verlsg, Berlin, 1985.

Ramamoorthy, C.V, and Ho, S.F. (1975) Testing Large 
Software with Automated Software Evaluation Systems, 
I.E.E.E. Transactions on Software Engineering, vol. SB- 
1, no. 1, Mar 1975, pp. 46-58.

Ross, D.T. and Schoman, K.E., Jr. (1977) Structured 
Analysis for Requirements Definition, I.E.E.E. 
Transactions on Software Engineering, vol. SE-3, no, 1, 
Jan 1977, pp. 6-15.

Rzevski, G. (1981) Recent Advances In Software 
Reliability Methods, Quality Assurance, vol. 7, nb. 3, 
Sept 1961, pp. 80-97.

short, R.c. (1963) Software Validation for a Railway 
Signalling System, pub!. I FAC Safecomp '83, Cambridge,

S PADE, Program Validation Limited, Southampton, 1985.

Taylor, J.R. (1982) Fault Tree and Cause Consequence 
Analysis for Control software Validation, Riso National 
Laboratory, Roskilde, Denmark, Jan 1982.

Taylor, R.N. (1983) An Integrated Verification and 
Testing Environment, Software - Practice and 
Experience, vol. 13, 1983, pp. 697-713.

Teichroew, D, and Hershey, E.A. Ill (1977) PSL/PSAi A 
Computer-Aided Technique for Structured Documentation 
and Analysis of Information Processing Systems, 
I.E.E.E. Transactions on Software Engineering, vol. SE- 
3, no. 1, Jan 1977, pp. 41-48.



TEH L 30 Slock Instrument Controller, A Technical 
Description, Issue 1, M.L. Engineering (Plymouth) Ltd., 
Plymouth, 1983.

VERkshop III proceedings, A.c.M. Si-ssott Software 
Engineering Notes, vol. 10, no. 4, Aug 1965, pp. i-v, .

Weyuker, E.J. and Ostrand, T.J. (1980) Theory of 
Program Testing and the Application of Revealing 
Subdomains, I.E.E.E. Transactions on Software 
Engineering, vol. SE-6, no. 3, May 1980, pp. 236-246.

White, L.J. and Cohen, E.I. (1980) A Domain Strategy 
for Computer Program Testing, I.E.E.E. Transactions on 
Software Engineering, vol. SB-6, no. 3, May 1980, pp.

Young, S. (1980) P-noCation; High Level description 
language for software daalgn, Microprocessors and 
Microsystems, vol. 4, no. 7, Sept 1980, pp. 267-272, 
no. 8, Oct 1960, pp. 307-321, no, 9, Nov 1980, pp. 363- 
369. no. 10. Dec 1980. 411-419.



APPENDIX A TEM L 30

A.l Introduction

The "TEM L 30 Block Instrument Controller" was used as 
a guinea-pig microprocessor system for the production 
of a disassembly listing (Chapter 3). This appendix 
contains a brief description of the operation and 
features of the TEM L 30.

A.2 Overview of Operation

In railway signalling, a "block instrument" is a device 
which sends signalling information over a pair of wires 
to another block instrument. The information is sent 
in the form of manually-pulsed current of pre-defined 
negative or positive polarity with respect to the wire- 
p air. Thus the information that can be transmitted 
over the wire-pair is current in one direction, current 
in the other direction or the absence of current. The 
receiving block-Instrument indicates to its operator 
the presence or absence of current and its polarity.

Wlre-pairs longer than even a few hundred metres are 
expensive and time-consuming to Install, so it is 
clearly desireable to replace them with radio links.
Since the information transmitted between block 
instruments, despite its simplicity, is of critical 
importance, any radio link replacing a wire-pair would 
have to transmit this information in a fail-safe j
manner. One such radio link is the " ,M L 30 Block 
Instrument Controller“, manufactured by M . L ,
Engineering (Plymouth) Limited. One TEM L 30 is 
connected to two block instruments at the same end of 1
adjacent loops, as shown in figure Al. '



Fig. ftl Replacement of wire pair by radio link

A.3 System Operation

The control unit consists of three basic parts:

A data modulation/demodulation system designed to 
interface directly with a radio set.

Power supply, control and input/output interface 
circuitry designed to simulate the characteristics of a 
wired connection between block instruments,

A duplicated microprocessor-controlled logic system end 
message store (figure A 2).



Pi g . A2 Duplicated fail-safe microprocessor-based 
control system

Information is sent fram one control unit to the next 
in the form of a coded message consisting of a fixed 
length portion followed by a variable length portion. 
The operation of the control unit is best studied by 
briefly considering the sequence of events which occurs 
when a message is sent from one unit to another.

A.3.1 Operation of the block instrument - input ,

Operation of the block instrument in the normal way 
alertts the control unit and powers-up the system. 
Messages may exist on either of the two instruments 
connected to, the controller independently. They 
consist of a series of pulses of current of either 
polarity. They are coded by sampling at the block 
message sample frequency of 15 Hz.

Ai3.2 Encoding

The fixed length portion of the message holds the unit
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address, parity and a synchronisation sequence. The 
variable length portion contains the signalling 
information and is assembled as follows. The variable 
length sequence record is opened whenever an input line 
becomes active, whereafter the input is sampled at the 
block message sampling frequency until the input has 
remained zero long enough for the message to have been 
judged to have finished. When encoding, the polarity 
is judged by the first current pulse and thereafter the 
processor provides the ability to sir.k current of only 
that polarity.

A.3.3 Data transmission

There is an internal .message store for messages 
awaiting transmission, validation or output to one of 
the block instruments. It is divided into equal parts, 
one for each block instrument. Each part can be used 
for either incoming or outgoing messages. For security 
and availability reasons, messages are triplicated 
sequentially and two of the three messages are required 
to be identical before the receiving control unit will 
output the signal information to the block instrument. 
A message is transmitted only after a check has been 
made to ensure that no other radio is transmicting.

A.3.4 Data receipt

All control units receive and decode all data messages, 
but messages are stored only if the message address 
applies to the particular location address and the 
appropriate store is available. The first two messages 
are stored . and compared with each other and with the 
third message, which is not stored. If any two 
messages agree with each other, then one of them is
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sent out to the relevant block Instrument.

A.3.5 Operation of the block instrument - output

Messages are output to the instruments at the block 
message sample frequency, sequentially, bit by bit 
until completion. For each logical one that was re­
ceived, one line is driven high and the other is held 
low, according to the received polarity. For each 
logical zero that was received, neither line is driven.

A.4 Safety Features

The main safety feature is a symmetrical microprocessor 
board, on which two independent processors perform the 
same function and constantly check each others actions. 
Any disagreements between the processors cause them to 
blow a power interface fuse, thus isolating the system 
outputs and preventing any faulty messages from being 
sent o ut. The various checking procedures of the 
processors include:

Independent checking of the state of the source and 
sink lines.

Independent "watchdog" circuits which require continual 
refresh.

Continual self-checking by each processor of its 
ability to read from and write to its own RAM.

Continual inter-checking between the two processors of 
the contents of the PROM memories.
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Frequent testing by each processor of its ability to 
blow the fuse.

Low supply voltage detection on the power board.

Continual self-checking of transmitted data.

In addition to these safety checks, the radio messages 
are protected from the effects of noise by a triple­
layer system: a Hamming coding; a Manchester II coding
and the requirement that two identical messages must be 
received out of three transmitted.
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APPENDIX B P-NOTATION SYNTAX

This appendix presents P-notation syntax in Backus-Naur 
Form (BNF).

Words belonging to P-notation are printed in boldface, 
e.g.:type,repeat. The following symbols belong to BNF 
and are not part of the P-notation syntax?

means "is defined as",
I means "or".
{} indicate items which may be repeated zero or more

All other symbols are part of the P-notation syntax.

actual parameter:i* expression I variable 
adding-operators:• + l-|orIeor
array-type::« array[digit-sequencelof component-type 
array-variable', i* variable
assignment-statement::« variable:-expression 
binary-value:s = 011(011}
block::- declaration-part statement part 
e a s e - e l e m e n t : c a s e - 1ist:statement 
case-1ist::- case-1 ist-element{,case-1ist-element) 
case-1ist-element::• constant I constant..constant 
case-statementii- case expression of case-element

(jcase-element) end lease expression of case-element 
( jcase-element> else statement(statement) end 

complemented-factor::- signed-factorI not signed-factor 
component-typet;■ type
component-variable::■ indexed-variableIf ield-designator 
compound-statements:= begin statement{jstatement} end 
conditional-statement::■ if-statement Icase-statement 
c o n s t a n t u n s i g n e d - i n t e g e r l s i g n  unsigned-integer| 

eonsfcant-identi f ierJsign constant-identifier I string
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constant-defInition-parts :■ oonaf constant-def inition 
{jconstant-definition> 

constant-defini tion::= identifier-constant 
constant-identifier::« identifier 
control-variable::- variable-identifier 
declaration-part:(declaration-section) 
declaration-section::■ constant-def inition-partI 

type-def inition-partIvariable-declaration-partl 
procedure-declaration-part 

digit::- 0 11 1 2 I 3 |4 1 5 I 6 I 7 I 8 I 9 
digit-sequence::« digit(digit> 
empty:
expression:i- simple~expression(relational-operator 

simple-expressiont 
factor:: - variable I unsigned-constant I (ex - ‘‘ssion) 
field-identifier::- identifier l
field-list::- empty If ield-identif ier

{,field-identif ier>:type I field-identifier 
{,field-identifier>:type(tblnary-value) 

final-value:i- expression 
for-list::= initial-Value to final-valuel 

initial-value downto final-value 
for-ststement::« for control-variable:"for-list 

do statement 
formal-parameter-section:parameter-groupl 

var parameter-group 
htixdigit:i• digitlA1BIClDIBI» 
hexdigit-sequence::■ hexdigit(hexdigit) 
identifier/:» letter(letter-or-digit) 
identifier-list::" identifier<,identifier} 
if-staf.ement; :• if expression then statement 

{else statement} 
indexed-variable:array-varlabletsimple-expression 

{,simple-expression> 3 
initial-valueif* simple-express;on



Paqe B-3

letter!J- AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVI 
W|XIY|Zla|blcld|e|flglhli|jlklHm|n|o|plqlr|s|tlu| 
v | w i x | y | z | _

1etter-or-dlgit::« letterIdlgit
multlplying-operator::> * I/ idlvI mod I and IshlIshrIshraI 

rotr/rOtl
parameter-groups: = identif ier-list ’■ type-identif ier 
pointer-type!:■ identifier
procedure-declaration-partts- {procedure-declaration) 
procedure-heading!i» procedure identifieriI procedure 

identif ier(formal-parameter-section 
{,formal-parameter-section)) j 

procedure-statement::« procedure-identifierI 
procedure-identi fieriactual-parameter 
{,actual-parameter})

.’cgramme-heading: t - programme programme-identi f ier 
p r o g r a m m e ■ programme-heading block 
programme-ldentifier!s- identifier 
record-typeii- record field-list end 
record-variables:- variable 
record-variable-1ist:i» record-variable 

(,record-variable) 
repeat-statement:s- repeat statement*{statement} 

until expression 
repetitive-statements:■ while-statement I 

repeat-statementIfor-statement 
scalar-type!:* (identifier*,identifier)) 
sign::- H -
simple-expressiont!■ term(adding-operator term) 
simple-statement::- assignment-statementI 

procedure-statement 
simple-type:scelar-typelsubrange-typel 

type-identlfier 
statement::■ simple-statementistructured-statement 
statement-part::- compound-statement 
string::- '{character}' 
string-typeii» atringtconstant)



struetured-statementi:= compoand-statementI 
conditional-statement 1 repetitive-statement I 
with-statement 

structured-type::- string-type I array-type I record-type 
subrange-typej ;• constant.,constant 
term: s = complemented-factor{multiplylng-operatot- 

complemented-f actor} I indirection-operator 
Identifier(multiplying-operator complemented-factor> 

type-definition::- Identifier-type 
t y p e - d e f t n i t i o n - p a r t i t y p e  type-defInition 

{ jtype-definition> 
type-ldentifler:i- identifier
type::- simple-type I atructured-tyfieI pointer-type 
unsigned-integer::- digit-sequenceIShexdlgit-sequence 
variables:- variable-identif ierI component-variable I 

referenned-variable 
variable-declaratloni:- Identifier-list:type I 

identifier-2ist•'type absolute hexdigit 
varlable-declaration-part::- var variable-declaration 

(;variable-declaration) 
varlable-identlfieris- identifier 
whlle-statementtt» while expression do statement 
with-statementi:» with record-variable-list 

do statement

i



APPENDIX C CONTROL-FLOW ANALYSIS ALGORITHMS

This appendix contains algorithms which were used to 
identify and label if-fchen-else, loop and case 
constructs within a disassembly listing.

CB is an abbreviation for conditional branch.
VCB is an abbreviation for uncondifcional branch.

A statement which precedes another is lower in absolute 
programme address. A statement preceding another is 
its predecessor.

A statement which succeeds another is higher in 
absolute programme address. A statement succeeding 
another is its successor.

The destination of a branch statement is the statement 
to which it branches.

C.l Algorithm for case Identification

start at beginning of listing 
while not end of listing do 

move to next statement
if statement labelled with multiple comp labels then 

if each comp has corresponding else i d  if labels then 
label if corresponding to lowest-r..'m/ered-comp 'case#1 
(where # is number of lowest-numbered-comp)
label else's corresponding to all other comp's 'of #'
label multiple comp statement 'comp#'

endwhile

4
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C.2 Algorithm for If-then-else and loop Identification

set # to 1 and start at beginning of listing 
while not end of listing do 

move to next statement 
if CB forwards then

if CB destination predecessor is UCB forwards then
label CB 'if # ‘
label CB destination 'else#' 
label UCB destination 'comp#1 
increment #

if CB destination predecessor is UCB backwards then 
if UCB destination precedes CB then 

label CB ‘w h il#1 
label UCB 'endw#1 
increment #

else
label CB 'if_#'
label CB destination ‘comp#1
increment #

if CB backwards then 
label CB 'untl#‘ 
label CB destination 'rept#1 
increment #

if (CB or UCB) and unlabelled then 
label CB or UCB 'unkn#* 
label CB or UCB destination ‘endu#’ 
ii'Srement #

endwhile
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