THE VALIDATION oF EMBEDDED
SOFTWARE

Thomas Davidtz

A dissertation submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg, in
fulfilment of the requirements for the degree of Master I
of Science in Engineering.

Johannesburg 1986 k

Page i

DECLARATION

I declare that this dissertation is my own, unsided
It is being submitted for the degree of Haster

work.
Engineering at the University of the

of Science in
Witwatersrand and has not been submitted before for any

degree or examination at any other University.

THOMAS DAVIDTZ

“TNELETA _day of AUGHST 19 8

B

Page ii

ABSTRACT

The use of embedded computers in Railway Signalling
systems and other highly-critical monitoring and
cantrol applications has led to a demand for an
effective method of validation of the software within
such systems. An important aspect of validation is
proving a computer programme to be consistent with its
specificarion.

This dissertation proposes 2 pragmatic method of
proving a machine-ceode programme to be consistent with
its high-level programme specification. A disassembly
of the machine-code programme s obtained and
automatically analysed in terms of control-flow and
data-flow. By using information from the data-
declaration portion of the specification, the
disassembly listing is translated to a level
corresponding to that of the high-level specification.
Consistency between the translated programme and the
original high-level specification is proved by direct
comparigon.

The dissertation suggests the validity of the above
approach snd shows by example, how such an approach may
be implementsd.

Page fii

ACKNOWLEDGEMENTS

I wish to acknowledge my debt to:

The SOUTH AFRICAN TRANSPORT SERVICES for sponsoring
the research,

Kr Louis Potgieter, Senior District Engineer, SOUTH
RFRICAN TRANSPOMT SERVICES, for his advice, guidance
and enthusiasm.

Professor M.G. Rodd, University of the Witwatersrand,
for his advice and support throughout the duration of
the research project.

- Vs < d
" . § -
Page v
CONTENTS Page
DECLARATION i
ABSTRACT i1
ACKNOWL i
CONTENTS iy
LIST OF FIGURES - viii
CHAPTER 1 INTRODUCTION L
1.1 Background 1 el
1.2 Statement of the Problem ———~--- e 2
1.3 Direction of Research ~=—-——mee———rmee s 3
1.4 Scope of Research 8 T
1.4.1 Programme 8 &
1.4.2 Specification -—— 3
1.4.3 Automation i0
1.4.4 Stated goal 11 N
1.5 Overview of Digsertation ~————ewe———mee—un 11 258
CHAPTER 2 LITERATURE SURVEY __i
. prets
N Eﬁ
SRR 2.1 Burvey of publicationg «———-meu-. o ——— 14 4
2.2 8tate-of-tle-art 23
: g CHAPTER 3 DISASSEMBLY :

3,1 Test Set-Up 29 ;
) “‘ 3.1.1 Guinea~pig microprocessor system ——mmme—n -~ 29 B
i 3.1.2 Tracing the microprocessor's oparations =~=-- 30
‘ 3.1.3 Stimulus of the device 30
Operation of the block instruments 30
Hardware monitoring and failure strategies - 30
Message reception and anslysis w———mmwee—n - 31
5
- o maw . TR,

. e e i e 3 -
5
" "
Page v

3,2 Trace Specification ——ewe—meom—m
3.2.1 Trace specification t

Trigger occurrence

Trigger on opcode
3.3 Production of the Digassembly Listing ~--——- J
3.3.1 Obtaining the traces —ee——. e

Providing the stimulus
Tracing the test runs
3.3.2 Manipulation of the traces -

Upluading the traices to a minicomputer ———m-
Editing and sorting the traces —e=——mwe—mmmo
3.4 Result of b{ bly

CHAPTER 4 CONTROL~FLOW ANALYSIS

4.1 Conztructs in P-notation ~—-
4.8.1
4.1.2 Belection
4.1.3 Itersation
4.2 Construct Recognition ang Labelling
4.2.1 Input and storage of disassembly listing

4.2.2 Processor~specific information
4.2.3 First pass: if-then-else and
loop recognition
4.2.4 Second pass: cese recognition -
4.2.5 Overlapping and unrecogniseable consktructs -
4.3 Results of Control-Flow Analysis ~=—-mmee—e

CHAPTER 5 DATA~FLOW ANALYSIS

5.% Data Types in P~notation —eeee——mmemene o
§.1.1 Formulation of a data table ~——re—=——r—w——ne
8.2 Effect of Data-Type on Data Manipulations ~-
§.3 Analysis of Data Manipulations ww=m—wwe——eu e
5.3.1 General strategy

34
34
36
3s
s
35
as
36
36
36
38

40
40
40
49
43
41
42

42
44
47
48

50

55
56
86

I

Page vi

§.3.2 Immediate manipulation ~——wmo——mmccaom—— m——~ 58
$.3.3 Register storage 59
Bit-wise analyser &2 ’
Arithmetic expression generator —emm-mememm—n 68 A i
§,3.4 Conditional branches ~m—mm——emc—eie_t 71 # #
5.4 Results of Data-Flow Analysf{s —-er——enrcumm—n 75 .
CHAPTER 6 PROGRAMHE TRANSLATION TN
6.1 Btructure Translation -~ 77
6.%.1 Formatting of constructs - 77 L
6.2 Data~Flow Tranz 'aticm - 78
6.3 Results of Prograime Translation ~———=n— —--= 83 H
CHAPTER 7 FINAL RESULT AND CONCLUSIONS
7.1 Techniques Developed ——wm—rmw———wm—mor e 85 5o
7.1.1 Featurss 8s o
7.3.2 Limitations 8% 3
Limitations of control~flow analysis —w---w- 86 N
Limitations of data~flow analysis —we——we——= 87 "
General limitations ~————m e e BT
7.1.3 Recommended refinements w—wwewmcmm——————— 88 ;;
Control-flow analysis refinements —w——wwm 88 yi
Data~-flow analysis refinements w~w- 89 43
General refinements ~e—m—ee—cecemceccvee 9 .i
7.2 Conclusions 90 ‘j; -
REF: 22 !
bz
APPENDIX A TEM L 30
Al Introduction -
A.2 Overview of Operation —wmmomemccscoo e g &
y
- 7
y
g i1 q

3 S . ==
i " . : ~ :
Page vii
o k
A.3 System Operation A-2 B
A.3.1 Operation of the block instrument - input - A-3 3 9
A.3.3 Encoding A-3 G
A.3.3 Data trausmission A-4 -
A.3.4 Data receipt A-4 \f i
A.3.5 Operation of the block instrument - output - A-5 ¥
A.4 Safety Features A-5 i

APPENDIX B P-NOTATION SYNTAX ,"

APPENDIX ¢ CONTROL~FLOW ANALYSIS ALGORITHMS i

C.1 Bplgorithm for Case Identification —w-r——wm—- c-1 o
€.2 Algorithm for If-Then-Else and .

Loop Identification ~-—— - C-2

Page viii 1
it
LIST OF FIGURES ¢
: 1
Figure Page Lo
! 3
1.1 Typleal software generation procedure —wmmmmm— 7 - 4
I
3.1 Test set-up 33
3.2 Portion of trace specification document —--—- 34
3.3 Sample trace file a7
3.4 Sample disassembly listing ~——=-— e 37
4.1 Generalised implementations of P-notation -
standard constructs 43
4.2 Printout after pads one of the .
analyser 44 »
4.3 An implementation of the P-notation ' {
cage copstruct 45
4.4 Printout after pass two of the snalyser ~——— 46 '
4.5 Overlapping construct detection w—m——emrom—e—w 48
5.1 Data object positioning within a record 52
5.2 Absolute address declaration - 53
B.3 Standard farmat of data-table - 54
5.4 Immediate memory~locstion manipulation wwm—w- 58 -
§.5 QLR statement type-d: mination 59
5.6 Whole~byte representaticn of
bit-wige operation ~-~e=v ¢ mmcscecsce—meecees 60 '
§.7 Correct representation of bit~complement —--- &0 o
5.8 Character-string initiallsation ~em—ce—cces-— 63 = -
5.9 Character-string modiffcation after .
bit-mask operation 63 i
5,10 Character-string modification after ’
register-load operation —-—ecmcecmocmmme———e— 4 |
5.11 Bxpressions generated for bit-wise operation - 6% 5.
8,12 Character-strings for store—operatioﬁ
with operand 0001H 65
5.13 Expressions generated for blt-copy operation - 65
e
i
|

- - - - it x v RIS e o &

Page ix

5.14 Data type~violation deterction —=wmm—mm—we— ——
5.15 Recognition of Boolean-bit
complement operation
5.16 Bit-copy within byte
5,17 Bit-copy between bytes -~
§.18 Analysis of manipulation using carry bit —-—-
5.19 Character-string initialisation
according to regist na
5.20 Character—string modification after
register~addition
5,21 Character-string moditication after
register-loading
5.22 additi peration rep! ntation
5.23 Insertinn of parentheses ~w————-— e ———
5.24 Insertion of redundant parentheses -—————w—w--
%.25 Textual representations of

conditional branch instructions =~e—==—mmeeooe
5,26 Initialisation of charaster-strings

before conditional branch instruction —=-—---
5,27 Successful bit-wise apalysis ———=mo—cmm———]
5,28 Unsuccessful bit-wise analysis ~—~---
5.29 Premature termination of analysis -~

6.1 Control-flow translation ~w—m——w- e e it e
6.2 Contrel=- 4w translation including

case cong’ uct
6.3 Translation of if-then-elste construct =——-—w—-
6.4 Translation of repeat-unti) congtrugt =--oe--

6.5 Register-name appearing in test-predicate ---

6.6 Translation Of case CORSERUGE wremameecmmemmen.n

A1 Replacement of wire-pair py radis link ——=--
Az puplicated fall-safe microproc sscr~based

control gystem =

66
87 :
67 4
68 (e

70
70
71
71 R

73

73
74
74
74 T
79 .
79
80
81 -
81 i
82

A-2 2

A-3

e dmand e g

Page 1

CHAPTER 1 INTRODUCTION

1.1 Background .
' S
In railway signalling, an "interlocking system” is a o
cantrol system which ensures the safe operation of
trains. Until very recently, all interlocking sjstems
ware fail-safe, cselay-based control systems. These Lo
relay~based interleccking systems have evolved to a
point where they display extremely high degrees of
reliability. However, many of the relays wused in
relay-based interlocking systems are specialised items

which are expensive to manufacture and require routine -
maintenance. .
¢

The interlocking funttion is essentially the logical
manipulation of an input state to produce an output
state and is thus ideally suited to implementation by 2
computer-based system. With the cost of computer l‘

hardware continually decreasing, computer-based

interlocking systems are becoming an invreasingly -
atgraceive alternative to rsloy-based incerlocking hose
systems. Several electronic, computer-based W .
interlocking systems are alresady in use in various

countries as pilot schemes for evaluation.

The South African Transport Services, who are g

responsible for the national rallway system, has had
two computer-based, electronic laterlocking systems
commizsioned for evaluation. In addition to evaluation
of the Individual interlocking systems, the South
African Transport Services wishes to keep abreast of
technalogy in the fleld of electronic interlocking T

systems, w

In order to be a viable alternative to relay-based

- - wa - ek el L e\ @

Page 2

interlocking systems, elactronic interlocking systems
must at least match the safety standards of relay-based
interlocking systems. This high degree of safety
required 1is normally achieved by hardwars redundancy.
Softwars output-comparison and voting are used to
isolate faulty components or, in the event of multiple
failure, te shut-dewn the entire system. Software
also often does routine hardware-monitoring to ‘check
the integrity of hardware components such as RAM and
PROM memories. fhus the integrity of the software (s
of prime imporkanece.

Therefore, before a computes-bpased Interlocking system
can be put into use, engineers {n the rativay
organisation must satisfy themselves as to the
integrity of the embedded software. Alse, If changes
are t~ be made to the software after commissioning,
engineers making the changes must be able to show that
their changes have not decreased the safety of the
raiiway system controlled by the computer-baged
interlocking system.

|

Thus = awed for a methed of vyrlidating software
embedded in electronic laterlocking systems was
required by the South African Transport Services. The
researrh described in this dissertation was sponsored
by the South African Transport Services in order %o

develop such a validation wethed.

1.2 Statement of the Problem

"The computer's messed it up again!™
"It's not the computer, it's those people who work itt"

These days, most people have at some time or other
encountered a computer malfunction or computer-operator

s itea

AL ’

Page 3

error. These errors manifest themselves in the form of
exorbitant water accounts, incorrect bank balances,
delayed aircraft schedules and the like. These errors
sre the errors which arise in ‘“business computers"

When these computers are incorrectly programmed or
operated, or when they malfunction, the harm they do s
to stir-up human emotions varying from irritation to

frenzied anger.

There 1is another class of compute}s whose consequences
of failure from malfunction or incorrect programming
are far more dire. These are the "life-critical
embedded systems” =~ the computers that steer
aircraft, route trains, monitor nuclear reactors and
perform a host of other life-critical functions. These

computers simply must not fail. They must do exactly
what thelr users intend them to do, even if they have
been programmed to do otherwise! Therein lies the
dilemma.

in the worid of real-time process—control, a computer
{s empolyed to do a specific job and nothing else. Two
girey arsas immediately become apparent. How does one
exactly specify the job the computer is to do and how
does one precisely translate that job specification
into a computer-executable programme? The extent to
which these duties can be correctly performed
determines the extent to which a computer will do what
it i{s required to do.

With any method of specification and translation, one
aims to ensure that the gpecification exactly
represents the requirements and that the programme,
transiated from the specification, exactly represents
the specification. Thigs is the crux of software

validation.

Page 4

Whatever the form of the programme and however it- was
generated, it must be shown to meet its requirements,
whatever form they too, may take. This Is the ultimate
goal of validation. In the real world, however,
infinite variations of programming style and technique
render this task impossible.

Where validation of programmes is essential, prog{ammes
must be written in a way which will facilitate their
validation. The use of haphazard contrel-flow and
“sneaky", elusive data manipulations renders a
validator's task extremely Qifficult and eliminates the
possibility of automatic analysis of programmes, an
automated or gemi-automated validation technigue
requires that programmes be writtem using only
allowable constructs and forms of data-manipulation.
This places restrictions on programmers, but in the
words of C.A.R. Hoare, “...and simplicity is the
unavoidable price we must pay for reliability!" {(Hoare
1197583 p. 533).

Seftware is generated for many very different
applications. Each different application requires
programmes to be written to sult that application.

Therefore, programmes are written in a variety of
languages and using a variety of data-manipulation
techniques, from low-level bit-manipulation to high-
level mathematical computation. Therefore, no single
validation technique can be expected to be universally
applicabie, For a particular application, a validation
technique must be fornd which is most suited to the
type of software and to the software generation prpcess
used in that application.

Software written for the control of real-time
processes, such as those performed by an electronic

PUEPCTR 3

Page 5

interlocking system, must cater for such things as bit-
manipulation and critical timing. In this fiela,
software is often produced as hand-written assembly-
language - code or compiled from languages allowing low-
level manipulation, 1In railway signailing, fail-safety
is of prime importance and so validation of any
software for an electronic interlocking system is
essential. However, no convincing techniques for
valiidation of low-level programmes exist. The
technigues normally used are those borrowed from other
areas of application ~ techniques which were developed
with different validation goals in mind.

A survey was conducted of available publications on the
subject of software validation, verification and
testing (Chapter 2). Almost all publications referred
to statie code-parsing and dynamic testing of
programmes written in high-level languages. Where
authors and researchers referred to validation
throughout the life-cycle of software, this too, was
only up to the point of high-level language generation.
Ho referencas were found to the validationm of assembler
language or machine-code programmes with respect to a
higher~level language or specification. No references
were found even to the analysis of assembler language
or machine-code programmes in environments where no
language or specification exists.

1t was therefore decided to conduct research aimed at
developing a method of validating embedded software
with respect to a higher-level language or

specification,
1.3 Direction of Research

The alm of software validation is to demonstrate the

g e b

Iz

Page 6

consistency between a computer programme and the user
requirements. In the generation of software, the
extremes of the generation process are marked by user
reguirements at one end and machine-code at the other.
The translation of the user requivements into wachine-
code Is far from standardised, although some common
stepping-stones are in use.

From the requirements, some form of programme
specification is usvally drawn-up. This is typically a
formal gtatement of what the programme must achleve.
It may or may not include information on how the
programme is to achieve its goal ~ the important aspect
of the specification is the exact definition of the
goal. In a contractual context, the programme
specification is often the dotted line between a user
and a supplier of software.

The specification, if it is not already in the “orm of

& high-order-language, is translated into a ! vi der—
language and then processed by a compiler t [l ;Ee
machine-cade. A typical software generation sdure

is shown in figure 1.1 overleaf.

In the generation of software for rallway signalling
and other critical fail-safe applications, the levels
of high-levelw-language and intermediate~language are
often omitted. The specification is translated by hand
to assembler level and then processed by an assembler
te produce machine-code. This is done to gain the
advantage of bit-manipulation at the assembler level
and sometimes too, for reasons of code length,

Page 7

USER REQUIREMENTS

PROGRAMME SPECIFICATION

HIGH~LEVEL-LANGUAGE PROGRAMME

INTERMEDIATE~LANGURAGE REPRESENTATION

ASSEXBLER~LANGUAGE PRO

MACHINE-CODE PROGRAMME

Fig. 1.1 Typlcal Software Generation Procedure

In order to validate a programme generaked by the
procedure shown in figure 2.2, a method 1is proposed
whereby the generation procedure is reversed. The
proposed procedure begins at the level of the machine-
code programme. This programme is then translated
backwards through the various levels shown in figure
1.1 until {t 1s at the level of the user requirements.

The proposed validation procedure would thus have
generated a set of user prequirements derived from the
machine-code programme itself, If the user
requirements thus obtained can be shown to be
consistent with the original user requirements used in
the generation phase of the programme, then the
programme would have been shown to correctly implement
the original user requirements.

Unfortunately, user reguirements are not usually
formally stated. They normally take the form of

Page 8

informal bhuman language statements about what is
required. The level of the programme specification is
normally where formality fs first encountered.

Since user requirements are normally informally stated,
validation of the programme specification with respect
to the requirements is a matger of manual
interpretation, involving checks for completehess,
conslstency ‘and unambiguiby.

was

The research described {n this dissertat
directed towards validating machine-code with respect
to its high~level specification. Since the high-level
specification can be fTormally stated, automation of the
validation process is possible. One of the major aims
of this research was to show how thig process could be

automated.

1.4 Scope of Research

Programmes and specifications take on many forms. In
attempting to develop a validation method inveolving a
programme and its specification, the first question
must be: what type of programme and what type of
specification?

1.4.1 Programme

A high~order~language programme suffers many
manipulations and changes of appearance before it can
instruct a central .processing unit, It is compiled or
interpreted; library functions and routines are called
and linked; lower level representations such as P-code
or assembler are generated and only finally is a string
of executable instructions produced. Te assume that a

.

Page 9

high order language is an exact representation of the
instructions whivh will be given to a central processor
is te ignore the fallibility of these manipulators and
their operators,

The validatjon philosophy proposed in 1.2 involves
analysis and upward-transiation of machine-code to
prove 1ts consistency with a high-level specification.
Input to the proposed validation procedure is thus
machine-code. This has the additional advantage that
embedded software which was written without reference
to a specification can be subjected to the same
analysis and upward-translation processes. This will
greatly asgsist understanding »f such software when
necegsary, for example when a modification is to be
made to the software.

It 1is also intuitively correct that the level at which
a machine executes irstructions should be the end of
the generation phase and beginning of the validation
phase uf those instructions.

1.4.2 Specificarion

Many methods of software specification are in use,’ for
example SPECK (Quirk [19831), PSL/PSA (Teichroew and
Hershey ({1977)), SADT (Ross and Schoman ([1977]1) and
ESPRESO (Ludewig (18813}, In the railway signalling
department of the South African Transport Services, the
goftware specification wmethod in use is P-notation
{Young [1980]).

P-notation {s of a lower level +than mest other
specification languages or methods, being roughly at
the level of a high-level-language such as Pascal.
This level of specification language was chosen by the

Page 10

signalling department because it is used to specify
programmes which are then coded directly from it as
hand-written assembler,

P-notation, as presented by Young, was found by
programmers in the signalling department to be
inadequate in certain areas, particularly those of
data~type specification and Boolean variable han&ling.
Thus, as it 1s used in the signaliing department,
P-notation 1is a modified version of Young's original
p-notakion, A description of P-notatiocn, as it is used
in the signalling department is contained in Appendix
B.

1t was not within the scope of this vesearch to assess
the effectiveness of modified P-notation for
application in the signalling department, ner to
compare it with other specification languages in use.
Since it is already in use in the department and found
to be effective by programm=rs, modified P-notation was
selected as the specification isnguage for use in this
research,

1.4.3 Automation

Programmes are often long. Humans make mistakes. In
fact, the longer programmes are, the more likely are
human validators to make mistakes.

Whatever oguise & validation method way take, it s
likely to possess the attributes of rigour and
repetitiveness. This will render it tedlous and
time-consuming for human execution, Automation should
thus be a major consideration in the development of any
validation method or procedure, Errors which would
inevitably arise in manual validation exercises would

Page 13

also be avoided.

k.
One of the majo. 3-215 of this research was thus to :‘
automate the progi.:3d validation procedure wherevar i
possible, or at least to demonstrate that it could be H 4
automated.
o f 1.4.4 Btated goal [
o4 I
K The goal of this research was to devise a method of A
44 showing a machine-code programme, as executed by a { ?
:, © microprocessor, to be consistent with its specification ;If

in P-notation. Maximum automation of this process was
of prime impertance.

1.5 Overview of Dissertation

The need for an effective method of validation of
! software for fall~safe, real-time process cantrol
; systems was the motivation for the research presented
! in this digsertation.

A software validation method has been proposed which is
a reverse of the typlcal software generabtion process.

The proposed method is based on the hypothesis that

each stage of the generation process can be validated ;

by translation of 1ts product to the level of the

product of the previous stage and validating by

comparison, For example, a high-level-language

programme can be upward-translated to the level of its W
- specification and compared with the specification.

This would validate the specification~to-high~level- }

language-programme translation stage of the generation Y

process,

-3

o n g

Page 12 .

Since user reguirements are normally informally
presented, .he reverse translation, or validation of a
programme specification against fhese requirements, is
algo an informal process. However, since a programme
gpecification can be formally presented in B
specificetion language, software generation processes
from that level right down to machine-code can he
formally valldated by the proposed method of referse—
translation.

The research presented in this dissertation was almed
specifically at software for the electronic
interlocking systems used in railway signalling, where
assembler language programmes are often generated
directly from their high-level specification, These
asgembler language programmes are then prosgssed by an
agsembler to produce machine-code. It was to be shown
that these two processes could be validated by <the
proposed method of reverse-translation. Automation af
this validation method was also to be investigated.

A description is given of a guinea-plg microprocessor
system, the process of ¢tracing its operation and
manipulation of the resultant traces te form a complete
disassembly listing of the gystem's embedded software.

Methods of automatic control-flow and data-flaw
analysls of the disasgembly listing are described and
their operation is demonstrated by using sample
portions of code. These analyses are done in
preparation for translation of the disassembly listing
into P-notation.

Final formatting of the programme to P-notation format
is then described. This essentially involves control-
flow formatting and variable-name ingertion,

}
|

Page 13

Finally, an anslysis of the overall effectiveness of
the proposed validation method in terms of the gosl of
the research is given, Conclusions drawn a&s a result
of the research are presented.

|
|

Page 14

CHAPTER 2 LITERATURE SURVEY

R survey was conducted of available publications on the

subject of software validation, verification and
testing. Most publications present generalised
approaches to software and are, as such, not

specifically relevant to the reliability of software
within embedded systems. However, it is precisely this
shortcoming which renders these publications relevant
to the history of validation.

2.1 Survey of publications

By 1975 the poor reliability and high cost of large
software systems was becoming a serious problem.
Farmal proof of programme correcthess was thought to be
infeasible or at least many years away and manual
testing and code inspection of large systems were, in
themgelves, unreliable and costly.

Some automated analysis tools and software evaluation
systems were In use at the time and Ramamoorthy ahd Ho
[1975) described these as the most effective means of
improving the reliability and reducing the cost of
large software systems. Automated tools were c¢apable
of checking the presence of certain software attributes
such as syntactic correctness, proper control
stracturing and module interfacing.

“Goftware evaluation systems" were defined as composite
systems of automated tools for the purposes of system
design analysis, debugging, testing and partial
validation, that being the process of demonstrating the
validity of a programme to &n acceptable degres of
reliability and per{ormance.

B

4
|
&
|

Fage 15

Ramamoorthy and Ho also described the software
evaluation systems in use at the time as only partially
fulfilling their requirements in that they analysed the
source c¢ode, but generally ignored the design and
specifications.

Miller {1977] proposed a method of path-based testing
and showed how a test coverage measure could be used as
a measure of “how far the testing process has gone".

Testing & programme by running it on sets of test data
had, wuntil 1975, not been regarded as an effective
validation method, since sets of test data were
generated on an ad hoc basis by analysis of the
internal structure of a prograwmme only. Goodenough and
Gerhart [1975]} proposed a more rigorous method of test
data selection. They propased a T"condition table"
method of Jderiving test predicates. Test predicates
describe what aspects of & programme are to be tested.
Derivation was done by reference to the general
requirement a programme was to satisfy, the programme's
specification and the general characteristics of the
implementation method used.

Admitting that exhaustive testing was rendered
impossible by such time-considerations as human
mortality, Goodenough and Gerhart hypothesised that the
input domain of a programme could be partitioned into a
finite number of eguivalence classes such that a
representative test for each class would, by induction,
test the entire class. They did, however, point out
that the fundsmental problem of testing was the
tnference from the success of one set of test data that
others would also succeed and that a problem with
equivalence class testing was to shew that the input
domain partitioning was, in fact, appropriate. They
suggested that their rigorous test case gensration

Page 16

method led to a better approximation of exhaustive
testing and, used in conjunction with programme
decreased the

correctness proofs,

likelihood of programwe failure.

significantly

While Goodenough and Gerhart were testing programmes by
running them on sets of test data, Allen and Cocke
{19761 were proving the integrity of daca—relatioﬁships
within a programme without execution of the programme,
Their algorithmic approach used a control-flow graph
representation of the programme and information about
the data items used, to determine the data-flow
relationships within the programme,

King {1976] was not convinced. He considered programme
testing and programme proving as extreme alternatives
ang introduced the concept of symbolic execution, which
he regarded as a practical approach between these two
extremes. He developed EFFIGY, an interactive
symbolic execution system for language statements in
PL/I-style syntax, In EFFIGY, a user could define
arbitrary identifiers to be symbolic programme inputs
in place of specific integer constants and analyse
programme behavicur by inspection of the resultant
expressions generated by symbolic execution.

A further practicsl implementation of the concept of
symbolic execution was provided by Glarke [19761. She
presented an interactive system for automatic test data
generation to execute a specified path of an ANSI-
Fortran programme and subsequent gymbolic execution of
that path. Her system also provided the facility for
detection of nonexecutable programme paths.

Based on King's EFFIGY, the SELECT symbolic execution
system devised by Boyer, Elspas and Levitt, and
Clarke's ANSI-~Fortran symbolic executor, Howden [1977)

Page 17

deveioped the DISSECT symbolic testing system. The
major advantage offered by the DISSECT system over
provious systems was the command-file faciltity whereby
a user could initially set up a series of executions to
be performed, some conditional on others if desired,
for any specified paths and with any combination of
symbolic and real input values. As with Clarke's
system, DISSECT was ANSI-Fortran specific. ’

In a case study of the effectiveness of various
analysis and testing technigques, Howden [1978} applied
the techniques to six sample programmes
containing “naturally” occuring errors. He found that
the use of symbaollc testing resulted in an increase in
reliability of 10-20 percent over testing on actual
data. The increase was, however, reduced to 3-4
percent if “actual data" testing was augmented with
other programme analysis and testing techniques such as
special values and interface analysis. He showed that
in most cases, one particular analysis or testing
technique was more effective than the others in
pinpointing a particular type of error and his over-—
riding conclusion was that ne single programme analysis
technigue or programme testing strategy should be used
to the exclusion of all others,

In the midst of the magsive drive to automate the
validation process, work was still being carried out on
the development of more relfable manual validation
techniques for use In environments where limited
resources were available. The coupling effect, whereby
most global errors such as failure to satisfy a
particular specification are seen as being coupled to
simple errors such as missing control paths, was
exploited by De Milio, Lipton and Sayward [19%78]. They
based a series of “hints on manual test data selection®
on the hypothesis that test data which distinguishes

- s at

i

TR

T

Page 18

all programmes differing from a correct one by only
simple errors is so sensitive that it also implicitly
distinguishes more complex errors. Branstad,
Cherniavsky and Adrian {1980) also proposed a stream-
lining and tmprovement of manual validation techniques
throughout the development life cycle by testing, code
reading and inspection, and independent reviews.

While referring to the various validation tools
available at the time, Meyers (1979] too, proposed
rigorous manual validation techniques and testing with
carefully chosen test cases as bpeing the most
effective. His choice of test cases was based mainly
on boundary-value analysis and cause-effect graphing.

Phe selection of test data had, for the most gpart,
always been based on the internal control structure of
a programme. Howden [1980a) proposed a "black box"
approach to programme testing in which the internal
structure of a programme was ignored during test data
selection. Tests were constructed from the functional
properties of the programme that were specified In the
programme’y reguirements. . The technique was knewn as
functional testing, as opposed to structural testing.

Howden described the disadvantage of the black box
approach as the fact that it lgnored impartant
functional properties of a programme which were part of
itg design or implementation snd which were not
described in the requirements. A case study involving
a collection of scientific programmes led to the
predictable conclusion that structural and functlonal
testing were complementary rather than competing
techniques.

Testing was still accepted as being wore affective than
formal programmne proof in the demonstration of

Page 19

programme correctness. Formal representation of
specifications was viewed as so problematical as to be
of little practical value. Formal proofs could not be

used with the informal specification methods in use at
the time. Kopatz described the specification methods
in use as “verbal specification of software systems
outside the areas of logic or numerical mathematics”
(Kopetz {19791}, '

Deutsch [1979] was sceptical about both testing and
proving of programmes as effective means of increasing
their rellability. Reduction of the complexity of
programmes, he believed, would increase productivity,
clarity, maintainability and modifiability.

Various papers were produced on the theory of test data
selection for revealing particular types of error.
Weyuker and Ostrand {19801 found Goodenough and
Gerhart's [1975} theory of test data selection
difficult to apply in the real world and proposed
certain modifications to the thesry whereby they set
semicorrectness~proving a. their goal, Proving semi-
correctness meant ting the ab of certain
errcors rather than the ideal proof of correctness,
which meant demonstrating the absence of all errors.

wWhite and Cohen {198¢) deveioped a method of testing
specifically to pinpoint control-flow errors and the
conditions wunder which their method was relliable were
carefully specified. Gustafson [1964] proposed testing
for errors whose necessary input conditions were more
likely to occur and for errors whose consequences were
serious. His test case selection was based on what he
called the "cost of errors’,

A consolidation of software analysis and testing
techniques &3 developed up to 1980 was provided by

ama b

Y. Y

e

Page 20

Howden [1980b1 when he applied various existing
testing and analysis methods to a package of Ebrtran
subroutines. He divided the fiethods used into two
distinct categories: static analysis methods and
dynamic testing methods. Static analysis methods
referred to methods which were performed without actual
execution of the code. Dynamic methods consisted
essentially of testing and were performed
automatically, except for the selection of test data.
Test dats was selected with a view to both structural
and functional testing as previously described (Howden

198041}, Static analysis methods consisted of
automatic wmethods such as path flow analysis and
statement analysi{s and manual methods which mostly
involved checking conslstency begween subroutine
headers and programme or reguirements content. He
concluded that the methods used could discover “a large
majority" of errors in programmes of the type used. He
found that testing {static and dynamic} and analysis
methods were equally useful, each responsible for the
discovery of about half the errors found. He indicated
the need for extensible static analysis systems which
allowed for the addition of further static analysis
rules, He also stregsed the importsnce of the
development of a method to identify and test general
and detalled design functions.

Carré [1980] described the principle methods of
validating programmes as flow analysis (control-rlow
and data-flow analysis) and semantic analysis. He
described a systematic manual method of control-flow
analysis {nvolving a methodical labelling technique to
show such control flow anomalies as black holes and

unused labels,

In data-flow analysis, Carré's detection of undefined
variables and unused definitions was based on

e .t

Page 21

algorithmic processing of sets of binary vectors
repregsenting variable~definitions within the programme.
His wmethod of semantic analysis was twofold

Agsertions, derived from programme specifications, were
fnserted into the programme and manually processed
using the programme logic¢ and computation statements.
A systematic technique was presented to prove that the
truth of an assertion at any peint followed from the
truth of assertions at previous polints in the
programme . The other aspect of semantic analysis was
symbolic execution. He was later to automate and
present these techniques as a ‘"validation package"
{SPADE, 1985].

Because of the real need to validate large software
systems, various validation packages or validation
environments were developsd sfter 1580, They mostly
used existing techniques such as static code-parsing
and dynamic testing, each implementing the techniques
slightly differently in an avtomated package.
Important amongst these were the STRUM system
[Patterson, 1981} which ated on programm for
microcomputars and a system gresented by Benson [1981]
which intreduced the concept of instrumentation of a
programme with ‘“executable assertions". Executable
assertions are formal assertions made about the state
of the programme variables at varicus points in the
Proyraime . The agsertions are presented in such a way
that the programme statements can be applied to them to
show that execution of the programme would not violate

any of the assertions.

The practice of translating a high~level source
1anghaqe into an intermediate language more suited o
validation techniques had been instltuted as early as
1975 (Ramamoorthy and Ho [19781), No further
development of the technigue took place until it was

¥ R ' S o -

Page 22

again wsed {n the IVTS system [Taylor,19831.

The IVPS system {Integrated Varification and Testihg
Sytem) was designed specifically for use on HAL/S, a o

language used mostly in aerospace applications. 6] i
Although IVPS used standard established validation : |
techniques, fts advantages over other {ntegrated H

validation systems were a very sophiﬁticated' user
interface, making application of any of the techniques
simple for unqualified personnel, and the incorporatian

of an automatic ‘“report writer* for documentation
enhancement . The major advantage of the use of an
intermediate language is that it renders the tools used
non-gource-language-specific. All source languages are
translated to the same intermediate level and are thus
able to be processed by the same tools. This feature
wag explaited by Carré in his validation package
{SPADE, 1985).

Boftware fault tree analysis, the hypothesising of a
particular fault ocecurring and subseﬁuent
"backtracking* through the software to discover all -
possible sauszas of the faulk, was introduced by Taylor
{1982] and wused in a practical impl wmentation by
Leveson and Harvey [1983). fTaylor presented a propesed
method -of automating the procedure, but to date not
much interest has baen shown in the analysis method.
The lack of intsrest has beaen due to 4difficulty im
handling loops and the size of trees generated for most
hypothesised faults. The method can be, and sometinmes
is, used for analysis of some highly-eritical
individual possible faulks, but has little general
applicatian,

!
[‘

In the early ninteen-eighties, there was an increasing
awareness that validaties of programme ¢ode with
1 i . respect to 1ts regquirements was only one facet of

Page 23
valigation in general. 1t was reallsed that design
errors discovered as late as the coding stage were
expensive to correct. Thus, vallidators began to

realise that validation techniques had to be applied
throughout the life~cycle of the software [Rzevski
[1981) and Howden [19821).

Validation techniques applied to seoftware requirémencs
and specifications ware thoge related to checking
consistency, completeness and correctness. Howden
[1982] proposed the selection of test cases throughout
the software life-gycle, including the requirements and
specifications definition phases.

An in-depth survey and evaluation of the existing
techniques of validation, verification and testing of
computer software was conducted by Adrion, Branstad and
Cherniavsky [1962]1. To say the least, their conclusions
were controversial, Because most validation and
testing techniques were applicable ta the testing of
actual programmes and had 1litile other relevance
through the life-cycle of the software, they concluded

that tradivionsl, manusl validation methods were most
effective. Such methods included walk-throughs,
reviews and ingpections. Traditional wanual methods

could be used without massive capital expenditure and
had uniform applicability throughout the software life-
cycle, although they required a serious commitment and
disciplined application, They also concluded that most
existing automated valldation techniques lacked a sound
theoretical basis.

Thus 1t was that, where validation was of critical
importance in the development of real systens,
validation techniques used were stild esgentially
manually orientated, involving wmassive human effort
{eq. Short [1583]).

Page 24

In a recent publication, Gerber {1965} described the .
techniques which were used to validate a large, real- ta? ﬁ
time process control programme. Modules were
individually validated by test cases and automatic
integration and module-interface (inter-module data
flow) analysis were performed. Functional analysis was
manually performed by cross-referencing of the

s

documeni:ation, Timing analysis, too, was maﬁually
performed by deing a serles of time~related
caleulations based on the programme code and showing
€nat the programme would always operate within its
specified timing constraints.

2.2 State-of~-the-art

The previous section has giver a general history of l}

developments in the fleld of software validation since
1975, by reference to, and résumés of, significant
publications. During the period from the mid- to late- i
ninteen-seventies, the emphasis was on developing the
ability to analyse and test high-level language
programmes which performed arithmetic and logic

I functions. Much mental effort and practical trial went
5 into this development and a sound basis for further K]
H development was created. Netewerthy were papers by

. Ramameorthy and Ho [1978), Goodenough and Gerhart
! [1978), King [1976], &nd Howden [1378]. The original
§ motivation for the development of this snalytical and
l: testing ability was a so-called “software ocrisis®
i

T

F

brought about by the low reliability and consedquent

¢ high cost of software. The objective was to improve
,.L software reliability to a level where the cost of its

o generation and implementation were acceptable.

H
Eu Within the context of the above motivation, it can be
argued that wearly work in the field of software

Page 25

analysis and testing was extremely successful.

Semi-correcthess (correctiess up to an accephable level
of reliabllity) of progrsmmes was achleved both by
validation techniques and by degign~for-validation
techniques. Even to this day, programmers writing
computational programmes can use established validation
techniques to improve the quality and reliabiliéy of
the sofiware they produce.

After the late nineteen-seventies, however, a branch of
computer usage which had been slowly developing for
some years, very cuickly became an important aspsct of
computing technology &and usage., The micraprocessor was
te be used in real-time process control applications
involving the risk of the loss of many human lives,
such as in nuclear-reactor moniteoring ané transport-
system control. Validation needs changed; the science
of validation did not.

The goal of vslidation changed from "partial validation
for increased reliability" to "complete validation for
cemplete preliablity". Not only did the goal changs -~
applications of sgoftware alse changed, Real-time
applications involve aspects that were not previcusly
considered in validation philosophies such &g stringent
tlming constraints and the cyclical nature of real-time
programmes. Emphasis changed from arithmetic/
gomputational high-level~ianguage programunes to
programmes involving many and varied I/0 routines and
bit-manipulation, often written in low-level languages.

A summary of techniques available and in use for the
validation and verification of real-time software was
provided by Quirk (1985]. His bask contains a8
comprehensive bibliography of relevant publications,

i

.

22

Page 26

A signiftcaht contribution to the assessment of the
state~of-the-art of software validation and
verification was made by the third verification
Workshop (VERkshep TXI [19851), held in California.

The principal goal of VERkshop III wes to review
verification {echnology and, in particular, to identify
what was being used in practice and what speu&fic‘areas
required additional research. The attendees included
researchers who were active in the development of
verification systems, theorem proving, formal language
semantics and applying current verification techniques
to preduction problems.

Although four years had passed since the previous
Verification Workshop (VERkshop 1II), there was a
consensus of opinion that only lncremental progress had
been made in the area of programme verification, 1t
was agreed, however, that using existing methods and
technology, significant progresé had been made in the
development of integrated verification systems

although the systems were still usable only by highly
skillsd individusls and were not in a position to be

used on a production basis,

A stagnation in the abilities of validation techniques
has been brought about by the application of analysis
techinigues to software which haes different validation
requirements from those ich motivated the design of
the analysis techniques. All developments in vali-
dation since 1980 have essentially been refinements of
the original techniques developed Dby validation
pioneérs such as Ramamoorthy and Ho {1978) and King
(19761, The fundamentais of validation as & science
must be re-addressed in order to develop new, more
applicable validatjon technigues to meet new validation
demands.

Page 27

Thus it was felt appropriate to undertaks an
exploratory project to show the validity of the
validation procedure proposed in the pravious chapter.
The proposed validation procedure would meet the
validation demands of & computer-based railway
signalling system and many other applications of
computer-based control systems.

o]

DA Do b

e
Py

J
b

P

b

e

Page 28

CHAPTER 3 DISRSSEMELY

The validation pr re proposed in chapt one of
this dissertation consists of analysing a machine-code
programme executed by a microprocessor and translating
the programme up to the level of its high-level
specification. The translated programme is then
compared with its original specification.

In thiws approach, no assumpticns zre made about the
correctness of assembly-language listings supplied by a
manufacturer or programmer. The machine-code programme
is obtained directly from the microprocessor itself,
Actual operations executed by the microprocessor, as a
result of instructions fetched from PROM, are used to
reconstruct the machine-~code programme, Validation is
thus ensured from the lowest possible level - that of
the effect of the software on the wmicroprocessor chip.

The operations of a microprocessor are traced by a
logic analyser whilst external stimulus is given to the
microprocessor system to force the softwara to traverse
every one of its possible paths. All traces thus
obtained are combined and edited to form a complete
disassembly listing of the programme. This disassembly
listing is then subjected to subsequent analysis and
translation procesdures,

The method of obtaining a disagsembly listing of a
machine-code programme was demonstrated by practical
trial. The test set-up used and experimental procedure
followed are described in this chapter.

PR Y

el

P

N N

VA

Page 29

3.1 Tust Set~Up
3.1.1 Guinea-pig microprocessor system

A method of producing a disassembly listing from a
microprocessor-based system has been proposed. To test
the proposed method, a guinea-plg microprocessor-~based
system was required. One such system, the STEM L 30
Block Instrument Controller” ({TEM L 30 Block
Instrument Control Unit, A Technical Description
(198213, was available in the Signalling Department of
the South African Transport Services, where the
research was undertaken. This system was selected so as
to provide a test-bed which was & true representation
of the application area being addressed in thils current
research investigation.

In railway signalling, a "block instrumeny" is an
electro-mechanical device which is used t¢ nand current
of forward or reverse polarity dawn a pair of wires to

another block instrument, It also indicates the
presence and polarity of any curr=nt it receives - from
any other block instrument. A more detailed

description of a signalling block instrument can he
found in Appendix A.

The "PEM L 30 Block Instrument Controller® is a

microprocessor~based control-unit designed to
facilitate the operation of Dblock instruments over
radie 1links, instead of over wire-pairs. The task

performed by the TEM L 30 controller 1is the bi-
directional, fail-safe transmission of information,
between two block instruments, over a radio link. A
more detailed description of the TEM L 30 controller
can be found In Appendix A.

S

Page 30

3.1.2 Tracing the microprocessor operations

Tracing was done with the State-6 Analyser option vf an 5
HP64000 measurement system (HP64000 Logic Development 3 k
System, Bystem Overview [1982)). The system offers ® Q

instant disassembly, mass storage of traces on {ts !
associated disc, sophisticated triggering and storage
specificavtion fagilities, printing of traces for

. K documentation purposes and uplpading of traces to a Zi
minicomputer for manipulation. &

i —
n 3.1.3 Stimulus of the device 53
- g

R o The TEM L 30 was required to traverse every possible
Ku path of its programme while its operations were traced
s by a logic analyser. In order to ensure that all
possible paths had been traversed, the contents of the
programme-PROM were listed. A check was made to ensure
that there were no programmed PROM locations which did
not appear in any of the logic analyser traces.

Certain paths of the TEMN L 30 software are not
traversed during normal power-up, quiescent cperation B
or power-down, They are the paths associated with the H
operation of one or both of the block instruments .E
causing message-transmission, hardware-monitoring with :
associated fallure strategies and message-reception .
with subsequent output to the block instruments, In .
order to cause the TEM L 30 controller to traverse
these paths of {ts programme, it was necessary to
provide external stimulus to the TEM L 30,

Operatien of the bilock instruments

5 Block instrument simulation was realised by means of

ey

RS N

Page 31

two block instrument simulators supplied with the
controller for testing purposes. The simulators r 'mply
provide the ability to source current of either
polarity to the controller by manual pv shbutton
operation.

Hardware-monitoring and failure strategies

The actual monitoring of the condition of the hardware
is a routine operatiun when the controller is {n a

powered-up state. It was, however, necessary to
simulate hardware failures to force the software along
the paths of its failure-strategies. such hardware

failures were easlly simulated by false feeds,
component removal, supply voltage adjustment, etc.

Kessage reception and analysis

b radio simulator was provided with the controller for
testing purposes. The simulator simply injects noise
into a physical connection between the modem cards of
two TEM L 30 controllers. This creates the effect of
the operation of the modems over a radio link, Another
controller could, therefore, have been used to send a
valid message via the radio simulator toe the controller
under test.

The normal, operative interaction of the two
controllers, however, forms a small part of thelir
message~handiing routines. To force the TEM L 30
controller to traverse all possible programme~paths
related 1o wmessage~analysis, it was necessary to
transmit to the controller under test messages with
incorrect parity, faulty Manchester Il coding, less
than three messages in agreement, etc. The easy

Page 32

manipulation of messages to be sent was thus an
important criterion., A programmable wicroprocessor-—
based data acquisition and transmission system was used
for this purpose. This microprocessor-based system was
developed by engineers of the South African Transport
Services and is known as a Remote Data Unit {(RDVU).

The modem card of a second controller was used to
interface, via the simulated radlo link, to the
controller under test. contrel of the modem card,
i ¥ fve pilation and message-
transmission were realised with the RDU.

Programmes were written on the RDU to perform the
various message-generation tasks and were executed by
the RDU as compiled Basic programmes.

The complete test set-up which was used to obtain the
traces is shown in fig. 3.1 overleaf.

3,2 Trace-Specification

Before any of the traces were executed, a trace-
spacification t was produ . This t
showed the address trigger point to be set up on the
HP64000, the section of code to be stored and the
stimulus to be applied to the TEM L 30 for each trace
to be executed and recorded. The trace~specification
document was produced by reference to the TEM L 30
manufacturer's software listing, circult diagrams and
description of operation. Any errors or omissions in
these manufacturer's documents would have become
apparent when actual execubtion of the traces was
attempted, A sample portion of the compleie trace
specification document is shown in figure 3.2.

@ Rt : s
. o
Page 33 i
P
i
9.
terninal RDU TEM L 30 3 4
b modem 23
I
| card
i i
) " -
b
bt - radio
i simulator .
P o]
o 3
o 1
- T .)
A T P
i | state 6 i
5 i At
'E H
HP64000 | analyser [————————x] TEM L 30 s
N I option X
: ; | g
b i
- L ol
3 | .
! 10 Mb B.I. B.I.
3 j disc simulator simulatoyr
N E |
I 1
) T
! . ;
i
be .
H Fig. 3.1 Test set-up) .
) +f ;
: 7
i

Page 34 N
¢

Ziyant, Taoce 3.8;60m00, Taenond BALE BN 10KY. Uaddrensad Ly P01

M | Bl ; *

g

T

Fig. 3.2 Portion of trace speciffcation document

3.2,1 Trace~Specification Document

> L Trigger-occurrence
I, { i
3 o) It will be seen that the trace-specification document .
s (figure 3,2} contains a column headed ‘“occur.". This ¥
'ib specifies the occurrence of the trigger—point address
3 k' on which the apalyser must trigger: flrst or segond, y
?3 Triggering on the second occurrence was specified in -

order to trace through a section of code ended by a i
branch instruction back to a polnt within that section.
This was preferable to triggering on the branch
instruction ltself, since it showed that the code was
o actually taking that particular branch of the decision,

-
- un v e L o [N, S

Page 35

Trigger-on-opcode

What 1is wot apparent from the trace-specification
document (figure 3.2) §s that triggering was not
init{ated on the occucrence of a particular address
alone. The TEM L 30 does regular inter-processor PROM
comparisons &nd so a particular address may appesr on
the address bus for the purpose of a data-read from the
PROM. Triggering was desired only in the case of the
correct address being present and an opcode being
fetched. This was gpecified for all triggering
conditions.

3.3 Production of the Disassembly Listing

Production of the disassembly listing consisted of two
phases.

Firstly, each of the test runs spacified on the trace
specification document was executed. All the trace
listings obtained were stored as files on the HP64000
measurement system’s local disc.

Secondly, all files thus obtained were uploaded to an
HP1000 minicomputer, where they were edited and sorted
by absolute address to form the complete disassembly

1isting.
3.3.1 Obtaining the Traces

Providing the stimulus

The stimulus to be applied to the TEM L 30 controller

to obtain each trace was determined from the trace-
specification document, Some stimuli conaisted of

CEa

Page 36

initial conditions to be set up (eg. removal of a
fuse), while others were actions to be taken during
operation of the device (eg. operation of one block t;
instrument during servicing of the other).

Tracing the test runs

]

Triggering and storage conditions for each test run
were set-up on the measurement system. Once -the
trigger had been enabled and the measurement system was
walting to trigger, the 'EM L 30 controller was
powered-up as specified in the trage-specification
document. On completion of storage, the trace obtained

F50

was stored on the measurement system's disc.

:WJ{<

3.3,2 Manipulation of the Traces

t
L
1
i
: i
3 P Uploading the files to a minicomputer
ok
{ All the traces which were stored as files on the .
. 1 measurement system's disc were uploaded to an HPL00Q o
'A f minjcomputer for editing, sorting and analysis.
I o
; Since all files were to be concatenated for sorting angd | §
z analysis, the large virtual-RAM capacity of the !
' j' minicomputer was required for this purpose. s
3 3
%“ Editing and sorting the traces
|
, i Pascal programmes were written and run on the HP1000 ! i
minicomputer to edit and sort the trages into a

complete digassembly listing. A sample trace-file is
shown 4a figure 3.3,

S —

f
Page 37
§
64620 State Analyzer Han, 10 3un 1965, 11338 ! o
Trace List tat 40 channel, 6800/
Lavot: AOBREsS "' éaoorsupz Maeente®! hannel, 4800702 interface .
Hanet X ax
Fapl ADDR_MAP ADDR_MAP b
~002 abs CC29 BNE_ CC24 bt
1081 cba CEOG 07 ogerand fotsh
tridsor aba CEza Loas 3687 i
+00) abo CEZ8 ~ 20 oporsnd fatg . {
+G92 abs §CZ2C 02 opseand fatsl ¢
+003 abs 2002 hi:] road
ibos au2 690 erfa ¥ ;
+00 abs CC2E 02 nEarnnd Fotoh i
+006 abs (CZF BNE_ CE34 }
4 +002 sbe L0320 03 gRgrond fetch H
+008 abas GC34 ANDB $F9 1
4 1008 oha DE39 69 oparand fetch :
S 4010 abs CG34 STAB 1002 -
{ +011 abs CC37 10 oporand fatoh ¥
i +0i7 abs CC3A 02 oparand fateh g
£ +013. abs 1002 €O memory write
i +814° aba CC3Y PULA
3 +015 abs 6078 89 stack read
M V014 aba CC3A PULR :
! +8}7 sbs G670 G0 stack read
¢ <018 abe CC3B RTS
1017 aba GdZE T L1 atnok read
i 4020 abs 00F UF stack read

i
¥
i
;

Fig. 3.3 Sample trace file

SAN

>
a
2
&

LDAB FDO3
ACL7 EORB $F007
ACLE STAH Foo3

AC2D ANDA $FGOR
2C ABA

AC2D STAR FO02

AC2E BRA ACOL

Fig. 3,4 Sample disassembly listing

Page 33

These trace-files were first individually edited to
remove the unnecessary text at the head, triggering

information and data-reads and writes. All the 2
resultant edited trace-files were then concatenated to ﬁ
form a single file. All duplicated statements were " "

removed and the file was sorted by absolute programma
address to form a compiete disassembly listing. A

sample fy the resultant listing is shown in fiqure A i
i
3.4, [
sl
4
|
B
3.4 Rasult ¢ .isassembly B
4 A method of deriving a complete disassembly listing of !
£ a programme executed by a microprocessor has been
; described. =
i
i ¢
g The methed essentially involves tracing the operations 3
of the microprocessor with a loglc analyser while the

y mieroprocessor system is externally stimulated to

|
! f
- axecute every path of the machine-coede programme. 1
= Resultant traces are manipulated to form the compleie ! H
te Gisassembly listing. F
¢ i

The actual disassembly of machine-code [nstructions is :
performed by the loglc analyser. If required, the !
integrity of the disassembler can be demonstrated by

hi re-assembling the resultant disassembly listing and N
‘;an comparing the result with the origiral machine-code. =
{ ‘The analysis and translation techniques described in L
;‘A‘\" further chapters are aimed at demonstrating the o
?\ consigtency between a machine~code programme and {ts P- !
B notation specification. Since the machine-code :

programme of the TEM L 30 was not written from a P~ \
\l notatlon specification, the programme wlll not be :

Ty subjected to such analysis and translation

Page 39

Agsembler 1listings of the same format as the TEM L 30
disassembly listing which were written from P-notation
specifications will be wused to demonstrate these
techniques. It will, however, be shown how the
techniques developed can greatly assist the readability
and understandability of a disassembly listing such as
that obtained from the TEM L 30.

Further chapte s describe how & disassembly listing can
be analysed and translated to the level of its P~
notation specification. This process begins with
control-flow analysis, described in the following
chapter.

P Y

LB

Pagqe 40

CHAPTER 4 CONTROL~FLOW ANALYSIS

The previous chapter described a method of deriving a
complete disassembly listing of a machine~code

programme . In order to translate the listing thus
obtained into P-notation, it was necessary to analyse
tha 1listing 1In terms of control and data-flow. A

méthod of analysing the control-flow of a disassembly
listing in terms of standard P-notation constructs is
presented in this chapter.

4.1 Constructs in P-notstion

P-notation supports constructs in the three broad
categories of sequence, selection and iteration.

4.1.1 Sequence

Sequence refers to the top-down sequential execution of
programnme stataments. 1f a statement does not
&xplicitly transfer control to some other part of the
programme, then the statement below it is the one which
will be executed next.

4.1.2 Selection
P-notation supports two types of gelection gconstruct:

the case statement and the 1f statement., Definitions
of these statements can be found in Appendix B.

4.1.3 Iteration

P-notation supports three iterative constructs: the

Page 41

repeat statement, the while statement and the for
statement. Definitions of these statements can be
found in Appendix B.

4.2 Construct Recegnition and Labelling
4.2.1 Input and storage of disassembly listing

The control-flow analysis programme provides the
facility for the input of any user-gpecified file
containing 2 disassembly listing of the form obtained
from the TEM L 30 (Chapter 3). The listing is stored
in a record structure in RAM. Fields of each record
contain absolute programme address, opcode, and where
applicable, operand.

4.2.2 Processor—-specific information

A data file containing {nformation specific to the
Motorola 6802 microp is refe d by the
analysis programme. ‘The data file contains informszion
about whether a particular opcode is a conditional
branch statement, an unconditional branch statement oy
neither. For each statement read from the disassembly
listing file, branch information is read from the data
file and added to the record of that particular
statement.

Together with the absolute addresses in the
disassembly listing, the branch informstion from the
data file is sufficient to facilitate automatic
control-flow analysis of the disassembly listing.

Iz
i

Page 42

4.2.3 First pass: if-then—-elseé and loop recognition

Recognised constructs ar< numbered sequentially in A

order of recognition. An internal labelling system is L

used in labelling recognised constructs. The various § . b
e

elements of a construct are labelled with & character-
string indicating their significance.

i N So if recognised construct number # is an jf~then-else
construct, the statement beginning the {f portien is
labelled f_#, th statement beqginning the else
portion is labelled else# and the end of the construct
is labelled comp#. In the simplified case of an if-
then construct, the else# is omitted.

: %
SN LY

P

;

[

If recognised construct number # is a while do loop t
: construct, then the beginning and end of the loop are i
. b labelled whil# and endw# respectively. In the case of
N i a repeat until loop, Sthe beginning and end of the loop
-~ i are labelled rept# and untl# respectively.

Distinguishing between a for loop and a while do loop
ig difficult and in any case not always possible. For
loops are .ecognised as while do loops. Standard
coding of for loops for the purpose of recognition
could be added as a refinement of the loop recognition

I
!

process.

S

1f a branch and ‘= destination are not recogniseable
in the context of any standard construct, then they are
labelled unkn# and endu¥ respectively.

Using the abbreviations UCB for unconditional branch
and CB for conditional branch, generalised
implementations of the P-notation standard constructs
are given in figure 4.1 overleaf,

3
¢ i
[

ST

Page 43
[
1
et
L) if portion
[ST -i uce .
—e=30 1 1
[3
1
[R
[’] .
CB j—==mi 1
1 ! .
! (|1 if portion
. 1
'
f"'>[|]
rspeat until : [|] body of loop
cB ‘-——~[.J test for completion
L1
——di]

i
g B 1 prepars tost
| { 1-=--, CB
1 t
]
|

| rady of loop

Fig. 4.1 Generalised implementaticns of P-notation
standard constructs

T

ESE A

Page 44

The algorithm used to recognise the above constructs
and label the relevant statements accordingly is shown
in Appendix €. The algorithm was implemented @s a
Pascal programme for automatic construct recognition.
A sample printout after the first pass of the analyser
is shown in figure 4.2 below,

3D
HOEQEOQEQOERQD

SOOGoOORAOREG
SororEao: SUIm,

BHEoRX QGX
a

@

comp2

-
"
~
QOOANOANQQANGAAQa
e L T
SGGOGQGGODNE DD
RODENEEFHODONNGH
Fugpanamamieoe
43U Z IO O TE
BPDDDDUHEXDAXRTOD
DDTDD

compt

Fig. 4.2 Printout after pass one of the analyser

4.2.4 Segond pass: cape recognition

1f recognised construct number '#' is 8 case construst,
then the statement beginning the construct will by
labelleg case#. The statément beginning each of the
separate cases within the construct will be labelled
of _#.

An implementation of the P-notation case construct
could take the form shown in figure 4.3 overleaf.

e

T

R I,

F e e

Page 45

o
w

6
[
!

. warmel]

o
w

w0
t
[T

[Jrmen

mmwmmmn)
(3]
[S PR

i
|
I
i
!

(:) ist case body
£ Jemmmmee—, UCB

<

2nd case body

i

t

§

i

} uer
|

{ 3rd case body
U

.3 An fmplementation of the Pwnotation
[case construct

Branching need not have occurred in the order shown.
The first conditional branch could have branched to the
second case body and the second conditional branch to

the third case body, or any other order

Whatever the order of branching, the whole construct
would have been analysad in the first pass of ths
analysér as a series of overlapping if-then-slse
constructs. This fact is exploited in the recognition

of case constructs by the second pags of the analyser.
The analyser does a second pass of the listing,
searching for statements which were marked in the filrst
pass as multiple eomp statements. Bl1l such statements
could form the end of case constructs. The algarithm
shown 1n Append.rs C is used to determine whether a
particular multiple comp statement does in fact form

AL

A g

LA i

{

=y

x4

Page 46

the end of a case construct, The axqotithﬁ also marks :
the relevant statements accordingly if a case construct

is recognised. . k=

The number of a recognised case construct is the ‘é £

number of the luwest numbsred overlapping 1f-then-else ‘?

construct forming part of the case congtruct. . rfx .
S

The algorithm shown in Appendix C was implemented as a]

Pascal programme. This programme was used to perform 1

antomatic case construct recognition. ﬁé R

Figure 4.4 shows a printout sfter pass two of the % ¢

analyser. The portion of code which’waa analysed is

seen to contain an if-then construci (construct npumber

2} nested wighin the flest case of a case construct .

{construct number 1}.

i €160 LDAR 00,% o N
HEER
case 24 BE (%4
o3 Gi8e Chida 02 .
& . G168 Beg c1de . -
= E16R CHPa §03
A CICC BEQ CiDp
i ¢y G158 EbAn 004
‘ | fe2 gin BB C106 f
. . compz G1D8 BRA CIES
2 of.. 1 CiD8 INC 4140
wr_ 1 £ib5 BEC 4AcE
: of—t iy BEE 2Acr .
E oot S1E N8
compl C1E3 NOP
. Fig. 4.4 Printout after pass two of the analyser

Page 47

4.2.5 Overlapping and unrecogniseable constructs

Programmes which have been incorrectly coded from their
P-pnotation specificatiors or which were not written
from P-potation specifications, will often have
unrecogniseable structure. Such programmes way contaln

. - branch statements which do not form part of standard P-
0 notation constructs. ’
o i
Once a particulayr construct has been recognised by the
o analyser, inadvertent branching Into or out of ' that
e T 5 construct is disallowed. Such a branch statement is
. 4 not recogniseable in terms of that construct.
St
M' | Branches which are not recogniseabie 1in terms of
- Z standard P-notation constructs are marked as such by
N ;" the first pass of the analyser.

H Automatic detection of overlapping constructs {s alse

- & possible. A third pass of the analysed listing is it

perfarmed, checking for overlapping constructs, For i

each loop and each section of an if-then-else or case 2

R gonstruck, a check is made that all constiucts nested o

A within the loop or section are complete. This is done .

; . t by checking that within the loop or construct sectiom: . b
2 T

. each whil# hag a corresponding endw# and vice versa ﬁ

. < each rept# has a corresponding untl# and vice versa
: each {f__# has a corresponding comp#

N . each case# hag a corresponding comp#

a

a

a

N

each comp# has corresponding 1f__# or cass¥
each elsedi has a corresponding if__#
> each of__# has

corresponding cage# 2

' Viclatlons of these completeness criteria are flagged o
by being printed during this third pass of the analyser.

P i

Page 48

Flgure 4.5 shows a sample analyser output together with
its corresponding overlapping construct printout. The
else portion of an if-then-else construct is seen to
overlap the end of a repeat until lcop

rept2 2000 LDAA Copo
°PY 5003 ANDA tre
2005 STAR CO00 '
2008 AMNDR #01
if__1 2008 BNE 2015
200¢ LDAE €001
200F @8R
20190 STAA CDOL
2013 BRA 2022
slsel 2015 LDAB CO06
2018 ABR
untl2 2619 BNE 2000
b 201B STHR CO08
Z01E CLR&
201F STRA Co0C4
compl 3032 NOP
Ousrlapping sonstructs:
NO cnmgl FOR i, 1 IN raph untl HUMBER 2
NO rept2 FOR antl2 IN else MOMBER 1
; ’ Fig. 4.5 Overlapping construct detection
oOverlapping consiructs are not reprasentable in P-
= notation. For transiation of disassembly Illstings
o containing overlapping constructs inte P-notation, It
Wb is necessary to modify the original machine-cpde
. programmes &o contain no overlapping constructs.
When a printout trom the analyser shows no
v F~ unrecognigeable branches and no overlapping oconstructs
3 in a disassembly listing, then the structure of the
" f iisting 1Is saound and it may be translated into P~
f‘ notation format.
L
('
= L 4.3 Results of Control-Flow Analysis
'f‘ The e¢ontrol-flow analyser described in this chapter

LTI T TS

TR

B B

)

|

e i

iy

Page 49

'
{
i

analyses a disasgsembly listing of the form obtained in
the previous chapter., BAnalysis is in terms af standard
P-notation constructs.

]
i,

%

The analyser indicates L.anch-relevant statements which
are not part of standard P-notation constructs.
Overlapping constructs are also detected and indicated.
For the analyser. to fit all branch-relevant statements
into standard, non-overlapping P-notation constructs is
a necessary and sufficient condition for the
translation of the control-~flow framework of the
disassembly listing into P-notation.

ERCUCISE R~

g e SIETNEET
N

o

The control-flow analyser is no more than 1its name
implfes, It analyses only the control-flow
possibilities within a disassembly 1listing, Test
. : predicates which determine along which path execution
of a programme will occur at run-time are Xanredn

4 o Once the control~flow framework of the disassembly
listing has been analysed, only sequential portions of
” code reimain to be analysed. The next chapter describes
. how the remaining sedquential code portions are analysed
Cb in terms of data-flow. It also describes the analysis
of test predicates, where possible, for 1nsertion’inco
the final P-notation control-flow framework.

The following chapter describes how information from
both the control-flow analyser and the data-flow
analyser can be used to translate a disassembly listing
inte P-notation. .

b e Ml

&
¥
b
|3
v
¥
¥
1
[
;

Gt

BSN CI N APTI

e e

Page 50

CHAPTER § DATA-FLOW ANALYSIS

The previous chapter described a method of analysing
the control-flow framework of a disassembly listing,
O.ce this control-flow framework has been extracted
from the disassembly listing, only sequentlal portions
of code remain,

To enable translation of a disassembly listing inte P-
notation, the remaining sequential portions of code
must be analysed 1in terms of their memory-location
manipulation. Test predicates (data-preparations’ for
conditiopal branch tnstructions) wust also be anslysed
for insertion into the control-flow framework.
Bnalysis of code iIn terms of its memory-location
manipulation and test predicates 45 referred to here as
"Data-Flow-Analysisg®,

This chapter presents a method of automatic data~flow
analysis, The abilities and limitations of this method
are demonstrated by applying it to portions of
assembler code. These portions of code are of the same
format as the TEM L 30 disagsembly listing obtained asz
described in Chapter 3.

5.1 Dava~Types in P-notation

P-notation in its original form (Young(i9801) supports
only two predefined simple data-types called 8bit and
16bit. All other simple types must be user—defined in
terms of these two predefined typea. The type
indicates the size of the data object, thus the minimum
size of a data object i{s elght bits.

The predefined structured type record, however, may
contain entries of type less than eight bits, Even in

B AN

I

T

L

Page 5.

this case, however, the type declaration declares only
the size of a data object. Mo facility is available in
P-notation for specifying the position of a date object
of less than elght bits within an eight bit word.
Assignation of absolute memory addresses to bytes is

also not possible in P-notation. Having only two
predefined simple types was also found to be a
shortcoming of standard P-notation. P-notation, as it

is used in the Signalling Department of the South
African Transport Services, where this research was
conducted, has been modified to overcome these
shortcomings.

Modified P-notation has three predefined data-types
which are shown below, togethér with their memory

requirements.

integer : 8 bits (signed.2‘s complement)
pe’nter : 16 bits
Boolean : 1 bit

The above list of predefined types could be expanded to
suit a particular application.

A facility for positioning a data object of less than
eight bits within an eight bit word has alsoc been added
to P-notation. The eight bit word is declared as a
record and the positions of its entries are indicated
by binary values, as in the example of figure 5.1
overleaf.

Page 52

storbyte = record
flagl : Boolean (%0000 0001);
Tlag2 : Boolean (%0000 0010); .
flagd : Boolean (%1000 0000});

end;

Fig. 5.1 Data object positioning within 2 recérd

Here storbyte has been declared a5 a byte centaining
packed bits flagl, flagi end £1lag3 in the positions
indicated,

Another addition to P-notation is the facility t9 give
a data object an absolute addresss in memory. This §s
necessary, for example, when hardware is designed
before its embedded software is designed. In such
cases, address decoding predetermines the addresses of

memory and I/0 devices.

For example, to read from or write to a single line of
an I/0 port, the port is declared as a record
coptaining a Boolean variable in the position of the
170 line. The record 1s then assigned an absclute

address in memory.

If the I/0 line of the above example is in bit position
zero of an I/0 port at absolute address 106CH, then tho
P~potation data declaration would be as shown in figure
5.2,

In this case, outport has been declared as a variable
at absolute address 1000H containing a single 1/0 line
called '‘xmit' in bit position zero. In effect, this
amounts to a declaration of the absolute address of

Boolean variable ‘xmit'.

=

Page 53 %

type
r = record
xmit i Boolean (%0000 0001);
end;

i var
outportir absclute:1000H;

Fig. 5.2 Absolute address declaration

Further references to P-notation must be taken to imply
modified P-notation, that is, P-notation with the above
aaditions,

5.1.1 Formulation of a data-table :

A disassenmbly 1isting of a programme references
variables only by their absolute addresses in memory. b
If such a disassembly listing is to be translated to B
the level of and compared with its P-notation ;
specification, the original variable names Ffrom the !
specification would have to be added to the listing. o
An automatic¢c method of traeslating a disassembly
listing into P-notation would thus require information
regarding the correlation between variable names in the
P-notation specification and absolute addresses in the
disassembly listing.

S ———

1f the data declaration portion of the P-notation
% specifigation contains absolute address and optional
pit-within-byte position declarations, then these .
deciarations give direct correlation between variable
names and their absolute addresses, For variables not
declared at absolute addresses, variable name/absolute

Page 54

address correlation iy determined by the way in which
assembler language code is written from the P-notation
specification,

By inspection of the data declaration portion of the P~
notation specification and the declaration/equate
portion of the assembler language code, all variable
name/sbsolute address correlations can be determined.
Together with information about the types of the
variables, these correlations are presented in a fixed-
format tabular fashion. An example of such a table is
shown in figure 5.3 below.

£0000] lines{1] integay
[0064] lines{2) integer
[DOD2] storbyte record

[flagl Boolean

1 flag2 Boolean

2 flagd Boolean
[1000] outport record

o xmit Boolean

Fig. 5.3 Standard format of data-table

A data-table such as the one shown above includes data-
type and absclote address information for all the
variables appearing in the data declaration portion of
& P-potation specification,

if a bybe consists of packed variables of 1less than
eight bits, then the bit positions of such variables
within the byte are indicated below the absolute
address of the byte.

Actual insertion of the variable names into the

B

¥ W, . N >
. . PR
: [

Page 85

disassembly 1isting is performed by an antomatic
programme translator, described in the next chapter.
Data-tlow analysis, as described in this chapter,
invoives the derivation of expressions representing
data manipulations within the disassembly listing and
verifying thelr type-consistency. Thus, once the data-—
flow analyser indicates no type-inconsistencies within
expressions, the programmé translator csn simply insert
variable names in place of absolute addresses,
according to the variable name/absolute address
correlation thble.

5.2 Effect of Data-Type on Data Manipulations

Data objects, depending of their deciared type, are
either whole bytes (eg. integar), combinations of
bytes (eg. pointer] or portions of a byte [(eg.
Boolean}. S0 the nature of manipulatians which are
performed on a particular byte of memary depends on the
data-type of the byte, or of data objects within the
byte.

In the case of integer and pointer variables, only
whole-byte manipulations may be performed. A bit ar
bits within a byte may not be selectively manipulated.
Typical whole~byte manipulations would be to cle;r a
byte, to add a value to a byte, to decrement a byte
etc. Suech manipulations are clearly of an arithmetic

nskbure.

In the case of Boolean varlables, arithmetic-type
manipulations of bytes containing such variables
constitute data-type violations. Boolean variable
manipulation consists of legical operations on
individual bits within bytes, 8uch manipulations make
use of the operations of loading, masking, shifting,

33

,ﬂﬁ
a

elee LR TSI

Page 56

onerating (logically) and storing of bytes.

80 the type of manipulation performed on a particular
byte of memory depends on the data-type of the variable
of which the byte forms a part, or vhich forms part of
the byte. This fact is euplojted in the development of
a method of automatic type-consistency ¢hecking during
data-flow analysis. ’

SN Y
e

¥

i
A
<
i
g
<

;

5.3 Analysis of Data Nenipulattons

Rs stated earlier, two distinct types of manipulation
are used to manipulate data objects of P-notation
predefined type. These are bit-wise, logical
manipulation and whole-byte, arithmetic manipulation.
The manipulation method used depeénds on the type of the
data object being manipulated.

5.3.1 General strategy

Data~flow analysis consists of twoe stages, Firstly,
expressions representing data manipulations are i
generated and then type-consistency within such

expressions is confirmed. The two processes work hand- 3
in-hand. An expression containing a type-consistency @
violation will not be printed =~ the appropriate N
section of code will be flagged as containing i{llegal i
operations. ;

J
In cases where disassembly listings do hot have ¥

i

corresponding P-notation specifications, no data-type

table exists. Partial data-flow analysis can still be .
applied to such listings to aid manual analysis of the .
programme. In such cases, type-consistency checking is ‘
disabled and expressions representing data

Page 57

manipulations are generated in all cases of data object
manipulation.

The general strategy of the analyser ls to parse the
digassembly listing (including information from the
cantrol-flow analyser) from beginning to end, searching
for conditional branch statements and statements which
affect the contents of memory~locatfons. '

ir a statement affects a memory-location
'immediately’ (independently of any other statement),
as in the ocase of memory~location clear, memory-
location increment etc., Gthen an expression of the
operation is Qerived sg described in 5.3.% below.

1f a register storage statement i3 enccuntered {effect
on memory-iocation dependent on contentd of register)
then the analyser works backwards through the code,
generating an expression as described in 5.3.3 below.

In the case of a conditional branch statement, the
analyser 8gain works backwards through tle code, this
time generating an expression representing the
candition under which branching wiil sceur, as
degcribed in 5.3.4 below.

For manual fnspection of type-inconsistencies and for
analysis of code where no P-notation specification
exists, an intermediate data-flow analysis result may
be produced. This result consists of a printout of the
listing, together with generated expressions inserted
in the approptiate places within the listing.

All expressions representing data manipulations are
stored 1In a text file, together with the addresses of
the statements which caused thelr generation, This
file is then referenced by the programme translator as

S

Page 58
described in Chapter 6.

8.23.2 Immediat. manipulatlion

Certain instructions in the Moterola 6802 instruction~
set operate directly on memory-locations and are
independent of the contents of the processor’'s
registers, Some exawples are shown in figure 5.4.

LER 1000 - Do a logical shift right of data in
memory-location 1000K

CLR 0QOOF - Clear memory-location DOOFH

DEC (€126 - Decrement data in memory-location C128H

Fig, 5.4 Immediate memory-location manipulation

With the exceptioca of the CLR (clear) statesent, all
such lmmediate statements have an implicit arithmetic
or logical connotation, Thus the analyser, before
generating an expression representing the operation,
checks that the varlable being manipulated is of the
appropriate type. If not, it generates a type-
inconsistency message.

In the case of a packed Boolean type, a string of
expressions (s generated, showing the effect of the
operation on each of the Boolean variables in the byte.
This is achieved by reference te the data-table.

In the case of the CLR statement, the analyser cannot
check for type-inconsistency, since the operation s

legal for all data-types. 8¢ the analyser uses

information from the data-table to ° ~mine what type

of expression should be geners* wise or whole—
- - . .- - e

PRI,

e

g

e

RS

Page 59

byte. Examples are shown in figure 5.5.

disassembly listing data-~table analyser
statement entry sutput
CLR 1000 {1000) integer [1000}:=0
GLR FO0D [F000] record ‘
0 Boolean [(F00010:=0
4 Boolean [F00G]4:=0

¥ig, 8.5 CLR statement type-determination

Intentional misuse by programmers of the hatural
connotation of immediate instruction opcodes will
prevent analysis of the code because of type~
inconsistencies. Typical of sguch misuse is the
incrementation of a record which is known to contain a
Boolean variable in bit peosition zero, In order to
complement that Boolean variable.

5.3.3 Reglster storage

1f a store-register instruction is encountered, the
analyser has to work backwards from the instrudtion to
determine what the contents =~ ihe register would have
been at the time of Lhe store operabion, However,
register wontents are not always completely
determineable. Where & regizter emerges from a
previous construct to be manipuiated and stored before
belng redefined, its contents a&re not completely
determineable. The origin, and hence consants, of the
register are unknown at the time of emevgende from a
previous construct

g2

TR

it i i T

S —" s

Page 60

The analyser 1s able to generate a complete expression
repregenting the wffect of a store {nstruction when all
registers affecting the data to be stored are defined
prior to the store instruction and 1In the same
sequential portion of code as the store instruction,

A whole-byte, arithmetic expression can be generated to
represent any store ingtruction. Even when a bit-wise
operation is performed, this can be represented as a
whole~byte expression, as shown in figure 5.6 below,

€100 LDAR 0002
C102 EORA #20
£104 STAR 0002

10002}:=[0002} eor 20

Fig. 5.6 Whole-byte representation of bit-wise
opepation

The intenkion in the above example was clearly to
complement bit 5§ of memory-location 0002H and the
correct representation for this would be as shown in
figure 5.7.

{0002]15:%not({0002356}

Fig. 5.7 Correct representption ¥ bit-complement

Before the analyser can properly sngiyse . a portton of
code, therefore, it must know whitier a bit-wise or a
whole~byte operation s being performed, This
information is given by Lthe date-vwpoe of the operand

of the store instruction, 1f tiw nperand f8 of type

e L

e

Page 61

integer or peinter, the anslyser uses a routine to
perform arithmetic axpression deneration. If the
aperand is of type record {containing Boolean bits),
the analyser uses a routine to perform bit-wise
analysis and expression generation.

The bilt-wise analysis routine considers only a small
subset of the processor's instruction set as valfd for
bit-wise manipulation. These are the instructions
related to losding, masking, shifting, rotating,
clearing, storing &nd logically operating on data
objects, If the analysis routine encounters an
instruction outside of this subset, 1t {s unable to
continue bit-wise analysis of the portion of code
coritaining that instruction. The bit-wise analysis
routine then indicates that an arithmetic-style
operation has been attempted on a Boolean variable.

IE, during Its analysis, the bilcv-wise analyser
encounters a variable of type other than Boolean, it
terminates analysis of that portion of code and
indicates that a bit-wise operation has been attempted
on an iilegal variable,

Sim{larly, for the purgose of type-checking, the
arithmetic expression generator excludes certain
opcodes which are inherently of a blt-wise operative
nature (eg. rotate, logical and, exclusive or,, The
expression generator too, {ndicates the attempted use
of thege excluded opcodes on non-Bvolean variables.
The appearance of bytes containing Boolean variables in
arithmetic expressions is also prohiblited and flagged
as a type-violation. .

where no P-notation specification of a programme
exists, the Gata-~flow analyser can still be used as an
aid to merasal analysls of the programme. In such

PR Y

SET

i

AT e~

w

Page 62

cases, no information ls available concerning intended
types of data objlects within the programme, A21 Eype—
chacking is thus disabled. The bit-wise analysis
routina attempts to analyse all store operations in
terms of bit mailpulation. When 1t encounters an
unknown opcode, it terminates analysis of that portion
of code and continues with the following store
irstyuction. '

When bit-wise &nalysis is complete, the arithmetic
expression generator parses the 1listing, generating
expressions tor all remaining, unanalysed store

operations, When doing 80, the expression generator
doaes not prohibit the use of any of the processor's
opcodes. Thus expressions are generated representing
all data manipulations. Where such manipulations are

obviously of a bit-wise nature, bit-wise expressions
are generated. This greatly sssists in the manual
analysis of a disassembly listing.

Bit-wise analyser

The bit-wise analyser uses character-strings to
represent what each of the register bits would have
contained if normal execution of a portion ¢f cnde had

ocousred, It thus starts from an undefined register
hit and determines an expression for the contents of
the bit to be stored by working batkwapds through the
iastructions, Once all register bits appearing in the

expression have been defined (ag. by lesd, clear), then

the expression {s complete. The progess is best
demonstrated by exampler

when a stors register instruction is encountered, the
aralyser initiates all 1its character-strings to
represent the undefined regfster bits as {n figure 5.9.

4,

B)

F0

|
;
i
|
|
i

S~

Page 63

instruction character-strings
bit7 bité bi:% bit4 bitd bit2 biti bito
STAB 9000 P B7 | BE | B5 | B4) B3 | B2 | B1 | Bo

Fig. 5.8 Character~string initialisation

Thus after the store, bit 7 of location 9000H would
contain bit 7 of register B, bit 6 of location 9000H
would contain bit & of register B, etc.

Now suppose the previous instruction had been to mask
certain bits of register B, Working backwards, the
analyser would have modified the character-strings as
shown in figure 5.9 below.

ANDB #OF I o4 o{ 01! 0183 }{B2]| Bl | Bo
STAB 3050 } B7 j B&) B5 { B4 { B3 | B2 | BL | BU |

Fig. 5.9 Character-string modification after
bit-mask operation

After each modification of the character-strings, the
analyser checks to see if there are any remaining
undefined regisber bits. In this rcase there clearly
are, 8o analysis continuas. Note that the analyser
will never contlnue back through the end of a previous
construct. A check i thus also made on whether the
next statement to be cotisidered forms the end of a
previous construct, This check is carried out by using
information derived by the control-flow analyser

In the example under consideration, suppose that the

- e cd 4 B e dem,

IED

1

Page 64

previcus statement had caused register B to be loaded
from a memory~location. The anglyser would have
modified the character-strings as shown in figure 5,10.

LDAB 0C00 [010)010i(0CO0I3((0C00]2({0CO0T1L¢(0C0010}
ANDB #0F lototalol B2 | B2 | B1 | BO

STAB 9000 IB7]..iB4} B3 | B2 | BL BG

Fig. 5.10 Character-string modification after

register-load operation

The analyser has repiaced each undefined register bit
(in this case, bits ¢ through 3) with fYe corresponding
bit of memory-location @GCOOH. A check shows 2o
remaining undefined register bits, so the bit-wise
expression-generation procedure is terminated.

Each character-string is an expression which is
assigned to the corresponding bit of the store
instruction operand. The leftmost string is assigned
to bit 7 of the operand, the one to the right to bit 6
of the operand, etc. The only exception to this rule
is when a character-string is identical %o . its
corresponding operand and bit number. In such cages,
the expression i3 not generated. The reason for this is
that the expression would represent a bit which was
left unchanged by & bit-wise operation. Before
generation of each expression, type consistensy
checking is performed.

If any of the bits in a potential expression are .part
of an integer byte or pointer double-byte, an error

message s generated. If all of the bits in a
particular expression are of type Boolean, the
expression is generated. The above example would

produce the expressions In figure 5.1l below.

TN

FyT

T

Page 65

{9000)0:=[QC00]0
[900G]L:={QC00TL
{900032;:=[0CO0]2
[900013:={0C00)3
1900034:=0
[9000]5:=0

Fig. 3.1t Expressions generated
for bit-wise operation

t[C000371[C000131[0001151(000114]...
..o t{000133({0001]25(006L]11 O |

Fig. 5.12 Character-strings for store-operation
. with operand 0001H

It a store operation with operand 000iH generated the
character-strings in figure 5.12 above and the data-
table confirmed variables {C00017, (C000}3 and [0001)0
to be of type Boolean, then the series of expressions
generated would be as shown in figure §.13 below.

{000110:=0
{0001]16:=[C000]3
{0001)7:[C000]7

Flg. 5.13 Expressions generated for
bit-copy operation

All other bits of memory-locAation 000LH were unchanged.

N

N

g

i
i

{

|

|

I

SEMNE A

T e B T

S

Bl
Vsl

Page £6 “} ’
i
The following examples are from actual outputs of the
automatic bit~wise data-flow analyser. ' ‘, 4
. i
B - .
In the first example, the data-table contained the 1
entry: '[0602) integer'. i 'd
The analyser detected a type-violation in the portion § i
of code shown in figure §.14. : Y
G190 LDAR 9002
B G162 EORA §2¢
AN €104 STAR G602 h
=y ILLEGAL eor ON TYPE intsger b
Y b Fig. 5.14 Data type-vidlation detection f
o With the relevant bit properly declared as tieuy the .
K et analyser was able to analyse the operati. 4 Jtwas ¥
q intended ~ a Boolean-bit complement. This Ltm in
) figure 5.15. a
. 5) = -
data-table: [0002] record
5 Boolean

\i
f
[

~

(000215 »nat ([B00235)

=)

Fig. 5.15 Recognition of Boolean-bit
complement operation

- - e em s X

r o T

'

Page 67

Note that with type-checking disabled (no data-table
available}), the above expression would be the one to be
generated,

Bit-copies within or between bytes are conceptually
simple operations, but their implementation invariably
results in several machine code Instructions, 1k is a
laborious and error-prone task to analyse ' such
operations manually from a disassembly listing. tiven
where a disassembly listing was not to be translated
into P-~notation, the dgata-flow analyser was found
extremely useful in apalysis of such portions of code.
The examples of bit-copy operations sh..n in figures
5.16 and 5.17 were taken directly from the TEM L 30
disassembly listing {(Chapter 3).

¢106 LDRA 1002
€109 PANDA #FD
G108 LDAB 1002
C10E ANDB §10
G110 LSEB

¢l1} LSRB

€112 LSRB
G113 ABA

€114 S5Taa 1002

11002111=0100214

. 5,16 Bit-copy within byte

moaasenss |13
seNeohoBen | |2
D
¥4
=5
i

200aNNeaNe

8tRa 1002
{160212:=E000216 .

¥ig, §.17 Blt-copy between bytes

In addition to eight character-strings representing
etght bits to be stored, the analyser keeps a ninth,
“hidden® string, %o keep track of the contents of the
carty blg, This is done because many of the shift and

y
g
4
d
4
ol

TR

- e el e g

— i

i oremonser pastes o

Page 68

rotate instructions make ize of the carry bit, The
example of figure 5,18 overleaf shows how the analyser
kaeps track of the carry bit.

DODDDDDT
Petoa i rr=ted
ooonRons
PDORELNS

D!

7.

=]

D]

-

C(ROGEIO!=LEGO0)>

Fig. 5.18 Analysis of manipulation using carry bit.

Arithmetic expression generator

When a ‘store-register instruction has an operand of
type integer or pointer, the analyser uses an
expression generation routine to translate the ralevant
portion of the disassembly listing into arn arithmetic
expression format.)

As with the bit-wise analyser, the expression generator
starts at a store instruction with an internal
representation of an undefined regfster to be riored.
It then works backwards through the listing, gene}atlng
an arithmetic expression, until all registars
appesring in the expression have been defined (eg. by
loading, clearing etc.). Agailh, as with the bit-wise
analyser, the expression generator will not continue
working backwards past the end of a previous construct.
The process {s best demonstrated by example.

When the expression generator encounters a ‘store

e -t

SEAMPIIESh FEyry

ikl

R T T ST

¥

.

B s

=3

Page &9

ingtruction, 1t initiates a character-string as the
name of the register to be stored. This is shown in
figure 5.19 below.

processor instruction character—string'
STAA CO00 A

Fig. 5.1% Character-string initialisatlon
according te register-name.

Suppose that the previous statement had been to add the
processor's registers. The character-string
{expression) would have been modified as shown in
figure 5.20,

RBA
STAA CQOO

A+B
A

Fig 5.20

Character-string modification after

register—addition

A check for undefinad registers shows two undefined
registers, so the analyser continues. If the previous
two statements had defined the registers by laading
them ({one from memory, the other immediately), the
expression would have been modified as shown in figure
5.21 overleaf.

A b

ERGRLIERN

T

B PTAG | MRS S > SR IR A ST SO

i

L ¥
e e ey e

Page 70
LDAA 2002 (20623408
LDAR #0E A+OE
RBA A+B
STAA G000 A

Fig. 9.21 Character-string modification after
register-loading

A check shows no undefined registers, so analysis is
complets. Figure 8,22 shows the resultant expression.

{C000):#{2002])+0E

Fig. 5.22 Addition-operation representation

Attempted loading of a rejist<~ from a memory-location
containing Boolean bits generates a type-violation
message,

This process is similar for ail opcodes of the
processor's instruction-set. A siight preblem ocecurs
with the insertion of parentheses, When the expression
is modified by insertion of a charactér-string {n place
of a register name, parentheses are placed around the
character-string te maintain the sense of the
expression. This 1s shown in figure 5.23 overleaf.

TR

-

L

i

Page 7t }

i
LD 4000 as1((10007+1) : 5

ek asl(Avt) ' "

© RSLA . &s1A i
STAA 2000 a %

rous

[2000]:»as)l([1000144)

Fig. 5,23 1Insertion of paréntheses

This can unfortunately lead to redundant . pdrventheses,
ag in figure 5.24.

Bauenis WA W O - S

LDAA 1000 as1(({1000]+1)+1) 5 :
H :
INCA asL{{A+1)+1) &
INCA asl(A+1) i
ASLA asla {
STAR 2000 a
1200012281 ({[2000]+1)+1)
Filg, 5.24 Insertion of redundant parentheses o

Removal of redundant parentheses is proposed as 5
refinement of the arithmetic-expression generatar

5,3.4 Conditional branches

In the analysis of the code preceding a store
instruction, the operand of the store instruction (data
destination) is used to determine whether a bit-wise or
whole-byte operation is being performed. In the case
of branches, however, the operand of the branch

. PO Y N

N Page 72

ingtructic” is the destination address of the branch.
No data element is available to determine the type of
analysis to be done on the code Immediately preceding a
conditional branch instruction.

The struteqy employed in this case, therefore, 1Is the
same as for the snalysis of memory-location
manipulation with type-checking disabled, Bit-wise
analysis is attempted for each conditional branch
instruction and If this fails, the expressjon generator
1s uzed to generate an arithmetic-style expression.
Faflure of bit-wise analysis {s caused by an irrelevant
opcode or a data object of type other than Boolean.

The major differences between conditional branch
analysis and store instruction analysi{s are the type of
expression to be formed and the ({nitfalisation of
character~strings.

In the case of 2 conditional branch instruction, the
analyser must produce an expression of condition, not
an expression of asslignment, The conditional branch
instruction represents the final test to be performed
after the necessary data manipulation, Beth in the
case of bit-wise expression generation and arithmetic
expression generation, the analyser forms the final
expression by adding a textual representation of the
branch instruction te the relevant character-string.

Before forming a textusl representation of a
conditional branch instruction however, the logle of
the test causzing the branch {s inverted, This is
because of the way in which conditional branches ave
used, For example, in an if-then construct, the body
of the construct will be executed if the conditian of
the branch is pot met. 8o the textual representation
of & test is not a representation of the branch

i,

BRI St A e S A U S A

M TR ai. ey | R

.

TR

St e unases RO et

Page 73

condition, but a representation of the construct~body-
execution condition.

Some ¢xamples of textual representations of conditional
branch instructions are - own in figure 5.25 below.

The instruction immediab.!y preceding & conditional
branch instruction, wogether with the Sranch
instruction itself, is used for initialisation of the
character-strings for both arithmetic and bit-wise

processoy textual representation
instruction (inverted logic)
BEQ <20
BGT <=0
BNE =0

Fig. 5.25 Textual representations of
conditfonal branch lnstructions

expression generation, This 1s because the instruction
immediately preceding a conditional branch instruction
sets up the condition for the branch. Examples 4re
shown in figure 5,26 below.

blt-wise analysis
CMPA #03 |A7~0|R6~0 | A5~0) R4A~0} . .
v o {AB-01A2~0 | A1~1 (AD-1]

BNE 2000

arithmetic expression genaration
CMPA #03 A~03
BNE 2000

Fig. 5.26 1Initlalisation of character-strings
before conditional branch instruction

e

—

= e

Page 74

Analysis continues in both cases using Gthe same
routines ag for register-store instruction analysis.

When no registers ramain undefined, the analyser forms
a final expression or geries of expressions by addition
of the inverted-logic textual text representation.

Sample analyser outputs for some conditional hrgnches
follow:

Filg. 5.27 Successful blt-wise analysis

In the above example, bit-wise analysis wasg successful.

Q09E LDAR 4020

0043 INCA

00A2 BNE FORE

£40201+1«0

Fig. 5.28 Unusuccessful bit-wise analysis

In the above example, bit~wise analysis was

ynsuccessful - an arithmetic expression was generated.

€(40281+1)+B>=0

Fig. 5.29 Premature termination of analysis

Page 75

g

In the above example, analysis was terminated by
attempted analysis past the end of @ previous
construct, ‘The state of the expression at the time of
termination is printed, showing undefined registers.

5.4 Results of Data-Flow Analysis ' T Ay

A method of antomatic data~flow analysis has been
described in this chapter. Bample outputs from an
implementation of the method have bsen shown to
demonstrate the effectiveness of the analysis method.
By reference to a data-table derived from the P-
notation specification of a programme, an automatic
data-flow analyser 1s capable 9f fisgging data-type j
violations. Data-type violations oonsist both of H

attempting to combine incempatible data-types within an ;
expression, and of attempting to operate on a2 data-type e
with an operator incompatible with that data-type. B

Data~type checking can be disabled when the analyser is
used as an ald to manual analysis of programmes which
do not have P~notation specifications

Expressicas generated by the analyser are either of a
whole~byte, arithmetic nature or of a bit-wise, logical
nature, depending on the data~types of the vaciables in
the expressions. With data-type checking disabled, the
nature of generated expressions is at the discretion of

the analyser.

!
Between them, the proposed automatic methods of 3
conurol-flow and data~-flow analysis and a manually 3
derived data~table provide sufficient information for B
the translation of a disassembly listing into »P-

- G e TSRS s
Page 76 f

notation.

The following chapter describes a proposed method of . i

using this information ts translate automatically a :

disassembly listing inte P-notation. *
.S A
PRI e

]

Page 77

CHAPTER 6 PROGRAMME TRANSLATION

j 1
The previous two chapters have described methods of H |
analysing a disassembly listing in terms of its 1 é
control-flow and data~flow. The purpose of these flow-) i
analysis technigques is to provide information for, the v
translation of a disasgembly listing lnto P-naotation. B

. This chapter describes a method of automatically I
N “ translating a disassembly :isting inta P-notation. The ; FA,

. method uses inforpation from the automatic flow—

analysers, together with information from the manually-
derived data table described in Chapter &. The
‘ translator parses the disassembly listing, checking
whether each address represents either a control-flow i

e node or a data-flow expression. although control and =
\ | data-flow transliation occur in a single pass of the
B listing, they are described separately for clarity.

-7 6.1 Structure Translation

The control-flow analyser described in Chapter [}

ﬁ " identifies loop and selection constructs in 2
s g disassembly listing. The analyser creates a Tile
S containifg the memory locations of the nodes of 4&ll
c L identiffed constructs. This information is used by an
E« . automatic programme translator which translates the z

SRR control-fiow framework of the disassembly listing into
P-notation formab.

6.1.1 Formatting of constructs

The selection constructs in P-notatlion are the case
construct and the if-then-else construct. The if~-then
construct is a simpler, single-bodied version of the

e

Page 76

i1f-then—elsze construct.

The translator uses & character string to represent the
line of indentation of the P-notation programme at any

peint in the programme. The character string contains

blanks and, where relevant, key words such as ‘if",
"case", etc., This character string is updated whenever
a structure node is encountered, as determined by the
stput file of the vontrol-flow analyser,

Successful control-flow analysis is a pre-requigite for
translation of the conttol-flow framework of a
disassembly listing into P-notation (4.3). . The
translator, therefore, does no checking on correspond-
énce hetween key words. It simply translates according
to information in the cubput file of the control-flow
analyser. For example, {f the control-fiow analyser
has shown a particular address in the disassembly
listing to correspond to else3, the translator
determines the indentation level of the corresponding
if__3. It then modifies its indentation character
string to contain the word “else" in the position of
the "4f" of ff__3. Thus the "else" of else3 will be
printed vertically below the "if" of {f__3. The
modified indentation character string ensures that
until the next coentrol-flow nede, data manipulation
expressions will pe printed directly below each other
in the correct horizeontal positioen.

An example of control-flow translation is shown in
figure 6.1 overleaf. Data manipulations have been
omitted.

Page 79
if__t if
rept2 rept
untl2 untl
if_.2 if
else? else
comp2 end
elsel else '
compl end
Fig. 6.1 Control-~flow translation

A further example, containing a case construct, is

shown in figure &.3.

casel case
of 1 of
{f_2 if
elge2 elge
comp2 end
ef__1 of

. of 1 of
compi end

Fig. 6.2 Control-flow translation including
¢aze construct

6.2 Data-Flow Translation

All data type-checking and expression generation is
performed by the data-flow analyser (Chapter 5], The
translator has only to ingert variable names in place
of memory locations in expressions and Insert the
expressions into the control-flow iramework. Data-flow

Ll

Page 80

translation makes use of the manually derived data
table and the output file of the data-flow analyser.

As described in Chapter & (Data-Flow Analysis),
conditional branch statements generate expressions
representing construct body exXecution conditions,
These canditions are used to complete the test
predicates of the control-flow framework. in ché CEEL
of an {f statement, the word "then" {s added to the

derived condition. An example is shown below.

data table entry: {20001 counter integer

1000 LDAA 2000
1003 CMPR #55 -

1005 BNE 100C if counter-55»0 then
1007 CLR 2000 counter: =0

100A BRA 100F else

100C INC 2000 counter:=counter+i
100F NOP end

Fig. 6.3 Translation of if-then-else construct

A further example, containing a repeat until loop, is
shown In figure 6.4 overleaf. In this example, the loop
index is held in a memory location. Where this is not
done (loop index held in a register), the data~flow
analyser would have been unable to analyse the code.
The register name would appear in the test predicate,
83 In figure 6.5 overleaf. Further analysis would have
to be manually performed. '

Page 81

data table entry: [20F0] counter integer
1040 repeat

1080 DEC 20F0 counter:mcounter~1
1690 LDAR 20F0
1093 BNE 104c
1095 NOP

until counterss

Fig. 6.4 Translation of repeat-until construct

€000 LDAA 1000
€003 repeat

€020 DECA

CO080 CMPA #04
€052 BNE €003 until A-04=0
€054 NOP

Fig. 6.5 Register-name appearing in test-predicate

Pifficulty of test predicate insertion arises with the
case construct. Each conditional branch to a case body
causes generation of a test predicate. This predicate
is inserted at the head of each case body, preceded by
the word ”of*, as sghown In flgure 6.6 overleaf,

e

Page 82
original translated
P~notation programme programme
case count of 9100 LDAA 2000 case

0103 CMPA #01
0105 BEQ 0111
0107 CMPA #02
03109 BEQ 0120
010B CMPA #03
010D BEQ 0130
010F BRA 0150

i 0111 - of count~1=0: ~
BRA 0150
21~ 0120 - of count-2s¢: -
BRA 0180
31 03130 - of count-3=0: -~
end 0is0 end

Fig. 6.6 Translation of case construct

The first case body ls often executed by default - none
of the other case tests resulted in a branch. In such
cases, no test predicate 1s generated for that case
body, Further »nalysis must be manually performed.

S0 translated case constructs are nhot fully authentic.

It is felt, however, that the case construct
translation procedure described above generates an
easily readable, high-level version of a cage

congtruct, albeit slightly different from the standard
P~notation case construct definition.

Page 83

6.3 Results of Programme Translation

The automatic programme translator described in this
chapter translates a disassembly listing of the form
obtained from the TEM L 30 (Chapter 3) into P-nokation,

The tranglator uses results from the control and data-
5 flow analysers of the previous two chapters, :oéether
with a manually derived data table described in the
previous chapter, to perform its task.

] Transiation 1{s performed in a single pasgs of the
disassembly listing. all dissssembly listing
statements raeferenced in the control and/or data-flow
analyser output files have control and/or data-flow
relevance. They initiate the generation of
Voo appropriate P-notation statements.

The overall effectiveness of the proposed methuds. of

disassembly, analysis and translation of a machine code
"o programme into P-notation 1g assessed in the next
chapter, .

Page 84
CHAPTER 7 CONCLUSIONS

Previous chapters have discussed how a msch!ne;code
programme csh be shown to be consistent with lts high—
level specification. This process essentially consists
of four phases.

A serles of traces of a wicroprocessor running the
actual machine code programme is obtained. These
individual traces are processed to form one complete
digagwsenbly listing of the programme.

the disassembly 1listing is analysed in terms of its
control flow. Standard constructs are identi{fied and
unrecogniseable constructs are flagged.

The disassembly listing, together with information
generated by the control-flow analyser, is then
analysed in terms of data-flow. Information from the
specification's data declaration is used ta authorise
memory location manipulations and flag attempted
data-type vielations.

Finally, information from the control-¥flow analyser,
the dats~flow analyser and the specification’s data
declaration is wused ¢to franslate the disassembly
listing inte P-notation.

Demonstration of consistency between & machine-code
programme and {tas high-level gpecification is then by
direct comparison of the two, This comparison ls at
present a manual task, but has the potential to be
automated.

Page 95

7.4 Techniques Developed
7.1.1 Features

Operations of the microprocessor are traced by a logic
analyser a8 the microprocegsor {s forced by external
stimulus to traverse each path of its programme, Thus
actual code, as executed, .is used as input bé the
validation system, I1f desired, this code can be
compared with {ts equivalent PROM listing to indicate
"dead" or unreachable code in the PROM.

The validation techniques need not necessarily operate
from processor traces, Code at higher levels can be
used instead. For example, portions of assembler~code
gan be checked against their P-notation eguivalents
before the entire program is assembled and run.

Even where no P-notatlon specification exists, the
valldation techniques will do a complete control-flow
analysis and translation of the code to a register-
independent level. This greatly assists readabllity
and analysis of code where little or no documentation
is availahle.

If a programme is inconsistent with its specification,
this will be shown in one of two ways. 1f there are
unrecognizeable constructs ot data~-type
inconsistencies, these will be flagged by the
analysers. I1f there are not, the resultant P-notation
representation will be seen to differ from its
specification by inspection.

7.1.2 Limitations

The analysis techniques presented will not

Page 86

automatically analyse all machine-code programmes.
Programmes must be coded according to certain
conventions in order to be analysed automatically. In
some cases this is desireablej 1in others, unfortunate.

Limitations of control-flow analysis

Programmes whose structure exactly mirrors that of
thelr P-notation specification will always be

analyseable in terms of control-flow. This is
necessary and sufficient for control~flow validation of
such programmes, Where a programmer has inadvertently

or intentionally deviated from the P-notation
structure, the structure of the resultant programme may
or may not be analyseable. 1If it is not, the validator
knows immediately that the programme contains unsound
structures. If it is, it will be seen by inspection to
differ from its specification,

Programmes without P~notation specifications can still
be analysed in terms of thelr control-flow. If the
control-flow analyser finds no unknown structures in a
programme, the programme has been shown to contain only
sound structures. If the analyser finds unknown
structures, an operator may indicate to the analyser
that such structures are to be ignored if he finds
them, by manual inspection, to be ascceptable.

A limitation of the conviol-flow analyser, albeit
relatively minor, is its all-cr-nothing recognition of
a particular structure. If a structure contains any
frregularity, the analyser is of no assistance to the
validator ~ code must be manually inspected.

e

Page 87

Limitations of data-flow-analysis

Every ‘insStance of dsta-manipulation will generate
either an arithmetic-type representation, or a logical

(bit-manipuiation) representation. If a programme
exactly mirrors its P-notation specification, then all
such representations will be val:d. Limitations of

analysis are epltomised by processor registers
appearing in such representations. This oecurs when a
programmer carries registers through structure end-
boundaries. The data-flow snalyser is then unsure of
the origin and thus the contents of such registers and
can represent them only by their register names, It is
obvious that this L.mitation can be minimised by use of
an appropriate coding technique.

Another limitation occurs with indexed addressing. The
data-flow analyser is unaware of the contents of the
inde . +egister and can thus represent the absolute
address only as index-register plus offset,

Where programmes were not written from P-notation
specifications, the data-flow-analyser will still
generate arithmetic or logigsl represéntations,™ but
these cannot be expected always to be valid, since the
analyser has no information about the types of the data
items involved. It will not, for example, notice if an
arithmetic operation is performed on a Beolean
variable. This is not a serious liiitstion since; wsed
in this mode, the analyser is essentially an aid to
manual analysis, rather than an sutomatic validation
taol.

General limitations

The analysers are unavoidably processor-specific. In

[W

Page 88

the c¢ase of the control-flow analyser and expression
generator, the operating programmes are non-processor-—
specific, working from data bases containing processor
data. It is, in the case of these two analysers, 2
simple task to adapt them to other processors by
changing their data bases.

In the case of the bit-manipulation analyser, howéver,
the operating programme has to simulate the operation
of the . processor and is thus, in itself,
processur-specific. 8o to adapt it to another
processor would involve changes which, although simple
to perform, would be substantial.

¥
7.1.3 Recommended refinements
Control-flow-analysis refinements

The all-or-nothing recognition oi individual structures
is a shortcoming of the control-flow-analyser. It is
not a serious shortcoming, since propevly structured
code will always be analyseable {compiler-generated
code, for example, will always have proper structurej.
It is only improperly structured code which will need
manual analysis.

However, certaln bad coding practices lead to common

formg of improper structure. The overlapping of
structures is the only form of improper structupe
det,ected by the control-flow analyser, A list of

overlappling structures is printed during the chird pass
of the controi~flow analyser

Research could be done to identify and appropriately
treat other common forms of bad structure. This would
“ sa%ly reduce any manual code inspection which might

R A B, : co L -

Page 89
otherwise have been necessary.

Data-flow—-analysis refinements

A limitation of the data-flow-analyser ls its inability
te take into account the structure of the programme.
When data-flow is heavily dep t on the structures
within a programme, it is not practical to do data-flow

analysis across such structures. Generated expressions
become multiple expressions, selection of a particular
expression being dependent on the data active in
previous constructs. In such cases it is better to
admit defeat, since translated code becomes even less
readable than the code from which it was generatedt

When too many previous constructs affect iLha.:contents
of a reglister at a given position in the sruglamme, it
is clearer to generate an expression invpluing the
register name than ¢to try to indicate the possible
conténts of the register.

However, in certain simple cases, where for example,
the body of an if-then construct does hot “afféét a
register, analysis could be continued above the body of
the construct. 80 a prop d refinement would be to
tdentify Instances where registers are carried “arocund"
simple constructs and to continue analysis above such

constructs.

General refinements

Manual {ntervention is required in formulating a data
table from the P-notation variable specification, In
the case of larger programmes, this process gcould
entall a substant{al amount of work, not to mention of

=t

Page 90

course, the unfavourable human trait of inadvertent
error-seedingt So automation of this process is a ;
propesed refinement, It would have to be determined .
whether there would always be sufficient formal
information within the P-notation variable declaration
and assembler declaration for automation of the above |
process. ’

7.2 Conclusions

N The absence of effective methods of validating real-
. time process control software was the motivation for
LR the research described in this dissertation.

i Real-time process contrel seftware has attributes such
. ds stringent timing constraints, cytlic programmes and
low-level bit-manipulation, which ars not present in

N many other software applications. Therefare,
- established validation technigues for other software
e applications have very limited effectiveness in the A
validation of real-time process control software. But
e such sofware is being used increasingly in the control |
' of life-critical systéms. it hag to be =
validated.

A major aspect of validation 1is the proof of
E‘ ’ R consistency between a programme and its specification.
3 The goal of the research described in this dissertation
’ was to show how such a methed could be developed, the
programme and sgpecification being in the forms of
machine code and P-notation, respectively. Automation
of the method was also of prime concern.

R method of deriving a complete disassembly listing of
a machine code programme has been daveloped. The
- method consists of tracing the operations of a

- — ot o

Page 91

microprocessor as it executes the machine code in
quegtion. The microprocessor system is stimulzted to
cause theé microprocessor to execute all paths of the
programme. All traces thus obtained are ed’ted and
gorted to produce the complete disassembly listing,

Methods of automatic control-flow a,d data—flow
analysis of a disassembly listing bhave also been
developed. These methods have been shown to be
effective in all cases where assembler programmes have
been directly and formally derived from their
specifications. The analysis methods have also been
shown to be effective in pinpeinting inconsistencies
between programmes and their spacifications.

It has Dbeen shown how, by use of control-flow and
data-flow analysis and use of information from the
specification's data declaration, an assembler
programme can be transiated into P-notation. It has
also been shown how this translation process 'can be
automated.

The methods of controi~flow and data~flow ahalysis have
been shown tTo be useéful alss in the analysis. of
assembly language programmes sand their translation to
a register-independent level where no P-notation
specification exists,

The above analvsis and translstion techniques could be
integrated 1into an interactive validation environment
for validating machine code programmes with respect to
their high-level specifications

pum—

Page 92
REFERENCES

Adrion, W.R., Branstad, M.A. and Cherniavsky, J.C.
(1982) Validation, Verification and Tasting of Computer
Software, Computing Surveys, vol. 14, no. 2, Jun 1982,
Pp. 159-192.

Allem, F.E. and Cocke, J. (1978) A Program Data Flow
Analysis Procedure, Communications of the A.C.M.,
vol.18, no, 3, Mar 1976, pp. 137-147.

Benson, 3. (1981) & Preliminary Experiment in
Automated Software Testing, ACM sigsoft, Software
Engineering Notes, vol, 6, no, 3, Jul 1981, pp. 68-75,

Branstad, M.A., Cherniavsky, J.C. and Adrion, W.R.
(1980) Validation, Verification and Testing for the
Individual Progrsmmer, Computer, Dec 1988, pp. 24-30.

carré, B.A. (1980) Software Validation, Microprocéssors
and Microsystems, vol. 4, no. 10, Dec¢ 1980, pp. 395-
406,

Ciarke, L.A. (1976} A System to Generate Test Data
and symbolically Execute Programs, I.E.E.E.
Transactions on Boftware Engineering, vol. SE-2, no. 3,
Sept 1976, pp. 215-222.

be Millo; R.AR., GLipton, R.J. and Bayward, F.G. (1978)
Hints on Test Data Selection : Help for the Practicing
Programmer, Computer, Apr 1978, pp. 34-41.

Deutseh, H.5. (1979) Verfification and Valldation, in
Jensen, R.W. snd Tonies, ¢.C. eds., “Software
Engineering®, Prentice-Hall Inc., New Jersey, 1979.

et

Page 93

Gerber (1985) Generation, bocumentation and
Validation of Software for the Siemens Electronic
Interlocking, Slemens LYD., Department T/SI-5T (Railway
Signalling), 1985,

Goodenough, J. B, and Gethart, S.L. (197%) Toward a
Theory of Test Data Selectlon, I.E.E.E. Transactions on
Software Engineering, vol, S8E-1, no, 2, Jun 1975, pp.
156173,

Gustafson, D.A. (i984) OGuidance for Test Belection
Based on the Cost of Errors, Proceedings AFIPS National
Computer Conference, 1984, pp. 425-429

Hoare, C.A.R., (1975) Data Reliability, Proceedings of
the International Conference on Reliable Software, Los
Angeles, 1975, pp. 528-533.

Howden, W.E., (1977) Bymbolfc Testing and the DISSECT
Symbolic Evaluation System, I,E.E.E. Transactions on
Software Englneering, vol. SE-3, no. 4, Jul 1977, pp.
266-278.

Howden, W.E. (1978) An Evaluation of the B
ness of Symbolic Testing, Software -~ Pract
Experience, vol. 8, 1978, pp. 381-397.

Howden, W.E. (1980a} Functional Program Teating,
1,E.E.E, Transactions on Software Enginsering, vel. SBE-
6, no, 2, Mar 1980, pp. 162-169.

Howden, W.E. (1980b) Applicabllity of Software
validstion Techniques to Sclentific Programs, ACH
Transactions on Programming Languages and Systems, vol.
2, no. 3, Jul 1980, pp. 307-320.

T AT T =

i
y

Page 94

Howden, W.E. (1982) Life-~Cycle Software Valldation,
Computer, Feb 1982, pp. 71-78.

HP64000 Loglc Development System, System Overview,
Hewlett Packard Company/Loglc gystems Division,
Colorado, UBA, 1982, .

Xing, J.C. (1876) 8ymbolic Execution and Piogram
Testing, Communications of the ACM, vol. 18, no. 7, Jul
1976, pp. 385-394,

Kopetz, H. (1979) Software Reliability, The Macmillan
Press Ltd., 1979,

Leveson, N.G. and Harvey, P.R. (1983) Analyzing
Boftware Safety, I.E.E.E. Transactions an Software
Engineering, vol. SE~9, no, §, Sept 1983, pp. 569579,

Ludewig, J.L. (1981) Specification of a Specification
Language, paper for presentation at IFAC/IFIP Workshop
on Real-Time Programming, XKyoto, Japan, 1981.

Meyers, G.J. (1975) The Art of Goftware Testing, John
Wiley and Sons, New York, 1979. - S

Mitler, E.F. (1977}, Program Testing: Art Meets Theory,
Computer, Jul 1$77, pp. 42-51,

Patterson, D,A. (1981) AR Experiment in High Leval
Language Hicroprogramming and Varification,
Communications of the ACM, vol, 24, no, 10, Oct 1981,
pp. 699-709,

Quirk, W.J. (1983} Recent Developments in the SPECK
gpecification Syatem, HARWELL Report CS5,146, 1983,

Page 95

Quirk, W.J. (1985) ed. Verification and Validation of
Real-Time Software, Springer-Verlag, Berlin, 1985,

Ramamoorthy, C.V. &and Ho, 8.F. (1975} Testing Large
Software with Automated Software Evaluation Systems,
I.E.E.E, Transactions on Softwarse Engineering, vol. SE-
1, no. 1, Mar 1975, pp. 46-58,

Ross, D.T, and Schoman, X.E., Jr. (1977} Structured
Analysias for Requirements Definition, I.E.E.E.
Trangactions on Software Engineering, vol. SE-3, no, 1,
Jan 1977, pp. 6-15.

Rzevski, G, (1981) Recent Advances 1in Software
Reliability Methods, Quality Assurance, vol, 7, nbo. 3,
Sept 1981, pp. 80-87.

short, R.C. (1983) Boftware Validation for a Rallway
Signalling System, publ. IFAC Safecomp '83, Cambridge,
1983,

SPADE, Program Valldation Limlted, Southampton, 1985.

Taylor, J.R, (1982) Fault Tres and Cause Consequence
Analysis for Control Softwara Validation, Riso National
Laboratory, Roskilde, Denmark, Jan 1982,

Taylor, R.N. {1983) An Integrated Verificstion and
Testing Environment, Software - Practice and
Experience, vol, 13, 1983, pp. 697-713.

Teichroew, D. and Hershey, E.A, III (1977) PSL/PS8A: A
Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems,
I.E.E.E, Transactions on Software Engineering, vol. SE-
3, no. &, Jan 1%77, pp. 41-19,

L e s I R
Page 96

TER L 30 2Rlogk Instrument Controller, A Technical
Description, Issue 1, H.L. Bngineering (Plymouth) Ltd.,
Plymouth, 1983.

VERkshop IIY proceedings, A.C.M. Sigsoft Software
Engineering Notes, vel. 10, no, 4, Aug 1985, pp. i-v,
1-100.

Weyuker, E.J. aad Ostrand, T.J. (1980) Theory of
Program Testing and the Application of Revealing
Subdomalins, I.E.E.E, Transactions on Software
Engineering, vol. SE~6, no. 3, May 1980, pp. 236-246.

White, L.J. and Cohen, E.I. (1980) A Domain Btrategy
for Computer Program Testing, I,E.E.E. Transactions on
Software Engineering, vol. SE-6, no. 3, May 1980, pp.
247-257.

Young, S. (1980} P-notation: High Level description
language for goftware design, Microprocessors and
Microsystems, vol. 4, mno. 7, Sept 1980, pp. 267-272,
no. 8, Oct 1960, pp. 307-311, no. 9, Nov 19880, pp. 363-
369, no. 10, Dec 1980, 41%-4189.

Page A-1
AFPENDIX A TEM L 3¢

A.1 Introduction

The "“TEM %L 30 Bleock Instrumerit Controller" was used as
a gquinea~pig microprocessor system for the production
of a disassembly listing (Chapter 3). This appendix
contains a brief description of the operation and
features of the TEM L S0,

A.2 Overview of Operaticn

In rallway signalling, a “block instrument® is a device
which sends signaliing Information over a pair of wires
to another block instrument. The information is sent
in the form of manually-pulsed current of pre-defined
negative or positive polaribty with respect to the wire-~
pair. Thus the information that can be transmitted
ovar the wirew-pair is current in one direction, current
in the other direction or the absence of current. The
reéceiving block-instrument indicates to its operator
the presence or absence of current and its polarity.

Wire-pairs longer than even a few hundred metres are
expensive and time-consuming teo install, so {t Is
clearly desfireable to replace them with radio links.
8ince the information transmitted between block
ingtraments, despite its siwplicity, 1is of crit{cal
importance, any radio link replacing a wire-pair would
have vo transmit this information in s fail-safe
manner. one such radio link is the * M L 30 Bilock
Instrument Controller®, manufactured by M.L,
Engineering (Piymouth) Limited, one TEM L 30 is
connected to two block instruments at the same end of
adjacent loops, as shown in figure Al.

oy

Page A-2

ooy

=

Ak AR

Fig. At Replacement of wire pair by radio link AJ

A.8 8ystem Operation

The control unit consists of three basic parts:

A data modulation/demodulation system designed to
interface directly with a radio set

Power supply, control and input/output interface
circuitry designed to simulate the characteristics of a
wired connsction betwesn block instruments.

A duplicated microprocessor-controlled logfc system and
message store (figure A2).

B}

s

Duplicated fail-safe microprocessor-based
control system

Fig. a2

is sent from one gontrol unit to the next

Information
fixed

in the form of a coded message consisting of a
length portion followed by a variable length portion.
fhe operation of the control unit is best studied by
briefiy considering the seguence of events which oucurs

when a message is sent from one unit to another.

A.3.1 Operation of the block instrument - input

operation of the block instrument in the normal way

alerts the control unit and powers-up the system.
Messages may. éxist on either of the two instruments
connected to, the controller independently. They

either

consist of a series of pulses of current of
block

polarity. They are coded by sampling at the

message sample frequency of 15 Hz.

A:i3.2 Encoding

The fixed length portion of the messag2 holds the unit

Page A-a

address, parity and a synchronisation sequence. The
variable length portion contains the signalling
information and is assembled as follows. The variable

length sequence record is opened whenever an input line
becomes active, whereafter the input is sampled at the
block message sampling frequency until the input has

i remained zerc long enough for the message to have been
judged to have finished. When encoding, the pol}rity
1s judged by the first current pulse and thereafter the
processor provides the akility to sirk current of only
that polarity.

P A.3.3 Data transmission

There is an laternszl message store for messages
. awaiting transmission, validation or output to cne of
the block instruments. It is divided {nto equal parts,
’ ' one for each block instrument. Each part can be used
for either incoming or outgoing messages. TFor security
Com and availability reasons, messages are triplicated
sequentially and two of the three messages are required
to be identical before the receiving control unit will
[© output the signal information to the block instrument.
o, . A message is transmitted only after a check has been
made to ensure that no other radio Is transmivting.

A.3.4 Data receipt

All control units receive and decode ail data messages,
2 A but messages are stored only if the message address
N applies to the particular location sddress and the
appropriate store {s available. The first two messages
are storad .and compared with each other and with the

i

; third message, which is not stored. 1f any twe
Al T messages agree wit) each other, then one of them is

Page A&-5

sent out to the relevant block instrument.

A.3.5 Operation of the block instrument - output

Messages are output to the instruments at the block
message sample frequency, sequentially, bit by bit
until completion. For each logical one that was re~
celved, one line is driven high and the other is held
low, according to the received polarity. For each
logical zero that was received, neither line is driven.

A.4 Safety Features

The main safety feature is a symmetrical micropr

board, oh which twe independent processors perform the
same function and constantly c¢heck each others actions
Any disagreements an the pr cause them to
blow a power interface fuse, thug isolating the system
outputs and preventing any faulty messages from being
sent out. The various checklng procedures of the

processors include:

Independent checking of the state of the source and
sink lines,

Independent “"watchdog” circuits which require continual
refresh,

Continual self-checking by each processor of lits
ability to read from and write to its own RAM. !

Continual inter~checking between the two processors of
the contents of the PROM memories.

=

Page A-6 .
Frequent testing by each processor of its ability ¢to
blow the fuse.
Low supply voltage detection on the power board. L a

Continual self-checking of transmitted data,

In addition to these safety checks, the radio meésagas ’ A
are protected from the effects of noise by a triple- 3 .
layer system: a Hamming coding; a Manchéester II coding] o
* and the requirement that two i{dentical messages must be %
received out of threé transmitted.

L

]

Page B-1

APPENDIX B P-NOTATION SYNTAX

This appendix presents P-notation syntax in Backug-Naur
FPorm (BHF).

Words belonging to P-notation are printed in boldface,
e.g. itype,repeat, The following symbols belong to BNF
and are not part of the P-notation syntax: !

1:w means “is defined as",

I means “or",

{} indicate items which may be repeated zero or more
times.

Bll other symbols are part of the P-notation syntax.

actual parameter:i= expression|variable
adding-operatori:s +|-jor|eor

array-typet arrayidigit-sequencelof component—type

array-variable:i= variable

assignment-statement::» variable:=expression

binary-valueii= DI11{0}1}

block::= declaration-part statement part

cagse-alement:.= case-lististatement

case~listii= case~list-element(,case-list-element}

case-list-element::= constant|constant..constant

case-statement!i= cage expression of case-element
{;case-element} &nd{case expression of case-element
{jcase-element) else statement(;jstatement) end '

complemented-factor:i= signed-factor|not signed-factor

component—~typeti= type

component-variable::= indexed-variablelfield-designator

compound-statement::e begin statement{;statementl! end

conditional-statement:is if-statement|(case-statement

constant:t= unsigned-integerisign unslqned—iﬁneqeﬂ
constant-identifier)sign constant-identifier|string

Page B-2

constant~definition-part:i= const constant-definition
{jconstant~definition}

constant-definitionti= identifier~constant

constant-identifier:i= identifier

control-variable::= variable-identifier

declaration-part:i= {declaration-section})

declaration-sectionti= constant-definition-part
type—definitien~partlvariable-declaratien-partf
procedure—declaration~part

digitii= 0111203141516171819

digit-sequence: i~ digit{digit}

empty:is

expressiont:= simple-expression{relational-operator

simple-expression}
factor:i= variable|unsigned-constant|(ex - “ssion}
field-identifier::= identifier
field-list:i:» emptyl|field~identifier
{,field-identifier}:typelfield-identifier
{,fleld~-identifier}:type(%binary-value)
final-value:i= expression
for-list::= initial-value to final-value]
initial-value downto final-value
for-statementiie for control-variablei~for-list

do statemeat
formal-parameter-section::= parameter-groupi
var parameter-group
hexdigit:i= digit}RIBIC)DIEIF
hexdigit-sequence::= hexdigit{hexdigit}
identifiersi= letter{letter-or-digit}
identsfier-lists:= jdentifier{,jdentifier}
tf-statement:!= if expression then statement
{else statement}
indexed-variable: = array~variablef{simple-expression
{,simple-expression}]
initial-value: i~ gimple—-express.on

Page B~3

letter::= A)BICIDIEIFIGIHITIJIKILIMINIOIPIQIRISITIVIVE
wiXi¥izlalbiclalelfiginli|jikiliminloiptqlir)sitiu]
viwixlylzl.

letter-or-digik:in letterldigit

multiplying-operator::x ¥1/1divinod)and(shl | shrishral
rotrirotl

parameter—-group:ie identifier-list:type-identifier

pointer~type:i= fdentifier ’

procedure-declaration-part:i= {procedure~declaratjion}

procedure—héading::» procedure identifier;|procedure
identifier(formal~parameter-section
{,formal-parameter—section});

procedure-statement: i« procedure-identifier)
procedure-identifier{actual-parameter
{,actual-parameter})

segramwe—heading: = programme programme-identifier

srografmmet != programme-~heading block

grogramie—identifier:i= identifier

record-typet:= record field-list end

record-variable::= variable

record-variable-list:i= record-variable
{,record-variable}

repeat~statement::= repeat statement{;statement}
until expression

repetitive~statement::= while—statement
repeat-statement|for-statement

scalar-type::n (identifler(,identifier})

signti= ¢i-

simpig~expressionti= term{adding-operator térm}

simple~statement::» assignmeént-statement
procedure-statement

simple~type::= scalar-typelsubrange-type
type-identifler

statement:i= simple-stdabement}structured-statement

statement-part:is compound-statement

stringii= '{character}'

string-typeit» stringlconstant]

Page B-4

structured-statement:ie compound-statement|
conditional-statementirepetitive~statement
with-statement

structured-type::= string-typelarray-typeirecord-type

subrange-type:is constant..constant

termt:= complemented-factor{multiplying-operator
complemented-factor}|indirection—-operator
identifier{multiplying-operator compiemanbed~f§ccor)

type~definition:i= identifier=type

ype~definition-partii= type type-definition
{;type-definition}

type~identifierii= identifier '

typet:w simple~typelstruct d-t

ur yielpointer-typ:
unsigned—integer:t= digi f$hexdigit y

variable!:= varjable-identifier|component<varianlel
raferenced-variable

variable-declarationi:» identifier-list:typel
ident{fler-list:type absolute hexdigit
variable—declaration-part:i= var variable-declaration
{jvariable~declaration}
variable~identifiert:= identifier
while-statementi:= while expression do statement
with~statement::= with record-variable-list
do statement

b PP PR 3

Page C-1

APPENDIX C CONTROL-FLOW ANALYSIS ALGORITHMS

This appendix contains algorithms which were used to
identify and label if-then-else, loop and case
constructs within a disassembly listing.

CB is an abbreviation for conditional branch,
UCB {s an abbreviation for unconditional branch.

A statement which precedes another {s lower in absolute
programme address. A statement preceding another is
its predecessor.

A statement which succeeds another is higher in
absolute programme address. A statement succeeding
another {s its successor.

The destination of a branch statement is the statement
to which it branches.

€.1 Algorithm for case Identification

start at beginning of llsting
while not end of listing do
move to next statement
if statement labelled with multiple comp labels then
if each comp has corresponding else : & If labels then
label if corr ing to myered-comp ' case#!
(where # 1s number of lowest-numbered-comp)
label else's corrasponding to all other comp's ‘of _#'
label multiple comp statement 'comp#'
endif
endlf
endwhile

- P

Page C-2

€.2 Algorithm for if-then-else sand loop Identification

set # to 1 and start at beginning of listing
while not end of listing do
move to next statement
if ¢B forwards then
if CB destination predecessor is UCB forwarda.then
label CB 'if_.#'
label CB destination ’elae#’
label UCB destination ‘comp#'
increment #
else
if CB destination pr is UCB ds then
i1f UCB destination precedes CB then
label CB ‘whil#’
label UCB 'endu#’'
increment #
endif
else
label CB 'if__#'
label CB5 destination 'comp#"
inerement #
andif
endif
else
if CB backwards then
label CB 'untl#'
labal CB destination 'rept$’'

increment #
else
if (CB or UCB) and unlabelled then
label CB or UCBE 'unkn#'
label CB or UCE destination ‘endu#’
irorament #
endif
endif
endif
endwhile

- - v [P P P — e ot

H
{

j

e

. i

Author Davidtz Thomas
Name of thesis The Validation Of Embedded Software. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

