RESEARCH INTO A METHOD OF

CREW SCHEDULING FOR SUBURBAN RAIL TRANSPORT

USING HEURISTIC 4 ND LINEAR PROGRAMMIT

TECHNIQUES

Andrew Nevile Comrie

A pioject report submitted to the Faculty of Engineering, University of the Witwatersrand, Johennesburg in partial fuliliment of the requiremcats for the degree of Master of Scence in Engineering.

Johannesburg, 1989.

DECLARATION
I declare that this project report is my own unaided work. It is being submitted for the degree of Master of Science in Engineering in the University of the Witwatersrand, Johannesburg. It has sot been submitted before for any degree or examination in any other University.

- An Cana
A.N. Commie

The 13th day of November 1989

ABSTRACT

Crew schedules on the South African Transport Services are done by roster compilers at depots. A method that uses heuristic and mathematical programming algorithms was developed to replace existing hand methods.

It is a two stage method that will use a microcomputer to assist roster compilers to draw up crew schedules. Initially timetables are subdivided into shifts and then they are combined into crew schedules.

The solution, which produces a significant improvement compared with an existing crew schedule and an existing method, has been accepted in principle and computer programming has begun.

In Appendix E another heuristic for the scheduling of league matches is described

ACKNOWLEDGEMENTS

Mr. J A. Venter, Director (Operating), SATS who commissioned the reser rch into the method.

Mr. K. Sandrock, Deparment of Industrial Engineering, Univxsity of the Witatersrand for his guidance and support.

Mr H.P. van Wyk who compiled the final document.
CONTENTS Page
DECLARATION ii
ABSTRACT sii
ACKNOWLEDGEMENTS iv
CONTENTS v
IST OF FIGURES vii
LIST OFTABLES viii
1 INTRODUCION 1
1.1 Terminology 1
1.2 Statement of the problem 2
1.3 Background to computer scheduling 3
1.4 Approach to the problem 4

1. 5 Method 5
2 ANALISIS OF EXISTING CREW SCHEDULES 6
2.1 Analysis of the test data 6
2.2 Establishment of rules for crew scheduling 8
2.2.1 Rules for subdividing of timeiables 8
22.2 Rules for combining shifts into schedules 8
3 SURDIVIDING TIMETABLES INTO SHIFTS 10
3.1 Detailed description of the algorithm 11
3.2 Generated datasets 12
4 COMRINING SHIFTS INTO CREW SCHEDULES 13
4.1 Formulation of the mathematical model 13
4.2 Alternatives tested 14
4.2.1 The unsmoothed solution 14
4.2.2 The smoothed solution 16
4.2.3 Tne optimisation parameter 16
43 Detailed description of the algorithm 17
4.3.1 Weekday programme 17
4.5.2 Weekend programme 18
5 RESULTS 20
5.1 Comparison between the 1988 and 1989 models 20
5.2 Comparison between existing schedule and 1989 model 20
5.3 Sensitivity analysis on rules 21
5.2.1 Maximum length of crew schedule 21
5.2.2 Minimum lengths of meal breaks and shori breaks 22
6 CONCLUSION 24
REFERENCES 25

APPENDIX A : Letter from the SATS on the value of the research to then. APPENDIX B: Crew schedule for a maximum schedule length of 14 hours. APPENDIX C1 : Comparison between the 1988 and 1989 models. APPENDIX C2: Comparison of the 1989 model with existing schedule. APPENDIX C3 : Sensitivity analysis on the maximum crew schedule length. APPENDIX C4 : Sensitivity analysis on the meal breaks and short breaks. AFPENDIX D : Schematic diagram of shifts from the Appendix B scheduie. APPENDIX E: A simple heuristic for scheduling of league fixtures

LIST OF FIGURES

Figure Page
2.1 Distribution of train sets over 24 hours 6
5.1
The effect of the maximum schedule length 21

LIST OF TABLES
Nable
5.1 Comparison of break lengths between shifts 22

1
 INTRODUCTION

1.1 TERMINULOGY

A train trip is a train journey that has a specific departure point and destination at a specific time.

A train set is a set of coaches that undertakes train trips.
A timetable is all the train trips undertaken by all train sets on a single day.
A crew schedule is all the train trips that a crew undertakes on a single day.
A shift is a group of train trips that a crew undertakes on a single train set. One or more shifts make up a crew schedule.

Peak times are those times of the day when the most train sets are operating. There is a morning peak time and an afternoon peak time.

A peak shift is a shift at a peak time.
A non-peak shift is a shift out of peal: time.
A spreadover is a crew schedule where the crew books off after completing one or more shifts and then books on again on at a later time on the ame day to complete the crew schedule.

A depot is where a crew books on and off at the beginning and end of a crew schedule.

A reliej station is a station where a crew may begin or end a shift.
Atransport trip is a trip taken by train or road vehicle to transport a crow between a depot and a relief station at the beginning and end of a shift.

1 INTRODUCTION

1.1 TERMINOLOGY

A train trip is a train journey that has a specific departure point und destination at a specific time.

A train set is a set of coaches that undertakes train trips.
A timetable is all the train trips uncertaken by all train sets on a single day.
A crew schedule is all the train trips that a crew undertakes on a single day.
A shift is a group of train trips that a crew undertakes on a single train set. One or more shifts make up a crew schedule.

Peak times are those times of the day when the most train sets are operating. There is a morning peak tine and an afternoon peak time.

A peak shift is a shift at a peak time.
A non-peak shift is a shit , out of peak time.
A spreadover is a crew schedule where the crew books off after completing one or more shifts and then bcoks on again on at a later time on the same day to complete the crew schedule.

A depor is where a crew books on and off at the beginning and end of a crew schedule.

A relief station is a station where a crew may begin or end a shift.
Atransport trip is a trip :aken hy train or road vehicle to transpont a crew between a depot and a relief station at the beginning and end of a shit.

1.2 STATEMENT OF THE PKOBLEM

Present methocs of constructing timetables to meet passenger and vehicie requirements of suburban rail transport are done in the bead office of the South African Transport Services (SATS). Solutions are integrated with other train services.

Crews, however, are scheduled wy roster compilers at the depots because the requirements of crews are complicated and need special knowledge of local conditions. These often fall shon of optimum as they are done by hand.

A new method of crew scheduling was required to assist the roster compilers in their tasks. The requirements of the method were :

- Programming must be developed on a microcomputer so that all depors are able to use the method.
- It must be flexible encugh for adaption wlocal conditions.
- The solution must be acceptab.i to the crews.
- The method was to be originally used for crews of train drivers. It would then be adapted later to crews of sonductors.
- The programming would be extended to include the compilation of the daily duty roster where unmanned crew schedules are split up and allocated to oher crew schedules.

The purpose of the research vas to examine the feasibility of computer scheduling. The method has been accepted in principle and computer programming has begur. The method will be subjected to further tests on other timetanies once the progranming is completed.

1.3 BACKGROUND TO COMPUTER SCHEDULING

The development of a timetables and schedules consider four facets :

- the passengers who determine the number and times of train trips.
- the vehicles which make up the vehicle schedules.
- the crews who undertake crew schedules.
- and the daily duty roster which adapts the crew schedules for daily use.

The particular problem addmised by this project report is the crew scheduling and the first two facets serve as data to the solution to the problem.

Wren ${ }^{1}$ mentions three solution approaches : heuristic, mathematical programming and interactive. Most methods use a combination of these methods with the mathematical programming often being used to refine the solutions.

The mathematical algorithms use matching methods, the set partitoning approach or the set covering apprcach.

In the matching algorithms, two lists of part schedules are formed and are paired together by minimising cost. This allows the use of the Hungarian method of solving the Assignment problem. ${ }^{2}$ This is an extremely efficient algorithm.

The set partitioning and set covering approach lead to the formation of large matrices that require large computing power to solve.

The publication of literature on erew scheduling has declined in recent y-ars and that which is available is dated and may have been superseded. Wren, ${ }^{3}$ however, commented in 1975 that "the lack of references ... in the formal literature reflects no lack of research in the field, but rather a paucity of work brought to a successful conclusicn, owing to the extreme practical difficulties of the problem."

1.4 APPROACH TO THE PROBLEM

"All known algorithms for crewivehicle scheduling solve the problem as a sequence of subproblems. The purpose of these lecompositions is that each of the subprobiems can be solved by a :easonably efficient solution algorithm. ${ }^{4}$ Solutions tan thus never be regarded as optimum.

The Johannesburg Municipality ${ }^{5}$ tad investigated a fully computerised system from Leeds University in the early i980's but found that the system was too inflexibie.

It was decided that an interactive system supporied by heuristics and mathenatical algorithms using matching methods would best meet the requirements.

Why is it now necessary to deveiop a new algorithm for scheduling ? There is really no standard method of crew scheduling as each enterprise has its own special set of rules. Programming that is avaik.ole from overseas would be expensive and would need to be altered. Furthermore, changes in the rules for crew scheduling can be expected from time to time.

The approach to the problem differs in the following ways from what is proposed in the literature:

- The subdividing of the timetabies into shifts is completely separated from the combining of shifts into crew schedules. The separation is necessary because a roster compiler's expertise is required to provide the times for walking, shunting, preparation and staging at the beginning and end of shifts.
- Both peaks are handled simultaneously when shifts are conibined into rrew schedules. This allows the shifts near midnight to be combined to ewher to an afternoon or morning pe k shift.

1.5 METHOD

The method employed on the project was:

- the analysis of an existing timetabie and crew schedule of one of the bigger depots in the SATS to develop crew scheduling rules.
- the di velopment of a heuristic for the subdividing of the timetable into shifts.
- the use of a mathematical algorithm to combine shifts into schedules and
- the resulis of the method.

Each of these are handled in a separate chapter in the report.

2. ANALYSIS OF EXISTING CREW SCHEDULES

2. ANALYSIS OF THE TEST DATA

The analysis was done on the existirg timetable and crew schedule for trin drivers at the Germiston depot. The train sets were those for Dunswart, Germiston (excluding train trips to Vereeniging), Kwesine, Leralla anj a few train sets between Pretoria and Braamfontein, all of which are controlled by the Germiston roster office The data consisted of 31 train sets undertaking 448 train trips.

The distribution of train trips during a 24 hour period is shown in Figure 2.1. The morning and afernooon peaks are approximately 12 hours apart.

Figure 2.1 Distribution of train sets over 24 hours

There are a total of 60 crew schedules in the existing timetable and the longest schedule of 14 hours and 35 minutes. The overtime is 250 hours and 8 minutes per day for all crew schedules.

Analysis showed that $27,2 \%$ of the time is spent on trairs. The low figure is great'y influenced by the relief time as a train set may not be left unattended except when it is staged in a yard. This percentage is misleading and the solutions generated will be expressed in terms of the numbcr of schedules and the hours of overtime per day for all crew schedules.

The result of the limitation on the relief time mentioned in the previous peraeraph is that a new crew must take over the train set when the previous shift ends. Wren ${ }^{1}$ defines this as a Class C problem. The characteristic of this type of problem is that a crew cannot operate the same train set on two adjacent shifts as no break titne is possible.

The analysis of the data proved to be more difficult than was first anticipated as walking, shunting, preparation and staging times are bot shown in the crew schedule. Times for these movements could not se regarded as standard as they depend cn a variety of factors such as whether ihe train trip has passengers, how many crews are operating the train set, the distance of the rest rooms from the platform or road vehicle and the number of shunting movements etc. All times for walking, preparation and staging of the train set and shunting movements had to be added to the train trip data.

A crew schedule consists cf one to four shifts. By far the majority of these schedules have two or three shifts. Typically a schedule has one long shift of three to fout hours and one or two shorter shifts of one to three hours. This construction allows for an efficient utilisation of paid working hours.

No spreadovers are allowed for the train driver crews.

2.2 ESTABLISHMENT OF RULES FOR TREW SCHEDULING

The following set of rules were drawn up from the analysis of the Germiston crew schedule and from discussions with personne! from the Southern Transvaal Region of SATS. The figures in brackets represent the standard time for train drivers at present. These parameters can sometimes be exceeded and this is 'e't to the discretion of the roster compiler.

2.2.1 Rules for subdividing of timetables

2.2.1.1 The nominal length of the longesi shift in a crew schedule. (4 hours)
2.2.1.2 The nominal length of other shifts in a crew schedule. (2,5 hours)

Rule 2.2.1.1 is the official maximum length of a shift. Rule 2.2.1.2 was introduced from the analysis of the test data and to ensure that the majority of two shit schedules would be less thian the paid working hours.

2.2.2 Rules for combining shifts into schedules

2.2.2.: The booking on time. (20 minutes)
2. 2.2.2 The booking off time. (15 minutes)
2.2.2.3 The meximum leogth of a crew schedule. (14 hours)
2.22.4 The minimum length of a crew schedule (paid working hours). (8 hours)
2.2.2.5 The maximum number of shifts in a crew schedule. (4)
2.2.2. The maximum lengih of a crew schedule with no meal break. (5 hours)
2.2.2.7 The maximum length of a crew schedule with ouly one meal break. (10 hours)
2.2.2.8 The minimum time allowed for a meal break. (30 mintues)
2.2.2.9 The minimum time allowed between shifts. (10 minute:)
2.2.2.10 The maximum rest period in a crew schedule. (3 hours)

All the rules except Rule 2.2.2.10 were used in the programming. This rule is usually circumvented by allocating office work to a ciew scheduie.

3

 SUBDIVIDING TIMETABLES INTO SHIITSThe approach is to subdivide the timetable by a heuristic method which will serve as a guideline to roster compilers, who then ensure that the shifts all form col. ive units.

Timetables do not vary much during the week. All train trips that occur on a week day are placed in one 24 hour timetable for subdividing. Saturday and Sunday timetables are handled separately.

The principle behind the heuristic is to provide shifts where there is a reasonable amount of work done before a break and on spreading the work load evenly. As most crews should work either the morning or afternoor: peak, Rule 2.2.1.i was applied to shifts at the morning and afternoon peaks while Ruie 2.2.1.2 applied to other shifis.

The roster compiler then :

- alters the shifts to tie in with transport trips of the full train service.
- assigns time for walking, shunting movements, preparation and staging of train sets.
- assigns two crews to tra n trips (one at each end of the train) on some lines late at night. This is a safety measure that eliminates walking to the motorised vehicle at the other end of the train set on the return trip.
- assigns two crews for short shunting movernents at or near the depot when it is more efficient than using one crew.
- assigns transport trips at the beginning and end of shifts to and from relief points out of the existing train service or from the availability of road vehicles. These trips have a great: fluence on the solution.

3.1 DETAILED DESCRIPTION OF THE ALGORITHM

3.1.0.1 A preliminary subdivision of each train set's trips into blucks is done first. A new block starts when the time difference between an arrival and the next departure is more than a meal break.
3.1.0.2 The morning peak time aid the afternoon peak time are determined.
3.1.0.3 A theoretical number of shifts is calculated from the blocks generated in 3.1.0.1 using Rules 2.2.1.1 and 2.2.1.2. Theoretical subdivision times are then calculated. If the block is over a peak time, the peak shift is positioned so that the middle of the shift is closest to the peak time.
3.1.0.4 The computer subdivides the blorks by comparing the theoretical subdivision times with the arrival times at depots and relief stations.
3.1.0.5 The roster compiler now examines the subdivision and makes alterations where required.
3.1.0.6 Walking, shunting, preparation and staging times are then added.
3.1.0.7 The transport trips for those shifts that begin or end at a relief station are finally added in case they are necessary. (The transpont trip will not be used if the next siift begins at the same relief station.)

3.2 GENERATED DATA SETS

Three sets of data for testing the method were generated:
[A] the shifts of the existing crew schedule (151 shifts).
[B] the use of standard times for Rules 2.2.1.1 and 2.2.1.2 123 shifts were generated.
[C] the reduction of the time for Rale 2.2.1.2 to 1,5 hours. 141 shifts were generated.

The new data sets, $[B]$ and $[C]$ have less shifts than $[A]$ because the shifts at peak times have been kept as long as possible.

4 COMBINING SHIFTS INTO CREW SCHEDULES

The approach is to use the Assignment algorithm to match and combine shifts into crew schedules. This is a two stage procedure that is based on the article by Pall, Bodirı and Dial. ${ }^{4}$

- Shifts are assigned to crew schedules to find the minimum number of schedules. This gives an unsmoothed solution.
- The unsmoothed soiution is improved upon by reallocating the beginning and end snifts of each schedule to reduce overtime and even out the work load.

4.1 FORMULATION OF THE MATHEMATICAL MODEL

The formulation consists of three main components :

- the compilation of list \mathbf{A} and list \mathbf{B} part schedules
- the feasibility subroutine and
- the matching subroutine.

A pari schedule consists of one or more shifts that have already been combined.
In general, the list A part schedules cannot be feasibly be joined to another list A schedule to form a full schedule. List B part schedules can be joined to at least one list A part schedule. A more detailed explanation of the compilation of these lists is described in section 4.3.

The feasibility subroutine tests whether a part schedule in list A can be feasibly joined to a part schedule in list B. An optimisation parameter is calculated. If the part sched.les cannot be feasibly joined the optimisation parameter is set equal to a large number.

The matching subroutine assigns the List B part schedules to the list A part schedules by minimising the optimisation parameters.

Let there be m part schedules in list A and n part schedules in list B.
Frr $\mathrm{i}=1,2,3, \ldots, \mathrm{~m}$ and $\mathrm{j}=1,2,3, \ldots, \mathrm{ri}$
Minimise : $\mathbf{Z}=\sum_{i} \Sigma_{j} \mathrm{t}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ij}}$
where $t_{i j}=$ the optimisation parameter. This is expressed in units of time.
subject to: $\Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}=1$
$\sum \mathrm{j} \mathrm{xij}_{\mathrm{ij}}=1$
$\mathrm{x}_{\mathrm{ij}}=1$ if the ith part schedule in list A is assigned to the jth part schedule in list B.
$x_{\mathrm{ij}}=0$ if there is no assignment.

4.2 ALTERNATIVES TESTED

4.2.1 The unsmoothed solution

The order in which the shifts are combined into as jedule is critical to the effectiveness of the algorithm and several moders were tested.

4.2.1.1 The 1988 model

The first model placed all the shifts that occur at at the greatest peak and all shifis than could not feasibly be joned to them in list A. List B shitts were those that were feasible to at least one shift in list A and ther were far more of them. Part schedules were formed by mathing over a number of iterations. With each iteration the list \mathbf{B} shifts became less and the unsmoothed solution terminated when list B was empty.

4.2.1.2 The three dimensional model

Shifts were classified into three groups: peak shifts (morning and afternoon), inner shifts (midday shifts which lie between the peaks) and outer shifts (early
mo:ning and late nigh: shifts). The idea was to match both an inner and an outer shit to a peak shift simultaneously.

The size of the matrix for the three dimensional problem was approximately 225000 values. This is too big to handle by normal branch-and-bound algorithms and methods of simplifying the problem were investigated. The literature survey revealed many articles on the surject. $6,7,8,9,10$

The technique of Langrangian relaxation brought the problem back to solving in two dimensions and when it became clear that the emoothing algorithms would not be elininated, the additional computation required was not warranted and the model was abandoned.

4.2.1.3 The 1989 model

Analysis o: the solution of the 1988 model showed that ciassifying the shifts into two groups (peak and non-peak) was insufficient.

Initially, five groups of shifts were created : peak shifts and two sets of inner and outer shifts each. The first sets of inner and outer shifts were just before or after one of the two peaks. The second sets were those inner shifts that could be feasibly be joined to other inner shifts and those outer shifts that could be feasibly be joined to other outer shifts.

Different orders of matching were tried and compared against each other. The model that consistently gave the best answers for the unsmoothed solution (which is described in more detail later) was:

- Build part schedules out of the peak and outer shifts.
- Lise the 1988 mctel on these part schedules and the inner shifts.

This procedure is indirectly confirmed by Hoffstad ${ }^{1}$ who in his algorithm develops early morning shifts first followed by spreadovers. Afternoon sch ules are handied last.

Maisey ${ }^{5}$ who uses an interactive computer aided process with no mathematical algorithm also handles his early morning and late night shifts first. An additional reason for this is that his crews are not prepared to work a one shift schedule at those tines.
4.2.2 The smoothed solution

Four ways of separating the first anc last shifts fion each schedule were tried:
4.2.2.1 all first shifts.
4.2.2.2 all last shifts.
4.2.2.3 all first and last shifts from the morning peak io the afternoon peak.
4.2.2.4 all first and last shifts from the afternoon peak to the morning peak on the rollowing day.

For 4.2.2.3 and 4.2.2.4 were suggested in the literature ${ }^{4}$. The compr sition of the list B schedules tended to be the same as those developed in the lisi B schedules used in the unsmoothed solution. Using 4.2.2m and 4.2.2.2, gave a better answer as thia allowed overnight schedules t be generated.

4.2.3 The optimisation parameter

Time instead of cost was used in the optimisation parameter as all crew schedules under the pail working hours have the same cost and overtime is paid on the time worked in excess of the paid working hours.

Different parameters wers required for the unsmoothed and smoothed solutions as the object of these two stages of the procedure differ.

In the unsmoothed solution, the object is to generate the minimum number of scheduies without any consideration to the overtime. Iuree optimisation parameters were tried :

- the length of the schedule.
- the length of the break between the list A panischedule and the lis; B part schedule including transport time.
- the lergth of the break between the list A part schedule and the list B part schedule exciuding transport time.

The second and third optimisation parameters were better than the first but there was very little difference beiween them in the final solution. (This may, however, change with other daia.) The thin f parametcr was decicied upon as to eliminate cases where the part scheriules are far apart and are selected as their tansport trips are suited to each oth:r.

In the smoothed solution, the object is to minimise ovartime. Many of the schedules, however, do not have any overtime and a secondary optimisation parameter to balance the work load was added. A composite optimisation parameter was thus chosen : $1000 \times$ overtime +ABS r time on trains - average time on trains per schedule) [minutes].

4.3 DETAILED DESCRIPTION OF THE ALGORITHM

43.1 Weekday programme

Shifts are classified into three groups: peak shifts (morning and afternoon), inner shifts (midday shifts which lie between the peaks) and outer shifts (early morning and late night shifts).

The shifts are combined into crew schedules as follows:
4.3.1.1 List A part schedules : select an : $^{\circ}$ peak shifts.

List B part schedules : select all outer shifts except wose around midnight that can be feasibly be joined to earlier or later outer shifts.

Optimisation parameter : The time between the part schedules. excluding any transport tine.
4.3.1.2 List A part schedules : select part schedules from 4.3.1.1.

List B part schedules : select all outer shifts excluded in 4.3.1.1.
Optimisation parameter: The time between the part schedules, excluding any transport time.
4.3.1.3 List A part schedules: select part schedules that span the biggest peak and all part schedules that cannot be feasibly joined to them.

List E part schedules : solect all part schedules (including inner shifts) that can be feasibly joined to a List A schedule.

Optimisation parameter : The time between the part schedules, excluding any transpor time.
4.3.1.3 is iterated until all part schedules fall in List A. This produces the unsmcothed salution with the minimum number of crew schedules.
4.3.1.4 List B part schedules : select the first shift of each crew schedule formed in 4.3.1. 3 that has more than one shift.
List A part schedules: select the balance of the crew schedules left over from list B.

Optimisation parameter: 1000 x overtime -ABS (time on trains average time on trains per schedule) [minutes].
4.3.1.5 List B part schedules: select the last shift of each crew schedule formed in 4.3.1.4 that has more than one shift.

List A part schedules: select the balance of the crew schedules left over from list B.

Optimisation parameter: $1000 \times$ cvertime + ABS (time on trains average time on trains per schedule) [minutes].

43.2 Weekend programme

The shifts from the Friday and Sunday overnight scheoules from the the weekday programme are added to the Saturday and Sunday shifts. A 72 hour period is used.
4.3.2.1 List A pan schedules: find the shift that has the earliest compre, in time. Select all shifts that begin before this shift ends.

List B part schedules: find the shif: that is nut in list A that bas the earliest completion time. Select all shifts that are not in list A that begin before this shift ends.

Ontimisation parameter: The tirne between the fart schedules, excluding any transport time.
43.22 List A part schedules : select part schedules already gererated.

List B part schedules : find the shift that is not: i list A that has the earliest completion time. Select all shifts that are not is lest A that begin berore this shift ends.

Optimisation prameter: The time betweea the pat scheddes, excluding any transport tme.
4.3.2.2 is iterated ntil the end of the penod is rearher Thi groduces the unsroothed solution with the minirara nember of ew schedules.

Find the Saturday and Sunday moming and aftermeon pr^{2}.s.
4.3.2.3 List B part schedules : using two adjacent $1+3^{\circ}$. 3 , sect the tast shift from the crew schedules of the first peak that we wore than one shifi and select the first shift from the creve sched peak that have more than one shift.

List A part schecules: select the balance or the in " whedules from the two adjacent peaks.

Optimisation parameter: $1000 \times$ overtine • ABs 'time on trains average tine on trains per schedule) [minutes].

5 RESULTS

The resuits presented are based sore' - the development of the weekday progranme. Ar example of a crew schec. . produced by the 1989 algoritim is given in Appendix B.

5.1 COMPARISON BITWEEN Th GAND 1989 MODELS

A detailed comparison of the answers from the two modeis is given in the Appendix C1. The reduction in the number of shifts for all three data sets using the standard crew scheduling rcies varies between three and six shifts. The newer model is thus a significant improvement.

5.2 COMPARISON BETWEEN THE EXISTINE SCHEDULE AND THE 1989 MODEL

Although the maximum length of a crew schedule is 14 hours, the ruster compiler had in five cases exceeded the limit with a maximum of $14: 35$ hours. Using data set [A] and the standard rules, the 1989 algorithuigenerates the sme mumber of crew schedules but the overtime is reduced bv $77,5 \%$.

Setting the maximum length of a crew schedule to $14: 35$ hours there is a saving of seven crex schedules with overtime reduced by 9%.

A de ailed coraparison of the answers is in Appendix C2.

53 SENSITIVTTY ANALYSIS ON RULES

5.3.1 MAXIMUM LENGTH OF CPEW SCHEDULE (RULE 2.2.2.3).

In Appendix C 3 and in Figure 5.1, the best answer from: the three data sets was selected. There was always very little difference between the answers of data set $[B]$ and $[C]$, indicating that the nominal length of the shorter shifts in a schedule is probably not critical.

Data se: [A] gave between two and five mora schedules than the best answer for ali muinum schedule lengths. The pciicy of having all the inger shifts at the same time (i.s. at the peak times) pays.

Figure 5.1 Hine effect of the maximum crew scheduie length
The stime rumber of crew schedules (71) is generated for the maxinum schedale le gyt of 12,13 and 14 hours. The solution is, boweve., not the same and the ovartime varies between 21 and 30 hours. This shows that the solusion is not cptimum. This is vithin acceptable limits as the average lengh of a crew schedule does nor vary by more than ten minutes or $2,2 \%$.

5.3.2 MINMUM LENGTHS OF MEAL BREAKS AND SHORT BREAKS (RULES 2.2.2.8 AND 2.2.2.9).

Appendix C4 gives details of the analysis and Appendix D shows a schematic diagram of how well the 1989 algorithm matches the shifts.

Increasing the meal break to 45 miputes would be a reasonable step to take and this would only increase the crew schedules by twe The overtime remains approximateiy the seme. Note that the pumber of crew sliedules is still less than the 60 of the existing crew schedule.

Increasing the shot break to 20 minutes wc k also be a reasonable step to take as it can be considered as a safety facter for delays. The effect is that overtime is increased by $5,7 \%$.

Table 5.1 shows why increasing the minimurn lengths of meal breaks and short breaks has little effect on the number of crew schedules. (i.e. the breaks are well above the minimum).

EXISTING		1999 ALGORITHM	
DATA SET	[A]	[B]	[C]
MAXIMUM SCHEDULE LENGTHi	14:35	14:00	14:35
NUMBER OF SCHEDULES	60	56	53
Break length[hh:mm]	Percentage of total breaks		
0:00 to 0:30	4.5	12.5	7.2
0:30 to 1:00	9,1	31,9	33,3
1:00 te 3:00	55,7	16,7	20,3
3:00 +	30.7	38.9	39.1
	100,0	100.0	100,0

Tabie 5.1 Comparison of break lengths between shifts
The rer in for the large breaks can be attributed to the requirement that the train set must not be left unattended and the crews are forced to operate different train sets from shift to shift.

It is interesting to note that the exisaing crew schedule has the majority of breaks concentrated between one and three hours while in the mathematical algorithm increases the percentage of breaks in all the other three ranges.

At least 30% of the crew schedules in both the existing and computerised method have breaks of longer than three hours. By allowing 25% of crew schedules as spreadovers the tine on dury can he reduced b; approximately 90 hours on all crew schedules.

6

 CONCLUSIONThe method developed has significant benefit in both the reduction of shifts and overtime on the test timetable, although it has not yet been accepted by the crews themselves.

The reduction of the crew schedules by 7 using the actual maximum schedule length of 14 hours and 35 minutes would lead to a saving at the Germiston depot of R 415000 per year if staff could be reduced. The sched.les, however are extremely long and would probably be unacceptable to the crews.

A better solution is to design the schedules strictly to the standard rules and only allow crew schedules up to 14 hours. If the number of erew schedules is kept at 60 a saving of $R 365000$ per year in overtime will result.

The major benefit of the methrd is that the scheduling rules (i.e. policy adjustrient in the letter in Appendix A) can be altered and a monetary value can immediately be placed on it. If spreadovers were allowed on 25% of the schedules (i.e. the crews were not paid for the longest rest period) a further saving of R 235000 per year would then be possible.

Bodin at.al. ${ }^{4}$ states thint "the general experience has been that comruterized mathods have saved a relatively small percentage of costs...(although this) can amount to a large sum of money. ...(However) computerized scheduling has saved transit agency planers and schedulers considerable time in developing new schedules and consid rable time and effort training new schedulers." Timetables can be changed in a matter of weeks, rather than months, a requirement that wili be come necessary as SATS moves toward privatisation.

The feasibility of the method has been established, although the results obtained can be improved upon with the help of a roster compiler. By examining the schematic diagram in Annexure D, which is produced on a microcomputer minor improvemens can be also made.

REFERENCES

1. A. Wren ed. : "Computer scheduling of Pubiir tratsport" : Urban passenger vehicle and crew scheduling, North Holland, Amsterdam 1981.
2. H.W. Kuhn : "The Hungarian method for the Asxygment probiem.", Naval Research Logistics Quarterly, Vol. 2, 1956. 1980.
3. A. Wren : "Comment on a method of solving crew scheduling problems.", Operational Research Quarterly, Vol. 26, 4, 1975.
4. M. Ball, L. Bodin and R. Dial : "A matching based heuristic for scheduling mass transit crews and vehicles."July 1980.
5. F.T. Maisey : "Verbal communications on computerised bus scheduling at the Johannesburg Municipality." 1988 and 1989.
6. A.M. Geoffrion : I angrangean Relaxation for integer programming", Mathematical Program aing Study Vol. 2, 1974
7. G.T. Ross and R.M. Soland :"A branch and bound algorithm for the generalised assignment problem", Mathematical Programming Vol 8, 1975.
8. Fred Shepharison and Roy E Marsten : "A Langrangean relaxation algorithm for the twe duty period scheduiing", Management Science VIl. 26, March 1980.
9. A.M. Frieze and J. Yadegar : "An algorithm for solving 3-dimensional assignment problems with application to scheduling a teaching practice.", Journal of the Operational Research Society Vol. 32, No. 11, 1981.
10. Marshall Fisher : "The Langrangian method for solving integer programming problems", Management Science Vol. 27, No. 1, 1981.

APPENDIX A

70121/䀘

SUB-AFRIKAAMSE VERYOERDIENSTE - SOUTH AFRICAN TAANSPORT SERVICES

 Aophta th conmunicamons TO TME

Hoofacsit yunoca sf kantoon GENEDAI MANAGERTS OFFLC
 Johnanas sbutc 2000

8289-10-50

TO WHO IT MAY CONCERN
The Assistant General hanager (Operating) o: the South African Transport Services (SATS) commissioned Pr A Comie of the Prcductivity Bureau to develop a method of crew scheduling. Vistis to the USA and Europe revealed no stantard sofware thet could be used by SATS for crew schedules.

The method was applied within the existing parameters and showed a substantial reduction in the working hours and the number of crew schedules required.

Mr Commie's approach represerts an advancement in the practical apolication of scheduling thodologies in the raliway enviroment. The results are currently beifig assessed with a view to policy tedjustnent and furtrer improvement prior to implementation.

APPENDIX B

CREW SCHEDULE FOR A MAXIMUM SCHEDULE LENGTH OF 14 HOURS

CREW SCHEDUEE 1		
THAN SET G02		
0036 VSTP	13am: GMA	0041
3041 VOOR 1601	GMA - GAR	0056
0036 AANG	GMM. GMR	0105
01051601	GMFA DLF	0132
01451602	OLF - GMA	0224
0234 SSTP	GMR - GMR	0229
TRAIN SET D01		
OMOM BSTP	GMR - GMR	0469
0409 PASS 0014	GMA - DUN	0427
0502 VSTP	OUN - OUN	0513
0513 VOOR 8815	DUN - DUN	0531
05318815	DUN - DAV	0555
O6O1 881/	DAV. DUN	0623
05318883	DUN - DAV	0683
07018824	DAV - DUN	0723
0723 SSTP	DUN - DUN	0726
0745 PASS COE6	DUN-GMA	0801
0801 ESTP	GMA - GMA	0806
CREW SCHEDULE 2		
THAIN SET KO1		
0151 VSTP	GMP - GMA	0156
0156 VOOR 7800	GMA-GMP	0214
02147600	GARA- KUT	0219
02287601	KUT - GMR	0233
2234 7803	GMP - NWE	0306
03157602	KWE - GMA	0345
0345 SSTP	GMR.CMR	0350
TRAN SET KO7		
0425 ESTP	GMR-GMP	0436
0430 PASS KOMP	GMF. KUT	0440
OU51 VSTP.	KUT - KUT	0450
0458 VOOR 7613	KUT - Kut	0516
05167513	KUT - WWE	0535
0545 7508	KWE - KUT	0810
06217623	KUT - KWE	064
08557722	WWE - SM	0724
0724 STAL 7722	Sim - Sm	0745
0745 SSTP	SIM - SMM	0753
CS20 PASS 1116	Sm-GMA	0825
UR5 ESTP	GMA - BMR	0833
CREW SCHEDULE 3		
TRAIN SET LOT		
0153 ESTP	GMR - GMA	045
0158 PASS 1603	GMP-EFT	0209
0216 VSTP	ET- EFT	0224
0224 WOOP 0501	EFT. EFI	0242
O242 mang	EFi.EFT	0306
03060501	EFI.EAA	0336
0346 usc2	LRA-GMP	Of 28
0428 SSTP	GMA - GiAR	0433
TRAIN SET K03		
0522 VSTP	GMP - GMR	0527
0537 LOSA 7905	GMA. GMP	0531
0589 7615	GMA - KWE	035.
06067510	WWE.KUT	0531
05117625	KUT - INWE	0704
07167734	KWE - GMA	0745
07487830	CMA - 87n	0007
C807 STAL 7830	BPR - BRA	0834
0331 SSTP	BRA - BRA	C832
4923 PASS 7625	BPA - GMA	0928
0228 ESTP	GMA -GMA	09×3

KEY
BSTP $=$ Waiking time from a depot before a transport trip.
ESTP = Waking time to a depot after a transport trip.
LOSA $=$ Reliaf tirne.
PASS $=$ A transport trip time.
RANG $=$ Shunting time.
STAL $=$ Staging time (incliding the time for the shunting movement).
SSTP $=$ Walking time to a depot or relief station ater a shift.
VSTF $=$ Walking time from a depot or reiiet station before a shitt.
VOOR $=$ Preparation time.

TRAIN SET DO3				TRAIN SET K02		
1104	BSTP	GMP - GMA	1108	1322 VSTH	GMA . GMA	1327
1109	PASS 0091	GAR - OUN	1127	1327 LOSA 7860	GMA - GMA	1330
1155	VSTP	DUN-DUN	1158	13307657	GMA - KWE	:358
1158	LOSA 8844	DUN - DUN	1238	14087884	GNE - GMP	1442
1206	88*3	DUN-DAV	1228	14457563	GMR - KWE	1513
1236	8846	OAV-DUN	1258	15247648	KWE GMA	1554
1308	8847	DUN-DAV	1328	1564 SSTP	GMP - SMR	1559
1336	8846	DAV. DUN	4358			
1358	STAL 88.48	DUN-DUN	1406	CREW SCHEDULE 6		
1405	SSTP	OUN-OUN	1418			
1436 1445	PASS 0104	DUN GMR	1445	TRAIN SET 004		
1445	ESTP	GMR. GMA	1450	0304 ESTP	GMR-GMR	0300
CREW SCHEDULE 4				0309 PASS U0:3	CMA - DLN	0327
				0332 VSTP	DUN. DUN	0343
TRAN SET G02				0343 V00A 880:	DUN - DUN	0408
				04018823	DUN-DAV	0423
0218	VSTP	GMA - GMA	0204	04318804	DAV. DUN	0453
0224	LOSA 1602	GMA - GMR	0225	050\% 8811	DUN. UAV	0523
0235	1602	GMR - BRF	0250	05318812	DAV. DUN	0853
0302	1607	BAR GMM	0322	0553 SSTP	DUN - DUN	0558
0327	STAL 1607	GMAF - GMP	0339			
0330	SSTP	GMR. GMA	0344	TRAIN SET D		
				0635 VSTF	DUN - Dur'	0838
TRAN SET LOT				08468885	DUN-DAV	0708
0423	VST0	GMA - GMP	0428	0716 8825	DAV. D'JN	0738
0428	LOSA 0502	GMA - GMA	0444	073 LOSA 8820	DUN - DUA	074E
0444	0507	OMR.LEA	0824	07468833	DSN - DAV	0008
053	C518	LRA - EFT	0604	00188834	DAV-DUN	0838
0815	0517	EFT-LRA	0845	0901 8837	DUN - DAV	cona
0657	0536	LRA-GMA	0739	0938 8838	DAV DUN	0958
0743	0538	GNR - Wid	0743	OS58 SSIP	OUN - DUN	\%00\%
0745	SSTP	10i - 10i	0745	122s PASS DOB4	DUN - GMR	1048
	PAS\$ 1825	1Di. GMA	000	J4* ESTP	GMR - GMA	105\%
	ESTP	GMA GMA	0805			
CREW SCHEDULE 5				CAEW SCMEDULE 7		
				TRANA SET DO2		
TRAIN SET L02				O804 ESTP	GMF. GMP	0309
0247	BSTP	GMP-GNA	coss	0309 PASS 0013	GMA - DUN	0347
0252	PASS icas	GMA-KN	020	caso VSTP	DIM. DUN	0353
0426	VSTP	KAF. KAF	0434	0353 VOOR 8805	DUN - DUN	0411
0434	VOOA 1811	KAF - KAF	0452	041188005	DUN-DAV	0433
0452	1811	KAF. LRA	0505	044188005	DAV-DUN	0503
0621	065	LPA-EFT		Cras SSt	DUN - DUN	0506
O80s	0815	EFT. LRA	(1)35			
0 O44	0534	LAA. CFT	075	TRAIN SET DO		
6750 0829	65\%	EFT.LRA	0820			
0829	1804	LeAM. KaF	0941			
0641	SSTP	KAF-KAF	080\%	0.33 LOSA 8 el2	DUN-DUN	0801
0217	PASS 0636	KAF - GMA	0047	0601 0531 08820	DUN-DAV	$082{ }^{\circ}$
0047	ESTP	GNR - GMR	0052	05318820	DAV - DUN	0853
				07018887	DUN - DAV	0723
				07318828	DAV-DUN	0753
				63018535	DUN . DAV	$0{ }^{2} 2$

6，31：	803 ${ }^{\text {c }}$	OxV．${ }^{\text {chen }}$	6853
0853	STAA 883\％	DUN－OUN	0005
0006	SS7F	DUN DUN	0918
0025	PAS5 0090	TUN＋GMA	Opts
OAS	ESTP	ONH－OMA	cos？
THAN SET LO3			
1275	ESTP	GMA－GMP	1220
1220	PASS 0339	GMP－NAF	1248
1315	VSTP	KAF－KAF	1323
1323	V009 1843	MAF．KAF	1341
1341	RaNG 1343	KAF．KAF	140\％
1405	1843	KAF－LPA	1418
1428	0554	LPA－EFY	1459
1459	SSTP	EFT－EFT	1502
1609	PASS 0664	EFT－GMf	1029
10×0	ESTP	GMF－G14R	18.25
CREW SCHEDULE 8			
TRAN SET G03			
c3se	VSTP	GNR－GMR	6334
0334	VOOP 1108	GMR－GNR	0342
0349	FANG	GMP－GMR	cas3
0388	1105	GMP－KPA	0423
0434	1108	KP年－GM14	0519
0518	SSTP	GMF－GMR	0534
TRAN SET GO4			
0601	VSTp	GMA－GMA	0000
0806	LOSA 1108	GMH－GMA	0449
0649	1115	GMP－KPR	0732
0741	1114	KPA．GMP	O825
0825	STA H116	GMR GMA	0830
0030	SSTP	G＊NR－GMP	0835
TRAN SET D03			
0504	ESTP	GMP－GMF	0909
0909	PASS N00	GAR－DLA	2027
0955	VSTP	DUN－DUN	0958
0958	LOSA 038	OUN DUN	1008
1008	8841	OUN－TAV	：028
1036	3842	DAV DUAN	1058
1106	8843	CuN－CAV	1128
1138	8844	DAV DUA	1158
1158	SSTP	DUN－DUN	1201
TRAN SET DO4			
1332	VSTP	OUN－DIN	1343
1343	VOOR 8849	DUN－DUN	1401
1401	8849	DUN－DAV	1423
1431	8850	DAV－DUN	1453
1515	8887	CUN DAV	1537
1545	\＄658	DAV．DUN	460%
1607	SSTP	OUN－OUN	1810
1626	PASS 0：36	DUN－GMR	1646
18 紷	ESTF	GMA GMA	1851
CREW SCHEDULF9			
TRa	IN SET LOE		
0336	ESTP	GMR－GMR	0341
0341	PASS 0503	GNR－KAF	0410
0420	VSTP	KAF－KAF	0428
0428	VOOR 1807	KAF－KAF	0446
0446	1807	KAF－LRA	0457
OSOC	0×12	LRA－EFT	0837
055	0513	世F！－LRA	0519
0829	0532	LPA－EFT	0700
0712	0，27	EFI－KAF	0725
0725	STA1 0527	KAF－KAF	0754
0754	SSTP	KAF．KAF	0802
0819	PASS 0632	KAF GMR	0801
5047	ESTP	GMA－GMP	C3．32
TAAN SET K02			
1053	VSTP	GMA－GMA	1058
1058	LO947850	GNA－GMR	1100
1100	7647	GMPR－K4F	1128
1139	7884	KWE－GAFF	1213

1215 7551	GM	43	1762 1631		TF｜re
12537800	KWE－GMA	1327	11281816	LRA．KAF	1140
1327 S57P	GMA－GMR	1332	120581835	KAF－LeA	1216
			12281820		
CREW SCHEDULE 10			$\begin{array}{lll}1305 & 1839 \\ 1328 \\ 1804\end{array}$	LFA．KAF	1348
TRAIN SET KO2			1360 STAL 1824	KAF－KAF	13
			1345 S5TP	KAF－KAF	140
0348 RSTP	GMR－GMA	0345	1450 PASS O65？	KAF	320
0045 PASS KOMB：	GMR－KUT	2355	1520 ESTD	G	
0425 VSTP	kUT－kut	0432			
0432 VOOH 7511	KUT－＜ut	0450			
04507611	KUT－KWE	${ }_{0}^{0513}$	CREW SCHED＇＿E 13		
0524 7840	NWE－GMR	0058	TRAIN SET LOS		
00007621	GMP．KWE	0628			
08387822	KWE－GM	073		GMA．	
07157639	GMA－KWE	0743	0420 PASSC 43	GMR．KAF	
0754 783	CWE．GMA	0828	04cs VSTI	KAF－KAF	${ }_{0}^{0507}$
0828 S5TP	GMA－GMS9	\＄83	0507 VCOF 189	KAF－KAF	
			0525 1817	$\mathrm{KAFF}+\mathrm{LRA}$	0536
TRAN SET K05			05450520	LFA－EFT	516
1241 BSTP	SMEH－GMR	1245	08870815	EFT－LPA	0051
${ }^{124 \%} \mathrm{FASS} 009 \mathrm{C}$	CMA－BR9	1319	${ }^{0703} 0840$	Lax	0
132 VSTP	BPA－BRA	1358	${ }_{3758} \mathbf{7 5 8 5}$	KAF－KaF	NTO
1352 VOOA 7859	BRP－PRA	1410	Det8 SSIP	KAF．KAF	
14107687	8RR－KUT	1437	0050 PASS O634	KAF．GMP	
11437 STAL 7659	KUT－KUT	1442	0020 ESTP	GMR－GMP	
1442 SSTP	KUT－KUT	1445			
${ }^{1538}$ PASS 7846	KUT．GMR	${ }_{1}^{1543}$	TRAN SET KO4		
154＊＇ESTP	GMR．GMR	1548			
			VSTE	GMR－O	1150
CREW SCHEDULE 11			12017841	GMA－KWE	1233
TRAIN SET R2B			12437636	KWE．GMR	1313
			13157847	GMR－KWE	1347
0819 Losa 1606	GMA．GMA	0420		GWE－GMA	14
0420 1606	GMR－3AR	046		GMA	103
0445 SSTP	BRR． BRA $^{\text {a }}$	0504	CREW SCHEDULE 14		
0506 Pf．SS 0 O2	BRR．GMP	प539			
0539 ESTP	GMP．GMR	0544	TRAN SET G0S	DULE 14	
TRAIN SET L05			0431 VSTP	GMA－GM	0436
O554 VSTP	GMP－GMR	02559	O436 VOOF 1109	GMA GMP	0435
0559 Lose 0514	GMA．GMP	0616	O451 RANG	GMR．GMP	0500
06160521	GMA－LPA	0858	00552	KPA．GMP	0637
0714	LPA GMP	0756	06420040	GMA．BRP	0708
JTS LUNG	GMA－10i	0800	0708 STAL 0040	BRR．BRP	0732
0802 Losa 054	10． 10	0816	${ }_{7732}$ S5TP	BRR	0753
0816	IDI GMR	0820	0608 PASS 0071	BMR－GMA	0830
O820 STA 05.44	GMF．GMA	${ }_{0}^{0428}$	0639 ESTP	GMR．GMF	＋
0628 SSTP	GMR．GMR	0837			
TRAIN SET G04			TRAIN SET D02		
1058 VSTP	GMF．GMR	1904	${ }_{1304}^{1304}$ PSTP ${ }^{\text {PASS }} 0101$	GM	87
1104 VOOR 1121	GMR－GMA	1119	1403 VSTP	DUN－DUN	
13191121	GMP－KPP	1202	1414 VCOR 8851	DUN－DUN	14142
12：6 9122	KPR－GMm	1300	14328851	DUN－DAV	145
1300 STrat 1122	GMR－GMR	1314	1502888.5	dav－dun	1524
1314 SStP	GMA．GMA	1319	153288859	dun dav	1556
CREW SCHEDULE 12			1624 SSTP	DUN－DUN	1687
			1641 PASS 0144	DUN－GMR	1700
TRAIN SET LOA			1700 ESTF	GMA．GMP	4705
04.5 BSTP	GMR－GMA GMR－KAF	$\begin{aligned} & 0420 \\ & 0468 \end{aligned}$			
0420 PASS			CREW SCHEDULE 15		
${ }_{0} 0525$ VOOP +9.8	MAF．KAF	0563	TRAIN SET D02		
0543 1818	KAF－LRA	0554	0434 ESTP	GMA－GMP	
06030524	LR4．EFT	0634	O439 PASS 0021	GM\％－0．0N	04
0643 072533 0785	EFF．LRA	0707	0503 VECP	Dut．Dun	0506
073s 0546		${ }_{0}^{0807}$	O50S LOSA 8803	DSTH－DUN	0519
280080546		0813	05118813	dun．dav	0×38
08200671	101．GMP	0823	05198814	pav．Din	0808
083\％STA 083	GMF．GMR	083	05118821	don－dav	0823
083 SS：P	GMA．GmR	084	05418822	Dav．Dun	0783
			0711818	DLIN－DAN	cr3s
TRAIN SET ：．02			07418830	Dav．OUM	
O91E BSTP	GMR．GMR	05\％	0803 STAL 8830	DUM－OUN	081
\＄920 PASS 0820	GMP－KAF	0948	${ }^{0811}$ SSTP	OUN－Dut	
1032 VSTP	KAF－KAF	1040	D05s PASS 078	OUN－GN	001
104，LOS4 1012	KAF． $\mathrm{KA}^{\text {c }}$	1185	0816 ESTP	GMA．Gn	0×1

TRAN SET L01			
1i4!	ESTP	GMP-GMR	1148
1146	PASS D008	GMA - E_{6}	1219
1246	VETP	Exar Bra	1305
1305	VOOR 0547	gan	1323
1323	0547	Bffr. Gw	1343
1413	O547	GMM-1ma	1455
1505	O50	404. Gm9	1547
1547	SSTP	GNA-GMA	152\%
CREW SCHEDHLE 16			
TRAN SET COt			
0448	VSTP	GM积-GAS	0453
O453	V00\% 1007	GMR - GMP	0578
0508	1007	CNTR-A.E	0521
0520	1008	ALS - GMR	0540
0 O 45	1000	GMA-ALE	0538
0603	1010	A $\mathrm{H}_{\text {- GM }}$	0817
0522	1011	Ginf. ALS	003c
0090	1012	ALE-GNA	0854
0704	10:3	CMA - ALB	0721
0728	1014	ALB - GMP	0740
0740	STAL 1014	GMA -GMA	0754
0754	SSTP	GNP - GNP	0760
TRANA SET G04			
1410	VS + P	GMR - GMA	1415
1415	VOOR 1123	GMA - GMA	1830
1430	1123	GMA - KPA	1513
1522	;124	KPF. GNiA	1607
1756	SSTP	GMR.GMR	1803
CREW SCHEDULE 17			
TRAN SET CO3			
0514	VSTF	GNA - GNA	0519
0610	COSA 110*	GMA - GMA	0820
0580	FANG 1113	GMR - GMM	2550
0×50	1\%13	GMR - KPP	0633
0645	1114	KPR - GMR	0730
0730	ETAL 11:4	GMA. GMA	0744
0744	SSTP	GMR - GMA	0749
TRAN SET K04			
1423	VSTP		1428
1428	LOSA 7540	GMR - GMR	1430
1430	78E3	GMA - KWE	1502
$1{ }^{1} 13$	754t	NWE-GMR	1543
1545	7857	GMR - KWE	1617
1628	7054	KWE - GMR	1358
1701	7 Cbs	GMN - KWE	1733
1743	7666	WWE-GMR	18:3
1813	SSTP	GMP - GMA	1818
CREW SCHEDULE 18			
TRAN SET K06			
0545	ESTP	GMP-GMR	cost
0550	PASS 1113	GMP - SM	0555
055	VSTP	SIN. SIM	0604
0604	LOSA7712	Sim-SING	0613
0613	7819	StM - KWE	0638
0645	7714	WWE. SM	0714
0720	7835	SAM-KWE	0753
0804	7728		0833
0633	STAL T728	SIM. SIM	0854
	SSTP	GIM - SHM	0002
TRAIN SET K06			
\$ 545	VSTP	SIM - SiM	1552
1552	VOOR 78E1	Sin - Sm	1610
1610	7861	SIM. KW\%	1溉
1647	7732	KWE-SIM	1716
1725	7871	SMM. KVE	1753
1803	7730	KNE - Sin	1832
1832	SSTP	SIM - StM	1835
1835	ESTH	SAN-GMF	1848

CREW SCHEDULE 19			CREW SCHEUULE 22		
TRAIN SET LO8			TRAIN SET DC1		
OSIS ESTP	GMA - GMP	$08: 0$	0649 BSTP	GMR - GMA	34
0520 PAS5 0615	GMR.EFT	00^{71}	0554 PASS O03	GMR - DUN	0712
OS42 VSTP	EFT-ET	0047	0720 VSTP	cun. dun	0723
0447 LOSA 0538	EFT-EFT	0858	0723 LOSA 8834	OUN DUN	0731
O558 0525	EFT.LPA	0722	073i $883{ }^{\text {a }}$	din - dav	0753
0733 0550	LPA.EFT	0804	00018632	OAV. GMP	0040
0004 STA 0550	EFT - ET	0824	0841 8832	GMR.BAR	0906
0884 SSTP	EFT-EFT	0832	0056 STAL B832	BFP- BAR	0830
0009 PASS 0638	EFT. GMP	0920	0030 SSTP	ERF- Bra	nest
CO20 ESTP	GME.GMP	0025	1013 PASS 0087	EAM. GMP	104
			1044 ESTP	GMA-PMF.	1049
TRAIN SET K01					
1508 VSTP	GMA-GMH	1513	TRAIN SET D04		
1513 LOSA 7644	GMA. GMA	1515	1534 ESTP	GMA - GMA	9
15157855	GMA - KWE	${ }^{1547}$	1539 PASS 0115	GNA - DUN	1557
:558 7850	KWE-GMir	1828	1804 VSTP	DUN-DUN	1807
16307863	GMA KME	1702	${ }^{1607}$ LOSA 8858	OUN: DUN	1615
17137662	KWE-GNAP	1743	1615 8053	DUN. DAV	1637
17457873	CMM-KWE	1817	16458854	DAV. DUN	1707
${ }^{1828} 780$	KWE - GMA	1858	1715 88871	OUN- DAV	${ }^{1737}$
\%S58 S5TP	GMF. GMR	1903	1745	dav. Dun	${ }_{1837}^{1807}$
			18153379	OUN. DAV	1837
CREW SCHEDULE 20			${ }_{107} 1908$ SSTP	DUN-OUN	1910
TRAIN SET LO1			1926 PASS 0160 1946 ESTF	DUN.GMA GMA.GMA	1946 1951
0632 VSTP	GMA - GMP	0837			
0037 Lost 0532	GMF. GMA	0638			
00388	GMF. ERR	0711	CREW SCHEDULE 23		
		0735	TRAIN SET L03		
0735 SSTP 08 ca PASS 0071	GRR - BAR BRR-GMA	$\begin{gathered} 0756 \\ \\ \hline \end{gathered}$			
O83 ESTP	GMR - GMP	084	0704 LOSA 7820	GMR.GMA	0710
			07100531	GMA - LfA	0752
TRAIN SET K05			0005052	IPA.EFI	0834
		1330	0044 1523	EFT. KAF	0857
1330 PASS 7657	GMA-KLT	1335	0038 1808	LRA. KAF	0832
1430 VSTP	KUT-KUT	${ }^{1437}$	0933 STAL 1808		0944
1437 PANG 7859	KUT-KUT	14.42	O9M SSTP	KAF. KAF	0953
1512 1530 15008	KUT-KUT	1590 1583	1117 PASS 0642	KAF. GMa	1144
1530 1002687 7065	KUT.KWE	${ }_{1527}^{1583}$	1146 ESTP	GMA - GMR	1145
1802 1836 7673	KWE-KUT	1859			
17087560	KWE-KLT	1733	TRAIN SET D02		
1742767	KUT - KWE	1805	1534 ESTP	GMR - GMA	1539
18167572	KWE. KUT	1541	1539 PASS 0115	GMA. DUN	${ }^{1556}$
1341 STAL 7572	KUT - KLT	1010	1621 VSTP	DUN. DUn	1624
1910 SSTP	KUT - Kut	\%917	1624 LOSA 8980	DUN-'IN	163*
1928 ESTP	KUH. GMR	1928	16328987	DUN-Civ	${ }_{1724}$
	RMR.GMR	1033	1702 8058	DAV. Dul	1724
			17458875	DUN- DAV	1007
CREW SCHEDULE 21			1815 887\%	DAV. Dun	1837
			${ }_{\text {te37 SSTP }}$	DUN. DUN	1040
TRAIN SET KOS			1856 PASS 016 1915 ESTP	DUN-GMR	1915
Den VSTP	GMA. GMA	0549		GMR.GMR	1820
0646 LOSA 7816	GMA. GMR	0651			
$06517 \in 27$	GMR. KNE	0719	CREW SCHEDULE 24		
07307618	KWE. GMA	0800	TRAIN SET 107		
0803 7637	GMR - BRA	0×24			
0884 STAL 7637	BRR- BRR	0848	0736 VSTP	GMA. GMR	${ }^{074{ }^{\text {07 }} \text { 07 }}$
O848 SSTP	BRR- ${ }^{\text {PRA }}$	0859	07410538	GMA. 1 d	${ }^{074}$
0908 Pass 0053	BRA. GMF	0938	0745 . 0540538	101.101	0.46
0039 ESTP	GMa. GMR	094	0756	Di. GMM	080
			O800 fang	GMA - GMF.	0824
TRAIN SET LU7			O85 1828	GMA - EFT	${ }^{0} 8053$
1516 BSTP	GMR - GMP	1521	-0859 SSTP	EFF-EFT	
152\% PASS 0653	GMA. EFT	1538	0036 PASS 0636	EFT. GMR	0097
\$545 VSTP	EFT-EFT	1583 1647	LOA 7 ESTP	GMA. GMR	0952
+617 VOOR 0565	EFT.EFT	1639			
16350565	ET-OL	1701	TRAIN SET R13		
1710 0574	OFP-EFT	1738	1442 BSTP	GMA - GMA	144
175820581	EFT-LPA	1832	1447 PASS 0104	GMA - 8RR	1519
${ }^{1831}$ casis	LTA.EPT	1302	1522 VSTO	E9A - BPA	1552
${ }_{1902}^{1907} 5$	EFT - EFT	1907	1552 voos l 335	BRA. BRA	1610
${ }_{9}^{9607}$ SSTP	EFT EFT	1910	16101595	BRA - GMR	1642
1936 PASS 0654	EFT. GMA	1907	16431835	GMP. OLF	1735
1947 EStr	GMA. GMm	1952	17451836	OLF - BAA	1844

TRAIN SET G06		
1975 VSTP	GMA. GMR	1920
1920 LOSA :134	GMP. GMA	2000
20001137	GMA.KPR	2044
20831138	KPP-GM9	2137
2138 STA 1138	GMP-GMA	2151
2151 SSTP	GMP - GMP	2156
TRAIN SET K02		
2225 VSTF	GMA -GMR	22
22307695	GMA. KWE	2258
23077096	KWE-GMR	2334
2334 STAL 7696	GMR.GMR	2339
2338 SSTP	GMF. GMA	234
CREW SCHEDULE 31		
TRAIN SET GC5		
1211 BSTP	GMF - GMA	1218
${ }_{1218} 18$ PASS 0082	GMF. BRA	1249
1308 VSTF	ERA. BRA	1338
1338 VOCF -361	BRR - BRR	${ }^{1353}$
$1353 \mathrm{c} 36:$	BPA GMR	1415
15 FANG 03s'	GMA. CMA	1427
1427 SSTF	GMF GMP	1432
TRAIN SET LO1		
1542 VSTP	GMA -GMF	1547
1547 Losa 05S6	GMF. BMR	1896
16160563	GMR.LAA	1556
17080576	LPA. GMA	1750
18000587	GMR. LRA	1850
19000590	LPA. EFT	1931
1931 STAL 0590	EFT.EFT	1936
1936 SSTP	EFF. EFT	1339
+09 PASS 0506	EFI. GMR	2022
2 ESTP	GMP-GMR	2027
CREW SCHEDULE 32		
TRAIN SET KO1		
1228 VSTP	GMP - GMA	1227
:227 VOOR 7845	GMP - GMA	1245
1245 7845	GMP - KWE	${ }_{1317}$
1328 7638	EWE.GMA	1358
14007851	GMA - KWE	1432
1443 7644	SWE-GMA	1513
1513 SSTo	GMF - GMA	1518
TRAIN SET G02		
1550 VSTP	GMA - GMA	1555
15555 LOSA 173	GMR. GMA	1559
\$5598 174017	GMA. BOY	16.54
1836 1743/4	BOY-GMP	1702
1711 RANG 1746	GMA. GMA	${ }^{1735}$
1735 1746	GMA. BOY	1800
18101751	BOY. GMR	1835
	CMP-GMP	1849
1849 SSTP	GMR.GMF	3854
CREW SCHEDULE 33		
TRAIN SET G02		
1241 BSTP	GMR - GMA	1246
1246 PASS 0096	GMR. GRR	:319
1336 VSTP	BRR . BR R	1349
1348 VCOR 0367	BRR. 8 RR	1403
14030367	BRA -GMR	1425
1425 STAL 0367	GMA. GMP	1437
14451734	GMP BOY	1510
15301737	BOV-GMA	1555
1535 SSTP	GMR - GWR	1600
TRAIN SET KO7		
1812 8StP	GMA. GMR	1617
1817 Pass : 29	GMR. SIM	1621
${ }^{1835}$ VSTP	Sim. Sim	16.42
1642 VOOR 7865	Sim - Sm	1700

1760	SIM. KWE	1738			
1739736	KWE.SIM	1808	CREW SCHEDULE 36		
18237579	SWM. KWVE	186:	TRAN SET L02		
1902	KWE - KIT	1032			
1932 STA 378	kUT-kut	1939	1348 BSTP	GMA GNA	1381
1948 SETP	KUT - KUT	1954	1351 PASS XSA5	GNAR - KAF	1418
2008 PASS 7864	kUT - GMR	2013	1430 VSTF	KAF - KAF	1447
2013 ESTP	GME-GMF	2018	1447 VOOR 1847	KAF-KAF	1506
			1505 1847	MAF - LFA	1518
			4538058	LFA - GMar	1610
TRANSET KO2			16170562	GAR - OH	1621
2053 VSTP	GMR - GMR	2056	16320567	104-GMP	1636
2058 LOSA 7een	GNK. GM	2100	1538 SSTP	GMP - GMP	1641
21007893	GNA - KWE	2128			
2139785	KWE - GMF	2813	TPAN SET LOS		
22307685	GMA - KWE	2258			
23077656	OWE - GMA	2334	1713 VSTP	GMA GMA	1718
2334 STAL 7806	GMF-GMA	2355	1710 VOOR 0579	GMA - GMP	1736
2355 SSTP	GMR - GMA	000	17\% 057\%	GMR - ERA	1818
			18271842	LRA - KAF	1838
			182 y STA 1842	KAF. WAF	1843
CREW SCHEDUILE 34			1843 SSTP	KAF- KAF	1851
TRAN SET Dos			1817 1947 PASS OSA	KAF - CNA ONR - GMR	$\begin{aligned} & 1947 \\ & 1065 \end{aligned}$
1334 Estp	GMR GMM	1339			
1339 PASS 0105	GMA - DUN	1358			
1437 VSTA	DUN - DUN	1448	CREW SCHEDILE 37		
1448 VOOR 8858	OUN - OHN	1508	TRAN SET K01		
15068855	DUN DAV	1528 1598			
15368836 46068	DAV. DUA	1598	1400785	GMA - KNE	1432
1506 +086881 08652	DAV. DUN	1628	1443784	KWE-GMA	1513
1858 S5TF	DUN - DUN	1709	1512 SSTP	GMA - GMR	1598
1711 PASS 0148	DUN - GMF	1730			
1730 ESTP		1735	TPAN SET KO2		
			1549 VSTP	GMAR - GMR	11554
TRAN SET KO4			IF54 LOSA 7848	GMA - GMA	1536
1808 VS?	GNA. GMP	1813	15066 78\%9	GNR - KWF	1628
1813 LOSA 760t	GNA. GMA	1815	56447856	KWE - GMP	174
18157877	GMR - KWE	1947	1714 78689	GWM - KWE	1748
18587678	KWE - GMR	1928	$\begin{array}{lll}1739 & 7568 \\ 1835 & 7901\end{array}$	KWE - KUT KUT - KWE	1824
18307887	GMA. KWE	2002	$\begin{array}{ll}1835 & 781 \\ 1909 & \text { 783 }\end{array}$	KUT - KWE	1858
2013 2043888 55%	KWF - GMA	2043	1909 1943 984 SSTP	KWE - GNA GMA - GMP	1943
2043 SSTH	GMP - GMR	5348	1943 SSTP	GMA - GMA	1949
CREW SCHEDULE 35			TRAIN SET K04		
			2038 VSTP 2043 LOSA 688	GMA -GM GMP-GMR	2043
THAN SET P10			2045 7893	GMA - MWE	2045
1345 VSTP 1350 13	GM - GMA	1350	2128 7602	KWE. GMA	2177 2159
1300 LOSA 0645	GMR - GMR	1351	22007895	GMM -KWE	2238
1351 1455 STA 0845	GMR. PFA	1455			2300
1455 1500 STA STP	PRA. ORA	\$500	2302 ST/ 7594	KUT-KUT	2300
1500 SSTP		1509	$2307{ }^{2307}{ }^{\text {S5P }}$	KUT-KUT	2307 2314
			2338 PASE KOME	KUT-GMA	2348
TRAN SET POA			2348 ESTP	GMP - GMR	2348
1616 USTP	PFR - PRR	1621			
1621 VOOP 0672	PAR - PRR PR - PR	1642	CREW SCMEDULE 38		
1642 PANL 1945 0672	PAR - PAR PRR - GMA	1645			
$\begin{array}{ll}1645 & 0672 \\ 1754 & 0672\end{array}$	PRR - GMR GNA - GAR	1753 1818	TRAN SET DO1		
1818 S7ALD672	BRA. ERA	1923	1416 ESTP	GMA - GNAR	1421
1823 SSTP	BRR - BRP	1823	1421 PASS UC56	GNA - BAR	1445
			1539 VSTP	ERA - BRA	1609
TRAN SET PO8			1809 VOOR 8873	BRA-BRA	1627
1934 VSTP	gap. Bap		16276873	EAP - DAV	1727
1934 VOOP Oces	BRF. BRA	1955	18028884 1832 1888	OAV OUN OAV	1824
195\% 0505	ARA - GMA	2020	1902 8882	Dav - OUN	1924
2021 06es	GMP-FAM	2124	1924 STA 6892	DUN - DUN	1932
2124 STAL O285	PAR - PRAR	2129	193\% SSTP	DUN - CUA	1944
2129 SSTP	Pfin. Prn	2136			
TRAN SET POS			TRAIN SET D04		
			2404 VSTP	DUA - OLN	2107
2149 VSTP	Fra. Pra	2148	210\% LDSA 6ag	OLN.OUN	2118
2148 VOOF 0 O32 2200 RANG	Pris. Pra	2209	21158805	DUN - Dav	2137
2200 RANG	PR\% FMR	37	21458858	DAV - DUN	2207
23120092	PRA-GAR	220	2235 899\%	OUM Da'	2257
2121 O. ${ }^{3}$	GAMA - 8FAR	2345	23058598	DAV OUN	2207
2345 STAL OC32	ARA- ERA	0000	2327878.8989	DUA - DUN	2348
000) SSTL	ERP - 8*	0028	2348 SSiTP	DUA - DUN	2381
0028 PASS CP 29	BRA-GMFP	0049	2355 PASS 1408	DUN, GMA	0009
0047 ESTP	GNR - GMA	cost	0009 ESTP	GMR.GMA	0014

CREW SCHEDULE 39
TRAIN SET LO3

CREW SCHEDULE 41

TRAIN SET COA

1602	VSTP	GMA -GMA	1607
1807	LOSA 1124	GMR-GMR	1617
1647	1129	GMA - KPA	1700
t709	\$130	KPR. GNA	, 75
1753	STA. 1130	GMA - GMR	1758
1758	SSTP	GMR - GMA	1803
TRAIN SET OOA			
1834	BSTP	SMR - GMP	1839
1839	PASS 0143	GMAP. DUN	1857
1804	VSTP	OUA- OUN	1507
1907	LOSA 8880	DUA - DUi,	1915
1985	8887	CUN - Dav	1937
1945	8888	DAV. DUN	2007
2015	8033	DUN.DAV	2037
2045	8894	DAY. DIN	2107
2107	SSTP	DUN- DUN	2110
2156	PASS O:- ${ }_{\text {tr }}$	OUM - GMA	2215
2215	ESTP	GMA. GMR	2200

CREW SCHEDULE 42

TRAIN SET LOA

1621	VSTP
1626	VOOP 0 nit
1644	PANC
1658	20571
1754	0582
1847	2591
1930	1848
1942	STA 1846
19859	SSTP
2050	PASS Dese
2120	ESTP

 $\begin{array}{ll}\text { KAF. KAF } & 1009 \\ \mathrm{KMF} & \mathrm{KAF} \\ 2007\end{array}$ 2320 ESTP GMR-GMA 2125

TRAIN SET R32

9405	VSTP	GMR - GMA	0410
0412	2329	GMA . OUN	0428
0429	8507	Dun - Dav	0451
0459	0712	DAV. GMA	0841
0541	ESTP	GMH. GMR	0548

CREW SCHEDULE 43
TRAIN SET DO3

1625	8StP	GMR -GMR	168
1829	PASS 0121	GMA - DUN	1647
1855	VSTP	DUN - DUN	10.58
1650	LOSA 8962	DUN - DUN	1708
1706	8869	din - dav	1728
1736	8875	Dav. DUN	1733
1806	887	DUN-OAN	1828
1836	8878	DAV. DUN	1358
1806	8885	DUN.DAY	1528
1336	8886	DAv. DUN	1958
1950	STA. bece	OUN - OUN	2005
2006	SSTP	OUN - DUN	2018
2026	PASS0172	DUN - GNA	2048
2046	ESTP	$S_{S} \mathrm{MAF}$ - GMF	zOSO_{1}
TRAN SET KO3			
0345	ESTF	GMF1-CMP	0345
0345	PASS KMMO	GMA - KJT	0355
0358	VSTP	KUT - KUT	0408
0405	V0047507	*ST - KUT	0423
0423	7607	KUT - KWE	0442
0453	7eps	KWE - GMP	0527
$0{ }^{0} 27$	SSTP	GMA9, GMA	0532

CREW SCHEDULE 44
TRAIN SET L02

1631	VSTP	CMP . GMR	16*
1836	LCSA 0567	GMR - GMA	150
1639	0507	GMR - LPA	1720
1733	c5ab	LRA. GMA	1815
1815	S\$Tp	GMP. GMA	1820

TRAIN SET KO1

1855 Vstp		1858
1858 LOS: 974	GMR - GMP	1900
1900 7883	GMA. NWE	1832
19437684	KWE CMA	2013
2013 STA 7684	GMFA.GMR	2042
2042 SSTP	GMA - GMA	2047
CREW SCHEDL'LE 45		
THAIN SET GOb		
1713 VSTF	GMA - GMK	1715
1718 VOOP 1133	GMA - GMA	1733
17331133	GMP - KPP	1817
1836 1134	KPA. GMm	19\%
1920 SSTP	GMA - GMA	1925

1819	Estp		
1告4	PASS OSES	Ond－KAF	）
1暏教	－ $\mathrm{V}_{\text {F\％}}$		1503
1903	LOSA 0585	NAF．N等	1530
1969	OS寞		2012
2003			2013
2033	\＄TM 1－4\％	KAF－K夏	＊ 640
2089	\＄3T7		8107
2150			2020
2200			2285
TFAMH SET Ons			
20303	ESTP		2 ck
236	FAS 0177		$2{ }^{2} 27$
0017	VSTP		0328
0 028	VOOP ssol	CUN－D4，	048
03046	seor	Den－Dav	\％40
0416	如可等	BAV－Whe	043．3
0446	\％${ }^{\text {a }}$	DUN－ficl	OSN
056	8810	DAV． 3 相	0＊38
教构	8817	Qu栜．DAV	S3\％
0616	8818	DAF．On	0×38
0378	SSTP	況戍－DUN	0641
（44：	TAss 0948		Crom
为			0709
CREM $5 \cdots \mathrm{HEDHB}$			
TPAN SET 102			
182	gstp	Q＊＊	183教
183			
1217	V宁解		1925
1925	LOSA OSx		2659
2053	1848	KAF－IPA	$2+12$
2123	1854		2^{13}
$2{ }^{4} \times{ }^{\text {a }}$	1茝！	KAF JPA	2．${ }^{2}$
2223	185	以月，	220 ${ }^{\text {c }}$
2404	苞劳	KAF．LRA	2312
2321	0\％98	DKA GM	063
0003	STAL	GNM－Ondm	人0才4
0038	STTP		C，13
1247	ESip		O252
025%		G新－E5T	0303
0357	VST	EFTEFT	0400
0400	Vxat ys^{5}	EF3－EFl	0419
9418	PANS	EFT \＃	0448
04.42	ctas	EFT－Clf	0503
边》	0514	OSF－SM ${ }^{\text {S }}$	055
05E5	S6＊${ }^{\text {\％}}$		asca
CPEW SGPEDUL 54			
TRA相 SET 402			
1828	\＄3TP		1833
18\％	PASS T80e 1		18\％
1917	VETP	NAF－KA	$18{ }^{36}$
	OSA	KAF－KAF	0059
2059	1846		2－1\％
212t	1854	LTA－Kat	2174
21720	＊ 6	NAF－ 18 Cl	2218
2203	＊＊	¢FA－kF	228＊＊
2205		$N A F$－EAA	2312
2381	O530		6×0
\％）			（158
3054	85\％		0

	GNAF－GMA	6340
		$0+30$
9406		34 ${ }^{\text {3 }}$
04437604		0512
60ts 78．3		06）${ }^{6}$
	WWE GNAM	Oses
Oent Thel		6700
＊713 7856	CWE－GW\％	等教
0743 5str		
GREV SCHAEOUHE		
	CAM－GMA	180
		5430
1390 0sct		2914
202\％1085	WAA WM	2030
	勾5，K入	2304
2069 S3TP		2197
2150 PASS 080	K人F－GAR	20200
2220 ESTP	GMAP（man	2094080
THANSET KOA		
6407 \％ere	GMP－Ond	0412
04：2 VOOF 79\％	CMAF－GADR	0400
0430 7acs	G4Am－NWE	ascm
06！7 \％		$0{ }^{0} 4$
6543 7317	64W－6We	615
0024 7545		0848
6709768	KJT －KWVE	673n
6743 7620	KWEE GMm	0413
0810 350	G4＊－G\％甪	20813
CREV星 SHEDULEE		
TPA交 SET Pas		
	GH2－34n	2334
\＃3N \＄\＄003\％		2357
0148 VST	钴的	0207
cect VOOR 1605	ERTM P	0220
2235 1805		2333
2340 1000	OLF．Onf	O47\％
0415 5STP	GMF－GMF	O4\％4
THAMSET CO\％		
－6\％VSTP		Q＊17
$0517 \mathrm{VCO} \mathrm{F}^{4} 1722$		65x：
0532 1722\％	GNR－EOY	0ug
asc\％1725／5	QTY－GMA	0087
0345 172EA	家狏－BOT	0710
3716 1731／2	BOY－GMA	0743
0757 035	OAR－Ant	0318
	3RR－gntin	0812
a 42 BSTP		020
990\％PASE 00ES	SRF－GMA	
0．3稏 EST	ONH－G＊	0844
TRAN SET Ko4		
103＊VETP	G129，GAP	1043
104\％	Gunth－Cund	1015
1045－ 3 3	CN\％－Wht	1117
		1教爯
1138 ${ }^{\text {\％}}$		1203

APPENDIX Cl

COMPARISON BETWEEN THE 1988 ANO 1989 MODELS

Nominal length of the louget shift	4:00	40	490	4.09	4:00	409
Nominal ler sth of the stry shifts	2:30	230	$2: 30$	$2 \cdot 30$	1:30	130
Booking on time	0:20	$0: 20$	6:20	0:20	0.21	0.20
Bocling cat time	0:15	0.15	0:15	0:L ${ }^{\text {a }}$	0.15	0.15
Maximum length of a scheduie	14:00	14:00	14:00	24:00	14:00	1400
Maimum length of a schedule	8.00	8:00	$8: 00$	$8: 00$	8.00	8.00
Maxinum arsaber of shits in a schedule	4	4	4	4	4	4
Maximum schedale length with no meat break	$5: 00$	500	5:00	500	$5: 50$	5.00
Maximum schecule length with one meal break	10:00	10:00	10:00	10:\%	3000	10:00
Micimura time allowed for a meal break	0.30	6.3)	$0 \cdot 30$	120	0.30	0.30
Miaimum time betwon shifts (short bresi)	0:10	0.10	010	710	6.10	$0: 10$
Maximi \boldsymbol{n} rest period in a schedule	3.03	3:00	3:00	300	300	300
Model	1988	1989	1988	1989	1988	1989
Data set	[A]	[A]	[B]	[B]	[C]	$[\mathrm{Cl}$
Nomber of chedulzs	6	60	62	56	59	5
A. Tine on trairs	198:14	198:14	198:14	198.14	198:14	198:14
B. Booking on/off times	$36: 45$	3:00	$36: 10$	32:40	34:25	32:40
C. Walking time	44:18	$43: 43$	- 8.18	37.58	41:23	40: ${ }^{2}$
D. Transport time	42.05	39:27	38.11	35:06	37.30	33:40
E. Meal/shot , break time	34:20	34.10	28:40	30:10	33.00	32:40
F. Time beween trains	205:43	219:24	190:31	281:39	212:28	291:11
G. Preparation time	17:21	1721	17:21	17.21	17:21	17:21
H. Shunting/staging time	20:29	20:29	$33: 29$	20:29	$20: 29$	20:29

I. Time on duty	$592: 15$	$607: 48$	$567: 54$	$654: 37$	$594: 50$	$666: 58$	
3.	Tine to 8 hours	$34: 47$	$28: 31$	$30: 26$	$10: 29$	$24: 34$	$12: 16$

\mathbf{X} Total schedule time \quad 634:02 $\quad 536: 19 \quad 598: 20$ 605:06 $\quad 619: 24 \quad 6 ; 2: 14$

| L. Total idle time | $240: 18$ | $247: 43$ | $220: 57$ | $292: 08$ | $237: 02$ | $303: 27$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M. Overtime | $130: 02$ | $156: 19$ | $102: 20$ | $217: 06$ | $147: 24$ | $231: 14$ |

$I=A+B+C+D+E+F+B+H ; X=I+J ; \quad L=F+J$

Naximum time on trains	06:25	00.16	05:10	$05: 53$	0):20	06:32
Minimum time on trains	01:13	01:00	01.37	01:56	01:20	01:54
Average time on traiss	03.08	03:18	03.11	03.32	03:21	03.32
Standard deviation	01.05	01:13	00.54	00.53	00.52	00.56
Maxir um time on duty	13:59	14:00	13:58	14:00	14:00	14:00
Minimum time on duty	04.04	03:33	0. 58	04.51	04:49	04:40
Average time on duty	09.30	10.07	39:09	11:41	10:04	11.5A
Standard deviationt	03:00	02:58	02:41	02:32	02.56	02:33

APPENDIX C2

COMPA

The exislimg crev appears hat be hirst column.

Neminal lenge of the longest shif	4×10	410	$4 \mathrm{ta)}$	400	400
Nominal lengra of the other shths	230	2:30	2:30	2:30	$1: 30$
Boakiang om tixie	0220	9.20	0.20	0.20	0.20
Beoling off tive	$0: 15$	0.15	0.15	0.15	0.15
Movimuman kegth of a schedule	14:35	14:00	14:35	14:35	14:35
Maximum lengih of a schedule	8806	800	8000	8000	800
Maxmun umber cifhifits in e schedule	4	4	4	4	4
Maximum schedule Rergth with no meal break	590	5:00	5:00	5:00	5:0
Meximun schecule length with one meal break	300n	1000	:10:00	10:00	1000
Mictuma (tine ailower for 2 meal break	$0 \cdot 31$	0.30	0.30	c30	0.30
M'wirsar. time bewecn shifts (hort break)	(10)	0:20	0.10	0.10	0:10
Maximum rest period in a scheatute	3.00	3 MK	$3: 00$	3:00	300
Date set	(A)	[A]	(A)	[1]]	[C]
Numbr of schedules	60	60	57	54	53
A. Tune on trins	198.74	1×8.14	$198: 14$	198:14	198:14
B. Booking onvoff times	25:0	35:00	$33: 15$	31.30	30.55
C. Walking time	43.28	43:43	$43: 18$	37.48	40:63
D. Transport time	38:25	7927	$39: 34$	34:46	34:17
E. Meaizshort break time	32.40	51010	34:00	29:20	32.30
F. Time between trains	335116	219:24	240:22	256:22	273:27
G. Preparation time	17:1	17:21	17:21	17:21	17:21
H. Shunting/staging time	20:29	7229	20,29	20.29	20:29

1. Time or outy 720:51 607:48 626:33 625:50 647:5K

K Toral schedule time $\quad 720: 51636: 19 \quad 644: 00 \quad 635: 46 \quad 651: 27$
$\begin{array}{lllllllllllllll}\text { L. Tcial ilte time } & 344: 31 & 247: 43 & 257: 37 & 266: 18 & 276: 58\end{array}$

$I=A+B+C+D+E+F+G+H ; K=1+J ; L=F+J$

Maximumatime on trains
Mixinaun tir ex on trains
Average time on traias.
Standard deviation
Maximura tiac on duty
Mininum time on dury
Average tinue on duty
Standard deviatixam

$05: 32$	$06: 16$	$05: 50$	$07: 03$	$05: 55$
$00: 41$	$01: 00$	$01: 27$	$01: 53$	$01: 36$
$03: 18$	$0: 18$	$02: 28$	$03: 40$	$03: 44$
$00: 59$	$01: 12$	$01: 06$	$01: 00$	$00: 5$
$14: 35$	$14: 00$	$14: 34$	$14: 35$	$14: 34$
$03: 38$	$0: 33$	$04: 31$	$05: 14$	$06: 41$
$12: 03$	$10: 07$	$16: 5$	$11: 35$	$12: 13$
$02: 68$	$02: 58$	$02: 54$	$02: 57$	$02: 21$

APPENDIX C3

SENSIVITY ANAUNSIS ON THE MAXIMUM CREW SCHEDULE LENGTH

Nominal length of tie lowgest shift	4:00	4:00	4:00	4.00	4:3)	4:00
Nomixal ieugth of the other shits $\quad 1: 30 \quad 2: 30$	1:30	2:30	130 1:30	30		
Hooking on time	0:20	0.20	0.20	0:20	0.29	0.20
Booring off time	0.15	0.15	0.15	0.15	$0: 15$	$0: 15$
Maximama lagth of * schedule	14:35	14:00	13:00	12.00	11:05	10:00
Misimun length of a schedule	8:00	8.00	8:00	$8: 00$	8:00	8.90
Mavinum number of shifts in a schedule	4	4	4	4	4	4
Maximum stbeduhe kength with no meal break	5.00	5:00	5:00	J	5:00	500
Maximum schedule length with noe meal briak	10:00	$10: 00$	1000	10.00	10:0)	10:00
Minimum tine allowed for a memi break	0.30	0.30	$0: 30$	0.30	$0: 30$	0.30
Minimun t"me between shifts (short breah)	0.10	0:10	0:10	$0: 10$	0:10	0.13
Maximuni rest period in a schedule	3:00	3:03	3:00	3.00	$3: 00$	3:00
Data sint	[C]	[B]	[C]	[B]	1 Ci	[C]
Number of schedules	53	56	63	71	7	71
A. Tinue on trains	198:14	138:14	198:14	10314	198:14	198:14
B. Booking on'nff times	30:55	32:40	36:45	41:25	+1:25	41:25
C. Walking time	40:43	37:48	40.53	38:28	41:23	¢:23
D. Transport time	34:17	36:06	34:36	40:34	3725	36:53
E. Meal/short break time	36:30	30:10	34:10	26:20	32:30	32:30
F. Time between thains	273:27	281139	257:28	156:23	161:10	157:23
G. Preparation time	17:21	17:21	17:21	17:21	17:21	17:21
H. Shunting/staging time	20:29	20:29	20.29	$20: 29$	20:29	20:29
i. Time on duty	$607: 56$	654:37	639:56	535:14	580:37	54:38
J. Time to 8 hours	03:31	10:29	09:58	58:\%	42.56	43:49
K. Total schedule time	651:27	665:06	649:54	597:40	593:33	589:27
L. Total idle time	276:58	292:08	267:26	214:49	204:06	201:12
M. Overtine	227:27	217:06	143:54	29:40	25:33	21:27

$\mathbf{I}=\mathbf{A}+\mathrm{B}+\mathrm{C}+\mathrm{O}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H} ; \mathrm{K}=\mathrm{I}+\mathrm{J} ; \mathrm{I}=\mathrm{F}+\mathrm{I}$

Maximum time on trains	05:55	$05: 53$	04:58	05:10	04:51	04:51
Minimum time on trains	01:56	01:36	01:20	01:16	$01: 15$	$01: 15$
Average time on trains	03.44	03:32	03:09	02:47	02:47	02:47
Standard deviation	00.50	0053	09:46	00.49	00:45	00:44
Maximum time on daty	14:34	14:00	12:59	11:39	10:17	0).57
Minimum time on duty	n6:41	$04: 51$	$0 \div 21$	04:17	04:58	04:58
Average time on duiv	12:13	11.41	10.69	07:35	07:45	07:41
Standard devistion	02.21	0232	02:08	01.34	01:13	01:09

APPENDIX CA

SENSITIVITY ANALYSIS ON THE MEAL BELAKS AND SHORT BREAKS

Noninal lengit of the longest shift	400	4:00	4:00
Nominal length of the other shifts	2.30	2:30	2.30
Booking on tive	0:20	0:20	$0: 20$
Booking off time	0.15	$0: 15$	0.15
Maximum length of a schedule	14:00	14:00	14:90
Minimum length of a schedule	8:00	$8: 00$	8:00
Maximum number of shifts in a schedule	4	4	4
Maximum schedute length with no meal lireak	5.00	5:00	500
Maximum schedule length with one meat break	10:00	$10: 00$	$10: 00$
Minimuma tine allowed for a *eaal break	0.30	0:30	0.45
Minimum time becween shif!s (short break)	0:10	0.20	$0: 10$
Maxianum rest period in a scheiule	3:09	3.00	300
Data st:	[B]	[1]	[1]
Number of schedules	56	56	58
A. Time on trains	198:14	198:14	198:14
E. Booking on/off imes	32:40	32:40	33:50
C. Walking time	37:58	38:03	37:38
D. Transport time	$36: 06$	37:33	34:59
E. Mcal/short break time	30:10	29.50	30:10
F. Time between trains	281:39	292:55	294:00
G. Preparation time	17:21	17:21	17:21
H. Shunting/staging time	20:29	20.29	20:29
1. Time on duty	654:37	667:05	666:41
J. Time to 8 hours	10:29	10:18	07:36
K. Total schedule time	665:06	$677: 23$	674:17
L. Total idie time	292:08	303113	301:36
M. Overtime	217:06	229:23	$210: 17$

$I=A+\mathbf{E}+\mathbf{C}+\mathbf{D}+\mathbf{E}+\mathbf{F}+\mathbf{G}+\mathbf{H} ; \mathbf{K}=\mathbf{I}+3 ; \mathbf{L}=\mathbf{F}+\boldsymbol{I}$

Maximum time on trains	$05: 53$	$06: 18$	$05: 53$
Minimum time on traiss	$01: 56$	$01: 48$	$01: 32$
Average time on traias	$03: 32$	$03: 32$	$03: 25$
Standard deviation	$00: 53$	$01: 01$	$00: 54$
	$14: 00$	$14: 00$	$14: 00$
Mavimum time on duty	$0: 51$	$04: 5:$	$04: 13$
Miniarum time on duty	$11: 41$	$11: 54$	$11: 29$
Average tine on Juty	$02: 32$	$00: 30$	$02: 27$
Standard deviatioa			

APPENDIX D

SCHEMATIC DIAGRAM OF SHIFTS FROM APPENDIX B

[^0]
APPENDIX E

A SIMPLE HEURISTIC FOR

SCHEDULING OF LEAGUE FIXTURES

1 THE SCHEDULING OF HOME AND AWAY MATCHES

1.1 INTRODUCTIO:

The Southern Transvaal Tennis Association arranges four tennis leagues in the year. The biggest of these is the men's Sunday league which in 1989 consisted of 320 teams fro 10.3 tennis clubs. The league is civided into 41 secticns of seven or eight teams that play each other on a round robin basis over 7 weeks. The scheduling of the fivtures requires that in each week, the home and away matches for each cl ${ }^{\text {h }}$ ' be balaiced.

This scheduling was originally done by hand and tow three
r weeks to do. This heuristic was developed so that each league cou, jone on a microcomputer within a matter of hours and has been in use for the last three years.

1.2 ORDER OF PLAY

A new order of play for the seven weeks was developed as follows:

WEEK 1	2	3	4	5	6	7
1 c 2	5 vs 1	1 us 4	7 vs 1	3 vs 1	1 vs. 6	1 vs 8
3×4	2 vs 3	3 vs 7	5 vs 3	2 vs 4	4 vs. 7	5 vs 4
8 vs 5	7 vs 8	8 vs 2	4 v 38	7 vo 5	5 vs .2	7 vs 2
6 w 7	4 vx 6	6 vg 5	2 w 6	6 vS 8	8 ve. 3	3vs 5

The numbers refer to places that are allocated to teams in each section. Places on the left are the home teams and places on the right are the away teams.

Features of this order of play are:

- The odd-numbered places have four home matches and three away matches, and the even-numbered places have three home matches and four away matches.
- If there is a bye in a section (i.e. there are seven teams in the section), t.: place 1 is allocated to the bye. Each team then has three home anid three away matches.
- The places 1 and 2,3 and 4,5 and 6, and 7 and 8 form place pairs 1 one of the place pairs has a home match, the other has an away match.
- If a clut has two teams in the same section, the pair place 1 and 2 , or if that is not possible, the pair place 3 and 4 are allocated to ti ras. The teams each have four home matches and play each oth. he first week of the league. This reduces the chances of one of the rearis losing their match against the other delibers tely so that the other wins the league.
- In the top section of the league, the teams must tee seeded $s 0$ that the best teams do not play against each other immediately. Places 1, 3, 6 and 8 (or places $2,4,5$ an 7) play against from the fith week on.

13 HAND METHOD

The han? method begins at the top section and allocates place pairs to teams of the same club. Not only does this process take a long time by hand, the method is unsatisfactory for the following reasons:

- Difficuity in being able to allocate pair places begins wiren ten io fifteen sections of the allocaton is completed. It is ther extremely difficult to go back to the beginning and re-allocate pair placer.
- The rule for the byes ofter gets broker in order to do the allncation.
- Clubs prefer to have their first and seiund teams paired so both teams can take advantage of the best courts at tieir cluu. This cannot be always managed with the hand method.

1.4 NEW ALGORITHM

1.4.1 Pairing

1.4.1.1 Pair any two teams from the same club that are in the same section.
1.4.1.2 Pair the rest of the club teams. If the club has an odd number of tearos the lowest team is not paired. These teams are grouped as together as odd teams.
1.4.1.3 Pair the byes with an odd team in the same section.

If there is no such odd team, pair the bye with an odd team so that there is a matching pair with teams in the same sections.

For the 1989 men's Sunday league 139 sets of pair teams were formed and there were 50 odd teatus.

1.4. Level allocation.

A new concept of a level is now introduced: level 1 has places 1 and 2 ; level 2 has places 3 and 4 ; level 3 has places 5 and 6 ; and level 4 has places 7 and 3 .

Pair teams must be allocated on the same leve' " Jr home and away matches to be balanced. One team will ther later be allwated the odd-numbered place while its fair will be allocated the even- numbered place.
1.4.2.1 Place all pair teams in the fullowing oruer for allocation:

- Bye pair teams.
- Pair teams with oae or mare teams in the seeded srection.
- Pair teams that are in the same section.
- Pair teams fron clubs with an even number of teams.

$$
E-3
$$

- Pair teams from clubs with an odd number of teams.
1.4.2.2 Allocate pairs from 1.4.1.1 and 1.4.1.2 specific levels and places.
1.4 2.3 Allocate the rest of the pair teams to the lowest feasible level. Only wo teams in each section can be allocated to a level.

If there is no feasible level, find a level which is feasible to one of the pair. Re-allocate a second pair team to a higher level so that the original pair can be allocated to the first level.

If no re-allocation can be feasibly done, replace one of the pair with the odd team from the same club. The need for such a changing the teams in a pair is unlikely and has only been necessary in three of the twelve leagues done so far. It has never heen necessary to rhange more than two pair teams in any sche Jule.
1.4.2.4 When all the pair teams are allocated, fill the levels wit the odd teams so that every level has two teams. Pair all odd teans with another odd team on the same level. All teams now have a pair.

1.4.3 Place allocation

The place allocations for the byes and the seeds have already been done (see 1.4.2.2).
1.4.3.1 Select any team that has not been allocated a place rnd note on what level it has been allocated. Allocate the odd-numiered place associated with the level to the team (level 1 has places 1 ond 2 ; level 2 has places 3 and 4 ; level 3 has places 5 and 6; and level 4 in paces 7 and 8).
1.4.3.2 Allocete the even-numbered place to its pair team.
14.3.3 Find the other team in the same section that is on the same level as the team in 1.4.3.2 and allocate to it the odd-numbered place associated with the level. Its pair will then be allocated the even-numbered place.
1.4.3.4 Continue allecating teams until the allocation returns to the section of the original team. A closed lonp has now been formed.
1.4.3.5 Repeat 1.4.3.1 to 1.4.3.4 until all teams have been allocated a place.

E-4

1.5 PRACTICAL EXAMPLE

When there are less thar ten sections, the scheduling of home and away matches can just as easily be done by the hand method. Consider, however, the following example with only three sections to illastrate the computer method. No seeding of the top section hes been done.

15.1 Initial data

Section 1	Section 2	Section 3
Johannesburg A	Johannesburg C	Johannes urg D
Johannesburg B	Jeppe B	Jeppe C
Jeppe A	Parkwood B	Jeppe D
Parkwood A	Parkwood C	Wanderers C
Wanderers A	Wanderers B	Honeydew C
Honeydew A	Honeydew B	Observatory B
Observatory A	Bedfordview A	Greenside A
Witwatersrand A	BYE	BYE

1.5.2 Pair teams in order of allocation

	Level allocated
BYE and Bedfordview A	1 (bye cams)
BYE and Greenside A	1 (bye tearss)
Jiannesburg A and B	1 (same section)
Parkwood B and C	2 (same section)
Jeppe C and D	2 (same section)
Observatory A and B	3
Johannesburg C and D	3
Jeppe A and B	3
Wanderers A an B	2
Honeydow A and B	4

1.5.3 Odd teams in order of allocation

Level allocated		
	Parkwood A	2
	Witwatersrand A	2
	Wanderers C	4
	Honeydew C	4
1.5.4	Place allocations (cio	sed loops)
1.	BYE (1)	Bedfordview A (2)
2.	BYE (1)	Greenside A (2)
3.	Johannesburg A (1)	-ohannesburg B (2)
4.	Parkwood B (3)	Parkwood C (4)
5.	Jeppe C (3)	Jeppe D (4)
6.	Observatory A (5) Johannesburg D (5) Jende B (5)	Observatory B (6) Johannesburg (C) (6) Jeppe A (6)
7.	$\begin{aligned} & \text { Wanderers A (7) } \\ & \text { Honeydew B (7) } \end{aligned}$	Wanderers B (8) Honeydew A (8)
8.	Witwatersrand A (3)	Fari. mood A (4)
9.	Wanderers C(7)	Honeydew C (8)

1.3.5 Final order

Plase	Section 1	Section 2	Section 3
1	Johannesburg A	BYE	BYE
2	Johannesburg B	Bedfordview A	Greenside A
3	Witwatersrand A	Parkwood B	Jeppe C
4	Parkwood A	Parkwood C	Jeppe D
5	Observatory A	Jeppe B	Johannesburg D
6	Jepr A	JohannesbuTG C	Observatory B
7	Wanderers A	Honeydew B	Wanderers C
3	Honeydew A	Wanderers B	Honeydew C

1.6 FURTHER DEVELC. IENIS

- An order of play has been prepared for sections of six, seven and eight teams. The round robin of matches for sections of only six teams is completed after five weeks.
- If a club cannot accummodate all its quota of home matches as a result of a shortage of coerts, its teams are paired with clubs that have more than sufficient courts or with clubs that have only one team in the league. These pair teams are allocated different levels and home matches in the order of play are then swopped around by hand.
- The fixture data is transferred to a desk top publishing package from where Af pages are produced. The publisher of the fixture book then photographs the pages for inclusion in the book. This eliminates costly type setting $-\omega$, the errors that occur with it.
E-7

Author Comrie Andrew Neville
Name of thesis Research Into A Method Of Crew Scheduling For Suburban Rail Transport Using Heuristic And Linear
Programming Techniques. 1989

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

[^0]: 等 Srif:
 meand Transpor. irip

