
T H E V A L I D A T I O N O F E M B E D D E D
S O F T W A R E

Thomas Davidtz

A dissertation submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg, in
fulfilment of the requirements for the degree of Master
of Science in Engineering.

Johannesburg 1966

DECLARATION

I declare that this dissertation is my w o , unaided
w ork. It is being submitted for the degree of Master
of Science in Engineering at the University of the
Witwatersrand and has not been submitted before for any
degree or examination at any other University-

THOMAS DAVIDTZ

'W B . L F T M dav o f . M M Z . 19 #

ABSTRACT

The use of embedded computers in Railway Signalling
systems and other highly-critical monitoring and
control applications has led to a demand for an
effective method of validation of the software within
such systems. An important aspect of validation is
proving a computer programme to be consistent with its
specification.

This dissertation proposes a pragmatic method of
proving a machine-code programme to be consistent with
its high-level p r o g r a m s specification. A disassembly
of the machine-code programme is obtained and
automatically analysed in terms of control-flow and
data-flow. By using information from the data-
declaration portion of the specification, the
disassembly listing is translated to a level
corresponding to that of the high-level specification.
Consistency between the translated programme and the
original high-level specification is proved by direct
comparison.

The dissertation suggests the validity of the above
approach and shows by example, how such an approach may
be implemented.

ACKNOWLEDGEMENTS

I wish to acknowledge my debt to:

The SOUTH AFRICAN TRANSPORT SERVICES for sponsoring
the research.

Mr Louis Potgieter, Senior District Engineer, SOUTH
AFRICAN TRANSPORT SERVICES, for his advice, guidance
and enthusiasm.

Professor M.G. Rodd, University of the Witwatersrand,
•for his advice and support throughout the duration of
the research project.

Page lv

CONTENTS Page

DECLARATION --- i
ABSTRACT i i
ACKNOWLEDGEMENTS -------------------------------------- 111
CONTENTS ----------------------------------- — tv
LIST OF FIGURES -------------------------------------- viii

CHAPTER 1 INTRODUCTION

1.1 Background --- l
1.2 Statement of the Problem ------------------------ 2
1.3 Direction of Research --------------------------- s
1.4 Scope of Research -------------------------------- 8
1.4.1 Programme -- 8
1.4.2 Specification --- g
1.4.3 Automation -— ■— — --- ig
1.4.4 Stated goal ------- n
1.5 Overview of Dissertation ---------------------- n

CHAPTER 2 LITERATURE SURVEY

2.1 Survey of publications ------------------------- 14
2.2 Sta.te-of-tLe-art -------------------------------- 24

CHAPTER 3 DISASSEMBLY

3.1 Test Set-Up -------------------------------------- 29
3.1.1 Guinea-pig microprocessor system ------------ 29
3.1.2 Tracing the microprocessor’s operations ---- 30
3.1.3 Stimulus of the device ------------------------- 30

Operation of the block instruments ---------- 30
Hardware monitoring and failure strategies - 30
Message reception and analysis --------------- 31

3.2 Trace Specification ---------------------------- 32
3.2.1 Trace specification document ------------------ 34

Trigger occurrence ------------------------------ 34
Trigger on opcode ------------ 35

3.3 Production of the Disassembly Listing ------- as
3.3.1 Obtaining the traces --------------------------- 35

Providing the stimulus--------------------------- 35
Tracing the test runs ------------------------- 35

3.3.2 Manipulation of the traces -------------------- 35
Uploading the traces to a minicomputer ------- 36
Editing and sorting the traces ---------------- 36

3.4 Result of Disassembly ------------------------- 39

CHAPTER 4 CONTROt.-Ft.OW ANALYSIS

4.1 Constructs In P-notatlon ---------------------- 40
4.1.1 Sequence --- 40
4.1.2 Selection -- 40
4.1.3 Iteration ---------------- 40
4.2 Construct Recognition any Labelling --------- 41
4 .2.1 Input and storage of disassembly listing --- 41
4.2.2 Processor-specific information --------------- 42
4.2.3 First pas s : if-then-else and

loop recognition -------------------------------- 42
4.2.4 Second pas s : esse recognition --------------- 44
4.2.5 Overlapping and unrecogniseable constructs - 47
4.3 Results of Control-Flow Analysis ------------ 46

CHAPTER 5 DATA-FLOW ANALYSIS

5.1 Data Types in P-notatlon --------------------- 50
5.1.1 Formulation of a data table ------------------- 53
5.2 Effect of Data-Type on Data Manipulations — 55
5.3 Analysis of Data Manipulations -------------- 56
5.3.1 General strategy -------------------------------- 56

5.3.2 Immediate manipulation----- --- ------------------- gg
5.3.3 Register storage --------------------- ----------- 59

Bit-wise analyser ----- ----------- --------------- 52
Arithmetic expression generator --- 68

5.3.4 Conditional branches ------------ 71
5.4 Results of Data-Flow Analysis ----------------- 75

CHAPTER 6 PROGRAMME TRANSLATION

6.1 Structure Translation --------------------------- 77
6.1.1 Formatting of constructs ---------------------- 77
6.2 Data-Flow T r a n s i t i o n ----- 79
6.3 Results of Programme Translation ------------- 83

CHAPTER 7 FINAL RESULT AND CONCLUSIONS

7.1 Techniques Developed ---------------------------- 95
7.1.1 Features ------ — ----------------------------------- 85
7 .1.2 Limitations -------------------------------------- 85

Limitations of control-flow analysis --------- 86
Limitations of data-flow analysis ------------- 87
General limitations ----------------------------- 87

7 .1.3 Recommended refinements-------------------------- ss

Control-flow analysis refinements — ---— - 06
Data-flow analysis refinements ----------- ---- 89
General refinements ---- gg

7,2 Conclusions ———— ^ ——«———_ g q

REFERENCES ---

APPENDIX A TEH L 30

A. 1 Introduction ------ —
A.2 Overview of Operation

Page vi i

A, 3 System Operation--------------------------------- A-2
A. 3.1 Operation of the block instrument - input - A-3
A. 3.2 Encoding --- A-3
A . 3.3 Data transmission ------------------------------ A-4
A. 3. 4 Data receipt --------------— — ---- A-4
A . 3.5 Operation of the block instrument - output - A-5
A.4 Safety Features----------------------------------- A-5

APPENDIX B P-NOTATION SYNTAX

APPENDIX C CONTROL-FLOW ANALYSIS ALGORITHMS

C.l Algorithm for Case Identification
C . 2 Algorithm for If-Then-Blse and

Loop Identification --------------

Page viii

LIST OF FIGURES

Figure Page

1.1 Typical software generation procedure --------- 7

3.1 Test set-up --------------------------------------- 33
3.2 Portion of trace specification document ---- 34
3.3 Sample trace file — ---- 37
3.4 Sample disassembly listing --------------------- 37

4.1 Generalised Implementations of P-notation
standard constructs --- 43

4.2 Printout after pads one of the
analyser --- 44

4.3 An implementation of the P-notation
case construct -— — — — — -— — — — — -- 45

4.4 Printout after pass two of the analyser ---- 46
4.5 Overlapping construct detection -------------- 46

5.1 Data object positioning within a record ----- 52
5.2 Absolute address declaration ------------------ 53
5.3 Standard format of data-table ---------------- 54
5.4 Immediate memory-location manipulation ------ 58
S.s CLR statement type-determination ------------- 59
5.6 Whole-byte representation of

bit-wise operation ------ — 60
5.7 Correct representation ot bit-complement ---- 60
5.8 Character-strlng initialisation ----------- 63
5.9 Character-string modification after

bit-mask operation ------- 63
5.10 Character-string modification after

register-load operation --- 64
5.11 Expressions generated for bit-wise operation - 65
5.12 Character-strings for store-operation

with operand 0001H 65
5.13 Expressions generated for bit-copy operation - 65

5.14 Data type-vlolation detection ---- 66
5.15 Recognition of Boolean-blt

complement operation ----------------------------- 66
5.16 Bit— copy within byte — — —— — — — — — — —- 67
5.17 Bit-copy between bytes -------------------------- 67
5.18 Analysis of manipulation using carry bit ---- 68
5.19 Character-string initialisation

according to register-name 69

5.20 character-strlng modification after
regi ster-addi tion ----------------- 69

5.21 Character-strlng modification after-
register-loading -------------------- 70

5.22 Addltlon-operation representation --------- -— 70
5.23 insertion of parentheses --------- 71
5.24 Insertion of redundant parentheses ------------ 71
5.25 Textual representations of

conditional branch instructions -------- — ---- 73
5.26 Initialisation of charaeter-stringa

before conditional branch instruction -------- 73
5.27 Successful bit-wise analysis --------------- 74
5.29 Unsuccessful bit-wise analysis ---------------- 74
5.29 Premature termination of analysis ------------- 74

6.1 Control-fl'.\w translation ------------------------ 79
6.2 Control- >w translation including

case cons’ uct -----------------— — — --------- 79
6.3 Translation of if-theh-olae construct -------- 80
6.4 Translation of repeat-until construct ;---- 81.
6.5 Register-name appearing in test-predicate --- 81
6.6 Translation of case construct — 82

A 1 Replacement of wlre-pair by ratUa link ------ A-2
A2 Duplicated fall-safe micreproc -tjiT-based

control system ----------- — — A-3

Page 1

CHAPTER 1 INTRODUCTION

1.1 Background

In railway signalling, an "Interlocking system" is a
control system which ensures the safe operation of
trains. Until very recently, all interlocking systems
vrfire fail-safe, ^el&y-based control systems. These
relay-based Inter leaking systems have evolved to a
point where they display extremely high degrees of
reliability. However, many of the relays used in
reley-based interlocking systems are specialised items
which are expensive to manufacture and require routine
maintenance.

The interlocking function is essentially the logical
manipulation of an input state to produce an output
state and is chus ideally suited to implementation by a
computer-based system. With the cost of computer
hardware continually decreasing, computer-based
interlocking systems are becoming an in-.reasingly
attractive alternative to rsloy-based interlocking
systems. Several electronic, computer-based
interlocking systems are already in use in various
countries as pilot schemes for evaluation.

The south African Transport Services, who are
responsible for the national railway system, has had
two computer-based, electronic interlocking systems
commissioned for evaluation. In addition to evaluation
of the individual interlocking systems, the South
African Transport Services wishes to keep abreast of
technology in the field of electronic interlocking
systems.

In order to be a viable alternative to relay-based

interlocking systems, electronic interlocking systems
must at least match the safety standards of relay-based
interlocking systems. This high degree of safety
required is normally achieved by hardware redundancy.
Software output-coruparlson and voting are used to
isolate faulty components or, in the event of multiple
failure, to shut-down the entire system. Software
also often does routine hardware-monitoring to check
the integrity of hardware components such as RAM and
PROM memories. Thus the integrity of the software is
of prime importance,

Therefore, before a compute.'-based interlocking system
can be put into use, engineers in the railway
organisation must satisfy themselves as to the
integrity of the embedded software. Also, if changes
are t- be made to the software after commissioning,
engineers making the changes must be able to show that
their changes have not decreased the safety of the
railway system controlled by the computer-based
interlocking system.

•Thus a iibcu for a method of dating software
embedded in electronic interlocking systems was
required by the South African Transport Services. The
research described in this dissertation was sponsored
by the South African Transport Services in order to
develop such a validation method.

1.2 Statement of the Problem

"The computer's messed it up again!'1
"It's not the computer, it's those people who work it I"

These days, most people have at some time or other
encountered a computer malfunction or computer-operator

error. These errors manifest themselves In the form of
exorbitant water accounts, incorrect bank balances,
delayed aircraft schedules and the like. These errors
are the errors which arise in '‘business computers".
When these computers are incorrectly programmed or
operated, or when they malfunction, the harm they do is
to stlr-up human emotions varying from Irritation to
frenzied anger.

There is another class of computers whose consequences
of failure from malfunction or incorrect programming
are far more dire. These are the "life-critical
embedded systems" - the computers that steer
aircraft, route trains, monitor nuclear reactors and
perform a host of other life-critical functions. These
computers simply must not fail. They must do exactly
what their users intend them to do, even if they have
been programmed Co do otherwise! Therein lies the
dilemma.

In the world of real-time process-control, a computer
Is empolyed to do a specific job and nothing else. Two
grey areas iirjr.ediately become apparent. How does one
exactly specify the job the computer is to do and how
does one precisely translate that job specification
into a computer-executable programme? The extent to
which these duties can be correctly performed
determines the extent to which a computer will do what
it is required to do.

With any method of specification and translation, one
aims to ensure that the specification exactly
represents the requirements and that the programme,
translated from the specification, exactly represents
the specification. This is the crux of software
validation.

Whatever the form of the programme and however it was
generated, it must be shown to meet its requirements,
whatever form they too, may take. This is the ultimate
goal of validation. In the real world, however,
infinite variations of programming style and technique
render this task impossible.

Where validation of programmes is essential, programmes
must be written in a way which will facilitate their
validation. The use of haphazard control-flow and
“sneaky", elusive data manipulations renders a
validator's task extremely difficult and eliminates the
possibility of automatic analysis of programmes. An
automated or semi-automated validation technique
requires that programmes be written using only
allowable constructs and forms of data-manipulation.
This places restrictions on programmers, but in the
words of C.A.R. Hoare, “ ...and simplicity is the
unavoidable price we must pay for reliability!" (Hoare
[1975 3 p. 533).

Software is generated for many very different
applications. Each different application requires
programmes to be written to suit that application.

Therefore, programmes are written in a variety of
languages and using a variety of data-manipulation
techniques, from low-level bit-manipulation to high-
level mathematical computation. Therefore, no single
validation technique can be expected to be universally
applicable. For a particular application, a validation
technique must be fornd which is most suited to the
type of software and fro the software generation process
used in that application.

Software written for the control of real-time
processes, such as those performed by an electronic

Interlocking system, must cater for such things as bit-
manipulation and critical timing. In this field,
software is often produced as hand-written assemtily-
language code or compiled from languages allowing low-
level manipulation. In railway signalling, fail-safety
is of prime importance and so validation of any
software for an electronic interlocking system is
essential. However, no convincing techniques for
validation of low-level programmes exist. The
techniques normally used are those borrowed from other
areas of application - techniques which were developed
with different validation goals in mind.

A survey was conducted of available publications on the
subject of software validation, verification and
testing (Chapter 2). Almost all publications referred
to static code-parsing and dynamic testing of
programmes written in high-level languages. Where
authors and researchers referred to validation
throughout the life-cycle of software, this too, was
only up to the point of high-level language generation.

>!a references were found to the validation of assembler
language or machine-code programmes with respect to a
higher-level language or specification. No references
were found even to the analysis of assembler language
or machine-code programmes in environments where no
high-level language or specification exists.

It was therefore decided to conduct research aimed at
developing a method of validating embedded software
with respect to a higher-level language or
specification,

1,3 Direction of Research

The aim of software validation is to demonstrate the

consistency between a computer programme and the user
requirements. In the generation of software, the
extremes of the generation process are marked by user
requirements at one end and machine-code at the other.
The translation of the user requirements into machine-
code is far from standardised, although some common
stepping-stones are in use.

From the requirements, some form of programme
specification is usually drawn-up. This is typically a
formal statement of what the programme must achieve.
It may or may not include information on how' the
programme is to achieve its goal - the important aspect
of the specification is the exact definition of the
goal. In a contractual context, the programme
specification is often the dotted line between a user
and a supplier of software.

The specification, if it is not already in the form of
a bigh-order-languaga, is translated into a) ^er-
language and then processed by a compiler t r "• ice
machine-code. A typical software generation ». .dure
is shown in figure l.i overleaf.

In the generation of software for railway signalling
and other critical fail-safe applications, the levels
of high-level-language and intermediate-language are
often omitted. The specification is translated by hand
to assembler level and then processed by an assembler
to produce machine-code. This is done to gain the
advantage of bit-mantpulation at the assembler level
and sometimes t oo, for reasons of code length.

USER REQUIREMENTS

I
PROGRAMME SPECIFICATION

1
HIGH-LEVEL-LANGUAGE PROGRAMME4

INTERMEDIATE-LANGUAGE REPRESENTATIONi
ASSEMBLER "-LANGUAGE PROGRAMME

I
MACHINE-CODE PROGRAMME

F i g . 1,1 Typical Software Generation Procedure

In order to validate a programme generated by the
procedure shown in figure 1 .1, a method is proposed
whereby the generation procedure is reversed. The
proposed procedure begins at the level of the machine-
eode programme. This programme is then translated
backwards through the various levels shown in figure
1.1 until it is at the level of the user requirements.

The proposed validation procedure would thus have
generated a set of user requirements derived from the
machine-code programme itself. If the user
requirements thus obtained can be shown to be
consistent with the original user requirements used in
the generation phase of the programme, then the
programme would have been shown to correctly implement
the original user requirements.

Unfortunately, user requirements are not usually
formally stated. They normally take the form of

informs! human language statements about what is
required. The level of the programme specification is
normally where formality is first encountered.

Since user requirements are normally informally stated,
validation of the programme specification with respect
to the requirements is a matter of manual
interpretation, involving checks for completeness,
consistency'and unambiguity.

The research described in this dissertation was
directed towards validating machine-code with respect
to its high-level specification. Since the high-level
specification can be formally stated, automation of the
validation process is possible. One of the major aims
of thie research was to show how this process could be
automated.

1.4 Scope of Research

Programmes and specifications take on many forms. In
attempting to develop a validation method involving a
programme and its specification, the first question
must be: whae type of programme and what type of
specification?

1.4.1 Programme

A high-order-language programme suffers many
manipulations and changes of appearance before it can
instruct a cenCrsl processing unit. It is compiled or
interpreted) library functions and routines are called
and linked; lower level representations such as P-code
or assembler are generated and only finally is a string
of executable instructions produced. To assume that a

high order language is an exact representation of the
instructions which will be given to a central processor
Is to ignore the fallibility of these manipulators and
their operators,

The validation philosophy proposed in 1.2 involves
analysis and upward-translatlon of machine-code to
prove its consistency with a high-level specification.
Input to the proposed validation procedure is thus
machine-code. This has the additional advantage that
embedded software which was written without reference
to a specification can be subjected to the same
analysis and upward-translatlon processes, This will
greatly assist understanding of such software when
necessary, for example when a modification is to be
made to the software.

It is also intuitively correct that the level at which
a machine executes instructions should be the end of
the generation phase and beginning of the validation
phase of those instructions.

1.4.2 Specification

Many methods of software specification are in use, for
example SPECK (Quirk £1983]), PSL/PSA (Teichroew and
Hershey £19771), SADT (Ross and Schoman [1977]) and
ESPRBSO (Ludewig (19613). In the railway signalling
department of the South African Transport Services, the
software specification method in use is P-notation
(Young [1900]),

P-notation Is of a lower level than most other
specification languages o.r methods, being roughly at
the level of a high-level-language such as Pascal.
This level of specification language was chosen by the

signalling department because it is used to specify
programmes which are then coded directly from it as
hand-written assembler.

P-notation, as presented by Young, was found by
programmers in the signalling department to be
inadequate in certain areas, particularly those of
data-type specification and Boolean variable handling.
Thus, as it is used in the signalling department,
P-notation is a modified version of Young's original
P-notation. A description of P-notation, as it is used
in the signalling department is contained in Appendix

It was not within tha scope of this research to assess
the effectiveness of modified P-notation for
application in the signalling department, nor to
compare it with other specification languages in u s e .
Since it is already in use in the department and found
to be effective by programmers, modified P-notation was
selected as the specification language for use in this
research.

1,4.3 Automation

Programmes are often long. Humans make mistakes. In
fact, the longer programmes a re, the more likely are
human validators to make mistakes.

Whatever guise a validation method may take, it is
likely to possess the attributes of rigour and
repeti tiveness. This will render it tedious and
time-consuming for human execution, Automation should
thus be a major consideration in the development of any
validation method or procedure. Errors which would
inevitably arise in manual validation exercises would

also be avoided.

One of the ma)o. ^ sis of this research was thug to
automate the prop- 3 validation procedure wherever
possible, or at lea.-.•t to demonstrate that it could be
automated.

1.4.4 Stated goal

The goal of this research was to devise a method of
showing a machine-code programme, as executed by a
microprocessor, to be consistent with its specification
in P-notation. Maximum automation of this process was
of prime importance.

1.5 Overview of Dissertation

The need for an effective method of validation of
software for fail-safe, real-time process control
systems was the motivation for the research presented
in this dissertation.

A software validation method has been proposed which is
a reverse of the typical software generation process.

The proposed method is based on the hypothesis that
each stage of the generation process can be validated
by translation of its product to the level of the
product of the previous stage and validating by
comparison. For example, a high-level-language
programme can be upward-translated to the level of its
specification and compared with the specification.
This would validate the specification-to-high-level-
1anguage-programme translation stage of the generation
process.

Since user requirements are normally informally
presented, -,he reverse translation, or validation of a
programme specification against these requirements, is
also an informal process. However, since a programme
specification can be formally presented in a
specification language, software generation processes
from that level right down to machine-code can he
formally validated by the proposed method of reverse-
translation.

The research presented in this dissertation was aimed
specifically at software for the electronic
interlocking systems used in railway signalling, where
assembler language programmes are often generated
directly from their high-level specification. These
assembler language programmes are then processed by an
assembler to produce machine-code. It was to be shown
that these two processes could be validated by the
proposed method of reverse-translation. Automation of
this validation method was also to be investigated.

A description is given of a guinea-pig microprocessor
system, the process of tracing its operation and
manipulation of the resultant traces to form a complete
disassembly listing of the system's embedded software.

Methods of automatic control-flow and data-flow
analysis of the disassembly listing are described and
their operation is demonstrated by using sample
portions of code. These analyses are done in
preparation for translation of the disassembly listing
into P-notation.

Final formatting of the programme to P-notation format
is then described. This essentially involves control-
flow formatting and variable-name insertion.

Finally, an analysis of the overall effectiveness of
the proposed validation method in terms of the goal of
the research is given. Conclusions drawn as a result
of the research are presented.

Page 14

CHAPTER 2 LITERATURE SURVEY

A survey was conducted of available publications on the
subject of software validation, verification and
testing. Most publications present generalised
approaches to software and are, as such, not
specifically relevant to the reliability of software
within embedded systems. However, it is precisely this
shortcoming which renders these publications relevant
to the history of validation.

2.1 Survey of publications

By 1975 the poor reliability and high cost of large
software systems was becoming a serious problem.
Formal proof of programme correctness was thought to be
infeasible or at least many years away and manual
testing and code inspection of large systems were, in
themselves, unreliable and costly.

Some automated analysis tools and software evaluation
systems were in use at the time and Ramamoorthy and Ho
[1975] described these as the most effective means of
improving the reliability and reducing the cost of
large software systems. Automated tools were capable
of checking the presence of certain software attributes
such as syntactic correctness, proper control
structuring and module interfacing.

“Software evaluation systems" were defined as composite
systems of automated tools for the purposes of system
design analysts, debugging, testing and partial
validation, that being the process of demonstrating the
validity of a programme to an acceptable degree of
reliability and performance.

Remamoorthy and Ho also described the software
evaluation systems in use at the time as only partially
fulfilling their requirements in that they analysed the
source code, but generally ignored the design and
specifications.

Miller [19773 proposed a method of path-based testing
and showed how a test coverage measure could be used as
a measure of “how far the testing process has gone".

Testing a programme by running it on sets of test data
had, until 1975, not been regarded as an effective
validation method, since sets of test data were
generated on an ad hoc basis by analysis of the
internal structure of a programme only. Goodenough and
Gerhart [19753 proposed a more rigorous method of test
data selection. They proposed a "condition table"
method of deriving test predicates. Test predicates
describe what aspects of a programme are to be tested.
Derivation was done by reference to the general
requirement a programme was to satisfy, the programme's
specification and the general characteristics of the
Implementation method used.

Admitting that exhaustive testing was rendered
impossible by such time-considerations as human
mortality, Goodenough and Gerhart hypothesised that the
input domain of a programme could be partitioned into a
finite number of equivalence classes such that a
representative test for each class would, by induction,
test the entire class. They did, however, point out
that the fundamental problem of testing was the
Inference from the success of one set of test data that
others would also succeed and that a problem with
equivalence class testing was to shew that the input
domain partitioning was, in fact, appropriate. They
suggested that their rigorous test case generation

method led to a better approximation of exhaustive
testing and, used in conjunction with programme
correctness proofs, significantly decreased the
likelihood of programme failure.

While Goodenough and Gerhart were testing programmes by
running them on sets of test data, Allen and Cocke
[1976] were proving the integrity of data-relationships
within a programme without execution of the programme.
Their algorithmic approach used a control-flow graph
representation of the programme and information about
the data items used, to determine the data-flow
relationships within the programme.

King £1976) was not convinced. He considered programme
testing and programme proving as extreme alternatives
and introduced the concept of symbolic execution, which
he regarded as a practical approach between these two
extremes. He developed EFFIGY, an interactive
symbolic execution system for language statements in
PL/I-style syntax. In EFFIGY, a user could define
arbitrary identifiers to be symbolic programme inputs
in place of specific integer constants and analyse
programme behaviour by Inspection of the resultant
expressions generated by symbolic execution.

A further practical implementation of the concept of
symbolic execution was provided by Clarke [1976]. She
presented an interactive system for automatic test data
generation to execute a specified path of an ANSI-
Fortran programme and subsequent symbolic execution of
that path. Her system also provided the facility for
detection of nonexecutable programme paths.

Based on K ing’s EFFIGY, Che SELECT symbolic execution
system devised by Boyer, Elspas and Levitt, and
Clarke's ANSX-Fortran symbolic executor, Howden (1977]

developed the DISSECT symbolic testing system. The
major advantage offered by the DISSECT system over
previous systems was the command— fi2e facility whereby
a user could initially set up a series of executions to
be performed, some conditional on others if desired,
for any specified paths and with any combination of
symbolic and real input values. As with Clarke's
system, DISSECT was ANSI-Fortran specific.

In a case study of the effectiveness of various
analysis and testing techniques, Howden £1978} applied
the techniques to six sample programmes
containing "naturally" occuring errors. He found that
the use of symbolic testing resulted in an increase in
reliability of 10-20 percent over testing on actual
data. The increase was, however, reduced to 3-4
percent if "actual data" testing was augmented with
other programme analysis and testing techniques such as
special values and interface analysis. He showed that
in most cases, one particular analysis or testing
technique was more effective than the others in
pinpointing a particular type of error and his over
riding conclusion was that no single programme analysis
technique or programme testing strategy should be used
to the exclusion of all others.

In the midst of the massive drive to automate the
validation process, work was still being carried out on
the development of more reliable manual validation
techniques for use in environments where limited
resources were available. The coupling effect, whereby
most global errors such as failure to satisfy a
particular specification are seen as being coupled to
simple errors such as missing control paths, was
exploited by De Hillo, Lipton and Sayward £1978]. They
based a series of "hints on manual test data selection"
on the hypothesis that test data which distinguishes

Page 16

all programmes differing from a correct one by only
simple errors is so sensitive that it also implicitly
distinguishes more complex errors. Branstad,
Cherniavsky and Adrion [19801 also proposed a stream
lining and improvement of manual validation techniques
throughout the development life cycle by testing, code
reading and inspection, and independent reviews.

While referring to the various validatio" tools
available at the time, Meyers [1979] too, proposed
rigorous manual validation techniques and testing with
carefully chosen test cases as being the most
effective. His choice of test cases was based mainly
on boundary-value analysis and cauas-effeet graphing.

The selection of test data had, for the most part,
always been based on the internal control structure of
a programme. Howden [1980a] proposed a "black box"
approach to programme testing in which the internal
structure of a programme was ignored during test data
selection. Tests were constructed from the functional
properties of the programme that were specified in the
programme's requirements. The technique was known as
functional testing, as opposed to structural testing.

Howden described the disadvantage of the black box
approach as the fact that it ignored important
functional properties of a programme which were part of
its design or implementation and which were not
described in the requirements. A case study involving
a collection of scientific programmes led to the
predictable conclusion that structural and functional
testing were complementary rather than competing
techniques.

Testing was still accepted as being more effective than
formal programme proof in the demonstration of

programme correctness. Formal representation of
specifications was viewed as so problematical as to be
of little practical value. Formal proofs could not be
used with the informal specification methods in use at
the time. Kopets described the specification methods
in use as "verbal specification of software systems
outside the areas of logic or numerical mathematics"
(Kopetz {1979}).

Deutsch [1979] was sceptical about both testing and
proving of programmes as effective means of increasing
their reliability. Reduction of the complexity of
programmes, he believed, would increase productivity,
clarity, maintainability and modiflability.

Various papers were produced on the theory of test data
selection for revealing particular types of error.
Weyuker and Ostrand [1980] found Goodenough and
Gerhart's [1975] theory of test data selection
difficult to apply in the real world and proposed
certain modifications to the theory whereby they set
semi correctness-proving a- their goal. Proving semi-
correctness meant demonstrating the absence of certain
errors rather than the ideal proof of correctness,
which meant demonstrating the absence of all errors.

White and Cohen [198(f] developed a method of testing
specifically to pinpoint control-flow errors and the
conditions under which their method was reliable were
carefully specified. Gustafson [1964] proposed testing
for errors whose necessary input conditions were more
likely to occur and for errors whose consequences were
serious. His test case selection was based on what he
called the "cost of errors".

A consolidation of software analysis and testing
techniques as developed up to 1980 was provided by

Howden 11 980bJ when he applied various existing
testing and analysis methods to a package of Fortran
subroutines. He divided the rtiethcds used into two
distinct categories: static analysis methods and
dynamic testing methods. Static analysis methods
referred to methods which were performed without actual
execution of the code. Dynamic methods consisted
essentially of testing and were performed
automatically, except for the selection of test data.
Test data was selected with a view to both structural
and functional testing as previously described (Howden
[19B06]). Static analysis methods consisted of
automatic methods such as path flow analysis and
statement analysis and manual methods which mostly
involved checking consistency between subroutine
headers and programme or requirements content. He
concluded that the methods used could discover "a large
majority" of errors in programmes of the type used. He
found that testing (static and dynamic) and analysis
methods were equally useful, each responsible for the
discovery of about half the errors found. He indicated
the need for extensible static analysis systems which
allowed for the addition of further static analysis
rules. He also stressed the importance of the
development of a method to identify and test general
and detailed design functions.

Csrr6 [1980] described the principle methods of
validating programmes as flow analysis (control-flow
and data-flow analysis) and semantic analysis. He
described a systematic manual method of control-flow
analysis involving a methodical labelling technique to
show such control flow anomalies as black holes and
unused labels.

In data-flow analysis, Carry's detection of undefined
variables and unused definitions was based on

i

algorithmic processing of sets of binary vectors
representing variable-definitions within the programme.
His method of semantic analysis was twofold.
Assertions, derived from programme specifications,' were
inserted into the programme and manually processed
using the programme logic and computation statements.
A systematic technique was presented to prove that the
truth of an assertion at any point followed from the
truth of assertions at previous points in the
programme. The other aspect of semantic analysis was
symbolic execution. He was later to automate and
present these techniques as a "validation package"
C SPADE, 1985].

Because of the real need to validate large software
systems, various validation packages or validation
environments were developed after 1980. They mostly
used existing techniques such as static code-parsing
and dynamic testing, each implementing the techniques
slightly differently in an automated package.
Important amongst these were the STRUM system
[Patterson, 1981] which concentrated on programmes for
microevmputei's and a system presented by Benson [1981]
which introduced the concept of instrumentation of a
programme with "executable assertions". Executable
assertions are formal assertions made tibout the state
of the programme variables at various points in the
programme. The assertions are presented in such a way
that the programme statements can be applied to them to
show that execution of the programme would not violate
any of the assertions.

The practice of translating a high-level source
language into an intermediate language more suited to
validation techniques had been instituted as early as
1975 (Ramamoorthy and Ho [1975]), No further
development of the technique took place until it was

again used in the IVTS system {Taylor,1983].

The IVTS system (Integrated verification and Testing
Sytem) was designed specifically for use on HAL/S, a
language used mostly in aerospace applications.
Although IVTS used standard established validation
techniques, its advantages over other integrated
validation systems were a very sophisticated user
interface, making application of any of the techniques
simple for unqualified personnel, and the incorporation
of an automatic "report writer" for documentation
enhancement. The major advantage of the use of an
intermediate language is that it renders the tools, used
non-source-language-specific. All source languages are
translated to the same intermediate level and are thus
able to be processed by the same tools. This feature
was exploited by Carr6 in his validation package
C SPADE', 1966].

Software fault tree analysis, the hypothesising of a
particular fault occurring and subsequent
"backtracking" through the software to discover all
possible osusas of the fault-, was introduced by Taylor
11982) and used in a practical impl' mentation by
Leveson and Harvey [1983). Taylor presented a proposed
method of automating the procedure, but to date not
much interest has been shown in the analysis method.
The lack of interest has been due to difficulty in
handling loops and the size of trees generated for most
hypothesised faults. The method can be, and sometimes
is, used for analysis of some highly-critical
individual possible faults, but has little general
application.

In the early ninteen-eighties, there was an increasing
awareness that validation of programme code with
respect to its requirements was only one facet of

validation in general, It was realised that design
errors discovered as late as the coding, stage were
expensive to correct. Thus, validators began to
realise that validation techniques had to be applied
throughout the life-eycle of the software (Rzevski
[19811 and Howden [1982]).

Validation techniques applied to software requirements
and specifications wore those related to checking
consistency, completeness and correctness. Howden
[1982] proposed the selection of test cases throughout
the software life-cycle, including the requirements and
specifications definition phases.

An in-depth survey and evaluation of the existing
techniques of validation, verification and testing of
computer software was conducted by Adrion, Branstad and
Cherniavsky [1982]. To say the least, their conclusions
were controversial, Because most validation and
testing techniques were applicable to the testing of
actual programmes and had little other relevance
through the life-cycle of the software, they concluded
that traditional, manu9? validation methods were most
effective. Such methods included walk-throughs,
reviews and inspections. Traditional manual methods
could be used without massive capital expenditure and
had uniform applicability throughout the software life
cycle, although they required a serious commitment and
disciplined application. They also concluded that most
existing automated validation techniques lacked a sound
theoretical basis.

Thus it was that, where validation was of critical
importance in the development of real systems,
validation techniques used were still essentially
manually orientated, involving massive human effort
(eg. Short [1963]).

In a recent publication, Gerber (1966) described the
techniques which were used to validate a large, real
time process control programme. Modules were
individually validated by test cases and automatic
integration and module-lnterface (inter-module data
flow) analysis were performed, Functional analysis was
manually performed by cross-referencing of the
documentation. Timing analysis, too, was manually
performed by doing a series of time-related
calculations based on the programme code and showing
tnat the programme would always operate within its
specified timing constraints.

2.2 State-of-the-art

The previous section has given a general history of
developments in the field of software validation since
1975, by reference to, and r6sum6s of, significant
publications. During the period from the mid- to late-
ninteen-seventies, the emphasis was on developing the
ability to analyse and test high-level language
programmes which performed arithmetic and logic
functions. Much mental effort and practical trial went
into this development and a sound basis for further
development was created. Noteworthy were papers by
Ramamoorthy and Ho [1975], Goodenough and Gerhart
[1976], King [1976], and Howden [1978], The original
motivation for the development of t'lis analytical and
testing ability was a so-called "software crisis"
brought about by the low reliability and consequent
high cost of software. The objective was to improve
software reliability to a level where the cost of its
generation and implementation were acceptable.

Within the context of the above motivation, it can be
argued that early work in the field of software

analysis and testing was extremely successful.

ssml-correctness (correctness up to an acceptable level
of reliability) of programmes was achieved both by
validation techniques and by design-for-validation
techniques. Even to this day, programmers writing
computational programmes can use established validation
techniques to Improve the quality and reliability of
the software they produce.

After the late nineteen-seventies, however, a branch of
computer usage which had been slowly developing for
some years, very quickly became an Important aspect of
computing technology and usage. The microprocessor was
to be used in real-time process control applications
involving the risk of the loss of many human lives,
such as in nuclear-reactor monitoring and transport-
system control. Validation needs changed; the science
of validation did not.

The goal of validation changed from "partial validation
for increased reliability" to "complete validation for
cer-plete rell»hltty". Not only did the goal change -
applications of software also changed. Real-time
applications involve aspects that were not previously
considered in validation philosophies such as stringent
timing constraints and the cyclical nature of real-time
programmes. Emphasis changed from arithmetic/
computational high-level-language programmes to
programmes involving many and varied I/O routines and
blt-manipulation, often written In low-level languages.

A summary of techniques available and in use for the
validation and verification of real-time software was
provided by Quirk [1985]. His book contains a
comprehensive bibliography of relevant publications.

A sign!fleant contribution to the assessment of the
stats-of-the-art of software validation and
verification was made by the third Verification
Workshop CVBRkshcp III [1965]), held in California.

The principal goal of VERkshop III was to review
verification technology and, in particular, to identify
what was being used in practice and what specific areas
required additional research, The attendees included
researchers who were active in the development of
verification systems, theorem proving, formal language
semantics and applying current verification techniques
to production problems.

Although four years had passed since the previous
Verification Workshop (VERkshop II), there was a
consensus of opinion that only incremental progress had
been made in the area of programme verification. It
was agreed, however, that using existing methods and
technology, significant progress had been made in the
development of integrated verification systems,
although the systems were still usable only by highly
skilled individuals and were not in a position to be
used on a production basis.

A stagnation in the abilities of validation techniques
has been brought about by the application of analysis
faeehfiiques So software which has different validation
requirements from those ich motivated the design of
the analysis techniques. All developments in vali
dation since 1980 have essentially been refinements of
the original techniques developed by validation
pioneers such as Ramamoorthy and Ho 119753 and King
[19761 . The fundamentals of validation as <* science
must be re-addressed in order to develop new, more
applicable validation techniques to meet new validation
demands.

Thus it was felt appropriate to undertake an
exploratory project to show the validity of the
validation procedure proposed in the previous chapter.
The proposed validation procedure would meet the
validation demands of a computer-based railway
signalling system and many other applications of
computer-based control systems.

Page 26

CHAPTER 3 DISASSEMBLY

The validation procedure proposed in chapter one of
this dissertation consists of analysing a machine-code
programme executed by a microprocessor and translating
the programme up to the level of its high-level
specification. The translated programme is then
compared with its original specification.

In this approach, ho assumptions are made about the
correctness of assembly-language listings supplied by a
manufacturer or programmer. The machine-code programme
is obtained directly from the microprocessor itself.
Actual operations executed by the microprocessor, as a
result of instructions fetched from PROM, are used to
reconstruct the machine-code programme. Validation is
thus ensured from the lowest possible level - that of
the effect of the software on the microprocessor chip.

The operations of a microprocessor are traced by a
logic analyser whilst external stimulus is given to the
microprocessor system to force the software to traverse
every one of its possible paths. All traces thus
obtained are combined and edited to form a complete
disassembly listing of the programme. This disassembly
listing is then subjected to subsequent analysis' and
translation procedures.

The method of obtaining a disassembly listing of a
machine-code programme was demonstrated by practical
trial. The test set-up used and experimental procedure
followed are described in this chapter.

3.1 T#tsfc Set-Up

3.1.1 Guinea-pig microprocessor system

A method of producing a disassembly listing from a
microprocessor-based system has been proposed. To test
the proposed method, a guinea-pig microprocessor-based
system was required. One such system, the "TEH L 30
Block Instrument Controller" (TEH L 30 Block
"instrument Control Unit, A Technical Description
(19833), was available m the Signalling Department of
the South African Transport Services, where the
research was undertaken. This system was selected so as
to provide a test-bed which was a true representation
of the application area being addressed in this current
research investigation.

In railway signalling, a "block instri.meui;" is an
electro-mechanical device which is used to o-t.id current
of forward or reverse polarity down a pair of wires to
another block instrument. It also indicates the
presence and polarity of any current it receives from
any other block instrument. A more detailed
description of a signalling block instrument can be
found in Appendix A.

The "TEM L 30 Block Instrument Controller" is a
microprocessor-based control-unit designed to
facilitate the operation of block instruments over
radio links, instead of over wire-pairs. The task
performed by the TEM L 30 controller is the bi
directional, fail-safe transmission of information,
between two block Instruments, over a radio link. A
more detailed description of the TEM L 30 controller
can be found in Appendix A.

Page 30

3.1,2 Tracing the microprocessor operations

Tracing was done with the State-6 Analyser option of an
HP6400Q measurement system (HP64000 Logic Development
System, System Overview E19623). The system offers
instant disassembly, mass storage of traces on' its
associated disc, sophisticated triggering and storage
specification facilities, printing of traces for
documentation purposes and uploading of traces to a
minicomputer for manipulation.

3.1,3 Stimulus of the device

The TEM L 30 was required to traverse every possible
path of its programme while its operations were traced
by a logic analyser. In order to ensure that all
possible paths had been traversed, the contents of the
programme-FROM were listed. A check was made fro ensure
that there were no programmed PROM locations which did
not appear in any of the logic analyser traces.

Certain paths of the TEM L 30 software are not
traversed during normal power-up, quiescent operation
or power-down. They are the paths associated with the
operation of one or both of the block instruments
causing message-transmission, hardware-monitoring with
associated failure strategies and message-reception
with subsequent output to the block instruments. In
order to cause the TEM L 30 controller to traverse
these paths of its programme, it was necessary to
provide external stimulus to the TEM L 30.

Operation of the block instruments

Block instrument simulation was realised by means of

two block instrument simulators supplied with the
controller for testing purposes. The simulators r'mply
provide the ability to source current of either
polarity to the controller by manual pushbutton
operation.

Hardware-monitoring and failure strategies

The actual monitoring of the condition of the hardware
is a routine operation when the controller is in a
powered-up state. It w a s , however, necessary to
simulate hardware failures to force the software along
the paths of its failure-strstegjes. such hardware
failures were easily simulated by false feeds,
component removal, supply voltage adjustment, e tc.

Message reception and analysis

A radio simulator was provided with the controller for
testing purposes. The simulator simply injects noise
into a physical connection between the modem cards of
two TEM L 30 controllers. This creates the effect of
the operation of the modems over a radio link. Another
controller could, therefore, have been used to send a
valid message via the radio simulator to the controller
under test.

The normal, operative interaction of the two
controllers, however, forms a small part of their
message-handling routines. To force the TEM L 30
controller to traverse all possible programme-paths
related to message-anaXysi s , it was necessary to
transmit to the controller under test messages with
incorrect parity, faulty Manchester II coding, less
than three messages in agreement, e t c . The easy

manipulation of messages to be sent was thus an
important criterion. A programmable microprocessor-
based data acquisition and transmission system was used
for this purpose. This microprocessor-based system was
developed by engineers of the South African Transport
Services and is known as a Remote Data Unit (RDU).

The modem card of a second controller was used to
interface, via the simulated radio link, to the
controller under test. Control of the modem card,
interactive message-compilation and message-
transmission were realised with the RDU.

Programmes were written on the RDU to perform the
various message-generation tasks and were executed by
the RDu as compiled Basic programmes.

The complete test set-up which was used to obtain the
traces is shown in fig. 3.1 overleaf.

3.2 Traca-Speciftcatlon

Before any of the traces were executed, a trace-
specification document was produced. This document
showed the address trigger point to be set up on the
HP64000, the section of code to be stored and the
stimulus to be applied to the TEM L 30 for each trace
to be executed and recorded. The trace-specification
document was produced by reference to the TEM L 30
manufacturer's software listing, circuit diagrams and
description of operation. Any errors or omissions in
these manufacturer's documents would have become
apparent when actual execution of the traces was
attempted. A sample portion of Che complR^e trace
specification document is shown in figure 3.2.

Page 33

Fig, 3.1 Test set-up

simulator

analyser
option

F ig. 3.2 Portion of trace specification document

3.2.1 Trace-Specificafcion Document

TrIgger-occurrence

It will be seen that the fcrsce-speeiflcation document
(figure 3.2) contains a column headed "occur.". This
specifies the occurrence of the trigger-point address
on which the analyser must trigger: first or second.
Triggering on the second occurrence was specified in
order to trace through a section of code ended by a
branch instruction back to a point within that section.
This was preferable to triggering on the branch
instruction itself, since it showed that the code was
actually taking that particular branch of the decision.

Page 35

Trigger-on-opcode

What is not apparent from the trace-specif leation
document (figure 3.2) is that triggering was not
initiated on the occurrence of a particular address
alone. The TEM L 30 does regular inter-processor PROM
comparisons and so a particular address may appear on
the address bus for the purpose of a data-read from the
PROM. Triggering was desired only in the case of the
correct address being present and an opcode being
fetched. This was specified for all triggering
conditions.

3.3 Production of the Disassembly Listing

Production of the disassembly listing consisted of two

Firstly, each of the test runs specified on the trace
specification document was executed. All the trace
listings obtained were stored as files on the HP64000
measurement system's local disc.

Secondly, all files thus obtained were uploaded to an
HPIOQO minicomputer, where they were edited and sorted
by absolute address to form the complete disassembly
listing.

3.3.1 Obtaining the Traces

Providing the stimulus

The stimulus to be applied to bhe TEN L 3D controller
to obtain each trace was determined from the trace-
specification document. Some stimuli consisted of

initial conditions to be set up (eg. removal of a
fuse), while others were actions to be taken during
operation of the device (eg. operation of one block
instrument during servicing of the other).

Tracing the test runs

Triggering and storage conditions for each test run
were set-up on the measurement system. Once - the
trigger had been enabled and the measurement system was
waiting to trigger, the TEM L 30 controller was
powered-up as specified in the trace-specjficatlon
document. On completion of storage, the trace obtained
was stored on the measurement system's disc.

3.3.2 Manipulation of the Traces

Uploading the files to a minicomputer

All the traces which were stored as files on the
measurement system's disc were uploaded to an HP100Q
minicomputer for editing, sorting and analysis.

Since all files were to be concatenated for sorting and
analysis, the large virtual-RAM capacity of the
minicomputer was required for this purpose.

Editing and sorting the traces

Pascal programmes were written and run on the HP1000
minicomputer to edit and sort the traces into a
complete disassembly listing. A sample trace-flie is
shown in figure 3,3.

64620 State Analyze: Hon, ID J'ir
lannel, 6BD0/02 :

•end fetchit: ..as: w;:iai:S; M H Bi}§ W

:£: SSIS m£a r" d-’■? ll?S rt!" ’■■"
staek read

Fig. 3.3 Sample trace file

AC16 LDA8 F003
AC17 EORB #FD07
AC1B STAB F003
AC19 STAA X
AC1A CMPA 8FOO0
AC1B SGT AC20
AC1C LDAA F001
ACID ORAA F009■
AC1E STAA F009
AC1F BRA ,'.C2fl
AC20 LDAA F001
AC21 COMA
AC22 ANDA F00?
AC23 STAA F009
AC24 LDAA FQOO
AC25 LOAB #F00A
AC26 CMPA F001
AC27 BEO AC2E
AC28 8LT AC2A
AC29 LSR8
AC2A LDAA F002
AC2B ANOA «F0QB
AC2C ABA
AC2D STAA F002
AC2E BRA AC01

Fig. 3.4 Sample disassembly listing

These trace-files were first individualZy edited to
remove the unnecessary text at the h ead, triggering
information and data-reads and writes, All the
resultant edited trace-flies were then concatenated to
form a single file. All duplicated statements were
removed and the file was sorted by absolute programme
address to form a complete disassembly listing. A
sample ft the resultant listing is shown in figure

3.4 Result c ‘ • sassembly

A method of deriving a complete disassembly listing of
a programme executed by a microprocessor has been
described.

The method essentially involves tracing the operations
of the microprocessor with a logic analyser while the
mi croprocessor system is externally stimulated to
execute every path of the machine-code programme.
Resultant traces are manipulated to form the complete
disassembly listing.

The actual disassembly of machine-code instructions is
performed by the logic analyser. If required, the
integrity of the disassembler can be demonstrated by
re-assembling the resultant disassembly listing and
comparing the result with the original machine-code.

The analysis and translation techniques described in
further chapters are aimed at demonstrating the
consistency between a machine-code programme and its p-
notation specification. Since the machine-code
programme of the TEH L 30 was not written from a P-
notatlon specification, the programme will not be
subjected to such analysis and translation,

Assembler listings of the same format as the TEM L 30
disassembly listing which were written from p-notation
specifications will be used to demonstrate these
techniques. It will, however, be shown how the
techniques developed can greatly assist the readability
and understandability of a disassembly listing such as
that obtained from the TEM L 30.

Further chapte/s describe how a disassembly listing can
be analysed and translated to the level of its P-
notation specification. This process begins with
cnntrol-flow analysis, described in the following
chapter.

Page 40

CHAPTER 4 CONTROL-FLOW ANALYSIS

The previous chapter described a method of deriving a
complete disassembly listing of a machine-code
programme. In order to translate the listing thus
obtained into P-notation, it was necessary to analyse
the listing in terms of control and data-flow. A
method of analysing the control-flow of a disassembly
listing in terms of standard P-notation constructs is
presented in this chapter.

4.1 Constructs in P-notetion

P-notation supports constructs in the three broad
categories of sequence, selection and Iteration.

4.1.1 Sequence

Sequence refers to the top-down sequential execution of
programme statements. If a statement does not
Explicitly transfer control to some other part of. the
programme, then the statement below it is the one which
will be executed next.

4.1.2 Selection

P-notation supports two types of selection construct:
the case statement and the if statement. Definitions
of these statements can be found in Appendix B.

4.1.3 Iteration

P-notation supports three iterative constructs: the

repeat statement, the while statement and the- for
statement. Definitions of these statements can be
found in Appendix B.

4.2 Construct Recognition and Labelling

4.2.1 Input and storage of disassembly listing

The control-flow analysis programme provides the
facility for the input of any user-specified file
containing a disassembly listing of the form obtained
from the TEM L 30 (Chapter 3). The listing is stored
in a record structure in RAM. Fields of each record
contain absolute programme address, opcode, and where
applicable, operand.

4.2.2 Processor-specific information

A data file containing information specific to the
Motorola 6802 microprocessor is referenced by the
analysis programme. The data file contains information
about whether a particular opcode is a conditional
branch statement, an unconditional branch statement or
neither. For each statement read from the disassembly
listing file, branch information is read from the data
file and added to the record of that particular
statement.

Together with the absolute addresses in the
disassembly listing, the branch information from the
data file is sufficient to facilitate automatic
control-flow analysis of the disassembly listing.

Page 42

4.2.3 First pass: if-then-elso and loop recognition

Recognised constructs ar« numbered sequentially in
order of recognition. An internal labelling system is
used in labelling recognised constructs. The various
elements of a construct are labelled with a charscter-
string indicating their significance.

So if recognised construct number # is an if-then-else
construct, the statement beginning the if portion is
labelled if #, the statement beginning the else
portion is labelled else# and the end of the construct
is labelled comp#. In the simplified case of an if-
then construct, the else# is omitted.

If recognised construct number # is a while do loop
construct, then the beginning and end of the loop are
labelled whil# and endw# respectively. In the case of
a repeat until loop, the beginning and end of the loop
are labelled rept# and untl# respectively.

Distinguishing between a for loop and a while do loop
is difficult and in any case not always possible. For
loops are .ecognised as while do loops. Standard
coding of for loops for the purpose of recognition
could be added as a refinement of the loop recognition
process.

If a branch and •» destination are not recogniseable
in the context of any standard construct, then they are
labelled unkn# and endu# respectively.
Using the abbreviations UCB for unconditional branch
and CB for conditional branch, generalised
implementations of the p-notation standard constructs
are given In figure 4.1 overleaf.

CB

if-then-else i ‘l if portion

— >C 1
BOB

else portion. C^1

CB
if-then [S if

--->1 1
t]

portion

— >E 3
repeat until C^ 3 body of loop
.............. CB ---- t 3 teat for completion

[3 prepare test

while do V body of loop

F ig, 4.1 Generalised implementaticns of P-notation
standard constructs

Page 44

The algorithm used to recognise the above constructs
and label the relevant statements accordingly is shown
In Appendix C. The algorithm was implemented as a
Pascal programme for automatic construct recognition.
A sample printout after the first pass of the analyser
is shown in figure 4.2 below.

I l l
C1D1 NOP

Fig. 4.2 Printout after pass <

4.2,4 Second pass: case recognition

If recognised construct number is a case construct,
then the statement beginning the construct will bxi
labelled case#. The statement beginning each of the
separate cases within the construct will be labelled
of #.

An implementation of the P-notation case construct
could take the form shown in figure 4.3 overleaf.

: V

1 C 3 lat cese body

i ' '

2nd case body
UCB

3rd caae body

.3 An implementation of the P-notation
case construct

Branching need not have occurred in the order shown.
The first conditional branch could have branched to che
second case body and bhe second conditional branch to
the third case body, or any other order,

Whatever the order of branching, the whole construct
would have been analysed in the first pass of th@
analyser as a series of overlapping if-then-edse
constructs. This fact is exploited In the recognition
of case constructs by the second pass of thg analyser.

The analyser does a second pass of the listing,
searching for statements which were marked in the first
pass as multiple eomp statements. All such statements
could form the end of case constructs. The algorithm
shown in Appendix C is used to determine whether a
particular multiple comp statement does in fact form

Page 46

the end of a ease construct. The algorithm also .marks
the relevant statements accordingly if a case construct
is recognised.

The number of a recognised case construct is the
number of the lowest numbered overlapping if-then-else
construct forming part of the case construct.

The algorithm shown in Appendix C was implemented as a
Pascal programme. This programme was used to perform
automatic case construct recognition.

Figure 4.4 shows a printout after pass two of the
analyser. The portion of code which was analysed is
seen to contain an if-then constpucfc (construct number
2) nested within the first case of a case construct
(construct number 1).

Fig. 4.4 Printout after pass two of the analyser

i l l2 SMB
compl CJ1E3 NOP

Page 47

4.2.5 Overlapping and unrecognlseable constructs

Programmes which have been incorrectly coded from their
P-notation specifications or which were not written
from P-notation specif'cations, will often have
unrecognlseable structure. Such programmes may contain
branch statements which do not form part of standard p-
notation constructs.

Once a particular construct has been recognised by the
analyser, inadvertent branching into or out of ' that
construct Is disallowed. Such a branch statement is
not recogniseable in terms of that construct.

Branches which are not recogniseable in terms of
standard P-notation constructs are marked as such by
the first pass of the analyser.

Automatic detection of overlapping constructs is also
possible. A third pass of the analysed listing is
performed, checking for overlapping constructs. For
each loop and each section of an if-fchen-else or case
construct, a check is made that all constructs nested
within the loop or section are complete. This is done
by checking Chat within the loop or construct section:

each whil# has a corresponding endw# and vice versa
each rept# has a corresponding untl# and vice versa
each if # has a corresponding comp#
each case# has a corresponding comp#
each comp# has a corresponding if # or case#
each else# has a corresponding if #
each of # has a corresponding case#

Violations of these completeness criteria are flagged
by being printed during this third pass of the analyser.

Page 48

Figure 4.5 shows a sample analyser output together with
tts corresponding overlapping construct printout. The
elae portion of an if-then-else construct is seen to
overlap the end of a repeat until loop,

WE200F ASA... iE Iiii
" B a :eompl 2022 MOP

Overlapping constructs

Fig. 4.5 Overlapping construct detection

Overlapping constructs are not representable in P-
notation. For translation of disassembly listings
containing overlapping constructs into P-nottation-, it
is necessary to modify the original machine-cpde
programmes to contain no overlapping constructs -

When a printout from the analyser shows no
unrecogniseable branches and no overlapping constructs
in a disassembly listing, then the structure of the
listing is sound and it may be translated into P-
notation format -

4.3 Results of Control-Flow Analysis

The control-flow analyser described in this chapter

analyses a disassembly listing of the form obtained in
the previous chapter, Analysis is in terms of standard
P-notation constructs.

The analyser indicates L..anch-relevant statements which
are not part of standard P-notation constructs.
Overlapping constructs are also detected and indicated.
For the analyser to fit all branch-relevant statements
into standard, non-overlapping P-notation constructs is
a necessary and sufficient condition for the
translation of the control-flow framework of the
disassembly listing into P-notation.

The control-flow analyser is no more than its name
implies. It analyses only the control-flow
possibilities within a disassembly listing, Test
predicates which determine along which path execution
of a programme will occur at run-time are ignored.

Once the control-flow framework of the disassembly
listing has been analysed, only sequential portions of
code remain to be analysed. The next chapter describes
how the remaining sequential code portions are analysed
in terms of data-flow. It also describes the analysis
of test predicates, where possible, for insertion into
the final P-notation control-flow framework.

The following chapter describes how information from
both the control-flow analyser and the data-flow
analyser can be used to translate a disassembly listing
into P-notation.

y
Page 50

CHAPTER 5 DATA-FLOW ANALYSIS

The previous chapter described a method of analysing
the control-flow framework of a disassembly listing.
0 ..ce this control-flow framework has been extracted
from the disassembly listing, only sequential portions
of code remain.

To enable translation of a disassembly listing into P-
notation, the remaining sequential portions of code
must be analysed in terms of their memory-location
manipulation. Test predicates (data-preparations for
conditional branch instructions) must also be analysed
for insertion into the control-flow framework.
Analysis of code in terms of its memory-1ocation
manipulation and test predicates is referred to here as
"Data-Flow-Analysis".

This chapter presents a method of automatic data-flow
analysis. The abilities and limitations of this method
are demonstrated by applying it to portions of
assembler code. These portions of code are of the same
format as the TEH L 30 disassembly listing obtained as
described in Chapter 3.

5.1 Data-Typea in P-notation

P-notation in its original form (YoungttseO]) supports
only two predefined simple data-types called 8bit and
16bit. All other simple types must be user-defined in
terms of these two predefined types. The type
indicates the size of the data object, thus the minimum
size of a data object is eight bit s .

The predefined structured type record, however, may
contain entries of type less than eight bits. Even in

this case, however, the type declaration declares only
the size of a data object. No facility is available in
P-notation for specifying the position of a data object
of less than eight bits within an eight bit word.
Assignation of absolute memory addresses to bytes is
also not possible in P-notation. Having only two
predefined simple types was also found to be a
shortcoming of standard P-notation. P-notation, as it
is used in the Signalling Department of the South
African Transport Services, where this research was
conducted, has been modified to overcome these
shortcomings.

Modifies P-notation has three predefined data-types
which are shown below, together with their memory
requirements.

integer : 8 bits (signed 2 ‘s complement)
po'nter : 16 bits
Boolean : 1 bit

The above list of predefined types could be expanded to
suit a particular application.

A facility for positioning a data object of less than
eight bits within an eight bit word has also been added
to P-notation. The eight bit word is declared as a
record and the positions of its entries are indicated
by binary values, as in the example of figure 5.1
overleaf.

storbyte = record
flagl : Boolean (%0000 0001);
flag2 : Boolean (%0000 0010);

JuT*:Boolean (%iooo oooo);

" I - Data object posifcic ntng within a record

Here sCorbyte has been declared ss a byte containing
packed bits flag!, fiagZ, and fl»g3 in the positions
indicated.

Another addition to P-notation is the facility to give
a data object an absolute addresss in memory. This is
necessary, for example, when hardware is designed
before its embedded software is designed. In such
cases, address decoding predetermines the addresses of
memory and I/O devices.

For example, to read from or write to a single line of
an I/O port, the port is declared as a record
containing a Boolean variable in the position of the
I/O line. The record is then assigned an absolute
address in memory.

If the I/O line of the above example is in bit position
zero of an I/O port at absolute address 1000H, then c W
P-notation data declaration would be as shown in figure

In this case, outport has been declared as a variable
at absolute address 1000H containing a single I/O line
called 'xmic' in bit position zero. In effect, this
amounts to a declaration of the absolute address of

r = record
xrnit i Boolean (*0000 0001);

outport;r absolute:1000H;

Fig. 5.2 Absolute address declaration

Further references to P-notatlon roust be taken to imply
modified P-notatlon, that is, P-notatlon with the above

5.1.1 Formulation of a data-table

A disassembly listing of a programme references
variables only by their absolute addresses in memory.
If such a disassembly listing is to be translated to
the level of and compared with its P-notation
specification, the original variable names from the
specification would have to be added to the listing.
An automatic method of translating a disassembly
listing Into P-notation would thus require information
regarding the correlation between variable names in the
P-notation specification and absolute addresses in the
disassembly listing.

If the data declaration portion of the P-notation
specification contains absolute address and optional
bit-within-byte position declarations, then these
declarations give direct correlation between variable
names and their absolute addresses. For variables not
declared at absolute addresses, variable name/absolute

Page 54

address correlation is determined by the way in which
assembler language code is written from the P-notation
specification.

By inspection of the data declaration portion of the P~
notation specification and the declaration/equate
portion of the assembler language code, all variable
name/absolute address correlations can be determined.
Together with information about the types of the
variables, these correlations ara presented in a fixed-
format tabular fashion. An example of such a table is
shown in figure 5.3 below.

[0000] linesCl] integer
[0001] 1 ineS[2] integer
[0002] storbyte record

0 f).agl Boolean
1 f lag2 Boolean
2 flags Boolean

£1000] outport record

° xmit Boolean

Fig. 5.3 Standard format of data-table

A data-table such as the one shown above includes data
type and absolute addjess information for all the
variables appearing in the data declaration portion of
a P-notation specification.

if a byte consists of packed variables of less than
eight bits, then the bit positions of such variables
within the byte are indicated below the absolute
address of the byte.

Actual insertion of the variable names into the

disassembly listing is performed by an automatic
programme translator, described in the next chapter.
Data-flow analysis, as described in this chapter,
involves the derivation of expressions representing
data manipulations within the disassembly listing and
verifying their type-consistency. Thus, once the data
flow analyser indicates no type-inconsistencies within
expressions, the programme translator can simply insert
variable names in place of absolute addresses,
according to the variable name/absolute address
correlation t^ble.

5.2 Effect of Data-Type on Date Manipulations

Data objects, depending of their declared type, are
either whole bytes (eg. Integer), combinations of
bytes (eg. pointer) or portions of a byte (eg.
Boolean). So the nature of manipulations which are
performed on a particular byte of memory depends on the
data-type of the byte, or of data objects within the

In the case of integer and pointer variables, only
whole-byte manipulations may be performed. A bit or
bits within a byte may not be selectively manipulated.
Typical whole-byte manipulations would be to clear a
byte, to add a value to a byte, to decrement a byte
etc. Such manipulations are clearly of an arithmetic
nature.

In the case of Boolean variables, arithmetic-type
manipulations of bytes containing such variables
constitute data-type violations. Boolean variable
manipulation consists of logical operations on
individual bits within bytes. Such manipulations make
use of the operations of loading, masking, shifting.

operating (logically) and storing of bytes.

So the type of manipulation performed on a particular
byte of memory depends on the data-type of the variable
of which the byte forms a part, or which forms part of
the byte. This fact Ss exploited in the development of
a method of automatic type-cohsistency checking during
data-flow analysis.

5,3 Analysis of Data Manipulations

As stated earlier, two distinct types of manipulation
are used to manipulate data objects of P-notation
predefined type. These are bit-wise, logical
manipulation and whole-byte, arithmetic manipulation.
The manipulation method used depends on the type of the
data object being manipulated.

5.3.1 General strategy

Data-flow analysis consists of two stages. Firstly,
expressions representing data manipulations are
generated and then type-consistency within such
expressions is confirmed. The two processes work hand-
in-hand. An expression containing a type-consistency
violation will not be printed - the appropriate
section of code will be flagged as containing illegal
operations.

In cases where disassembly listings do not have
corresponding P-notation specifications, no data-type
table exists. Partial data-flow analysis can still be
applied to such listings to aid manual analysts of the
programme. In such cases, type-consistency checking Is
disabled and expressions representing data

manipulations are generated In all cases of data object
manipulation.

The general strategy of the analyser Is to parse the
disassembly listing {including information from the
control-flow analyser) from beginning to end, searching
for conditional branch statements and statements which
affect the contents of memory-locations.

If a statement affects a memory-location
'immediately' (independently of any other statement),
as in the case of memory-location clear, memory-
location increment etc., then an expression of the
operation is derived a described in 5.3.2 below.

If a register storage statement is enccuntered (effect
on memory-location dependent on contenta of register)
then the analyser works backwards through the code,
generating an expression as described in 5.3.3 below.

In the case of a conditional branch statement, the
analyser again works backwards through the code, this
time generating an expression representing the
condition under which branching will occur, as
described in 5.3.4 below.

For manual inspection of type-inoonsistencies and for
analysis of code where no P-notation specification
exists, an intermediate data-flow analysis result may
be produced. This result consists of a printout of the
listing, together with generated expressions inserted
in the appropriate places within the listing.

All expressions representing data manipulations are
stored in a text file, together with the addresses of
the statements which caused their generation. This
file is then referenced by the programme translator as

described in Chapter 6.

5.3.2 Immediat- manipulation

Certain instructions in the Motorola 6802 instruction-
set operate directly on memory-locations and are
independent of the contents of the processor's
registers. Some examples are shown in figure 5.4.

LSR 1000 - Do a logical shift right of data in
memory-location 1Q00H

CL.R 000F - Clear memory-location 000FH
DEC C126 - Decrement data in memory-location C126H

Fig. 5.4 Immediate memory-location manipulation

With the exception of the CLR (clear) statement,, all
such immediate statements have an implicit arithmetic
or logical connotation. Thus the analyser, before
generating an expression representing the operation,
checks that the variable being manipulated is of the
appropriate type. If not, it generates a type-
inconslstency message.

In the case of a packed Boolean type, a string of
expressions is generated, showing the effect of the
operation on each of the Boolean variables in the byte.
This is achieved by reference to the data-table.

In the case of the CLR statement, the analyser cannot
check for type-Inconsistency, since the operation is
legal for all data-types. So the analyser uses
information from the data-table to ' •mine what type
of expression should be gener?6 wise or whole-

b yte. Examples are shown In figure 5.5.

disassembly listing data-table analyser
outputstatement

CLR 1000
CLR FOOD

C10003 integer [10003:*0
[F000] record ti0 Boolean CF00010:«0

4 Boolean [F000l4:-0

Fig. 5.5 CLR statement type-determination

Intentional misuse by programmers of the natural
connotation of immediate instruction opcodes will
prevent analysis of the code because of type-
inconsistencies. Typical of such misuse is the

Boolean variable in bit position zero, In order to
complement that Boolean variable. 1

5.3.3 Register storage :

If a store-register instruction is encountered, the ,
analyser has to work backwards from the instruction to '
determine what the contents ■ :-he register would have
been at the time of the store operation. However, ",
register contents are not always completely |
determineable. Where a register emerges from a
previous construct to be manipulated and stored before j
being redefined, its contents are not completely i
determineable. The origin, and hence consents, of the
register are unknown at the time of emergence from a
previous construct.

of a record which is known to contain a

Page 60

The analyser is able to generate a complete expression
representing the effect of a store instruction when all
registers affecting the data to be stored are defined
prior to the store instruction and in the same
sequential portion of code as the store instruction.

A whole-byte, arithmetic expression can be generated to
represent any store Instruction. Even when a bit-wise
operation is performed, this can be represented as a
whole-byte expression, as shown in figure 5.6 below.

Fig. 5.6 Whole-byte representation of bit-wi:
operation

The intention in the above example was clearly to
complement bit 5 of memory-location 0002H and the
correct representation for this would be as shown in
figure 5.7.

t 0 0 0 2] 5 i - n o t (t 0 0 0 2 3 5 3

Fig. 5.7 Correct representation >t bit-complement

Before the analyser can properly ynsiyse a portion of
code, therefore, it must know w h i t e r a bit-wise or a
whole-byte operation is being performed, This
information is given by the datu--v-rpo of the operand
of the store instruction, If tv-, operand is of type

Integer or pointer, the analyser uses a routine to
perform arithmetic expression generation. If Che
operand is of type record (containing Boolean bits),
the analyser uses a routine to perform bit-wise
analysis and expression generation.

The bit-wise analysis routine considers only a small
subset of the processor's instruction set as valid for
bit-wise manipulation. These are the instructions
related to loading, masking, shifting, rotating,
clearing, storing and logically operating on data
objects. If the analysis routine encounters an
instruction outside of this subset, it is unable to
continue bit-wise analysis of the portion of code
containing that instruction. The bit-wise analysis
routine then indicates that an arithmetic-style
operation has been attempted on a Boolean variable.

If, during its analysis, the bic-wise analyser
encounters a variable of type other than Boolean, it
terminates analysis of that portion of code and
indicates that a bit-wise operation has been attempted
on an illegal variable.

Similarly, for the purpose of type-checking, the
arithmetic expression generator excludes certain
opcodes which are inherently of a bit-wise operative
nature (eg. rotate, logical and, exclusive o r^. The
expression generator too, indicates bhe attempted use
of these excluded opcodes on non-Boolean variables.
The appearance of bytes containing Boolean variables in
arithmetic expressions Is also prohibited and flagged
as a type-violation.

Where no P-notatlon specification of a programme
exists, the Jata-flow analyser can still be used as an
aid to manual analysis of the programme, In such

case*, no information Is available concerning intended
types of data objects within the programme, All type-
checking Is thus disabled. The bit-wise analysis
routine attempts to analyse all store operations in
terms of bit manipulation. When It encounters an
unknown opcode, it terminates analysis of that portion
of code and continues with the following store
instruction.

When bit-wise analysis is complete, the arithmetic
expression generator parses the listing, generating
expressions for all remaining, unanalysed store
operations. When doing so, the expression generator
does not prohibit the use of any of the processor's
opcodes. Thus expressions are generated representing
all data manipulations. Where such manipulations are
obviously of a bit-wise nature, bit-wise expressions
are generated. This greatly assists In the manual
analysis of a disassembly listing.

Bit-wise analyser

The bit-wise analyser uses character-strings to
represent what each of the register bits would have
contained If normal execution of a portion of code had
occurred. It thus starts from an undefined register
bit; and determines an expression for the contents of
the bit to be stored by working backwards through the
instructions. Once all register bits appearing in the
expression have been defined (eg. by load, clear), then
the expression is complete. The process is best
demonstrated by example!

When a store register Instruction is encountered, the
ar.Myser Initiates all Its character-strings to
represent the undefined register bits as in figurn 5.8.

Instruction ch^racter-strings
bit? bite b i '5 bit4 bit3 bit2 bltl bitO

STAB 9000 I B7 | B6 | B5 I B4 I B3 I B2 I Bl I BO I

F i g . 5.8 Character-string initialisation

Thus after the store, bit 7 of location 9000H would
contain bit 7 of register B, bit 6 of location 9000H
would contain bit 6 of register B , e t c .

Now suppose the previous instruction had been to mask
certain bits of register B . Working backwards, the
analyser would have modified the character-strings as
shown in figure 5.9 below.

M D , #0F 0 1 0 1 0 ! 0 I 63 1 B2 1 Bl | B0 1
S M B M M B7 | B6 J B5 I B4 I B3 1 B2 I B! 1 BO 1

Pg. 5.9 Character-string modif cation
bit-mask operation

After each modification of the character-strings, the
analyser checks to see if there are any remaining
undefined register bies. In this case there clearly
are, so analysis continues. Note that the analyser
will never continue back through the end of a previous
construct. A check is thus also made on whether the
next statement to be considered forms the end of a
previous construct. This check is carried out by using
information derived by the control-flow analyser.

In the example under consideration, suppose that the

previous statement had caused register B to be loaded
from a memory-location. The analyser vould have
modified the character-strings as shown in figure 5.10.

LDAB 0C00 | 0 I 0 lOIOi [0C0013I [0C00 J2 | (O C O O U < COCOO'ici
ANDB #0F |0|010101 B3 I B2 I Bl I B0 I
STAB 9000 IB7|..|B4I B3 | B2 | Bl I BO f

Fig. 5.10 Character-string modification after
__________________register-load operation ______________

The analyser has replaced each undefined register bit
(in this case, bits 0 through 3) with fie corresponding
bit of memory-location OCOOH. A check shows no
remaining undefined register bits, so the bit-wise
expression-generation procedure is terminated.

Each character-string is an expression which is
assigned to the corresponding bit of the store
instruction operand. The leftmost string is assigned
to bit 7 of the operand, the one to the right to bit 6
of the operand, e tc. The only exception to this, rule
is when a character-string is identical to its
corresponding operand and bit number. In such cases,
the expression is not generated. The reason for this is
that the expression would represent a bit which was
left unchanged by a bit-wise operation. Before
generation of each expression, type consistency
checking is performed.

If any of the bits in a potential expression are part
of an integer byte or pointer double-byte, an error
message is generated. If all of the bits in a
particular expression are of type Boolean, the
expression is generated. The above example would
produce the expressions in figure S .11 below.

f 9000 JO: = [OCOO]0
[9000jlf-C0C00Jl
[900012:-[OC0012
[900013i»IOCOO 3 3
I9000)4:-0
[9000]5:=0
[900036:.0
[9000]?:.0

Fig. 5,11 Expressions generated
for bit-wise operation

I[C000 37I[C00033I [0001351[000134 1 .. .
. ..i[0001]3 I (0001 J2([0001J1I 0 I

Fig. 5.12 Character-strings for stcre-operation
with operand 0002H

If a store operation with operand 0001H generated the
character-strings in figure 5 .12 above and the deba
table confirmed variables [C000j7, [C000J3 and £0001 Jo
to be of type Boolean, then the series of expressions
generated would be as shown in figure 5.13 below.

[000130;-0
[000136:.[C00033
[000137:-[C00037

Fig. 5.13 Expressions generated for
bit-copy operation

All other bits of memory-locAtion 0001H were unchanged.

4

The following examples are from actual outputs of the
automatic bit-wise data-flow analyser.

In the first example, the data-table contained the
entry: • [00021 integer'.

The analyser detected a type-vielation in the portion
of code shown in figure 5.14. '

ILLEGAL eor ON TYPE integer

Fig. 5.14 Data type-viblation detection

With the relevant bit properly declared as
analyser was able to analyse the operatic
intended - a Boolean-bi t complement. This
figure 5.15.

data-table: 100023 record
5 Boolean

C000215:-not(t000235)

Pig. 5.15 Recognition of Boolean
complement operation

Note that with type-checking disabled (no data-table
available), the above expression would be the one to be
generated.

Bit-copies within or between bytes are conceptually
simple operations, but their implementation invariably
results in several machine code instructions. If is a
laborious and error-prone task to analyse ' such
operations manually from a disassembly listing. tiven
where a disassembly listing was not to be translated
into P~notation, the data-flow analyser was found
extremely useful in analysis of such portions of code.
The examples of bit-copy operations si.^.n in figures
5.16 and 5.17 were taken directly from the TEH L 30
disassembly listing (Chapter 3).

c m

Fig. 5.16 Bit-copy within byte

§11* IE £100212.'"£000236

Fig. S .17 Bit-copy between bytes

In addition to eight character-strings representing
eight bits to be stored, the analyser keeps a ninth,
"hidden" string, to keep track of the contents of the
carry bit. This is dqne because many of the shift and

rotate instructions make ise of the carry bit. The
example of figure 5,18 overleaf shows how the analyser
keeps track of the carry bit.

m 08"
Biol fiNDB WFE A1QA ABA A10B STAA EOQO

Fig. 5.18 Analysis of manipulation using carry bit.

Arithmetic expression generator

When a 'store-register instruction has an operand of
type Integer or pointer, the analyser uses an
expression generation routine to translate the relevant
portion of the disassembly listing into an arithmetic
expression format.

As with the bit-wise analyser, the expression generator
starts at a store instruction with an Internal
representation of an undefined register to be stored.
It then works backwards through the listing, generating
an arithmetic expression, until all registers
appearing in the expression have been defined (eg. by
loading, clearing etc.). Again, as with the bit-wise
analyser, the expression generator will not continue
working backwards past the end of a previous construct.
The process Is best demonstrated by example.

When the expression generator encounters a store

instruction, it initiates a character-string as the
name of the register to be stored. This is shown in
figure 5.19 below.

processor instruction character-string
STAA C000 A

Fig. 5.19 Character-string initialisatIon
according to register-name.

Suppose that the previous statement had been to add the
processor's registers. The character-string
(expression) would have been modified as shown in
figure 5.20.

ABA A+B
STAA C000 A

JMg 5.20 Character-string modification after,
register-addition

A check for undefined registers shows two undefined
registers, so the analyser continues. If the previous
two statements had defined the registers by loading
them (one from memory, the other immediately), the
expression would have been modified as shown in figure
5.21 overleaf.

LDAA 2002 C20O2J+0E
LDAB #0E . A+OE
ABA A+B
STAA COOO A

Fig. 5.21 Character-string modificatio
register-loading

.,t.r

A check shows no undefined registers, so analysis is
complete. Figure 5.22 shows the resultant expression.

t C O O Q) i - [2 0 0 2) + G E

Fig. 5.22 Addition-operation representation

Attempted loading of s rcjist-'” from a memory-iocation
containing Boolean bits generates a type-violation
message.

This process is similar for all opcodes of the
processor's instruction-set. A slight problem occurs
with the insertion of parentheses. When the expression
is modified by insertion of a character-string in place
of a register name, parentheses are placed airound the
character-string to maintain the sense of the
expression. This is shown in figure 5.23 overleaf.

ID'V 1000 a sl((1000 3+1)
asl(A-i-l)

8TAA 20L0 A

[2000]i-asl ([10003+1)

Fig. 5,23 Insertion of parentheses

This can unfortunately lead to redundant parentheses,
aa in figure 5,24.

LDftA 1000 a sl(([1000]+l)+l)
INCA asl((A+l)+l)
INCA asl(A +l)
ASLA
STAA 2000 A
[2OO0);«asl(<riOO0)+l)+l)

Fig, S.24 Insertio n of redundant parentheses

Removal of redundant parentheses is proposed as a
refinement of the arithmetic-express ion generator,

5,3.4 Conditional branches

In the analysis of the code preceding a store
instruction, the operand of the store instruction (data
destination) is used to determine whether a bit-wise or
whole-byte operation is being performed. In the case
of branches, however, the operand of the branch

instructit• is the destination address of the branch.
No data element is available to determine the type of
analysis to be done on the code immediately preceding a
conditional branch instruction.

The strategy employed in this case, therefore, is the
same as for the analysis of memory-location
manipulation with type-checking disabled. Bit-wiae
analysis is attempted for each conditional branch
instruction and if this fails, the expression generator
is used to generate an arithmetic-style expression.
Failure of bit-wise analysis is caused by an irrelevant
opcode or a data object of type other than Boolean.

The major differences between conditional branch
analysis and store instruction analysts are the type of
expression to be formed and the initialisation of
character-strtngs.

In the case of a conditional branch instruction, the
analyser must produce an expression of condition, not
an expression of assignment. The conditional branch
instruction represents the final test to be performed
after the necessary data manipulation. Both in the
case of bit-wise expression generation and arithmetic
expression generation, the analyser forms the final
expression by adding a textual representation of the
branch instruction to the relevant character-string.

Before forming a textual representation of a
conditional branch instruction however, the logic of
the test causing the branch is inverted. This is
because of the way in which conditional branches are
used. For example, in an if-then construct, the body
of the construct will be executed if the condition of
the branch is &p_& met. So the textual representation
of a test is not a representation of the branch

condition, but a representation of the construet-body-
executlon condition.

Some examples of textual representations of conditional
branch instructions are - own in figure 5.25 below.

The instruction imraediar.-preceding a conditional
branch instruction, together with the branch,
instruction itself, is used for initialisation of the
character-strings for both arithmetic and bit-wise

processor textual representation
Instruction (inverted logic)

BBQ
BGT
BNE

Fig. 5.25 Textual representations of
conditi nal branch instructions

expression generation. This Is because the instruction
immediately preceding a conditional branch instruction
sets up the condition for the branch. Examples are
shown in figure 5,26 below.

bit-wise analysis
CMPA #03 IA7-0 IA6-0! AS-0IM-0I . . ,

...IA3-0IA2-0IAl-1iAO-11
BNE 2000

arithmetic expression generation
CMPA #03 A-03
BNE 2000

Fig, 5,26 Initialisation of character-strings
before conditional branch instruction

Page 74

Analysis continues in both case? using the same
routines as for register-store instruction analysis.

When no registers remain undefined, the analyser forms
a final expression or aeries of expressions by addition
of the inverted-logic textual text representation.

Sample analyser outputs for some conditional branches
follow:

m w : ,...
M O O O 32 <

Pig. 5.27 Successful bit-wise ,

In the above example, bit-wise analysis was successful.

Fig. 5.26 Unsuccessful bit-wise analysis

In the above example, bit-wise analysis was
unsuccessful - an arithmetic expression was generated.

Ma MAS"""
(C 4 0 i e U l) * B > - 0

0078 BLT F0A6

Fig. 5,29 Premature termination of analysis

In the above example, analysis was terminated by
attempted analysis past the end of a previous
construct. The state of the expression at the time of
termination is printed, showing undefined registers.

5,4 Results of Data-Flow Analysis

A method of automatic data-flow analysis has been
described in this chapter. Sample outputs from an
implementation of the method have been shown to
demonstrate the effectiveness of the analysis method.
By reference to a data-table derived from the P-
notation specification of a programme, an automatic
data-flow analyser is capable of flagging data-type
violations. Data-type violations consist both of
attempting to combine incompatible data-types within, an
expression, and of attempting to operate on a data-type
with an operator incompatible with that data-type.

Data-type checking can be disabled when the analyser is
used as an aid to manual analysis of programmes which
do not have P--notation specifications.

Expressions generated by the analyser are either of a
whole-byte, arithmetic nature or of a bit-wise, logical
nature, depending on the data-types of the variables in
the expressions. With data-type checking disabled’, the
nature of generated expressions is at the discretion of
the analyser.

Between them, the proposed automatic methods of
conurol-flow and data-flow analysis and a manually
derived data-table provide sufficient information for
the translation of a disassembly listing into P-

notation.

The following chapter describes a proposed method of
using this information to translate automatically a
disassembly listing into P-notation.

CHAPTER 6 PROGRAMME TRANSLATION

The previous two chapters have described m&thods of
analysing a disassembly listing in terms of its
control-flow and data-flow. The purpose of these flow-
analysis techniques is to provide information for, the
translation of a disassembly listing Into p-notation.

This chapter describes a method of automatically
translating a disassembly listing into P-notation. The
method uses information from the automatic flow-
analysers, together with information from the manually-
derived data table described in Chapter 5. The
translator parses the disassembly listing, checking
whether each address represents either a control-flow
node or a data-flow expression. Although control and
data-flow translation occur in a single pass of the
listing, they are described separately for clarity.

6.1 Structure Translation

The control-flow analyser described in Chapter 4
identifies loop and selection constructs in a
disassembly listing. The analyser creates a file
containiftg the memory locations of the nodes of all
identified constructs. This information is used by an
automatic programme translator which translates the
control-fxow framework of the disassembly listing into
P-notation format.

6.1.1 Formatting of constructs

The selection constructs in P-notation are the case
construct and the If-then-else construct. The if-then
construct is a simpler, single-bodied version of the

if-then-else construct.

The translator uses a character string to represent the
line of indentation of the P-notation programme at any
point in the programme. The character string contains
blanks and, where relevant, key words such as "if",
"case", e tc, This character string is updated whenever
a structure node is encountered, as determined by the
'»tput file of the oontrol-flow analyser.

Successful control-flow analysis is a pre-requisite for
translation of the contt ol-flow framework of a
disassembly listing into P-notation (4.3). , The
translator, therefore, does no checking on correspond
ence between key words. It simply translates according
to information in the output file of the control-flow
analyser. For example, if the control-flow analyser
has shown a particular address In the disassembly
listing to correspond to else3, the translator
determines the indentation level of the corresponding
if 3. It then modifies its indentation character
string to contain the word "else" in the position of
the "if" of if 3. Thus the "else" of elseS will be
printed vertically below the "if" of if 3. The
modified indentation character string ensures that
until the next control-flow node, data manipulation
expressions will be printed directly below each other
in the correct horizontal position.

An example of control-flow translation is shown in
figure 6.1 overleaf. Data manipulations have been
omitted.

if__I if
reptz rept
untia untl
i f__2 if
else?, else
comp2 end

else
compl ena

Fig. 6.1 Control -flow translation

A further example, containing a case construct, is
shown in figure 6.2.

easel case
of__1 of
(f__2
elseZ else
coropa end
of__1 of
o f _ l
. . p i

Fig. 6.2 Control-fl ow translation including

caaeconstruct

6.2 Data-Flow Translation

All data type-checking and expression generation is
performed by the data-flow analyser (Chapter 5). The
translator has only to insert variable names in place
of memory locations in expressions and insert the
expressions into the control-flow iramework. Data-flow

translation makes use of the manually derived data
table and the output file of the data-flow analyser.

As described in Chapter 5 (Data-Flow Analysis),
conditional branch statements generate expressions
representing construct body execution conditions,
These conditions are used to complete the test
predicates of the control-flow framework. In Che case
of an if statement, the word "then" is added to the
derived condition. An example is shown below.

H.ta table entry: [20001 counter integer

1000 LDAA
1003
1005 100C if counter-55«0 then
1007 2000 counter:-0
100A 100F else
100C 2000 counter:-counter*!
100F =nd

Fig. .3 Translat on of itf-then-else construct

A further example, containing a repeat until loop, is
shown in figure 6.4 overleaf. In this example, the loop
index is held in a memory location. Where this is not
done (loop index held in a register), the data-flow
analyser would have been unable to analyse the code.
The register name would appear in the test predicate,
as in figure 6.5 overleaf, Further analysis would have
to be manually performed.

d.t. table entry: [20F0] counter integer '

,040 repeat

10 = 0 DEC 20PO counter:*counter-l

LDAA 20F0
BNE 1040 until counter”0

Fig. .4 Translation of repeat-until construct

C M C LDAA 1000
c w a

C.,0 m e .

COSO CMPA #04
C052 BNE C003 until A-04-0
C064

Fig. 6.5 Register-name appearing in test-predicate

Difficulty of test predicate insertion arises with the
case construct. Each conditional branch to a case body
causes generation of a test predicate. This predicate
is inserted at the head of each case body, preceded by
the word "of", as shown in figure 6.6 overleaf.

original translated
P-notation programme programme

case count of 2000 case
CMPA

0105 BBQ
0107 CMPA
0109 0120
010B CMPA #03
OlOD BEG 0130
010F BRA

1,- 0111 of count-1-0 : -

BRA

0120- of eount-2-Oi -

BRA
3:- - of count-3=0: -

end

Fig. 6 6 Translation of case construct

The first case body :ts often executed by default - none
of the other cese tests resulted in a branch. In such
cases, no test predicate is generated for chat case
body. Further analysis must be manually performed.

So translated case constructs are not fully authentic.
It is felt, however, that the case construct
translation procedure described above generates an
easily readable, high-level version of a esse
construct, albeit slightly different from the standard
P-notation case construct definition.

6,3 Results of Programme Translation

The automatic programme’ translator described in this
chapter translates a disassembly listing of the form
obtained from the TEM I 30 rChapter 3) into P-notation.

The translator uses results from the control and data
flow analysers of the previous two chapters, together
with a manually derived data table described In the
previous chapter, to perform its task.

Translation is performed in a single pass of the
disassembly listing. All disassembly listing
statements referenced in the control and/or data-flow
analyser output files have control and/or data-flow
relevance'. They initiate the generation of
appropriate P-notation statements.

The overall effectiveness of the proposed methods of
disassembly, analysis and translation of a machine code
programme into P-notation is assessed in the next
chapter.

Page 84

CHAPTER 7 CONCLUSIONS

Previous chapters have discussed how a machine-code
programme can be shown to be consistent with Its high-
level specification. This process essentially consists
of four phases,

A series of traces of a microprocessor running the
actual machine code programme is obtained. These
individual traces are processed to form one complete
disassembly listing of the programme.

The disassembly listing is analysed in terms of its
control flow. Standard constructs are identified and
unrecogniseable constructs are flagged.

The disassembly listing, together with information
generated by the control-flow analyser, is then
analysed in terms of data-flow. Information from the
specification's data declaration is used to authorise
memory location manipulations and flag attempted
data-type violations.

Finally, information from the control-flow analyser,
the data-flow analyser and the specification’s data
declaration is used to translate the disassembly
listing into P-notation.

Demonstration of consistency between a machine-code
programme and its high-level specification is then by
direct comparison of the tw o . This comparison is at
present a manual task, but has the potential to be
automated.

7.1 Techniques Developed

7.1.1 Features

Operations of the microprocessor are traced by a logic
analyser as the microprocessor lo forced by external
stimulus to traverse each path of its programme. Thua
actual code, as executed, Is used as input to the
validation system. If desired, this code can be
compared with its equivalent PROM listing to indicate
"dead" or unreachable code in the PROM.

The validation techniques need not necessarily operate
from processor traces. Code at higher levels can be
used instead. For example, portions of assembler-code
can be checked against their P-notatlon equivalents
before the entire program is assembled and ru n .

Even where no P-notatlon specification exists, the
validation techniques will do a complete control-flow
analysis and translation of the code to a register-
independent level. This greatly assists readability
and analysis of code where little or no documentation
is available.

If a programme is inconsistent with its specification,
this will be shown in one of two ways. If there are
unrecogni aeable constructs or daea-trype
inconsistencies, these will be flagged by the
analysers. If there are n o t , the resultant P-notation
representation will be seen to differ from its
specification by inspection.

7.1.2 Limitations

The analysis techniques presented will not

automatically analyse all machine-code programmes.
Programmes must be coded according to certain
conventions in order to be analysed automatically. In
some cases this is desireable; in others, unfortunate.

Limitations of control-flow analysis

Programmes whose structure exactly mirrors that of
their P-notation specification will always be
snalyseable in terms of control-flow. This is
necessary and sufficient for control-flow validation of
such programmes. Where a programmer has inadvertently
or intentionally deviated from the P-notation
structure, the structure of the resultant programme may
or may not be analyseable. If it is not, the validator
knows immediately that the programme contains unsound
structures. If it is, it will be seen by inspection to
differ from Its specification.

Programmes without P-notation specifications can still
be analysed In terms of their control-flow. Zf the
control-flow analyser finds no unknown structures in a
programme, the programme has been shown to contain only
sound structures. If the analyser finds unknown
structures, an operator may Indicate to the analyser
that such structures are to be ignored if he finds
them, by manual inspection, to be acceptable.

A limitation of the contxol-flow analyser, albeit
relatively minor, is its all-or-nothing recognition of
a particular structure. If a structure contains any
irregularity, the analyser is of no assistance to the
validator - code must be manually inspected.

Limitations of data-flow-analysis

Every instance of deta-manipulati on will generate
either an arithmetic-type representation, or a logical
(bit-manipulation) representation. If a programme
exactly mirrors its P-notation specification, then all
such representations will be val.'.f. Limitations of
analysis are epitomised by processor registers
appearing in such representations. This occurs when a
programmer carries registers through structure end-
boundaries. The data-flow analyser is then unsure of
the origin and thus the contents of such registers and
can represent them only by their register names. It is
obvious that this i„~itation can be minimised by use of
an appropriate coding technique -

Another limitation occurs with indexed addressing. The
data-flow analyser is unaware of the contents of the
inde.. -egister and can thus represent the absolute
address only as index-register plus offset.

Where programmes were not written from P-notation
specifications, the data-flow-analyser will still
generate arithmetic or logical representations","" "but
these cannot be expected always to be valid, since the
analyser has no information about the types of the data
items involved. It will not, for example, notice if an
arithmetic operation is performed on a Boolean
variable. This is not a serious limitation since,- used
in this mode, the analyser is essentially an aid to
manual analysis, rather than an automatic validation

General limitations

The analysers are unavoidably processor-specific. In

the case of the control-flow analyser and expression
generator, the operating programmes are non-processor-
specific, working from data bases containing processor
data. It is, in the case of these two analysers, a
simple task to adapt them to other processors by
changing their data bases.

In the case of the bit-manipulation analyser, however,
the operating programme has to simulate the operation
of the -processor and is thus, in itself,
processor-specific. So to adapt it to another
processor would involve changes which, although simple
to perform, would be substantial.

7.1.3 Recommended refinements

Control-flow-analysis refinements

The all-or-nothing recognition oi individual structures
is a shortcoming of the control-flow-ansiyser. 16 is
not a serious shortcoming, since properly structured
code will always be analyseable (compiler-generated
code, for example, will always have proper structurej.
It is only improperly structured code which will need
manual analysis.

However, certain bad coding practices lead to common
forms of improper structure. The overlapping of
structures is the only form of improper structure
detected b*_' the control-f low analyser. A list of
overlapping structures is printed during the third.pass
of the control-flow analyser.

Research could be done to identify and appropriately
treat other common forms of bad structure. This would
•• •..lly reduce any manual code inspection which might

otherwise' have been necessary.

Data-flovr-analysis refinements

A limitation of the data-flow-analyser Is its inability
to take into account the structure of the programme.
When data-flow is heavily dependent on the structures
within a programme, it is not practical to do data-flow
analysis across such structures. Generated expressions
become multiple expressions, selection of a particular
expression being dependent on the data active in
previous constructs. In such cases it is better to
admit defeat, since translated code becomes even less
readable than the code from which it was generated!

When too many previous constructs affect Vh'?.--contents
of a register at a given position in the ^rcgfamme, it
is clearer to generate an expression Invylving the
register name than to try to indicate the possible
contents of the register.

However, in certain simple cases, where for example,
the body of an if-then construct does not" "afffcct a
register, analysis could be continued above the body of
the construct. So a proposed refinement would be to
identify instances where register:! are carried "around"
simple constructs and to continue analysis above such
constructs.

General refinements

Manual intervention is required in formulating a data
table from the P-notation variable specification. In
the case of larger programmes, this process could
entail a substantial amount of work, not to mention of

course, the unfavourable human trait of inadvertent
error-seedingl So automation of this process Is a
proposed refinement. It would have to be determined
whether there would always be sufficient formal
information within the P-notation variable declaration
and assembler declaration for automation of the above
process.

7.2 Conclusions

The absence of effective methods of validating real
time process control software was the motivation for
the research described in this dissertation.

Real-time process control software has attributes such
as stringent timing constraints, cyclic programmes and
low-level bit-manipulatioh, which are not present in
many other software applications. Therefore,
established validation techniques for other software
applications have very limited effectiveness in the
validation of real-time process control software. But
such sof\Ware is being used increasingly in the control
of life-critical systefiis. It Simply has to be
validated.

A major aspect of validation is the proof of
consistency between a programme and its specification.
The goal of the research described in this dissertation
was to show how such a method could be developed, the
programme and specification being In the forms of
machine code and P-notation, respectively. Automation
of the method was also of prime concern.

A method of deriving a complete disassembly listing of
a machine code programme has been developed. The
method consists of tracing the operations of a

microprocessor as it executes the machine code in
question. The microprocessor system is stimulated to
cause the microprocessor to execute all path> jf the
programme. All traces thus obtained are edrted and
sorted to produce the complete disassembly 1'sting.

Methods of automatic control-flow a',d data-flow
analysis of a disassembly listing have also been
developed. These methods have been shown to be
effective in all cases where assembler programmes have
been directly and formally derived from their
specifications. The analysis methods have also been
shown to be effective in pinpointing inconsistencies
between programmes and their specifications.

It has been shown how, by use of control-flow and
data-flow analysis and use of information from the
specification's data declaration, an assembler
programme can be translated into P-notation. It has
also been shown how this translation process can be
automated.

The methods of control-flow and data-flow analysis have
been shown to be useful also in the analyst*-.- of
assembly language programmes and their translation to
a register-independent level where no P-notation
specification exists.

The above analysis and translation techniques could be
integrated into an interactive validation environment
for validating machine code programmes with respect to
their high-level specifications.

REFERENCES

Adrion, W . R ., Branstad, M .A . and Cherniavsky, J.C.
(1962) Validation, Verification and Testing of Computer
Software, Computing Surveys, vol. 14, no. 2, Jun 1982,
pp. 159-192.

Allen, F.E. and Cocke, J. (1976) A Program Data Flow
Analysis Procedure, Communications of the a .c .m .,
vol.19, no. 3, Mar 1976, pp. 137-147.

Benson, J. (1981) A Preliminary Experiment in
Automated Software Testing, ACM Sigsoft, Software
Engineering Notes, v ol, 6, no. 3, Jul 1981, pp. 68-75.

Branstad, M.A., Cherniavsky, J.C. and Adrion, W.R.
(1960) Validation, Verification and Testing for the
Individual Programmer, Computer, Dec 1980, pp. 24-30.

Carr6, B .A . (1960) Software Validation, Microprocessors
and Microsystems, vol. 4, no. 10, Dec 1980, pp. 395-

Clarke, l .a . (1976) A System to generate Teat Data
and Symbolically Execute Programs, l.E.B.E.
Transactions on Software Engineering, vol. SE-2, no. 3,
Sept 1976, pp. 215-222.

De Mlllo, R.A., Lipton, R.J. and Sayward, F.G. (,1978)
Hints on Test Data Selection : Help for the Practicing
Programmer, Computer, Apr 1978, pp. 34-41.

Deutseh, M.S. (1979) Verification and Validation, in
Jensen, R.W. and Tonies, C.C, eds., "Software
Engineering", Prentice-Hall Inc., New Jersey, 1979.

Gerber (1985) Generation, Documentation and
Validation of Software for the siemens Electronic
Interlocking, Siemens LTD., Department T/SI-ST (Railway
Signalling), 1985,

Goodenough, J . B. and Gerhart, S.L. (1976) Toward a
Theory of Test Data Selection, I.5-E.E. Transactions on
Software Engineering, vol. SE-1, no, 2, Jun 1975, pp.

Gustafson, D,A. (1964) Guidance for Teat Selection
Based on the Coat of Errors, Proceedings AFIPS National
Computer Conference, 1984, pp. 425-429.

Hoare, c.A.R., (1975) Data Reliability, Proceedings of
the International Conference on Reliable Software, Los
Angeles, 1975, pp, 528-533.

Howden, W.E. (1977) Symbolic Testing and the DISSECT
Symbolic Evaluation System, I.B.E.E, Transactions on
Software Engineering, vol. SE-3, no. 4, Jul 1977, pp.
266-278.

Howden, W.E, (1976) An Evaluation 6* the Effective
ness of Symbolic Testing, Software - Practice and
Experience, vol. e, 1978, pp. 381-397,

Howden, W.K. (1980a) Functional Program Testing,
1.E.E.E. Transactions on Software Engineering, vol. 5E-
6, no, 2, Mar 1980, pp. 162-169.

Hoyden, W.E. (1980b) Applicability of Software
Validation Techniques to Scientific Programs, ACM
Transactions on Programming Languages and Systems, vol.
2, no. 3, Jul 1980, pp. 307-320,

Howden, w.B. (1982) Life-Cycle Software Validation,
Computer, Feb 1982, pp. 71-78.

HP64000 Logie Development System, System Overview,
Hewlett Packard Company/Logic Systems Division,
Colorado, USA, 1982.

King, J.C. (1976) Symbolic Execution and Program
Testing, Communications of the ACM, vol. 19, no. 7, Jul
1976, pp. 385-394,

Kopetz, H. (1979) Software Reliability, The Macmillan
Press Ltd., 1979.

Leveson, N.G. and Harvey, P.R. (1983) Analyzing
Software Safety, I.E.E.E. Transactions on Software
Engineering, vol. SE-9, no. 5, Sept 1983, pp. 569-579.

Ludewig, J.L. (1961) Specification of a Specification
Language, paper for presentation at IFAC/IFIP Workshop
on Real-Time Programming, Kyoto, Japan, 1981.

Meyers, G.J. (1979) The Art of Software Testing, John
Wiley and sons. New York, 1979. - - -

Miller, E.F, (1977), Program Testing; Art Meets Theory,
Computer, Jul 1977, pp. 42-51.

Patterson, D.A. (1981) Ah Experiment in High LeVal
Language Microprogramming and Verification,
Communications of the ACM, vol, 24, no. 10, Oct 1931,
pp. 699-709.

Quirk, W.J. (1963) Recent Developments in the SPECK
Specification System, HARWELL Report CSS.146, 1983.

Quirk, W . J . (1985) ed. Verification and Validation of
Real-Time software, Springer-Verlsg, Berlin, 1985.

Ramamoorthy, C.V, and Ho, S.F. (1975) Testing Large
Software with Automated Software Evaluation Systems,
I.E.E.E. Transactions on Software Engineering, vol. SB-
1, no. 1, Mar 1975, pp. 46-58.

Ross, D.T. and Schoman, K.E., Jr. (1977) Structured
Analysis for Requirements Definition, I.E.E.E.
Transactions on Software Engineering, vol. SE-3, no, 1,
Jan 1977, pp. 6-15.

Rzevski, G. (1981) Recent Advances In Software
Reliability Methods, Quality Assurance, vol. 7, nb. 3,
Sept 1961, pp. 80-97.

short, R.c. (1963) Software Validation for a Railway
Signalling System, pub!. I FAC Safecomp '83, Cambridge,

S PADE, Program Validation Limited, Southampton, 1985.

Taylor, J.R. (1982) Fault Tree and Cause Consequence
Analysis for Control software Validation, Riso National
Laboratory, Roskilde, Denmark, Jan 1982.

Taylor, R.N. (1983) An Integrated Verification and
Testing Environment, Software - Practice and
Experience, vol. 13, 1983, pp. 697-713.

Teichroew, D, and Hershey, E.A. Ill (1977) PSL/PSAi A
Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems,
I.E.E.E. Transactions on Software Engineering, vol. SE-
3, no. 1, Jan 1977, pp. 41-48.

TEH L 30 Slock Instrument Controller, A Technical
Description, Issue 1, M.L. Engineering (Plymouth) Ltd.,
Plymouth, 1983.

VERkshop III proceedings, A.c.M. Si-ssott Software
Engineering Notes, vol. 10, no. 4, Aug 1965, pp. i-v, .

Weyuker, E.J. and Ostrand, T.J. (1980) Theory of
Program Testing and the Application of Revealing
Subdomains, I.E.E.E. Transactions on Software
Engineering, vol. SE-6, no. 3, May 1980, pp. 236-246.

White, L.J. and Cohen, E.I. (1980) A Domain Strategy
for Computer Program Testing, I.E.E.E. Transactions on
Software Engineering, vol. SB-6, no. 3, May 1980, pp.

Young, S. (1980) P-noCation; High Level description
language for software daalgn, Microprocessors and
Microsystems, vol. 4, no. 7, Sept 1980, pp. 267-272,
no. 8, Oct 1960, pp. 307-321, no, 9, Nov 1980, pp. 363-
369. no. 10. Dec 1980. 411-419.

APPENDIX A TEM L 30

A.l Introduction

The "TEM L 30 Block Instrument Controller" was used as
a guinea-pig microprocessor system for the production
of a disassembly listing (Chapter 3). This appendix
contains a brief description of the operation and
features of the TEM L 30.

A.2 Overview of Operation

In railway signalling, a "block instrument" is a device
which sends signalling information over a pair of wires
to another block instrument. The information is sent
in the form of manually-pulsed current of pre-defined
negative or positive polarity with respect to the wire-
p air. Thus the information that can be transmitted
over the wire-pair is current in one direction, current
in the other direction or the absence of current. The
receiving block-Instrument indicates to its operator
the presence or absence of current and its polarity.

Wlre-pairs longer than even a few hundred metres are
expensive and time-consuming to Install, so it is
clearly desireable to replace them with radio links.
Since the information transmitted between block
instruments, despite its simplicity, is of critical
importance, any radio link replacing a wire-pair would
have to transmit this information in a fail-safe j
manner. One such radio link is the " ,M L 30 Block
Instrument Controller“, manufactured by M . L ,
Engineering (Plymouth) Limited. One TEM L 30 is
connected to two block instruments at the same end of 1
adjacent loops, as shown in figure Al. '

Fig. ftl Replacement of wire pair by radio link

A.3 System Operation

The control unit consists of three basic parts:

A data modulation/demodulation system designed to
interface directly with a radio set.

Power supply, control and input/output interface
circuitry designed to simulate the characteristics of a
wired connection between block instruments,

A duplicated microprocessor-controlled logic system end
message store (figure A 2).

Pi g . A2 Duplicated fail-safe microprocessor-based
control system

Information is sent fram one control unit to the next
in the form of a coded message consisting of a fixed
length portion followed by a variable length portion.
The operation of the control unit is best studied by
briefly considering the sequence of events which occurs
when a message is sent from one unit to another.

A.3.1 Operation of the block instrument - input ,

Operation of the block instrument in the normal way
alertts the control unit and powers-up the system.
Messages may exist on either of the two instruments
connected to, the controller independently. They
consist of a series of pulses of current of either
polarity. They are coded by sampling at the block
message sample frequency of 15 Hz.

Ai3.2 Encoding

The fixed length portion of the message holds the unit

Page A--.

address, parity and a synchronisation sequence. The
variable length portion contains the signalling
information and is assembled as follows. The variable
length sequence record is opened whenever an input line
becomes active, whereafter the input is sampled at the
block message sampling frequency until the input has
remained zero long enough for the message to have been
judged to have finished. When encoding, the polarity
is judged by the first current pulse and thereafter the
processor provides the ability to sir.k current of only
that polarity.

A.3.3 Data transmission

There is an internal .message store for messages
awaiting transmission, validation or output to one of
the block instruments. It is divided into equal parts,
one for each block instrument. Each part can be used
for either incoming or outgoing messages. For security
and availability reasons, messages are triplicated
sequentially and two of the three messages are required
to be identical before the receiving control unit will
output the signal information to the block instrument.
A message is transmitted only after a check has been
made to ensure that no other radio is transmicting.

A.3.4 Data receipt

All control units receive and decode all data messages,
but messages are stored only if the message address
applies to the particular location address and the
appropriate store is available. The first two messages
are stored . and compared with each other and with the
third message, which is not stored. If any two
messages agree with each other, then one of them is

Page A-5

sent out to the relevant block Instrument.

A.3.5 Operation of the block instrument - output

Messages are output to the instruments at the block
message sample frequency, sequentially, bit by bit
until completion. For each logical one that was re
ceived, one line is driven high and the other is held
low, according to the received polarity. For each
logical zero that was received, neither line is driven.

A.4 Safety Features

The main safety feature is a symmetrical microprocessor
board, on which two independent processors perform the
same function and constantly check each others actions.
Any disagreements between the processors cause them to
blow a power interface fuse, thus isolating the system
outputs and preventing any faulty messages from being
sent o ut. The various checking procedures of the
processors include:

Independent checking of the state of the source and
sink lines.

Independent "watchdog" circuits which require continual
refresh.

Continual self-checking by each processor of its
ability to read from and write to its own RAM.

Continual inter-checking between the two processors of
the contents of the PROM memories.

Page A-6

Frequent testing by each processor of its ability to
blow the fuse.

Low supply voltage detection on the power board.

Continual self-checking of transmitted data.

In addition to these safety checks, the radio messages
are protected from the effects of noise by a triple
layer system: a Hamming coding; a Manchester II coding
and the requirement that two identical messages must be
received out of three transmitted.

Page B-l

APPENDIX B P-NOTATION SYNTAX

This appendix presents P-notation syntax in Backus-Naur
Form (BNF).

Words belonging to P-notation are printed in boldface,
e.g.:type,repeat. The following symbols belong to BNF
and are not part of the P-notation syntax?

means "is defined as",
I means "or".
{} indicate items which may be repeated zero or more

All other symbols are part of the P-notation syntax.

actual parameter:i* expression I variable
adding-operators:• + l-|orIeor
array-type::« array[digit-sequencelof component-type
array-variable', i* variable
assignment-statement::« variable:-expression
binary-value:s = 011(011}
block::- declaration-part statement part
e a s e - e l e m e n t : c a s e - 1ist:statement
case-1ist::- case-1 ist-element{,case-1ist-element)
case-1ist-element::• constant I constant..constant
case-statementii- case expression of case-element

(jcase-element) end lease expression of case-element
(jcase-element> else statement(statement) end

complemented-factor::- signed-factorI not signed-factor
component-typet;■ type
component-variable::■ indexed-variableIf ield-designator
compound-statements:= begin statement{jstatement} end
conditional-statement::■ if-statement Icase-statement
c o n s t a n t u n s i g n e d - i n t e g e r l s i g n unsigned-integer|

eonsfcant-identi f ierJsign constant-identifier I string

Page B-2

constant-defInition-parts :■ oonaf constant-def inition
{jconstant-definition>

constant-defini tion::= identifier-constant
constant-identifier::« identifier
control-variable::- variable-identifier
declaration-part:(declaration-section)
declaration-section::■ constant-def inition-partI

type-def inition-partIvariable-declaration-partl
procedure-declaration-part

digit::- 0 11 1 2 I 3 |4 1 5 I 6 I 7 I 8 I 9
digit-sequence::« digit(digit>
empty:
expression:i- simple~expression(relational-operator

simple-expressiont
factor:: - variable I unsigned-constant I (ex - ‘‘ssion)
field-identifier::- identifier l
field-list::- empty If ield-identif ier

{,field-identif ier>:type I field-identifier
{,field-identifier>:type(tblnary-value)

final-value:i- expression
for-list::= initial-Value to final-valuel

initial-value downto final-value
for-ststement::« for control-variable:"for-list

do statement
formal-parameter-section:parameter-groupl

var parameter-group
htixdigit:i• digitlA1BIClDIBI»
hexdigit-sequence::■ hexdigit(hexdigit)
identifier/:» letter(letter-or-digit)
identifier-list::" identifier<,identifier}
if-staf.ement; :• if expression then statement

{else statement}
indexed-variable:array-varlabletsimple-expression

{,simple-expression> 3
initial-valueif* simple-express;on

Paqe B-3

letter!J- AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVI
W|XIY|Zla|blcld|e|flglhli|jlklHm|n|o|plqlr|s|tlu|
v | w i x | y | z | _

1etter-or-dlgit::« letterIdlgit
multlplying-operator::> * I/ idlvI mod I and IshlIshrIshraI

rotr/rOtl
parameter-groups: = identif ier-list ’■ type-identif ier
pointer-type!:■ identifier
procedure-declaration-partts- {procedure-declaration)
procedure-heading!i» procedure identifieriI procedure

identif ier(formal-parameter-section
{,formal-parameter-section)) j

procedure-statement::« procedure-identifierI
procedure-identi fieriactual-parameter
{,actual-parameter})

.’cgramme-heading: t - programme programme-identi f ier
p r o g r a m m e ■ programme-heading block
programme-ldentifier!s- identifier
record-typeii- record field-list end
record-variables:- variable
record-variable-1ist:i» record-variable

(,record-variable)
repeat-statement:s- repeat statement*{statement}

until expression
repetitive-statements:■ while-statement I

repeat-statementIfor-statement
scalar-type!:* (identifier*,identifier))
sign::- H -
simple-expressiont!■ term(adding-operator term)
simple-statement::- assignment-statementI

procedure-statement
simple-type:scelar-typelsubrange-typel

type-identlfier
statement::■ simple-statementistructured-statement
statement-part::- compound-statement
string::- '{character}'
string-typeii» atringtconstant)

struetured-statementi:= compoand-statementI
conditional-statement 1 repetitive-statement I
with-statement

structured-type::- string-type I array-type I record-type
subrange-typej ;• constant.,constant
term: s = complemented-factor{multiplylng-operatot-

complemented-f actor} I indirection-operator
Identifier(multiplying-operator complemented-factor>

type-definition::- Identifier-type
t y p e - d e f t n i t i o n - p a r t i t y p e type-defInition

{ jtype-definition>
type-ldentifler:i- identifier
type::- simple-type I atructured-tyfieI pointer-type
unsigned-integer::- digit-sequenceIShexdlgit-sequence
variables:- variable-identif ierI component-variable I

referenned-variable
variable-declaratloni:- Identifier-list:type I

identifier-2ist•'type absolute hexdigit
varlable-declaration-part::- var variable-declaration

(;variable-declaration)
varlable-identlfieris- identifier
whlle-statementtt» while expression do statement
with-statementi:» with record-variable-list

do statement

i

APPENDIX C CONTROL-FLOW ANALYSIS ALGORITHMS

This appendix contains algorithms which were used to
identify and label if-fchen-else, loop and case
constructs within a disassembly listing.

CB is an abbreviation for conditional branch.
VCB is an abbreviation for uncondifcional branch.

A statement which precedes another is lower in absolute
programme address. A statement preceding another is
its predecessor.

A statement which succeeds another is higher in
absolute programme address. A statement succeeding
another is its successor.

The destination of a branch statement is the statement
to which it branches.

C.l Algorithm for case Identification

start at beginning of listing
while not end of listing do

move to next statement
if statement labelled with multiple comp labels then

if each comp has corresponding else i d if labels then
label if corresponding to lowest-r..'m/ered-comp 'case#1
(where # is number of lowest-numbered-comp)
label else's corresponding to all other comp's 'of #'
label multiple comp statement 'comp#'

endwhile

4

Page C-2

C.2 Algorithm for If-then-else and loop Identification

set # to 1 and start at beginning of listing
while not end of listing do

move to next statement
if CB forwards then

if CB destination predecessor is UCB forwards then
label CB 'if # ‘
label CB destination 'else#'
label UCB destination 'comp#1
increment #

if CB destination predecessor is UCB backwards then
if UCB destination precedes CB then

label CB ‘w h il#1
label UCB 'endw#1
increment #

else
label CB 'if_#'
label CB destination ‘comp#1
increment #

if CB backwards then
label CB 'untl#‘
label CB destination 'rept#1
increment #

if (CB or UCB) and unlabelled then
label CB or UCB 'unkn#*
label CB or UCB destination ‘endu#’
ii'Srement #

endwhile

Author Davidtz Thomas
Name of thesis The Validation Of Embedded Software. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y of t he W i t w a t e r s r an d , Johannesbu r g L i b r a r y website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University o f the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

