
FAULT TOLERANCE IN
COMPUTER SYSTEMS .

M.J.BURY

Michael John Bury

A dissertation submitted to the Faculty of Engineering, Univer
sity of the Witwatersrand, Johannesburg, for the degree of Master
of Science in Engineering.

Johannesburg, 1986.

DECLARATION

I declare tha t this dissertation is my twin,, unaided work. It is.
being submitted £"or the Degree oF Master oF Science in Engineer
ing i n the University oF the Uituiatersrand, Johannesburg. It ha s
not been submitted before for any degree or examination in any
other U n i v e r s i t y .

n. J. BURY

19 th day of August 1986.

probability of failure is as low as possible. The degree of
reliability required of the system is determined by its applica
tion. High reliability is particularly, important in systems where
computer failure could lead to loss of life.., or to injury, or to
financial loss.

Much research has endeavoured to develop techniques fo r reducing
the probability of computer failure. In this dissertation, such
techniques are described and discussed.

The dissertation proceeds to describe the development of an ex
perimental fault-tolerant computer system which is sufficiently
flexible to allow the examination of ‘ several techniques for
achieving high reliability. Particular issues arising from the
application of the techniques of triple-modular redundancy and
software— implemented fault-tolerance to the system are discussed.

ACKNOWLEDGEMENTS

The author wishes to express his thanks to;

The National Institute for Aeronautics and Systems Technology of
the council for Scientific and Industrial Research, for sponsor
ing the project,

Professor Mike Rodd, who supervised the project, and provided ex
tensive moral support in addition to considerable practical ad-

Mr. Hein Smit, who was instrumental
the satisfaction of the CSIR, end g
tance whenever it was n e e d e d ,

setting up the project
encouragement and assi

Mr. Carel Contbrinck and Mr. Johan Prinsloo, of NIAST,
provided willing assistance at all times,

i iHr iMint

X V

DECLARATION i
ABSTRACT ii
ACKNOWLEDGEMENTS . iii
CONTENTS iv
LIST OF FIGURES ix
LIST OF TABLES x

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Minimization of Computer-related Dangerous 1
1.2.1 Fault Avoidance 1
1.2.2 Fail-Safety . 2
1.2,3 Fault Tolerance 2-
1.3 Investigations into Fault-$i>leraoce 3
1.3.1 Replication 4
1.3.2 Back-up 4
1.4 Research Project Objectives 6
1.5 Overview of the Dissertation 7
1.6 Summary 8

* FAULT TOLERANCE - AN OVERVIEW 10

2.1 Introduction x 10
2.1.1 Motivation for the Use of Fault Tolerance Techniques 10
2.1.2 Criteria to be Satisfied by Fault-tolerant Systems 11
2.1.3 Basic Terms and Concepts 12
2.1.A Causes of Faults 13
2.1.5 Classification of Faults 17

SvV

1

2.2 Techniques of Fault-Tolerance 17
2.2.1 An Outline of Fault-Toleronce 18
2.2.2 Information Redundancy 23
2.2.3 Hardware Redundancy 22
2.2.4 Software Redundancy /' 29
2.2.5 Time Redundancy
2.3 V a l u a t i o n of Appropriate Fault-tolerance Technique!
2.3.1 Qualitative Techniques
2.3.2 Quantitative Bvaltza,tion
2.4 Summary

3 SOFTWARE DEVELOPMENT TECHNIQUES

3.1 Introduction
3.2 Structured Design
3.2.1 Design Methodologies
3.2.2 Design Principles - Overview
3.3 Structured Programming
3.3.1 Structure Theorem and Conventions
3.3.2 Specification Extraction
3.3.3 Tree Structure Diagrams
3.3.4 Pseudo Code
3.4 Data Flow
3.4.1 Introduction
3.4.2 The Use of Data Flow Techniques
3.6 Top-Down Design
3.6 Verification and Validation
3.6.1 Definitions
3.6.2 Verification and Validation Criteria
3.6<3 Verification nnd Validation Techniques 49
3.7 Debugging 49
3.8 Summary 50

31
32

33
34 ,
35

%
35 t
35 A.
35 ,
36

37 V

39

40 -■ ’ '
m- ■
4&
44 ' V
44

44
45

47 '

47 L . - ^

. ' (v ' . ' ' "

CONTENTS

4 SYSTEM DESCRIPTION 52

4.1 Introduction 52
4.2 Detailed System Description 55
4.2.1 Task I/O Voting 66
4.2.2 _Self and Mutual Testing 58
4.2.3 Time Staggered. Operation 63
4.2.4 Device Operation Validation 66
4.2.6 Watchdog Timing 70
4.2.6 fault Handling 72
4.3 Summary 74

f' ■r:
5 SYSTEM DESIGN 75

5.1 Introduction 75
5.2 Hardware Characteristics 75
5.3 Software Requirements 76
5.3.1 Task I/O Handling 76
5.3.2 Self and Mutual Jesting ^ 77
5.3.3 Time-staggered Operation 78
3.3.4 Watchdog Timnng 78
5.3.5 Error Handling 79
5.3.6 Task Control 79
5.3.7 Inter-node Communication 79
5.3.8 System Initialization 80
5.4 Functional Spec,'fixation of the Software 80
5.4.1 Task Input and Output 81
5.4.2 Self and Muv-' • intf 82
5.4.3 Time-s tojjg liion 84
5.4.4 Watchdog Tim, ■ 84
5.4.5 Error Handling 84
5.4.6 Tnsk Control 85
5.4.7 Inter-nodti Communication 86
5.4.8 System Initialization 86

vi

CONTENTS

PAGE

5.5 Software Outline 87
6.5.1 Introduction 87
5.5.2 Operating System Routines 87
5.5.3 General Routines 88
5.6 Summery 89

6 SYSTEM INTEGRATION 91

6.1 Introduction 91
6.2 Requirements for the Supervisor Node 91
6.2.1 Inter-node Communication 01
6.2.2 System Monitoring and Control 92
6.3 Description ff the Supervisor Node 92
6.3.1 communication Handling 93
6.3.2 System Monitoring and Control 96
6.4 System Testing 99
6.5 Summary 100

7 CONCLUSION 10%

7.1 Summary 102
7.1.1 Fault Tolei-sece 102
7.1.2 Software Dev.-topmdnt Techniques 102
7.1.3 System Description 103
7.1.4 System Design 104
7.1.6 System Integration 104
7,2 Discussion 104
7.2.1 Fault Tolerance 104
7.2.2 Software Development Techniques 105
7.2.3 Evaluation of the Experimental System 106
7.3 Conclusion >0 g

CONTENTS

PAGE

REFERENCES 109

BIBLIOGRAPHY 113

APPENDIX 1 A Review of Current Fault-tolerant Systems llfl
APPENDIX 2 Data Flow Techniques 153
APPENDIX 3 Software Debugging Techniques 160
APPENDIX 4 Self-testing: Theory and Practice 162
APPENDIX 5 Hardware Details 171
APPENDIX 6 I/O Board Configuration ard Testing 189
APPENDIX 7 Software Requirements 204
APPENDIX 8 Software Functions! Specification 215
APPENDIX 9 Software Module Descripriona 259
APPENDIX 10 Reduced 1553 User Interface Definition 282

LIST OF FIGURES

I. The Hot Backup Configuration
The Pair— and-e-Spare Configuration

3. Time Constants of Systems
4. Causes of Faults
5. Conventional Software Development

and the Origins of Faults
6. Hardware Voting
7. Software Voting
8. Voter Triplication
9. The Duel-Redundant Configuration
10. The Quad-Modular Redundant Configuration
II. Functional Redundancy Checking
12. & Markov Model
13. A Decision Tree
.14. A Decision Diagram
15. A Tree Structure Diagram
16. Traditional Top-down Development
1?. Revised Top-dowp Development
18. Satisfactory Softwore Specification
19. System Description
20. Task I/O Voting
21. Staggered Execution of Tasks
22. Staggered Clocks
23. An Output C h anne1
24. An Input Channel
26. Task Complete liccerds
26. The Software System

12
14

15
24

24
25

27

28

29
34
41

43
45
46

. 48
54

57
65

66

67
69
71
81

LIST OF TABLES

PAGE

1. Node Errors and Faults 98
2^ General System Errors and Faults 99

1.1 Introduction

Since the early use o,' computers in which they were installed
primarily to produce answers to numerical p r o blems, they have b e
come integrated more and more into our everyday environment. We
can now find them in a variety of f o rms, strapped to our wrists,
installed in our car s , and suspended hundreds of kilometers above

With computers taking such an active part in our l i v e s , their
failure can often cause dangerous situations, where death, injury
or financial loss can result. Consider, for ex'fjple, a nuclear
power plant, controlled by a process system usitig a series of
digital computers. The failure of a computer can clearly be very
se r ious, and it is naturally desirable to prevent such situations
from arising. This has led to much work in designing computer
systems which are as reliable as possible.

1.2 Minimization of Computer-related Dangerous Situations

Three main philosophies have emerged for the minimization of
computer-related danger. These may be summarized as;

- Fault avoidance

- Fail-safety

- Fault tolerance

1.2.1 Fault Avoidance

An obvious way of preventing computers from causing harm to the
plant, oc to the environment which they control, is to make sure
that they never fail! The philosophy which attempts to accomplish
this goal is known as "fault avoidance".

Fault avoidance requires that the physical components of a c om
puter system, and their assembly m e t h o d s , are as perfect as p os

Chapter 1 INTRODUCTION

sible. The cost of obtaining near-perfect components is often ex
cessive, and maintenance staff must be continuously available
because the system ceases to operate upon first failure. So,
feult-avoidance techniques are clearly expensive and imperfect
[H i and may consequently not result in adequate reliability.

1.2.2 Fail-SafetV1-'

In view of the problems relating t u t h e design of perfect sys
tems, the emphasis in research has focused on ensuring that com
puter failures do not lead to harm if and when they occur. This
leads to another philosophy, namely that of “fail-safety".iTo achieve fail-safety, it is necessary that when a computer sys
tem ceases to operate, it does so in such a manner that it can
have no harmful effect on the environment over which it has in
fluence. A particularly gtiod example: of the application of fail-
safety techniques can be found in the area of railway signalling.
If the system which manipulates the signals of a railway
system fails, then all affected signals are set to STOP, so that
trains in the area come to a halt, and hence avoid collision or
derailment.

1.2.3 Fault Tolerance I

There are situationo, however,
computer from a system cannot be
undesirable side-e?fects.

where the removal of the
accomplished without

In many industrial processes, loss of control spells ruiti of
the product, with the additional possibility of permanent damage
to equipment. In such a circumstance, a fail-safe end to
control does little to prevent considerable financial loss.

An even worse case may be considered: the failure of a fly-by-
wire aircraft r.vntrol system (one in which contro) signals to the
aircraft take the form of electrical signals rather than
mechanical links) could lead to the loss of the aircraft and

Chapter 1 INTRODUCTION

crew. Mechanical back-up systems may be used in certain
cases, but experimental aircraft are being developed which
depend entirely upon the fast and accurate capabilities of a
computer to maintain controllability [2].

In the case of remote equipment, . such as weather monitoring
stations and satellites, it is not possible to effect early
repair should the computer system fail. Unless self-repair
and/or graceful degradation facilities are built into the
system, use of the system is totally lost when a fault occurs.
Once again, therefore, fail-safety is inadequate.

There is consequently a need for computer systems which
operate even when there are faults in the system. This leads
to the concept of "fault-tolerance", which has been defined
as "the ability of a system to operate correctly in the
presence of faults" [3], and is the central topic of this
dissertation.

1.3 Investigations into Fault-Tolerance

Over the past decade, much research effort has been dedicated to
the development of fault— tolerant computer systems, and this
has resulted in a large number of techniques being proposed as
suitable for particular applications.

By definition, a fault-tolerant system must be designed assuming
that some components will fail. The key ingredient in all fault-
tolerance techniques is therefore redundancy - of information,
resources and/or time. The type and extent of the redundancy
employed in the system depends on the technique used, as well, as
on the intended application. The techniques of fault-tolerance
fall into two loosely defined categories:

Chapter 1 INTRODUCTION

1.3.1 Replication

Prom the literature, "replication" is evidently the most popular
technique being used today. Many identical or, similar units are
u s e d , and all fault-free units arn active, that is to say, they
contribute to the operation of the system as a whole. When a
unit's failure is detected, the system attempts to reconfigure
with one unit les s . Hence, execution time might lengthen, but all
essential services are maintained.

1.3.2 Back-up \

"Back-up11 is the second widely used technique (See fig. 1). In
this approach, only is operational, while one or more
units are available e .,m » • If the spare units are powered in
the idle state, tht ! /ysfcem is referred to as "hot" back
up. Sometimes, unpowereti. Vp'ares are used, in an attempt to lower
the spare failure rate. - ‘S-tie units are connected to the process
through a switching mechanism that keeps only one active at a
time. The active processor performs comprehensive self-checking,
and is switched out when faulty.

INTRODUCTION

PROCESSOR PROCESSOR

SWITCH

PROCESS

1 - The Hot Back-Up Configuration [4]

i of hot back-up, known as "pair-and-a-spare"
ited (See fig. 2). In this* the active and
each consist of two m o d ules, thus forming a
capable of reliable aelf-checking.

V / ' - '

11,

INTRODUCTION

OUTPUT

MASTER

PRIMARY PAIR

MODULE

FIGURE 2 - The Pair-and-o-Spare Configuration [5]

1.4 Research Project Objectives

This project had two major objectives. Firstly, it aimed to g en
erate insight into the field of fault*'tolerance, and

ly to produce a flexible experimental system which could
for studying various fault-tolerance techniques.

It was felt that at this stage in the development of fnult-
tolerant systems, little practical experience exists, creating a
need for the project. H o w ever, the effort investigating foult-

was not a imply „o facilitate the production of
system; it was also desirable to gain expertise

in the field of fault-tolerance, with a view to applying
the knowledge in future projects.

■ U ’".

It was therefore necessary to b
the project beyond that

le theoretical side of
for the production of the

Chapter 1 INTRODUCTION

experimental system. To this end, various aspects of the topic
required further attention, such as;

- investigations into the theory of fault-tolerance

- atudy of important current systems, both commercially avail
able, and undergoing development

It should be pointed out that the composition of much of the ex
perimental system developed was defined by available equipment
and tools. These constraints are discussed in the appropriate
place in the dissertation.

Development of the experimental system consisted of:

- selection of a representative fault-tolerance technique
for demonsteation of the system

- investigations into software engineering techniques

- production of a suite of software modules for use in the
various system configurations

- integration of the software and hardware components of the
system

- application to a real-time, but simple sorvo-control system
so as to provide a live demonstration

1.5 Overview of the Diaaertation

The remainder of this dissertation covers the following a r eas:

Chapter 2 - Paul I;-Tolerance - a discussion of techniques for
achieving fault-tolerance and for evaluating fault-tolerant

Chapter 1 INTRODUCTION

Chapter 3 - Software Development Techniques - Structured
design, structured programming, data flow techniques, top-down
design, verification, validation, and debugging

Chapter 4 - System Description - System requirements,
functional specification of the system

Chapter 5 - System Design ■* Hardware characteristics, software
requirements, functional specification of the software, and
software characteris tics

Chapter 6 - System Integration - Development of the software
required for system control and testing, and implementation of
the system

Chapter 7 - Conclusion - A brief summary of the results of the
research followed by a discussion of the more important
findings and conclusions as well as unsolved issues

1,6 Summary

Because of the wide use of computers in critical applications,
it has become necessary for attention to be given to the
problem of computer faults. The main computer-fault handling
techniques are

- Fault ovoidanco,
- Fail-safety, and
- Fault tolerance.

Research effort into tho technique of fault tolerance has led
to many fault tolerance methods, which can be loosely divided
into the categories of

- Replication, and
- Back-up.

Chapter 1 INTRODUCTION

'■Tfc* goals of the current project were to gain insight into
the field of foult-tolerance, and to produce a flexible
experimental system for use in the study of fault-tolerance
techniques<

To provide a sound basis for the development of an experimental
system, an extensive study into fault tolerance was undertaken,
and this is covered in the next few chapters.

The benefits of employing fault-tolerance to computer system
design are m a n y , but in essence, lead to reduced system lifetime
costs. In this chapter, various aspects of fault-tolerance are
explored, and L t most critical areas are highlighted. Many cur
rent fault-toleraht systems are referred to, and are described in
detail in appendix 1..

2.1.1 Motivation for the use of Fault-tolerance Techniques

A number of factors have led to the development of fault-
tolerance techniques, the moat important being;

Reliability. Since maintenance and general downtime costs have
risen to become a large proportion of total system lifetime cost,
it is obviously desirable that systems should be designed to fail
as seldom as possible.

Data integrity. Because computers are used in highly critical
areas, it is essential that data corruption is higlly improbable.

Availability. From a users point of view, it is necessary that
computer down-time is minimized, especially when the service
provided by the system involves human interaction.

Graceful Degradation. Remote computer equipment must function far
as long os possible without repair. In the '‘ttreme situation
of, say, an unmanned spacecraft, no repairs at all ore possible;
any failure should not lead to a total system failure, but merely
a drop in performance.

It should be no ed that these are the most obvious points of
improvement brought about through the use of fault-tolerance
techniques; other facilities which may be provided by the ap
plication of the philosophy include:

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

On-line maintenance (the ability to perform repairs without
switching the system o f f) , A fault-tolerant system would regard
the removal of a single unit as a unit failure, and continue in
its normal fault-handling manner.

Fail-safe operation (the prevention of dangerous effects
caused by failure of the computer), The failure of a unit can be
automatically prevented from affecting the environment, by the
fault-handling mechanism.

2.1.2 Criteria to be Satisfied bv FBult-^oleraiit Systems

The reliability requirements which must be imposed on a system
naturally depend on the intended application {6]. For example,
the primary function of information storage systems is the safe
storage of data, so such systems can tolerate short losses of
service, but not data loss or corruption. On the other hand,
telephone exchanges require high availability, so that users do
not have to wait for intolerably long periods oefore the required
service is provided, but it doesn't necessarily matter if a few
wrong connections are made. In the extreme case, life-critical
systems can tolerate no failures at all.

The computer must be capable of a recovery time (the time it
takes the system to function acceptably, after a fault) wliica
is appropriate to the time-constant of the application (a
measure of the speed of the system) (See fig, 3).

..S' ■o :f

FAULT TOLERANCE - AN OVERVIEW

LOW iNERTifl j

HIGH 1NERDA
- MECHANICAL ~

PROCESSES '

JL—

/ ELECTRONIC «J
“ SIGNAL PROCESSING 7\

tflJMftN IN
'THE LOOP

10 100 1000 10 000

ISECONDSI M
t bOPlVHRE fHULl I

FIGURE 3 - Tise Constants of Systems [4]

2;1,3 Basle Terms and Concepts

Majiy differing interpretations are placed on a number of terms
and concepts used in the field of fault-tolerance. In order to
avsid misinterpretation of terms used in this dissertation, the
Bore important terms and concepts are defined below;

- Fault - any stuto of a computer’s hardware or software
which could cause the computer to operate incorrectly, or not
at all

- Common-mode fault - a fault which affects all parts of the
system simultaneously (for example, electromagnetic
interference)

- Error - incorrect operation of tho computer, leading to
incorrect data or to invalid actions by the computer

12

FAULT TOLERANCE - AN OVERVIEW '

- Reliability - the probability that the computer will
operate correctly during a given time period

- Fault masking - the prevention of erro
other parts of the system

— Fault tolerance - the ability of a system t
correctly in the presence of faults. The concept embodie

fault detection — the discovery of a fault

- fault recovery - removal of the effects of the fault
and isolation of the faulty system component (i.e. ensuring that,
the component cannot exert any influence on the operation of t he \
system as a whole) : 1

2.1.4 Causes of Faults

In order to combat the occurrence of faults, it is
know the way in which they arise (See fig. 4). It is often pos- ' \ !
sible to perform "preventative design" (this entails the
struction of the system in such a way that susceptibility to
faults is minimized), which will cut down on the number of
faults that must be catered for by the fault-tolerance mechi

& !

1

,1

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

ERRORS MALFUNCTIONS,

FAULT AVOIDANCE

FIGURE 4 — Causes of Faults [7J

In essence, the origins of faults can be grouped
categories:

- specification faults

- implementation faults

- component failures

- external disturbances

The way in which these fault origins relate to the s

software development cycle is shown in figure 5.

into four

:onventional

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

FIGURE 5 - Conventional Software Development nnd the Origins of
Faults [8]

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

Specification faults.

The first possible cause of specification faults is that of
hardware and software design specification mistakes, which oc
cur when the hardware or software has been specified in a way
that does not meet with the requirements of the system. Secondly,
architectural mistakes mea n that the system has been designed in
such a- way that it is not able to perform all operations
required of it. Finally, algorithm mistakes arise when an algo
rithm implemented in the system is incorrect.

Implementation f a ults.

Following on from the design specifications, the system is sus
ceptible to implementation faults. These can be the result of,
firstly, poor design, which implies that the design of the
hardware does not meet all the requirements of the specification.
Otherwise, such faults can originate in poor component selection,
where unsuitable components have been chosen. Furthermore,
poor construction of the hardware can lead to weak points in the
system, or software codiftg faults can lead software which does
not always perform according to the software specifications.

Component failures.

Component failure can arise from manufacturing errors, where a
component has been Incorrectly constructed, or from component
flaws or component aging.

External disturbances.

Radiation is the one of the most prevalent external disturbances.
External electromagnetic fields can alter the operation of the
system so that it fails. Physical damage to the system can also
occur from an external source, or unexpectedly severe environmen
tal conditions can cause the system to fail. Finally, inap
propriate man/machine interaction via control or maintenance

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

, where the
itrol the systi

take or i
failure.

not qualified

Faults are classified using one or more of the following
parameters:

- Cause - one of the possibilities mentioned in Section
2.1.4, which caused the fault

- Nature - whether the fault is in the hardware or the
software

— Duration - whether the fault is permanent, transient or
pseudo-transient (e.g. pattern dependent)

- Extent - the amount of the system which id affected by
the fault

- Value - whether the errors are determinate or in
determinate (i.e. whether the errors are always the saihe, or
random)

Knowledge of these details enables effective counter-measures to
be taken.

2.2 Techniques of Fnult-Tolerance

As mentioned previously, redundancy forms the basis of a fault-
tolerant system, and this redundancy may take the form of infor
mation redundancy, hardware redundancy, software redundancy
and/or time redundancy. Each of these topics will be covered in
the following sections.

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

2,2.1 An Outline of Fault-Tolerance

The sequence of handling a fault begins with the detection of
an error. The system then attempts to diagnose the fault which
caused the error, and prevent the damage from spreading
(confinement). Thereafter, it is necessary to reconfigure the
system to a valid state,, bypassing the faulty components, and
to continue operation - as fully as possible, Finally, if pos
sible, repair to the faulty aomponent(s) should, be made, thereby
ultimately restoring full capabilities to the system. In the se c
tions which follow, the various stages involved are discussed in
depth.

Error Detection.

Faults and subsequent errors typically manifest themselves as in
valid data. To detect errors and faults, therefore, it is neces
sary to detect invalid data. To determine the validity of data,
two types of test are possible:

Voting

Bounds of reason

Voting. Several answers to a calculation are obtained typically
using one of two methods:

- repeated calculations - Each calculation (for which the
result is to be validated), is performed two or more times. The
answers obtained in each repetition (which may be performed by
different processors), are compared, and any inconsistency
reveals that an error has occurred. If executed on only one
processor, then this technique detects the occurrence of faults
and non-determinate faults only, since a permanent, determinate
fault would manifest itself in the same way in each calculation,
misleading the system Into believing that the result is valid.
Also, if the calculations are to be run in separate processors,
care must be taken to ensure that the executions are staggered in

18

j&r

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

time so that common-mode faults do not produce the same errors in
all processors.

duplicated calculations - Bach calculation (for which the
result is to be validated), is performed in two or more dif
ferent ways (possibly by different computers). Any discrepancy in
the results indicates the occurrence of on error. All types of
fault are covered by this method, but extra effort is required in
development of the algorithms, and. extra program storage apace is
needed for the different versions of the calculation.

There are two possible ways in which the answers to these cal
culations may be compared:

hardware - Dedicated circuits ore used to compare the
results of computations. This method is fast, but requires the
addition of components, increasing the cost end the risk of
failure - because of the extra components! Furthermore, in order
for hardware voting to be used, all values of data must be simul
taneously available. This leads to the possibility of a common
mode fault affecting all versions of the data in the same way,
causing the voter to pass the incorrect value

- software - Voting is accomplished using a software module

Considerable effort is also required in both hardware and
software voting to make the voting mechanism itself fault-
tolerant .

Bounds of reason. In this technique, the value of a data ele
ment is checked against pre-dofined limits, beyond which it is
determined to be invalid. The test may be applied to any data
element for which bounds of reason can be defined. The limits are
usually characteristics of the application, or possible con
straints imposed by the data-typing provided by the programming
language.

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

Fault diagnosis.

Faults that are to be tolerated by the system must be well
defined, at an early stage, so that they can be specifically
catered for in the design. Such faults must be automatically
detected and localized by the system, using the characteristics
of errors which have occurred, or can be made to occur, using
diagnostic programs.

Damage Confinement.

In order to limit the effects of a fault, it must be possible to
reset the system to a valid (correct) state after the occurrence
of a fault, so that the system does not continue producing more
and mor e errors.

Reconfiguration.

The system must automatically bypass defective components and
yet keep all system functions, which are not dependent on the
lost component, available to the user, with: a possible
reduction in processing spaed. '

Recovery.

Data which was found to be erroneous must be corrected. Other
wise, recovery will be in the form of resetting to a previous
valid state (when possible), or to a predicted future state. An
important goal In the recovery process is that every restart must
be accomplished with a minimum recovery time, in order to mini
mize down-time losses.

Fault Treatment and Continued service.

The system should remain in a degraded state for as short a time
as possible. If possible, the fault should be repaired or the
faulty unit replaced so that fault-tolerant operation is resumed.

20

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

The following sections discuss the techniques used to put these
principles into practice.

2.2.2 Information Redundancy

Information redundancy is the use of more information about the
data than is actually needed by the application.

A widely used technique for implementing information redundancy
is by the use of "data encoding". Numerous information-redundant
codes have been developed to provide for detection and, in cer
tain cases, correction of errors. A code constructed in such
a way that any single error transforms a valid code into an in
valid code is called a single-error detecting code. A simple form
of such error detection is the single-bit parity check. Another
type is "M-out-of-N" coding, where code words are N bits long,
and always contain M ,,l"s.

A number of "checksum" arror-detaction codes exist. The
checksum is calculated by summing the binary data that is to be
moved from one point to another. When the data reaches its des
tination, the checksum is recalculated, and if the new value and
the one calculated previously do not agree, then an error is in
dicated. These codes are useful in the transfer of blocks of

Possibly the most common extension of parity checking is the Ham
ming error-correcting code. Hamming codes can detect double er
rors, and correct single errors. Once a single binary error has
been detected, it is easily corrected by complementation of the
data bit in the identified position.

Fault-tolerant systems often incorporate information redundancy
into the fault-tolerance mechanism, especially in the memory se c
tions of the system. In some cases, however, the primary fault-
tolerance mechanisms of the system are so effective that they
make the reliability improvement brought about by the use of in
formation redundancy negligible.

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

2.2.3 Hardware Redundancy

Hardware redundancy is the use of more physical equipment than is
required by the application.

Hardware redundancy methods may be grouped into two categories;

- replication

- back-up

The addition of spare resources to either category results in
what is often called an "hybrid" system.

Replication.

In the technique known as "replication", more than one resource
is available to perform tasks required of the system. Memory,
processing, and/or input and output units may be replicated,
depending on the requirements of the application. All units in
the system contribute to the operation of the system as a whole,
and may be run out of close synchronization (where every instruc
tion is executed at the same time in all processors) to avoid
the effects of common-mode faults, An example of such a system is
the Fault-tolerant Array Signal Processor (9), which uses a form
of replication to perform space-based signal processing (See ap
pendix 1 for more details).

Three important forms of replication are:

- dual redundant systems

- triple-modular redundant systems

- gracefully-degrading systoms

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

Dual Redundant Systems. One of the simplest redundant systems is
the dual system, in which the same tasks are executed on two dif
ferent units, and the outputs compared. If the outputs do not
agree, then an error is signalled. The system is incapable of
deciding which of the two units has produced the error unless
further testing is undertaken. This means that the system must
be shut down when an error occurs.

Triple-modular Redundant Systems. These systems use three u n i t s ,
all performing the some calculations, and are capable of masking
all single errors, as well as indicating which unit was respon
sible for the error. Furthermore, the systems are capable of
detecting simultaneous errors in all units, because the vote will
fail. The Triplex 32 system (4] utilizes TMR (Triple Modular
Redundancy) to accomplish fault-tolerant process control, while
the Software Implemented Fault Tolerance [10) system applies TMR
to aircraft control (See appendix 1 for detailed descriptions).

After a faulty unit has been pinpointed, its outputs are ignored,
while the good units continue operation as a dual system. When
the faulty unit has been repaired, it is -set to a state consis
tent with the other units, and the system returns to its original
degree of fault-tolerance.

Voting may be accomplished in either hardware (See fig. 6), or
in software (See fig. 7).

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

VOTER

FIGURE S - Hardware Voting [4]

PROCESSOR A
| APPLICATION | TASK
- --- -
1 s 1
i t r1 IN L_ I OUT 1| BUFFER p 1 BUFFER |

10 TASK

OPERATING SYSTEM

HIGH-SPEED
INTERFACE TO
PROCESSORS 0 ANO C

FIGURE 7 - Software Voting (4)

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

With voting, there is some loss of performance while data is
passed through the voting mechanism. It is possible with hardware
voting, however, to utilize parallel processing so that modules
in the system are performing the next operation while the voter
is finishing the previous one. A more serious drawback of
hardware voting is. that the voter components are unprotected, and
expose the system to a single-point failure. One solution is 1 to
triplicate the voters (See fig. 8), The problem' of "common-mode
faults is not overcome, however,^ because data must "still t e
available to each voter at the seine time. The major advantage of
hardware voting is its speed, especially in- fcontrol applications
which often require large numbers of inputs and outputs.

M eV - ^ V oteX . ^ task

FIGURE 8 - Voter Triplication [5] - : '

If more than three units, are used in the system, then N-modular
redundancy is being employed, where 'N is the number of units.
Such replication may be used when inadequate reliability is
provided by the triple-modular technique. There are usually an

This teohnioue is often
1-redundant control system
trollers or ouiuworciui computers

to detect and recover ffotn
through a switching

ive and the other in reserve (

Chapter 2 FAULT TOLERANCE - AN OVERVIEW ^

odd number of units, so that a majority vote can always be ob
tained.

Gracefully-degrading S y s tems. When the multiple units in a s S'Extern
all perform different functions, then a gracefully-degrading sys
tem can be formed. Effective load sharing
resources, and efficient communication between the
necessary. When a unit fails, its load is shared among 1
u n i t s . Hence, execution time increases, but all ays
are maintained. In addition to utilizing the technique of'
modular redundancy, the "Software Implemented Fault-tt..
(SIFT) system also kas the ability to degrade gracefully,
of replicated resources. Other systems vttiUsk are capable of ,
graceful degradation a re the Basic Fault-tolerant System [11] and
the Tandem transaction processing system [12] (See appendix 1).

Back-up.

The fundamental idea behind the principle of 1
that one unit is operational, while one or more u n i t s .
reserve. When the active unit has failed, a replace]

Two important back-up configurati

- dual-redundancy with switch-,

- pair-and-a-spare

Dual-redundancy with
plied in proces
structed using
with additional hardware
faults. The pair is conn
mechanism that
fig. 9).

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

odd number of units, so that a majority vote can always be ob
tained.

Gracefully-degrading Systems. When the multiple units in a system
all perform different functions, then a gracefully-degrading sys
tem can be formed. Effective load sharing across system
resources, and efficient communication between the units are
necessary. When a unit fails, its load is shared among the other
units. Hence, execution time increases, but all system functions
are maintained. In addition to utilizing the technique of triple
modular redundancy, the "Software Implemented Fault-tolerance"
(SIFT) system also has the ability to degrade gracefully, because
of replicated resources. Other systems which are capable of
graceful degradation are the Basic Fault-tolerant System [H I and
the Tandem transaction processing system [12] (See appendix 1).

Back-up.

The fundamental idea behind the principle of back-up systems is
that one unit is operational, while one or more units, wait in
reserve. When the active unit has failed, a replacement takes

Two important back-up configurations are:

- dual-redundancy with switch-over

- pair-and-a-spare

Dual-redundancy with Switch-over. This technique is often ap
plied in process control. A dual-redundant control system is con
structed using two process controllers or commercial computers,
with additional hardware and software to detect and recover from
faults. The pair is connected to the process through a switching
mechanism that keeps one active and the other in reserve (See
fig. 9).

FAULT TOLERANCE - AN OVERVIEW

PROCESS

FIGURE 9 - The Dual-Redundant Configuration [4]

The active computer executes both a control program for the ap
plication, and a diagnostic program that continually checks
for errors in the processing unit, memory and I/O circuits.
When an error is detected, the switching mechunism transfers con
trol to the reserve computer, which will have been passively
monitoring the process. The Agusta 129 helicopter flight control
system is an example of such b a ck-up, as is the Resilient trans
action processing system. These are covered in soma detail in ap
pendix 1.

For fast processes, several problems make this method unsuitable.
The first problem is that errors may occur before the diagnostic
program can detect that something is wrong. Secondly, the
switching time at computer change-over may be too long, causing
an unacceptable discontinuity in the control values. Finally,
the switching mechanism could f ail, causing complete loss of c on

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

trol. When such fast processes are to be controlled, techniques
that provide fault-masking must be used.

Pair-and-a-spare. In the pair-and-a-spare configuration, four
identical modules are organized as primary and shadow pairs of
master and checker modules (See fig. 10).

INPUT

FIGURE 10 - The Quad-Modular Redundant Configuration (5)

Only the primary’s master module is capable of activating the
computer outputs. While the primary's master transmits data, its
checker modulo compares external data and that presented to its
disabled output drivers (See fig. 11). This technique is called
"functional redundancy checking". If the primary's checker module
detects an error, it initiates a procedure that disables the
primary pair, and enables the shadow pair to take over the
primary rote. Systems which apply this technique ore the Stratus
transaction processing system and the Intel 432 general-purpose
system (See appendix 1 for more details).

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

MB

?—

\n
ENABLE
DRIVER

r

rtf
driver'

[ONRIJ CHECKER

M

OUTPUT ERROR

FIGURE 11 - Functional redundancy Checking (G)

Hybrid.

The essence of the hybrid system is the availability of spare
units to replace those that are faulty. Spares can be provided
for any system in which the faulty unit con bo identified. The
purpose of providing spares is to ensure that the system is
returned to its original fault-tolerant state with the minimum of
delay. The failed unit can then be removed for repair.

2.2.4 Software Redundancy

Software redundancy is the use of more software then is required
by the application.

Software redundancy can range from the addition of small routines
to perform validity checks on the data, to full replication of

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

all software (i.e. more than one complete software system), writ
ten by different programming teams.

There are reany possible approaches to implementing redundancy in
software, differing mainly in complexity. Validity checks are
the simplest; in this approach, the values of key variables
in calculations are monitored to pick up any deviation from
the range of values that ■ the variables may have,

Redundant software may be used to perform periodic testing of
hardware, by applying algorithms to pre-defined data with known
results, If erroneous results are produced by the, hardware, then
that particular piece of equipment is signalled as faulty.

Full replication of software may be used as. a means to avoid er
ror propagation, using voting. Identical copied of the software
may be run concurrently in different processors (thereby includ
ing hardware redundancy as well), and the results compared.
However, global faults such as electromagnetic interference may
cause the same error to occur in all sets of the software. For
this reason, the execution of the software may be staggered
slightly in time, so that the same error is npt induced in all
copies of the program.

An expensive, but potentially reliable way of replicating
software is to hove different design teams each produce the
programs knowing only the functional requirements of the system.
This may even be taken so far as to have the teams use different
programming languages. In this way, it is unlikely that the same
code will be produced, and it will also be unlikely that the
same programming mistakes will bo made. Hence both common-mode
errors and software errors have a greater probability of detec
tion when such a system is in use.

Software may be used to perform the voting involved in
hardware redundant systoms. Bach computer receives the same in
puts, computes a result, and sends it to the other com
puters, receiving their answers in return. The majority voted

30

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

result is the used for output. This approach is known as SIFT
[10], and will be discussed laker.

Another software-redundant fault-tolerance technique, called
"check-pointing", is used in some loosely-coupled systems, in
which duplicated processors run the software at approximately the
same time, but not wit h step-by-step synchronization. Software in
these systems can periodically suspend normal program execution
while each system compares its state with the state(s) of its
companion(s) to determine if an error has occurred since the last
check-point. If no error is detected, then the system saves its
current state, and operation resumes. If an error is detected,
then each system is "rolled back" to the previous (recorded)
error-free state, and processing continues from that point. If
the same error is detected at the next check-point, the failure
is diagnosed as permanent.

2.2.5 Time Redundancy

Time redundancy is simply the use of more time than is needed to
perform only the functions required by the application. All the
fault-tolerance techniques already discussed involve the use of
time redundancy:

- information-redundant systems must always perform checks to
see if the data has to be corrected. Even if these checks
are performed in hardware, some delay occurs. If correction is
needed, then further delay is required

- hardware-:tidundant systems also perform correctness
tests when they reach the voting stages of the each p r o cess,
so that time redundancy is also evident here

- software-redundant systems can require many times the normal
execution time if the entire software system is replicated. If
only small diagnostic routines are used, then only a small in
crease in execution time will be necessary

Chapter 2 FAULT TOLERANCE - AN OVERVIEW

Tine redundancy can be used to aid in the determination of the
nature of a fault; by repeating a calculation, it is possible
to distinguish between permanent and transient f a ults.

2.3 Evaluation of Appropriate Fault-tolerance Techniques

Evaluation of systems is necessary to determine their suitability
for a - particular application. It is clear that a wide range of
techniques are available for incorporation into the design of a
specific fault tolerant computer system. It is naturally impor
tant to weigh up the various attributes of each approach and the
trade-offs in a particular application. Generally, it is apparent
that, as in all engineering, both qualitative and quantitative
factors must be considered.

Qualitative comparisons describe trade-off issues and specific
benefits of one technique or design over another. These are fac
tors that can not be given numerical values, and can include:

- verifiability - the ability to determine that a system
design performs the functions required of it

testability - the ability to determine that a system is
operating as it was designed to operate. Additional fei
usually incorporated to make the system testable

flexibility - the ability of a system to be used in many
different application environments

Additional points which are considered in system evaluatio

- faults that are covered by the system

- applications supported by the system

FAULT TOLERANCE - AN OVERVIEW

- technology - the capabilities of, and requirements for the
system depend on the technology used

2.3.2 Quantitative Evaluation

Quantitative evaluation techniques derive values for (7];

„ fault coverage
handling all faults

the probability of detecting and

- reliability - the probability of survival in the
span (to ,t], given that the system was operational at to

availability
available at time t

the probability that the system is

Numerous quantitative measures are taken into consideration in
the above evaluations, including {13]:

- mean time to first failure
- mean time between failure
- mean down Lime
- availability
- computation reliability
- computation availability
- average computation to first failure
- average computation between failures

Also important in the evaluation of a technique are:

- performance - including throughput and response times
- cost - including purchasing price, maintenance cost mid ,
plication engineering cost

Two widely used quantitative system evaluation techniques

- combinatorial modelling
- Markov modelling (See fig. 12)

a <8*6. «u .i». ̂ £wNlef«rlGe -

V
FAULT TOLERANCE - AN OVERVIEW

Sg - FRULT-FREB SlfllE
Sj - 1 MODULE FAILED I
f - SYSTEM FfllLEO
P,, - PF086B1LITY OF TRSHSI'TIONINS

FIGURE. 12 - A Markov Model [7]

2.4 'Summary

The concept of fault-tolerance arises from the need to cater for _
the occurrence of faults in computer systems. Different applica
tions require different aspects of the system to be made secure
against the effect of faults.

The core principle, around which the sequence of fault-handling
events is built, is that of redundancy. This redundancy may take
the form of information redundancy, hardware redundancy, software
redundancy and/or time redundancy.

In order to compare tin relative merits of different
tolerant systems, a number of evaluation measures, both q
tive and quantitative, have been developed.

f a u l t -

l a l i t a -

It is evident that a major portion of many fault-tolerant systoms
is the software which provides fault-tolerance functions. It is
clearly necessary that this software be as reliable us possible,
so that it does not diminish the reliability of the system as a
whole. The next chapter gives a brief coverage of the techniques
of good software design, or software engineering.

Chapter 3 - SOFTWARE DEVELOPMENT TECHNIQUES

A major aspect in the production of any fault-tolerant computer
system is clearly the development of reliable, well defined
software. In view of thi s , relevant software development tech
niques are examined in this chapter.

The application of conventional development practices to software
design has been shown [14] to lead to a 20% - SOX rule for the
division of resources between definition and coding (20*) and
testing and maintenance (SOX), The lack of appropriate software
design and development tools may lead to unstructured, poorly
documented, and error-prone programs which are difficult to un
derstand and expensive to maintain [14]. The increasing com
plexity and extent of applications of computers has reinforced
the need for improved software development techniques-

However, with the application of modern software engineering
practices, reductions in software c o sts, increases in
programmers' productivity and reductions in error frequency of
between 25* and 75* have been observed. Experiments indicate that
the application of more systematic management, design and
development techniques may lead to a 40* - 20* - 40* rule for the
division of resources between definition/design, coding, and
testing/maintenance respectively [14].

3.2 Structured Design

3.2.1 Design Methodologies

As applied to programming, design methodology consists of [15]

- establishing the definition of the problem

- specifying the data objects the software must manipulate

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

specifying the operations that correspond to the
manipulation of the data objects

specifying the programs which must . operate, on the
defined data objects

In order to control tne complexity of the development sequence,
it is necessary that specifications are initially represented in
an abstract form* leading to the-adoption of formal specification
systems.

3.2.2 Design Principles - OverView

The four major design principles are [IS], [14]:

Specification — identification of all' the function^ that the
design oust provide. Specifications formally define thR<functions
and properties that a designed system must have. forRaliaed
specifications are derived from the external requirements of the
system. \

Complexity decomposition - a structured organization of intellec
tually manageable steps or components of the design. The struc
ture of an entity is given when the relationships between its
components have been identified. The most widely accepted notion
of modern programming techniques is the introduction of good
structure into program and data design.

'Guided design. A constrained and controlled process of construc
tion of the design. The construction model consists of three
rules which govern the development process;

A program cannot be functionally specified until all its
requirements are known

- The program’s algorithm cannot be derived until the func
tional specifications are known

SOFTWARE DEVELOPMENT TECHNIQUES

: The environment for programs and objects form conditions
which in turn may generate requirements through data type
specifications to be satisfied by a lower level development step

Proof of correctness. Ideally, a proof bhoul^ be possible for
every program design and every data representation„to ensure the
design is consistent with its specifications. At present?;'.^
however, it is accepted that this goal is not practically at
tainable. Two types of proof are needed

- Proof of the program text • - ,

- Proof of the data representation

Proof is considerably aided by good documentation structure and
the use of formalized specifications throughout t b V design
sequence [15].

3.3 Structured Programming

It is clear that the easiest systems to maintain are those
built up from manageably small m o d ules, each of which is, as far
as possible, independent of the others. This allows them to be
taken out of the system, changed, and put bach in the system
without affecting t he rest of the systems

In such a system, each module has its own job, which it performs
only when given orders from above; it communicates only with
its invoking module and With its invoked modules, to Which it
will, in turn, issue orders.

A good design therefore has the least possible coupling -between
m o d ules. Three types of coupling have been defined [16]: ,

i

!

5
■ ?

'ii

- 1

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

Data coupling. Data is passed as part of the invocation of the
module and aa part of returning control to the invoker. The cou
pling is improved if aa few data exchanges as possible are used.
Ihia coupling has been found to be the best type.

Control coupling. In this fora of coupling, status reports are
passed between the invoking module and the called module,
causing changes in the control pattern. This type of exchange
should be kept to a minimum, for ease of understanding rf program
flow, and hence easier maintenance.

Bxternal/content/patbological coupling. This coupling arises
when the execution of a module depends extensively on another
module. Such coupling should be avoided, because of the confusion
it can create in understanding of the program.

Cohesion,

A highly cohesive module, whose parts all contribute to a single
function, is not likely to need much coupling to other modules.
Six types of cohesion have been identified. From the worst to the
best, they1- are [16]

Coincidental cohesion. The elements of the module cannot be
seen as achieving any definable function.

Logical cohesion. Several similar functions are combined into one
m o d u l e .

Temporal cohesion. A variety of functions, which are executed at
the same time, are combined into one module^

Procedural cohesion. Each chxink or procedure of a flowchart has
been built into the same module.

Communications! cohesion. All functions in the module operate on
the same data stream.

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES-

Functional cohesion. The module carries out one identifiable
function.

Structured programming involves coding programs using a limited
number of control structures to form highly cohesive units of
code that are easily readable, and therefore more easily tested,
maintained arid modified than Conventional programs.

M any tools which aid in program development are available. The
prime tools ore:

- The structure principle

- Specification extraction

- Tree structure diagrams

- Pseudo-code

3.3.1 Structure Theorem and Conventions [17]

The structure theorem states that any proper program (a
program with one entry and one exit) is equivalent to a
program that contains as control structures only

- sequences of two or more operations

conditional branches to one of two operations (IF
condition x THEN action a ELSE action b)

- repetition of an operation while a condition is true (DO
WHILE condition x)

A large and complex program may be developed by the £ y - "
propriate nesting of these three basic structures withir. each
other. The logic flow of such a program always proceeds from the
beginning to the end without arbitrary branching.

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

Two useful extensions to the three structures are

- DO U-MTIL condition X

- DO CASE condition x

Several conventions are included as a supporting part of
structured programming. For example, strict attention is
paid to the indentation of the control structures on the printed
page, so that logical relationships in the coding correspond
to the physical position on the listing, Code is segmented into
reasonable amounts (normally one segment or function per
page). Segmentation continues down through the entire coding
process.

The use of structured programming, should provide m any
benefits, including fewer errors in the programming process,
programs that are nearly self-documenting, and code that can be
more easily read, modified and maintained.

K critical area in the design process is th4 establishment of
the correct specification for the system. All design stems
from this specification, so any errors or omissions will be
propagated from it, into the final system. Two tools aid in the
correct specification of the systemi

- decision trees

- decision diagrams

Decision Trees. [16}

Decision trees are used as a tool to extract the correct deci
sion logic from ambiguous specificoli.ons.

SOFTWARE DEVELOPMENT TECHNIQUESChapter 3

The technique is to
"unless", "however", "but",,
than/less than ambiguities,
defined adjectives. This establishes areas which must be cleared
up by the intended usor of the system. Once clarification
has been completed, a revised specification narrative is
produced, and a decision tree is drawn up {See fig. 13).

identify conditions,
structures,

and/or ambiguities,

actions,
greater
and un-

< CONDITION t— ACTION fl
CONDITION 2— ACTION 8

CONDITION 3 - ^ c Z Z r "~CONOmON
CONDITION Bs— -CONDITION 1 ACTION D

'CONDITION 4— ACTION p

ACTION C
CONOITtOM rBCTION fi

FIQURR 13 - A Decision Tree (16)

Decision Diagrams. fi6]

Decision diagrams (See fig.
possibilities for every i
specify exactly the ac
bination of conditions.

14 exhaustive tables of
difcion. They are used

-4

all
to

s

XL*,

41

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

01-condition 1 Y N N N*

C2-condition 2 M Y N N

C3-condition 3 y N Y N Y N Y N

Al-action 1 X X X X
A2-ection 2 X X X x “

distinct values for each

condition

-action not taken
-action token

' ' \
Si-v. ^4 - A Decision Diagram {16] ")

3.3.41Tyee Structure Diatframa [18]

A useful, graphic representation of a structured system is the
tree structure diagram. A graphic representation allows easier
visualization of the system, enabling the designer to more
readily see improvements Lo the structure. Using this system,
nodes on the diagram are phown as rectangles, such os those which
follow: . /

a a object B or object C

□
□

repeated object D

the null object

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

Cl-condition 1 Y Y N

C2-condition 2 Y N N

C3-condition 3 |y N Y N Y N Y N

Al-action 1 jx X X
A2-action 2 [X X X X"

> "'T/there may be more than two

distinct values for each

condition

-action not taken
- action taken

FIGURE 14 - A Decision Diagram [16]

3.3.4 Tree Structure Diagrams [18]

A useful graphic representation of a structured system is the
tree structure diagram. A graphic representation allows easier
visualization of the system, enabling the designer to more
readily see improvements to the structure. Using this system,
nodes on the diagram are shown as rectangles, such os those which
follow:

0

□
□
□

object A

I. C I object B or object C

repeated object D

the null object

£

m e c t e d in i

SOFTWARE DEVELOPMENT TECHNIQUES

tree structure which indicates the
An example is shown in figure 15.

FIGURE 15 - A Tree Structure Diagram (18J

3.3.5 Pseudo-code

The primary purpose of pseudo-code is to enable an in
dividual to express his thoughts in a form that uses native
language prose, but expresses the control flow of the program in
an unambiguous manner. Pseudo-code acts as a form of program
documentation which is easy to maintain and nut exceaaivbly time-
consuming to produce,

"Structured words", such os IP, DO UNTIL etc., and in
dentation rules, are used to show control dependency. Natural
language phrases are used to express thoughts [17].

!: ” i f ' ! ’

" , V
Chapter 3 SOFTWARE DEVELOPMBNT TECHNIQUES

3.4 Data Flow

3.4.1 .

Data flow is the technique of connecting the functions of a sys
tem only by flows of the data within the system. Functions con
nected by data flow are not dependent on adjacent functions [19].
An independent job step can execute as long as its input data is
available and it can dispose of its output data
that the program is easy to maintain.

(See appendix 2 for a more detailed description)

3.4.2 The uso of Data Flow Techniques

The basic tool for utilizing data flow is the data flow diai
A standard set of Symbols is used to represent the flow of
through the elements of a system. The set includes:

- functions - processes which operate on the data

- flows of data

- stores of data

external i or sinks of data

Data dictionaries
elements in the sya

to provide standard descriptions of

To get from a data flov diagram to an hierarchical structure, one
starts with the rawest form of input and traces it through the
data flow until the point is reached where it can no longer be
said to be input. Likewise, the output is traced back into the
system until it can no longer be thought of as output. The middle
piece of the system forms the transformation section.

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

Tree structure diagrams are used to represent the hierarchical
system.

3.5 T o d Down Deslrtn

Traditionally, top-down development involved the ordering of
development, in each design phase, from the highest level to the
lowest level, as shown in figure 16.

PHASES

1 111 -> 1 | e-,g. requirements definition

[H -> t I functional specification

IH -> L | e t c .

FIGURE 16 - Traditional Top-Down Development 120}

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

Recently, a modified approach to top-down system development has
been proposed [20]. The new approach essentially combines top-
down and bottoin-up development,

- i.
Using the now approac^., top-down design is defined as the tech
nique of producing a crude skeleton vocftion of a system, then ad
ding and testing more complexity, piece by piece (See fig. 17)
121]. -

Course end fine versions of the system are developed in turn-
This allows phases to ryn in parallel, since design teams do not
usually concern themselves with phases in the development other
than the one in which tHjey specialize.

FIGURE 17 - Revised Top-Down D e v o u r m e n t [HO]

With revised top-down development, the highest level of a system
is coded and tested first. Since this unit will normally invoice
lower level units, dummy coda must bo substituted temporarily for

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

them. Once the higher levels have'been Completed, work proceeds
down the hierarchy until all coding is done.

The major advantage in top-down development is that it avoids the
problem of interfacing many small modules. Also, it allows users
to see reduced versions of the system go that they can offer uom-
aents at an early stage.

The quality of a system produced in this manner should be in
creased through earlier detection and elimination of design
problems and coding errors [17).

;
3.6 Verification and Validation

The main objectives of the verification and validation ;
are the identification and solving of software problems etpd, high-
risk issues aa early in the software life cycle as possible^,

3.6.1 ;

Verification - "The process of determining whether
products of a giveR phase of the software developraei
fil the requirements established in the previous pha: [2 2] .

Validation - "The process of evaluating software at the end of
the software development process to ensure compliance with
software requirements" [22].

3.6.2 Verification and Validation Criteria

The criteria are shown in figure 18, overleaf

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

r— Co'taple-te^

— Consistent^

Satisfactory
Software -
Specification

^No to-be~determineds
non-existent references

-No missing spec, items
■~No raissitig functions
s No missing products

^•Internally
— Externally
"^Tracedble

Human Engineering
Resource Engineering
•Program Engineering

Technical
Cost Schedule
Environment
Interaction

Specific
Unambiguous
Quantitative

NOTES:

— Consistency implies that a specification's provisions do not
conflict with one another or with governing specifications and
objectives. The specifications should be traceable so that misin
terpretations and embellishments are avoided.

- If high-risk issues a
likelihood of disaster.

not identified, then there is

FIGURE 18 - Satisfactory Software Specification [22]

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

uas [22]

Although manual techniques for verification and validation
p r e vail, there is increasing development of automatic tools
which improve the speed, reliability and consistency of the
checking processes.

Manual techniques. These techniques may take the form of

- reading by someone other than the originator

- manual cross-referencing

- interviews with the originator of the specification

- checklists

- manual modelling in defined environments

- mathematical proofs

Automatic techniques. These may take the form of -

- automated cross-referencing.

- automated modelling

- prototypes

3.7 Debugging [23]

It is almost certain that,
software development pro
completed system.

will
rigourous

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

The debugging process consists, in essence, of the following?

■ - describing the error

- (*) gathering data about the p r o gram’s behaviour

- hypothesizing about the cause of the error, and taking steps
to remedy it ;

- testing the hypothesis .';l

- if the hypothesis did not work, then the processes is
repeated from step (*)

(See appendix 3 for more details).

3.8 Summary

The use of modern software design techniques improves the quality
of the software which is produced. , ^

A number of techffigueg may be applied to improve the software
design process. The most useful technique is that of , struc
tured design, as adapted for programming. , „t

The steps involved while applying the technique of ^structured
programming consist of:

complete and accurate specification of the required
software

- decomposition of the specification into manageable stejis

- controlled construction of the software

- proof of the correctness of the software

Chapter 3 SOFTWARE DEVELOPMENT TECHNIQUES

At the end of each stage in the development, the results of the
stage are verified (shown to follow from the results of (he
previous stage), and at the end of the design process, the
Software is validated (shown to comply with the software
requirements).

Having now covered both an investigation into fault-iolerance,
and a study of software development, t h e : following chapter
describes the experimental system produced to afcdL-inithe srtudy of
fault-tolerance techniques. - > *

Chapter 4 - SYSTEM DESCRIPTION

4.1 introduction

One of the prime objectives of this project was to produce a
flexible experimental aysteo which could bo used to study various
fault-tolerance techniques. In order to demonstrate its opera
tional effectiveness, the system was to perform, elementary real
time control of a servo system.

The possibility of constructing a system which utilized hardware
to perform fault-tolerance functions was ruled out, for two main
reasons

— Special processor boards would have to be developed, or ad
ditional boards would have to be designed to provide the
aechanism for fault tolerance. This would require excessive addi
tional effortt and not take advantage of the hardware available
from commercial sources.

- It was clear that thoroughly tested commercial processor
boards would be superior to any rapidly designed, yet complex,
new hardware.

For these reasons, and for the obvious reason of flexibility, it
was decided that the fault-tolerance functions would be imple
mented in software.

The path taken in the development of th« system was to select a
promising fault-tolerant architecture, and to use that as a basis
from which other fault-toleran't configurations could be built
through minor alterations to the software.

It was decided that the triple modular configuration was ap
propriate, mainly in view of several characteristics displayed by
the system (as described in chapter 2) [24].

However, the software was designed and coded in a sufficiently
modular form for small modifications to produce other system
configurations.

52

Chapter 4 SYSTEM DESCRIPTION

The designed system provides a number of facilities fpv the■rftolerance of faults (See fig. 19)

- Task I/O voting ''

" ' / , '
- Self and mufcsfal testing „ ; c

- Time s t a g g t o p e r a t i o n ^ '

- Device operation validation

- Watchdog timing

- Fault handling *

These will be discussed iq detail in the following sections.

Chapter *t SYSTEM DESCRIPTION

L -S

FIGURE 19 - System Description

Chapter 4 SYSTEM DESCRIPTION

4,2 Detailed System Description

The physical part of the experimental system is tocate.cl- in a ' 12-
card Multibus-compatible rack, although provision is ̂ made"for the
nodes ultimately to be in separate racks < so improving
reliability. This facility is accomplished by. using a "model" of
the MIL-STD-1553B bus communication standard for - t&fjar-node com
munication. The model is implemented in ̂ he',Vlexperii^4ntal system
using an additional processor and common memo r y L Ifence, for1 the
processing nodes to be separated, bus interface controllers need
to be provided* and the software slightly -modif i .

' ' ■ / " • 'The processing nodes in t he experimental system each^ contain an
elementary operating system which controls tho./execution of tasks
and t he fault-iolerance facilities. The operating system ensures
that tasks are run at the correct time, tha^/they run to comple
tion , and that test tasks are invoked ,wheii there is sufficient
timet ■ - ■ j j '

In addition to task contc'11), thR operating ays tern provides a num
ber of optional routiifW % a t the application tasks can .use to
perform fault-tolerant iti1̂ -: -Output, a/td memory access. Routines
for scheduling and desch@dulj.ng tasks ire available.

These additional routines C a ^ ^ a used as Required by the applica
tion design. This provides tib i'Evcility for choosing an accept
able execution time overhead, balanced against gains in
reliability. „ •

Each aspect of the system is introduced below.

4.2.1 Task I/O Voting

Task I/O voting is the most important of the fault tolerance
measures, and since the system is to be used in a critical con
trol environment, it must provide correct outputs at all times.
In order to establish the validity of the outputs, it is neces
sary to have not only a means of comparison between proposed out

Chapter 4 SYSTEM DESCRIPTOR

puts, but also a means for determining the correct output. Hence
three versions of critical outputs are produced, and by ensuring
that at least the majority of the processors agree on an output
value, the chance of an incorrect output clearly becomes very

. (.
When a task requires an input, it requests the correct value from
the operating system. The operating system routine ascertains
which type of data (input from external devices, input front pre
vious calculations, or permanently .stored data) has been
requested, end executes an appropriate subroutine to provide the
correct value. In the case of sehsor inputs, the jjibroutine may
be required to perform sensor operation phec] ^ 'before it returns
an input value. These take the form ijftdicated in the device
operation validation section (4.2.4). If tf^e required data is in
RAM, then the subroutine writes the corrects.data into any loca
tion found to have the incorrect valuer. A two-out-of-three vote
is applied whenever there are three Values available.

Similarly, when a task has to output a vaj^ae, it requests the
operating syste.* to perform the dgtq validity checks and perform
the actual output operation (See fi#. 20, overleaf).

Chapter 4 SYSTEM DESCRIPTION

V

APPLICATION OPERATING SYSTEM

Testing

Application
Task Schedule

Local Processing

Input Request
Obtain Data

Vote
Processing

Output Request
Obtain Data

Vote

Perform Output

Validate

Testing

FIGURE 20 - Task I/O Voting

Chapter 4 SYSTEM DESCRIPTION

The voting operation provides three important pieces of informa
tion. Firstly, an error is signalled soon after its occurrence,
allowing the operating system to begin appropriate action.
Secondly, the erroneoun information is marked as such, and can be
regarded with suspicion if it has to be used for further calcula
tions. Finally, the faulty node is identified, and can be ignored
until it has been shown to be usable by the operating system.

There la a small possibility that two or all three of the proces
sors will fail, and produce incorrect output values. When this
happens, the voting mechanism indicates that it is inpapable of
resolving the dispute, and the operating ^system attempts to
validate the system before it allows normal operation to con-

There is also a possibility that results submitted for voting
have an accuracy tolerance, that is to say-,., they may be slightly,
but acceptably, incorrect. Such a situaMoit may arise, for In
stance, when a task running in a node gets Its input values from
more than one sensor, causing them to be a little different. In
such c a ses, it is necessary that the voting mechanism flags a
fault only when tho three submitted values ere unacceptably dif
ferent from each other. For this purpose, e^ch data element has a
tolerance value associated with it. The tolerance value is con
sidered to be zero in the default case token, none is specified,
so that such a value need only be assigned to those data elements
where ine actnesa is tolerable.

4.2*2 Self and Mutual Testing

Self- and mutual-testing of the processors helps to idyntify a
faulty processor when a dispute arises. Such testing is also usfid
to forestall the occurrence of a dispute by indicating a fault
before a task is undertaken by tho processor.

Chapter 4 SYSTEM DESCRIPTION

The testing is done in two pircumetances. Firstly, testing is
done whenever the processors are idle. This can provide advance
warning of pending execution errors. Secondly, testing is under
taken when the operating system decides that it is necessary.
Such an operation will occur when the operating system is to
validate an input, dr when a fault is detected, but the operating
system is Unsure of its originating processor, or wishes to make
a more detailed diagnosis of the fault.

A number of subsystems are tested, in particular, the memory, the
processor, the I/O equipment and the ititer-node communication
equipment, e s w e l l as any s p e c i a l i z e d equipment the node has."
Some of this testing is written in machine code to maintain tight
control over the system resources.

Self-testing is intended to find faults in the physical com
ponents of the computer system (See appendix 4). Algorithm faults
and programming mistakes must be removed using conventional
debugging techniques.

Error and Fault Detection.

It is clear that tests may'be devised to detect virtually any er
ror or fault. The question of which tests provide a significant
improvement in reliability, against the resource'usage required,
has to be carefully considered before including any of them.

Various criteria establish the usefulness of a particular test,
such as:

i - the probability that the type of malfunction which the test
is designed to detect will actually occur, and the probability of
its detection and correction using a particular technique

ii - the probable damage that could be caused by the malfunction

lii - the cost of additional storage and increased computing
power requirements to include the test in the system

Chapter 4 SYSTEM DESCRIPTION’

Testing in the Experimental System

A form of hybrid testing is utilized in the system discussed
here. The system is functionally partitioned, and exercised
using a set,of pseudo-random numbers aa data. If time permits
(i.e. if the processor workload is / j ^ o w) t h i s method tends
toward the pseudo-exhaustive method,,. since the probability
that all combinations of data and control have. _,epn tried
tends to 1.

Processor Testing. The first items to be tested are the core in
structions ot the processor, namely 1 ^

- memory to register transfer.

- register to register comparison

- conditional branch

Next, instruction tests are performed, testing all pos
sible processor instructions. Two methods are possible

- recomputation of a result by a different method, and com
parison of the two results. Pseudo-random data is ustid.

computation using known data, with pre-computed answers
available for comparison

Memory Testing. Once it has been established that the processor
is functioning correctly, testing of the memory sub-system
proceeds.

Chapter 4 SYSTEM DESCRIPTION.

The memory testing procedure is as follows:

A block of memory is transferred to a temporary storage
location. The copy is checked against the original to see
if any error has occurred in the transfer.

— Pseudo-random numbers are generated and written into tbe
block of memory to be tested, . as well as another temporary
storage area. These data are compared. The test can show .
up pattern dependent faults.

— A sequence of "sliding ones" is written into the block
and read back. This technique ia included in addition to the
use of random numbers because it shows up both "stuck at" faults
and cross-coupling faults, which are common types of memory

- The original data is copied back to the memory block,
and this is again checked against the duplicate.

Input and Output Device Testing. It was necessary to write
specific test programs for the I/O facilities attached to the
system.

Two situations are possible when testing input and output:

- Testing may be allowed to affect the devices at
tached to the output facility.

This situation is normally applicable only when the system is
not in use, i.e. before it begins to execute application
tasks. Tests which affect the attached devices are therefore
normally run as pre-application system acceptance tests. The
testa are able tti fully exercise the output and input
capabilities of the I/O facility, performing both readback and
feedback tests if possible.

Chapter 4 SYSTEM DESCRIPTION

- Testing is not allowed to affect the devices at
tached to the I/O facility.

In this casei only limited testing is possible, such as writing
to and reading from control registers without activating them,
and testing input devices. It is also possible to produce small
output variations if the resolution of the system is such that
output is possible without being detrimental to the performance
of the plant.

Communication System Testing. Special test programs were needed
to test the communication system. Once again, the system may or
may not be permitted to affect the otitpp*-,j>f^be: communications
interface board.

It is possible to arrange the estab,, ^ ^ n t of a com
munications link with another node j^or testing purposes
only. In this case, the testing consists o£ passing known
messages back and forth along the link, as well as the use
of pseudo-random messages. All capabilities of the 15535
facility are tested.

Tests of other peripheral equipment need to be developed as ap
propriate for each additional item.

Mutual Testing. For the purposes of mutual testing, a node in
structs another node as to the test(s) it must perform, and
monitors the results. This provides added protection against the
possible misinterpretation of test results due to faults in the

Application-Dependent Tests. Tests which are built into the ap
plication programs may be included, at the discretion of the
programmer. Such tests con include

- recoraputation if data by the same, an inverse or a different
process, and comparison of the results

Chapter 4 SYSTEM DESCRIPTION

tests to see if results satisfy mathematical or physical

- checks based on estimates of

^ special tests for a particular

Acceptance Testa. Acceptance tests for the system consist of a
more comprehensive set of t e sts, plus the more exhaustive use of
the standard t e sts. The acceptance tests are run as part of the
preparation of the system for use.

Test Control.

The test control routines have two Sanctions

- scheduling of tests

- maintenance of test records

Under no-error conditions, a standard routine of testing is
followed and test records are updated.

When an error is detected, either by the seif-test routines or by
other methods, an attempt is made to establish the cause of the
error. This is done by a systematic narrowing-down process, using
the self-tests available. An error record, plus a fault record
where appropriate, a;

Because of the noisy environment in which the system may operate,
there is a high possibility of transient faults caused by inter
ference such as power spikes and electromagnetic noise. To mini
mize the effects of such interference, time-staggered <
of tasks in the three processors is used. Although the pr
are executing the same task at any time, this staggering ,
that code instructions are not executed simultaneously,

» .Ve-iC* . i

Chapter 4 SYSTEM DESCRIPTION

therefore cannot be affected in the same way by common-mode in
terference. Errors in the results of all the tasks may occur, but
they will be different, and therefore detectable.

Setting up of skew is necessary in two circumstances, namely
at system power-up, and when a processor must be brought back
into operation after f%u%t recovery.

Since voting is done in software, there is no necessity for the
processors to b* brought into synchronization for this purpose.
Results for voting are accessed by another processor, via the
asynchronous comraunioation system, When it is ready to do so.

There are two ways of maintaining time-staggered operation:

Staggered execution.

When using staggered execution (See fig. 21), all system clocks
are synchronized to the same "clock-time*1, and each task
begins at a different clock-time. This method requires that
all task scheduling operating system calls are intercepted
and modified to the new execution time, particular to each
n o d e , or that the task scheduling routine is rewritten to inr
elude a different correction factor for each node. Alternatively,
all task scheduling calls must be written to include the
different execution times. This implies different software for
different n o des.

Chapter 4 SYSTEM DESCRIPTION'

System i
Clock 0

Clock
Tick

TASK Y

FIGURE 21 - Staggered Execution of Tasks

Staggered Clocks.

In the staggered clock method (See fig. 22), all system clock
are synchronized to the same clock-time, and are then stag

: by the required amount. This means that the clock-time fo
ode is different.

'IV-
■■

/" • :

SYSTEM DESCRIPTION

PEoO A I I
Clock 0 1

Tick

7 8 9
> -------------- 1 TASK y [~

Proc B I i 5 1 i
Clock 1 2 3 4 5 7 8 9 10.

TASK X

Proc C l i
Clock 2 3 4 5

— I TASK X |-----------

FIGURE 22 - Staggered Clocks

fit this system, it is titifc hbcessary to intercept task scheduling
calls or to rewrite the scheduling routines, because automatic
staggering of execution times ocdxtcs.

This means that software can be exactly duplicated in all nodes.
The node identification determines its clock-alagger position.

4.2.4 Qavlce .Operation Validation

Routines arti provided to test the state of the output devices,
os well as monitor the state of input devices. The output
devices are tested by reading back the outputs sent to them
to see if there is any discrepancy.

WheiTO input devices are replicated, the values returned by them
are compared, and a note made of any discrepancies.

66

Chapter 4 SYSTEM DESCRIPTION

Where replication 4a not present, the values returned are
cheeked for reasonableness iand consistency.

Output Device Validation.

An output channel is defined, for the purposes of this report,,
according to figtire 23.

channel

•outputSystem

readback
A/P

FIGURE 23 - An Output Channel i
li ■

Either or both of «khe A/ll converters m ay be absent from the out
put channel# /

Two types of dcvi&e operation validation are possible:

Readback. By reading hock the output applied to the device
by the I/O board, the system determines whether an output cir
cuit fault hua occurred. This may be either due to a fault on
the I/O board, or a fault at the device inputs. In either case,
the output channel has failed. It is possible, by examining the
value of the incorrect output, to identify the type of fault -
open circuit, short circuit or in between, but this is im
material as the device is no longer usable .in any case.

Chapter 4 SYSTEM DESCRIPTION

Feedback. If the readback signal is correct, then it is still
possible for the device to have failed in some area other
than the input circuit (such as a mechanical section). In this
case, the feedback signal is diffe>^nt from that which can be
predicted from the device choraetJrietics.

Because the feedback signal to be expected is dependent on the
nature of the application* it is up to the application program to
provide checks on the feedback signal. An expected value is
provided to the operating system whenever an output is requested,
enabling it to decide whether an error has occurred.

If the feedback sensor itself has failed, producing invalid read
ings, this registers as an output channel failure because no con
trol is possible.

An I/O data table is kept, informing the system of the con
figuration of each output channel. The table is consulted
whenever output is to be performed.

If the device i# such that readback of output values is not
useful, then the table informs the operating system accordingly,
and no readback is made. If readback is provided, then read-back
testing is done whenever an output- is sent to the device.
Tests utilizing readback can also be made when no other tasks
are being executed, or when specifically required by the operat
ing system.

Similarly, if feedback is not present, then the operat
ing system does nob expect feedback error values from the ap
plication program.

V- . '

Chapter 4

Input Device Validation.

An input channel is defined in figure 24.

SYSTEM DESCRIPTION

I/O Plant V a H t bli

FIGURE 24 - An Input Channel •

If a particular sensor is not replicated,
to detect its failure by checking its
reasonableness and consistency.

then it is possible
input values for

If a sensor is duplicated, then a fault is easier to d e tect,
and if a sensor is triplicated, then the faulty sensor is
easy to identify. In a dual input system, once a fault has been
detectud, the faulty sensor must be pin-pointed, or no useful
data can be obtained about that plant variable. This iden
tification is accomplished using the reasonableness and consis
tency tests such as those applied to single censors.

It should be noted thut the reasonableness and consistency tests
may fail if a sensor input value is reasonable even though it is
incorrect. In such a case, it is Impossible to detect a single
sensor failure or to identify the faulty sensor in a dual-sensor
system.

Chapter 4 SYSTEM DESCRIPTION

4,2.& W a t c h d o g ,Timing

When a processor executes an incorrect instruction, or uses
incorrect data, three things may happen. Firstly, no incorrect
results occur (this is an unlikely option). Secondly, incorrect
results occur,- but the processor will exit the task as nor
mal. Thirdly, the processor may enter an endless loop, or
take an unpredictable direction of,execution.

To detect such faults, watchdog timing is used. For this purpose,
each processor provides a -ask-complete signal whenever it has
completed \the assigned ttisk. In the first- and second c a ses,
the processor concludes its calculations, bu't at a time
which is likely to be completely different to that of its
counterparts. The time of occurrence of that processor’s
task-ibmplete signal will therefore be significantly far front
the signals of the other processors. In the third case, a
task-complete signal may never be received from the faulty
processor. An acceptable difference is,defined, within which
time all processors must hove produced results, or an error
is indicated.

The procedure is as shown in figure 25.

Chapter 4 SYSTEM DESCRIPTION

Task IDProcessor Completion

write t&sk*c«!niplete record

check task*complete record

FIGURE 25 - Task Complete Records

After a task is complete, each operating system places a task-
complete time in a t a s k - cowletlon table. Each operating system
then compares the task-complett times to see if they are suffi
ciently close. Otherwise, an error is indicated. Furthermore, the
task-completion allows the extra check that the processors were
executing the correct task.

Chapter 4 SYSTEM DESCRIPTION

The primary use for the watchdog mechanism is to detect program
flow errors, i.e. the situation where the program
counter/instruction pointer has somehow obtained the incorrect
instruction address. This usually leads to the processor never
completing the current task, end also to its producing
invalid data and becoming unusable. It could clearly never
diagnose its own problems, so it is necessary for the other
processors to take charge.

A secondary use for the mechanism is to detect errors that are
missed by the other mechanisms due to the value of the error
being acceptable to them. Such a situation can. arise when the
processor mistakenly arrives at the correct answer after it
has executed an incorrest instruction or used incorrect
data. The overtime or undertime error exhibited by the task can
then show that something is faulty.

Watchdog timing thus provides a means of detecting errors
as Well as identifying the erring processor node.

4.2.6 Fault Handling

Faults are detected by the self testing facility as well as by
the detection of an error by means of read-back of outputs,
watchdog timing and voting. All error data are recorded in a data
base which holds the historical fault manifestations and any
other data that would help in the fault localization procedure.

Identification of the faulty node after tho detection of an er
ror is, in most cases, provided by the detection mechanism.
Where this fails, the operating system instructs the nodes
to perform self- and mutual-testing to attempt to identify the
faulty node or nodes. This forms port of the diagnostic sec
tion of fault handling. Even where the fault has been localized
by the error detection mechanisms, it is sometimes useful for
further diagnostics to be performed so that system repairs can
be made as soon as possible, and so that full records of failures
are available for the system designer for design improvement. If

Chapter 4 SYSTEM DESCRIPTION

fault identification fails, then the system as a whole has
failed, and must be restarted, after suitable repairs have
been mode. '

Once a fault has been detected, it is necessary that all nodes be
informed that an drtitir has occurred, which data is suspect, and
w hich processor er pracessQrs may have caused the error. This
data is also maintained in the error-reporting data base. This
enables healthy processors to continue without relying on pos
sibly erroneous data.

Since many of the errors are likely to be catised by transient
faults, it id not advisable to shut down a processor as soon as
it e r r s . Instead, the system temporarily ignores that processor,
while the operating system restores its internal state to one
that is consistent with that of the healthy processors. Once
this has been accomplished, asid the processor brought back
into loose skew synchronization, it may begin to execute ap
plication tasks once more, and provide useful input to the
voters, A "black mark" is added to the record of the
processor, so that a frequently erring node can be recog
nized, and shut down after 6n unacceptably high number of
errors.

Once a processor has been taken out of the system, it is in
structed to continue self testing to try and establish the
cause of its errors. If the node continues to err this fact
is recognized, and it remains out of the system. If, however,
the node seems fault-free, then it may (in response to a
status request) inform the system of its readiness to try
again. The good processors aid the failed processor to recover
by periodically resetting its state to one consistent with
the functional system. Then it can perform the same cal
culations and see if they are correct. At no time is the
node allowed to communicate spontaneously until it has been
recognized as fit to do so. It may only communicate when
specifically requested to do so by a running processor.

Chapter 4 SYSTEM DESCRIPTION

4.3 Summary

The system provides a number of facilities for
tolerance of-faults:

- Task I/O voting, in which both input and output to and
memory, and input and output devices are compared before
are used by the application

- Self and mutual testing, where nodes test themselves and
other nodes in the system

- Time-staggered operation, which ensures that common-
faults do not affect all processors in the same way

- Device operation validation, which ensures that devices
operating correctly

- Watchdog timing, which keeps track of the execution of
tasks, to ensure that there ore.no incorrect task executions

- Fault handling, to provide detection, identification
isolation of faults

the

all

Following on from the functional description of the system, the
next chapter describes the hardware and the software.

Chapter 5 - SYSTEM DESIGN

5.1 Introduction

As was discussed previously, the composition of much of the ex
perimental system was defined by the available equipment and
tools. This meant that hardware development was kept to a mini
mum, consisting essentially of integration of available commer
cial equipment, and the construction of an input and output con
sole for use with the servo system. The bulk of the design of the
system therefore consisted of software development. The design
process followed modern software engineering practices as far as
possible, so that reliable software could be produced. The design
sequence is covered section by section in this chapter, to il
lustrate the logical progression of the design steps.

5.2 Hardware Characteristics

The hardware consists of:

- Four Intel 80186-based single-board computers, used as the
processing elements of the system, and for system monitoring

a Feedback MSlSO modular servo system, which served as the ap
plication system for control, as part of a demonstration of the
use of the computer system

- a Data Translation DT732 analog input and output card, used to
interface the fault-tolerant structure to the servo system

an Intel 428 memory card for inter-node communication and sys
tem operation records

- a 12-card Multibus rack to house the equipment

Two terminals were available for node monitoring, and a personal
computer with an appropriate loading facility was available for
downloading of software to the processor nodes.

Chapter 6 H G N

(For technical inf*
appendix 5).

The software is

- Task 4 /0 handling

- Self and mill

- Time-staggered operatitn

- Watchdog timing

Irror handling

- Inter-node

- System initialization

6„3.1 Task I/O

I/O Device Ch<

To ensure that
are faulty, it is
devices are made, i when they be

For output
channels must I
data reasonabli

and f< itput

and ided.

:

Chapter 5 SYSTliM DESIGN

I/O Request Servicing.

In order for the application system to sake use of the
fault-tolerance facilities, I/O request servicing must be
provided. This will enable application modules to call operating
system routines which perform input or output (as required) in a
fault-tolerant manner.

To provide complete fault-tolerance facilities for the applica
tion programs, all types 6f task I/O, including memory modifica
tions (i.e. RAM output) and memory data ii>wut, as well as
other peripheral I/O types must be catered for in the I/O
request servicing routines.

I/O Records.

Throughout the operating system, records of operations must be
maintained, for two main reasons;

to enable the operating system to perform fault diagnosis
when necessary, and

- to allow system monitoring at various development phases and
for maintenance and repair

In addition to the normal records, the I/O request servicing
section of the system must maintain a list of the I/O
devices together with their operational status and notes about
peculiarities of the devices (such as replication of input
devices and dual inputs to output devices).

5.3.2 Self and Mutual Testing

Both self testing and mutual testing must be included because
of the possibility that the software in a node is corrupted.
This corruption, when affecting the self-test software,
may cause the node to erroneously report itself fault-free. The
testing of a node by another node will detect this situation.

Chapter 5 SYSTEM DESIGN

Test Descriptions.

All parts of the system should be exercised by the test
programs, including the

- memory components

- processor subsystem

- I/O equipment

- inter-node communication equipment

and any other special equipment.

Teat Records. '

As before, ekror and fault records must be updated according
to the results of the tests.

Alao, records must be kept on the condition of devices,
including whether ot- not they are operational.

5.3.3 Tirae-starfgcred Operation

In order to overcome the effects of comrnon-mOde faults, time-
staggered operation must be used,

5.3.4 Watchdog Timing

After each task, the node must make available to other nodes the
task number (identification) and completion time of tho last
tosk. This data will form the task-complete record for the task.

Thereafter, the node musk check the total task-complete record
set (from all nodes) to see if there are any discrepancies.
Both task numbers and task complete-times must be checked.

78

Chapter 5 SYSTEM DESIGN

I'he system must provide the facility to preserve system opera
tion when an error has occurred. There should be the means to
restore the system to its fault-free state wherever possible.

In order to facilitate fault isolation and to provide data for
system repairs and improvement, it is necessary that the system
perform fault diagnosis whenever it is suspected that a fault ex
ists (namely when a node is isolated for testing).

6.3,6 Task Control

„tsk control is a most important part of the Operating system.
Task control must take care of the scheduling and deschedul
ing of tasks, both application tasks and operating, system tasks.

Routines oust be provided by which application tasks are able to
schedule and dcschedule other application tasks.

A recoifd must be made on the execution of each task. This will
aid system testing, maintenance, repair and improvement.

As was pointed out earlier, the inter-node communication carried
oqt by modelling an actual system. Communication is imitated
using common memory, but the format of the MIli-STD-1553B system
protocol must be retained.

To be able to validate the communication system, it must pos
sible to establish test links.

Although modelling of the bus is not part of the experimental
system, it is necessary for demonstration purposes. Procedures
must exist which will take care of flogs, and buffers, and
perform other operations that would be handled by the com
munication board.

Chapter 5 SYSTEM DESIGN

Bus activity should be recorded by the bus model procedures for
the purposes of besting, maintenance and design improvement.

This suite of routines must be executed at power-up. The routines
must establish the working environment for the operating system
by initializing devices and performing system confidence tests.

(See appendix 7 for a more detailed
ments of the software)

icription of the require-

5.4 Functional Specification of tho S o f twan

The functional specification of the software (see appendix 8) was
derived directly froei the above software requirements.

A diagram of the software is shown in figure 26.

: r-Xf

SYSTEM DESIGN

TASK
I/O
CONTROL

SELF-flND
MUTUAL
TESTING

tNXER-NQBE
OSIMUNiCftTION

SYSTEM
INIT1RLI2ATI0NSOFTWARE

k'flTCHtJCG
TJHING ÔPERRTl̂

ERROR
HRNDLINGEXECUTION

CONTROL

FIGURE 26 - The Software System

5.4.1 Task Input and Qafcput

I/O Device Checks.

I/O device checks consist of roodbock and feedback checking,
reasonableness and consistency checking, oflid error signalling.

- Readback is applied to outputs to
correct, while feedback che
required effect is nccoi

nsura that their values are
applied to ensure that the

to ensure that
consistency checking are applied to inputs
values which they return arc within this ex-

Chapter 6 SYSTEM DESIGN

pected range, and are not changed, fjrora reading to reading, more
than is possible for the device.

- Error signalling is accomplished in twoi parts. First, the
detection of an error results in anierror record being created,
which alerts the operating system. Secondly, a status value
is returned to the application program ooi that application-
dependent corrective action may be performed if required.

I/O Request Servicing.

I/O request servicing provides the means by which application
programs can utilize t h e ,fault-tolerance capabilities of the sys
tem. The servicing consists of voting and grror signalling, and
cun cater for all types of input and output, which can be per-r
formed by the system. The characteristics of the input or output
are held in a data base, enabling the servicing routines to
provide the appropriate action for any type of I/O required.

I/O Records. ,

The chief I/O records which are maintained by the system ere
the device characteristic records, which hold such information
as reason bounds, maximum tolerable rates of change, and
tolerance values.

In addition, error end fault records are maintained by the sys
tem* This allows the operating system to maltlt decisions about
the use of input and output channels.

5.4.2 Self and Mutual Testing

A broad functional partitioning of the system was undertaken, to
identify the various sections to which testing could be applied.
Testing is broken into the sections nf processor, memory,
input and output equipment, and inter-node communication

Chapter 5 SYSTEM DESIGN

equipment. In., addition, there is the facility for invoking
remote teats, and. for servicing such remote invocations.

- O f ' ,)
T H-bcessor testing is atVoiaplished by first testing critical in
structions, and then using those instructions to check all other
possible instructions.

ZLZ^S— ^ - ^ r i T i r ^ M s i s t of setting parte “of iueraory to various
values, and reading them back to See if they have changed. -

-r The form of the Input and output testing depends on the charac
teristics of the input and output devices, an'ti special routines
are needed for-each different type. J

_f-Inter-node ncomounication equipment tests eonsist o f passing
known j s^eissa^es across the l i n^s, b nd "checkinixth^t they are, as
they should be. " t - it ^

A ̂ ^- Remote tests are made up of combinations of the standard testa,
bubs the results from them are evaluated by the processor that in-

I't^&fes the- test, rather than the tm# being tested.

Test scheduling is accomplished dynamically. Tests^'laay be run
whenever specifically required by tho application program, or.may
be invoked by the operatingXystern. Invocation hy the operating
system /fa*' be either in response to the occurrence of an error,
or as a preventative raeastire^ whenever there is spare processing

j:. ■ f
TKk diagnosis of an error results in the creation of , an error
record, and if it is determined that a fault exis t s , a fault
record is created. Faulty devices arc marked as such.

Chapter 5 s y s t e m d e s i g n

5.4.3 Tiae-staggered Operation

The clocks in each node are aet at initialization time to their
staggered values. Periodic checks are made on the clocks to en
sure that they do not drift unacceptably far apart. If excessive
clock drift is detected, then the clocks are reset.

If the clock drift is auch that a clock fault is indicated, then
an error record is generated.

5.4.4 Watchdog Timing

When each task has been completed, the operating system in the
node provides the other nodes with the task identification, and
task completion time. Before executing the next task, the operat
ing system checks that the correct task has just finished, and
that it finished within an acceptable time. Errors ere signalled
when either of these testa shows a discrepancy.

5.4.5 Error Handling

Whenever an error is detected, the error handling mechanism is
initiated. Consistency restoration, node reconfiguration end node
resetting are provided by the mechanism, whenever such actions
prove to be necessary.

Consistency restoration is accomplished in the voting process,
when erroneous data is overruled by the votes of the correct
processors. It is also accomplished for task errors, when the
watchdog mechanism alerts the node to the incorrect execution of

When a node has detected the (predetermined) number of similar
errors that Indicates that a fault is present, it performs fault
pinpointing, to identify the fault. This is done using the infor
mation held in the error records, together with additional test
ing when necessary.

84

Chapter 6 SYSTEM DESIGN

Node reconfiguration is invoked when other nodes determine that e
node has erred more frequently than is acceptable. This involves
an instruction to the node to perform self-testing. Meanwhile,
the rest of the system continues, ignoring that node until its
usefulness has been proved.

At this time, the good nodes reset the previously erring node to
a state which is consistent with the state of ufie rest of the
system. This implies that the node must be made to execute the
correct next task, with the correct data.

The creation of error and fault records is also part of the error
handling nsechanism. Routines to accpayj^sh this creation are in
voked by any routine that discovers !art elrror-

5.4.6 Task Control

Scheduling and descheduling of tasks is done via operating system
"calls" that keep track of time usage. These routines can inter
cept any overlapping that might be caused by erroneous applica
tion program scheduling. The tasks to be executed are kept in a
linked list, and are executed sequentially by the operating sys-

Test and operating system tasks are handled in Just the same way
as application tasks. An “ending" task, that runs after every
other task, performs operating system maintenance on the
scheduling list. The task removes the laat-ex6cuted task, and
schedules tests if there is time. Then it initiates ths next

It should be noted that the scheduling scheme only permits a task
to be executed if it can be run to completion in the available
time. No task suspension is allowed, and task priority is not
supported. This avoids tho problems involved with preserving the^
state of tasks when their execution is temporarily suspended.

Chapter 5 SYSTEM DESIGN

To aid diagnostics, a list of all tasks that have run, with their
initiation and completion times, is maintained,

5.4.7 Inter-Node Communication

In order to ease the use of the communication system, and to
allow error interception, routines are provided for inter-node
transmission and retieption. These routines are expected
to be used primarily when sensor inputs or control outputs are
to be used, when the actual device is not attached to all
nodes. •

For the exchange of data for voting, another routine is provided,
that makes the communication system transparent to the user.

The status of the communication controller is intercepted by the
routines so that errors can be dealt with by the operating sys
tem rather than the application program.

Modelling of the bus is provided by a program resident in the
experimental system supervisor node.

5.4.8 System Initialization

The operating system ensures that the environment is cor
rectly initialized before application tasks are allowed to
be executed. This procedure takes the form of the initialization
of all devices, followed by checks to ensure that the
initialization was successful.

Initialization of the environment is followed by extensive system
testing to prove the usefulness of all the components of the
system. If critical components fail the tests, then a warning
that the system can not be used, is given, and the system

Ay
SYSTEM DESIGNChapter 5

5.5 Software Outline

5.5.1 Introduction

The software consists of a set of routines which are used by
both the operating system and the application programs. Each
node has a copy of these routines (See appendix 9 for complete
descriptions of the software),

In addition to routines used by both the operating system and
the application, a suite of operating system subroutines is
available. These consist mainly of test routines that allow
system validation, and record maintenance facilities.

The other routines in the system are available to the applica
tion programs, to allow task scheduling, task descheduling,
inter-node •communication, input validation and output valida
tion. Vsing these routines, error interception is possible,

5.5.2 Operating System Routines ,

Start up.

At start-up, the first operating system routine is started.
This routine initiates and tests the local node, then communi
cates with the other nodes to set up the clock system. After the
clock initialization has been checked, the routine
schedules the first application task, It is the respon
sibility of this task to schedule all other application tasks.

Task ending.

At the end of every tas k , control is transferred to an end-
off routine, which ensures that the last task was correctly ex
ecuted on all nodes. It then ascertains the delay needed
before the next application task is to run, and if there is
enough time, runs one or more of the test routines.

<?:■

it- -

Chapter 5 SYSTEM DESIGN

Test routines.

These test routines allow testing of the processor, memory,
I/O facilities and inter-node communications equipment, of both
the local node and any other node.

Whenever an error is detected, by either teat routines or voting,
a routine to handle the error is invoked. This routine makes a
record of the error, and calls a fault-handling routine if more
errors than acceptable have occurred.

Fault handling.

The fault-handling routine ascertains the nature of the fault* by
performing more tests if necessary, and records the existence of
the fault. This allows the status of parts of the system to be
known to the operating system at any time. Hence it will not
utilize identified faulty components.

5.5.3 General tloutines

The rest of the routines are available to both th& operating sys
tem, and the application programs. I '

Input and output.

The most important routines are those which allow validated
output and input. These routines perform voting and checking
of data. Input from, and output to memory is also supported by
these routines.

When an input is required, the routine to validate input is
called, and returns a validated piece of data, and a
status value which informs the caller whether or not errors
have occurred. The routine makes use of other routines that test
the validity of the data with respect to reasonableness and
consistency.

88

I

Chapter 5 SYSTEM DESIGN

Similarly,, the output routine performs the necessary output, and
returns a status value. The routine makes use of routines that
check feedback and readback signals if they are available.

Task handling.

A routine is provided for scheduling other tasks, or rescheduling
the calling task. This routine checks that the request will cause
no clashes. It then adds the task to the scheduling list.

Similarly, a routine is provided for removing a task from the
scheduling list. This is useful for halting a repetitive task,
and for clearing the scheduling list under error conditions.

Inter-node communications.

In order to simplify the use of the inter-node communica-1
tion equipment, routines are provided for reception • and
transmission using the inter-node bus. Another routine is
provided to perform mutual data exchange among all the nodes.

This is useful when equipment on the bus is not attached
to one of the fault-tolerant nodes of th* system, and for ex
change of data for voting.

6.6 Summary >

The hardware system consists of four single board com
puters, a common memory board, and an analog input and output
board, »11 housed in a single 12-card Multibus rack.

The software was required to provide fault-tolerance
mechanisms for the system, of which the major functions are

- Task I/O handling

- Self and mutual testing of nodes

- Tine-staggered operation

- Watchdog timing

- Error handling

- Task control

- Inter-node coamuaitietion

- System initialization

These requirements led to the functional specification of
software system, which provided a definition of the necesi
functions.

The programs of the system consist of two types: tl
able to both the operating system and the application
and those available only to the operating s
general routines consist of modules that allow validat
and output, task scheduling and descheduling,
node communication. The operating system routines
test modules, and record maintenance modules.

Having covered the design of the system, the next
describes the way in which all parts were integrated to ;
the total system.

Chanter 8 - SYSTEM INTEGRATION

6.1 Introduction

In order for the system to be used as an experimental tool, ex
tensive control and monitoring of its behaviour had to be pos
sible. These functions are provided by an extra processor,
situated in the Multibus rack, together with the nodes of the
fault-tolerant system. In addition to control and monitoring,
this processor also provides simulation of the inter-node com
munication system. In the remainder of the chapter, this node
will be referred to as the supervisor node.

6.2 Requirements for the Supervisor Node

The function of the supervisor node can be btoketi into two dis
tinct sub-functions. These are

1} Handling of inter-node communication

2) Handling of system control and monitoring

6.2.1 Inter-node Oommunicotion

Several aspects of the communication system are controlled by the
supervisor node. Firstly, the node has to service all the com
munication system initialization commands from the n o d e s . This
involves the detection of the commands from each node, and the
provision of appropriate responses to the n o des.

Secondly, the supervisor node has to service every communication
system command from the n o des. It is therefore necessary to
detect the commands, road the system command block to find the
command block list, and provide the actions required by the node.
This process is described in detail in a following section.

In order to support the handling of communication system com
mands, it is necessary to maintain a model of the communication
system that provided an interface which is compatible with the
intended communication protocol.

91

Chapter 6 SYSTEM INTEGRATION

The model of the cctmmunicati&'ti protocol is based on the external
behaviour of an existing communication interface board. A reduced
definition of this behaviour was derived and used as a specifica
tion for the modelling program. The reduced definition is given
in appendix 10.

In addition to maintaining the functions of the communication
system, the supervisor node also keeps a record of all bus ac
tivity, so that monitoring of the bus system is possible.

Monitoring of the system is provided by the supervisor node. This
is facilitated by the maintenance of appropriate records in the
common memory section tif the system. It was decided that suffi-1-
clent visibility of the system could be provided if it was pos
sible to observe bus activity, task execution lists, and error
and fault records.

In addition to the availability of -these data Structures for ex
amination , it should be possible to observe any part of the com
mon memory, so that system debugging and maintenance could be
facilitated.

In order to control the environment of the system in such a way
that it would be forced to use its fault-tolerance facilities, it
should be possible to inject errors and faults into the system.
This function la again provided by the supervisor node.

The terminal-handling section of the node, which allows the user
to specify the desired supervisory actions, is menu driven, hence
providing an easy means for system control and monitoring.

6.3 Description of the Supervisor Node

In accordance with the requirements for the supervisor, the node
contains two main sections, namely a section for the handling of

Chapter 6 SYSTEM INTEGRATION

bus activity, and o section for the handling of terminal commands
for system control and monitoring*

The attention of the supervisor node is divided between the two
functions. While the supervisor is waiting for input from the
terminal, it is also scanning the flags which indicate that bus
modelling is required. The time taken for tlie servicing of a bus
request is so short that a user does not notice any effect at the
terminal.

6,3.1 Communication Handling

In order to describe the operation of the communicatioB handling
section of the supervisor node, it is neceseefy .first to.give a
description of the communication protocols and buffering systerv
(Refer to appendix 10 for more details).

Format of the Communication.

All communication to and from the communication interface board
is done through common memory. Within this memory, a number of
structures exist. Using these structures, the node using the bus
interface board can specify the actions it requires from the
board. It can also obtain information about bus activity or the
status of the bus interface board, ,

The first structure is known as the System Command Block, or SCB.
This command block allows the node to control the operation of
the communication interface board in o brood sense; the commends
allow resetting of the board, reading of its status, causing.it
to begin execution of a soquonco of commands, and causing it to
suspend this execution or stop it altogether.

In addition, the SCB points to the locations of the other struc
tures used in the control of the communication interface board.

The Command Block List, or CBL, is a structure which contains the
detailed instructions for the bus interface board. These take

Chapter 6 SYSTEM INTEGRATION

the form of Commend Blocks (CBs), each of which describes an ac
tion whifrh the interface board is to take, and provides memory
location^ for responses from the board.

The f " - ' ^central structure is tha Bus Bviint Queue (BEQ), which
hoi'1 / • qt Descriptor Blocks (BBDBs). Bach BEDB contains
del {A bus event that apptias to the node which the com
munis. ■ <erfnce board is serving. i

The interface board can be in one. of three states: bus control
ler, remote tet-m^nal, or bus monitor. There is only one bus con
troller, and it is the only node that can initiate bus activity.
It is possible for bus controllership to fee transferred between
nodes, provided that the interface board attached to the node is
capable of controlling the bus.

Remote terminals use the bus, but only when instructed to do so
by the bus controller. Bus monitors never use the bus; they can
only monitor11 its activity.

Since all bus activity is initiated by the bus controller, there
ia no need for there to be a BEQ in the bus controller memory
structure. Therefore, BEQs apply only to remote terminals.

In addition to this restriction, some action commands apply only
to bus controllers, while Others apply only to remote terminals.

Communication Handling >

The model for cach communication interface consists of receive
and transmit buffers, plus intermediate receive and transmit
buffers which are situated in common memory. It is via these in
termediate buffers that messages are passed to and from the su
pervisor node, because both the fault-tolerant node and the su
pervisor node have access to this memory, but not the local node

Chapter 6 SYSTEM INTEGRATION

In addition to these buffers, the supervisor node maintains
records of the status of the interface board.

At initialization, the supervisor node -provides* the correct
responses to commands from the nodes, even though it does not
need the initialization information which they send it1.

During - normal operation, the supervisor node waits until.a flag
is set in common memory, which indicates that a ' node requires
Servicing. It then determines which node "requires the servicing,,
and resets the appropriate flag. -

The processing sequence continues with the supervisor reading the
tiystem Command Block, if the command block does not require the
execution of a Command Block List, tiven the supervisor node
simply executes the command required by thSOgysteiq Command i&jlock»
and then terminates. 'v.

Tf "execution of a CBL is required, then t h ^ supervisor node ob
tains the first Command Block from t h e l l s t and services it ap
propriately. Processing of the CBl continues until a CB contains
an instruction to suspend execution1 of the or one which in
dicates that the end of the list has-been reached.

The action commands which are supported by the communication'han
dling software are:

NOP - No action is taken, but this command is useful when
manipulating CBLs.

CONFIGURE - Allows each node to configure its communication- in
terface as a bus controller or as a remote terminal. The com
munication handling software ensures that only th first node
which attempts to configure as a Bus Controller (BC) is success-

BUS CONTROL ACCEPTANCE ENABLE - Used only by Remote -Terminal
Units (RTUs), this command is used to inform the bus interface

Chapter 6 SYSTEM INTEGRATION

whether or not the node is prepared to accept the responsibility
of controlling the bus system.

BUS tiONTROL ACCEPTANCE DISABXE - Used to disallow acceptance of
bus.control. v n

SKT SUBSYSTEM ERROR - Sets the subsystem efror bit in the status
word for the node. ^

CtBAR'SUBSYSTEM ERROR - Resets the subsystem error vb'it in the
stebus word for the node.

WRITE TO TX BUFFER - Copies data from the node into the transmit
buffer in the interface memory,

READ FROM RX BUFFER - Copies data from the interface memory to
the node. .

TRANSMIT TO RTU - Used by the bus controller, this command causes
an RTU to receive from the bus, and to place the received data
into its receive buffer. This command can also be used to offer
bus controllership to the RTU, or request it to send its current
status to the controller.

RECEIVE FROM TiTU - Used by the bus controller., this command
causes an RTU to transmit the contents of its transmit buffer
over the bus.

TRANSFER FROM RTU TO RTU - Used by the bus controller* this com
mand causes one RTU to transmit the contents of its transmit
buffer over the bus, end causes another RTU to receive that data.

6.3.2 System Monitoring and Control

By means of a menu-driven program, the user can specify errors
and faults which he wishes to introduce into the system. Also,

Chapter 6 SYSTEM INTEGBm-OW

tion records to be displayed. It is also possible to examine any
part of the common memory, in bytes.

In order to introduce faults and errors into the system, a set of
flags is maintained in the common memory area. At the request of
the jiser, these flags are set or reset.

In the fault-tolerance software of the system nodes, these flags
are examined at appropriate tiroes, and system behaviour is
modified according to bheir settings.

If an error flag is found to be set, then the program introduces
an error into the test which should detect that error. There
after, it clears the error flag. Similarly, if a fault flag is
found to be set, then the error is introduced, but the flag is
not reset by the system software. Hence, the setting of errors
causes only one erroneous operation, while the setting of a fault
causes erroneous operations to continue until the user chooses to
reset the fault flag.

The system can set any d£ the faults and errors shown in tables 1

Chapter S SYSTEM INTEGRATION

80186 CPU fault
80130 fault
8259 PIC fault
8274 MPSC fault
8255 PPI fault
Inter-node communication fault
Node operation fault
Memory fault (including the exact memory area which

80186 initialization error
80130 initialization error
8259 initialisation error
8274 initialization., error
Communications initialisation error
Core instruction error
Instruction error
Memory error a

80130 interrupt error
80130 timer error
8259 PIC error
6274 MPSC error
8255 PPI error
Node isolation error
Node resetting error
Clock setting error
Scheduling error
Descheduling error
Data error
Remote test voting error
Remote test activation error
Task completion task error
Task completion time error
Next task voting error

TABLE 1 - Node Errors and Faults

is faulty)

98

* w n * &

SYSTEM INIEaHATlON

CommuniCBtlon link fault, for
Input fault, for inputs 0, 1,
Output fault, for outputs 0,

links 0->l, 0~>2 .

>r 1

Communication link error, for links 0 ->1,
Input- consistency error, for inputs 0, 1,
Input reason error, for inputs 0, 1, 2, o
Output readback error, for outputs 0, or
Output feedback e r ror, for outputs 0, or

TABLE 2 - General System Errors and Faults

The display which is invoked to show the error records indicates
the number of times each error has been detected, as foe),'1 as the
node in which it occurred, and the node(s) whiyh detected' the er-

The fault display shows only whether a fault is present" or not,
because they are regarded as permanent. It also shows the node in
which the fault was found, and the node(s) which f&und it.

Bus activity is indicated by time, initiating node, action com
mand, source node (if relevant) and- destination node (if
relevant).

The execution of tasks is recorded
task identification number.

sing start ti. end time

6.4 System Testing

System testing was achieved by implementing a simple servo-
control system using the fault-tolerant equipment. Three applica
tion tasks were introduced into the software. The first of these
application tasks served to initialize the hardware required to

99

Chapter 6 SYSTEM INTEGRATION

perform control of the . servo system. In addition, this task
scheduled the other two tasks.

The second task utilizes the analog input equipment to read a
position request value from a potentiometer associated with the
control system. The task is run periodically, so that changes in
request Value can be reflected in the position of the servo
device.

The final application task performs actual control of the servo
device. The request value is obtained from memory, and parameters
of the servo device are measured via the analog input equipment.
Elementary calculations are made using this information, and a
signal, for application to the servo system, is derived. ThAs
value is sent to the servo via the analog output facility.
Validation is applied to this output. This control task is also
run periodically, but at a faster rate than the request value

6.5 Summary

The supervisor node provides two functions; namely the servicing
of communication system requests, and handling of user requests
from the terminal.

The communication system is imitated in such a way as to provide
the sase command format as would be present if the actual com
munication interface boards were used.

The supervisor node allows the user to specify errors and faults
for injection into the system. Also, error, fault, bus activity
and task execution records can be displayed. Common memory can be
examined.

System testing was accomplished in a simple servo-eontrul en
vironment .

Chapter 6 SYSTEM INTEGRATION

This concludes the description of the experimental system. The
following chapter suiainarizes the work, and discusses several
issue's which arose in the development of the experimental system.,

Chapter 7 - CONCiUSIOH

7.1 Summary

7.1.1 Fault Tolerance

It was pointed out earlier that fault tolerance i# a technique
w hich attempts to allow a computer system to operate correctly in
the presence of faults. Su6h an approach has become necessary b e
cause of the serious effects which the failure of scute computer
systems could cause. Those computer failures cati have, their
origins as far back a6 the system specification phase of system
development, or the cause can be as immediate as electromagnetic
interference. Specification faults will be propagated through the
system design, until they manifest themselves in a way which
ceuses the computer to behave incorrectly.' Implementation faults
and component faults are also a problem, while external distur
bances can clearly lead to system failure.

Fault tolerance involves the detection of errors, identification
of the fault which caused the error, confinement of the damage
causiid by the fault, system recovery, and finally, system repair.

In order to accomplish those effects, replication of system
resources is a key principle. This replication m a y take the form
of ilifortfsfciaB redundancy* hardware redundancy, . software redun
dancy and/or time redundancy,

7.1.2 Software Development Techniques

One of the major premises adopted when designing fault-tolerant
systems is that the software is fault-free. Hence, it is essen
tial that extreme care is taken in the design of the software
section of the system. The use of modern software development
techniques improves the quality of the software which is
produced. As haa been pointed out, the steps which are generally
applied when attempting to put good software design into practice

Chapter 7 CONCLUSION

- complete and accurate specification of the required software

- decomposition of the specification into manageable steps

- construction of the software

- proof of software correctness

A number of tools and techniques are used to aid this process,
many of which have been used in the present w ork,

7,1.3 System Description '

The objective of the design described in this dissertation /iwas^to
produce a flexible experimental system which could be S sed to
study various fault-tolerance techniques. Because of limited
hardware possibilities, as well as for flexibility, software
implemented fault-tolerance was chosen as the implementation
method, together with replication of processor boards.

The system produced provides a number of facilities for the
tolerance of faults, including:

- task input and output voting

- self and mutual testing of the processor boards

- time-staggered operation for the avoidance of common-mode fault
problems

- device operation validation, for input and output devices

- watchdog timing, in the form of task completion checks

Chapter 7 CONCLUSION

7.1.4 System Design

The composition of much of the system was defined by •available
equipment and tools, and the hardware consists of several single-
board computers, a common memory board, and an analog input and
output board, all housed in a Multibus-compatible rack.

The program modules in the system consist of two types; those
available to both the operating system, as well as to the ap
plication tasks, and those whieh are available oaly to the
operating system. The general routines consist of modules that
allow validation of input and output, task scheduling and des
cheduling, and inter-node communication. The operating system
routines consist essentially of test modules and record main
tenance modules. '

7.1.5 System Integration

In order for the system to be used as an experimental tool, ex
tensive control and monitoring had to be possible. These func
tions are provided by an extra processor, which also provided
handling of inter-node communication. This, in turn, required the
modelling of the intended communication protocols.

System testing was done by providing o small application program
which controlled a modular servo system.

7.2 Discussion

It was thought that an examination of the techniq^js of fault-
tolerance would reveal n dominant technique which could be used
as a basis for the design. Such was not the case, however; it be
came clear that almost all the different ways to achieve fault-
tolerance functions had found use in commercial systems.

7.2.1

: V y :
"I /.I,

Chapter 7 CONCLUSION

Furthermore, this variance was not constrained to the different
application areas; in the field of transaction processing, for
instance, multiple replication (the Tandem system) [12], pair-
and^a-spate (the Stfatus system) [25] and hob back-up (the
Resilient system) [12] are all used.

Clearly, then, a very flexible design had to be used for the ex
perimental system.' Also, a single configuration had to be chosen
for implementationton the system. Although triple modular redun
dancy was chosen, any of the other techniques could clearly be
just aa effective f^r some applications.

The; field of software engineering is so vast and new that only a
few of the more important techniques could be applied. In addi
tion, the fact that the programming "team" consisted of one per*-
son proved to be somewhat limiting, in that the benefit of an un
biased opinion was lacking. ,| -

The principle of structured top-down design appeared to be most
applicable to the type of system which was to be constructed.
Data flow techniques appeared to be most easily applicable to
transaction processing systems, so they were not used in the
design process.

Following the chosen structured design procedure proved to be
useful: the system development steps could be seen to follow
properly from one another. This allowed good consistency to be
maintained in tho design. The system functional specification,
discussed in chaptcr 4, led to the software requirement
specification (Appendix 7), which led to the software functional
specification (Appendix 8), and then to the software description
(Appendix 9).

At all stages, it was possible to apply verification by com
parison with the previous stage. ,

Chapter 7 CONCLUSION

7.2.3 Evaluation of the Experimental System

In order to allow flexible, use of the experimental system, a
large number of different fault tolerance facilities have been
provided, which can be incorporated as the user desires.

It is also possible to produce different configurations by making
small changes to the relevant software. During system testing,
much was done using the du^l system configuration, even though
the software was based on the triple modular redundant structure.
This supports the claim that the software is easily modifiable.

A number of relevant issues arose during construction and testing
of tho system. These are^ disctlssed briefly in the following
paragraphs.

System features.

I/O Record Adaptability. The application programs in the system
know the input and output channels of the system only by t&e
identifier of the variable holding the relevant value. The I/p
record structure holds all equipment-dependent information which
is necessary to perform the I/o'Uunction. Hence, it is possible
to allocate any input or output to any appropriate input or out
put equipment in the system, simply by setting the I/O records
accordingly.

Input Consistency. Since a major error-detection mechanism in the
system is the application of voting, it is essential that input
to all the nodes is consistent. If such is not the case, then two
error-detection opportunities are lost! firstly, voting on inputs
can not be used, and secondly,, voting on any results which are
based on the inputs is useless, becausn the results cannot be
guaranteed to be the same.

The - .fore, it is highly recommended that all application programs
make use of the input and output validation procedures provided

Chapter 7 CONCLUSION

System Limitations.

Control Algorithm Selection. It should be noted that the control
system implemented usingithe experimental fault-tolerant computer
is very simple. It was not the purposes the project to produce
an optimized control algorithm, but rather to show that the ideas
could tje used in the control of real systems. The complexity and
sophistication of the application system isj left,to the applica
tion programmer.

Task flashing Errors. The system was designed to report an error
when a ftcheduling call would cause a clash with a previously
scheduled task, gt has been 'ftiuiid that it may be useful to allow
clashes to be reported simply by returning a status value to the
task attempting to perform scheduling. In this way, the tesit^ctfh
continue in its endeavour to perform scheduling with a different
schedule - time so as to avoid the c l ash. Alternatively, the ap
plication may wish to perform some other action. %

Therefore, clashes are n o t .errors as such, and should not be
reported to the error handling system.

Synchronization.

Synchronization proved to be troublesome. This was mainly due to
inaccurate specification of individual task execution times. This
led to task execution over-runs in some cases'. Since the node
which controls the bus has to execute different instructions for
every bus access than do the remote terminal nodes, these over
runs led to loss of synchronization. 1

A second scheduling problem was that relative scheduling was ini
tially used (i.e. tasks were scheduled to run at the "present
time" plus a predetermined offset). Again because the bus con
troller executes different instructions when the bus is used,
this type of scheduling led to synchronization loss.

%

Chapter 7 CONCLUSION

To combat these problems, two solutions were used. Firstly, the
proper execution times were ascertained by observing the task ex
ecution records usini; the supervisor node. A safety factor was
added to these values, and the task records werd updated to
reflect the net# execution times.

It is expected that this will be the best way of determining the
execution times of any application program installed on the sys-

Secondly, absolute scheduling was used. The schedule time for a
repetitive task is calculated by referring to the number of times
the task has already executed. This may lead to problems in a
multi-application sys'eem where repetitive tasks are added and
removed in an unpredictable way. Another aethod Would have to be
devised for such a. case. However, the project was not intended to
produce scheduling techniques for complex applications, but
rather to provide the facility for scheduling and descheduling in
any user-chosen manneSr*

7.3 Conclusion > .

Considerable study into the subject of fault-tolerance was under
taken, allowiii>. uaiiiarity with the principles, terminology,
tools and techniques to be gained. In addition, the experimental
system produced formed a useful tool, allowing many of the tech
niques to be tried out in an actual control environment.

Because of the extensive control and monitoring provided by the
system, and also because of the simple control algorithm used,
device control performance is somewhat slow, This means that the
system itself could not be used in any but the most trivial con
trol applications. However, the ideas behind the system, ,and also
some of the software modules, could find use in real control sys-

REFERENCES

[1] AVIZIENIS, A. , Fault-tolerance: The Survival Attribute of
Digital Systems. Proceedings of the IEEE, Vol. 66, No. 10, Oc
tober 1978.

[2] ANDERSON, C. A., Development of an Active Flv-by-wire Flight
Control System. Advanced Control Technology and its Potential for
Future Transport Aircraft, NASA, 1974,

[3] HUMPHRY. J. A., Fault Tolerance and Micros in the. Real W o rld.
IEEE Micro, December 1984.

14] Me GIIIi, W. F. , et a l , Fault Tolerance in Continuous Process
C o n trol. IEEE Micro, December 1384. ' ; !

f5] EMMERSON, R . , et al. Fault Tolerance.Achieved in VLSI. IEEE
Micro, December 1984.

[6] ANDERSON, T;, et al, Fault Tolerance Principles and P r a c t i c e .
Prentice/Hall International, 1982.

[7] JOHNSON, B. Vf., Fault-tolerant Microprocessor-based Systems.
IEEE Micro, December 1984.

[8] BOEHM, B. W., Software Engineering. IEEE Transactions on Com
puters , Vol. 25, No. 12, December 1976.

[9] ARMSTRONG, C. V. W . , et al, A Fault-tolerant . Multi
microprocessor-based Computer System for Space-based Signal
Processing. IEEE Micro, December 1984.

[10] WENS LEY, J . H., et al, SIFT: Design and Analysis of a Fault-
tolerant Computer for Aircraft Control. Proceedings of the IEEE,
Vol. 66, No. 10, October 1978.

[11] SCHMITTBR, B. J ., et al, The Basic Fault-tolernnt Svst
IEEE Micro, February 1984.

ires for Fault-
on Reliability,

[13) P e r f o m

1984.Vol. R-33, No. 4,

[14] -a L'P-il9-Q. .-D e.S-iX!
ire, The Use oP, F.o:
• and W. K. a.iidi)

■icafcion
•lag,

Methodology, The Use of Formal Specification of Software, (Ed.
H. %, Berg and W. K.Giloi), Springer-Verlag, 1980, pp 79.,r U 0 .

al,
Inc., 1979

•iew.

[18) J,
1979.

A m i King, the Ji

U.s,iji,g .,pat9„ Fl,o,w fo r ',.4aailicatip^...[19]

[20] SAMID
1981.

[21] G11B, T. , D.isti
Reliable,, Software, I
Reliability, 1977, pp 117 - 133.

.Software; __A_Redunda.)
:BCH State of the Art

[22]

REFERENCES

[23] WILLIAMS, 6., Debugging Techniques. Byte, June 1986.

[24] WENSLEY, J. H . , Redundant Modules may be Bast for Control
Systems. Computer Design, April 1985.

[25] SERl'IN, 0., Fault-tolerant Systems in Commercial Applica
tions. Computer, Vol. 17, No. 8, August 1984.

[26] MEYER, J. F . , et a l , Performance Evaluation bf the SIPT Com
p u t e r . IEEE Transactions on Computers, Vol C-29, No. 6, June

[27] MELLIAR-SMITH, P. M . , et al, Formal Specification and
Mechanical Verification of SIFT: A Fault-tolerant Flight Control
System. IEEE Transactions on Computers, Vol C -31, No. 7, July
1982.

[28] LAMBUECHS, J . S. D . ■, The Application of Micro—electronics in
Fail-safe Systems. Ph. D . Thesis, University of the Wit-
watersrand, 1983. ^

[29] HOPKINS, A. L . , et al, FTMP - A Highly Reliable Fault-
tolerant Multiprocessor for Aircraft, proceedings of the IEEE,
Vol. 66, No. 10, October 1978.

[30] JOHNSON, B. W . , et 61, Fault Tolerant Computer System for
the A129 Helicopter. IEEE Transactions on -Aerospace and
Electronic Systems, Vol. AES-21, No. 2, March 1985.

[31j JOHNSON, D . , The Intel 432: A VLSI Architecture for Fault-
tolerant Computer Systems. Computer, Vol. 17, No. 8, August 1984.

[32] Components Make Systems Fault Tolerant. Computer Design,
June 1983.

- A'::',;:

or- Fail?. IEEE

(.41] Feedback Instruments Ltd., Modular Servo Tyg6 _MSI5Q, ilook 2:
Oirguit.,No.

[42] F

[43] Intel, ISBg 18-6/0-3 Single

Kj

SIIi'
- j

1. A L LAN, R •» Local-Net|Archi
U p . Electronic Design, 16.April

2. ASEO, J.
pater Design,

3. AYAGHE, J », '.t el,
for loduatriel
Vol. C-31, No; T, 198

puter Design, April 1985.

et el,
Jur>'e 1984, pp 30 - 44.

I. BORRXL, P.
:BBB Miciro, Fe

qf Survivab.ie.'GCa- ^BRA1
|iop.tic>,n.,w ,l.th .»utoi
m s Magazine, July

8. CLARKE, B. M . , I
Fault-tolerant _Mul_tjprc
putera, Vol. 0-31, No.

1984

Fly-by-wlre Sys
1/1985, pp

BIBLIOGRAPHY

11. CRISTIAN, i ., Exception Handling and Software Fault-
Tolerance..IEEE Transactions on Computers, Vol. C-3 1 , Ho. 6, June

12. CROSSGROVE, A., Development and Applications of MIL-STD-1553.
Aerospace Congress and Exposition, Los Angeles, California I960.

13. DANIELS, R. G . , Built-In Self-Test- Trends in Motorola
Microprocessors, IEEE Design aftd Test of Computers, April 1985.

14. DAVIS, R. T . , Solutions Considered for Future High-speed
Military B u s . Defense Electronics, Vol. 16, No. 6, May 1983.

3.5. DEPARTMENT Of DEFENSE: UsA, M l W T D - C ‘5S3 B . Aircraft Internal
Time Division Command/Response jMultiolex Date Bu s .. 21 September
1978. '

16. ENGELLAND, J. D ., The Ejvolvinrf Revolutionary All-Electric
Airplane. IEEE Transactions qi| Aerospace and Electronics, Vol
AES-20, No. 2, March 1984. .

1?. FRIEDMAN, S.,
Control, Vol. 17, No. 3, Issue 39, June 1983.-

s_, Measurements and

18. FURLOW, B ., Fewer Connectilons Translate into Fewer Failures.
Computer Design, April 1985. / *

19. HOLTON, J. B . , et al, , f^rictured Top-Down Flowcharting.
Datamation, Vol. 21 (5), May 1975,.A . 1 ■jntrallzed Computer Control

■' j/gust 1984.
20. IMARA, H . , et al, Auto
Systems. Computer, Vol. 17, No.

21. JOHNSON, T. W . , Design of a Digital Flight Control System
using Area Multiplexing, IEEE NAECON, 1976.

luation of.Fault-fcOleraat Digital S

Reliability of Digital Systems. IEEE Transactions .on) Computers

26. KUBAN. J. ft., Selt^Te.a_jLlng_ the Motorola MC

IN, D. , et al, Exploring the Possibilities o ^
Electronic Engineering,^Vol. 55, No.'675,“ "

28. LYMAN, J.•. g.eUabillfc. 'Promotion. Electronics Week,

J- i., P.n.g,Y,o;.ti.â :̂ M „ Perfo.rmabilit
S z a i § M > IBJlE Transactions on Computers, Vol. C-29, No.

8, August 1980.

31. M1N0TT, et al, S&ac@_Shu±.t]e_Digital .Flight Control System.
Advanced Control Technology and its Potential for Future
Transport Aircraft, NASA, 1974.

A Software V iew, I
lyanced Avionics Architectures for
: Digital Avionics Conference, 1979.

BIBLIOGRAPHY

33. NA8GBLE, T * , Computer Controls 'Copters Avionics ̂ Electronics
Week, 12 August 1985. ,

34. NG, Y. W., et al, A Unified Reliability Model for Fault-
Tolerant Computers. IEEE Transactions .op Computers, Vol, C-29,
No. 11, November 1980. (

35. O ’ CONNER, P. P. T. , Microelectronic System Reliability Pre
diction. IEEE Transactions on B&liability, Vol. R-32, No. 1,
April 1983. ;

36. OSDER, S. S., The Implementation of Pail-Ooerative Functions
in Integrated' Digital Avionics Systems;. Advanced Control Technol
ogy and its Potential for Future Tranopdr^ Aircraft, NASA, 1974..

37. PINKOWITZi D. C . , MIL-STD-1S53B: The Military Standard for
Avionics Integration. Hearst Business Communications, Inc. / UTP
Division, Vol. 26, No. 13, 28 March 19'g4.

38. PRADHAN, D. K. , et al, A- Fanl'tr-tolerant Communication Ar
chitecture for Qljtributedx-SvsterasV rlE^E Transactions- on Com
puters, Vol. C-31, No. 9, September.-,i’sag.

39. PRBLL, E. M . , et al, Building t}>Vs.li^y and Productivity into a
Large Software System. IEEE S o f t w a ^ V July 1984.

40. RAGHAVBNDRA, C. 0., Fault T olerance in Regular Network Ar
chitectures. IEEE M i cro, December. 'F.JC v

41. Serial Digital Bus Heads, f or ’’nd;jt.trlal Systems. Electronic
Design, Vol. 28, No. 19, 13 September 1980.

42. SHRIVASTAVA, S. K . , Structuring Distributed Systems for
Recoverability anu Crash Resistance. IEEE Transactions on
Software Engineering, Vol. SE-7, No. 4, July 1981.

43. SNEED, H. M . , Software Renewal: A Case S t udy. IEEE Software,
July 1984.

BIBLIOGRAPHY

44. SPITZER, C. R . i the All-Electric Aircraft: A Systems View and
Proposed NASA Research Program. IEEE Transactions on Aerospace
and Electronic Systems, Vol. ABS-20, No. 2, May 1984.

45. STALLINGS, W . , Local Network Performance. IEEE Communications
Magazine, Vol. 22, No. 2, February 1984.

46. THATTE, S. M . , Test Generation for Microprocessors. IEEE
Transactions on Computers, Vol. C-29, No, 6, June 1980.

47. TREACY, J. J. , Flitfht Safety Issues of an All-Electric
Aircraft■ IEEE Transactions on Aerospace and Electronic Systems,
Vol. AES-20, No. 3, May 1984.

48. TROPPER, 0., Local Computer Network Technologies. Academic
P r ess, New York, 1981.

49. TSAO, D. C . , A Local Area Network Architecture Overview. IEEE
Communications Magazine, Vol. 22, No. 8, August 1984. '

50. VBATCH, M. II., Reliability/Logistics Analysis Techniques for
Fault-Tolerant Architectures. IEEE NAECON, 1983.

61. VON BANK, J ., Catastrophic Failure Modes Limit Redundancy Ef
fectiveness. IEEE Transactions on Reliability, Vol. R-32, No. 5,
December 1983.

62. WILLIAMS, D. G . , Industrial Controller Joins the MIL-STn-1553
B us. Electronic Design, 14 October 1982.

53. WILLIAMS, T. J., The Development of Reliability in Industrial
C ontrol Systems. IEEE Micro, December 1984.

54. WOOD, D. , Jaguar to fly by Wire. Interavia, 3/1981.

66. ZBLttOWITZ, M. V., et al, Software Engineering Practices in
the US and Japan. IEEE Computer, June 1984, pp 67 - 66.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Al.1 Introduction

Numerous computer systems which utilize fault-tolerance tech
niques ace commercially available. This is especially true in the
fields of on-line transaction processing (OLTP) and control of
machinery. Table Al-l shows a number of commercial fault-tolerant
systems. i'^

Some of these systems stand out as being particularly important.
They demonstrate the extensive use of fault-tolerance techniques
in computers which perform functions that are critical in terms
of safety or data integrity.

Among the most significant fault-tolerant computer systems, which
will be reviewed in the following sections, are;

Control systems; ‘ ^

- The Software-Implemented fault-Tolerance (SIFT) systejg

- The Fault-Tolerant Multi-Processor (FTMP) system

- The Triplex 32 system

- The Agusta 129 system

A signal processing system:

- The Fault-tolerant Array Signal Processor (FASF)

Transaction processing systems:

A REVIEW OF CURRENT k.OJLT-TOLERANT SYSTEMS

General purpose systems:

- The Intel 432 system -

- The Basic Fault-tolerant System (BFS)

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

SYSTEM PURPOSE PRIMARY FAULT-TOLERANCE
MECHANISM

System 4000 OLTP Replication
Self-checking
"I'm alive" messages

Power 55/5 OLTP Replication
Timeouts

Parallel 300 OLTP Rot back-up "i

Sequoia Systems Replication
Self-checking

Stratus Computers o i .T r Pair-and-a-spare
Self-checking

Synapse N+l o w r Replication
Timeouts

Tandem Nonstop o w r Replication
"I’m alive" messages

Eternity Replication
" I ’m alive" messages
Timeouts

Resilient Duplication
"I ’m alive" messages

C a n ’t Fail 300 Process control

TABLE Al-1 - Fault-tolerant Systems [25]

120

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

SYSTEM PURPOSE PRIMARY FAULT-TOLERANCE
MECHANISM

DAC-6000 Process control Hot back-up
Timeouts
Cross diagnostics

Sys ternsafe/1000 Process control Hot back-up
Timeouts

. . . . Process control Replication
Timeouts

Triplex 32 Process control TMR

s m Aircraft control Replication

rIBP Aircraft control Hybrid TMR

Agusta 129 Aircraft control Hot back-up
Self-testing
Timeouts
Cross diagnostics

SPACE SHUTTLE Flight control Triple or quad
redundancy

TABLE Al-1 (confc.) - Fault-tolerant Systems

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

SYSTEM PURPOSE PRIMARY FAULT-TOLERANCE
m e c h ’a n i s m

JPE-Star General TMR with spares
Voting

Intel 432 General Fair-and-a-spare
Functional redundancy

BFS General Replication
Self-testing
Cross diagnostics

Bell ESS Telephone
Switching.

T oa;\^up or voting
.b f-c? firing or
croi. ^agnostics

' '
Signal processing Replication,

Timeouts

t:

TABLE Al-1 (cont.) - Fault-tolerant Systems

Al .2 Control Systems

Al.2.1 The SIFT System f l Q i r 2 6) f 2 7 ?

The SIFT system is intended for use in aircraft control. In
development of the system, failure modes {the different ways in
which system components can fail) were not considered. Rather,
only the distinction between failed and non-falled equipment was
made. Low-level techniques for fault-tolerance, such as ei-
ror detection and correction codes are not included" in the
design, since they offer little improvement. 1

1
122

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

The SIFT Concept of EauLt-Tolerance,

System Overview. Reliability is achieved by having each itera
tion of a task independently executed by a number of processing
modules. Each processor places the outputs of each iteration
into memory allocated to that processor. A processor requiring
this output determines the value to be used by reading the out
put .generated by each processor which executed the itera
tion. Typically, a two-out-of-three vote is used, and errors are
recorded for use by the executive system when determining which
unit is faulty. Voting is minimized by considering data
only at the beginning of each iteration. This means that
processors may run in loose synchronization (such as to
within 50 us of one another), allowing execution at slightly dif
ferent times. The number of units which execute a task can vary.
This is determined dynamically by the global executive task,
which reconfigures the arrangement of the system when necessary.

Fault Isolation. Propagation of erroneous data is
prevented by allowing each processor to write only to its own
memory.

Fault Masking. Masking is achieved when necqssary by
majority voting between a suitable number-; of copies of any
required data.

Scheduling. Two timing requirements are generally specified for
control outputs;

output to control actuators must be generated with a
specific frequency

the delay between the reccing of sensors and the
generation of outputs must not exceed a specified value

SIFT scheduling is a slight variant of a simple periodic method.
Tasks are run at multiples of a base frequency, with the
priority of a task determining its iteration rate.

123

. JOhGl ju a «

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Processor Synchronization. Even though processor synchronization
is loose, clock drift or failure will result in the loss of
this synchronization. To facilitate resynchronization, use is
made of an algorithm which allows up to one third of the clocks
to fail .while still maintaining synchronization, The algorithm is
as follows: each clock reads the values of all other clocks,
as well as those clock's interpretations of the other clocks.
If all, readings for a particular clock do not agree, then it
is ignored. The median of all valid clocks is found end used as
the resynchronization value.

Reliability Prediction. The design goal was to attain a failure
rate of less then IQ-9 failures per hour for ten hours. Markov
modelling was used to predict the reliability of the system,
making the following assumptions;

- faults are uncorrelated, and distributed exponentially

- faults are permanent (transient faults are* masked)

- the failure rate of the main processor modules is 10~4
per hour

- the failure rate of I/O processor modules and busses is
10-s per hour

The reliability which was predicted from the calculations was ac
ceptably high for the intended application.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

!The SIFT R a N w a r e . (See tiff. Al-1)

APPENDIX 1

INPUT W O OUTPUT
PROCESSOR MODULES CPU MEN.

PROCESSOR

FIGURE Al-1 - The SIFT Hardware (28)

Standard units were used wherever possible. Processor-to-bus in
terfaces, bus-Vo-mamory interfaces, and the busses were specially
designed, however.

Interconnection system operation. Each bus controller con
tinuously scans the processors to see if a bus operation is
required. Similarly, each memory scans the busses to see if it is
needed. Bus delays are insignificant, because of the small amount
of datu transfer that is required.

125

A*. .11

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

The SIFT Software.

The Application Software. Application software performs the ac
tual flight control computations by means of iterative
t asks, Input to, and output from the tasks is handled by the
executive system. . '

The Executive Software. The executive system has several
functions:

- It runs each task at its required rate

- It. provides error-masked inputs

- It detects errors, •vnd- '^gnoses their cause

It reconfigures the system to avoid the use of failed
components

Bach processor runs a local reconfiguration task and an error-
reporting task. Error reports are made to the global executive
task, Which decides on the necessary action, and places the ap
propriate command in a buffer. Local reconfiguration tasks
read the buffer, and perform the required action. ;

Local executive tasks run each application task allocated to the
processor, provide inputs to them, receive outputs from them, and
report errors, Local executive tasks can be invoked by a running
task, a clock interrupt, or a call from another local executive.
Local executive tasks provide the following functions:

- error handling

- scheduling

A REVIEW OF FAUM-TOLBRANT SYSTEMS APPENDIX 1

- buffering i~-

- voting

Fault Detection. An analysis of errors which havs occurred can
indicate which units are faulty. Bach processor maintains a
processor/bus error table, in the’form of an m x n m a trix, where
m is th# number of processors, and n is the number of busses.
Each entry Xe (i,j) is the number of errors involving either
processor i or bus j , as detected by processor p. The entries ate
compared with maximum tolerable numbers of errors, beyond which,
faults are indicated. If the global executive is uncertain of the
location of a fault, it can schedule diagnostic tasks.

Proof of Correctness. i

Software correctness had to be proved mathematically, ^.be
cause of the vast number of combinations of possible states
of the system. Because of the complexity of the system a si a
w h ole, models were used, ■ ■ 'j

Al.2.2 The FTMP. System T291 \ .

The FTMP system is intended for use in aircraft control. Proces
sor modules, with local cache metooby, and memory modules, hre
connected by a redundant serial bus. Modules are associated ihto
groups of three. Every module contains a voting element, and spe
cial hardware to prevent tho propagation of faults from one
module to another.

Rationale of tho FTMP approach.

A failure rate of less than 10's failures per hour on a ten hour
flight was required. Fault masking was to bo used, and all system
resources had to be verifiable during system operation.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

A TMR-hybrid architecture is used, with graceful degradation.
Operation is synchronous, allowing bit-by-bit hardware voting
on all transactions. Modu7,es can be reconfigured as necessary.

Theory of the FTMP.

Noainal Organi
p; ograias, while
cache memory, are
on the amount

ommon , memory holds high-level
ve set of procedures, resident in

d to interpret the programs. This cuts down
information that must be transferred when

programs are loaded into a processor. The less
tion held in a processor's cache memory, th
perform reconfiguration.

unique informa—

Available processors examine ti job queue,
they have the resources to run. Henc
dynamic, and adjusts itself to^ mom'
tion and to module failures.

be granted’
priority.r

Tne FTMP uses

and select jobs which
, job allocation is
ntary load distribu-

a first-come first-

Redundant .Organize
times the required nominal number of module;
modules are grouped into flexible triads
available busses also form a triad. Bach meml
uses a different bus for communication.,

and three of the
of a module triad

guardian units govern the status of a module,
bus triad selection,

. configuration selection (See fig. Al-2).

128

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

BG BIG,

MODULE

BU SES

FIGURE Al-2 - An FTMP Module [29]

Both bus guardians must agree before ; power-on or bus trans
mission is permitted. Power, bual inputs and timing are
separate for each bus guardian1; and euch is physically separate
from other guardians and modules. Bus; guardians are addres
sable as part of memory. Messages sent to bus guardians are
commands which the bus guardians apply to their outputs un
til the command is superseded. The bus guardians are thus used
as agents to convey the computer configuration authority to all
elements of the computer.

The bus isolation gates are isolated from <
control lines are independent.

another and their

K REVIEW OP CtlfiRENT FAULT-TOLERANT SYSTEMS

Processor end memory failures are handled as shown in figure Al-

3-

PROCESSOR FAILS ROM FAILS4/ I NO RAM ^
' TRIAD COMPLETES Rflfl .

JOB STEP 1 s4- ' - COPY OF VOTED
IDENTIFICATION OF , DATA MADE OPERATION
ERRONEOUS MODULE INTO RAM

4 nU 2ND FAULT
RECONFIGURATION ROf;
BY MEANS OF BUS REMOVED /

GUARDIANS FAILURE OF
MEMORY

FIGURE Al-3 - Processor end Memory Failure Handling [29]

Synchronization. Synchronization is tight, allowing hardware
voting, and easy programming. To achieve the required
synchronization, the timing references are continuous . and': ac
curate. There are four clocks and clock lines, three of which
are chosen by each processor for voting (See fig. A l -4).

3

k REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

SEQUENCE

^ P H Y S I C A L M A L F U N C T I O N

L OGIC M A L F U N C T I O Ni
> D A T A M A L F U N C T I O N

4" •

S U B S Y S T E M M A L F U N C T I O N

SYSTEM M A L F U N C T I O N

FIGURE Al-5 - The Malfunction Train [29]

Masking of errors holds malfunctions at a low level.

When a malfunctioning unit is identified, it is configured out of
the system,- and full fault-tolerance is restored. Reconfiguration
may fail because of exhaustion of spares, malfunction of the
reconfiguration mechanism, or the use of defective spares.

The FTMP reconfiguration mechanism is
and bus guardian units. Failure of
single module can cause it to transmit
leading to errors.

largely within the voters
all guardian units in a
on more than one bus,

Fault detection is accomplished when a disagreement occurs at a
voter. Fault identification involves the discovery of the
module, bus, or other element which failed. Redistribu-
tio of resources may be aid this discovery.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Re=p3Qverir is made by reassifinoent and reinitialization of modules.
Program rollback is a secondary recovery process.

Survival and Dispatch Probability Models for the FTMP.

In order to evalu.i6.te the reliability of the FTMP system, the
survival probability (the probability that the system will func
tion correctly for the full duration of its use), and the dis
patch probability (the probability that the system is put
into use with sufficient resources to survive during its use)
were calculated. ,

Survival Probability Models. Failures may arise from one of three
sources:

- lack of perfect coverage Markov modelling was used to
predict the failure rate due to lack of perfect coverage. It was
assumed that there were no lafceftt faults at takeoff, that recon
figuration returns the system to" a perfect state, that all failed
busses are active, and that all undetected triple faults cause
system failure. It was shown that the probability of failure due
to imperfect coverage was dominant in the first 50 hours of sys
tem use. Most double failures could be tolerated, but some led to
system failure. To achieve a system failure rate below 10-* per
hour for ten hours, the probability of latent faults at takeoff
had to be below 10-6 per hour.

- exhaustion of spares - the minimum number of units which
are necessary for the acceptable operation of the system, deter
mines the point at which exhaustion of spares becomes
significant. It was found that spare exhaustion became sig
nificant after 50 hours.

Bus guardian unit transoission-enable mode failure - both
BGUs would have to fail before the module could transmit
incorrectly. It was found that the BGU failure rate was in
significant.

133

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

Dispatch
minimum
takeoff

ability
takeoff.

Reliability. The "dispatch minimum compliment" is the
number of operational resources required at

for sufficient system reliability. This number depends
mis'aioA requirements. Dispatch reliability is the prob-
that this minimum compliment will be available at

Al.2.3 ..Triplex 32 [4]

The Triplex 32 is a triple-modular redundant programmable con
troller, using Motorola 68000 microprocessors as processing ele
ments. The controller contains three identical modules, each with
its own CPU, memory, voting units and power supply. Each module
monitors the operation of the others by means of a triplicated
bus (See fig. Al-6). The.modules are synchronized, and execute
identical programs. If one module disagrees with the others, it
is marked, and ignored.

OUTPUT i

FIGURE Al-6 - The Triplex 32 Struct,

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Faults are masked, and modular design permits quick re
placement of faulty modules.

Faulty modules may be replaced without removing power. The re
placement module is brought into synchronization by bac k
ground software running on. the other two modules, without
interfering with the execution of the applications.

Al.2.4 Agusta 129 [30]

The Agusta 129 is a multiprocessor system which implements
automated helicopter flight control, stability augmentation and
navigation as well as many other functions. The system is dual
redundant and is based on a MIL-STD-1553B bus (See fig. Al-7).

REMOTE
UNIT t-

OTHER1553
INTERFACE!EQUIPMENT

LOCAL
tiMT 'I REMOTE

UNIT 2

FIGURE Al-7 - The Agusta 129 Structure [30]

Each master unit has the architecture shown in fig. Al-8. Only
one of the two units is active at any time, while the other per-

v 6 ':

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

forms the same computations, and serves as a hot back-up. Bach
unit performs as much self-checking as time allows.

1553 BUS

PORIINTERFACEMEMORY

PROCESSOR
PROCESSOR

FIGURE Al-8 - The Agusta 129 Master Unit [30]

Fault-tolerance in this system depends largely on software im
plementation. The last resort check is cross-channel comparison
between master units. If disagreement occurs, then the entire
system is forced into a passive state. To limit the effect of
mis-comparisons, mors than one disagreement must occur before
shut-down is allowed.

All3 The Fault-tolorant Arrnv Sirtnnl Processor [9]

This system wai
signal processing,
reliability.

developed
As such,

ovide space-based digital
system required high

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Al.3.1 Design Principles

In the FASF system, hardware resources are partitioned into
processing modules which are interconnected to form a .dis
tributed system. Software is also partitioned, into tasks that
run in a concurrent operating environment. Processing modules
and tasks are under the control of a partitioned operating
system. This partitioning is necessary because of the danger of
failure in a central control system.

Al.3.2 System Architecture .

The FASP comprises a number of identical hardware modules
working together. The interconnection structure consists of a
two-dimensional square matrix of busses.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

FIGURE Al-9 - FASP System Operation [9]

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

System operation consists of the following levels (See fig. Al-
9);

- the physical level - this includes direct memory access, and
control of shared resources 5

- the dato link level - in which a cyclic redundancy check is
used to provide correction of data

tlio network level - this provides system-wide
communication between processing modules

- the task level - tasks communicate via mailboxes '

- the applications level - several tasks interact to
provide the necessary processing for a specific ap
plication

Faults at one level are usually corrected without involving
other levels.

Al.4 Transaction P r o c o B a i T i g Systems

Al.4.1 The Tondem System (12]

The Tandem multiprocessor architecture eliminates single
points of failure by removing master/slave relationships among
processors, one! by providing dual paths to all subsystems.
It provides the ability to replace defective components
without interrupting application programs. The key ar
chitectural features that underlie these capabilities are
processor replication, dual-access I/O controllers, a redundant
power system and a message-based operating system.

The Tandem Non-Stop system (See fig. Al-10) has from two to six
teen processors which oomiautUcate over a high-speed duplex 16-bit
parallel bus system. Disk mirroring (identical disk copies) may

A REVIEW OF CURRENT FAl/LT-fOtERANT SYSTEMS APPENDIX 1

t’lGUHK Al-10 - The Tandem Non-Stop System [25]

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Bach processor is individually powered, and can shut down in
dependently of the other system components. Bach processor has a
copy of a guardian operating system, which maintains tables that
reflect the status of available system resources. Processors are
required to broadcast "I'm alive" messages to all other proces
sors, every secosd.

Check-Pointing.

For each running program, there is an identical, but semi-
active back-up program in another processor. The back-up
processor replaces the primary processor if it fails. The
primary sends its back-up periodic bhack— point messages which
define the state of the process at critical points in the com-
gutation. When the operating system activates c the back-up, it
resumes operation from the point which was defined at the last
check-point. , 1

Message System.

Isolation of user processes from configuration details is
provided by forcing all inter process communication to be
carried out via a message system. This means that com
munication is to logical devices, and the actual physical
devices need not be controlled by the process. This isolation
allows on-line repair, and graceful growth by plugging in ad
ditional equipment.

I
Stratus developed the technique known ae "palr-and-a-spare"
[25], in which major functions are replicated four times.
Each of two self-checking subsystems consist of a pair of
identical units that receive the same Inputs. If the outputs dis
agree, then the subsystem ceases to operate, and the spare
carries the load. Normally, a subsystem and Its spare run in
close synchronization.

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

When a repaired subsystem is returned to service, an interrupt
informs the CPUs that it is now available* The repaired subsystem
is then brought back into synchronization.

The scheme requires no recovery from a fault■ since work proceeds
using the spare subsystem. To the user, the machine appears to be
a conventional machine, requiring no special programming con
siderations.

Al.4.3 The Resilient System [12]

The system uses two computers, both running the same
software, but with only one active. Central to the
fault-tolerant nature of this system is the reconfiguration
monitor that operates as a number of discrete tasJcs. At the bas6
of the reconfiguration. monitor is the kernel task, which
monitors the current machine configuration and com
municates with the other processor.

During normal operations, the kernel sends reassurance mes
sages to the other CPU, and receives reassurance messages from
it. When a reassurance message is not received by the back-up
computer, the kernel takes control of the other system's ap
plications .

The monitor runs in both computers. On detection of a
failure in the other system, the monitor activates bus.
switches to take over peripherals from the failed system, and
performs actions to load and restart the failed applica
tion or system.

142

jit1 - *- '

A REVIEW'' OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Al,5 General Purpose Systems

M . 5 . 1 The Intel 432 SvstmSf (31) [5] [32J

The iAPX 432 system is designed for large-sc&le real-time con
trol and transaction processing, Tire system is based on quad-
modular redundancy. ^

Very large scale integration (VLSI) replication is used in the
/stem, to construct sa family of configurations which coveir

a range * of fault-toleraftce levels. Fault detection and
recovery are performed in the VLSI component^. No additional
logic or diagnostic software is needed.

In an iAPX 432-based system, there are three steps in
responding to,an error: u

- error confinement

- error reporting ' v !

- error recovery

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS

Error confinement, {See fiff. Al-11)

APPENDIX 1

MODULE

X SYSTEMINTERFACE

FIGURE Al-11 - Error Confinement Areas in the 432 System (5)

When an error is detected, it is confined to one of the sys
tem building blocks. Recovery and repair Strategies are built
around the block's replacement. When a module or bus has its
confinement mechanisms activated, it becomes a self-checking
unit. Detection mechanisms reside at every building block
interface, and all data is checked as it flows across the inter
face between confinement areas.

The confinement areas are enforced by applying five dif
ferent detection mechanisms:

- duplication - when more than one version of a data element
is available, comparison is possible

144

.w A- 1" -

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

- parity

- Hamming' coding

- time-outs - data must be available within a certain time

loop-back checks - suspected errors can be checked by
trying _the operation again

Error Reporting,

Upon detection of an errtir, a message is broadcast to all the
notUsa in the system, identifying th-r-^ulty confinement area, and
the type of error. This message prevents other nodes from
using' the faulty data, and provides,•L'-e.cavery information.

Error messages are broadcc-t over a set of serial busses that
are independent of the 1 busses used during normal operation.
The error message busses are subject to the same fault-tolerance
principles used in the rest of the system.*

Error Recovery.

Each node reads the error report, and decides on the.action to
be taken.

Five redundancy mechanisms exist in the s^ystem:

- single-bit error correction

- shadow modules

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Single-bit memory errors are corrected by the memory control

To guard against permanent faults, every self-checking
module may be paired with another self-checking module of the
same type. The pair of modules operate in lock-step
synchronization, and provide back-up for all state in
formation.

Such a configuration results in quad modular redundancy, be
cause there a;*e four identical ujiits - two self— checking
nodules, each with a master and shadow. 1

i1 ■■
Each memory bus may be paired with akothei memory bus. Both are
used in normal operation.

If a permanent fault is found, thja redundant resource is
switched in ter replace the failed unit. No centralized ele
ment controls the switch; each node kngws which other node it
is shadowing, end when that node is identified as faulty, the
back-up node becomes active and takes i over the operation.

After recovery is complete, hardware informs the software of the
error and subsequent recovery actions. : The system software
then decides on the optimum configuration!

full capability and fault-tolerance retention, using a

- decreased capability, but full fault-tolerance, by
switching out the the faulty pair

- full capability, but decreased fault-tolerance, by using the
shadow on its own

k REVIEW of current fault-tolerant systems

Levels of Fault-tolerance. (See fig. Al-12)

GDP I GDP

Biut eiu

HOOULfiR
REDUNDANT
PROCESSOR
MODULE

FUNCTIONAL
REDUNDANCY
CHECKING
PROCESSOR
MODULE

PROCESSOR
MODULE

SOP - GENERAL DflTfl PROCESSOR
B1U - BUS INTERFACE UNIT

A

V

HARDWARE
RECOVERY

jg HARDWARE
A SELF-CHECKING
I 'SELF-HEALING*

I
g SOFTVflRE-
” PROGRAMMABLE

RECONFIGURATION

which it occurrod. ial program flow is then interrupted

y:;tr

FIGURE Al-12 - Levels of Confinement in the 432 System (5]

The cheapest reconfiguration relies on the built-in
fault-detection mechanisms such as bus parity,
error-correcting codes across memory arrays, and access
retry. , Downtime ia required, when a fault is detected, to
reinitialize the system, run a diagnostic program to locate the
fault and reconfigure the system to disconnect the faulty
module. The system will function with a lighter load until a re
placement for the faulty module is available. The data base
may be corrupted unless special software techniques are
used.

At the other end of the spoctrum, the sclf-healinfi system uses
functional redundancy checking to detect errors as they oc
cur, and to limit any detected error to the confinement area in

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

for reconfiguration. Recovery time may be as long as a few
seconds.

In 432 systems, the user is responsible for making I/O
channels and controllers sufficiently secure, and for
providing reliable clocks and power supplies.

The BFS is intended to find application in process control,
transaction processing and remote equipment.

The Concept of the BFS,

A number of objectives were to be met by the BFS;

- Hardware faults only were to be tolerated

Deterioration of system performance was permissible, but
the system was to remain in working order for as long as
practicable

- The redundancy inherent in a multi-microcomputer
system was to be utilized, to minimise the need for extra
redundancy

- Mutual monitoring by microcomputers was to be used

-• Standard components were to be used

- A simple network structure was to be used

Hardware Structure of the BFS.

The BFS is a multi-microcomputer structure, in which the in
dividual microcomputers ore loosely coupled.

FAULT-TOLERANT

with each
arid itsconnected to its

(See fig, Al-13)

A REVIEW OF CURRENT FAtlLT-TOLERANT SYSTEMS

<N
CE

d

1

FIGURE Al-13 - The Structure of the BFS [11]

150

A REVIEW OF CURRENT FAULT-TOLERANT SYSTEMS APPENDIX 1

Modules each: have a separate power supply, and use a six-
card Multibus' system.

Software of the BFS.

Bach node has en individual operating isystora that makes it inde
pendent of the other nodes. Since the "node hardware is identical,
the same software can be used in them jail (See fig, Al-14).

1

m m s a e ,

EIQI109E - ft MEW.moBWM ;. | ^

nit m m

FHII-IIEREE RHCIIOB - ncishbimi testing to REoiiBRNizfliioN, WB TUbU, MSfflBEHEHT
m m - fan w utiewt tff .iMtssREES.tuws nodules

ramfiSmgiHIClBS - TUSK msx swcmcNnniioH wo tfmflttc wxm mmsmtHi
SOlSiBP - sets ihe 5«ieH id ftlBtrwt stmt, rhd u*ds

TH£ RESPemVE 0PERSf|NS SYSTEMS OF THE HOOULE

FIGURE Al-14 - The Software S t V ^ e U r e of the DPS [U]

Al .6 Summary

Numerous systems apply fault-tolerance techniques, especially in
the fields of on-line ernnsaction processing and control of
machinery.

An Important system is the SIFT system, which is intended for
aircraft control. The system achieves improved reliability by
having each iteration of the task executed by a number of

151

A REVIEW OF 'CURRENT FAUL.T-TOLBRANT SYSTEMS APPENDIX 1

processing modules. A processor requiring the results of any
task (determines the value by obtaining the results from each
processor which executed the task, and performing voting.

Also important is the FTMP system, which is again intended for
aircraft control. An hybrid triple-modular redundant structure is
used, with voting, being accomplished in hardware.

Other notable systems include the Triplex 32 programmable
controller, the Agusta 129 flight control" system, and the
Fault-tolerant Array Signal Processor.

Notable transaction processing systems are the tandem system,
the Stratus system, and the Resilient system, while the Intel
432 system, and the Basic Fault-tolerant System are prime
general-purpose systems.

The study indicates that no dominant fault-tolerance technique
has emerged. Some systems make use of replication, and others,
back-up. Furthermore, there is no outstanding configuration
within these techniques. Ik is therefore essential that
systems be carefully designed for the particular application.

DATA FLOW TBCHWIQ;OESi APPENDIX 2

This appendix expands on the description of the data flow method
of program development, given in Chapter 3.

A 2»1 Data Flow Di&fframa

The basic tool for utilising data flow is the data flow
diagram. Five symbols are useci^ (I'S], (19]

— rounded rectangles for functions (processes which
transform flows of data)

(opt.) identification

description of

'(opt.) physical location where
performed (a,*, jprogram »as»e)

\

- arrows for flows of data

Description of Data

DATA FLOW TECHNIQUES

open-ended 1 rectangle for stores of data

/ mtUtiple left border implies duplication
/ o| the store of data, elsewhere on the
! tLilagrdrii

identification

4 squares for|:external sources or sinks of data

description
of entity /shows that the block is

duplicated elsewhere on
the diagram

- small cirr^es for off-page connectors

identification

is/:,- %

DATA FLOW TECHNIQUES APPENDIX 2

. Guidelines for drawing data-flow diagrams are [16)

- identify the external entities involved

- identify the scheduled inputs and outputs involved

- _i->sntify the inquiries and on-demand requests for
information that could arise

- using a large sheet of paper, place the primary external
entity on the left-hand side and draw the data flows that
arise, the processes that are logically necessary and the
data stores thtft are probably required

- draw tM. first draft fteehaod, including °e;v-eryth<tng
except errors, 'exceptions and decisions v c ’ = ^

back with the list of inputs aiRd> outputs ,̂a see if
everything is included. Note the exclusions \

„ - r,produce a clearer second draft, using a; tamplaBe. Check
and note exclusions -

" get a user to examine the draft

- produce a lower-level explosion of each process. Include
errors and exceptions. Incorporate changes in the
top-level diagram

- produce a final top-level diagram '

A 2 .2 Data Dictionaries •f

A data dictionary is a store of descriptions of all entities
in a system. . >■

DATA FLOW TECHNIQUES APPENDIX 2

Data dictionaries can provide

ordered listings of all entries or various classes of
entry, with full or partial detail

- comp'tisi-te tecords

- cross-Referencing ability

' - names,from descriptions

- consistency,and completeness checking

- generation of machine readable <%ata definitions

- extraction of data dictionary entries from existing
programs

Data elements are the smallest useful pieces of data. Data
structures are made up of data elements ffnd other data
structures. Dafra flows and data stores are data structures
in motion and at rest respectively.

Typical data dictionary contents are

Data v lament descriptions

- description >
- optional - aliases for the data element

- related data elements ,
- range of values and meaning, of

values
- data length
- encoding (ASCII, binary etc.)
- other editing .information

. i f ' V i

DATA FLOW TECHNIQUES

Data structure descriptions

- description
- construction in terms of other entities;

- optional entities - (xxxxxxxx)
- alternate entities - {xxxxxxx,yyyyyyy)
- iterations jt? entities - xxxxx * (0 - 10)

possible numbers
of iterations

Data flow descriptions

- names of data structures that pass along it
- source and destination of data flow
- volume of flow
- physical implementation if available

Data store descriptions

- names of data structures stored in it
, - input and output data flows -

Processes
- name
- names of inputs and outputs
- summary of the logic
- reference to the full functional specification

I # :

External entities

- names of associated data flows
- if person(s) - Number

- Identification
- if another system - Language

- Informatioi

-

r.'- ^

-t- :

DATA FLOW TECHNIQUES APPENDIX 2

Glossary entries
- description of esoteric terms

A2i 3 Data Stores

It is usually easier to change the logic of a process than
to change the structure of a data base. However, it is
possible to refine data bases to their simplest form.

A2.4 Deriving a Structured Design from the logic model [16]

There are throe main design objectives

- performance - in throughput* run-time, or response time

- control - security

- changeability - for enhancements and pcst-production
debugging

The principle that the essential form of a program piece is

1 - Get input

2 - Perform transformation

3 - Produce output

is adhered to.

To get from a data flow diagram to an hierarchical
structure, one starts with the rawest form of input and
traces it through the data flow until the point is reached

DATA FLOW TECHNIQUES APPENDIX 2

where it can no longer be said to be input. Likewise, the
output is traced back into the system until it can no longer
be thought of as output. The middle piece of the system
forms the transformation section.

Tree structure diagrams ttre used to represent the
hierarchical system.

SOFTWARE DEBUGGING TECHNIQUES APPENDIX 3

This appendix expands on the techniques of program debugging,
which were briefly covered in Chapter 3.

A3.1 Guidelines While Writing Code

- avoid using GOTO

- design modular programs

- program for clarity and optimize later

- avoid system-dependent code

- produce good documentation

A3,2 Assumptions in Debugging

it is necessary to ensure that the bugs.which show up on the
execution of application programs are present in the program
itself. Therefore it must be proved, or assumed that

- the computer is never at fault

“ the system software is never at fault

A3,3 Debugging Practice

- keep- a written record of debugging

- save a copy of the program before the latest fix

- make sure the listing :1s current

test multiple variations of the program, each with only one
change in it

SOFTWARE DEBUGGING TECHNIQUES APPENDIX 3

- watch out for 1,1,1 and 0,0

- he aware of the particular problems of a language

- rewriting may be faster than debugging

A3,4 J

Techniques for eliminating visible errors

Indirect We* "^run the program
,,4.ook at the documentation

y'browse through the debugging notebook

PRINT statementsA.J) unconditional '
- conditional
- to screen, printer or disk

'Breakpoints, 1
: - - : -tf'-

Snapshots. a printed record of the •state of the
machine

Finding hidden ^rrofs and verifying program correctness

Force and check with simple data.

Anticipating future errors (preventative debugging)

Sir aping debug instructions- - 4ro invoked only when abnormal'-
conditions occur

Firewalling. - chock data before leaving modules

SELF TESTING! THEORY AND PRACTICE APP3HDIX 4

This appendix /elaborates on the techniques of self testing in
computer systems.

hi ,1 Introduction

Errors in a computer system may be caused by [33]i

- Algorithm faults .. >■

- Programming mistakes

- - Component faults ■

lest programs, which exercise the computer, are "useful in
detecting the failure of a component. Algorithm faults and
programming Bistakes must be removed using conventional
debugging techniques.

Testing of < microprocessors is made difficult because the
working details of the microprocessor are not usually
syailabls to the user. Tor testing, therefore, the
microprocessor is generally split up into functional units. An
additional hindrance to sierop.roceeeor testing is the fact
that.matiy data and eontral p«6hs within the machine are - not
directly aocessi&lsu

Built-In Self-Test (BIST) can be defined as the capability for a
product (chip, multi-chip assembly or system) to test it
self, with input stimulation or output evaluation, or both,
being integral to the product and not requiring external test
equipment [34].

The problem of self-testing is compounded by the fact that the
instructions used for testing may themselves be faulty.

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

A4.2 Testing Theory

A.4.2,1 Introduction

The models described in this section are used in the
functional testing of microprocessors [35],

For teat generation purposes, the microprocessor is rep
resented in terms of its functional units. Then a fault model
is developed for each of these functions.

A.4.2.2 Instruction -model

An instruction I is composed of a sequence of
microinstructions { m ,me ntk }. Each microinstruction is
made up of microorders (uji ,uja ,..,ujq) which are executed
in parallel.

k is the number of microinstructions in instruction I and q is
the number of microordera:in microinstruction j.

A4.2.3 Microprocessor model

A microprocessor is represented by a graph, which consists of
nodes representing

- a register, or t,

- a set of equivalent registers, or

- the special nodes IN or OUT

IN represents the source of oil control/data input, while OUT
represents the sink of all control/data output.

The nodes a& e connected by directed edges if and only if
there is an instruction which causes the transfer of data from
one node to the other.

163

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

A 4 .2 Testing Theory

A'i.2> 1- Introduction

The models described in this section are used in the
functional testing of microprocessors [35].

For test generation purposes, microprocessor is rep
resented in terms of its functional u«ito. Then a fault model
is developed for each of these functions,

A4.2.2 Instruction model

An instruction I is composed of a sequence of
microinstructions (mi ,«a ,ait } . B^ch microinstruct.on is
made up of microorders (uj i , Uj 2 , , ,uaq J which are executed
in parallel. \

k is the number of inicroiiistructions in instruction I and q is
the number of microorders in microinstruction J .

A4.2.3 Microprocessor model

A microprocessor is represented by a graph, Which consists of
nodes representing

- a register, dr

- a set of equivalent registers, dr

- the special nodes IN' or OUT •

IN represents the source of ull control/data input, while OUT
represents the sink of all control/data outputt

The nodes are connected by directed edges if and only if
there is an instruction which causes the transfer of data from
one node to the other.

SELF TESTING! THEORY AND PRACTICE APPENDIX 4

Registers are equivalent with respect to an instruction set if
and only if any instruction which uses one of the
registers could use another.

A4.2.4 Fault Models

The microprocessor is decomposed into the following units:

- register decoding function

- data transfer paths

- arithmetic and logic unit

- instruction sequencing and control function

Fault model for the register decoding function.

f (Ri) = the regia ter decoding function d
= Ri in the fault-free case
= Rj or 0 or {Ri ,Rj) in the faulty case

Fault model for the data transfer function.

Under a fault

- any number of data transfer lines can be stuck at 0 or 1

- any pair of lines can be coupled

Fault model for the data manipulation function.

The model depends on the architecture of the
microprocessor. The test set consists of instructions to trans
fer the data from memory to the source registers, instruc
tions to perform the operation under test, and instructions
to , «d the result from the destination to memory.

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

Fault model for the instruction sequencing function.

Under a fault, one or more of the following occurs

- one or more microorders is inactive

- microorders that are normally inactive become active

- incorrect microinstructions are active

A faulty instruction can be represented as

F(r) = I + d+ - d*

where d* ia the set of extra microinstructions

d" is the set of lost microinstructions

A 4 ,3 Test Procedures

A 4 .3.1 Introduction

There are three types of routine used in Ihe testing process

- test routines, which detuct errors

- diagnostic routines, which locate faults

- executive routines, which control the overall process

Some parts of the machine to be tested must be operative in or
der to perform any program tests, In particular, once It is
verified that the read instructions are foult-froe, the correct
functioning of the remaining instructions can u.- then tested
by first reading codewords into the internal registers,
followed by executing the instructions and reading all the
registers.

SELF fESTING: THEORY AND PRACTICE APPENDIX 4

A4.3.2 Error detection !'i

To detect the presence of faults, it is essential that tbe ef
fects of the faults show up as erroneous d&ta.

Built-In Checks [36}' . '

Such checks use special,hardware and/or codes incorporated into
the - computer or system and are normally designed to detect a
cerfeain class of error only. The chief forms of this type of
check', are . .

- data transfer checks e.g. parity, Hamming etc.

data storage checks e.g. memory duplication

- arithmetic checks e.g. ...register overflows,1 out-of-range
checks etc.>

Programmed Checks - (k

The selection of programmed error detection and correction
methods must be based on several factors [33]

- the probability of eatih type of malfunction and its
detection and correction by a particular technique

. - the probable damage produced by different malfunctions

- .the cost of additional storage end increased computing speed
requirements

The programmer must establish tolerances on allowable dis
crepancies , and the degree of confidence to be placed in a
particular type of check. He should also decide on the frequency
with which the various checks are to be applied.

jjSvti

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

Four testing methodologies have been applied [37}

exhaustive'testing - All combinations of data pattern and
instructions are^ tested. This gives 100% fault coverage
for all non-redundant faults, provided that they do not make
the system .sequential-' The test time of this method is long, and
grows exponentially as fche width of the data flow increases-

- random>: pattern testing - A randomly chosen subset of the
exhaustive test is used, sufficient to give an acceptably
high fault coverage. However, prediction of fault coverage is
difficult, and many structures are not random-pattern testable.

pseudo-exhaustive testing - The method seeks to par
tition the system logically rather than physically, and then
to exhaustively test each, partition. This allows broader
descriptions and models. However, the partitioning may te ex
pensive to ac'omplish.

- hybrid testing - Logic can be divided into a number of
cones, each consisting" of all the logic that feeds -a single
output. It is not necessary to test the , entire system,- only
each individual cone. c

While the .eVs that exercise the machine are being
carried out, it is useful to assign unique codewords to each
register. Before the test is r u n , the registers are loaded
with their codewords, and when the test is complete, the
registers are checked to see that they are as they should be.

Certain basic instructions must- be operative in order for tests
to be carried o u t .■These are.

- memory to register transfer

- register to register comparison

- conditional branch

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

The instructions allow the loading and comparison of data, and
the branching to an error handling routine if there is an error.

Comprehensive tes.t sequences will utilize every command in the
machine, and exercise every accessible element in the computer.
The blocks of code can be scattered throughout the memory to in
crease the probability that an error .will cause a transfer to
an illegal memory.location which.will can; be filled with an 3ALT
instruction [38].

The test sequences perform ■

command tests - All commands ,yith oil possible in
struction options are tested. Two methods are possible

(1) The result of an operation is obtained in two dif
ferent ways; once using the instruction to be tested, and
once using a sequence of other instructions that simulate
that instruction. Different pseudo.rrandom numbers are used as
test data. - -

(2) Instructions are; repeated with different data, and th’'
results are compared with stored, precomputed answers.

- memory tests - A block . of words ' is "etipied to a tem
porary location and the two blocks ore compared. Next, test
data are written into the block, and into another temporary
location, The blocks are compared add then the original data is
returned to the tested block.

accumulator tests - The accumulator is caused to count by
ones, and the end result is compared with the correct answer,

addressable device and register tests - Specialized I/O
test routines are used. The main machine must be operating
correctly before these tests can be made.

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

- bus testa - Tq effectively test a bub, it is neceSsary . to
drive the bus from each possible register in -turn, while col
lecting a signature in all receiving registers.

Tests may also be built into the application programs [36]. The
basic procedures are [33]

“ rjscoraputation by the same, an inverse, or a different
process and comparison of the results. ^

- tests to see if the results satisfy certain mathematical or
physical criteria

- checks based on estimates of behaviour

- special checks for a particular process Or machine

Careful consideration must be given to .the number of opera- \
tions to be cjovered by a single check. Tolerances" should be
provided because tif truncation and roundoff.

Acceptance Checks [2®L_

Acceptance tests are designed to ensure that the system i s f u l l y
operational and that all the system facilities'’'^are complete
and working before acceptance of the system by the customer.

The acceptance procedure is generally based o n " ^ test cycle,
comprising both engineering test programs and operational
programs.

i
A4 .3.3 Error I.ORgjnfl and Control j'

While there are no errors, the test Sequences are repeated a
specified number of times. Pseudo-random numbers are gen
erated for test data. Status messages are printed. These meas
sages typically specify the sequence just . rtih
successfully, the sequence which will be ru;. next, and the fiion- ' '

BhW —aj t <-

SELF TESTING: THEORY AND PRACTICE APPENDIX 4

tents of the registers. Major errors will usually result in the
tests being, run in the incorrect order, or at erratic times.

When an error i.S detected, the' error routine adds to an error
count and outputs an error message. The test sequence is repeated
to indicate whether the fault is transient or permanent. If two
successive tests show the same error, then the fault is con
sidered, permanent. Otherwise it is transient, vand the application
program, can continue.

A4.3.4 Error Diagnosis

A diagnostic program its usually employed to locate the source of
an error once it is 'known to exist. It is useful to have separate
diagnostic programs for different parts of the.system. The loca
tion of-a fault resultii in a record being made of the error’s
probable cause.

Diagnostic tests are not generally useful to locate faults in
certain important control circuits or in the power supply.

A 4 .4 Preventative Maintenance

V ■ ■
Preventative maintenance should bti applied -frcT'systems, in addi
tion to their self-testing. This maintenance will include mar
ginal testing, where components of the sy^'t^m are driven at the
extremes of their specifications. Such t b s M n g can show'up the
imminent failure of an ailing component, thereby allowing repairs
to be made before errors arc caused.

HARDWARE DETAILS APPENDIX 5

This appendix provides full details regarding the hardware used
to implement the experimental system.

A 5 .1.1 Overview

Typical uses include -

i - multiprocessing single board computer

ii - mass storage front-end processor

iii - stand-alone single board system

AS.1.2 Functional Description

The SBO is functionally partitioned into six main
sections

- central processor

The 80186 combines DMA, interval timers, clock gen
erators and a programmable interrupt controller
into one chip.

The 80186 instruction set includes all the 8086
instructions, while adding

block I/O
enter and leave subroutines
push immediate
multiply quick
array bounds checking
shift and rotate by immediate
pop and push all

The 80130 component provides the iRMX 86 nucleus
primitives, timers and programmable interrupt

HARDWARE DETAILS APPENDIX 5

control. This adds to the 80186 instruction set,
providing 35 operating system primitive functions,
and supporting five new data types.

The 80186 provides three 16-bit programmable 'timers.
Two of theie are connected to four output pins, and
can be used to count external events, time external
.events, generate non-repetitive waveforms", etc. As
shipped, " "the timers provide baud rate generation.
Tbe third timer is not coiw,actiid to output pins, and
is useful for real-time coding, time-delay
applications, prescaling the other timers, or as a
DMA request source. <■

The 80130 provides three more 16-bit programmable
timers. One is used as a baud rate generator,
another ss a system timer, and the third is reserved
for use by the 80130’s iRMX nucleus.

- memory

There are eight JEDBC 28-pin memory si^es o n 1 the
SBO. Four of the sites are EPROM sites, and four are
RAM sites. The use of an expansion module will add
four more RAM sites. Memory deyice ty^e size are',
jumper-selected. ?

The four EPROM sites are top-justified in thts 1Mbyte
address space, and must contain the power-up
instructions. The four RAM sites are, by default,
located starting at address 0 .

Power-fail control and auxiliary power are provided
for the protection of the HAM sites.

- small computer system interconnect (SCSI) peripheral
interface

172

HARDWARE DETAILS APPENDIX. 5

This interface consists of three 8-bit parallel
ports, which may be configured as general-purpose
I/O, SCSI or DMA-controlled centronics-compatible
line printer interfaces.

- serial I/O

J!wo programmable communications. interfaces are
provided. 80186 timer'' outputs are used as
software-selectable baud reto generators.

The mode of operation (asynchronous, byte
synchronous or bisynchronous protocols), data
format, control character format, p a r i t y -and baud
rate are under program control.

- interrupt control

27 on-board vectored interrupt levels, to service
interrupts generated from 33 possible sources, are
provided.

The 90186, 8259A, and 8274 PIOs act as ..slaves to the
80130 master PIC,

The highest priority interrupt is the non-maskable
interrupt (MMI) line, which i| connected directly to
the 80186 and is typi-pa/ly used to-- signal
catastrophic events, \

- MULTIBUS bus expansion

The SBC provides the A., - i.-x/s system b us, which
supports 8- and 16-bit SBCs and.peripherals, with
20 or 24 address and 16 data lines

iLBX bus ~ a local bus extension, allowing
on-board memory performance with off-btiard memory

■"f

A S /

H&RDWARB DSTAILS

iSBX bus - multi-module on-board expansio
allowing additional I/O functions to be added

iRMX 86 Release 6 can be uaed, or CP/M firmware can be
supplied using the 80150.

AS.1.4 Development Environment

Using iRMX 86 Release 6 , software-'^development can be
■ performed directly on the SB C , or by using one of the
compatible development systems.

AS,2 The DT732 input/oufepul: board [39J ' '

AS.?. 1 Djsaci!iP_tlon

Ihtoi I/O board is memory mapped, with,9 jumper-Gelectable
base address over a 20— bit address range. K blbck <5f 16
con tiguous addreesF bytet, ̂ t a ^ t i n g at the. base address,,,
provides access tc ypi*. Hip v. control# data and channel
addtfess registers requic6«'^for programming purposes.

Analog input features . ;

- 32 single-ended or 16 differential channels \

- sample and hold circuitry «

- fast A/D converter

- software programmable gain amplifier (gain = 1 , 2 , 4 ,
or 8)

- jumper-selectable full scale input ranges (+/- 10 V,
+/- 6 V, 0-10 V, 0-5 V)

HARDWARE DETAILS APPEN

- 4-20 mA current loop output

- +/- 0,06% non-linearity over full scale range

- 24 000 samples per second

(
A crystal-controlled "pacer" start clock is available
for _ generating any one of ten jumper-selectable time
periods from 1 ms bo 1 s for synchronizing A/D
conversions.

A variety of sampling modes is • available
- repetitive single channel

- random access - i

- channel scan „ '

Sampling may bo triggered in three ways

- programmed J/o ' :»

- on board pacer sample timer . i

- external trigger ^

Separately enabled interrupt# ■ caused"- by either the
»nd_of_conversion or end_of_, re£•/conditions can be
routed to the MULTIBUS.

Analog output features

- 2 channels

- 12-bit resolution

jumper-selectable output ranges (+/- 10 V> +/- 5 V,
0-10 V, 0-5 V)

ii!

175

HARDWARE DETAILS A.pP5

- 4-20 mA current loop for each output

Software

The I/O board operates under iRMX 80.

NOTE: References are to the handbook for the board [39]

.Analog Inputs

input impedance - power on: 100 Mohw (win.)
- power off: 1,5 kohm (min.)

max input voltage without damage - power on: +/- 35 V
- power off: +/- 20 V

sample and hold - aperture time: 10;A na
- uncertainty time: 20 ns
- linearity: +/“ 1/2 LSD

system non-linearity - gain = 1: 0,05* FSR +/- 1/2 LSJ3
- gain = 2,4,8: 0,0?JS FSR +/” 1/2 L

common mode vollatfo range: +/-'10,24 V
CMRR: 60 db ■

x'' external trigger: TTL Schmitt trigger, edge sensitiveii
triggers on the falling edge
+5 V to G V for 200 ns (min.)
50 ns rise time (max,)

digital output encoding (jumper selectable)i
- bipolar: offset binary or 2 's compliment
- unipolar: straight binary
- current loop: straight binary

Analog Outputs

K >

slew rate: .10 V/ us (no load capticitantie)
settling time: 4 us to +/- I LSB
accuracy: +/- 0,05* FSR

HARDWARE DETAILS APPENDIX 5

output current: +/- 5 mA at •+/- 10 V
short circuit protected

digital input encoding: straight binary
2 's compliment
offset binary

output - impatience: 0,2 ohms
- capacitance: 1000 pF (max.)

User Connections

Output and input channels both use 50-pin edge
connectors, with.2,54 mm spacing. One is used for the
outputs, and two for the inputs.

(The connectors are 3M 3416-000. or TIK 312L25)

Cables are flat or twisted pair.

(EP 036 or EP 086)

AS. 2.3 „U

Parameter Relevant Figs Notes •

Base address
renisve jumper 200-201

A/D input range and
configuration, and
output coding

3.1 3.a 3.3

3,4 3.5 3.6

For IB-bit addresses,

When the input range is
changed the A/D converter
should be
recalibrated.
For 4-20 mA inputs, the
input must be
differential. User-
supplied 250 ohm 1/4 W +/-
2% 0,5 ppm/degree C shunt
resistors should be used.

HARDWARE DERAILS APPENDIX 5

Parameter Relevant Figs Botes

D/A output range and
input coding

3.7 3.8 3.9
3.10

Simultaneous voltage and
current outputs are
possible. Whenever the
range is changed,, the D/A
converter should be
recalibrated.

Internal pacer clock-
period

3.11 3.12 When an external trigger
is used, the pacer cJ^cjk
must be disabled
by disconnecting pin 40
from any other pins and
connecting it to pin 39

Interrupts 3.13.3.14
3.15 3.16

CINT A and INT B may be set
to trigger at EOC, EOS or
upon tfi'meout of the pacer

Transfer acknowledge 3.17 It .is sometimes necessary
to delay this signal match
the XACK/ to the host to
the computer timing

INH1/ and INH2/ 3.19 If the I/O board occupies
the signals same.memory
space as RAM or ROM, it
may be configured to in
hibit RAM (i m u /) or ROM
(INH2/) when the I/O board
is accessed

Factory Defaults 3.20 3.21
3.22 3.23

HARDWARE DSTAILS APPENDIX 5

A5.2.4 Input and Output Connections

Input Connections

Analog input connection schemes
d .

- single-ended inputs - refer to figures 4,1 and 4.2

common-mode rejection is Lost

- use high -level inputs (> 1 V FSR)

- use short lead lengths (< 1 m)

- differential inputs - refer to figure 4.3

- common-mode rejection is obtained

- low-level inputs may be used

- lead lengths are not restricted

- current loop inputs - refer to figure 4.4

Output Connections

For simultaneous voltage and current output, the
jumpers must be set for current output. The current
loop connects to "DAC x I out" and "DAC x I Rtn” ; the
voltage output connects to "DAO- x V out" and "DAC x
Ana Gnd", Only the current is calibratable. Refer to
figure 4.5.

If the on-board dc-dc converter is to be used ns power
supply to the current loop, " + 15 V out" must be
connected to "DAC x ’ •'-.p V+” .

HARDWARE DETAILS

A3.2.5 Architecture and Programming

The address base is sat to 0F7Q0H when shipped.

Memory Address Assignments

Refer to figure 5.1.

Analog Input Registers

APPENDIX 5

Register Relevant Fig

command 5.2

status

start channel
and gain

5.4

last channel
address

5.5

clear interrupts 5.6

ADC data 5.7

Analog Output Registers

The lower byte must be written first. The conversion
takes place when the higher byte is written.

J

HARDWARE DETAILS APPE1

Analog Input Function

-• random channel input - write to the start channel
; and’gain register

write to the command register

„ conversion takes place

subsequent channels are selected by a write to the
start channel and gain register, before a read of
the last converted channel -

a read of the high byte '. last converted
channel enables the next 9. inversion

repetitive single channel conversion :

write to the start channel and gain register

write to the command register.,

reading the high byte enables the next conversion

- sequential input scan

write to the start channel and gain register

write to the last channel address register

write to the command register

reading the high byte enables the next conversion

!(check that the "A/D conversion done" bitj is set)

when the BOS bit is set, reading the high byte
resets it

HARDWARE DETAILS APPENDIX 5

A/D converter trigger

Unless an external trigger is specified, A/D
conversions are started automatically by a software
trigger whenever a data word is written, enabling
the conversion.

Testing of the board is described in appendix 6 .

A5.3 The Modular Servo System (40} [41] [42]

' A5.3.1 Introduction

The servo system is a velocity lag position control
system With a d.c. error channel using potentiometers,
with provision for -inserting linearizing networks to
simulate a single time-constant system.

It is used for demonstrating and teaching automatic
control techniques to students and technicians. It
comprises modular units for individual study and for the
construction of speed and position controls using d.c.
error signals.

A5.3.2 Closed Loop Systems

Since a closed-loop system is "error operated", it
contains the facility to compensate for any departure of
the output from the required condition set by the input,
since this departure changes the error causing a
correcting signal to be applied to the forward path.
Oscillations may set in, however, causing the system to

HARDWARE DETAILS

A 5 .3.3 Motor Characteristics

Operation of the Motor

Armature control or field control can be selected by
inserting appropriate links in the servo amplifier,

b, Tachog^nerator Calibration

A gear system of ratio 30:1 rotates a low-speed shaft.
The rotations of this shaft can be counted and the
tachogenerator output measured, giving the
voltage/speed ratio, Kg. This should be about 2,5
3,0 volts gef 1000 r .p.m. of the motor.

183

HARDWARE DETAILS ' APPENDIX 5

A5.3.4 Soaed Control of the Motor (Refer to fig. A5-I)

SUPPLY

gESDBACK

MOTOR]

A5-1 - Block Di- Control CircuitF H of a

The steady-state operating conditions of a ideal system
may be represented by

HARDWARE DETAILS

K = forward path gain
ii

E = error ^ignal

Now B = Vref - Kg 0

where Vref = reference voltage

Kg = tachogenerator tfdtiatant

0 = K(Vref - KffO)

If the forward path gain K is largo, and Kg is

APPENDIX 5

constant,

0 is proportional to Vref

HARDWARE HafAriS APPENDIX 5

a, Properties of the Operational Amplifier Unit (Refer to fig.
A5-2;

p.r

FIGURE A5-2 - The Op. Amp. Circuit

Vo = -R2/R1 (VI V2 + V3)
for large A.

A zero setting is provided.

b . Simple Speed Control System

The servo amplifier requires a positive input to
rotate the motor. Hence, the voltage applied to the
inverting op. amp. must be negative.

The tnchogenerator voltage must, be connected to oppose
the reference voltage.

HARDWARE DETAILS APPENDIX 5

A5.3.5 Position Control System (Refer to fig. A5-3)

For this purpose, a potentiometer is connected to the
low speed motor output shaft.

AMP.

. O U T P U T

FIGURE A5-3 - Bloch D <gram of a Simple Position Control
Circuit

The volts/degree ratio, Ho, is approximately IV per 10
degrees, or 0,1 V per degree.

HARDWARE DETAILS

Due to inertia of the motor, the system may overshoot
the required position. To reduce the settling time, an
output can be taken from the tachogenorator of such
polarity as to oppose the error signal.

A5.3.6 Circuit Notes

a. Operational Amplifier Unit

The unit consists of an op. amp. plus input and
feedback components. There is provision for external
feedback components.

The nominal output is +/- 10 V, +/- S mA max.

b. Pre-amplifier Unit

The pre-amplifier unit provides suitable
positive-going signals for both inputs of the servo
amplifier to enable the motor to be driven in both
directions by a signal applied to this unit.

External compensation circuits can be plugged into the
unit if required.

c. Servo Amplifier

The armature or field configuration is selected .by
inserting links in this unit.

d. Motor/tachogenerator Unit

If the motor Is
should rotate ut a

connected for armature control, it
urront of about 0,9 A.

The tochogenerntor ripple voltage is t/- 0,25 V pe:
at 1800 r.p.m.

I/O BOARD CONFIGURATION AND TESTING APPENDIX 6

This appendix describes the configuration and testing of the I/O
board, including its insertion into the memory address space on
the Multibus system, atid the configuration of the input and out
put characteristics. Exact connections are given to provide a
record of the configuration details.

. - - /-i:

System Firmware

Available
Memory

COMMON
MEMORY

COMMON
MEMORY

Available
Memory

* -__

Available
Memory

I/O BOARD CONFIGURATION AND TESTING APPENDIX 6

A6 .2 I/O Board Address

The I/O board uses 12 bytes of contiguous memory, starting
at a base address, which is jumper-selected to be on any
l6~bvte boundary. Since no other peripherals are to be
used, 0E7000H was chosen.

A6 .3 I/O Board Configuration

A6.3.1 Base Address

0B7000H

20-bit address, so insert jumper 200—201

lADDRx/ ! Value i Header #!

I/O BOARD COWFIGCfRATrOR AND TRSTrwG

Input range: +~ 10 V

Insert jumpers

Remove jumpers

Configuration: diff<

Insert jumpers

Remove jumpi

Coding: offset binary

Insert jumper - 66-1

Remove jumpei

KPPENDIX 6

I/O CONFIGURATION AND TESTING

A6.3.3 D/A Output Range and Coding

Output range: +- 10 V

Insert jumpers

Remove jumpers

9A-10A

Insert jumpers - 15-17
18-19

Remove jumpers
15-16
18-20

Coding: offset binary

I/O BOARD CONFIGURATION AND TESTING

Itisert jumper - 46-4?

Remove jumper - 45-46

A6.3.4 Pacer Clock Period

Trigger: factory default (Is)

Pins connected to pin 40 - 38

Pins not connected - PS,30,£1,32,33,34,36,36,37

Interrupt: factory default <977us)

Pins connected to pin 41 - 28

Pins not connected - 30,31,32,33,34,35,36,37,38

A6.3.5 Interrupts

Int A: not connected
Int B: not connected

Pins not connected - 63,64,65,78,79,80,81,82,83,
84,85,86,87,96

. 1

74B-76

74A-73
75A--72;

Factory default

Insert jumpers - 97-98

Remove jumper - 98-!

A6.3.8 Memory Inhibit Signals

RAM inhibit! not asserted

Remove jumper - K3-K4

,,

&;■

i

ROM inhibit: not assorted

Remove jumper - K6-K6

. . J •

> V .\
A: A;X : A :

I/O BOARD CONFIGURATION AND TESTING

A6.4.1 Oablin

APPENDIX 6

Multibus Syst’em

I N.C.

Distribution Box

\
0 DAC +v i
1 DAG 0 Return
2 DAC 1 +V 1
3 1 Returh
4 ADC 0 Hi 1.
5 ADC 0 Do
6 ADC 1 Hi
7 1 Lo
8 2 Hi
9 ADC 2 Lo

ADC 3 Hi
B ADC 3 Lo '
Ci Analog Ground

|A

I/O BOARD CONFIGURATION AND TESTING APPENDIX 6

Output (Jl)

1 ! nc nc .21
3 1 nc nc 41
5 i „ nc nc 51
7 ! nc nc .81
9 ! nc nc 10 !
1 1 ! nc nc 12 !
•13! nc nc 14!
151 nc nc I;6 !

no 1:8 !
nc 2i0 !

2 1 ! nc nc api
2;4!

25! nc nc 2 6 !
27! nc . nc 2 BI
29! nc nc 301
31! nc nc 32!
33! nc nc 34!
35! nc 1 V out 3 P !
37! 1 I rtn 38!
39! 1 A gnd lLoopV+ 4pl

0 V out 4:21
43! 0 I rtn 0 I out 44!
461 O A gnd 0LoopV+ 46:

Ana gnd 48!
49! -ISVout +lGVout 50!

Input {J2)

1 21
ana gnd (OR) 41
ana gnd (OL) 6 !

7 ana gnd 1 (1H) 8 !
9 ana gnd (11) 1 0 !
11 ana gnd (2H) 1 2 !
13 ana gnd 10 (21) 14!
15! ana gnd (3H) 16!
17! ana gnd 11 (31) 18!
19 ana gnd 4 (4H) 2 0 !
21 ana gnd 12 (41) 2 2 !
23! ana gnd , (5H) 24!
25! ana gnd (51) 261

gnd (6H) 28!
ana gnd 14 (61) 30!

311 ana gnd (7H) 32!
ana gnd 15 (71) 34!

35! nc nc 36!
37! nc 38!
39 dig gnd ck out 40 !
41 dig gnd 42!
43 dig gnd EOC out 44!
40 dig gnd EOS out 461
47 ana gnd gnd 48!
49 -ISVout +15Vout 50!

V

I/O BOARD CONFIGURATION AND TESTING

4.2 Distribution Box Wiring

APPENDIX 6

I/O BOARD CONFIGURATION AND TESTING APPENDIX 6

A6.4.3 D-connecfcor configuration

Computer!
"iption Wire Colour

Diet. Box

Pin line', Pin

1 out White 3
2 ' 1 out
3 ; 1 Loipp V+
4 ! 0 out Yellow 1
5 9 : 0 out
6 11 ! 0 Black 5
7 13 S 0 I Brown . s
8 15 i 1 Green 7
9 17 ! Purple 8

10 19 ! Blue
11 21 : Orfinge 10
12 23 ! 3 Turquoise 11
13 25 ! .3 ! ■ Pink 12
14 ! 1 rtn
16 ! 1 anu gnd 4
16 !
17 ! 0
18 10 i ansi gnd Grey 2
19 12 i ena gnd ■Shield 13
20 14 ! anu gnd
21 16 ! ana gnd
22 18 ! gnd
23 20 ! ana gnd
24 22 ! ana gnd
25 24 ! S«d

199

APPENDIXI/O BOARD CONFIGURATION AND TESTING

A6.5 Testing

made to the handbook for the I/O
board [39]

D/A Calibration

Gain Adjust Offset Adjust

irovidc output codes is available

load impedam

equipment required

the' +/•precision decimal pi;

iltmeter - to analog ground of DAO

200

I/O BOARD CONFiaURATIOW AiTO TSSfINO APPStWIX 6

- calibration

allow 1 hour for the system to warm up

refer to figure 7.1

unipolar offset (0-10 V and 0-6 V)

output 00H and adjust for 0 V

unipolar gain

output OFFFH and adjust according to the table

bipolar offset (+/- 10 V and +/- 5 V) '■

output 00H and adjust for minus full scale ;

bipolar gain

output OFFFH and adjust for full scale - 1 tSB

A/D Calibration

- assumptions

software to provide readings and display them is
available

calibration is on channel 0 , with all other channels
returned to analog common

in^ut cable length < 3 m
- equipment required

I/O BOARD CONFIGURATION AND TESTING APPENDIX 6

- single-endetl operation - see the figure on page 2

' ^ (5 differential o p e r a t i o n s e e / | the figure on page 4

- - calibration ..

 2 alloku-l-h-fAH— jyr the system to warm up

/ ' unipolar zero

".y set gain bo 1

input 1 LSB and adjust the offset for 1 count

; " set^g-ain to S , ‘

input 1 LSB and adjust the amplifier ofA^at for 1
" ' count<)as» sto'biyn in the table dn pag@ 6

■; o unipolar full scale

set gain to 1

input full scale - 2 LSBs and adjust according to
the table on page

- . .) ■ ”
bipolar zero ^

set gain to 1

input - full scale + 1 LSB and adjust the zero
potentiometer according to the table on page 9

set gain to S

adjust the auxiliary zero

bipolar full scale

1/0 BOARD CONFIGURATION AND TESTING APPENDIX 6

. set gain to 1

i«put full scale -> Z\LSBs and adjust according to
the table on page 6

iA6 ,5.2 Calibration

Analog output required no calibration.

Analog input 0 was tied to analog output 0, and the number
of erroneous readings was minimized by adjustment to the
‘offset and gain.

After calibration, the average error rates were

Single-bit errors - 1 in 1833 samples

Multiple-b.it errors - 0

SOFTWARE REQUIREMENTS APPENDIX 7

A7 .1 Introduction

The requirements for the software part of the system were gen
erated by examination of the system functional specifications,
This appendix provides the full Software Requirements document;
discussed in chapter 5,

Eight major functions are required'of the software;

- Task I/O handling

Self and mutual testing of nodes <i

- Time-Staggered operation /

- -Watchdog timing.

- Error handling

- Task control . *

- Inter-node communication

- System initialization

A7.2 Task I/O Handling

Task I/O handling is the most important fault .tolerance
feature of the system. It is expected that this utility will
provide the most meaningful system .failure-avoidance
capability, in that the task I/O handling routines will
prevent the production of erroneous outputs, and also inhibit
the spreading of errors through the application system
software.

SOFTWARE REQUIREMENTS APPENDIX 7

A7.2,I I/O Device Checks

Because the system is intended for use in e control environment,
input and output devices are of prime importance. No matter how
fault tolerant the computer •system is, undetected sensor and
servo failures will override its effect and cripple the system ,as
a whole. For this reason, it is important that regular checks on
the I/O devices are made, especially when they are about to be

For output devices, reedback and feedback checking of output
channels must be supported, while for input devices, input
reasonableness and consistency checks must be supported.

If errors are detected, these must be signalled so that the
operating system can take appropriate action.

A7 .2.2 I/O Request Servicing

In order for the application system to make use of
fault-tolerance procedures, I/O request servicing must be
provided, This will enable application modules to call
operating system routines which perform input or output (as
required) in a fault-tolerant manner.

The key aspect of I/O servicing is the application of voting on
the data supplied by each node. Errors can , thus be
eliminated, and faulty nodes pinpointed.

It is necessary that, once a voting operation has been per
formed on an input to a task, all nodes use the same input
value in their calculations; otherwise different answers may
be produced, causing confusion in the voting process. (This
requirement is based on the proposal that, given the same input
data and the same process by which to transform that data,
identical machines will produce identical answers).

SOFTWARE REQUIREMENTS APPENDIX 7

To provide full facilities for application programs, all
types of task I/O, including memory modifications (i.e. RAM
output) and memory data input, as well as other peripheral I/O
types must be catered for in the I/O request servicing package.

Of particular importance to the target application, multi-input
servo device handling must be included.

A7.2.3 I/O Records

Throughout the various operating system sections, good
records oust be maintained, for two main reasons:

to enable the operating system to perform fault diag
nosis when necessary

to allow system monitoring at various development phases and
for maintenance and repair

As with other operating system sections, I/O records include two
parts of the fault-tolerance record structure, namely error
records and fault records. Error records will consist of notes
of any errors detected, as well as any other information as
may be determined. Similarly, fault records will consist of
notes of all faults found by the mechanisms.

In addition, the I/O request servicing section of the system must
maintain a list of the I/O devices together with their opera
tional status and notes about peculiarities of the devices
(such as replication of input devices and dual inputs to
output devices).

A7.3 Self and Mutual TestiHif

Equipment-testing programs are primarily intended to forestall
the occurrence of an error by detecting hardware faults at an
early stage. The programs can also be used for fault
pinpointing once an error has occurred.

/ * Htr* w

SOFTWARE REQUIREMENTS APPENDIX 7

Both self testing and Mutual testing must be included because of
the possibility that the software in a node is corrupted. This
corruption, when affecting tho self-test software, may'cause the
node to erroneously report itself fault-free. The testing of a
node by another node will.detect this situation.

A7.3.1 Test Descriptions

All parts of the system should be exercised by the test programs,
including the

- memory components

- processor subsystem

- I/O equipment

- inter-node communication equipment

and any other special equipment.

Fixed dhta, designed to detect stuck-at faults, and random
data, . to give as high a pattern-dependent fault coverage as pos
sible, must be used.

Programs should be provided to activate remote tests, and
others should be designed to respond to these activations by per
forming the required teat(s) and reporting back via the com
munications bus.

All routines must, on detection of an error, report this fact
to the operating system.

A7.3.2 Test Scheduling

Equipment testing may be scheduled to take place in three cir
cumstances.

SOFTWARE REQUIREMENTS APPENDIX 7

When the cpu has no tasks to run, equipment testing must be un
dertaken to detect hardware faults as early as possible.

If the voting mechanism (or any other mechanism) indicates that
a node has erred too often, then the node must remove itself
from the operational system and perform self-tests until it has
either failed to isolate a fault, or has pinpointed the
fault as tightly as the teats allow.

Finally, when the voting mechanism is incapable of
Identifying the erring nodes after errors have been detected
(i.e. when two or three nodes err simultaneously), then all
three nodes must cease application execution, 6|nd perform
self- and mutual-tests. 1

A7.3.3 Test Records - . |

As before, error and fault records must be updated according to
the results of the tests.

Also, records must be kept on the condition of devices,
especially whether or not they may be used.

A7.4 Time-staggered Operation

This aspect of the system is key to the effectiveness of. the
voting mechanism. By ensuring that the nodes do not execute the
same instruction at the same time, the probability of .two nodes
producing the same error due to a transient fault is made insig
nificant. Hence the voting mechanism can detect the errors.-

A7.4.1 Setting up of Stagger

Procedures must be provided by which the relative clock times of
the nodes can be set to different values. Also, it must be pos
sible to check the stagger periodically so that clock drift does
not move the clock positions too far from or close to one

SOFTWARE REQUIREMENTS APPENDIX 7

another. Errors must be brought to the attention of the operating,
system.

Any errors uncovered by the time staggering set-up or check pro
cedures should be noted in the error record structure.

A 7 .6 Watchdog Timing

This part of the system provides extra error and fault detection
capability to the system.-

A7.5.1 Task Completion Checks

After each task,■ the node must make available to other nodes the
task number (Identification) and completion time of the last
task. This data will form the task-complete record for the task.

Thereafter, the node must check the. total task-complete
record set (from all nodes) to see if there are any dis
crepancies. Both task numbers and task complete-times must be
checked.

Any discrepancies must be reported to the operating system •for
appropriate action.

A7.5.2 Timing Records

Again, errors must be noted in the error record structure.

A7.6 Error Handling

The system must provide the facility to preserve system
operation when an error has occurred. There should be the
means to restore the system to its fault-free state wherever
possible.

SOFTWARE REQUIREMENTS APPENDIX 7

A7.6.1 Rode Errors

The first sign of a fault is the detection of a node error, by
any of the means , included in the system. When this occurs,
the operating system must take appropriate action. This action
is to be provided by the error handling routines.

If a node has erred only once (or an acceptable number of
times), then a number of actions must be taken.

Firs.t» the error muit be recorded in the error record data
base. Secondly, the correct data must be provided to the err
ing node. Thirdly, nodes must begin voting on which task to ex
ecute. i

If an .unacceptable number of errors has occurred in one
node, then more severb action must taken. Firstly, the error
record base must be updated , and then examined to see if any
conclusions can be drawn about the nature of the fault.

Then the node must be instructed to cease application program ex
ecution and to perform extensive self-testing. Once the self
testing procedure is complete, the node may then begin execution
of application programs if it has sufficient capability.
The current schedule list must be provided to the node at this
time, by the other nodes. The node .may then provide data for
voting, as before, but must be ignored until it has produced
correct data for an adequate number of successive votes.

A7.6.2 Fault Diagnosis

In order to facilitate fault isolation and to provide data for
system repairs and improvement, it is necessary that the system
perform fault diagnosis whenever it is suspected that a fault ex
ists (namely when a node is isolated for beating).

This process should be the systematic application of test proce
dures to isolate faults as much as possible. Once the fault is

V
SOFTWARE REQUIREMENTS APPENDIX 7

pinpointed, an alternative resource may be used in place of the
faulty resource if one is available.

A7.6.3 Error and Fault Records

Error handling routines must provide the bulk of the error and
fault record roa'Mpulation. When an error report is made, the
routines must update the relevant records, such as node
error counts, error-type counts etc.

A7.7 Task Control

A most important part of the operating- system, task control
routines, must be provided to take care of the scheduling and
dcscheduling of tasks, both application tasks and operating
system tasks. ::

A7.7.1 Maintenance of Scheduling Lists

Routines must be provided by which application tasks must be able
to schedule and deschedule other application tasks, Routines must
also maintain Order in the lists for ease of task execution in
itiation.‘

Normal execution lists will include both operating , - system
routines and application routines, while an exception list must
be available when the node is instructed by the system to un
dergo testing.

A7.7.2 Performance of Scheduling

When no exceptions have been discovered, the normal list is fol
lowed, while in exceptional circumstances, the exception list
becomes active.

If a node is identified as having erred, then, as a
precaution, the nodes will confer on each task before it is ex
ecuted, This will identify a fault if errors arc then

211

SOFTWARE REQUIREMENTS APPENDIX 7

detected. Also, this will prevent the execution of an in
correct task. If the cpu is too busy to handle the extra load,
then the precaution itust be forfeited, and the voting and
watchdog mechanisms • must be relied on to detect the execution
of an incorrect task.

Abnormal conditions detected by any of these routines must be
reported. 1

A7.7.3 Task Records !■

A record must be madii on the execution of each 'task. This will
aid system testing, maintenance, repair and improvement.

Errors,must be recorded.■

A7 .8 Inter-node Communication

Although the communication is to be imitated using common
memory, the correct format is to be retained so that in the in
tended application, little modification is necessary.

A7 .8 ,1 Communication!: Handling

Routines must be provided by which modules may transmit and
receive messages via the communications bus system. These
routines must control all communication board-dependent
functions, thus simplifying the communication procedure and
providing an error Interception method.

All errors and faults signalled by the communication board must
be reported to the operating system.

SOFTWARfj RBQtriRBMFWTS

"\be possible to establish test links for 1
^ s y s t e m testing, and remote test initiation.

bdth

Activity

i v.;-s/s function is not part o
•y for the demonstration set-up.

Althi the system,■ it
Procedures ^ust

led by the communication board.

ivity should be recorded by bus controllers f
if testing, maintenance and design improvement.

id fault records must be updated when necessary,

A7.9

The;;t be executed ut power-|ip.

‘4
operati)

i must establish the working
ig system by initializing devices and performing system;

A7.9.1 llni tializotion of Dovices

All dev'lli must be initialized.

Extensive pre-operati<
tended versions of thi
enhanced'! tests to <

. These must include

ipeclally serv't

operation of the system,
nailed to

2 1 4 /j

This appendix gives: the complete software functional specifica
tion, which was derived from the software requirement specifica
tion.. 1 Each section of the appendix starts with a diagram that
shows jjjow the described software fits into the system.

SOFTWARE FUNCTIONAL SPECIFICATION '

1/1
I

I/O
Device

feedback reasonableness error
& feedback & consistency signallin
checking checking

READBACX AND FEEDBACK CHECKING:

Retidback - If the output bhannel has a readback input
channel, then this is noted in the I/O device record
structure. The readback checking facility is called when an

" output is performed, and the application wishes to check that
the Output channel is operational. The readback facility
examines the I/O device records to see if there is a readback
input channel, and tp get the tolerances associated with the
output channel. It then compares the output value requested
b.T". the readback value read. If the values are sufficiently
.close, then the module returns a status of OK. If the vfiluea
'are too far apart, then the module creates an error and a
fault record, and returns a st.atuo of NOT OK,

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

Feedback - The routine simply compares the actual feedback
values with those that the application telle it to expect.
The facility is used as an extra device check when required.
The application program must supply the expected value. The
feedback routine then obtains a feedback value and compares
the two. If the difference is more than a tolerable value,
then the feedback check routine returns a status of NOT OK
and ..creates an error and a fault record. If the difference is
acceptable, then the routine returns a status of OK.

REASONABLENESS AND CONSISTENCY CHECKING

Reasonableness - Upper and lower bounds exist for input
device readings. These values are stored in the 1/0 device
records. When an input is measured, the returned value is
compared with these values to see if the input is reasonable.
If the value is out of bounds, the routine creates error and
fault records, and returns a status of NOT ok. Otherwise a
status of OK is returned.

Consistency - There is a maximum rate of change possible for
each input channel. The value is held in the I/O device data
base. A new input value is compared with the previous input
value from that device. If the difference is too large, then
the routine creates an error and a fault record,and returns ,a
status value of NOT OK. Otherwise, the status value is OK.

ERROR SIGNALLING

Error signalling is accomplished in two parts. First, an.
error record is generated. This brings the error to the
attention of the operating system via the record creation
subroutines. Secondly, the application program is alerted

APPENDIXSOFTWARE FUNCTIONAL SPECIFICATION ’

I/O

I/O

consistent all types
signallingroting input

When on application program wishes to obtain an important
piece of information, it must use an input routine provided
by the system. The application provides an identification of
the required information. The system call returns the value

records to get the form of the input required. Each node that

.t over the bus network in a sequence that
tagger is maintained. If an acceptable numbi

of OK so that the application may continue. Ai
is generated if there arc errors. If a double (
error is detected, then the module returns a

generated. The application must decide

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

When an application program wishes to perform output in a
fault^tolerant manner, it must use an output routine provided
by the system. The application provides the data, and the
identification of the output path. The system returns a
•status value. The routine determines the characteristics of
j^he data to be output, from the I/O records. The routine then
obtains the other versions of the data from the other nodes,
vdtes, and performs the necessary output action.

CONSISTENT INPUT D A T A -

' Consistency of input data is ensured, since-the nodes vote on
the same data.

ALL TYPES OF, I/O

ROM and RAM Each node has local ROM and RAM, which hold a
version of the data. When an input from ROM or RAM is needed,
the. routine obtains all versions Of the data via .the

’ communications bus. The voted version is returned to the
application. If the routine finds that the result of the vote

. is different to the value held in its local RAM, then the
d’oiSrect value is written into the RAM, and an appropriate
error record is generated.

When an output to RAM is needed, the routine obtains all
versions of the data via the data bus, votes, and writes the
•result into memory.

) Node sensor inputs - Most sensors are not replicated at each
node. The I/O device records hold the configuration details.
When sensor input is required, the routine checks the I/O
device records to find out which nodes can provide input
data. If the local node has the required inputs, then the
routine reads the data and transmit the value to the other
nodes. It also receives the data from the other nodes.

SOFTWARE FUNCTIONAL SPECIFICATION . APPENDIX 8

Averaging takes place where necessary, applying a tolerance
appropriate to the '"device (also held in the I/O device
records) to decide whether or not the input is valid. When
there is only one sensor, it is the responsibility of the
local node to pass the data to the other nodes.

Node servo outputs - Most servos are the single-input type,
and . are associated with a particular node. When output to
such a servo is to be gade, ..%ach node submits a value for the
output, the local nodt v-qn the submissions, and performs
the actual output. . ^-input servos are present, the

' inputs are attached to-.-. jrent nodes. Again., each node
submits a value, and ' each node with a physical output
performs the actual operat|i"0u.

Discrete sensor inputs - When the sensors are remote from the
computing nodes, they are controlled^ via the communication
b u s . " In this- case, any of the computing nodes has the
‘.capability to transmit the control instruction. The current
'-ems master issues the actual command.

Discrete servo outputs-r Similarly,•servo control instructions
are. issued by the current bus master. - .

MULTI-INPUT SERVOS " . . .

Multi-input servos are catered for ih the I/O request
servicing routines,

ERROR SIGNALLING

Errors are reported to the application by means of status
values, and to the operating system via the creation of error
and fault records.

•n - /•'

SOFTWAKB FUNCTIONAL SPECIFICATION

TASK

. I/O
oRECORDS

I/O Error Fault'
Channel Records Records
Statue

I/O CHANNEL STATUS

I/O channel records provide t h e .information necessary for the
operating system • to perform I/O operations. Most of the
information is invariant, end,is-: programmed into permanent
storage. The remainder of the data is established at
run-time. . ■ .c ■

The records consist of an identifier, followed by
type-dependent permanent parameters.

Memory - A memory record consists of an identifier marking
the memory as ROM or RAM, followed by the node address(es).

'Input - An input device (sensor) record consists of an
identifier marking the device as a sensor, followed by the
node address(es) of the device, and the local address of the
device. (Note that more than one sensor may be available
provide a particular piece of data). Also included are

V

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

a maximum positive rate of change and a maximum negative rate
of change for the variable, thus defining the consistency
limits for the variable. An upper and a lower bound for
reasonability are stored so that an error can be signalled
should the variable attain a value outside these bounds.
An input deviation tolerance is included, which sets down the
maximum deviation that is tolerated between like sensors.

Output - An output device record consists of an identifier,
marking the device as a servo, followed by the node
addressCes) of the device, and its local address. The IDs of
associated devices are stored next. If the output has a
readback input associated with it, then the following infor
mation is the input ID. Otherwise it is an invalid value. If
the output has a feedback input associated with it, then
the following information is the input ID. Otherwise it is
an invalid value. If there is readback, a readback tolerance
follows, and if there is feedback then there is a feedback
tolerance next.

For each input, there is a temporary storage space (i.e. in
RAM) where the last measured value is stored, as well as a
time when the value was measured. These values are ut,ed to
determine whether or not the input is consistent.

For every device, there is a status record, showing whether
or not the device can be used. This is also in RAM.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

ID-> ROM/SAM

node addrs

INPUT

upper reafeon
bound

lower reason
bound 1

ID-> servo

node addrs

readback
tolerance

ID-> OK/NOT OK

max deviatioi
feedback
tolerance

last reading

time of last
reading-'

ERROR RECORDS

All error records conform to a standard format, so that
manipulation of this data is simplified.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

The error record must contain the ID of the data which was
found to be erroneous, and its node’s bus address, the method
of detection which exposed the error (error type), and the
bus address of the node which found the error.

error type

The node address is necessary because,data will have the same
memory addresses in the final system..

FAULT RECORDS

All fault records also conform to a standard format.

The fault record must contain the ID of the ddvice which is
faulty, the method of fault detection (fault type), the bus
address of the node which found the fault, and the node-time
at which the fault was found.

SOFTWARE FUNCTIONAL SPECIFICATION

device lb

fault type

I.

SOFTWARE FUNCTIONAL SPRCIFICATION ' APPENDIX 8

SELF AND
MUTUAL

TESTING

equipment
random

equipment

remote
t.qsfc
responsi

remote
signalli:

Memory : testing is a time " cdlrfeuming process. If there is
adequate cpu time available, all memory is tested. Otherwise,
only representative pieces of each IC are tested.- (Total IC
failure is. more common thah individual memory cell failu
Complete memory tests are executed at power-up.

e).

The memory testing procedure is: ' .

1) A block of memory is transferred to a temporary memory
location. The copy is checked against the original to see
if any error has occurred" in the transfer. \

2) A sequence of "sliding ones"
and read back. This shows
cross-coupling faults of both
system which provides access to

.s written into the block,; '
'stuck-at" faults, and
the memory and the bus

\ 7

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

3) Pseudo-random numbers are written into the block of
memory being tested," and into another temporary storage
area. These data are compared. This test is intended to
reveal pattern-dependent faults.

4) The original data is copied back to the memory block,
and this is again checked against the duplicate.

If an error is detected at any of the stages, an error and a
fault record are produced. The routine is called by the
operating system, and returns a status of OK or NOT OK, as
necessary, allowing immediate fault handling if the operating
system so wishes.

At the end of memory tests, the processor communicates' the
results with the other nodes, so that they may update their
records.

PROCESSOR

I't-'is essential that the processor is operational, or the
node is incapable of . performing- any useful work. The
processor is therefore extensively tested before the system
is put into opet.. ■t\l and is periodically re-tested to . en
sure that it remains operational.

Thd core instructions are tested first, because they are
required to test the other instructions. The core
instructions are

1) memory to register transfer

2) register to register comparison

3) conditional branch

If any of these instructions fail, then no further testing is
possible, and the node is useless. Therefore the processor

SOFWABB FUNCTIONAL SPECIFICATION APPENDIX 8

sends an appropriate message to the operator, and operation
terminates.

If the instructions are executed successfully, then testing
of the processor continues. All possible processor commands
are tested, using known data and precomputed results..

Power-up testing starts with processor checking;. when this is
complete, other tests are undertaken. When periodic processor
checking is done, a status value returned in .addition to
the error - and fault records< which are produced whenever
necessary.

At the end of the processor tests, the node communicates the
results to the other nodes so that they may update their
records. '

I/O EQUIPMENT

Since the system may be used in different environments, it is
possible to add or remove I/O equipment test routines as
necessary. Therefore, the core I/O equipment test routine
consists of a set of calls to all the appropriate
sub-routines, which test the different types of equipment.

The present system requires two. types of testing

1) analog input .

2) analog output >

Analog input - The first checks on the analog inputs are of
the I/O board registers. All those registers which may be
checked, by reading back, are loaded with appropriate values

SOFTWAKB FUNCTIONAL SPECIFICATION APPENDIX 3

N ext, all input channels are read, and their values checked
for reasonableness. The I/O. device records are consulted.

Analog output - All output channels with readback and/or
feedback capabilities are set to a series of output values
appropriate to the devices they control. Readback and
feedback are performed, and the values checked against those

" which are expected.

If the results of thg tests show errors, thenx-beyh the output
and the readback/feedback devices are marked as faulty,
because it is not possible to distinguish.between them with
respect to the position of the fault.

Error and fault records are generated when an error j is
detected. A status value of OK or NOT OK is returned. At the
end of I/O testing, the node communicates the results to the
other node»fso that they may update their records.

INTER-NODE COMMUNICATION EQUIPMENT

The communication contr^llar board is intelligent, and
performs many of its own checks. The result of these checks
is returned via a status word in the communication system
control block. t ' ^

On power-up, the board is given a software reset command, and
the status is read to see if any faults are present. .

When the system is operating, and the communication equipment
is to be tested, a NOP command is issued, and the status is

Next, a communication link is established between two
controllers. Known messages are passed between the nodes; any
discrepancies or error reports are noted. Random data is used
for the testing. All action commands that can be tested ap-e
verified. ,

229

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

Error and fault records are generated when an error-is
detected.- A status value of OK or NOT OK is returned-.

At the end of the inter-node communication equipment testing,
the node communicates the results to the other nodes so that
they may update their records. ‘ '

RANDOM ..DATA GENERATION

Random data is used in many of the test procedures.

Psetido-random numbers with a flat distribution curve are
generated, using a seed obtained from an uninitialized RAM

REMOTE TEST ACTIVATION

In order to provide mutual testing, a set of routines must
provide the necessary actions.

Remote test activation takes place'1 according to a fixed
sequence. This allows the establishment of a rendezvous
between participating nodes.

The activating node sends a message to the activated node,
instructing it to perform a sequence of tests. The activated
node responds by performing the requested tests one by one,
sending a report message back to the activating node after

, each test.

The activating node monitors the test results and generates
appropriate error and fault records which it also later sends
to the activated node so that its records can be updated.

REMOTE TEST RESPONSES

The activated node produces a report message consisting of
the results of each test and the node’s opinion of the

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX.8

results. This enables the activating node to decide whether
or not the activated node is capable of meaningful decisions.

Thv activated node then accepts any error or fault records
from the activating node, perforins self-tests if necessary,
and creates its own error and. fault records.

ERROR SIGNALLING

Self and mutual testing routines are invoked by the operating
system. Therefore the returned status messages provide the
operating system with the ability to decide on the course of
action, according to the results.

Error and fault records are also generated.

SOFTWARE FUNCTIONAL SPECIFICATION APPEND EJ} 8

SELF AND
MUTUAL

TESTING

Scheduling

cpu 11 ' erring unresolved
idle , node note

CPU IDLE '

All free cpu time is used for additional system confidence
testing. This allows early detection of hardware” fdiluret.
Tests are done in a cyclic manner, with as many ^tests 'qs ■
possible being fitted into the cpu-idle times. At the.next
cpu-idle time, testing resumes with the ne'St test in the

°"i'- " " . It /.
For the purpose of fitting tests into free time," a table must
hold the WITH-RRROR execution times for each test' fi'.e.
including the time needed to create errdr arid fault records).

The operating system checks on the available time, checks l|he
required time for the next test, and executes the next test
if time permits. "

Appropriate error and fault records are generated.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

ERRING NODE

When the error handling section of the' system decides that a
node has produced too many errors, it instructs the node to
perform a sequence of self-tests. If the errors exhibited by
the node are all of a particular type, then it is only
necessary for the node to test the appropriate subsystem. If
the Jesting reveals a fault, then “the „node reports the fault.
If ho fault is revealed, then the node must remain configured
out of the system. v -

' If the detected fault is not sufficiently serious to cause
total node failure (e.g. duplicated sensor failure), then the
node may be brought back into operation. Otherwise the node
is no longer considered part of the system (e.g. in the., case
of processor failure).

UNRESOLVED VOTE

It .would be wasteful to shut down J h e system after only one
U.,resolved vote. The chances are greet '-Svhai the mis-vo'teV was
the result of a transient fault.Therefore?, system s-htit-down
occurs only after an unacceptable Lumber of mis-,",otes have
occurred.

In such a circumstance,it can be taken ty imply that at least
two nodes have a fault. Since the operational node.cannot be
pinpointed by the voting m e c h a n i s ^ |ll nodes must perform
self- and mutual-testa in an effort to_j$nd the faults. If no
faults are found, then the system mr ... ^nue to operate.

After a further unacceptable numba if«s, the
considered inoperable, and is shut

stei

„vi i. _ .1 iSlf M t,A

- - /
r < ; ,

SOPTWAHS FlfffOTIOWAIi SPECIFICATION

SELF AND
MUTUAL ,

TESTING

Records

device error
availability records

fdult
.records

DEVICE-AVAILABILITY

Device status is held in RAM, ‘ W d isCj,identified by the device
ID. If any -of the self at tests determine that a
device is not serviceable, th^UAWils- device status 'is-''tipdated.

, w o . „ ..

Error records conform with the standdvd...format.

Fault records conform with the sLandard forme^f.

■ ; ' ■ ' ■■■ ■" - .

. r - - - . - j - '

SOFTWARE FUNCTIONAL SPECIFICATION

■ STAQGBRliD
OPERATION

J up
Stagger

stagger clock
Initialization checks signalling

STAGGER INITIALIZATION li

After system initialization, jithe, o1»bok#,'' ere- .read by each
node. The clock-time at whicfh each nad^-m^st reset its clock
is determined by adding a setf-up time ’to the read value of
■Oaoh clock. The set-up time! is pre-ttiteriiiined, apd consists
of the time 'lecessary fob, the & *^h.lat^ons, the time
differences between the reading of -‘.h^’W t o c k s , the time for
communication of the time readings, shdrt safety time. 1

!
The procedure for each node is there

get all node calculate each | chock serer'tlines wait set zero
times zero-!-inte | with other ritides time

If the zero-time check reveals disagreement between the
nodes, then an error record is generated, and the procedure
is repeated. Multiple errors indicate a faulty node. The

S0FTWA8B FUNCTIONAL SPECIFICATION APPENDIX 8

operator is alerted, and the node is instructed to perform
self- and mutual-tests. If these teats reveal serious node ,
faults, then the node is left out of the system. Otherwise.,
corrective action is made, and the node is overruled in the
saro-time vote.

CLOCK CHECKS

Immediately after stagger initialization, and also
periodically, clock stagger checks are made.

" The clocks are read and compared. If the difference is
acceptable, then no action is taken.

If there is too large a discrepancy in the relative clock
positions, then resynchronization i.s done, using the same
procedure as for stagger initialization, but setting the time
to an appropriate value. An error record is': generated if the
clock discrepancy reveals a serious clock error (i.e. greater
than the expected drift rate would cause), and a status of
NOT OK is returned.

ERROR SIGNALLING

Errors are detected in the clock-check stage,: and error
records are generated in error conditions. The status value
allows the operating system to take Appropriate action.

' " Y . ' r ,

SOFTW&kE FUNCTIONAL SPECIFICATION ' APPENDIX 8

OPEHATIO'

■A - ' 1

"li

Error records conform with the standard format.

SOFTWARE FUNCTIONAL .SPECIFICATION APPENDIX 8

WATCHDOG
TIMING

Checks

production complete-
of task- time
complete checks checks

number signalling

records

PRODUCTION OF TASK-COMPLETE RECORDS

When each, task is completed, the operating system in each
node provides the other nodes with the task identifier and
its task-completion time. This is done in a pre.-determined
sequence via the communication bus. A table is created, using
the values obtained via the ..communication bus and the nodes
own values. This table forms the task-complete records.

COMPLETE-TIME CHECKS

Each node, before executing the next task, reads each
task-complete time from its task-complete records. The
difference between the values is checked against a known
maximum difference. If the times are sufficiently close, then
no action is taken. If the times are too far apart, then an
error record is generated;.

TASK-NUMBBR CHECKS

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX B

a message to the node which has executed the incorrect
informing it of the correct next-task to execute. If a
task execution error occurs, then the node is instru
perform self-validation. Otherwise no action" is taken.

EitROH SIGNALLING

Errors are signalled when tusk nyjibers<or task-complex
are found to be incorrect.

second

i <1 iffallffiirrft

SOFTWARE FUNCTIONAL SPECIFICATION •

consistency ,
restoration reconfiguration

CONSISTENCY RESTORATION

confidence

This is the most common form of error; handling.
Inconsistencies take the form of incorrect data, which is
detected by . the voting mechanism. The voting mechanism
overrules any single errors1) thereby restoring consistency
to the erring node.

If a node has executed an incorrect task,.then
section detects this, and the node is informed
next task, thereby restoring task 'consistency.

watchdog

NODE RECONFIGURATION

Node reconfiguration is the proce
instructed to cease application exe
self-validation.

by which nodes a:
ion, and to perfo

his instruction
nacceptable number o
s noticed in the

oin the detection wof an
in a particular - node, which
rd and fault record handling

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

When a node receives such an instruction, it begins an
analysis of bhe error records which led to the action. Using
the data obtained from the error records, the node performs
appropriate self-tests of the faulty section. This leads
to any existing fault being detected. Then a fault record is
created, and the task I/O table is modified to show the
faulty device.

Next, the node notifies the system that it has completed its
tests, and it informs the 'system of any faults discovered.
The other nodes respond by updating their fault records, and
supplying the erring node with the current execution list.

NODS RESETTING

The erring node has been reset tince it has performed all the
necessary tests and received the current execution list.

The node then executes tasks as normal, submitting results in
the usual way. If faults were pinpointed, then the faulty
devices are not used. Otherwise, the node is used as normal.

In the voting procedure, healthy nodes ignore the
contribution of the erring node as far as the vote is
concerned, but count the number of correct submissions that
the node makes. The count is reset to, zero every time the
node makes an error. After a pro-determined number of correct
submissions, the system again uses the erring node, resetting
the count of errors_since_last_validated to zero.

NODE SELF-CONFIDENCE MESSAGES

Node self-confidence is indicated iTi two ways, Firstly, when
the self-testing is complete, the ready message indicates the
status of the node. Secondly, the submission of correct data
for voting and task-complete checks indicates whether or not
the node is ready for use.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

ERROR
HANDLING

Diagnosis

pinpointing '

FAULT PINPOINTING

Fault pinpointing is the process of localising faults by
applying tests appropriate to the detect'ed errors.

The error records indicate the ID of the errors detected. The
pinpointing process ascertains the type of the error which
caused the node isolation (i.e. ROM, RAM, servo, sensor etc.).
Then the self-tests applicable to that device type are used
te confirm the existence of the fault. Otherwise general
tests are made to find the root cause of the error.

APPENDIX tiSOFTWARE FUNCTIONAL SPECIFICATION

provide the means for theThe error handling1 routi;
creation, and Maintenance of error record:

Whenever an error is detected, a call is made to
record creation procedure. The procedure is passed

1) the ID of the data found to be ii

2) the type of

The routine pieces thi
node's address into
propriat<
address

the detecting
mror record. It then updates the ap-

ROM, RAM, sensor eri

particular node/type coinbinutioi
•xoeeds the acceptubli

'ide the means for the

\ ' ' - < / .y . - ' . ' "

SOFTWARE FUNCTIONAL SPECIFICATION • APPENDIX 8

■ ible,’ault has been pinpointed as far as is poes
testing procedures-, the following informatii.lag

-1) the ID of the device found- to be faulty

2) the type of fault

this information, plusThe routine plai
node's address and the detection time into a fault record. It
then modifies the status ,of the device to show that it is not

SOFTWARE FUNCTIONAL iF-ECIFICATION APPENDIX 8

CONTROL

Maintenance
of Scheduling

scheduling & normal & • error
deacheduling ■ exception signalling

lists

SCHEDULING AND DESCHEDULING

Scheduling and deacheduling of tasks is done via operating
system calls that keen track of time Usage.

The task schedule list is in the form of a linked list so
that new entries can bo inserted in the correct time-defined
position. Hence, no list sorting is necessary.

Scheduling - When the scheduling of a tusk is desired, the
program calls a scheduling routine. This routine requires the
ID of the task to be schedulod, and the time of its
execution.

The routine then obtains the expected task execution time
(including error handling) from the task descriptor list. It.,
then checks the tusk schedule list to see if the time between
the start time and the end time of bhe task has already been
allocated. If so, an error record is gonorutod and a status
of NOT OK is returned, so that the program attempting to
schedule can take appropriate action.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

If the time is vacant, then tb? task schedule list is updated
to include the new task, A /<tatus of OK is returned.

Descheduling - When deschedul^ng is.required, the routine is
called, and the task ID is passed, t % descheduling procedure
searches the task schedule lisjfc and removes the appropriate
ehcry, thus making that tin^h available for other tasks. If
the .task is not found, then Ij an error record is created
because this means that a : task which should have.been
scheduled was not. A status of. NOT OK is returned.

NORMAL AND EXCEPTION LISTS ,

Separate physical lists are1 not present. In exception
conditions, the task scheddjle list’ is cleared, and those
tasks which are appropriate to the ; exception condition are
scheduled instead. j

i!
ERROR SIGNALLING i i " ,

ii - / . .
Scheduling and descheduling^error' reports are provided when
such errors occur. -

The status value returned to |the calling program enables it
to take appropriate action. I1

SOFTWARE FUNCTIONAL SPECIFICATION " APPENDIX 8

CONTROL

Performance

Scheduling

signalling
exception

NORMAL OR. EXCEPTION LISTS

Since only one list is to be supported, with its entries set
appropriate to the conditions, there Is no need for the
scheduling routines to make any distinction-

scheduling is accomplished after each task is completed, by
examining' the task schedule list. If there is adequate time
before the next task, self-tests are run. Otherwise a call is
made to schedule the next. task.

In exception conditions, the Operating system modifies the
task schedule list to include only those tasks which are
necessary for the test procedures, and for other functions
needed to handle the exception.

After every execution, the task schedule list is)
removing the task.

odified by

If the inter-task time chock ;
then 11 scheduling error recor

tils a valiii
generated.

less than 0,

SOFTWARE FUNCTXOSAL SPECIFICATION APPENDIX 8

NEXT-TASK VOTING

When a node has made the error of executing an incorrect
task {detected,by the watchdog mechanism), next-task voting
is begun.

Before any task is executed, the task ID is communicated
between the nodes, and a vote is taken to lessen the chances
of another incorrect execution. Error records are produced
when necessary.

If there is inadequate time before the next task, then the
vote is omitted, and the other mechanisms are relied on for
detection of errors.

ERROR SIGNALLING

Error records are generated when necessary.

SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

CONTtiOI

±
Records■

task error
execution records
details

TASK EXECUTION DETAILS

To aid diagnostics etc., a list of tasks run, -with their
initiation times and completion times, is kept, and updated
after the execution of each task, .

ERROR RECORDS x-

Error records conform with the sttihdard format.

SOFTWARE FUNCTIONAL SPECIFICATION'

COMMUNICATION

Handling

lignalling
receptii

TRANSMISSION AND RECEPTION

i - A pointer to the data to be transmitted, i
:he number of bytes to be transmitted, and th<
of the message (ALL for broadcast) is -passed t<

The routine writes the appropriate control inti
■s up the command blocks and sets up the list o:
? it is the bus controller, .then it then activate:

the SCB, s.

transmit, fr<

Reception -
be placed, maximum byte count are passed

writes the appropriate control inti
ip the command block:

:eption. Othei

> i / -S r i

SOFftfotRE FCfECriONAL SPECIFICATION APPENDIX 8

A multi-node co-operation routine allows the mutual exchange
of data to be accomplished using only one call. This routine
makes use of the transmission and reception routines to
accomplish this effect.

The transmission and reception routines are provided for
communication with non-fault-tolerant nodes, other
fault-tolerant 'groups on the b us, and for inter-node
communication in exception conditions. The multi-node
co-operation routine is used the most.

ERROR SIGNAttINO

Because the bus controller board is intelligent and provides
status and error signals, these are examined to find
communication errors. Then, normal error reports are
generated, and, where a fault is identified, a fault record
is also generated.

SOFTWARE FUNCTIONAL SPECIFICATION '

Signalling

link creation is
ssion and reception

facilitated by the use oi
routines. When it is decided

the bus controlli
This measagi

nodes, which

testing
merely establishes the
respond with an I'M

READY message. A status of
testing can begin. If there is
or negative resj
returned. Error

received, then
are generated.

isages are generated whenevei

, 1

, *

6.-A:
SOFTWARE FUNCTIONAL SPECIFICATION APPENDIX 8

INTER-NODE
COMMUNICATION

I
Modelling

Activity

characteristics

BUS CHARACTERISTICS

The modelling routine maintains buffers according to the
commands, and produces, status and error messages in the
format of the bus controller Card.

The routine reads the control commend in the system control
block, and obtain the necessary data from it. It then
accesses the command blocks and executes the appropriate
actions according to the action commands, updating the
necessary communication table entries, and transferring data
between node buffers.

V

SOFTWARE FUNCTIONAL SPECIFICATION

records records

BUS ACTIVITY

To aid diagnostics etc., records of bus activity are
produced. For each communication, the record holds source,
destination and time of the communication.

ERROR RECORDS

Error records conform with the standard format.

FAULT RECORDS

Fault records conform with the standard format.

SOFTWARE FUNCTIONAL SPECIFICATION '

SYSTEM
INITIALIZATION

I
Initialization

Of Devices

device
initializatii

DEVICE INITIALIZATION

Device^ on th e .'186 board are initialized first, followed by
initialization of all memory components, the analog I/O board
and the inter-node bus controller,

After each initialization, a check back i"6 performed to
ensure that the device is ready for use. If it is not, then
the initialization is re-tried, and an error message is
produced. If the second try fails, then a fault record is
generated, and the device may not be used. If this fault
means that none of the system may be used, then the■operator
is alerted. 1

ERROR SIGNALLING

Failure to successfully initialize any device is reported
first by an error record, then by a fault record.

Author Bury Michael John
Name of thesis Fault Tolerance In Computer Systems. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Univers i ty of the Witwate rs rand, Johannesburg L ibrary website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

